WO2022188587A1 - 空调器的控制方法、装置、空调器及存储介质 - Google Patents

空调器的控制方法、装置、空调器及存储介质 Download PDF

Info

Publication number
WO2022188587A1
WO2022188587A1 PCT/CN2022/075893 CN2022075893W WO2022188587A1 WO 2022188587 A1 WO2022188587 A1 WO 2022188587A1 CN 2022075893 W CN2022075893 W CN 2022075893W WO 2022188587 A1 WO2022188587 A1 WO 2022188587A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
air conditioner
indoor
opening degree
air
Prior art date
Application number
PCT/CN2022/075893
Other languages
English (en)
French (fr)
Inventor
路会同
林军国
Original Assignee
广东美的制冷设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110253423.4A external-priority patent/CN115031360B/zh
Priority claimed from CN202110364718.9A external-priority patent/CN115183420A/zh
Application filed by 广东美的制冷设备有限公司 filed Critical 广东美的制冷设备有限公司
Publication of WO2022188587A1 publication Critical patent/WO2022188587A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/62Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
    • F24F11/63Electronic processing
    • F24F11/64Electronic processing using pre-stored data
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/79Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling the direction of the supplied air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/02Ducting arrangements
    • F24F13/06Outlets for directing or distributing air into rooms or spaces, e.g. ceiling air diffuser

