WO2022205718A1 - 一种移相全桥变换器及其控制方法、装置及介质 - Google Patents

一种移相全桥变换器及其控制方法、装置及介质 Download PDF

Info

Publication number
WO2022205718A1
WO2022205718A1 PCT/CN2021/109955 CN2021109955W WO2022205718A1 WO 2022205718 A1 WO2022205718 A1 WO 2022205718A1 CN 2021109955 W CN2021109955 W CN 2021109955W WO 2022205718 A1 WO2022205718 A1 WO 2022205718A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
current
bridge converter
shifted full
input current
Prior art date
Application number
PCT/CN2021/109955
Other languages
English (en)
French (fr)
Inventor
莫云杰
杨永春
祁飚杰
罗宇浩
Original Assignee
昱能科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昱能科技股份有限公司 filed Critical 昱能科技股份有限公司
Priority to EP21934362.1A priority Critical patent/EP4283855A1/en
Priority to BR112023019754A priority patent/BR112023019754A2/pt
Priority to US18/279,065 priority patent/US20240146204A1/en
Publication of WO2022205718A1 publication Critical patent/WO2022205718A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0043Converters switched with a phase shift, i.e. interleaved
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0064Magnetic structures combining different functions, e.g. storage, filtering or transformation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33515Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with digital control

Definitions

  • the present application relates to the field of electrical energy conversion, and in particular, to a phase-shifted full-bridge converter and a control method, device and medium thereof.
  • Photovoltaic power generation system is a system that converts solar energy into electrical energy.
  • the photovoltaic power generation system is mainly composed of photovoltaic modules and inverters.
  • the corresponding switch tube is switched to realize the maximum power point tracking of the photovoltaic power generation system.
  • Rapid illumination changes will cause rapid changes in the output power of photovoltaic modules.
  • the switching period of the DCDC converter corresponding to the switching tube is fixed, and the effective turn-on time and phase shift time are also fixed. Therefore, it usually takes several milliseconds or even seconds to complete a cycle to achieve stable power, which may cause unstable inverter operation or cause the collapse of maximum power tracking.
  • the purpose of the present application is to provide a phase-shifted full-bridge converter and a control method thereof.
  • the switches in the phase-shifted full-bridge converter can be controlled in different modes according to different input currents, and the switch in the phase-shifted full-bridge converter can be controlled in a timely manner. Responding to rapid changes in input current to ensure maximum power tracking efficiency and stability, further meeting system requirements.
  • the present application provides a control method of a phase-shifted full-bridge converter, including:
  • phase shift angle of the phase-shifted full-bridge converter and the switching frequency of the switches in the phase-shifted full-bridge converter are obtained according to the maximum power point tracking algorithm to control the corresponding switches to perform corresponding actions.
  • selecting the working mode corresponding to the current input current according to the preset corresponding relationship between the input current and the working mode is specifically:
  • the switch tube is controlled to act in the fourth working mode.
  • the first current threshold is calculated according to a preset minimum switching frequency
  • the second current threshold is calculated according to the preset maximum switching frequency
  • the third current threshold is calculated according to the preset maximum switching frequency and maximum phase shift angle.
  • the switching frequency is the lowest switching frequency, and the phase shift angle is negatively correlated with the current input current;
  • the phase shift angle is a fixed value, and the switching frequency is negatively correlated with the current input current
  • the switching frequency is the highest switching frequency, and the phase shift angle is negatively correlated with the current input current
  • the phase shift angle is a fixed value
  • the switch tube has a working period and a non-working period
  • the working period and the non-working period are calculated according to the current input current.
  • the working cycle is a complete switching cycle of the switching transistor.
  • it also includes:
  • the two switching tubes in the leading bridge arm of the phase-shifted full-bridge converter are controlled to be turned on alternately, and the two switching tubes in the lagging bridge arm are turned on alternately.
  • the present application also provides a control device for a phase-shifted full-bridge converter, including:
  • an acquisition module for acquiring the current input current of the phase-shifted full-bridge converter
  • the selection module is used to select the working mode corresponding to the current input current according to the preset corresponding relationship between the input current and the working mode;
  • the control module is used to obtain the phase-shift angle of the phase-shift full-bridge converter and the switching frequency of the switch tubes in the phase-shift full-bridge converter according to the maximum power point tracking algorithm in the current working mode to control the corresponding switch tubes Take corresponding actions.
  • the present application also provides a control device for a phase-shifted full-bridge converter, including a memory for storing a computer program;
  • the processor is configured to implement the steps of the control method for the phase-shifted full-bridge converter as described when executing the computer program.
  • the present application also provides a computer-readable storage medium, where a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the phase-shifted full-bridge transformation as described above is implemented. The steps of the control method of the device.
  • the present application also provides a phase-shifted full-bridge converter, including the control device of the phase-shifted full-bridge converter, and further comprising: a primary side full-bridge circuit, a transformer, a first inductor, a first a second inductor, a third inductor, a first diode, a second diode, a first capacitor and a second capacitor;
  • the first output terminal of the primary side full bridge circuit is connected to the first terminal of the first inductor, the second terminal of the first inductor is connected to the primary side first terminal of the transformer, and the primary side full bridge circuit is connected to the first terminal of the transformer.
  • the second output end of the bridge circuit is connected to the second end of the primary side of the transformer, the second inductor is connected in parallel with both ends of the primary side of the transformer; the first end of the secondary side of the transformer is connected to the third
  • the first end of the inductor is connected to the first end of the third inductor, the second end of the third inductor is connected to the first end of the first capacitor and the second capacitor, and the second end of the first capacitor is connected to the first and second capacitors.
  • the cathode of the diode is connected to the cathode
  • the anode of the first diode is connected to the cathode of the second diode
  • the second end of the secondary side of the transformer is connected to the cathode of the second diode
  • the The anode of the second diode is connected to the second end of the second capacitor.
  • the operating mode corresponding to the current input current is selected according to the preset corresponding relationship between the input current and the operating mode , and in the current working mode, the phase-shift angle of the phase-shifted full-bridge converter and the switching frequency of the switches in the phase-shifted full-bridge converter are obtained according to the maximum power point tracking algorithm to control the corresponding switches to perform corresponding actions.
