WO2022206069A1 - 高镍三元前驱体的制备方法及其应用 - Google Patents

高镍三元前驱体的制备方法及其应用 Download PDF

Info

Publication number
WO2022206069A1
WO2022206069A1 PCT/CN2021/142502 CN2021142502W WO2022206069A1 WO 2022206069 A1 WO2022206069 A1 WO 2022206069A1 CN 2021142502 W CN2021142502 W CN 2021142502W WO 2022206069 A1 WO2022206069 A1 WO 2022206069A1
Authority
WO
WIPO (PCT)
Prior art keywords
preparation
feeding
particle size
particles
precursor
Prior art date
Application number
PCT/CN2021/142502
Other languages
English (en)
French (fr)
Inventor
李伟权
李长东
刘更好
阮丁山
林弘嘉
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
湖南邦普汽车循环有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司, 湖南邦普汽车循环有限公司 filed Critical 广东邦普循环科技有限公司
Priority to HU2200278A priority Critical patent/HUP2200278A2/hu
Priority to MA61687A priority patent/MA61687A1/fr
Priority to GB2310096.9A priority patent/GB2618691A/en
Priority to DE112021007432.6T priority patent/DE112021007432T5/de
Publication of WO2022206069A1 publication Critical patent/WO2022206069A1/zh
Priority to US18/374,003 priority patent/US20240025763A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/006Compounds containing, besides nickel, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • C01G53/40Nickelates
    • C01G53/42Nickelates containing alkali metals, e.g. LiNiO2
    • C01G53/44Nickelates containing alkali metals, e.g. LiNiO2 containing manganese
    • C01G53/50Nickelates containing alkali metals, e.g. LiNiO2 containing manganese of the type [MnO2]n-, e.g. Li(NixMn1-x)O2, Li(MyNixMn1-x-y)O2
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G53/00Compounds of nickel
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/11Powder tap density
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/90Other properties not specified above
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention belongs to the technical field of positive electrode materials for lithium ion batteries, and in particular relates to a preparation method and application of a high-nickel ternary precursor.
  • high-nickel cathode materials are more prone to cracking and decomposing during rolling and cycling than traditional materials. Studies have shown that the material particle cracking due to physical and chemical action is also related to the physical strength of the precursor, and improving the physical crack resistance of the precursor can also help to improve the cracking problem of this type of material.
  • a single ternary precursor particle can be regarded as a secondary spherical polycrystalline particle formed by the stacking of multiple primary grains.
  • the direct contact surface between the primary grains forms grain boundaries, and the non-contact places form pores.
  • the stress increases after the particles are compressed, and the stress is continuously concentrated at the lattice defects in the grains.
  • dislocations are formed.
  • the slip occurs inside the grain to make the dislocation propagate and grow to form a slip band, and the grain boundary is one of the biggest obstacles to the dislocation movement.
  • the slip band of a grain cannot propagate through the grain boundary to the adjacent grain. Dislocation sources in adjacent grains must be activated to generate new slip bands that are transferred into adjacent grains.
  • the slip band propagates between grains and eventually breaks down the polycrystalline grains. It can be seen that increasing the number of grain boundaries is an important means to improve the crack resistance of materials.
  • the appropriate pores inside the material particles will provide a certain buffer space for the elastic deformation of the particles under pressure. However, when the pressure continues to increase and exceeds the yield limit, the material will undergo plastic deformation until dislocations occur, which will also cause the particles to rupture. It can be seen that the appropriate porosity can provide a certain buffering effect when the particles are under pressure, but the more pores are not the better.
  • the weight of the particles decreases, which will directly reduce the compaction density of the material.
  • the internal volume of the particles is limited. When the pores increase, the number of grain boundaries will decrease accordingly, making the particles easier to crack.
  • the particle size distribution is not as concentrated as possible, because it is difficult to form a densely packed form between uniform particles, and the particles will have larger pores, which will increase the size of the powder on the one hand.
  • the powder is under pressure, there are fewer contact points between the particles, which is easy to form stress concentration, which is not conducive to improving the compressive performance of the particles.
  • the present invention aims to solve at least one of the technical problems existing in the above-mentioned prior art. To this end, the present invention proposes a preparation method and application of a high-nickel ternary precursor, which can meet the requirements of the high-nickel precursor for compaction density, and at the same time increase the crack resistance of the precursor particles.
  • a preparation method of a high-nickel ternary precursor comprising the following steps:
  • step S2 the particle diameter D50 of the obtained particles is 8.0-12.0 ⁇ m; in step S3, the D10 of the particles is adjusted to be reduced to 2.0-5.0 ⁇ m by feeding crystal seeds; In step S3, when the particle size grows to D50 of 8.0-12.0 ⁇ m again, the above-mentioned operation of adding seed crystals is repeated.
  • the present invention also includes the preparation process of the seed crystal: adding water to the seed crystal reactor, feeding an inert gas, turning on stirring and heating, feeding ammonia water, and then feeding alkali solution to adjust pH, and then At the same time, the lye solution and the metal salt solution are introduced to carry out precipitation reaction, the feeding is continued, the clear liquid is filtered out from the seed crystal reactor to maintain a constant liquid level, the material is continuously concentrated, and the particles continue to grow until the particle size grows to 2 The feeding is stopped at ⁇ 7 ⁇ m to prepare the seed crystal; more preferably, the feeding is stopped when the particle size grows to 2-5 ⁇ m.