Definitions

  • the prefabricated houses Due to the high outdoor temperature during the day, the prefabricated houses are poorly insulated and the air does not flow. Therefore, when the board room is exposed to direct sunlight during the day, the indoor temperature of the board room is often much higher than the outdoor temperature.
  • the outdoor heat exchanger side directly exchanges heat with the outdoor high-temperature air, and the heat exchange effect is poor, resulting in a lower cooling capacity of the whole machine, which is exactly the opposite of the use requirement of large cooling capacity in the prefab house under high temperature.
  • the present application provides a control method for an air conditioner, the method comprising:
  • first indoor temperature is greater than the first set temperature, determining whether the first indoor temperature is lower than the first outdoor temperature
  • the opening degree of the air guide vanes of the air conditioner is adjusted according to the first outdoor temperature and the first set temperature.
  • the step of adjusting the opening of the air guide vanes of the air conditioner according to the first outdoor temperature and the first set temperature include:
  • first indoor temperature is greater than the first outdoor temperature, determining whether the first outdoor temperature is greater than the first set temperature
  • the method further includes:
  • first outdoor temperature is less than or equal to the first set temperature, obtaining the temperature difference between the first outdoor temperature and the first set temperature;
  • the target opening degree is determined according to the temperature difference, and the opening degree of the air guide vanes of the air conditioner is controlled to be adjusted to the target opening degree.
  • the operating frequency of the compressor of the air conditioner is reduced.
  • the opening degree of the air guide vanes of the air conditioner is controlled to be adjusted to the second preset opening degree.
  • control device for an air conditioner includes:
  • the control module is configured to control the air conditioner to run at the target operating frequency when it is detected that the current wall temperature of the indoor environment where the air conditioner is located reaches the current set temperature of the air conditioner;
  • an obtaining module configured to obtain the first wall temperature and the first set temperature after the air conditioner operates at the target operating frequency for a preset time, and determine the first wall of the indoor environment where the air conditioner is located within the preset time temperature trend;
  • the air conditioner refrigeration method includes the following steps:
  • the current refrigeration working condition is a preset high temperature refrigeration working condition, acquiring the condenser temperature of the condenser and the water temperature of the accumulator of the accumulator;
  • the water pump is started according to the target water pump opening degree, the cold energy in the indoor energy storage heat exchanger is introduced into the water accumulator by the water pump, and the subcooling pipe is cooled by the water accumulator , to cool the air conditioner.
  • the step of collecting the current ambient temperature when the air conditioner is in the cooling mode, and determining the current cooling condition according to the current ambient temperature includes:
  • the indoor energy storage heat exchanger When the indoor energy storage heat exchanger is in a preset energy storage sufficient state, the current ambient temperature is collected, and the current refrigeration working condition is determined according to the current ambient temperature.
  • the step of collecting the current ambient temperature and determining the current refrigeration working condition according to the current ambient temperature when the indoor energy storage heat exchanger is in a preset state of sufficient energy storage includes:
  • the step of determining the target water pump opening degree according to the condenser temperature and the water temperature of the water accumulator includes:
  • the target water pump opening degree is determined according to the target temperature difference.
  • the step of determining the target water pump opening degree according to the first judgment result and the second judgment result includes:
  • the preset The second water pump opening degree is used as the target water pump opening degree.
  • the collection module is configured to collect the current ambient temperature when the air conditioner is in the cooling mode, and determine the current cooling condition according to the current ambient temperature;
  • the control module is used to start the water pump according to the target water pump opening degree, and the cold energy in the indoor energy storage heat exchanger is introduced into the water accumulator by the water pump, and the water accumulator is used to supercool the water.
  • the tubes are cooled to cool the air conditioner.
  • FIG. 1 is a schematic diagram of the hardware structure of an air conditioner involved in various embodiments of the present application.
  • FIG. 2 is a schematic flowchart of a first embodiment of a control method for an air conditioner of the present application
  • FIG. 3 is a schematic structural diagram of an air conditioner involved in the control method of the air conditioner of the present application.
  • FIG. 4 is a schematic diagram of a through hole of an air conditioner involved in the control method of the air conditioner of the present application
  • FIG. 8 is a schematic diagram of functional modules of an embodiment of a control device for an air conditioner of the present application.
  • FIG. 10 is a schematic diagram of an air conditioning system according to an embodiment of an air conditioner refrigeration method of the present application.
  • FIG. 14 is a schematic flowchart of a third embodiment of the refrigeration method for an air conditioner of the present application.
  • a first embodiment of the present application provides a control method for an air conditioner.
  • control method of the air conditioner includes:
  • Step S10 when it is detected that the air conditioner is in the cooling mode, obtain the first indoor temperature of the indoor environment where the air conditioner is located, the first outdoor temperature of the outdoor environment where the air conditioner is located, and the first set temperature of the air conditioner;
  • the indoor unit 100 and the outdoor unit 200 of the above-mentioned air conditioner in this embodiment are communicated through a refrigerant pipe, wherein the indoor unit 100 includes an indoor unit casing, an indoor fan wheel, and an indoor heat exchanger.
  • the indoor side air inlet is located on the front side wall of the inner casing
  • the indoor side air outlet is located on the top wall of the inner casing
  • the indoor heat exchanger is located between the indoor wind wheel and the indoor side air inlet.
  • the heat exchanger can face the wind from the front, which is beneficial to the heat exchange between the heat exchanger and the indoor air intake, and further improves the heat exchange efficiency.
  • the indoor wind wheel is used to drive the air to enter through the indoor side air inlet, and flow through the indoor air exchange After the heater enters the air inlet air duct, it is blown out from the indoor side air outlet through the air outlet air duct to cool down or heat up the indoor environment. Since the indoor temperature is extremely high during the high temperature in summer, it is difficult for the air conditioner to cool the room. By using the indoor wind wheel to drive the high-temperature air to enter through the indoor side air inlet, the purpose of rapid cooling is achieved. Further, the inner casing is provided with a volute and a volute tongue, and the volute and the volute tongue are located on the indoor side.
  • the air inlet side of the wind wheel is surrounded by an air inlet air duct, so that the air can enter from the air inlet air duct in a concentrated manner and increase the air inlet air pressure.
  • Air duct so that the air is blown out from the outlet air duct in a concentrated manner, and the air pressure of the outlet air is increased.
  • the above air conditioner further includes an outer casing, wherein the bottom of the inner casing is detachably connected to the top of the outer casing.
  • the outer casing is provided with an outdoor side air inlet and an outdoor side air outlet, and an outdoor heat exchanger and an outdoor wind wheel are also installed in the outer casing, wherein the outdoor wind wheel can also be an axial flow wind wheel, a centrifugal chamber Wind wheel, etc.
  • the indoor heat exchanger is an evaporator
  • the outdoor heat exchanger is a condenser.
  • the outdoor wind wheel drives the air into the outer casing from the outdoor side air inlet, and flows through the condenser to dissipate heat from the condenser. Then blow it out from the outside air outlet.
  • the bottom of the inner casing is detachably connected to the top of the outer casing, so that when the inner casing is connected to the outer casing, the air conditioner is used as an integrated air conditioner; After the inner casing is disassembled from the outer casing, the air conditioner can be used as a split air conditioner, thereby improving the flexibility of the air conditioner's use scenarios.
  • the above-mentioned air conditioner refers to an air conditioner that is detachably installed on a prefabricated house. Due to the characteristic structure of the prefabricated house, in the case of high temperature in summer, the indoor ambient temperature of the air conditioner may be higher than that of the air conditioner. The outdoor ambient temperature, and even in extreme cases, the indoor ambient temperature of the air conditioner may be more than ten degrees Celsius higher than the outdoor environment of the air conditioner. Therefore, if the air conditioner is only turned on for cooling, the indoor temperature is high , only using the air-conditioning refrigeration system to cool down, before the compressor is fully started, the refrigeration system output is very small. During this time period, the indoor temperature is still high and the human body comfort is very poor.
  • the problem is that by using the negative pressure effect of the above-mentioned outdoor wind wheel, the high-temperature air in the room where the air conditioner is located is quickly drawn out of the room, so as to achieve the purpose of rapid cooling. Therefore, in another embodiment, in order to utilize the negative pressure effect of the above-mentioned outdoor wind wheel, the high-temperature air in the room where the air conditioner is located is quickly drawn out of the room to achieve the purpose of rapid cooling, this embodiment further makes the above-mentioned air conditioner. Improvement, specifically, in this embodiment, a plurality of through holes 300 are provided at the indoor side casing of the air conditioner. Specifically, as shown in FIG.
  • a plurality of through holes 300 are opened on the indoor side of the inner casing
  • the through holes 300 allow the air from the indoor side to enter the interior of the air conditioner based on the plurality of through holes 300, so that the high temperature air in the room where the air conditioner is located can be quickly drawn out through the plurality of through holes 300 to achieve the purpose of rapid cooling .
  • FIG. 5 is a schematic diagram of the wind flow direction of the indoor air where the air conditioner is located in this embodiment, wherein the arrows refer to the wind flow direction
  • the outdoor wind wheel of the air conditioner is an axial flow wind wheel 400, which is composed of
  • the high-temperature air in the room where the air conditioner is driven by the axial flow fan 400 enters the air conditioner through the above-mentioned plurality of through holes 300, and then is blown out from the outdoor side air outlet, so as to realize the indoor air temperature when the indoor air temperature is high.
  • the axial fan wheel 400 also drives the low-temperature air in the room where the air conditioner is located to enter the outer casing from the outdoor side air inlet, and then be discharged to the outdoors through the through hole.
  • a wind guide vane and a stepping motor for driving the opening of the wind guide vane are installed at corresponding positions inside the air conditioner where the plurality of through holes 300 are provided. In this way, the opening of the air guide vanes is driven by the stepping motor to adjust the air volume of the indoor air entering the interior of the air conditioner from the plurality of through holes 300, thereby maintaining the cooling capacity of the air conditioner.
  • the stepper motor can be used to drive the air guide vanes to close, so as to prevent the indoor air of the air conditioner from entering the interior of the air conditioner through the through hole 300.
  • the stepping motor drives the air guide vanes to open, and then the air in the room where the air conditioner is located is quickly drawn out of the room through the above-mentioned plurality of through holes 300 to achieve the purpose of rapid cooling.
  • an electronically controlled cooling method for the air conditioner of the present application is proposed, and the negative pressure effect of the above-mentioned outdoor wind wheel is used to quickly extract the high-temperature air in the room where the air conditioner is located. achieve the purpose of rapid cooling.
  • the indoor ambient temperature may be more than ten degrees higher than the outdoor temperature.
  • the temperature in the prefabricated house is likely to be higher than that of the prefabricated houses in the hot summer. Therefore, in this case, if only the air-conditioning refrigeration system is used to cool down, the cooling output of the refrigeration system is very small before the compressor is fully started. During this period, the indoor temperature is still high and higher than the outdoor temperature.
  • the first indoor temperature of the indoor environment where the air conditioner is located and the first outdoor temperature of the outdoor environment where the air conditioner is located are monitored in real time
  • at least one first temperature sensor is arranged at the above-mentioned indoor side casing for real-time monitoring of the outdoor temperature of the indoor environment where the air conditioner is located
  • at least one second temperature sensor is arranged at the above-mentioned outdoor side casing for use.
  • the outdoor temperature of the indoor environment where the air conditioner is located is monitored in real time, so that when the first outdoor temperature of the outdoor environment where the air conditioner is located is lower than the first indoor temperature of the indoor environment where the air conditioner is located, the device at the indoor side casing of the air conditioner is used.
  • the plurality of through holes and air guide vanes in the device ventilate the indoor air with a higher temperature and the outdoor air with a lower temperature, thereby accelerating the reduction of the indoor temperature.
  • the first indoor temperature of the indoor environment where the air conditioner is located may refer to the indoor temperature collected when the air conditioner enters the cooling mode
  • the first outdoor temperature of the outdoor environment where the air conditioner is located may refer to the air conditioner
  • the first indoor temperature of the indoor environment where the air conditioner is located and the first outdoor temperature of the outdoor environment where the air conditioner is located can also refer to the received data sent by the user.
  • the temperature collected at the time of the ventilation command For example, when the user in the indoor environment where the air conditioner is located is not satisfied with the cooling effect of the current air conditioner, a ventilation command can be sent to the air conditioner to control the air conditioner to perform ventilation.
  • the first set temperature of the air conditioner refers to the temperature set by the air conditioner when the first indoor temperature and the first outdoor temperature are collected.
  • the indoor side casing of the air conditioner in the present application is provided with a plurality of through holes, and the inside of the casing part where the plurality of through holes are provided correspondingly are equipped with air guide vanes and stepper motors, so when the air conditioner is When the first outdoor temperature of the outdoor environment where the air conditioner is located is lower than the first indoor temperature of the indoor environment where the air conditioner is located, the air guide vanes can be driven to open a certain opening degree based on the stepper motor, so as to discharge the outdoor air through the air duct to the Outdoors, thereby accelerating indoor cooling.
  • this embodiment is based on the first indoor temperature and the second indoor temperature. Before an outdoor temperature control air conditioner performs the ventilation logic program, it is necessary to determine whether to start the ventilation logic program based on the first set temperature.
  • the air conditioner can be controlled to perform the ventilation logic program according to the first indoor temperature and the first outdoor temperature, so that the air conditioner is located in the outdoor environment of the first air conditioner.
  • the rotational speed of the outdoor fan can also be increased.
  • the rotational speed of the axial flow fan by increasing the rotational speed of the axial flow fan, the above The negative pressure effect of the axial flow fan can quickly extract the high-temperature air in the room where the air conditioner is located, and achieve the purpose of rapid cooling.
  • the present application adjusts the The opening of the air guide vanes of the air conditioner regulates the ventilation between the outdoor air and the indoor air, thereby accelerating the temperature drop of the indoor temperature, thereby improving the comfort of the human body.
  • FIG. 6 is a schematic flowchart of a second embodiment of an electronically controlled cooling method for an air conditioner of the present application.
  • the difference between the second embodiment of the electronically controlled cooling method for the air conditioner and the first embodiment of the electronically controlled cooling method for the air conditioner is that the method is based on the first indoor temperature, the first outdoor temperature and the For the first set temperature, the steps of adjusting the opening of the air guide vanes of the air conditioner include:
  • Step S201 judging whether the first indoor temperature is greater than the first set temperature
  • Step S202 If the first indoor temperature is greater than the first set temperature, adjust the opening degree of the air guide vanes of the air conditioner according to the first indoor temperature and the first outdoor temperature.
  • the first indoor temperature when the first indoor temperature is lower than the first set temperature, it indicates that the current indoor temperature has reached the cooling temperature required by the user, so in order to avoid the loss of cooling capacity, it is not necessary to use the first indoor temperature and the first outdoor temperature.
  • Control the air conditioner to carry out the ventilation logic program when the first indoor temperature is greater than the first set temperature, it indicates that the current indoor temperature has not reached the cooling temperature required by the user.
  • the first outdoor temperature control air conditioner performs a ventilation logic program, so that when the first outdoor temperature of the outdoor environment where the air conditioner is located is lower than the first indoor temperature of the indoor environment where the air conditioner is located, the indoor air with a higher temperature is compared with the temperature. Low outdoor air for ventilation, thereby accelerating the reduction of indoor temperature.
  • this step when the first indoor temperature is greater than the first set temperature, it is determined whether the current first indoor temperature is greater than the first outdoor temperature, and if the first indoor temperature is greater than the first outdoor temperature, it indicates that the current outdoor temperature is low.
  • the indoor side casing of the air conditioner in the present application is provided with a plurality of through holes, a wind guide vane and a stepper motor are correspondingly installed on the inner side of the casing part where the plurality of through holes are provided.
  • the above-mentioned through holes are air inlets that communicate with the air ducts inside the air conditioner, and the air guide vanes are arranged in the air ducts close to the air inlets, so indoor air and outdoor air in this application can pass through the above-mentioned through holes, air ducts and Air guide vanes, etc. for ventilation.
  • the opening of the air guide vanes of the above air conditioner is zero, that is, it is in a closed state, so as to prevent indoor air from flowing out of the above air ducts. That is, in this embodiment, the opening degree of the guide vanes above determines the ventilation volume of indoor air. Therefore, in this embodiment, in order to improve the flexibility of the temperature drop control of the indoor temperature, the opening degree of the air guide vanes of the air conditioner can be based on the real-time control of the air conditioner. Adjustment is made to flexibly regulate the ventilation volume of indoor air and outdoor air, and then flexibly regulate the temperature drop rate of indoor temperature.
  • the indoor temperature when the indoor temperature has not reached the set temperature, the indoor temperature may be lower than the outdoor temperature, that is, there is no need to exchange the indoor temperature with the outdoor temperature. Therefore, in order to avoid this situation When the air guide vanes of the air conditioner are opened, the indoor cooling capacity will be lost or the indoor temperature will rise, which will affect the comfort of the user.
  • the specific implementation of adjusting the opening of the air guide vane of the air conditioner according to the first indoor temperature and the first outdoor temperature, the specific implementation of adjusting the opening of the air guide vane of the air conditioner:
  • first indoor temperature is greater than the first set temperature, determining whether the first indoor temperature is lower than the first outdoor temperature
  • the opening degree of the air guide vanes of the air conditioner is adjusted according to the first outdoor temperature and the first set temperature.
  • the air guide vanes of the air conditioner can be controlled to close, so as to prevent the indoor air from flowing out of the above-mentioned air ducts, resulting in the loss of indoor cooling capacity.
  • the user can turn on the ventilation function according to the actual situation. , that is to control the opening of the air guide vanes of the air conditioner.
  • the ventilation function can be turned on to conduct air ventilation through the opened air guide vanes. Therefore, according to the first indoor air
  • the air guide vanes of the current air conditioner may be in a state of being opened at a certain opening degree. Therefore, in this embodiment, the first indoor temperature is lower than the first outdoor temperature.
  • the state of the current air guide vane will be detected. If the state of the air guide vane is closed, the current air guide vane will be kept closed. In the open state, the air guide vanes of the control air conditioner are closed.
  • the above-mentioned opening of the air guide vanes determines the ventilation volume of the indoor air.
  • the difference between the indoor temperature and the outdoor temperature may be quite different. Speed up the reduction of the indoor temperature, and when the difference between the indoor temperature and the outdoor temperature is not large, and based on the temperature difference between the outdoor temperature and the set temperature, the opening of the guide vane is determined to ensure that the indoor cooling loss is minimized.
  • a method is provided in which if the first indoor temperature is greater than the first outdoor temperature, the air conditioner is adjusted according to the first outdoor temperature and the first set temperature.
  • the specific implementation of adjusting the opening degree of the air guide vanes of the device if the first indoor temperature is greater than the first outdoor temperature, it is determined whether the first outdoor temperature is greater than the first set temperature; if the first outdoor temperature is greater than the first set temperature; When the first outdoor temperature is greater than the first set temperature, the opening degree of the air guide vanes of the air conditioner is controlled to be adjusted to the first preset opening degree.
  • the first preset opening degree is a certain preset opening degree.
  • the first preset opening degree is the maximum allowable opening of the air guide vanes of the air conditioner. opening.
  • the first outdoor temperature is compared with the set temperature. If the first outdoor temperature is greater than the first set temperature, it indicates that the current refrigeration system is cold. If the output is very small, the opening of the air guide vanes of the air conditioner can be controlled to the maximum opening, and the ventilation volume between the indoor air and the outdoor air can be increased, thereby accelerating the reduction of the indoor temperature by the outdoor air.
  • the opening degree of the air guide vanes of the air conditioner when the opening degree of the air guide vanes of the air conditioner is controlled to be the maximum opening degree, the ventilation volume between the indoor air and the outdoor air is the largest, then under the influence of the outdoor low-temperature air, the indoor temperature will decrease rapidly, and gradually It is close to the outdoor air temperature.
  • the air conditioner since the air conditioner will continuously output cooling capacity in the cooling mode, if the air guide vanes of the air conditioner continue to open at the maximum opening, the loss of indoor cooling capacity will be caused, and the indoor temperature will gradually return. Therefore, in this embodiment, in order to avoid the subsequent loss of cooling capacity and cause the indoor temperature to return, if the first outdoor temperature is greater than the first set temperature, the air conditioner will be controlled.
  • the second indoor temperature is greater than the second outdoor temperature, acquiring a third indoor temperature of the indoor environment where the air conditioner is located after a preset time interval;
  • the opening degree of the air guide vanes of the air conditioner is adjusted according to the second indoor temperature and the third indoor temperature.
  • the air guide vanes of the air conditioner after controlling the opening degree of the air guide vanes of the air conditioner to be adjusted to the first preset opening degree, first obtain the second indoor temperature of the indoor environment where the air conditioner is located when the air conditioner operates at the first preset opening degree, the air conditioner
  • the second outdoor temperature of the outdoor environment where the device is located to determine whether the cooling capacity carried by the current outdoor air can cool the indoor air, specifically, to determine whether the second indoor temperature is lower than the second outdoor temperature, if the second indoor temperature is lower than the second indoor temperature.
  • the second outdoor temperature indicates that the cooling capacity carried by the current outdoor air cannot cool the indoor air.
  • the air guide vanes of the air conditioner can be controlled to close.
  • the second indoor temperature is greater than When the second outdoor temperature is reached, it indicates that the cooling capacity carried by the current outdoor air can cool the indoor air.
  • the air conditioner will continuously output cooling capacity in the cooling mode, the air conditioner will cool down the indoor air while the outdoor air is cooling down the indoor air.
  • the air conditioner is also cooling the indoor air, and the indoor air will gradually be lower than the outdoor air.
  • the air guide vanes of the air conditioner continue to open at the maximum opening, the loss of indoor cooling capacity will be caused, and the indoor temperature will gradually return to temperature.
  • the third indoor temperature of the indoor environment where the air conditioner is located after a preset time interval is obtained to determine the current outdoor air
  • the third indoor temperature is smaller, it indicates that the temperature drop effect of the indoor air of the current outdoor air is relatively large.
  • the specific implementation of adjusting the opening degree of the air guide vanes of the air conditioner according to the third indoor temperature obtaining the temperature difference between the second indoor temperature and the third indoor temperature;
  • the opening degree of the air guide vanes of the air conditioner is reduced.
  • the temperature difference between the second indoor temperature and the third indoor temperature is calculated. Since the temperature drop effect of the outdoor air on the indoor air is determined, that is, when the temperature difference is less than the preset temperature difference, it indicates that the introduction of outdoor air will not affect the indoor air.
  • the opening of the air guide vanes of the air conditioner can be reduced in this embodiment. , in order to reduce the cooling capacity generated by the air conditioner, and to speed up the temperature drop of the indoor temperature by mainly using the cooling capacity of the air conditioner to cool the indoor air.
  • the current opening degree can be maintained at this time to utilize the outdoor air to speed up The temperature drop of indoor air.
  • the set temperature is higher than the outdoor temperature, indicating that the current temperature drop of the indoor temperature mainly depends on the outdoor environment, so even when the air conditioner is not cooling, the indoor temperature also tends to decrease, so
  • the air guide vanes of the air conditioner can be controlled to open a certain opening to use the outdoor air to cool the room.
  • the air conditioner can be frequency limited to reduce the consumption of the air conditioner Specifically, in this embodiment, after the above step of judging whether the first outdoor temperature is greater than the first set temperature, the method further includes:
  • first outdoor temperature is less than or equal to the first set temperature, obtaining the temperature difference between the first outdoor temperature and the first set temperature;
  • the target opening degree is determined according to the temperature difference, and the opening degree of the air guide vanes of the air conditioner is controlled to be adjusted to the target opening degree.