  • the switches in the phase-shift full-bridge converter can be controlled in different modes according to different input currents, and respond to the rapid changes of the input current in time, thereby ensuring the maximum power tracking efficiency and Stable, to further meet the needs of the system.
  • FIG. 1 is a schematic circuit diagram of a phase-shifted full-bridge converter provided by an embodiment of the present application
  • FIG. 2 is a flowchart of a control method of a phase-shifted full-bridge converter provided by an embodiment of the present application
  • FIG. 3 is a waveform diagram of a phase-shifted full-bridge converter operating in a second operating mode provided by an embodiment of the present application;
  • FIG. 4 is a waveform diagram of a phase-shifted full-bridge converter operating in a first working mode provided by an embodiment of the present application
  • FIG. 5 is a waveform diagram of a phase-shifted full-bridge converter operating in a third operating mode provided by an embodiment of the present application
  • FIG. 6 is a waveform diagram of a phase-shifted full-bridge converter operating in a fourth operating mode provided by an embodiment of the present application.
  • FIG. 7 is a waveform diagram of another phase-shifted full-bridge converter operating in a fourth operating mode provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a control device for a phase-shifted full-bridge converter provided by an embodiment of the application;
  • FIG. 9 is a structural diagram of a control device for a phase-shifted full-bridge converter according to another embodiment of the present application.
  • the core of the present application is to provide a phase-shifted full-bridge converter and a control method thereof.
  • the switch tubes in the phase-shifted full-bridge converter can be controlled in different modes according to different input currents, and the switch can be controlled in time in a timely manner. Responding to rapid changes in input current to ensure maximum power tracking efficiency and stability, further meeting system requirements.
  • the input of the phase-shifted full-bridge converter is a DC voltage source Vin, which may be a photovoltaic module, a battery or a similar structure
  • the output of the phase-shifted full-bridge converter is the DC bus voltage Vout.
  • FIG. 1 is a circuit schematic diagram of a phase-shifted full-bridge converter provided by an embodiment of the application.
  • the phase-shifted full-bridge converter includes a primary side full-bridge circuit, a transformer, a first inductor Lr, a second an inductor Lm, a third inductor Lrs, a first diode D1, a second diode D2, a first capacitor C1 and a second capacitor C2;
  • the first output end of the primary full bridge circuit is connected to the first end of the first inductor Lr, the second end of the first inductor Lr is connected to the first end of the primary side of the transformer, and the second output end of the primary full bridge circuit is connected to the first end of the primary side of the transformer.
  • the second end of the primary side of the transformer is connected, and the second inductance Lm is connected in parallel with both ends of the primary side of the transformer; the first end of the secondary side of the transformer is connected to the first end of the third inductor Lrs, and the second end of the third inductor Lrs is respectively It is connected to the first ends of the first capacitor C1 and the second capacitor C2, the second end of the first capacitor C1 is connected to the cathode of the first diode D1, and the anode of the first diode D1 is connected to the second diode D2
  • the cathode of the transformer is connected to the second terminal of the secondary side of the transformer and the cathode of the second diode D2 is connected, and the anode of the second diode D2 is connected to the second terminal of the second capacitor C2.
  • the primary side full-bridge circuit of the phase-shifted full-bridge converter is composed of a first switch tube Q1, a second switch tube Q2, a third switch tube Q3 and a fourth switch tube Q4.
  • the switch tubes are usually with body diodes and body capacitors.
  • MOS tube the output end of the primary side full bridge circuit is connected to the primary side of the transformer, the first inductance Lr of the primary side is the leakage inductance Lr, the second inductance Lm is the excitation inductance Lm, and the third inductance Lrs of the secondary side of the transformer is the resonant inductance Lrs , the first capacitor C1 and the second capacitor C2 are resonant capacitors, and the first diode D1 and the second diode D2 are rectifier diodes.
  • the primary side is a phase-shifted full-bridge control with LC resonance
  • the secondary side is a rectifier circuit with LC resonance.
  • the phase shift angle control is added to the primary side full bridge, which effectively utilizes the bulk capacitance and leakage inductance Lr of the first switch Q1, the second switch Q2, the third switch Q3 and the fourth switch Q4 to achieve resonance, so that the primary side switches
  • the tube realizes zero voltage switching (Zero Voltage Switch, ZVS).
  • ZCS zero current switching
  • Iin I 1 (Vin, Vout, Lr, Lm, n, C, T, Ton);
  • the inductance of the leakage inductance Lr, the inductance of the excitation inductance Lm, and the turns ratio n of the secondary and primary sides of the transformer are fixed values. Therefore, the above formula can be simplified as:
  • Ton ton(Vout/Vin,T);
  • the sum of the effective turn-on time Ton and the phase-shift time Tps is equal to half of the switching period T, and the phase-shift time Tps is the time difference between the turn-on and turn-off of the leading bridge arm and the lagging bridge arm; Tps/T is the phase-shift angle.
  • the input voltage Vin and the output voltage Vout are deterministic values, and the input current Vin may only be a function of the switching period T or the phase shift time Tps.
  • FIG. 2 is a flowchart of a control method for a phase-shifted full-bridge converter provided by an embodiment of the present application. As shown in Figure 2, the method includes:
  • the input voltage Vin and the input current Iin at the input end of the phase-shifted full-bridge converter and the output voltage Vout at the output end can be obtained through the ADC sampling circuit. It can be understood that this application takes the input current Iin of the phase-shifted full-bridge converter as an example for description, and in other embodiments, the output current Iout of the phase-shifted full-bridge converter can also be used as an example for description. This is not limited.
  • S11 Select the working mode corresponding to the current input current according to the preset corresponding relationship between the input current and the working mode.
  • the two switches in the leading bridge arm of the phase-shifted full-bridge converter are controlled to be turned on alternately, and the two switches in the lagging bridge arm are turned on alternately.