  • the stirring speed is 150-300 rpm
  • the heating temperature is 50-80° C.
  • the concentration of ammonia water in the seed crystal reactor is 0 ⁇ 10 g/L
  • the pH was adjusted to 11.0 ⁇ 13.0.
  • step S2 after adjusting the pH, firstly add a seed crystal, and then simultaneously pass an alkali solution and a metal salt solution for precipitation reaction, and the particle size of the seed crystal is 2-7 ⁇ m.
  • the precursors are grown by seed crystals.
  • step S1 the general structural formula of the high-nickel ternary precursor is Ni x Co y Mn 1-xy (OH) 2 , wherein 0.6 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 0.4, x+y ⁇ 1.
  • step S4 the particle size D10 of the high nickel ternary precursor is 2.0-7.0 ⁇ m, D50 is 7.0-15.0 ⁇ m, and D90 is 12.0-20.0 ⁇ m.
  • the particle size D10 of the high nickel ternary precursor is 2.0-5.0 ⁇ m, D50 is 8.0-12.0 ⁇ m, and D90 is 18.0-20.0 ⁇ m.
  • step S2 the whole process of the precipitation reaction is continuously stirred, and the stirring speed is 150-250 rpm.
  • step S2 the stirring speed is 150-250 rpm.
  • the heating temperature is 50-80°C.
  • the concentration of the ammonia water is 0-10 g/L.
  • step S2 the pH is adjusted to 11.0-13.0.
  • the invention also proposes the application of the preparation method in the preparation of lithium ion batteries.
  • the present invention uses crystal seeds to adjust the particle size, so that the particle size maintains an appropriate wide distribution, improves the bulk density of the precursor, and enhances the anti-cracking performance.
  • the crystal seeds with uniform particle size also avoid the traditional continuous production process. Micropowder produced by conditioning.
  • the present invention adopts the intermittent-continuous production process of intermittent seeding and continuous discharging, which ensures the constant height of the particle growth environment during the production process and reduces the defects caused by environmental fluctuations inside the crystal grains.
  • the present invention adopts a pH range higher than the conventional one to refine the primary crystal grains of the precursor, increases the number of grain boundaries, and improves the anti-cracking performance of the precursor particles.
  • the present invention uses high-speed stirring to generate a small amount of pores inside the particles, increasing the density of the particles, and at the same time, the high-speed stirring improves the sphericity of the particles, and the higher sphericity is also conducive to increasing the contact area between the particles under pressure. , reducing stress concentration.
  • Fig. 1 is the process flow diagram of the present invention
  • Fig. 3 is the SEM image of the precursor of Example 1;
  • FIG. 4 is a cross-sectional SEM image of the precursor of Example 1.
  • This embodiment prepares a kind of high nickel ternary precursor, and the specific process is:
  • S2 seed crystal preparation: add pure water into the seed crystal kettle, feed nitrogen, turn on stirring and heating, rotate speed 220rpm, temperature 65°C, ammonia concentration 7.0g/L, feed lye to adjust pH to 11.6 and feed at the same time
  • the lye solution and the metal salt solution are subjected to precipitation reaction.
  • the environment in the kettle is kept constant, and the clear liquid in the kettle is filtered out through the microporous filter device to make the liquid level in the kettle constant.
  • the preparation of the precursor seed is completed, and the prepared precursor seed is driven into the seed tank for use;
  • Precursor growth seed growth: add two-thirds of the volume of pure water to the reactor, feed nitrogen, turn on stirring and heating, stir at 180 rpm, and at a temperature of 65° C.
  • concentration of ammonia water reaches 6.0g/L
  • the lye solution is introduced into the kettle to adjust the pH value of the kettle to 11.5, and then a third of the volume of crystal seeds is injected into the kettle.
  • the precipitation reaction occurs on the seeds to make the crystal seed particles grow, and the feeding is continued.
  • the pH value in the kettle is kept constant, and the concentration of ammonia water, the stirring speed and the temperature in the kettle are constant. After the material is full of the kettle, it flows out through the overflow port. The overflowing materials are discarded as unqualified products, and the particles in the kettle continue to grow;
  • S4 particle size adjustment and material collection: when the particle size in the reactor grows to D50 of 10.5 ⁇ m, start to feed crystal seeds. After the crystal seeds are introduced, the particle size of the materials in the reactor decreases until the particle size D10 drops to 4.0 Stop feeding, because the lye solution and metal salt solution are continuously fed, the seed crystal and the previous particles continue to grow, and the overflowed material is collected to the aging tank. By feeding crystal seeds to reduce the particle size, the above operations are repeated continuously. By intermittently feeding crystal seeds, the particle size in the reactor is kept in dynamic balance, and the particle size is always kept within the target range.
  • the particle size D50 of this embodiment can be maintained at about 10.0 ⁇ m. , continue to collect the overflowed materials, and the collected materials are washed, dried and screened to obtain the final high-nickel ternary precursor product Ni 0.82 Co 0.12 Mn 0.06 (OH) 2 .
  • This embodiment prepares a kind of high nickel ternary precursor, and the specific process is:
  • S2 seed crystal preparation: add pure water to the seed crystal kettle, feed nitrogen, turn on stirring and heating, rotate speed 240rpm, temperature 70°C, ammonia concentration 5.0g/L, feed lye to adjust pH to 12.0 and feed at the same time
  • the lye solution and the metal salt solution are subjected to precipitation reaction.
  • the environment in the kettle is kept constant, and the clear liquid in the kettle is filtered out through the microporous filter device to make the liquid level in the kettle constant.
  • the preparation of the precursor seeds is completed, and the prepared precursor seeds are driven into the seed tank for use;
  • Precursor growth direct growth: add two-thirds of the volume of pure water to the reactor, feed nitrogen, turn on stirring and heating, stirring speed 220rpm, temperature 70°C, feed ammonia water to make the concentration of ammonia water in the kettle Reach 5.0g/L, then pass into lye to adjust the pH value in the kettle to be 12.2, then simultaneously pass into lye solution and metal salt solution to carry out precipitation reaction, continue feeding, keep the pH value in the kettle constant during the feeding process, and the ammonia concentration , The stirring speed and the temperature in the kettle are constant. After the material is full, the material flows out through the overflow port. At this time, the overflowing material is discarded as unqualified products, and the particles in the kettle continue to grow;
  • S4 particle size adjustment and material collection: when the particle size in the reactor grows to D50 of 10.0 ⁇ m, start to feed crystal seeds, and after the crystal seeds are introduced, the particle size of the materials in the reactor decreases until the particle size D10 drops to 4.0 Stop feeding, because the lye solution and metal salt solution are continuously fed, the seed crystal and the previous particles continue to grow, and the overflowed material is collected to the aging tank. Enter crystal seeds to reduce the particle size, and repeat the above operation continuously. By intermittently feeding crystal seeds, the particle size in the reactor is kept in dynamic balance, and the particle size is always kept within the target range.
  • the particle size D50 of this embodiment can be maintained at about 9.8 ⁇ m , continue to collect the overflowed materials, and the collected materials are washed, dried and screened to obtain the final high-nickel ternary precursor product Ni 0.90 Co 0.07 Mn 0.03 (OH) 2 .
  • Example 2 a high-nickel ternary precursor is prepared, and the difference from Example 2 is that no crystal seed is added to adjust the particle size.
  • the specific process is as follows:
  • This comparative example is a commercial 811 precursor produced by Guangdong Bangpu Cycle Technology Company.
  • the average particle size D50 of Example 1-2 and Comparative Example 1-2 is about 10 ⁇ m, but the D10 of Example 1 and Example 2 are both smaller than that of Comparative Example 1-2, and the D90 is larger than Comparative Examples 1-2, the particle size distribution of the examples is broader.
  • the tap density (TD) and compaction density (CD) of the embodiment are significantly greater than those of the comparative example, indicating that the particle size distribution and particle strength of the precursor in the embodiment of the present invention can significantly improve the tap density and compaction density of the particles. effect.
  • Fig. 1 is a process flow diagram of the present invention, first prepare a precursor crystal seed in the crystal seed kettle, drive into the crystal seed tank for standby use, the precursor crystal seed is mainly used to adjust the precursor particle size in the reaction kettle, and the precursor crystal It grows in the reactor and adjusts the particle size through crystal seeds. After reaching the target particle size, the overflowed materials are collected and sent to the aging tank, and then the final precursor product is obtained through filtration, washing, drying, sieving and other treatments.
  • Figure 2 is the compaction density curve of the precursors of Examples 1, 2 and Comparative Examples.
  • the precursors were subjected to a pressure cracking experiment on a compaction density meter, and the maximum yield strength was set to 380MPa. It can be seen from Figure 2 that under the same pressure, the precursors obtained in Examples 1 and 2 have higher compaction densities than the conventional precursor samples, indicating that the precursor particles in Examples 1 and 2 have higher packing densities and better pressure resistance performance. .
  • the compaction transition points of Examples 1 and 2 are 18.04 MPa and 16.08 MPa, which are much higher than the compaction transition point of the comparative example of 13.20 MPa, indicating that the pressure cracking resistance of Examples 1 and 2 is much higher than that of the precursor of the comparative example.
  • FIG. 3 is an SEM image of the precursor of Example 1. It can be seen from the figure that the precursor particles are regular spherical, and the particle surface wafers are uniformly and finely distributed.
  • Figure 4 is a cross-sectional SEM image of the precursor of Example 1. It can be seen from the slice cross-sectional image that the inside of the particle is composed of small primary grains, with many grain boundaries and uniform distribution, and there are appropriate pores in the particle. The internal structure with multiple grain boundaries and appropriate pores, coupled with a wider particle size distribution, is the main reason for its better crack resistance.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开了一种高镍三元前驱体的制备方法及其应用,制备方法是在一定条件下同时通入碱液和金属盐溶液进行沉淀反应,得到D50为7.0~15.0μm的颗粒,再通入晶种,调节颗粒的D10降至2.0~7.0μm时,停止通入晶种,持续通入碱液和金属盐溶液,收集溢流出的物料,当颗粒粒径又生长至D50在7.0~15.0μm,重复上述加晶种的操作,持续收集溢流物料,最后将收集的物料经过洗涤、烘干、筛分得到所述高镍三元前驱体。本发明采用晶种调节粒度,使颗粒粒径保持适当的宽分布,提高了前驱体的堆积密度,采用间歇式加晶种、连续式出料的间歇-连续式生产工艺,保证了生产过程中颗粒生长环境的高度恒定,减少晶粒内部因环境波动产生的缺陷。