  • the temperature difference interval in which the temperature difference is located can also be determined, so as to obtain the corresponding opening degree of the temperature difference through the preset matching opening degree of the temperature difference interval.
  • the target opening degree is not limited in this embodiment.
  • the air guide of the air conditioner is determined according to the temperature difference between the outdoor temperature and the set temperature.
  • the opening degree of the leaves for example, when the temperature difference between the outdoor temperature and the set temperature is 5 degrees, the opening degree of the air guide vanes of the air conditioner can be controlled to be adjusted to the first opening degree.
  • the opening degree of the air guide vanes of the air conditioner can be controlled to be adjusted to the second opening degree, where the second opening degree is smaller than the first opening degree, that is, with the first outdoor temperature and the first set temperature
  • the reduction of the temperature difference between them reduces the opening of the air guide vanes of the air conditioner.
  • the outdoor temperature when the outdoor temperature is lower than the indoor temperature and the set temperature, the outdoor air can enter the room to cool down the room. Therefore, in order to reduce the power consumption of the air conditioner, after adjusting the opening of the air guide vanes of the air conditioner, the compressor frequency of the air conditioner is reduced, and the power consumption of the air conditioner is further reduced.
  • the method further includes:
  • the operating frequency of the compressor of the air conditioner is reduced.
  • the above-mentioned indoor temperature change rate refers to the decrease rate of the indoor temperature per unit time.
  • the frequency of the air conditioner may be limited in this embodiment, so as to reduce the power consumption of the air conditioner when the indoor temperature tends to decrease.
  • the air conditioner by judging whether the first indoor temperature is greater than the first set temperature, if the first indoor temperature is greater than the first set temperature, according to the first indoor temperature and the first outdoor temperature, the air conditioner conducts The opening of the fan blades is adjusted, thereby ensuring that the indoor cooling is accelerated without the loss of indoor cooling capacity.
  • FIG. 7 is a schematic flowchart of a third embodiment of a control method for an air conditioner of the present application.
  • the difference between the third embodiment of the control method for an air conditioner and the first embodiment of the control method for an air conditioner is that after the step of detecting that the air conditioner is in a cooling mode, the method further includes:
  • Step S30 if the ventilation command is received, the opening degree of the air guide vanes of the air conditioner is controlled to be adjusted to the second preset opening degree.
  • the second preset opening degree may be a specific opening degree preset by the user, or may also be a specific opening degree carried in the ventilation command, which is not limited in this embodiment.
  • the indoor side casing of the air conditioner involved in the present application is provided with a plurality of through holes, and corresponding devices on the inner side of the casing where the plurality of through holes are provided are air guide vanes and steps.
  • the through hole is an air inlet that communicates with the air duct inside the air conditioner
  • the air guide vanes are arranged in the air duct close to the air inlet
  • the air outlet of the air duct is arranged on the outdoor side of the air conditioner, Therefore, in addition to the function of accelerating the temperature drop of the indoor temperature, the air guide vanes of the above-mentioned air conditioner also have a ventilation function.
  • the ventilation function can be turned on.
  • the opened air guide vanes perform ventilation, so in this embodiment, the user can send a ventilation command to control the opening of the air guide vanes of the air conditioner.
  • a ventilation command can be sent, and when the user feels that the cooling speed of the current air conditioner is slow, a ventilation command can be sent to control the opening of the air guide vanes of the air conditioner, so as to use the outdoor air to cool the indoor air, that is, in this embodiment.
  • the air conditioner can also control the opening of the air guide vanes of the air conditioner based on the ventilation command sent by the user. It should be understood that the above is only an example, and does not constitute any limitation to the technical solutions of the present application. Those skilled in the art can make settings based on needs in practical applications, and will not be listed one by one here.
  • the opening degree of the air guide vanes of the air conditioner is controlled to be adjusted to the second preset opening degree, thereby improving the performance of the air conditioner.
  • the flexibility of the air guide vane regulation thus improving the user's sense of use.
  • this embodiment also provides a control device for an air conditioner.
  • FIG. 8 is the present application
  • a schematic diagram of functional modules of an embodiment of a control device for an air conditioner is shown in FIG. 1 .
  • the control device of the air conditioner is a virtual device, which is stored in the memory 1005 of the air conditioner shown in FIG. 1 to realize all functions of the control program of the air conditioner: it is used to detect that the air conditioner is cooling In the mode, obtain the first indoor temperature of the indoor environment where the air conditioner is located, the first outdoor temperature of the outdoor environment where the air conditioner is located, and the first set temperature of the air conditioner; An outdoor temperature and the first set temperature are used to adjust the opening degree of the air guide vanes of the air conditioner.
  • control device of the air conditioner includes:
  • the acquiring module 10 is configured to acquire the first indoor temperature of the indoor environment where the air conditioner is located, the first outdoor temperature of the outdoor environment where the air conditioner is located, and the first set temperature of the air conditioner when it is detected that the air conditioner enters the cooling mode;
  • the adjustment module 20 is configured to adjust the opening degree of the air guide vanes of the air conditioner according to the first indoor temperature, the first outdoor temperature and the first set temperature.
  • FIG. 9 is a schematic flowchart of the first embodiment of the method for refrigerating an air conditioner of the present application, and the first embodiment of the method for refrigerating an air conditioner of the present application is proposed.
  • the air conditioner cooling method is applied to an air conditioner, and the air conditioner includes: an indoor energy storage heat exchanger, a water accumulator, a water pump, a condenser and a subcooling pipe, and the indoor energy storage exchanger
  • the heater is connected to the water accumulator through the water pump, the subcooling pipe is connected to the condenser, and the subcooling pipe is arranged in a preset area where the water accumulator is located;
  • FIG. 10 is a schematic diagram of an air conditioner system.
  • 1 is a compressor
  • 2 is a condenser
  • 3 is a throttle component
  • 4 is a first shut-off valve
  • 5 is a second Globe valve
  • 6 is the evaporator
  • 7 is the indoor energy storage heat exchanger
  • 8 is the water pump
  • 9 is the water accumulator
  • 10 is the subcooling pipe.
  • the water accumulator may be a water receiving tray
  • the indoor energy storage heat exchanger is also called a cold storage module.
  • a water accumulator is arranged in the outdoor unit area, and a subcooling pipe is arranged in the water accumulator (the water in the water accumulator comes from the condensed water of the indoor evaporator), and the refrigerant passes through the condenser after heat exchange in the condenser. Cold pipes, the temperature is further reduced, thereby increasing the cooling capacity.
  • the water temperature of the water accumulator will soon rise to a relatively high value. insufficient.
  • the water of the water accumulator is pumped into the indoor cold storage module through the water pump.
  • the water After the temperature of the cold storage module is lowered, the water enters the water accumulator to keep the temperature of the water accumulator at a low value to ensure the effective function of the subcooling pipe. , thereby increasing the high-temperature cooling capacity.
  • the water accumulator is provided with an overflow hole. When the water level of the water accumulator reaches a certain height, the condensed water can be discharged to the outside through the overflow hole to ensure that the condensed water will not enter the inside of the machine and ensure the reliability of the whole machine.
  • the air conditioner refrigeration method includes the following steps:
  • Step S10 When the air conditioner is in the cooling mode, collect the current ambient temperature, and determine the current cooling condition according to the current ambient temperature.
  • the executive body of this embodiment is the air conditioner, which is not limited in this embodiment.
  • collecting the current ambient temperature may be receiving sensor information uploaded by a preset sensor, and determining the current ambient temperature according to the sensor information.
  • the preset sensor may be a temperature sensor pre-installed on the air conditioner by the manufacturer of the air conditioner, which is not limited in this embodiment.
  • determining the current refrigeration working condition according to the current ambient temperature may be to look up the current refrigeration working condition corresponding to the current ambient temperature in the preset working condition table.
  • the preset working condition table includes the corresponding relationship between the current ambient temperature and the current refrigeration working condition, and the corresponding relationship between the current ambient temperature and the current refrigeration working condition may be preset by the manufacturer of the air conditioner. This is not limited.
  • Step S20 When the current refrigeration working condition is a preset high temperature refrigeration working condition, acquire the condenser temperature of the condenser and the water temperature of the water accumulator of the water accumulator.
  • the preset high temperature refrigeration working condition may be a working condition when the outdoor ambient temperature is high and the air conditioner performs a refrigeration operation, which is not limited in this embodiment.
  • the temperature of the condenser of the condenser may be obtained by a sensor pre-installed on the condenser, and the sensor pre-installed on the water accumulator Gets the accumulator water temperature for the accumulator.
  • the temperature of the condenser may include the temperature in the middle of the condenser and the temperature at the outlet of the condenser, which are not limited in this embodiment.
  • Step S30 Determine the target water pump opening degree according to the condenser temperature and the water temperature of the water accumulator.
  • the temperature of the condenser and the water temperature of the water accumulator can be used as reference information, and the target water pump corresponding to the reference information is searched in the preset first opening degree table.
  • the preset first opening degree table includes the corresponding relationship between the reference information and the target water pump opening degree, and the corresponding relationship between the reference information and the target water pump opening degree can be preset by the manufacturer of the air conditioner, which is not limited in this embodiment. .
  • Step S40 Start the water pump according to the target water pump opening degree, and the water pump will introduce the cold energy in the indoor energy storage heat exchanger into the water accumulator, and the water accumulator will supercool the water.
  • the tubes are cooled to cool the air conditioner.
  • the indoor energy storage heat exchanger can be used to store cooling capacity.
  • the storage process of the indoor energy storage heat exchanger is shown in FIG. 11 , which is a schematic diagram of the cooling capacity cycle in the energy storage mode of an embodiment.
  • the agent may be circulated in the circulation loop following the solid line circulation route in FIG. 11 .
  • the second cut-off valve 5 is controlled to open, and the first cut-off valve 4 is closed.
  • the refrigerant flows out from the compressor 1 and flows into the condenser 2.
  • FIG. 12 is a schematic diagram of the cooling cycle when the water pump is turned on according to an embodiment.
  • the refrigerant can be circulated in the circulation loop according to the solid line circulation route in FIG. 12 , and the water can be circulated in the circulation loop according to The dotted cycle route is cycled.
  • the refrigerant flows out from the compressor 1 and flows into the condenser 2. After performing a heat exchange in the condenser 2, it enters the subcooling pipe 10. The refrigerant continues to exchange heat in the subcooling pipe 10, and the water pump is turned on in the air conditioner.
  • the cold energy released by the indoor energy storage heat exchanger 7 can enter the water accumulator 9 through the water pump 8, and the water accumulator 9 cools the subcooling pipe 10 according to the cold energy released by the indoor energy storage heat exchanger 7, and then The refrigerant in the subcooling pipe 10 is further heat-exchanged, and finally, the refrigerant after heat exchange enters the evaporator 6 through the first cut-off valve 4 and the second cut-off valve 5 for cooling, so as to achieve the purpose of increasing the cooling capacity at high temperature. .
  • an air conditioner refrigeration method is applied to an air conditioner, and the air conditioner includes: an indoor energy storage heat exchanger, a water accumulator, a water pump, a condenser and a subcooling pipe, and an indoor energy storage heat exchanger and a water accumulator
  • the subcooling pipe is connected to the condenser through a water pump connection, and the subcooling pipe is arranged in the preset area where the water accumulator is located;
  • the cooling method of the air conditioner includes: when the air conditioner is in the cooling mode, collecting the current ambient temperature, and according to the current The ambient temperature determines the current refrigeration working condition.
  • the condenser temperature of the condenser and the water temperature of the accumulator are obtained, and the target is determined according to the temperature of the condenser and the water temperature of the accumulator.
  • the opening degree of the water pump start the water pump according to the target water pump opening degree, and the water pump will introduce the cold energy in the indoor energy storage heat exchanger into the water accumulator, and the water accumulator will cool the subcooling pipe to cool the air conditioner;
  • the current refrigeration condition is high temperature refrigeration condition
  • the cold energy stored in the indoor energy storage heat exchanger is introduced into the water accumulator through the water pump, and the refrigerant in the subcooling pipe is cooled by the water accumulator, thereby improving the cooling capacity under high temperature.
  • the cooling capacity overcomes the defect of insufficient cooling capacity in the use scenario of the prefab house in the prior art.
  • FIG. 13 is a schematic flowchart of the second embodiment of the air conditioner refrigeration method of the present application. Based on the first embodiment shown in FIG. 9 above, a second embodiment of the air conditioner refrigeration method of the present application is proposed.
  • the energy storage information may be information such as cold storage capacity and cold storage temperature of the indoor energy storage heat exchanger, which is not limited in this embodiment. It should be understood that acquiring the energy storage information of the indoor energy storage heat exchanger may be acquiring the energy storage information of the indoor energy storage heat exchanger through a sensor pre-installed in the indoor energy storage heat exchanger. The sensor pre-installed in the indoor energy storage heat exchanger may be pre-set by the manufacturer of the air conditioner, which is not limited in this embodiment.
  • Step S102 Determine whether the indoor energy storage heat exchanger is in a preset sufficient energy storage state according to the energy storage information.
  • Judging whether the indoor energy storage heat exchanger is in the preset energy storage sufficient state according to the energy storage information may also be judging whether the cold storage temperature of the indoor energy storage heat exchanger is lower than the preset cold storage temperature threshold, and the cold storage temperature of the indoor energy storage heat exchanger When the temperature is less than the preset cold storage temperature threshold, it is determined that the indoor energy storage heat exchanger is in the preset storage sufficient state.
  • the preset cold storage temperature threshold may be preset by the manufacturer of the air conditioner, which is not limited in this embodiment.
  • Step S103 when the indoor energy storage heat exchanger is in a preset sufficient energy storage state, collect the current ambient temperature, and determine the current refrigeration working condition according to the current ambient temperature.
  • determining the current refrigeration working condition according to the current ambient temperature may be to search for the current refrigeration working condition corresponding to the current ambient temperature in the preset working condition table.
  • the preset working condition table includes the corresponding relationship between the current ambient temperature and the current refrigeration working condition, and the corresponding relationship between the current ambient temperature and the current refrigeration working condition may be preset by the manufacturer of the air conditioner. This is not limited.
  • the step S103 includes: when the indoor energy storage heat exchanger is in a preset sufficient energy storage state, collecting the current environment temperature;
  • the preset first temperature threshold may be preset by the manufacturer of the air conditioner.
  • C1 represents the preset first temperature threshold.
  • determining the current refrigeration working condition according to the judgment result may be determining that the air conditioner is in the preset high temperature refrigeration working condition when the current ambient temperature is greater than the preset first temperature threshold.
  • the water pump when the current ambient temperature is less than or equal to the preset first temperature threshold, the water pump is turned off, and the air conditioner operates in a normal cooling mode.
  • the energy storage information of the indoor energy storage heat exchanger is obtained, and according to the energy storage information, it is determined whether the indoor energy storage heat exchanger is in a preset state of sufficient energy storage, and When the indoor energy storage heat exchanger is in the preset energy storage sufficient state, the current ambient temperature is collected, and the current refrigeration working condition is determined according to the current ambient temperature; since in this embodiment, before the current refrigeration working condition of the air conditioner is determined, the It is judged whether the indoor energy storage heat exchanger is in a preset energy storage sufficient state, so that the air conditioner can avoid the indoor energy storage heat exchanger from being in an insufficient energy storage state, and perform subsequent refrigeration operations, thereby improving the reliability of the air conditioner.
  • step S30 includes:
  • Step S301 Extract the temperature of the condenser to obtain the temperature in the middle of the condenser and the temperature at the outlet of the condenser.
  • the temperature in the middle of the condenser may be the temperature of the refrigerator in the middle of the condenser
  • the temperature at the outlet of the condenser may be the temperature of the refrigerator at the outlet of the condenser.
  • T2 represents the middle of the condenser temperature
  • T0 representing the condenser outlet temperature.
  • extracting the temperature of the condenser to obtain the temperature in the middle of the condenser and the temperature at the outlet of the condenser may be to extract the temperature of the condenser, obtain the information identification, and determine the temperature in the middle of the condenser and the temperature of the condenser outlet according to the information identification.
  • the information identifier may be an identifier used to represent the information identity, which is not limited in this embodiment.
  • Step S302 When the temperature in the middle of the condenser is greater than a preset second temperature threshold, determine the temperature difference of the condenser according to the temperature in the middle of the condenser and the temperature at the outlet of the condenser.
  • the preset second temperature threshold may be preset by the manufacturer of the air conditioner.
  • C2 represents the preset second temperature threshold.
  • the water pump can be kept off, and the air conditioner can be When T2>C2, the temperature in the middle of the condenser is high, and the heat exchange of the condenser cannot meet the system requirements.
  • the condenser temperature difference may be obtained by subtracting the condenser outlet temperature from the condenser middle temperature.
  • Step S303 when the condenser temperature difference is less than a preset third temperature threshold, determine a target temperature difference according to the condenser outlet temperature and the water temperature of the water accumulator.
  • the preset third temperature threshold may be preset by the manufacturer of the air conditioner.
  • C3 represents the preset third temperature threshold.
  • the cooling capacity of the system can be maintained at a relatively high value.
  • T2-To ⁇ C3 the outlet temperature of the condenser and the temperature in the middle of the condenser are both at higher points, and the subcooling degree of the outlet of the condenser is not enough, and the cooling capacity of the system decreases.
  • the target temperature difference can be obtained by subtracting the condenser outlet temperature from the water temperature of the accumulator.
  • Step S304 Determine the target water pump opening degree according to the target temperature difference.
  • determining the target water pump opening degree according to the target temperature difference value may be searching for the target water pump opening degree corresponding to the target temperature difference value in a preset opening degree table.
  • the preset second opening degree table includes the corresponding relationship between the target temperature difference and the target water pump opening degree, and the corresponding relationship between the target temperature difference value and the target water pump opening degree can be preset by the manufacturer of the air conditioner. This is not limited.
  • the second embodiment it is disclosed to extract the condenser temperature to obtain the condenser middle temperature and the condenser outlet temperature.
  • the condenser middle temperature is greater than a preset second temperature threshold
  • the condenser middle temperature and the condenser outlet temperature are obtained according to the The temperature determines the condenser temperature difference
  • the target temperature difference is determined according to the condenser outlet temperature and the water temperature of the water accumulator
  • the target water pump opening is determined according to the target temperature difference
  • the target water pump opening degree is determined by the condenser middle temperature, the condenser outlet temperature, and the water temperature of the water accumulator, so that the accuracy and reliability of the target water pump opening degree can be improved.
  • FIG. 14 is a schematic flowchart of the third embodiment of the air conditioner refrigeration method of the present application. Based on the second embodiment shown in FIG. 13 above, a third embodiment of the air conditioner refrigeration method of the present application is proposed.
  • step S304 includes:
  • Step S3041 Determine whether the target temperature difference is less than a preset fourth temperature threshold, and obtain a first determination result.
  • the preset fourth temperature threshold may be preset by the manufacturer of the air conditioner.
  • C4 represents the preset fourth temperature threshold.
  • the difference between the cold outlet temperature and the water temperature is large, and the supercooling tube can be well cooled.
  • the water pump can be turned off and the air conditioner can operate normally; in TO-TW When ⁇ C4, the pump opening is determined according to the difference between TO and TW.
  • Step S3042 Determine whether the target temperature difference is greater than a preset fifth temperature threshold, and obtain a second determination result.
  • the preset fifth temperature threshold may be preset by the manufacturer of the air conditioner.
  • C5 represents the preset fifth temperature threshold, C5 ⁇ C4.
  • Step S3043 Determine the target water pump opening degree according to the first judgment result and the second judgment result.
  • determining the target water pump opening degree according to the first judgment result and the second judgment result includes:
  • the first judgment result is that the target temperature difference is less than the preset fourth temperature threshold
  • the second judgment result is that the target temperature difference is greater than the preset fifth temperature threshold
  • the first The water pump opening degree is used as the target water pump opening degree.
  • the preset first water pump opening degree may be preset by the manufacturer of the air conditioner, which is not limited in this embodiment. Further, determining the target water pump opening degree according to the first judgment result and the second judgment result includes:
  • the preset The second water pump opening degree is used as the target water pump opening degree.
  • the preset second water pump opening degree may be preset by the manufacturer of the air conditioner, wherein the preset first water pump opening degree is smaller than the preset second water pump opening degree, which is not limited in this embodiment.
  • the opening degree of the water pump is the preset first water pump opening degree
  • the cooling output is close to the water temperature of the water storage area, and the cooling effect is poor. It is necessary to increase the opening of the water pump to the preset second water pump opening to accelerate the cooling of the water storage area.
  • a third embodiment it is disclosed to determine whether the target temperature difference is less than a preset fourth temperature threshold, obtain a first judgment result, determine whether the target temperature difference is greater than a preset fifth temperature threshold, and obtain a second judgment result, according to The first judgment result and the second judgment result determine the target water pump opening degree; since this embodiment determines the target water pump opening degree through two numerical comparisons, the process of determining the target water pump opening degree can be simplified and the processing efficiency can be improved.
  • an embodiment of the present application further provides a storage medium, where an air conditioner refrigeration program is stored thereon, and when the air conditioner refrigeration program is executed by a processor, the steps of the air conditioner refrigeration method described above are implemented.
  • an embodiment of the present application further proposes a refrigeration device for an air conditioner.
  • the refrigeration device for an air conditioner includes a collection module 10 , an acquisition module 20 , a determination module 30 and a control module 40 ;
  • the collection module 10 is configured to collect the current ambient temperature when the air conditioner is in the cooling mode, and determine the current cooling condition according to the current ambient temperature.
  • the acquiring module 20 is configured to acquire the condenser temperature of the condenser and the water temperature of the water accumulator when the current refrigeration working condition is a preset high temperature refrigeration working condition.
  • the determining module 30 is configured to determine a target water pump opening degree according to the condenser temperature and the water temperature of the water accumulator.
  • the control module 40 is configured to start the water pump according to the target water pump opening degree, and the water pump will introduce the cold energy in the indoor energy storage heat exchanger into the water accumulator, and the water accumulator will The subcooling pipe is cooled to cool the air conditioner.
  • the air conditioner cooling method is applied to the air conditioner, and the air conditioner includes: an indoor energy storage heat exchanger, a water accumulator, a water pump, a condenser and a subcooling pipe, and the indoor energy storage heat exchanger and the water accumulator pass through
  • the water pump is connected, the subcooling pipe is connected with the condenser, and the subcooling pipe is arranged in the preset area where the water accumulator is located;
  • the cooling method of the air conditioner includes: when the air conditioner is in the cooling mode, collecting the current ambient temperature, and according to the current environment The temperature determines the current refrigeration working condition.
  • the condenser temperature of the condenser and the water temperature of the accumulator are obtained, and the target water pump is determined according to the condenser temperature and the water temperature of the accumulator.
  • the water pump will introduce the cold energy in the indoor energy storage heat exchanger into the water accumulator, and the water accumulator will cool the subcooling pipe to cool the air conditioner;
  • the refrigeration working condition is high temperature refrigeration condition
  • the cold energy stored in the indoor energy storage heat exchanger is introduced into the water accumulator through the water pump, and the refrigerant in the subcooling pipe is cooled by the water accumulator, thereby improving the refrigeration at high temperature. It overcomes the defect of insufficient cooling capacity in the use scenario of the prefab house in the prior art.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Fuzzy Systems (AREA)
  • Mathematical Physics (AREA)
  • Fluid Mechanics (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