  • a working cycle sequence of the circuit is as follows: the first switch Q1 and the fourth switch Q4 are turned on synchronously, when the conduction time is Ton, the first switch Q1 is turned off, and after the preset dead time Tdt, the first switch is realized.
  • the ZVS of the second switch Q2 is turned on.
  • the fourth switch Q4 realizes the ZCS turn off.
  • the third switch Q3 realizes the ZVS conduction.
  • the second switch Q2 After the common conduction time Ton of the three switches Q3, the second switch Q2 is turned off, after the dead time Tdt, the first switch Q1 realizes ZVS conduction, and after the phase shift time Tps, the third switch Q3 realizes ZCS Turn off, and then wait for the dead time Tdt time, the fourth switch Q4 realizes ZVS conduction, and returns to the first switch Q1 and the fourth switch Q4 to be turned on synchronously again, thus completing a switching sequence working cycle.
  • the phase-shift angle of the phase-shifted full-bridge converter and the switching frequency of the switch tubes in the phase-shifted full-bridge converter are obtained according to the maximum power point tracking algorithm, and the switching period in the above process is adjusted. T, the effective turn-on time Ton and the phase shift time Tps, so as to realize the control of the switch tube.
  • the operating mode corresponding to the current input current is selected according to the preset corresponding relationship between the input current and the operating mode , and in the current working mode, the phase-shift angle of the phase-shifted full-bridge converter and the switching frequency of the switches in the phase-shifted full-bridge converter are obtained according to the maximum power point tracking algorithm to control the corresponding switches to perform corresponding actions.
  • the switches in the phase-shift full-bridge converter can be controlled in different modes according to different input currents, and respond to the rapid changes of the input current in time, thereby ensuring the maximum power tracking efficiency and Stable, to further meet the needs of the system.
  • S11 is specifically:
  • the switch tube is controlled to act in the fourth working mode.
  • the first current threshold is calculated according to the preset minimum switching frequency
  • the second current threshold is calculated according to the preset maximum switching frequency
  • the third current threshold is calculated according to the preset maximum switching frequency and maximum phase shift angle.
  • the initial mode when power tracking is performed, it works in the initial mode after the start.
  • the initial mode can be set arbitrarily.
  • the third working mode is set as the initial mode, and the minimum switching period Tmin (that is, the maximum switching frequency) and the maximum switching frequency are set. phase time Tps_max, and then start the maximum power point tracking process in this mode, and can use a variety of conventional maximum power tracking methods, which will not be repeated in this application.
  • the working voltage Vin and the input current Iin are determined, and then the next cycle of working mode selection is entered according to the input current Iin. After the mode selection is completed, the maximum power point tracking in this mode is performed.
  • the initial mode is generally set to the second working mode.
  • the second working mode is a fixed phase-shift angle variable frequency mode.
  • the phase-shift angle is a fixed value, and the switching frequency is negatively correlated with the current input current.
  • the lagging bridge arm is turned off by ZCS, and the corresponding phase shift angle Tps/T is a fixed value ⁇ .
  • the switching period T or switching frequency f is calculated to control the input current Iin of the phase-shifted full-bridge converter, which is also controlled accordingly. Input power Pin.
  • FIG. 3 is a waveform diagram of a phase-shifted full-bridge converter operating in a second working mode according to an embodiment of the present application. As shown in Figure 3, it includes the drive signals PWM_Q1 to Q4 (10 and 11) of the primary side full-bridge switch tubes, the transformer primary side current 12, the transformer secondary side capacitor voltage 13, the transformer primary side leakage inductance current 14 and the transformer primary side excitation Current 15. 1 cycle is divided into 4 processes:
  • t0-t1 The first switch Q1 and the fourth switch Q4 are turned on, the transformer current increases from 0 to provide energy for the secondary side, the first diode D1 on the secondary side is turned off, the second diode D2 is turned on, and the first diode D1 is turned on. A capacitor C1 is discharged and a second capacitor C2 is charged.
  • t1-t2 At t1, the first switch Q1 is turned off, and the primary leakage inductance Lr forms a freewheeling loop through the primary side of the transformer and the body diodes of the fourth switch Q4 and the second switch Q2, and continues to supply power to the secondary side of the transformer. At this time, the second switch transistor Q2 can be turned on at zero voltage.
  • t2-t4 At t2, the primary current of the transformer freewheels to 0. At this time, the series current of the leakage inductance Lr and the excitation inductance Lm is reduced to a minimum, which can be ignored.
  • the fourth switch Q4 closes to zero current and turns off, and the third switch Q3 Turn on and enter the second half of the switching cycle to repeat t0-t2.
  • the above control strategy can realize zero-current turn-off of the hysteresis bridge arm, reduce the turn-off loss of the switch tube, and help improve the transmission efficiency.
  • the quantitative relationship between the phase shift angle and the switching frequency is obtained through the design of zero-current turn-off of the hysteresis bridge arm, which solves the problem of coordinated control between the two.
  • the maximum current that can be obtained in the second operating mode is:
  • Iin_max2 Iin2(Tmax)
  • Tmax is the maximum switching period, that is, the reciprocal of the minimum switching frequency.
  • the minimum switching frequency is the resonant frequency
  • Iin_max2 is used as the first current threshold
  • the minimum current that can be obtained in the second operating mode is:
  • Iin_min2 Iin2(Tmin)
  • Tmin is the minimum switching period, that is, the reciprocal of the maximum switching frequency
  • Iin_min2 is used as the second current threshold.
  • the minimum switching frequency (maximum switching period Tmax) of the inverter operation is close to the resonant frequency.
  • the first working mode is the lowest frequency changing phase-shift angle mode.
  • the switching frequency is the lowest switching frequency, and the phase-shift angle is negatively correlated with the current input current.
  • the input current Iin is increased gradually according to the obtained phase shift angle, so as to achieve the required working power.