Description

高镍三元前驱体的制备方法及其应用 技术领域
本发明属于锂离子电池正极材料技术领域,具体涉及一种高镍三元前驱体的制备方法及其应用。
背景技术
近年来,随着新能源电动汽车的普及,人们对电动汽车的续航里程要求也越来越高。提升续航里程的关键在于提高汽车搭载的动力电池的能量密度。在电池体系没有显著突破的当下,提高单位体积电池的容量是现在研究的重点和发展的方向。基于此,对电池正极活性材料的压实密度要求也越来越高,而正极材料的压实密度与前驱体的压实密度有着直接的联系,这就要求前驱体要具有较高的压实密度,同时在承受较大压强的情况下颗粒还要具有较高的结构强度,以免被压碎破裂而失去活性。另一方面,高镍类正极材料相对于传统材料更容易在辊压和循环过程中发生破裂分解。研究表明这种由于物理化学作用产生的材料颗粒破裂也与前驱体的物理强度有关,提高前驱体的物理抗破裂能力也有助于改善这类的材料裂解问题。
此前行业内对前驱体的压实密度并没有过多的关注,也不作为产品供货的品质指标,当前为了满足高容量的目标,在采用高镍三元材料的同时,也对高镍前驱体的压实密度和抗破解性能提出来更高的要求,传统方式生产的产品已无法满足高镍前驱体此方面的要求。
单个三元前驱体颗粒可以看做是多个一次晶粒堆垛形成的二次球型多晶颗粒,一次晶粒之间直接接触面形成晶界,不接触的地方形成孔隙。在前驱体颗粒上施加一个不断增大的压力,颗粒受压后应力增大,在晶粒内晶格缺陷处应力不断集中,当达到应力极限时形成位错,继续施加压力,位错在晶粒内部发生滑移使位错传播生长形成滑移带,而晶界是位错运动的最大障碍之一,一个晶粒的滑移带不能穿越晶界传播到相邻的晶粒中去,要传递到相邻晶粒中必须启动相邻晶粒中的位错源产生新的滑移带。滑移带在晶粒之间传播最终使多晶颗粒破裂分解。可见增加晶界数目是提高材料抗破解性能的重要 手段。另一方面材料颗粒内部适当的孔隙会为颗粒承受压力产生弹性形变时提供一定的缓冲空间,但当压力不断增大,超过屈服极限后,材料产生塑性形变直至产生位错也会使颗粒破裂。可见适当的孔隙度在颗粒受压力时可以提供一定的缓冲作用,但孔隙不是越多越好,一方面因为孔隙增多后,颗粒的重量有所下降会直接降低材料的压实密度,另一方面颗粒内部体积有限,当孔隙增加后,晶界数目则会相应的减少,反而使颗粒更容易破解。
对于多个二次多晶颗粒来说,其粒度分布也不是越集中越好,因为均匀的颗粒之间难以形成密集堆积的形式,颗粒会留有较大的孔隙,一方面会增大粉体的宏观体积,不利于压实密度的提升,另一方面在粉体受到压力后,颗粒之间的接触点较少,容易形成应力集中,不利于提高颗粒的抗压性能。
发明内容
本发明旨在至少解决上述现有技术中存在的技术问题之一。为此,本发明提出一种高镍三元前驱体的制备方法及其应用,能够满足高镍前驱体对压实密度的要求,同时增加前驱体颗粒的抗破解性能。
根据本发明的一个方面,提出了一种高镍三元前驱体的制备方法,包括以下步骤:
S1:将镍盐、钴盐和锰盐配制成金属盐溶液;
S2:在惰性气氛下,加热并通入氨水,再通入碱液调节pH,然后同时通入碱液和所述金属盐溶液进行沉淀反应,得到D50为7.0~15.0μm的颗粒;
S3:通入晶种调节所述颗粒的D10降至2.0~7.0μm时,停止通入晶种,持续通入碱液和金属盐溶液,收集溢流出的物料,当颗粒粒径又生长至D50在7.0~15.0μm,重复上述加晶种的操作,持续收集溢流物料;
S4:将收集的物料经过洗涤、烘干、筛分得到所述高镍三元前驱体。
在本发明的一些优选的实施方式中,步骤S2中,得到所述颗粒的粒径D50为8.0~12.0μm;步骤S3中,通入晶种调节所述颗粒的D10降至2.0~5.0μm;步骤S3中,当颗粒粒径又生长至D50在8.0~12.0μm,重复上述加晶种的操作。
在本发明的一些实施方式中,还包括所述晶种的制备过程:向晶种反应器内加水,通入惰性气体,开启搅拌与加热,通入氨水,再通入碱液调节pH,然后同时通入碱液和所述金属盐溶液进行沉淀反应,持续进料,所述晶种反应器滤出清液以维持液面高度恒定,物料不断浓缩,颗粒持续生长,直至粒径生长到2~7μm时停止进料,制得所述晶种;更优选地,直至粒径生长到2~5μm时停止进料。
在本发明的一些实施方式中,在晶种的制备过程中,所述搅拌的速度为150~300rpm,所述加热的温度为50~80℃,所述晶种反应器内氨水的浓度为0~10g/L,所述pH调节至11.0~13.0。
在本发明的一些实施方式中,步骤S2中,在调节pH后,先加入晶种,再同时通入碱液和金属盐溶液进行沉淀反应,所述晶种的粒径为2~7μm。前驱体采用晶种生长的方式。
在本发明的一些实施方式中,步骤S1中,所述高镍三元前驱体的结构通式为Ni xCo yMn 1-x-y(OH) 2,其中,0.6<x<1,0<y<0.4,x+y<1。