本申请涉及空调器技术领域,公开了一种空调器的控制方法、装置、空调器及存储介质,该方法包括:在检测到空调器处于制冷模式时,获取空调器所处室内环境的第一室内温度、空调器所处室外环境的第一室外温度及空调器的第一设定温度;根据第一室内温度、第一室外温度及第一设定温度,对空调器的导风叶开度进行调整,由此相比于现有技术中仅仅利用空调制冷系统降温,本申请通过调控空调器的导风叶开度来调控室外空气与室内空气的换气,进而加速室内温度的温降速度,从而提高人体舒适度。

Description

空调器的控制方法、装置、空调器及存储介质
本申请要求于2021年04月02日提交中国专利局、申请号为202110364718.9、发明名称为“空调器的控制方法、装置、空调器及存储介质”和于2021年03月08日提交中国专利局、申请号为202110253423.4、发明名称为“空调器制冷方法、空调器、存储介质及装置”的中国专利申请的优先权,其全部内容通过引用结合在申请中。
技术领域
本申请涉及空调器技术领域,尤其涉及一种空调器的控制方法、装置、空调器及存储介质。
背景技术
在空调使用场景下,室内环境温度可能高于室外环境温度,甚至在极端情况下,室内环境温度可能会比室外高十几摄氏度,目前对于这种情况的解决方式,仅仅为开启空调,利用空调的制冷效果达到降温的目的。
然而室内温度较高的情况下,仅仅利用空调制冷系统降温,在压缩机完全启动之前,制冷系统冷量输出很少,这个时间段内,室内温度仍然很高,从而导致人体舒适度很差。
在板房的使用场景下,由于白天室外温度较高,板房隔热较差,且空气不对流。因此,在板房白天受到太阳直射时,板房室内温度往往会高于室外温度很多。
现有的技术方案中,室外换热器侧直接与室外高温空气换热,换热效果较差,导致整机的制冷量较低,与高温下板房需要大制冷量的使用需求刚好相反。
上述内容仅用于辅助理解本申请的技术方案,并不代表承认上述内容是现有技术。
技术问题
本申请提供一种空调器的控制方法、装置、空调器及存储介质,旨在解决目前空调器制冷时降温速度缓慢的技术问题。
技术解决方案
为实现上述目的,本申请提供一种空调器的控制方法,所述方法包括:
在检测到空调器处于制冷模式时,获取空调器所处室内环境的第一室内温度、空调器所处室外环境的第一室外温度及空调器的第一设定温度;
根据所述第一室内温度、所述第一室外温度及所述第一设定温度,对空调器的导风叶开度进行调整。
可选地,所述根据所述第一室内温度、所述第一室外温度及所述第一设定温度,对空调器的导风叶开度进行调整的步骤包括:
判断所述第一室内温度是否大于所述第一设定温度;
若所述第一室内温度大于所述第一设定温度,则根据所述第一室内温度及所述第一室外温度,对空调器的导风叶开度进行调整。
可选地,所述若所述第一室内温度大于所述第一设定温度,则根据所述第一室内温度及所述第一室外温度,对空调器的导风叶开度进行调整的步骤包括:
若所述第一室内温度大于所述第一设定温度,则判断所述第一室内温度是否小于所述第一室外温度;
若所述第一室内温度小于所述第一室外温度,则控制空调器的导风叶关闭;以及,
若所述第一室内温度大于所述第一室外温度,则根据所述第一室外温度及所述第一设定温度对空调器的导风叶开度进行调整。
可选地,所述若所述第一室内温度大于所述第一室外温度,则根据所述第一室外温度及所述第一设定温度对空调器的导风叶开度进行调整的步骤包括:
若所述第一室内温度大于所述第一室外温度,则判断所述第一室外温度是否大于所述第一设定温度;
若所述第一室外温度大于所述第一设定温度,则控制空调器的导风叶开度调整为第一预设开度。
可选地,所述若所述第一室外温度大于所述第一设定温度,则控制空调器的导风叶开度调整为第一预设开度的步骤之后,还包括:
获取空调器以所述第一预设开度运行时空调器所处室内环境的第二室内温度、空调器所处室外环境的第二室外温度;
若所述第二室内温度大于所述第二室外温度,则获取间隔预设时间后空调器所处室内环境的第三室内温度;
根据所述第二室内温度及所述第三室内温度,对空调器的导风叶开度进行调整。
可选地,所述根据所述第二室内温度及所述第三室内温度,对空调器的导风叶开度进行调整的步骤包括:
获取所述第二室内温度及所述第三室内温度之间的温度差;
若所述温度差小于预设温度差,则减小空调器的导风叶开度。
可选地,所述判断所述第一室外温度是否大于所述第一设定温度的步骤之后,还包括:
若所述第一室外温度小于或等于所述第一设定温度,则获取所述第一室外温度与所述第一设定温度之间的温度差;
根据所述温度差确定目标开度,并控制空调器的导风叶开度调整为所述目标开度。
可选地,所述根据所述温度差确定目标开度,并控制空调器的导风叶开度调整为所述目标开度的步骤之后,还包括:
获取空调器以所述目标开度运行时空调器所处室内环境的实时室内温度,并根据所述实时室内温度确定室内温度变化速度;
若检测到所述室内温度变化速度维持不变,则降低空调器的压缩机的运行频率。
可选地,所述在检测到空调器处于制冷模式的步骤之后,还包括:
若接收到换气指令,则控制空调器的导风叶开度调整为第二预设开度。
此外,为实现上述目的,本申请还提供一种空调器的控制装置,所述空调器的控制装置包括:
控制模块,用于在检测到空调器所处室内环境的当前墙壁温度达到空调器的当前设定温度时,控制空调器以目标运行频率运行;
获取模块,用于获取空调器以所述目标运行频率运行预设时间后的第一墙壁温度及第一设定温度,并确定在所述预设时间内空调器所处室内环境的第一墙壁温度变化趋势;
调整模块,用于根据所述第一墙壁温度、所述第一设定温度及所述第一墙壁温度变化趋势,对空调器的运行频率进行调整。
为实现上述目的,本申请提供一种空调器制冷方法,所述空调器制冷方法应用于空调器,所述空调器包括:室内储能换热器、蓄水器、水泵、冷凝器以及过冷管,所述室内储能换热器与所述蓄水器通过所述水泵连接,所述过冷管与所述冷凝器连接,所述过冷管设置在所述蓄水器所处的预设区域内;
所述空调器制冷方法包括以下步骤:
在所述空调器处于制冷模式时,采集当前环境温度,并根据当前环境温度确定当前制冷工况;
在所述当前制冷工况为预设高温制冷工况时,获取所述冷凝器的冷凝器温度以及所述蓄水器的蓄水器水温;
根据所述冷凝器温度以及所述蓄水器水温确定目标水泵开度;以及
根据所述目标水泵开度启动所述水泵,由所述水泵将所述室内储能换热器内的冷量导入所述蓄水器,由所述蓄水器对所述过冷管进行冷却,以对所述空调器进行制冷。
可选地,所述在所述空调器处于制冷模式时,采集当前环境温度,并根据当前环境温度确定当前制冷工况的步骤,包括:
在所述空调器处于制冷模式时,获取所述室内储能换热器的储能信息;
根据所述储能信息判断所述室内储能换热器是否处于预设储能充足状态;以及
在所述室内储能换热器处于预设储能充足状态时,采集当前环境温度,并根据当前环境温度确定当前制冷工况。
可选地,所述在所述室内储能换热器处于预设储能充足状态时,采集当前环境温度,并根据当前环境温度确定当前制冷工况的步骤,包括:
在所述室内储能换热器处于预设储能充足状态时,采集当前环境温度;以及
判断所述当前环境温度是否大于预设第一温度阈值,并根据判断结果确定当前制冷工况。
可选地,所述根据所述冷凝器温度以及所述蓄水器水温确定目标水泵开度的步骤,包括:
对所述冷凝器温度进行提取,获得冷凝器中部温度以及冷凝器出口温度;
在所述冷凝器中部温度大于预设第二温度阈值时,根据所述冷凝器中部温度以及所述冷凝器出口温度确定冷凝器温度差值;
在所述冷凝器温度差值小于预设第三温度阈值时,根据所述冷凝器出口温度以及所述蓄水器水温确定目标温度差值;以及
根据所述目标温度差值确定目标水泵开度。
可选地,所述根据所述目标温度差值确定目标水泵开度的步骤,包括:
判断所述目标温度差值是否小于预设第四温度阈值,获得第一判断结果;
判断所述目标温度差值是否大于预设第五温度阈值,获得第二判断结果;以及
根据所述第一判断结果以及所述第二判断结果确定目标水泵开度。
可选地,所述根据所述第一判断结果以及所述第二判断结果确定目标水泵开度的步骤,包括:
在所述第一判断结果为所述目标温度差值小于预设第四温度阈值,且所述第二判断结果为所述目标温度差值大于预设第五温度阈值时,将预设第一水泵开度作为目标水泵开度。
可选地,所述根据所述第一判断结果以及所述第二判断结果确定目标水泵开度的步骤,包括:
在所述第一判断结果为所述目标温度差值小于预设第四温度阈值,且所述第二判断结果为所述目标温度差值小于或等于预设第五温度阈值时,将预设第二水泵开度作为目标水泵开度。
此外,为实现上述目的,本申请还提出一种空调器制冷装置,所述空调器制冷装置包括:采集模块、获取模块、确定模块和控制模块;
所述采集模块,用于在所述空调器处于制冷模式时,采集当前环境温度,并根据当前环境温度确定当前制冷工况;
所述获取模块,用于在所述当前制冷工况为预设高温制冷工况时,获取冷凝器的冷凝器温度以及蓄水器的蓄水器水温;
所述确定模块,用于根据所述冷凝器温度以及所述蓄水器水温确定目标水泵开度;
所述控制模块,用于根据所述目标水泵开度启动所述水泵,由所述水泵将室内储能换热器内的冷量导入所述蓄水器,由所述蓄水器对过冷管进行冷却,以对所述空调器进行制冷。
此外,为实现上述目的,本申请还提供一种空调器,所述空调器包括处理器,存储器以及存储在所述存储器中的空调器的控制程序,所述空调器的控制程序被所述处理器运行时,实现如上所述的空调器的控制方法的步骤。
此外,为实现上述目的,本申请还提供一种计算机存储介质,所述计算机存储介质上存储有空调器的控制程序,所述空调器的控制程序被处理器运行时实现如上所述空调器的控制方法的步骤。
有益效果
相比现有技术,本申请提供一种空调器的控制方法,通过在检测到空调器处于制冷模式时,获取空调器所处室内环境的第一室内温度、空调器所处室外环境的第一室外温度及空调器的第一设定温度;根据第一室内温度、第一室外温度及第一设定温度,对空调器的导风叶开度进行调整,由此相比于现有技术中仅仅利用空调制冷系统降温,本申请通过调控空调器的导风叶开度来调控室外空气与室内空气的换气,进而加速室内温度的温降速度,从而提高人体舒适度。
附图说明
图1是本申请各实施例涉及的空调器的硬件结构示意图;
图2是本申请空调器的控制方法第一实施例的流程示意图;
图3是本申请空调器的控制方法涉及的空调器的结构示意图;
图4是本申请空调器的控制方法涉及的空调器的通孔示意图;
图5是本申请空调器的控制方法涉及的空调器所处室内空气的风流向示意图;
图6是本申请空调器的控制方法第二实施例的流程示意图;
图7是本申请空调器的控制方法第三实施例的流程示意图;
图8是本申请空调器的控制装置一实施例的功能模块示意图。
附图说明:
标号 名称 标号 名称
100 室内机 200 室外机
300 通孔 400 轴流风轮
500 室外换热器    
图9为本申请空调器制冷方法第一实施例的流程示意图;
图10为本申请空调器制冷方法一实施例的空调系统示意图;
图11为本申请空调器制冷方法一实施例的储能模式下冷量循环示意图;
图12为本申请空调器制冷方法一实施例的开启水泵时的冷量循环示意图;
图13为本申请空调器制冷方法第二实施例的流程示意图;
图14为本申请空调器制冷方法第三实施例的流程示意图;
图15为本申请空调器制冷装置第一实施例的结构框图。
附图标号说明:
标号 名称 标号 名称
1 压缩机 6 蒸发器
2 冷凝器 7 室内储能换热器
3 节流部件 8 水泵
4 第一截止阀 9 蓄水器
5 第二截止阀 10 过冷管
本申请的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。
参照图1,图1是本申请各实施例涉及的空调器的硬件结构示意图。本申请实施例中,空调器可以包括处理器1001(例如中央处理器Central Processing Unit、CPU),通信总线1002,输入端口1003,输出端口1004,存储器1005。其中,通信总线1002用于实现这些组件之间的连接通信;输入端口1003用于数据输入;输出端口1004用于数据输出,存储器1005可以是高速RAM存储器,也可以是稳定的存储器(non-volatile memory),例如磁盘存储器,存储器1005可选的还可以是独立于前述处理器1001的存储装置。本领域技术人员可以理解,图1中示出的硬件结构并不构成对本申请的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
基于图1所示的硬件结构,本申请第一实施例提供了一种空调器的控制方法。
参照图2,图2为本申请空调器的控制方法第一实施例的流程示意图。
本申请实施例提供了空调器的控制方法的实施例,需要说明的是,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。具体地,本实施例空调器的控制方法包括:
步骤S10:在检测到空调器处于制冷模式时,获取空调器所处室内环境的第一室内温度、空调器所处室外环境的第一室外温度及空调器的第一设定温度;
步骤S20:根据所述第一室内温度、所述第一室外温度及所述第一设定温度,对空调器的导风叶开度进行调整。
需要说明的是,本实施例中提出的上述空调器指代可拆卸安装于板房上的空调器,参考图3,图3为本实施例中所涉及的空调器结构简易示意图,如图3所示,该空调器包括室内机100和室外机200,其中,室内机100与室外机200之间为不可拆卸连接,即本实施例中,该空调器为整体式空调,室内机100与室外机200之间不可拆卸,由此使得在板房上安装与拆除上述空调器时,普通用户无需专业人员的协助就可完成。
此外,在另一实施例中,为了减小空调器在室内占用的空间,上述室内机100和室外机200之间为可拆卸安装,以便用户能够随时根据需求将室内机100和室外机200拆开,分散体积和重量,搬运方便,此外,本实施例中,当室内机100和室外机200连接时,空调器为一体式空调,用户可直接将空调器放置在室内进行使用,也可以将空调器安装在活动板房的墙壁上,使室内机100的风口通向室内,室外机200的风口通向室外。此外室内机100与室外机200还可以分开,以使空调器作为分体式空调使用,室内机100安装在室内,室外机100安装在室外,从而减小空调器在室内占用的空间,节省室内空间。
具体而言,本实施例中的上述空调器的室内机100与室外机200之间通过冷媒管连通,其中,室内机100包括内机机壳、室内风轮和室内换热器,本实施例中,室内侧进风口设于内机机壳的前侧壁,室内侧出风口设于内机机壳的顶壁,室内换热器位于室内风轮与室内侧进风口之间,如此,室内换热器能够正面迎风,从而有利于换热器与室内进风充分换热,进一步提升换热效率,本实施例中,室内风轮用以驱动空气通过室内侧进风口进入,流经室内换热器后进入进风风道,再通过出风风道从室内侧出风口吹出,以对室内环境进行降温或升温,由于解决了夏季高温时,室内温度极高,空调器难以对室内进行降温的技术问题,通过利用室内风轮驱动高温空气通过室内侧进风口进入,进而达到快速降温的目的,进一步地,内机机壳内设有蜗壳和蜗舌,蜗壳与蜗舌在室内侧风轮的进风侧围设成进风风道,以使空气集中从进风风道进入,增大进风风压,蜗壳与蜗舌在室内侧风轮的出风侧围设成出风风道,以使空气集中从出风风道吹出,增大出风风压。
进一步地,本实施例中,上述空调器还包括外机机壳,其中,内机机壳的底部与外机机壳的顶部可拆卸连接。具体的,外机机壳开设有室外侧进风口和室外侧出风口,外机机壳内还安装有室外换热器和室外风轮,其中,室外风轮还可以为轴流风轮、离心室风轮等,室内换热器为蒸发器,室外换热器则为冷凝器,室外风轮驱动空气从室外侧进风口进入外机机壳内,流经冷凝器以对冷凝器进行散热后,再从室外侧出风口吹出。
另外,在一实施例中,上述内机机壳的底部与外机机壳的顶部可拆卸连接,如此,在内机机壳与外机机壳连接时,该空调器作为一体式空调使用;而在内机机壳相对外机机壳拆卸后,该空调器则可作为分体式空调使用,从而提高空调器使用场景的灵活性。
值得注意的是,本实施例中上述空调器指代可拆卸安装于板房上的空调器,由于板房的特征结构,在夏季高温情况下,空调器所处室内环境温度可能高于空调器所处室外环境温度,甚至在极端情况下,空调器所处室内环境温度可能会比空调器所处室外环境高十几摄氏度,因此若仅仅为开启空调器进行制冷,室内温度较高的情况下,仅仅利用空调制冷系统降温,在压缩机完全启动之前,制冷系统冷量输出很少,这个时间段内,室内温度仍然很高,人体舒适度很差,因此本实施例中,为了解决上述技术问题,通过利用上述室外风轮的负压作用,将空调器所处室内的高温空气快速抽出室外,达到快速降温的目的。因此,在另一实施例中,为了实现利用上述室外风轮的负压作用,将空调器所处室内的高温空气快速抽出室外,达到快速降温的目的,本实施例对上述空调器进一步做出改进,具体而言,本实施例中,采用在空调器的室内侧机壳处设有多个通孔300,具体地,如图4所示,在内机机壳的室内侧开设有多个通孔300,由此基于上述多个通孔300使室内侧的空气进入空调器的内部,从而通过上述多个通孔300使空调器所处室内的高温空气快速抽出室外,达到快速降温的目的。
此外,为了便于理解,参考图5,图5为本实施例中空调器所处室内空气的风流向示意图,其中,箭头指代风流向,空调器的室外风轮为轴流风轮400,由此利用轴流风轮400驱动空调器所处室内的高温空气从上述多个通孔300进入空调器内部,再从室外侧出风口吹出,从而实现在室内空气温度较高的情况下,将室内高温空气抽出到室外的目的。此外,轴流风轮400还驱动空调器所处室内的低温空气从室外侧进风口进入外机机壳内,再通过通孔排出至室外。
在另一实施例中,在室内温度不高的情况下,在通过上述多个通孔300使空调器所处室内的空气快速抽出室外时,空调器的制冷量存在一定量的损失,因此为了达到维持空调器的制冷量的目的,本实施例中,在设有多个通孔300处的空调器的内部对应位置装置有导风叶及用于驱动导风叶开度的步进电机,由此通过步进电机驱动导风叶的开度,来调控从上述多个通孔300进入空调器的内部的室内侧空气的空气量,由此来维持空调器的制冷量,例如,在室内温度不高的情况下,则可利用步进电机驱动导风叶关闭,进而避免空调器的室内侧空气通过上述通孔300进入空调器的内部,在室内温度很高的情况下,则可利用步进电机驱动导风叶打开,进而通过上述多个通孔300使空调器所处室内的空气快速抽出室外,达到快速降温的目的。