  • FIG. 4 is a waveform diagram of a phase-shifted full-bridge converter operating in a first working mode according to an embodiment of the present application. As shown in Figure 4, it includes the drive signals PWM_Q1 to Q4 (10 and 11) of the primary side full-bridge switch tubes, the transformer primary side current 12, the transformer secondary side capacitor voltage 13, the transformer primary side leakage inductance current 14 and the transformer primary side excitation Current 15. 1 cycle is divided into 6 processes:
  • t0-t1 The first switch Q1 and the fourth switch Q4 are turned on, the transformer current increases from 0 to provide energy for the secondary side, the first diode D1 on the secondary side is turned off, the second diode D2 is turned on, and the first diode D1 is turned on. A capacitor C1 is discharged and a second capacitor C2 is charged.
  • t1-t2 At t1, the first switch Q1 is turned off, and the primary side leakage inductance Lr forms a freewheeling loop through the primary side of the transformer and the body diodes of the fourth switch Q4 and the second switch Q2, and continues to supply power to the secondary side. At this time, the second switch transistor Q2 can be turned on at zero voltage.
  • t2-t3 At t2, the primary current of the transformer has not flown to 0, so the fourth switch Q4 is turned off, and then the third switch Q3 is turned on.
  • the primary full-bridge circuit of the inverter completes the commutation, and the transformer current cannot sudden change, but affected by the input voltage, the current drops rapidly.
  • t3-t6 The transformer current drops to 0 at t3. Then enter the second half of the switching cycle to repeat t0-t3.
  • Iin_max_zcs Iin(Vin, Vout, Tps_zcs/T, Tmax);
  • the minimum phase shift angle can reach 0, and the effective turn-on time Ton reaches a maximum of T/2. At this time, the current is the maximum current that can be reached.
  • T is a fixed value Tmax, and the current Iin is only a function of the phase shift time Tps:
  • Iin Iin1(Tps), where 0 ⁇ Tps ⁇ Tps_zcs;
  • the phase shift angle can be as small as 0, which is the maximum current that the current can reach:
  • the inverter works in the second working mode and the switching frequency reaches the preset upper limit, if the obtained input current Iin is still larger than the requirement, the phase shift angle needs to be further increased to reduce the effective turn-on time Ton, the current can continue to be reduced, but the phase shift angle cannot be increased all the time, and it needs to be limited.
  • the third working mode is the highest frequency changing phase shift angle mode.
  • the switching frequency is the highest switching frequency, and the phase shifting angle is negatively correlated with the current input current.
  • This maximum switching frequency is preset, and the phase shift time Tps obtained from the formula increases to reduce the effective turn-on time Ton, thereby reducing the current to achieve the required operating current.
  • the size of the phase shift time Tps sets the limit maximum value Tps_max.
  • FIG. 5 is a waveform diagram of a phase-shifted full-bridge converter operating in a third working mode according to an embodiment of the present application. As shown in Figure 5, it includes the drive signals PWM_Q1-Q4 (10 and 11) of the primary side full-bridge switch tubes, the transformer primary side current 12, the transformer secondary side capacitor voltage 13, the transformer primary side leakage inductance current 14 and the transformer primary side excitation Current 15. 1 cycle is divided into 6 processes:
  • t0-t1 The first switch tube Q1 and the fourth switch tube Q4 are turned on, the transformer current increases from 0 to provide energy for the secondary side, the first diode D1 on the secondary side is turned off, and the second diode D2 is turned on. The first capacitor C1 is discharged and the second capacitor C2 is charged.
  • t1-t2 At t1, the first switch Q1 is turned off, and the leakage inductance Lr of the primary side of the transformer forms a freewheeling loop through the primary side of the transformer, the fourth switch Q4 and the body diode of the second switch Q2. At this time, the second switch Q2 can be turned on at zero voltage.
  • t2-t3 At t2, the primary current of the transformer freewheels to 0, and the transformer no longer transmits energy. At this time, the bulk capacitance of the switch tube of the lagging bridge arm, the leakage inductance Lr of the transformer and the excitation inductance Lm of the transformer resonate together, and the energy is very small and can be ignored. In this stage, the fourth switch transistor Q4 can be close to the zero-current off-stage.
  • t3-t6 The third switch tube Q3 is turned on at the moment of t3, and t0-t3 is repeated in the second half of the switching cycle.
  • Iin_min_zcs Iin3(Vin/Vout, Tps_zcs/T, Tmin);
  • the input voltage Vin and the output voltage Vout are fixed values
  • the switching period T is a fixed value Tmin
  • the current Iin is only a function of the phase shift time Tps:
  • Iin Iin3(Tps); the maximum phase shift angle Tps/Tmin can be set up to Tps_max/Tmin, and the effective turn-on time Ton reaches the minimum. At this time, the current Iin is the minimum possible current:
  • the fourth working mode is a fixed phase-shift angle and variable-frequency mode.
  • the phase-shift angle is a fixed value
  • the switch tube has a working cycle and a non-working cycle.
  • the working cycle and the non-working cycle are calculated according to the current input current.
  • the required current is lower than the minimum current Iin_min3 of the third working mode
  • use the skip cycle mode to reduce the current, turn on the conditional switch obtained by using the ZCS formula, perform Non switching cycles, and then stop Noff cycles.
  • the number of cycles is determined by the input current Iin:
  • Iin Iin1(Tmin) ⁇ Non/(Non+Noff).
  • FIG. 6 is a waveform diagram of a phase-shifted full-bridge converter operating in a fourth working mode according to an embodiment of the present application. As shown in Figure 6, it includes the drive signals PWM_Q1 to Q4 (10 and 11) of the primary side full-bridge switch tubes, the transformer primary side current 12, the transformer secondary side capacitor voltage 13, the transformer primary side leakage inductance current 14 and the transformer primary side excitation Current 15.
  • the number of cycles Noff of the stop interval can be obtained by calculating the required currents Iin and Iin_min2:
  • Noff (Iin_min2/Iin ⁇ 1) ⁇ Non.
  • FIG. 7 is a waveform diagram of another phase-shifted full-bridge converter operating in a fourth working mode provided by an embodiment of the present application.
  • the working cycle Non and the non-working cycle Noff may be an integer multiple of the effective turn-on time Ton, or may not be an integer multiple; the working cycle Non may be a complete switching cycle, as shown in a, or a half switching cycle. , positive half cycle or negative half cycle, as indicated by b/c/d.