在本发明的一些实施方式中,步骤S4中,所述高镍三元前驱体的粒径D10为2.0~7.0μm,D50为7.0~15.0μm,D90为12.0~20.0μm。
在本发明的一些优选的实施方式中,所述高镍三元前驱体的粒径D10为2.0~5.0μm,D50为8.0~12.0μm,D90为18.0~20.0μm。
在本发明的一些实施方式中,步骤S2中,所述沉淀反应的全过程持续搅拌,所述搅拌的速度为150~250rpm。
在本发明的一些实施方式中,步骤S2中,所述搅拌的速度为150~250rpm。
在本发明的一些实施方式中,步骤S2中,所述加热的温度为50~80℃。
在本发明的一些实施方式中,步骤S2中,所述氨水的浓度为0~10g/L。
在本发明的一些实施方式中,步骤S2中,所述pH调节至11.0~13.0。
本发明还提出所述的制备方法在制备锂离子电池中的应用。
根据本发明的一种优选的实施方式,至少具有以下有益效果:
1、本发明采用晶种调节粒度,使颗粒粒径保持适当的宽分布,提高了前驱体的堆积密度,增强了抗破解性能,粒度均匀的晶种也避免了传统连续式生产过程中因粒度调节而产生的微粉。
2、本发明采用间歇式加晶种、连续式出料的间歇-连续式生产工艺,保证了生产过程中颗粒生长环境的高度恒定,减少晶粒内部因环境波动产生的缺陷。
3、本发明采用高于常规的pH范围以细化前驱体一次晶粒,增加了晶界数目,提高了前驱体颗粒的抗破解性能。
4、本发明采用高速搅拌使颗粒内部产生较少量的孔隙,增加颗粒的密度,同时高速搅拌提高了颗粒的球形度,较高的球形度也有利于增加受压时颗粒之间的接触面积,减少应力集中。
附图说明
下面结合附图和实施例对本发明做进一步的说明,其中:
图1为本发明的工艺流程图;
图2为实施例1、2及对比例1、2前驱体的压实密度曲线图;
图3为实施例1前驱体的SEM图;
图4为实施例1前驱体的剖面SEM图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
本实施例制备了一种高镍三元前驱体,具体过程为:
S1:将硫酸镍、硫酸钴和硫酸锰按照金属摩尔比0.82:0.12:0.06配制成1.6mol/L的金属盐溶液备用;
S2:晶种制备:向晶种釜内加入纯水,通入氮气,开启搅拌与加热,转速220rpm,温度65℃,氨水浓度7.0g/L,通入碱液调节pH到11.6后同时通入碱液和金属盐溶液进行沉淀反应,进料过程中保持釜内环境恒定,通过微孔过滤装置滤出釜内清液使釜内液面高度恒定,持续进料,釜内物料不断浓缩,颗粒持续生长,直至粒径生长到3.0μm,加料完毕,前驱体晶种制备完成,将制备好的前驱体晶种打入到晶种槽内备用;
S3:前驱体生长(加晶种生长):向反应釜内加入三分之二体积的纯水,通入氮气,开启搅拌与加热,搅拌速度180rpm,温度65℃,通入氨水,使釜内氨水浓度达到6.0g/L,之后通入碱液调节釜内pH值为11.5,再向釜内注入三分之一体积的晶种,之后同时通入碱液和金属盐溶液,金属离子在晶种上发生沉淀反应使晶种颗粒长大,持续进料,进料过程中保持釜内pH值恒定,氨水浓度、搅拌速度和釜内温度恒定,物料满釜后通过溢流口流出,此时溢流的物料做不合格品报废处理,釜内颗粒持续生长;
S4:粒度调节及物料收集:当反应釜内颗粒粒径生长至D50为10.5μm时,开始通入晶种,通入晶种后反应釜内物料粒度下降,直到颗粒粒径D10降至4.0时停止通入,由于持续通入碱液和金属盐溶液,晶种和此前的颗粒继续生长,溢流出的物料收集至陈化槽,当釜内颗粒粒径D50又生长至10.5μm时,再次通入晶种降低粒度,不断重复上述操作,通过间歇通入晶种的方式使反应釜内颗粒粒度保持动态平衡,粒度始终保持在目标范围之间,本实施例的粒度D50可维持在10.0μm左右,持续收集溢流出的物料,收集到的物料经过洗涤、烘干、筛分后得到最终高镍三元前驱体产品Ni 0.82Co 0.12Mn 0.06(OH) 2
实施例2
本实施例制备了一种高镍三元前驱体,具体过程为:
S1:将硫酸镍、硫酸钴和硫酸锰按照金属摩尔比0.90:0.07:0.03配制成1.8mol/L的金属盐溶液备用;
S2:晶种制备:向晶种釜内加入纯水,通入氮气,开启搅拌与加热,转速240rpm,温度70℃,氨水浓度5.0g/L,通入碱液调节pH到12.0后同时通入碱液和金属盐溶液进行沉淀反应,进料过程中保持釜内环境恒定,通过微孔过滤装置滤出釜内清液使釜内液 面高度恒定,持续进料,釜内物料不断浓缩,颗粒持续生长,直至粒径生长到4.0μm,加料完毕,前驱体晶种制备完成,将制备好的前驱体晶种打入到晶种槽内备用;