由此,基于本实施例上述的空调器的构造,提出本申请空调器的电控冷却方法,进而达到利用上述室外风轮的负压作用,将空调器所处室内的高温空气快速抽出室外,达到快速降温的目的。
应当理解地,在一些极端情况下,室内环境温度可能会比室外高十几摄,例如对于一些密闭不透风的板房,其在炎炎夏日的照射下板房内的温度很可能高于板房外的温度,因此此种情况下,若仅仅利用空调 制冷系统降温,在压缩机完全启动之前,制冷系统冷量输出很少,这个时间段内,室内温度仍然很高,并高于室外温度,因此本实施例中,为了实现快速温降,在检测到空调器处于制冷模式时,实时监测空调器所处室内环境的第一室内温度、空调器所处室外环境的第一室外温度,,可选地,在上述室内侧机壳处设置至少一个第一温度传感器,用于实时监测空调器所处室内环境的室外温度,在上述室外侧机壳处设置至少一个第二温度传感器,用于实时监测空调器所处室内环境的室外温度,从而在空调器所处室外环境的第一室外温度小于空调器所处室内环境的第一室内温度时,利用上述空调器的室内侧机壳处设的多个通孔及导风叶对温度较高的室内空气与温度较低的室外空气进行换气,从而加快室内温度的降低。具体而言,上述空调器所处室内环境的第一室内温度可指代空调器在进入制冷模式时刻时所采集到的室内温度,上述空调器所处室外环境的第一室外温度可指代空调器在进入制冷模式时刻时所采集到的室外温度,此外,上述空调器所处室内环境的第一室内温度及上述空调器所处室外环境的第一室外温度还可指代接收到用户发送的换气指令时刻时所采集到的温度,例如在空调器所处的室内环境中的用户对当前空调器的制冷效果不满意时,可向空调器发送换气指令,以控制空调器执行换气操作,本实施例对此不作限制,此外,上述空调器的第一设定温度指代采集上述第一室内温度及第一室外温度时空调器所设定的温度。
应当理解地,由于本申请中空调器的室内侧机壳处设有多个通孔,在设有多个通孔处的机壳部位内侧对应装置有导风叶及步进电机,因此当空调器所处室外环境的第一室外温度小于空调器所处室内环境的第一室内温度时,可基于步进电机驱动导风叶开启某一特定开度,以将室外空气通过上述风道排出至室外,从而加快室内降温。
此外,值得注意的是,由于在将室内空气通过上述风道排出至室外时,室内冷量会损失,从而可能会造成室内温度小幅度升高,因此本实施例在基于第一室内温度及第一室外温度控制空调器进行换气逻辑程序之前,还需基于第一设定温度确定当前是否开始执行换气逻辑程序,例如当第一室内温度小于第一设定温度时,表明当前室内温度已达到用户所要求的制冷温度,则为了避免制冷量损失,无需再根据第一室内温度及第一室外温度控制空调器进行换气逻辑程序,而当第一室内温度大于第一设定温度时,表明当前室内温度还未达到用户所要求的制冷温度,则为了加快室内降温,可根据第一室内温度及第一室外温度控制空调器进行换气逻辑程序,以在空调器所处室外环境的第一室外温度小于空调器所处室内环境的第一室内温度时,对温度较高的室内空气与温度较低的室外空气进行换气,从而加快室内温度的降低。此外,在另一实施例中,还可增大室外风机的转速,例如图4所示的空调器所处室内高温空气的风流向示意图,通过增大轴流风轮的转速,进而增大上述轴流风轮的负压作用,从而实现将空调器所处室内的高温空气快速抽出室外,达到快速降温的目的。
应当理解的是,以上仅为举例说明,对本申请的技术方案并不构成任何限制,本领域的技术人员在实际应用中可以基于需要进行设置,此处不再一一列举。
在本实施例中,通过在检测到空调器处于制冷模式时,获取空调器所处室内环境的第一室内温度、空调器所处室外环境的第一室外温度及空调器的第一设定温度;根据第一室内温度、第一室外温度及第一设定温度,对空调器的导风叶开度进行调整,由此相比于现有技术中仅仅利用空调制冷系统降温,本申请通过调控空调器的导风叶开度来调控室外空气与室内空气的换气,进而加速室内温度的温降速度,从而提高人体舒适度。
进一步地,基于本申请空调器的电控冷却方法的第一实施例,提出本申请空调器的电控冷却方法第二实施例。
参照图6,图6为本申请空调器的电控冷却方法第二实施例的流程示意图;
所述空调器的电控冷却方法第二实施例与所述空调器的电控冷却方法第一实施例的区别在于,所述根据所述第一室内温度、所述第一室外温度及所述第一设定温度,对空调器的导风叶开度进行调整的步骤包括:
步骤S201:判断所述第一室内温度是否大于所述第一设定温度;
步骤S202:若所述第一室内温度大于所述第一设定温度,则根据所述第一室内温度及所述第一室外温度,对空调器的导风叶开度进行调整。
本实施例中,容易理解地,由于在利用轴流风轮驱动空调器所处室内的空气从上述多个通孔进入空调器 内部,再从室外侧出风口吹出时,室内冷量会损失,从而可能会造成室内温度小幅度升高,因此本实施例在基于第一室内温度及第一室外温度控制空调器进行换气逻辑程序之前,还需基于第一设定温度确定当前是否开始执行换气逻辑程序,例如当第一室内温度小于第一设定温度时,表明当前室内温度已达到用户所要求的制冷温度,则为了避免制冷量损失,无需再根据第一室内温度及第一室外温度控制空调器进行换气逻辑程序,而当第一室内温度大于第一设定温度时,表明当前室内温度还未达到用户所要求的制冷温度,则为了加快室内降温,可根据第一室内温度及第一室外温度控制空调器进行换气逻辑程序,以在空调器所处室外环境的第一室外温度小于空调器所处室内环境的第一室内温度时,对温度较高的室内空气与温度较低的室外空气进行换气,从而加快室内温度的降低。
具体地,该步骤中,在第一室内温度大于第一设定温度时,判断当前第一室内温度是否大于第一室外温度,若第一室内温度大于第一室外温度,则表明当前室外温度低于室内温度,则由于本申请中空调器的室内侧机壳处设有多个通孔,在设有多个通孔处的机壳部位内侧对应装置有导风叶及步进电机,具体地,上述通孔为与空调器内部的风道连通的进风口,导风叶靠近所述进风口设置在所述风道内,因此本申请中室内空气与室外空气可通过上述通孔、风道及导风叶等进行换气。
具体而言,在实际应用场景中,为了避免室内冷量的损失,一般情况下,上述空调器的导风叶开度为零,即呈闭合状态,从而避免室内空气从上述风管中流出,即本实施例中上述导风叶开度决定着室内空气的换气量,因此本实施例中,为了提高室内温度的温降控制的灵活性,可实时基于对空调器的导风叶开度进行调整,从而灵活调控室内空气与室外空气的换气量,进而灵活调控室内温度的温降速度。
此外,应当理解地,在实际应用中,在室内温度还未达到设定温度时,室内温度可能会低于室外温度,即无需再将室内温度与室外温度进行换气,因此为了避免此种情况下,空调器的导风叶开启时造成室内冷量损失或室内温度升高而影响用户舒适度,本实施例中给出上述若所述第一室内温度大于所述第一设定温度,则根据所述第一室内温度及所述第一室外温度,对空调器的导风叶开度进行调整的具体实施方案:
若所述第一室内温度大于所述第一设定温度,则判断所述第一室内温度是否小于所述第一室外温度;
若所述第一室内温度小于所述第一室外温度,则控制空调器的导风叶关闭;以及,
若所述第一室内温度大于所述第一室外温度,则根据所述第一室外温度及所述第一设定温度对空调器的导风叶开度进行调整。
即在室内温度还未达到设定温度时,判断室内空气温度与室外空气温度之间的高低,即在第一室内温度小于第一室外温度时,则表明当前无需对室内空气与室外空气进行换气,因此即可控制空调器的导风叶关闭,以避免室内空气从上述风管中流出,造成室内冷量损失,此外需要说明的是,本实施例中用户可根据实际情况开启换气功能,即控制空调器的导风叶开启,例如当空调器所处室内环境的空气中存在异味时,则可开启换气功能,以通过开启的导风叶进行换气,因此在根据第一室内温度及第一室外温度控制空调器进行换气逻辑程序之前,当前空调器的导风叶可能存在以某一特定开度开启状态,因此本实施例中,在第一室内温度小于第一室外温度时,即表明当前无需对室内空气与室外空气进行换气时,检测当前导风叶的状态,若导风叶的状态为关闭状态,则维持当前导风叶继续关闭,若导风叶的状态为开启状态,则控制空调器的导风叶关闭。
具体地,上述导风叶开度大小决定着室内空气的换气量大小,在一些应用场景中,室内温度与室外温差可能会相差较大,则可控制导风叶开启较大开度,以加快室内温度降低速度,而当室内温度与室外温差不大时,且基于室外温度与设定温度之间的温差,来确定导风叶开度大小,以保证在室内冷量损失最小的情况下,降低室内温度,具体地,本实施例中给出一种上述若所述第一室内温度大于所述第一室外温度,则根据所述第一室外温度及所述第一设定温度对空调器的导风叶开度进行调整的具体实施方案:若所述第一室内温度大于所述第一室外温度,则判断所述第一室外温度是否大于所述第一设定温度;若所述第一室外温度大于所述第一设定温度,则控制空调器的导风叶开度调整为第一预设开度。
该步骤中,上述第一预设开度为预先设定的某一特定开度,可选地,本实施例中上述第一预设开度为上述空调器的导风叶所允许开启的最大开度。
具体地,本实施例中,在第一室内温度大于第一室外温度时,比较第一室外温度与设定温度的大小,若第一室外温度大于第一设定温度,则表明当前制冷系统冷量输出很少,则可控制空调器的导风叶开度为 最大开度,加大室内空气与室外空气之间的换气量,从而加快室外空气对室内温度的降低。
应当理解地,在控制空调器的导风叶开度为最大开度时,室内空气与室外空气之间的换气量最大,则在室外低温空气的影响下,室内温度会极速降低,从而渐渐接近于室外空气温度,同时由于空调器在制冷模式时会不断输出冷量,因此若空调器的导风叶继续以最大开度开启,则会造成室内制冷量的损失,从而室内温度会逐渐回温升高,进而影响用户舒适度,因此本实施例中,为了避免后续制冷量损失而造成室内回温,上述若所述第一室外温度大于所述第一设定温度,则控制空调器的导风叶开度调整为第一预设开度的步骤之后,还包括:
获取空调器以所述第一预设开度运行时空调器所处室内环境的第二室内温度、空调器所处室外环境的第二室外温度;
若所述第二室内温度大于所述第二室外温度,则获取间隔预设时间后空调器所处室内环境的第三室内温度;
根据所述第二室内温度及所述第三室内温度,对空调器的导风叶开度进行调整。
该步骤中,在控制空调器的导风叶开度调整为第一预设开度后,先获取空调器以第一预设开度运行时空调器所处室内环境的第二室内温度、空调器所处室外环境的第二室外温度,以判断当前室外空气携带的冷量是否可对室内空气进行降温,具体地,判断第二室内温度是否小于第二室外温度,若第二室内温度小于第二室外温度,则表明当前室外空气携带的冷量不可对室内空气进行降温,则为了避免室内空调器的制冷量损失,则可控制空调器的导风叶关闭,此外,当第二室内温度大于第二室外温度时,则表明当前室外空气携带的冷量可对室内空气进行降温,此时由于空调器在制冷模式时会不断输出冷量,因此在室外空气对室内空气进行降温的同时,空调器也在对室内空气进行降温,室内空气会逐渐低于室外空气,此时若空调器的导风叶继续以最大开度开启,则会造成室内制冷量的损失,从而室内温度会逐渐回温升高,进而影响用户舒适度,因此本实施例中,在第二室内温度大于第二室外温度,则获取间隔预设时间后空调器所处室内环境的第三室内温度,以判断当前室外空气对室内空气的温降作用,可以理解地,在空调器的制冷量不变的情况下,当第三室内温度越小,则表明当前室外空气的室内空气的温降作用比较大,此时可继续维持当前开度,以利用室外空气对室内空气进行降温,而当第三室内温度与第二温度之间相差不大时,则表明当前室外空气对室内空气的温降作用不大,则若继续维持当前开度,则会造成室内冷量损失,从而造成室内温度回温,进而影响用户舒适度,因此本实施例中为了解决上述技术问题,给出上述根据所述第二室内温度及所述第三室内温度,对空调器的导风叶开度进行调整的具体实施方案:获取所述第二室内温度及所述第三室内温度之间的温度差;
若所述温度差小于预设温度差,则减小空调器的导风叶开度。
即计算出第二室内温度与第三室内温度之间的温度差,由于确定室外空气对室内空气的温降作用大小,即在温度差小于预设温度差时,表明室外空气的引入,对室内侧的温降作用较小,则为了避免由于空调器的导风叶开启而导致室内冷量损失,而导致室内侧温度的回温,本实施例可减小空调器的导风叶的开度,以减少空调器产生的冷量减少,通过主要利用空调器的冷量对室内空气进行冷却,来加快室内温度的温降速度。
此外,在另一实施例中,当温度差大于预设温度差时,表明室外空气的引入,对室内侧的温降作用较大,则此时可继续维持当前开度,以利用室外空气加快室内空气的温降。
此外,在另一应用场景中,设定温度高于室外温度,则表明当前室内温度的温降主要取决于室外环境,因此即使在空调器不制冷的情况下,室内温度也呈下降趋势,因此为了减少空调器的耗电量,可控制空调器的导风叶开启某一特定开度,以利用室外空气对室内进行降温,此外,还可对空调器进行限频,以减少空调器的耗电量,具体地,本实施例中,上述判断所述第一室外温度是否大于所述第一设定温度的步骤之后,还包括:
若所述第一室外温度小于或等于所述第一设定温度,则获取所述第一室外温度与所述第一设定温度之间的温度差;
根据所述温度差确定目标开度,并控制空调器的导风叶开度调整为所述目标开度。
该步骤中,可选地,上述温度差与目标开度之间存在一预设映射关系,即在获取第一室外温度与第一设定温度之间的温度差之后,根据该预设隐射关系获取目标开度,此外,本实施例中为了加快空调器的动 作执行速度,还可确定温度差处于的温度差区间,以通过该温度差区间预设匹配的开度来获取温度差对应的目标开度,本实施例对此不作限制。
应当理解地,在设定温度高于室外温度,则表明当前室内温度的温降主要取决于室外环境,因此本实施例中根据室外温度与设定温度之间的温差大小决定空调器的导风叶的开度,例如当室外温度与设定温度之间的温差大小为5度时,可控制空调器的导风叶的开度调整为第一开度,当室外温度与设定温度之间的温差大小为2度时,可控制空调器的导风叶的开度调整为第二开度,其中第二开度小于第一开度,即随着第一室外温度与第一设定温度之间的温度差的降低而减少空调器的导风叶的开度。
此外,应当理解地,在室外温度低于室内温度及设定温度时,此时室外空气可进入室内对室内进行降温,同时由于即使在空调器不制冷的情况下,室内温度也呈下降趋势,因此为了减少空调器的耗电量,在调控空调器的导风叶开度之后,降低空调器的压缩机频率,进减少空调器的耗电量。
所述根据所述温度差确定目标开度,并控制空调器的导风叶开度调整为所述目标开度的步骤之后,还包括:
获取空调器以所述目标开度运行时空调器所处室内环境的实时室内温度,并根据所述实时室内温度确定室内温度变化速度;
若检测到所述室内温度变化速度维持不变,则降低空调器的压缩机的运行频率。
具体而言,上述室内温度变化速度指代单位时间内室内温度的下降速度,该步骤中,容易理解地,在室内温度变化速度维持不变时,表明当前室外空气携带的制冷量以足够对室内空气进行降温,则本实施例中可对空调器进行限频,以在室内温度呈下降趋势时,减少空调器的耗电量。
应当理解的是,以上仅为举例说明,对本申请的技术方案并不构成任何限制,本领域的技术人员在实际应用中可以基于需要进行设置,此处不再一一列举。
本实施例中,通过判断第一室内温度是否大于所述第一设定温度,若第一室内温度大于第一设定温度,则根据第一室内温度及第一室外温度,对空调器的导风叶开度进行调整,由此保证室内冷量损失不大的情况下加快室内降温。
进一步地,基于本申请空调器的控制方法的第一实施例,提出本申请空调器的控制方法第三实施例。参照图7,图7为本申请空调器的控制方法第三实施例的流程示意图;
所述空调器的控制方法第三实施例与所述空调器的控制方法第一实施例的区别在于,所述在检测到空调器处于制冷模式的步骤之后,还包括:
步骤S30:若接收到换气指令,则控制空调器的导风叶开度调整为第二预设开度。
具体而言,上述第二预设开度可为用户预先设定的某一特定开度,还可为换气指令中携带的某一特定开度,本实施例对此不作限制。
本实施例中,应当理解地,本申请所涉及的空调器的室内侧机壳处设有多个通孔,在设有多个通孔处的机壳部位内侧对应装置有导风叶及步进电机,具体地,上述通孔为与空调器内部的风道连通的进风口,导风叶靠近所述进风口设置在所述风道内,风道的出风口设置于空调器的室外侧,因此上述空调器的导风叶等除了还实现加速室内温度温降的功能,还具备换气功能,例如当空调器所处室内环境的空气中存在异味时,则可开启换气功能,以通过开启的导风叶进行换气,因此本实施例中用户可发送换气指令,以控制空调器的导风叶开启,此外,除了在当空调器所处室内环境的空气中存在异味时,用户可发送换气指令,还可在用户感觉当前空调器的制冷速度缓慢时,发送发送换气指令,控制空调器的导风叶开启,以利用室外空气对室内空气进行降温,即本实施例中,空调器除了可根据室外温度、室内温度及设定温度来主动触发空调器的导风叶的开启,还可基于用户发送的换气指令来控制空调器的导风叶的开启。应当理解的是,以上仅为举例说明,对本申请的技术方案并不构成任何限制,本领域的技术人员在实际应用中可以基于需要进行设置,此处不再一一列举。
本实施例中,通过在检测到空调器处于制冷模式的步骤之后,若接收到换气指令,则控制空调器的导风叶开度调整为第二预设开度,由此提高了空调器的导风叶调控的灵活性,从而提高了用户使用感。
此外,本实施例还提供一种空调器的控制装置。参照图8,图8为本申请
空调器的控制装置一实施例的功能模块示意图。
本实施例中,所述空调器的控制装置为虚拟装置,存储于图1所示的空调器的存储器1005中,以实现 空调器的控制程序的所有功能:用于在检测到空调器处于制冷模式时,获取空调器所处室内环境的第一室内温度、空调器所处室外环境的第一室外温度及空调器的第一设定温度;用于根据所述第一室内温度、所述第一室外温度及所述第一设定温度,对空调器的导风叶开度进行调整。
具体地,参照图8,所述空调器的控制装置包括:
获取模块10,用于在检测到空调器进入制冷模式时,获取空调器所处室内环境的第一室内温度、空调器所处室外环境的第一室外温度及空调器的第一设定温度;
调整模块20,用于根据所述第一室内温度、所述第一室外温度及所述第一设定温度,对空调器的导风叶开度进行调整。
参照图9,图9为本申请空调器制冷方法第一实施例的流程示意图,提出本申请空调器制冷方法第一实施例。
在第一实施例中,所述空调器制冷方法应用于空调器,所述空调器包括:室内储能换热器、蓄水器、水泵、冷凝器以及过冷管,所述室内储能换热器与所述蓄水器通过所述水泵连接,所述过冷管与所述冷凝器连接,所述过冷管设置在所述蓄水器所处的预设区域内;
为了便于理解,参照图10进行举例说明,图10为空调器的系统示意图,图中,1为压缩机,2为冷凝器,3为节流部件,4为第一截止阀,5为第二截止阀,6为蒸发器,7为室内储能换热器,8为水泵,9为蓄水器,10为过冷管。其中,在本实施例以及其他实施例中,蓄水器可以是接水盘,室内储能换热器也称为蓄冷模块。
在具体实现中,在室外机区域设置蓄水器,在蓄水器(蓄水器的水来源于室内蒸发器的冷凝水)布置过冷管,制冷剂在冷凝器换热后,再经过过冷管,温度进一步降低,从而提高制冷量。但是在室外温度较高,冷凝器热负荷较大的情况下,蓄水器水温很快会上升到一个比较高的值,此时,过冷管的效果将会大大减小,造成制冷量的不足。本方案将蓄水器的水通过水泵泵入室内的蓄冷模块,水在蓄冷模块温度降低后,再进入蓄水器,保持蓄水器温度保持在较低的值,保证过冷管的有效作用,从而提高高温制冷量。蓄水器设置有溢流孔,在蓄水器水位达到一定高度的情况下,冷凝水可以通过溢流孔排出室外,保证冷凝水不会进入机器内部,保证整机可靠性。
所述空调器制冷方法包括以下步骤:
步骤S10:在所述空调器处于制冷模式时,采集当前环境温度,并根据当前环境温度确定当前制冷工况。应当理解的是,本实施例的执行主体是所述空调器,本实施例对此不加以限制。
可以理解的是,采集当前环境温度可以是接收预设传感器上传的传感器信息,并根据传感器信息确定当前环境温度。其中,预设传感器可以是空调器的生产厂商预先安装在空调器上的温度传感器,本实施例对此不加以限制。
应当理解的是,根据当前环境温度确定当前制冷工况可以是在预设工况表中查找当前环境温度对应的当前制冷工况。其中,预设工况表中包含当前环境温度与当前制冷工况之间的对应关系,当前环境温度与当前制冷工况之间的对应关系可以由空调器的生产厂商预先设置,本实施例对此不加以限制。
步骤S20:在所述当前制冷工况为预设高温制冷工况时,获取所述冷凝器的冷凝器温度以及所述蓄水器的蓄水器水温。
需要说明的是,预设高温制冷工况可以是在室外环境温度较高,且空调器进行制冷操作时的工况,本实施例对此不加以限制。
应当理解的是,获取冷凝器的冷凝器温度以及蓄水器的蓄水器水温可以是通过预先安装在冷凝器上的传感器获取冷凝器的冷凝器温度,通过预先安装在蓄水器上的传感器获取蓄水器的蓄水器水温。其中,冷凝器温度可以包括冷凝器中部温度以及冷凝器出口温度,本实施例对此不加以限制。
步骤S30:根据所述冷凝器温度以及所述蓄水器水温确定目标水泵开度。
可以理解的是,根据冷凝器温度以及蓄水器水温确定目标水泵开度可以是将冷凝器温度以及蓄水器水温作为参考信息,在预设第一开度表中查找参考信息对应的目标水泵开度。其中,预设第一开度表中包含参考信息与目标水泵开度的对应关系,参考信息与目标水泵开度的对应关系可以由空调器的生产厂商预先设置,本实施例对此不加以限制。
步骤S40:根据所述目标水泵开度启动所述水泵,由所述水泵将所述室内储能换热器内的冷量导入所述 蓄水器,由所述蓄水器对所述过冷管进行冷却,以对所述空调器进行制冷。
应当理解的是,室内储能换热器可以用于存储冷量,室内储能换热器的存储过程如图11所示,图11为一实施例的储能模式下冷量循环示意图,制冷剂可在循环回路中按照图11中的实线循环路线进行循环。在空调器进入储能模式后,控制第二截止阀5打开,第一截止阀4关闭,此时,制冷剂从压缩机1流出,流入冷凝器2,在冷凝器2中进行一次换热后,经过第二截止阀5流入室内储能换热器7换热,再进入蒸发器6换热,从而能够将一部分冷量存储在室内储能换热器7中。
在具体实现中,图12为一实施例的开启水泵时的冷量循环示意图,制冷剂可在循环回路中按照图12中的实线循环路线进行循环,水可在循环回路中按照图12中的虚线循环路线进行循环。此时,制冷剂从压缩机1流出,流入冷凝器2,在冷凝器2中进行一次换热后,进入过冷管10,制冷剂在过冷管10中继续换热,在空调器开启水泵8后,室内储能换热器7释放的冷量可以通过水泵8进入蓄水器9,由蓄水器9根据室内储能换热器7释放的冷量对过冷管10进行冷却,进而对过冷管10中的制冷剂进一步换热,最后,换热后的制冷剂通过第一截止阀4以及第二截止阀5进入蒸发器6进行制冷,以达到提高高温下的制冷量的目的。
在第一实施例中,空调器制冷方法应用于空调器,空调器包括:室内储能换热器、蓄水器、水泵、冷凝器以及过冷管,室内储能换热器与蓄水器通过水泵连接,过冷管与冷凝器连接,过冷管设置在蓄水器所处的预设区域内;空调器制冷方法包括;在空调器处于制冷模式时,采集当前环境温度,并根据当前环境温度确定当前制冷工况,在当前制冷工况为预设高温制冷工况时,获取冷凝器的冷凝器温度以及蓄水器的蓄水器水温,根据冷凝器温度以及蓄水器水温确定目标水泵开度,根据目标水泵开度启动水泵,由水泵将室内储能换热器内的冷量导入蓄水器,由蓄水器对过冷管进行冷却,以对空调器进行制冷;相较于现有的室外换热器侧直接与室外高温空气换热的方式,由于本申请中,通过额外设置室内储能换热器、蓄水器、水泵、冷凝器以及过冷管,从而能够在当前制冷工况为高温制冷工况时,将室内储能换热器存储的冷量通过水泵引入蓄水器,由蓄水器对过冷管中的制冷剂进行冷却,进而能够提高高温下的制冷量,克服了现有技术中在板房的使用场景下,制冷量不足的缺陷。
参照图13,图13为本申请空调器制冷方法第二实施例的流程示意图,基于上述图9所示的第一实施例,提出本申请空调器制冷方法的第二实施例。
在第二实施例中,所述步骤S10,包括:
步骤S101:在所述空调器处于制冷模式时,获取所述室内储能换热器的储能信息。
需要说明的是,储能信息可以是室内储能换热器的蓄冷量、蓄冷温度等信息,本实施例对此不加以限制。应当理解的是,获取室内储能换热器的储能信息可以是通过预先安装在室内储能换热器内的传感器获取室内储能换热器的储能信息。其中,预先安装在室内储能换热器内的传感器可以由空调器的生产厂商预先设置,本实施例对此不加以限制。
步骤S102:根据所述储能信息判断所述室内储能换热器是否处于预设储能充足状态。
应当理解的是,根据储能信息判断室内储能换热器是否处于预设储能充足状态可以是判断室内储能换热器的蓄冷量是否大于预设蓄冷量阈值,在室内储能换热器的蓄冷量大于预设蓄冷量阈值时,判定室内储能换热器处于预设储能充足状态。其中,预设蓄冷量阈值可以由空调器的生产厂商预先设置,本实施例对此不加以限制。
根据储能信息判断室内储能换热器是否处于预设储能充足状态也可以是判断室内储能换热器的蓄冷温度是否小于预设蓄冷温度阈值,在室内储能换热器的蓄冷温度小于预设蓄冷温度阈值时,判定室内储能换热器处于预设储能充足状态。其中,预设蓄冷温度阈值可以由空调器的生产厂商预先设置,本实施例对此不加以限制。
可以理解的是,在室内储能换热器不处于预设储能充足状态时,关闭水泵,空调器按照常规制冷模式运行。
步骤S103:在所述室内储能换热器处于预设储能充足状态时,采集当前环境温度,并根据当前环境温度确定当前制冷工况。
应当理解的是,采集当前环境温度可以是接收预设传感器上传的传感器信息,并根据传感器信息确定当前环境温度。其中,预设传感器可以是空调器的生产厂商预先安装在空调器上的温度传感器,本实施例 对此不加以限制。在本实施例以及其他实施例中,以T1表示当前环境温度。
可以理解的是,根据当前环境温度确定当前制冷工况可以是在预设工况表中查找当前环境温度对应的当前制冷工况。其中,预设工况表中包含当前环境温度与当前制冷工况之间的对应关系,当前环境温度与当前制冷工况之间的对应关系可以由空调器的生产厂商预先设置,本实施例对此不加以限制。
进一步地,为了能够简化制冷工况判断步骤,提高制冷工况检测结果的可靠性,所述步骤S103,包括:在所述室内储能换热器处于预设储能充足状态时,采集当前环境温度;
判断所述当前环境温度是否大于预设第一温度阈值,并根据判断结果确定当前制冷工况。
需要说明的是,预设第一温度阈值可以由空调器的生产厂商预先设置,在本实施例以及其他实施例中,以C1表示预设第一温度阈值。
应当理解的是,根据判断结果确定当前制冷工况可以是在当前环境温度大于预设第一温度阈值时,判定空调器处于预设高温制冷工况。
可以理解的是,在当前环境温度小于或等于预设第一温度阈值时,关闭水泵,空调器按照常规制冷模式运行。
在具体实现中,例如,在T1≤C1时,保持水泵关闭,空调器按照常规制冷模式运行;在T1>C1时,外界环境温度较高,空调器处于高温制冷工况。
在第二实施例中,公开了在空调器处于制冷模式时,获取室内储能换热器的储能信息,根据储能信息判断室内储能换热器是否处于预设储能充足状态,在室内储能换热器处于预设储能充足状态时,采集当前环境温度,并根据当前环境温度确定当前制冷工况;由于本实施例中,在确定空调器的当前制冷工况之前,能够先判断室内储能换热器是否处于预设储能充足状态,从而能够避免空调器在室内储能换热器处于储能不充足状态,进行后续制冷操作,提高空调器的可靠性。
在第二实施例中,所述步骤S30,包括:
步骤S301:对所述冷凝器温度进行提取,获得冷凝器中部温度以及冷凝器出口温度。
需要说明的是,冷凝器中部温度可以是冷凝器中部的制冷器温度,冷凝器出口温度可以是冷凝器出口处的制冷器温度,在本实施例以及其他实施例中,以T2表示冷凝器中部温度,以T0表示冷凝器出口温度。应当理解的是,对冷凝器温度进行提取,获得冷凝器中部温度以及冷凝器出口温度可以是对冷凝器温度进行标识提取,获得信息标识,并根据信息标识确定冷凝器中部温度以及冷凝器出口温度。其中,信息标识可以是用来表示信息身份的标识,本实施例对此不加以限制。
步骤S302:在所述冷凝器中部温度大于预设第二温度阈值时,根据所述冷凝器中部温度以及所述冷凝器出口温度确定冷凝器温度差值。
需要说明的是,预设第二温度阈值可以是由空调器的生产厂商预先设置,在本实施例以及其他实施例中,以C2表示预设第二温度阈值。
在具体实现中,例如,在T2≤C2时,虽然外界环境温度较高,但是此时冷凝器中部温度较低,冷凝器换热量可以满足系统要求,因此,可以保持水泵关闭,空调器常规运行;在T2>C2时,冷凝器中部温度较高,冷凝器换热量不能满足系统要求,此时,需要进一步判断冷凝器中部温度T2与冷凝器出口温度T0的大小。
应当理解的是,根据冷凝器中部温度以及冷凝器出口温度确定冷凝器温度差值可以是将冷凝器中部温度减去冷凝器出口温度,获得冷凝器温度差值。
步骤S303:在所述冷凝器温度差值小于预设第三温度阈值时,根据所述冷凝器出口温度以及所述蓄水器水温确定目标温度差值。
需要说明的是,预设第三温度阈值可以是由空调器的生产厂商预先设置,在本实施例以及其他实施例中,以C3表示预设第三温度阈值。
在具体实现中,例如,在T2-To≥C3时,冷凝器中部温度较高,但是,冷凝器出口冷媒的过冷度较高,因此,系统制冷量可以保持在一个比较高的值,此时,保持水泵关闭,空调器常规运行;在T2-To<C3时,冷凝器出口温度与冷凝器中部温度均处在较高点,且冷凝器出口过冷度不够,系统制冷量下降,此时,需要进一步判断冷凝器出口温度T0与蓄水器水温TW的大小。
可以理解的是,根据冷凝器出口温度以及蓄水器水温确定目标温度差值可以是将冷凝器出口温度减去蓄 水器水温,获得目标温度差值。
步骤S304:根据所述目标温度差值确定目标水泵开度。
应当理解的是,根据目标温度差值确定目标水泵开度可以是在预设开度表中查找目标温度差值对应的目标水泵开度。其中,预设第二开度表中包含目标温度差值与目标水泵开度的对应关系,目标温度差值与目标水泵开度的对应关系可以由空调器的生产厂商预先设置,本实施例对此不加以限制。
在第二实施例中,公开了对冷凝器温度进行提取,获得冷凝器中部温度以及冷凝器出口温度,在冷凝器中部温度大于预设第二温度阈值时,根据冷凝器中部温度以及冷凝器出口温度确定冷凝器温度差值,在冷凝器温度差值小于预设第三温度阈值时,根据冷凝器出口温度以及蓄水器水温确定目标温度差值,根据目标温度差值确定目标水泵开度;由于本实施例中,通过冷凝器中部温度、冷凝器出口温度以及蓄水器水温来确定目标水泵开度,从而能够提高目标水泵开度的准确性以及可靠性。
参照图14,图14为本申请空调器制冷方法第三实施例的流程示意图,基于上述图13所示的第二实施例,提出本申请空调器制冷方法的第三实施例。
在第三实施例中,所述步骤S304,包括:
步骤S3041:判断所述目标温度差值是否小于预设第四温度阈值,获得第一判断结果。
需要说明的是,预设第四温度阈值可以是由空调器的生产厂商预先设置,在本实施例以及其他实施例中,以C4表示预设第四温度阈值。
在具体实现中,例如,在TO-TW≥C4时,冷出温度与水温相差较大,过冷管可以得到很好的冷却,此时,可以关闭水泵,空调器常规运行;在TO-TW<C4时,根据TO与TW的差值,决定水泵开度。
步骤S3042:判断所述目标温度差值是否大于预设第五温度阈值,获得第二判断结果。
需要说明的是,预设第五温度阈值可以是由空调器的生产厂商预先设置,在本实施例以及其他实施例中,以C5表示预设第五温度阈值,C5<C4。
步骤S3043:根据所述第一判断结果以及所述第二判断结果确定目标水泵开度。
进一步地,所述根据所述第一判断结果以及所述第二判断结果确定目标水泵开度,包括:
在所述第一判断结果为所述目标温度差值小于预设第四温度阈值,且所述第二判断结果为所述目标温度差值大于预设第五温度阈值时,将预设第一水泵开度作为目标水泵开度。
需要说明的是,预设第一水泵开度可以是由空调器的生产厂商预先设置,本实施例对此不加以限制。进一步地,所述根据所述第一判断结果以及所述第二判断结果确定目标水泵开度,包括:
在所述第一判断结果为所述目标温度差值小于预设第四温度阈值,且所述第二判断结果为所述目标温度差值小于或等于预设第五温度阈值时,将预设第二水泵开度作为目标水泵开度。
需要说明的是,预设第二水泵开度可以是由空调器的生产厂商预先设置,其中,预设第一水泵开度小于预设第二水泵开度,本实施例对此不加以限制。
在具体实现中,例如,在C5≤TO-TW<C4时,温差较小,需要用室内储能换热器的冷量冷却蓄水区,水泵开度为预设第一水泵开度;在TO-TW<C5时,冷出与蓄水区水温接近,冷却效果差,需要增加水泵开度到预设第二水泵开度,加速蓄水区冷却。
在第三实施例中,公开了判断目标温度差值是否小于预设第四温度阈值,获得第一判断结果,判断目标温度差值是否大于预设第五温度阈值,获得第二判断结果,根据第一判断结果以及第二判断结果确定目标水泵开度;由于本实施例通过两次数值比较确定目标水泵开度,从而能够简化目标水泵开度的确定过程,提高处理效率。
此外,本申请实施例还提出一种存储介质,所述存储介质上存储有空调器制冷程序,所述空调器制冷程序被处理器执行时实现如上文所述的空调器制冷方法的步骤。
此外,参照图15,本申请实施例还提出一种空调器制冷装置,所述空调器制冷装置包括:采集模块10、获取模块20、确定模块30和控制模块40;
所述采集模块10,用于在所述空调器处于制冷模式时,采集当前环境温度,并根据当前环境温度确定当前制冷工况。
所述获取模块20,用于在所述当前制冷工况为预设高温制冷工况时,获取所述冷凝器的冷凝器温度以及所述蓄水器的蓄水器水温。
所述确定模块30,用于根据所述冷凝器温度以及所述蓄水器水温确定目标水泵开度。
所述控制模块40,用于根据所述目标水泵开度启动所述水泵,由所述水泵将所述室内储能换热器内的冷量导入所述蓄水器,由所述蓄水器对所述过冷管进行冷却,以对所述空调器进行制冷。
在本实施例中,空调器制冷方法应用于空调器,空调器包括:室内储能换热器、蓄水器、水泵、冷凝器以及过冷管,室内储能换热器与蓄水器通过水泵连接,过冷管与冷凝器连接,过冷管设置在蓄水器所处的预设区域内;空调器制冷方法包括;在空调器处于制冷模式时,采集当前环境温度,并根据当前环境温度确定当前制冷工况,在当前制冷工况为预设高温制冷工况时,获取冷凝器的冷凝器温度以及蓄水器的蓄水器水温,根据冷凝器温度以及蓄水器水温确定目标水泵开度,根据目标水泵开度启动水泵,由水泵将室内储能换热器内的冷量导入蓄水器,由蓄水器对过冷管进行冷却,以对空调器进行制冷;相较于现有的室外换热器侧直接与室外高温空气换热的方式,由于本申请中,通过额外设置室内储能换热器、蓄水器、水泵、冷凝器以及过冷管,从而能够在当前制冷工况为高温制冷工况时,将室内储能换热器存储的冷量通过水泵引入蓄水器,由蓄水器对过冷管中的制冷剂进行冷却,进而能够提高高温下的制冷量,克服了现有技术中在板房的使用场景下,制冷量不足的缺陷。
本申请所述空调器制冷装置的其他实施例或具体实现方式可参照上述各方法实施例,此处不再赘述。需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者系统中还存在另外的相同要素。
上述本申请实施例序号仅仅为了描述,不代表实施例的优劣。在列举了若干装置的单元权利要求中,这些装置中的若干个可以是通过同一个硬件项来具体体现。词语第一、第二、以及第三等的使用不表示任何顺序,可将这些词语解释为名称。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如只读存储器镜像(Read Only Memory image,ROM)/随机存取存储器(Random Access Memory,RAM)、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
以上仅为本申请的优选实施例,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (20)