  • the duty cycle Non is a half cycle
  • the front and back of the non-duty cycle Noff can be the same positive half cycle or negative half cycle, as shown by b/c, or different positive and negative half cycles, as shown by d.
  • the control method of the phase-shifted full-bridge converter provided by the embodiment of the present application, by calculating the current thresholds corresponding to multiple different modes, and comparing the required current with the thresholds, the selection of the full-bridge working mode is realized, and the high-speed mode switching at the switching frequency is achieved. , to ensure the stable operation of the photovoltaic inverter, and the fast tracking of the maximum power of the photovoltaic modules to ensure the maximum power generation of the photovoltaic system.
  • control method of the phase-shifted full-bridge converter is described in detail, and the present application also provides an embodiment corresponding to the control device of the phase-shifted full-bridge converter. It should be noted that this application describes the embodiments of the device part from two perspectives, one is based on the perspective of functional modules, and the other is based on the perspective of hardware.
  • FIG. 8 is a schematic structural diagram of a control device for a phase-shifted full-bridge converter according to an embodiment of the present application. As shown in Figure 8, based on the perspective of functional modules, the device includes:
  • the selection module 21 is used for selecting the working mode corresponding to the current input current according to the preset corresponding relationship between the input current and the working mode;
  • the control module 22 is used to obtain the phase-shift angle of the phase-shift full-bridge converter and the switching frequency of the switch tubes in the phase-shift full-bridge converter according to the maximum power point tracking algorithm in the current working mode to control the corresponding switch tubes to perform corresponding actions .
  • the control device for the phase-shifted full-bridge converter provided by the present application, after acquiring the current input current of the phase-shifted full-bridge converter, selects the operating mode corresponding to the current input current according to the preset corresponding relationship between the input current and the operating mode , and in the current working mode, the phase-shift angle of the phase-shifted full-bridge converter and the switching frequency of the switches in the phase-shifted full-bridge converter are obtained according to the maximum power point tracking algorithm to control the corresponding switches to perform corresponding actions.
  • the switches in the phase-shift full-bridge converter can be controlled in different modes according to different input currents, and respond to the rapid changes of the input current in time, thereby ensuring the maximum power tracking efficiency and Stable, to further meet the needs of the system.
  • FIG. 9 is a structural diagram of a control device for a phase-shifted full-bridge converter provided by another embodiment of the present application. As shown in FIG. 9 , based on the hardware structure, the device includes: a memory 30 for storing a computer program;
  • the processor 31 is configured to implement the steps of the control method of the phase-shifted full-bridge converter in the foregoing embodiment when executing the computer program.
  • Memory 30 may include one or more computer-readable storage media, which may be non-transitory.
  • the memory 30 may also include high-speed random access memory, as well as non-volatile memory, such as one or more magnetic disk storage devices, flash storage devices, and may be stored in a transient or permanent manner.
  • the memory 30 may in some embodiments be an internal storage unit of the communication device.
  • the processor 31 may be a central processing unit (Central Processing Unit, CPU), a controller, a microcontroller, a microprocessor or other data processing chips in some embodiments, for running the program code or processing data stored in the memory 30 , such as executing a program corresponding to the communication method applied to the slave device.
  • CPU Central Processing Unit
  • controller for controlling the central processing unit
  • microcontroller for controlling the central processing unit
  • microprocessor for running the program code or processing data stored in the memory 30 , such as executing a program corresponding to the communication method applied to the slave device.
  • the bus 32 may also be a peripheral component interconnect (PCI) bus or an extended industry standard architecture (EISA) bus or the like.
  • PCI peripheral component interconnect
  • EISA extended industry standard architecture
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of presentation, only one thick line is used in FIG. 9, but it does not mean that there is only one bus or one type of bus.
  • FIG. 9 does not constitute a limitation on the communication device, and may include more or less components than those shown in the drawings.
  • the control device for a phase-shifted full-bridge converter includes a memory and a processor.
  • the processor executes a program stored in the memory, the processor can implement the following method: after acquiring the current input current of the phase-shifted full-bridge converter , select the working mode corresponding to the current input current according to the preset correspondence between the input current and the working mode, and in the current working mode, obtain the phase-shift angle and phase-shift angle of the phase-shifted full-bridge converter according to the maximum power point tracking algorithm
  • the switching frequency of the switches in the full-bridge converter is used to control the corresponding switches to perform corresponding actions.
  • the switches in the phase-shift full-bridge converter can be controlled in different modes according to different input currents, and respond to the rapid changes of the input current in time, thereby ensuring the maximum power tracking efficiency and Stable, to further meet the needs of the system.
  • the present application also provides an embodiment corresponding to a computer-readable storage medium.
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by the processor, the steps described in the foregoing method embodiments are implemented.
  • the methods in the above embodiments are implemented in the form of software functional units and sold or used as independent products, they may be stored in a computer-readable storage medium.
  • the technical solutions of the present application can be embodied in the form of software products in essence, or the parts that contribute to the prior art, or all or part of the technical solutions, and the computer software products are stored in a storage medium , execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program codes .
  • the present application also provides a phase-shifted full-bridge converter, as shown in FIG. 1 , including the control device of the phase-shifted full-bridge converter in the above embodiment, and further comprising: a primary side full-bridge circuit, a transformer, a first an inductor Lr, a second inductor Lm, a third inductor Lrs, a first diode D1, a second diode D2, a first capacitor C1 and a second capacitor C2;
  • the first output end of the primary full bridge circuit is connected to the first end of the first inductor Lr, the second end of the first inductor Lr is connected to the first end of the primary side of the transformer, and the second output end of the primary full bridge circuit is connected to the first end of the primary side of the transformer.
  • the second end of the primary side of the transformer is connected, and the second inductance Lm is connected in parallel with both ends of the primary side of the transformer; the first end of the secondary side of the transformer is connected to the first end of the third inductor Lrs, and the second end of the third inductor Lrs is respectively It is connected to the first ends of the first capacitor C1 and the second capacitor C2, the second end of the first capacitor C1 is connected to the cathode of the first diode D1, and the anode of the first diode D1 is connected to the second diode D2
  • the cathode of the transformer is connected to the second terminal of the secondary side of the transformer and the cathode of the second diode D2 is connected, and the anode of the second diode D2 is connected to the second terminal of the second capacitor C2.