S3:前驱体生长(直接生长):向反应釜内加入三分之二体积的纯水,通入氮气,开启搅拌与加热,搅拌速度220rpm,温度70℃,通入氨水,使釜内氨水浓度达到5.0g/L,之后通入碱液调节釜内pH值为12.2,之后同时通入碱液和金属盐溶液进行沉淀反应,持续进料,进料过程中保持釜内pH值恒定,氨水浓度、搅拌速度和釜内温度恒定,物料满釜后通过溢流口流出,此时溢流的物料做不合格品报废处理,釜内颗粒持续生长;
S4:粒度调节及物料收集:当反应釜内颗粒粒径生长至D50为10.0μm时,开始通入晶种,通入晶种后反应釜内物料粒度下降,直到颗粒粒径D10降至4.0时停止通入,由于持续通入碱液和金属盐溶液,晶种和此前的颗粒继续生长,溢流出的物料收集至陈化槽,当釜内颗粒粒径D50又生长至10.0μm时,再次通入晶种降低粒度,不断重复上述操作,通过间歇通入晶种的方式使反应釜内颗粒粒度保持动态平衡,粒度始终保持在目标范围之间,本实施例的粒度D50可维持在9.8μm左右,持续收集溢流出的物料,收集到的物料经过洗涤、烘干、筛分后得到最终高镍三元前驱体产品Ni 0.90Co 0.07Mn 0.03(OH) 2
对比例1
本对比例制备了一种高镍三元前驱体,与实施例2的区别在于不加入晶种调节粒度,具体过程为:
S1:将硫酸镍、硫酸钴和硫酸锰按照金属摩尔比0.90:0.07:0.03配制成1.8mol/L的金属盐溶液备用;
S2:向反应釜内加入三分之二体积的纯水,通入氮气,开启搅拌与加热,搅拌速度220rpm,温度70℃,通入氨水,使釜内氨水浓度达到5.0g/L,之后通入碱液调节釜内pH值为12.2,之后同时通入碱液和金属盐溶液进行沉淀反应,持续进料,进料过程中保持釜内pH值恒定,氨水浓度、搅拌速度和釜内温度恒定,物料满釜后通过溢流口流出,此时溢流的物料做不合格品报废处理,釜内颗粒持续生长;
S3:当反应釜内颗粒粒径生长至D50为10.0μm时,通过提高pH值或提高搅拌转速的方式使反应釜内物料产生小颗粒以降低粒度,控制D50维持在10.0μm左右,反应 釜内的物料溢流至陈化槽,再经过洗涤、烘干、筛分后得到最终高镍三元前驱体产品Ni 0.90Co 0.07Mn 0.03(OH) 2
对比例2
本对比例为广东邦普循环科技公司生产的商品化811前驱体。
试验例
本试验例检测了实施例1-2和对比例1-2的前驱体的粒度、振实密度(TD)及压实密度(CD),其结果如下表1所示。
表1
样品 D10(μm) D50(μm) D90(μm) TD(g/cm 3) CD(g/cm 3)
实施例1 4.35 10.05 18.57 2.12 3.46
实施例2 4.23 9.86 19.02 2.15 3.49
对比例1 6.33 10.10 16.52 1.98 3.12
对比例2 5.85 10.28 16.02 2.07 3.18
根据表1数据可以看出,实施例1-2和对比例1-2的平均粒度D50均在10μm左右,但实施例1和实施例2的D10都小于对比例1-2,而D90都大于对比例1-2,实施例的粒度分布更加宽泛。实施例的振实密度(TD)和压实密度(CD)都明显大于对比例,说明本发明实施例的前驱体粒度分布及颗粒强度对提高颗粒的振实密度、压实密度有明显的改善作用。
图1为本发明的工艺流程图,先在晶种釜内制备出前驱体晶种,打入到晶种槽内备用,前驱体晶种主要用于调节反应釜内的前驱体粒度,前驱体在反应釜内生长并通过晶种调节粒度,达到目标粒径后开始收集溢流出的物料至陈化槽,再经过过滤、洗涤、烘干、过筛等处理得到最终前驱体产品。
图2为实施例1、2及对比例前驱体的压实密度曲线图,为了验证材料的抗破解性能,将前驱体在压实密度仪上进行压力破解实验,最大屈服强度设置为380MPa,由图2可以看出在相同压强下,实施例1、2所得前驱体对比常规前驱体样品有更高的压实密度, 说明实施例1、2前驱体颗粒堆积密度更高,耐压性能更好。实施例1、2的压实转变点在18.04MPa、16.08MPa,均远高于对比例压实转变点13.20MPa,说明实施例1、2的抗压力破解能力远高于对比例前驱体。
图3为实施例1前驱体的SEM图,从图中可以看出前驱体颗粒为规则的球型,颗粒表面晶片分布均匀细密。
图4为实施例1前驱体的剖面SEM图,从切片剖面图可以看出颗粒内部是由细小的一次晶粒组成,晶界较多且分布均匀,颗粒内还有适当的孔隙。这种多晶界且有适当孔隙的内部结构再加上较宽分布的颗粒粒度分布是其具有较好抗破解性能的主要原因。
上面结合附图对本发明实施例作了详细说明,但是本发明不限于上述实施例,在所属技术领域普通技术人员所具备的知识范围内,还可以在不脱离本发明宗旨的前提下作出各种变化。此外,在不冲突的情况下,本发明的实施例及实施例中的特征可以相互组合。