  1. 一种空调器的控制方法,其中,所述方法包括:
    在检测到空调器处于制冷模式时,获取空调器所处室内环境的第一室内温度、空调器所处室外环境的第一室外温度及空调器的第一设定温度;
    根据所述第一室内温度、所述第一室外温度及所述第一设定温度,对空调器的导风叶开度进行调整。
  2. 根据权利要求1所述的空调器的控制方法,其中,所述根据所述第一室内温度、所述第一室外温度及所述第一设定温度,对空调器的导风叶开度进行调整的步骤包括:
    判断所述第一室内温度是否大于所述第一设定温度;
    若所述第一室内温度大于所述第一设定温度,则根据所述第一室内温度及所述第一室外温度,对空调器的导风叶开度进行调整。
  3. 根据权利要求2所述的空调器的控制方法,其中,所述若所述第一室内温度大于所述第一设定温度,则根据所述第一室内温度及所述第一室外温度,对空调器的导风叶开度进行调整的步骤包括:
    若所述第一室内温度大于所述第一设定温度,则判断所述第一室内温度是否小于所述第一室外温度;
    若所述第一室内温度小于所述第一室外温度,则控制空调器的导风叶关闭;以及,
    若所述第一室内温度大于所述第一室外温度,则根据所述第一室外温度及所述第一设定温度对空调器的导风叶开度进行调整。
  4. 根据权利要求3所述的空调器的控制方法,其中,所述若所述第一室内温度大于所述第一室外温度,则根据所述第一室外温度及所述第一设定温度对空调器的导风叶开度进行调整的步骤包括:
    若所述第一室内温度大于所述第一室外温度,则判断所述第一室外温度是否大于所述第一设定温度;
    若所述第一室外温度大于所述第一设定温度,则控制空调器的导风叶开度调整为第一预设开度。
  5. 根据权利要求4所述的空调器的控制方法,其中,所述若所述第一室外温度大于所述第一设定温度,则控制空调器的导风叶开度调整为第一预设开度的步骤之后,还包括:
    获取空调器以所述第一预设开度运行时空调器所处室内环境的第二室内温度、空调器所处室外环境的第二室外温度;
    若所述第二室内温度大于所述第二室外温度,则获取间隔预设时间后空调器所处室内环境的第三室内温度;
    根据所述第二室内温度及所述第三室内温度,对空调器的导风叶开度进行调整。
  6. 根据权利要求5所述的空调器的控制方法,其中,所述根据所述第二室内温度及所述第三室内温度,对空调器的导风叶开度进行调整的步骤包括:
    获取所述第二室内温度及所述第三室内温度之间的温度差;
    若所述温度差小于预设温度差,则减小空调器的导风叶开度。
  7. 根据权利要求3所述的空调器的控制方法,其中,所述判断所述第一室外温度是否大于所述第一设定温度的步骤之后,还包括:
    若所述第一室外温度小于或等于所述第一设定温度,则获取所述第一室外温度与所述第一设定温度之间的温度差;
    根据所述温度差确定目标开度,并控制空调器的导风叶开度调整为所述目标开度。
  8. 根据权利要求7所述的空调器的控制方法,其中,所述根据所述温度差确定目标开度,并控制空调器的导风叶开度调整为所述目标开度的步骤之后,还包括:
    获取空调器以所述目标开度运行时空调器所处室内环境的实时室内温度,并根据所述实时室内温度确定室内温度变化速度;
    若检测到所述室内温度变化速度维持不变,则降低空调器的压缩机的运行频率。
  9. 根据权利要求1至8任一项所述的空调器的控制方法,其中,所述在检测到空调器处于制冷模式的步骤之后,还包括:
    若接收到换气指令,则控制空调器的导风叶开度调整为第二预设开度。
  10. 一种空调器的控制装置,其中,所述空调器的控制装置包括:
    获取模块,用于在检测到空调器进入制冷模式时,获取空调器所处室内环境的第一室内温度、空调器所 处室外环境的第一室外温度及空调器的第一设定温度;
    调整模块,用于根据所述第一室内温度、所述第一室外温度及所述第一设定温度,对空调器的导风叶开度进行调整。
  11. 一种空调器制冷方法,其中,所述空调器制冷方法应用于空调器,所述空调器包括:室内储能换热器、蓄水器、水泵、冷凝器以及过冷管,所述室内储能换热器与所述蓄水器通过所述水泵连接,所述过冷管与所述冷凝器连接,所述过冷管设置在所述蓄水器所处的预设区域内;
    所述空调器制冷方法包括以下步骤:
    在所述空调器处于制冷模式时,采集当前环境温度,并根据当前环境温度确定当前制冷工况;
    在所述当前制冷工况为预设高温制冷工况时,获取所述冷凝器的冷凝器温度以及所述蓄水器的蓄水器水温;
    根据所述冷凝器温度以及所述蓄水器水温确定目标水泵开度;以及
    根据所述目标水泵开度启动所述水泵,由所述水泵将所述室内储能换热器内的冷量导入所述蓄水器,由所述蓄水器对所述过冷管进行冷却,以对所述空调器进行制冷。
  12. 如权利要求11所述的空调器制冷方法,其中,所述在所述空调器处于制冷模式时,采集当前环境温度,并根据当前环境温度确定当前制冷工况的步骤,包括:
    在所述空调器处于制冷模式时,获取所述室内储能换热器的储能信息;
    根据所述储能信息判断所述室内储能换热器是否处于预设储能充足状态;以及
    在所述室内储能换热器处于预设储能充足状态时,采集当前环境温度,并根据当前环境温度确定当前制冷工况。
  13. 如权利要求12所述的空调器制冷方法,其中,所述在所述室内储能换热器处于预设储能充足状态时,采集当前环境温度,并根据当前环境温度确定当前制冷工况的步骤,包括:
    在所述室内储能换热器处于预设储能充足状态时,采集当前环境温度;以及
    判断所述当前环境温度是否大于预设第一温度阈值,并根据判断结果确定当前制冷工况。
  14. 如权利要求11-13中任一项所述的空调器制冷方法,其中,所述根据所述冷凝器温度以及所述蓄水器水温确定目标水泵开度的步骤,包括:
    对所述冷凝器温度进行提取,获得冷凝器中部温度以及冷凝器出口温度;
    在所述冷凝器中部温度大于预设第二温度阈值时,根据所述冷凝器中部温度以及所述冷凝器出口温度确定冷凝器温度差值;
    在所述冷凝器温度差值小于预设第三温度阈值时,根据所述冷凝器出口温度以及所述蓄水器水温确定目标温度差值;以及
    根据所述目标温度差值确定目标水泵开度。
  15. 如权利要求14所述空调器制冷方法,其中,所述根据所述目标温度差值确定目标水泵开度的步骤,包括:
    判断所述目标温度差值是否小于预设第四温度阈值,获得第一判断结果;
    判断所述目标温度差值是否大于预设第五温度阈值,获得第二判断结果;以及
    根据所述第一判断结果以及所述第二判断结果确定目标水泵开度。
  16. 如权利要求15所述的空调器制冷方法,其中,所述根据所述第一判断结果以及所述第二判断结果确定目标水泵开度的步骤,包括:
    在所述第一判断结果为所述目标温度差值小于预设第四温度阈值,且所述第二判断结果为所述目标温度差值大于预设第五温度阈值时,将预设第一水泵开度作为目标水泵开度。
  17. 如权利要求15所述的空调器制冷方法,其中,所述根据所述第一判断结果以及所述第二判断结果确定目标水泵开度的步骤,包括:
    在所述第一判断结果为所述目标温度差值小于预设第四温度阈值,且所述第二判断结果为所述目标温度差值小于或等于预设第五温度阈值时,将预设第二水泵开度作为目标水泵开度。
  18. 一种空调器制冷装置,其中,所述空调器制冷装置包括:采集模块、获取模块、确定模块和控制模块;
    所述采集模块,用于在所述空调器处于制冷模式时,采集当前环境温度,并根据当前环境温度确定当前制冷工况;
    所述获取模块,用于在所述当前制冷工况为预设高温制冷工况时,获取冷凝器的冷凝器温度以及蓄水器的蓄水器水温;
    所述确定模块,用于根据所述冷凝器温度以及所述蓄水器水温确定目标水泵开度;
    所述控制模块,用于根据所述目标水泵开度启动所述水泵,由所述水泵将室内储能换热器内的冷量导入所述蓄水器,由所述蓄水器对过冷管进行冷却,以对所述空调器进行制冷。
  19. 一种空调器,其中,所述空调器包括处理器,存储器以及存储在所述存储器中的空调器的控制程序,所述空调器的控制程序被所述处理器运行时,实现如权利要求1-9或11-17中任一项所述的空调器的控制方法的步骤。
  20. 一种计算机存储介质,其中,所述计算机存储介质上存储有空调器的控制程序,所述空调器的控制程序被处理器运行时实现如权利要求1-9或11-17中任一项所述空调器的控制方法的步骤。
PCT/CN2022/075893 2021-03-08 2022-02-10 空调器的控制方法、装置、空调器及存储介质 WO2022188587A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110253423.4A CN115031360B (zh) 2021-03-08 2021-03-08 空调器制冷方法、空调器、存储介质及装置
CN202110253423.4 2021-03-08
CN202110364718.9A CN115183420A (zh) 2021-04-02 2021-04-02 空调器的控制方法、装置、空调器及存储介质
CN202110364718.9 2021-04-02