  • filter capacitor C0 and load ZL.
  • phase-shifted full-bridge converter and the control method thereof are described in detail in the above in conjunction with the phase-shifted full-bridge converter, this embodiment will not repeat them.
  • the operating mode corresponding to the current input current is selected according to the preset correspondence between the input current and the operating mode, and the In the current working mode, the phase-shift angle of the phase-shifted full-bridge converter and the switching frequency of the switches in the phase-shifted full-bridge converter are obtained according to the maximum power point tracking algorithm to control the corresponding switches to perform corresponding actions.
  • a phase-shifted full-bridge converter and its control method, device and medium provided by the present application have been described in detail above.
  • the various embodiments in the specification are described in a progressive manner, and each embodiment focuses on the differences from other embodiments, and the same and similar parts between the various embodiments can be referred to each other.
  • the description is relatively simple, and the relevant part can be referred to the description of the method. It should be pointed out that for those of ordinary skill in the art, without departing from the principles of the application, the application can also be improved and modified several times, and these improvements and modifications also fall within the protection scope of the claims in the application.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)
  • Inverter Devices (AREA)

Abstract

一种移相全桥变换器及其控制方法、装置及介质,其中,方法包括:获取到移相全桥变换器的当前输入电流后,根据预先设定的输入电流与工作模式的对应关系选择当前输入电流对应的工作模式,并在当前工作模式下,根据最大功率点跟踪算法获取移相全桥变换器的移相角和移相全桥变换器中开关管的开关频率以控制对应开关管进行相应动作。应用以上技术方案,在输入电流变化时,能够根据不同的输入电流对移相全桥变换器中的开关管实现不同模式下的控制,及时响应输入电流的快速变化,从而保证最大功率跟踪效率和稳定,进一步满足系统的需求。

Description

一种移相全桥变换器及其控制方法、装置及介质
本申请要求于2021年3月29日提交中国专利局、申请号为202110331837.4、发明名称为“一种移相全桥变换器及其控制方法、装置及介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电能转换领域,特别是涉及一种移相全桥变换器及其控制方法、装置及介质。
背景技术
光伏发电系统是一种将太阳能转化为电能的系统,光伏发电系统主要由光伏组件和逆变器组成,为保证光伏组件以较高的输出功率输出,通常需要对逆变器中的DCDC变换器对应的开关管进行开关控制以实现光伏发电系统的最大功率点跟踪。
快速的光照变化会造成光伏组件输出功率的快速变化,而目前的最大功率点跟踪中,针对不同的输入电流,DCDC变换器对应开关管的开关周期一定,有效开通时间和移相时间也固定,因此通常要几毫秒甚至几秒才能完成一个循环达到稳定功率,这就可能会出现逆变器工作不稳定的情况,或者导致最大功率跟踪的崩溃。
鉴于上述现有技术,寻求一种能够保证最大功率点跟踪效率和稳定的移相全桥变换器的控制方法是本领域技术人员亟待解决的问题。
发明内容
本申请的目的是提供一种移相全桥变换器及其控制方法,在输入电流变化时,能够根据不同的输入电流对移相全桥变换器中的开关管实现不同模式下的控制,及时响应输入电流的快速变化,从而保证最大功率跟踪效率和稳定,进一步满足系统的需求。
为解决上述技术问题,本申请提供一种移相全桥变换器的控制方法,包括:
获取所述移相全桥变换器的当前输入电流;
根据预先设定的输入电流与工作模式的对应关系选择当前输入电流对应的工作模式;
在当前工作模式下,根据最大功率点跟踪算法获取所述移相全桥变换器的移相角和所述移相全桥变换器中开关管的开关频率以控制对应开关管进行相应动作。
优选地,所述根据预先设定的输入电流与工作模式的对应关系选择当前输入电流对应的工作模式,具体为:
在当前输入电流大于第一电流阈值的情况下,在第一工作模式下控制所述开关管动作;
在当前输入电流大于第二电流阈值且小于第一电流阈值的情况下,在第二工作模式下控制所述开关管动作;