Claims (10)

  1. 一种高镍三元前驱体的制备方法,其特征在于,包括以下步骤:
    S1:将镍盐、钴盐和锰盐配制成金属盐溶液;
    S2:在惰性气氛下,加热并通入氨水,再通入碱液调节pH,然后同时通入碱液和所述金属盐溶液进行沉淀反应,得到D50为7.0~15.0μm的颗粒;
    S3:通入晶种调节所述颗粒的D10降至2.0~7.0μm时,停止通入晶种,持续通入碱液和金属盐溶液,收集溢流出的物料,当颗粒粒径又生长至D50在7.0~15.0μm,重复上述加晶种的操作,持续收集溢流物料;
    S4:将收集的物料经过洗涤、烘干、筛分得到所述高镍三元前驱体。
  2. 根据权利要求1所述的制备方法,其特征在于,还包括所述晶种的制备过程:向晶种反应器内加水,通入惰性气体,开启搅拌与加热,通入氨水,再通入碱液调节pH,然后同时通入碱液和所述金属盐溶液进行沉淀反应,持续进料,所述晶种反应器滤出清液以维持液面高度恒定,物料不断浓缩,颗粒持续生长,直至粒径生长到2.0~7.0μm时停止进料,制得所述晶种。
  3. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,在调节pH后,先加入晶种,再同时通入碱液和金属盐溶液进行沉淀反应,所述晶种的粒径为2.0~7.0μm。
  4. 根据权利要求1所述的制备方法,其特征在于,步骤S4中,所述高镍三元前驱体的结构通式为Ni xCo yMn 1-x-y(OH) 2,其中,0.6<x<1,0<y<0.4,x+y<1。
  5. 根据权利要求1所述的制备方法,其特征在于,步骤S4中,所述高镍三元前驱体的粒径D10为2.0~7.0μm,D50为7.0~15.0μm,D90为12.0~20.0μm。
  6. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述沉淀反应的全过程持续搅拌,所述搅拌的速度为150~250rpm。
  7. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述加热的温度为50~80℃。
  8. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述氨水的浓度为 0~10g/L。
  9. 根据权利要求1所述的制备方法,其特征在于,步骤S2中,所述pH调节至11.0~13.0。
  10. 权利要求1-9任一项所述的制备方法在制备锂离子电池中的应用。
PCT/CN2021/142502 2021-04-01 2021-12-29 高镍三元前驱体的制备方法及其应用 WO2022206069A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
HU2200278A HUP2200278A2 (hu) 2021-04-01 2021-12-29 Nikkelben gazdag ternáris prekurzor elõállítási eljárása és annak felhasználása
MA61687A MA61687A1 (fr) 2021-04-01 2021-12-29 Procédé de préparation d'un précurseur ternaire à haute teneur en nickel et utilisation associée
GB2310096.9A GB2618691A (en) 2021-04-01 2021-12-29 Preparation method for high-nickel ternary precursor and use thereof
DE112021007432.6T DE112021007432T5 (de) 2021-04-01 2021-12-29 Herstellungsverfahren eines Ni-reichen ternären Präkursors und dessen Verwendung
US18/374,003 US20240025763A1 (en) 2021-04-01 2023-09-28 Preparation method of ni-rich ternary precursor and use thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110354586.1 2021-04-01
CN202110354586.1A CN113120974B (zh) 2021-04-01 2021-04-01 高镍三元前驱体的制备方法及其应用

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/374,003 Continuation US20240025763A1 (en) 2021-04-01 2023-09-28 Preparation method of ni-rich ternary precursor and use thereof

Publications (1)

Publication Number Publication Date
WO2022206069A1 true WO2022206069A1 (zh) 2022-10-06

Family

ID=76774538

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/142502 WO2022206069A1 (zh) 2021-04-01 2021-12-29 高镍三元前驱体的制备方法及其应用

Country Status (7)

Country Link
US (1) US20240025763A1 (zh)
CN (1) CN113120974B (zh)
DE (1) DE112021007432T5 (zh)
GB (1) GB2618691A (zh)
HU (1) HUP2200278A2 (zh)
MA (1) MA61687A1 (zh)
WO (1) WO2022206069A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115385399A (zh) * 2022-10-11 2022-11-25 金驰能源材料有限公司 镍钴锰三元前驱体及其间歇式制备工艺