Publications (1)

Publication Number Publication Date
WO2022188587A1 true WO2022188587A1 (zh) 2022-09-15

Family

ID=83226335

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/075893 WO2022188587A1 (zh) 2021-03-08 2022-02-10 空调器的控制方法、装置、空调器及存储介质

Country Status (1)

Country Link
WO (1) WO2022188587A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201430297A (zh) * 2013-01-24 2014-08-01 Min-Ping Lin 建築物環境溫度調節系統
CN105841298A (zh) * 2016-03-30 2016-08-10 广东美的制冷设备有限公司 用于空调器的控制方法和空调器
CN105890082A (zh) * 2016-04-06 2016-08-24 广东美的制冷设备有限公司 蓄冷型空调器及其控制方法
CN206755640U (zh) * 2017-05-09 2017-12-15 广东美的制冷设备有限公司 制冷设备
CN107560124A (zh) * 2017-09-25 2018-01-09 青岛海尔空调器有限总公司 空调及其控制方法
CN111023456A (zh) * 2019-12-27 2020-04-17 宁波奥克斯电气股份有限公司 一种空调新风的控制方法、装置、空调器及存储介质
CN111351248A (zh) * 2020-03-13 2020-06-30 海信(山东)空调有限公司 一种空调系统及控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201430297A (zh) * 2013-01-24 2014-08-01 Min-Ping Lin 建築物環境溫度調節系統
CN105841298A (zh) * 2016-03-30 2016-08-10 广东美的制冷设备有限公司 用于空调器的控制方法和空调器
CN105890082A (zh) * 2016-04-06 2016-08-24 广东美的制冷设备有限公司 蓄冷型空调器及其控制方法
CN206755640U (zh) * 2017-05-09 2017-12-15 广东美的制冷设备有限公司 制冷设备
CN107560124A (zh) * 2017-09-25 2018-01-09 青岛海尔空调器有限总公司 空调及其控制方法
CN111023456A (zh) * 2019-12-27 2020-04-17 宁波奥克斯电气股份有限公司 一种空调新风的控制方法、装置、空调器及存储介质
CN111351248A (zh) * 2020-03-13 2020-06-30 海信(山东)空调有限公司 一种空调系统及控制方法

Similar Documents

Publication Publication Date Title
US11034210B2 (en) Peak demand response operation of HVAC systems
CN110542190B (zh) 运行控制方法、运行控制装置、空调器和存储介质
CN109708225B (zh) 空调器及其控制方法、装置和可读存储介质
WO2021223615A1 (zh) 空调系统中电子膨胀阀的初始开度值的确定方法及系统
US11480353B2 (en) Peak demand response operation of HVAC system with face-split evaporator
KR20100121961A (ko) 공기조화기
US11530832B2 (en) Peak demand response operation with improved sensible capacity
KR102329030B1 (ko) 자연냉각 기계실 에어컨의 제어 방법, 제어 장치 및 자연냉각 기계실 에어컨
CN114110982B (zh) 新风设备控制方法、装置、存储介质及新风设备
CN110793096A (zh) 一种空调机组及其控制方法、控制装置
JP4086575B2 (ja) 熱移動装置及びその運転方法
WO2022188587A1 (zh) 空调器的控制方法、装置、空调器及存储介质
KR20120122704A (ko) 공기 조화기 및 그 제어방법
CN110230867B (zh) 空调的运行控制方法与装置
CN114060975B (zh) 一种厨房温控系统及其控制方法、电子设备与存储介质
JP4074422B2 (ja) 空調機とその制御方法
CN114688630B (zh) 空调器及其控制方法、控制装置和可读存储介质
US11473806B2 (en) Proactive system control using humidity prediction
CN114110980A (zh) 新风设备控制方法、装置、新风设备及存储介质
CN115183420A (zh) 空调器的控制方法、装置、空调器及存储介质
CN114508831B (zh) 空调器、空调器检测方法、装置、电子设备及存储介质
CN220624233U (zh) 一种四管制空调外机及四管制空调机组
WO2023181374A1 (ja) 空気調和システム
CN114183860B (zh) 复合型空调系统、控制方法以及空调器
CN111121243B (zh) 空调器静音的控制方法、装置、存储介质及空调器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766114

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766114

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 07/02/2024)