在当前输入电流大于第三电流阈值且小于第二电流阈值的情况下,在第三工作模式下控制所述开关管动作;
在当前输入电流小于第三电流阈值的情况下,在第四工作模式下控制所述开关管动作。
优选地,述第一电流阈值依据预先设置的最低开关频率计算;
所述第二电流阈值依据预先设置的最高开关频率计算;
所述第三电流阈值依据预先设置的最高开关频率和最大移相角计算。
优选地,在所述第一工作模式下,所述开关频率为所述最低开关频率,所述移相角与当前输入电流负相关;
在所述第二工作模式下,所述移相角为定值,所述开关频率与当前输入电流负相关;
在所述第三工作模式下,所述开关频率为所述最高开关频率,所述移相角与当前输入电流负相关;
在所述第四工作模式下,所述移相角为定值,所述开关管有工作周期和非工作周期,所述工作周期和所述非工作周期依据当前输入电流计算。
优选地,在所述第四工作模式下,所述工作周期为所述开关管的完整的开关周期。
优选地,还包括:
当接收到开机指令时,控制所述移相全桥变换器的超前桥臂中的两个开关管交替导通,滞后桥臂中的两个开关管交替导通。
为解决上述技术问题,本申请还提供一种移相全桥变换器的控制装置,包括:
获取模块,用于获取所述移相全桥变换器的当前输入电流;
选择模块,用于根据预先设定的输入电流与工作模式的对应关系选择当前输入电流对应的工作模式;
控制模块,用于在当前工作模式下,根据最大功率点跟踪算法获取所述移相全桥变换器的移相角和所述移相全桥变换器中开关管的开关频率以控制对应开关管进行相应动作。
为解决上述技术问题,本申请还提供一种移相全桥变换器的控制装置,包括存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序时实现如所述的移相全桥变换器的控制方法的步骤。
为解决上述技术问题,本申请还提供一种计算机可读存储介质,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如所述的移相全桥变换器的控制方法的步骤。
为解决上述技术问题,本申请还提供一种移相全桥变换器,包括如所述的移相全桥变换器的控制装置,还包括:原边全桥电路、变压器、第一电感、第二电感、第三电感、第一二极管、第二二极管、第一电容和第二电容;
所述原边全桥电路的第一输出端与所述第一电感的第一端连接,所述第一电感的第二端与所述变压器的原边第一端连接,所述原边全桥电路的第二输出端与所述变压器的原边第二端连接,所述第二电感并联在所述变压器的原边的两端;所述变压器的副边第一端与所述第三电感的第一端连接,所述第三电感的第二端分别与所述第一电容和所述第二电容的第一端连接,所述第一电容的第二端与所述第一二极管的阴极连接,所述第一二极管的阳极与所述第二二极管的阴极连接,所述变压器的副边第二端与所述第二二极管的阴极连接,所述第二二极管的阳极与所述第二电容的第二 端连接。
本申请所提供的移相全桥变换器的控制方法,获取到移相全桥变换器的当前输入电流后,根据预先设定的输入电流与工作模式的对应关系选择当前输入电流对应的工作模式,并在当前工作模式下,根据最大功率点跟踪算法获取移相全桥变换器的移相角和移相全桥变换器中开关管的开关频率以控制对应开关管进行相应动作。应用以上技术方案,在输入电流变化时,能够根据不同的输入电流对移相全桥变换器中的开关管实现不同模式下的控制,及时响应输入电流的快速变化,从而保证最大功率跟踪效率和稳定,进一步满足系统的需求。
附图说明
为了更清楚地说明本申请实施例,下面将对实施例中所需要使用的附图做简单的介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种移相全桥变换器的电路原理图;
图2为本申请实施例提供的一种移相全桥变换器的控制方法的流程图;
图3为本申请实施例提供的一种移相全桥变换器工作在第二工作模式下的波形图;
图4为本申请实施例提供的一种移相全桥变换器工作在第一工作模式下的波形图;
图5为本申请实施例提供的一种移相全桥变换器工作在第三工作模式下的波形图;
图6为本申请实施例提供的一种移相全桥变换器工作在第四工作模式下的波形图;
图7为本申请实施例提供的另一种移相全桥变换器工作在第四工作模式下的波形图;
图8为本申请实施例提供的一种移相全桥变换器的控制装置的结构示 意图;
图9为本申请另一实施例提供的移相全桥变换器的控制装置的结构图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下,所获得的所有其他实施例,都属于本申请保护范围。
本申请的核心是提供一种移相全桥变换器及其控制方法,在输入电流变化时,能够根据不同的输入电流对移相全桥变换器中的开关管实现不同模式下的控制,及时响应输入电流的快速变化,从而保证最大功率跟踪效率和稳定,进一步满足系统的需求。
在具体实施中,移相全桥变换器的输入为直流电压源Vin,可以是光伏组件、电池或者类似结构,移相全桥变换器的输出即为直流母线电压Vout。图1为本申请实施例提供的一种移相全桥变换器的电路原理图,如图1所示,移相全桥变换器包括原边全桥电路、变压器、第一电感Lr、第二电感Lm、第三电感Lrs、第一二极管D1、第二二极管D2、第一电容C1和第二电容C2;
原边全桥电路的第一输出端与第一电感Lr的第一端连接,第一电感Lr的第二端与变压器的原边第一端连接,原边全桥电路的第二输出端与变压器的原边第二端连接,第二电感Lm并联在变压器的原边的两端;变压器的副边第一端与第三电感Lrs的第一端连接,第三电感Lrs的第二端分别与第一电容C1和第二电容C2的第一端连接,第一电容C1的第二端与第一二极管D1的阴极连接,第一二极管D1的阳极与第二二极管D2的阴极连接,变压器的副边第二端与第二二极管D2的阴极连接,第二二极管D2的阳极与第二电容C2的第二端连接。
移相全桥变换器的原边全桥电路由第一开关管Q1、第二开关管Q2、 第三开关管Q3和第四开关管Q4组成,开关管通常为带有体二极管和体电容的MOS管,原边全桥电路的输出端连接变压器原边,原边的第一电感Lr为漏感Lr,第二电感Lm为励磁电感Lm,变压器的副边的第三电感Lrs为谐振电感Lrs,第一电容C1和第二电容C2为谐振电容,第一二极管D1和第二二极管D2为整流二极管。
本申请所提供的移相全桥变换器,原边为带LC谐振的移相全桥控制,副边为带LC谐振的整流电路。原边全桥加入移相角控制,有效利用第一开关管Q1、第二开关管Q2、第三开关管Q3和第四开关管Q4的体电容与漏感Lr实现谐振,使得原边的开关管实现零电压开关(Zero Voltage Switch,ZVS)。移相角的存在,使得电流滞后电压,让副边自然实现零电流开关(Zero Current Switching,ZCS),整流二极管在零电流软开通。