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113120974B (zh) * 2021-04-01 2022-12-13 广东邦普循环科技有限公司 高镍三元前驱体的制备方法及其应用
CN114506880A (zh) * 2022-01-27 2022-05-17 南通金通储能动力新材料有限公司 一种制备大颗粒镍钴锰三元前驱体的全连续合成工艺
CN115448386B (zh) * 2022-11-14 2023-02-28 宜宾锂宝新材料有限公司 一种中空结构前驱体、正极材料及其制备方法
CN115893527A (zh) * 2022-12-26 2023-04-04 荆门市格林美新材料有限公司 一种大颗粒镍钴锰三元前驱体合成方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108807968A (zh) * 2018-08-09 2018-11-13 中国恩菲工程技术有限公司 镍钴锰三元前驱体材料及其合成方法
CN108807976A (zh) * 2018-08-09 2018-11-13 中国恩菲工程技术有限公司 窄粒径分布的镍钴锰三元材料前驱体材料及其制备方法
CN109311698A (zh) * 2017-11-28 2019-02-05 厦门厦钨新能源材料有限公司 三元前驱体材料及其制备方法
CN109422297A (zh) * 2017-08-28 2019-03-05 湖南杉杉能源科技股份有限公司 一种镍钴锰前驱体结晶过程中调控成核的方法
CN112086616A (zh) * 2020-10-19 2020-12-15 四川工程职业技术学院 一种大(010)晶面镍钴锰/铝层状正极材料的制备方法
CN113120974A (zh) * 2021-04-01 2021-07-16 广东邦普循环科技有限公司 高镍三元前驱体的制备方法及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109422297A (zh) * 2017-08-28 2019-03-05 湖南杉杉能源科技股份有限公司 一种镍钴锰前驱体结晶过程中调控成核的方法
CN109311698A (zh) * 2017-11-28 2019-02-05 厦门厦钨新能源材料有限公司 三元前驱体材料及其制备方法
CN108807968A (zh) * 2018-08-09 2018-11-13 中国恩菲工程技术有限公司 镍钴锰三元前驱体材料及其合成方法
CN108807976A (zh) * 2018-08-09 2018-11-13 中国恩菲工程技术有限公司 窄粒径分布的镍钴锰三元材料前驱体材料及其制备方法
CN112086616A (zh) * 2020-10-19 2020-12-15 四川工程职业技术学院 一种大(010)晶面镍钴锰/铝层状正极材料的制备方法
CN113120974A (zh) * 2021-04-01 2021-07-16 广东邦普循环科技有限公司 高镍三元前驱体的制备方法及其应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115385399A (zh) * 2022-10-11 2022-11-25 金驰能源材料有限公司 镍钴锰三元前驱体及其间歇式制备工艺
CN115385399B (zh) * 2022-10-11 2023-07-04 金驰能源材料有限公司 镍钴锰三元前驱体及其间歇式制备工艺

Also Published As

Publication number Publication date
CN113120974B (zh) 2022-12-13
GB202310096D0 (en) 2023-08-16
CN113120974A (zh) 2021-07-16
US20240025763A1 (en) 2024-01-25
MA61687A1 (fr) 2023-12-29
DE112021007432T5 (de) 2024-01-11
GB2618691A (en) 2023-11-15
HUP2200278A2 (hu) 2023-01-28

Similar Documents

Publication Publication Date Title
WO2022206069A1 (zh) 高镍三元前驱体的制备方法及其应用
US11345609B2 (en) High voltage lithium nickel cobalt manganese oxide precursor, method for making the same, and high voltage lithium nickel cobalt manganese oxide cathode material
CN110048118B (zh) 一种高镍型镍钴锰酸锂单晶前驱体及其制备方法和高镍型镍钴锰酸锂单晶正极材料
CN107265520B (zh) 一种球形镍钴锰前驱体材料的制备方法及产品
CN112531158B (zh) 一种高镍三元单晶材料及其制备方法
CN109422297B (zh) 一种镍钴锰前驱体结晶过程中调控成核的方法
WO2023193826A1 (zh) 正极材料及其制备方法与应用
WO2023024584A1 (zh) 掺镍碳酸钴及其制备方法和应用
WO2023020043A1 (zh) 放射状镍基前驱体及其制备方法
CN112850807B (zh) 一种三元前驱体及制备方法、一种三元材料及锂离子电池
CN108987682B (zh) 可防止颗粒破裂的富镍基前驱体材料的制备方法
CN110707311B (zh) 一种高镍三元材料与纳米氧化锌复合正极材料及制备方法
CN113426398B (zh) 宽分布无微粉三元前驱体的生产装置及方法
CN111540898A (zh) 一种一次颗粒均一性好的前驱体的制备方法和应用
WO2020194006A1 (en) High-power cathode material for lithium-ion batteries
CN113793925A (zh) 宽分布无微粉三元前驱体及其制备方法
CN115385399A (zh) 镍钴锰三元前驱体及其间歇式制备工艺
CN115594230A (zh) 一种Yolk-shell结构三元正极材料前驱体及其制备方法
CN115504516B (zh) 一种铝镍共掺碳酸钴前驱体及其制备方法与应用
CN116282225A (zh) 表面一次颗粒非径向生长的前驱体及其制备方法、锂离子电池及其正极材料和涉电设备
CN116022863A (zh) 一种前驱体材料及其制备方法和应用
JP2019501503A (ja) アルカリ充電式電池のためのニッケル水酸化物複合材料
CN109250765B (zh) 一种镍钴锰氢氧化物的生产方法
CN114014379B (zh) 三元前驱体材料及连续制备方法、三元材料、二次电池
CN114927659B (zh) 多元正极材料及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202310096

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20211229

WWE Wipo information: entry into national phase

Ref document number: 112021007432

Country of ref document: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934705

Country of ref document: EP

Kind code of ref document: A1