针对上述情况,推导出移相全桥变换器的输入电流Iin和输入电压Vin、输出电压Vout、漏感Lr的感量、励磁电感Lm的感量、变压器副边和原边的匝数比n、谐振电容C1和C2的容值C、开关周期T以及有效开通时间Ton的函数关系:
Iin=I 1(Vin,Vout,Lr,Lm,n,C,T,Ton);
需要说明的是,针对特定的硬件结构,漏感Lr的感量、励磁电感Lm的感量、变压器副边和原边的匝数比n和谐振电容C1和C2的容值C为固定值,因此,可以将上述公式简化为Iin=I 2(Vin,Vout,T,Ton)。
推导出移相全桥变换器的有效开通时间Ton和输入电压Vin、输出电压Vout、漏感Lr的感量、励磁电感Lm的感量、变压器副边和原边的匝数比n以及开关周期T的函数关系:Ton=ton(Vout/Vin,Lr,Lm,n,T);
同理,针对特定的硬件结构,漏感Lr的感量、励磁电感Lm的感量、变压器副边和原边的匝数比n为固定值,因此,可以将上述公式简化为:
Ton=ton(Vout/Vin,T);
移相时间Tps=T/2-Ton=Tps(Vout/Vin,T);
则输入电流Iin=I(Vin,Vout,Tps/T,T)。
其中,有效开通时间Ton与移相时间Tps的和等于开关周期T的一半,移相时间Tps为超前桥臂与滞后桥臂关断开通的时间差;Tps/T为移相角。
最大功率点跟踪中,对于单一工作点,输入电压Vin和输出电压Vout是确定值,输入电流Vin可以只是开关周期T或者移相时间Tps的函数。
为了使本技术领域的人员更好地理解本申请方案,下面结合附图和具体实施方式对本申请作进一步的详细说明。
图2为本申请实施例提供的一种移相全桥变换器的控制方法的流程图。如图2所示,该方法包括:
S10:获取移相全桥变换器的当前输入电流。
需要说明的是,可以通过ADC采样电路获取移相全桥变换器输入端的输入电压Vin和输入电流Iin以及输出端的输出电压Vout。可以理解的是,本申请以移相全桥变换器的输入电流Iin为例说明,在其它实施例中,也可以是以移相全桥变换器的输出电流Iout为例进行说明,本申请对此不作限定。
S11:根据预先设定的输入电流与工作模式的对应关系选择当前输入电流对应的工作模式。
S12:在当前工作模式下,根据最大功率点跟踪算法获取移相全桥变换器的移相角和移相全桥变换器中开关管的开关频率以控制对应开关管进行相应动作。
在具体实施中,当接收到开机指令时,控制移相全桥变换器的超前桥臂中的两个开关管交替导通,滞后桥臂中的两个开关管交替导通。电路的一个工作周期时序如下:第一开关管Q1和第四开关管Q4同步导通,导通时间为Ton时,关闭第一开关管Q1,经过预先设定的死区时间Tdt后,实现第二开关管Q2的ZVS导通,经过移相时间Tps,第四开关管Q4实现ZCS关闭,同样经过死区时间Tdt之后,第三开关管Q3实现ZVS导通,在第二开关管Q2和第三开关管Q3共同导通时间Ton后,第二开关管Q2关闭,经死区时间Tdt之后,第一开关管Q1实现ZVS导通,再经过移相时间Tps之后,第三开关管Q3实现ZCS关闭,然后等待死区时间Tdt时间后,第四开关管Q4实现ZVS导通,再次回到第一开关管Q1和第四开关管Q4同步导通,如此完成一个开关时序工作周期。
在当前工作模式下,针对不同的输入电流,根据最大功率点跟踪算法 获取移相全桥变换器的移相角和移相全桥变换器中开关管的开关频率,调整上述过程中的开关周期T、有效开通时间Ton和移相时间Tps,从而实现开关管的控制。
本申请所提供的移相全桥变换器的控制方法,获取到移相全桥变换器的当前输入电流后,根据预先设定的输入电流与工作模式的对应关系选择当前输入电流对应的工作模式,并在当前工作模式下,根据最大功率点跟踪算法获取移相全桥变换器的移相角和移相全桥变换器中开关管的开关频率以控制对应开关管进行相应动作。应用以上技术方案,在输入电流变化时,能够根据不同的输入电流对移相全桥变换器中的开关管实现不同模式下的控制,及时响应输入电流的快速变化,从而保证最大功率跟踪效率和稳定,进一步满足系统的需求。
在上述实施例的基础上,作为一种优选地实施例,S11具体为:
在当前输入电流大于第一电流阈值的情况下,在第一工作模式下控制开关管动作;
在当前输入电流大于第二电流阈值且小于第一电流阈值的情况下,在第二工作模式下控制开关管动作;
在当前输入电流大于第三电流阈值且小于第二电流阈值的情况下,在第三工作模式下控制开关管动作;
在当前输入电流小于第三电流阈值的情况下,在第四工作模式下控制开关管动作。
其中,第一电流阈值依据预先设置的最低开关频率计算,第二电流阈值依据预先设置的最高开关频率计算,第三电流阈值依据预先设置的最高开关频率和最大移相角计算。
在具体实施中,进行功率跟踪时,开始后按初始模式工作,初始模式可以任意设定,比如设定第三工作模式作为初始模式,设定最小开关周期Tmin(即最大开关频率)和最大移相时间Tps_max,然后开始该模式下的最大功率点跟踪流程,使用常规的多种最大功率跟踪方法即可,本申请对此不再赘述。确定了工作电压Vin和输入电流Iin,然后依据输入电流Iin 进入下一周期工作模式的选择,完成模式选择以后,进行该模式下的最大功率点跟踪。
下面对四种工作模式进行详细阐述:
需要说明的是,初始模式一般设定为第二工作模式。第二工作模式为固定移相角变频模式,在第二工作模式下,移相角为定值,开关频率与当前输入电流负相关。
滞后桥臂采用ZCS关断,相应的移相角Tps/T为固定值α,根据公式计算出开关周期T或者开关频率f来控制移相全桥变换器的输入电流Iin大小,也就相应控制输入功率Pin。
图3为本申请实施例提供的一种移相全桥变换器工作在第二工作模式下的波形图。如图3所示,包括原边全桥开关管的驱动信号PWM_Q1~Q4(10和11)、变压器原边电流12、变压器副边电容电压13、变压器原边漏感电流14和变压器原边励磁电流15。1个周期分为4个过程:
t0-t1:第一开关管Q1和第四开关管Q4导通,变压器电流从0开始增加为副边提供能量,副边第一二极管D1截止,第二二极管D2导通,第一电容C1放电,第二电容C2被充电。
t1-t2:t1时刻第一开关管Q1关断,原边漏感Lr通过变压器原边以及第四开关管Q4和第二开关管Q2的体二极管形成续流回路,继续为变压器副边供电。此时第二开关管Q2可零电压开通。
t2-t4:t2时刻变压器原边电流续流到0,此时漏感Lr与励磁电感Lm串联电流降到最小,可忽略不计,第四开关管Q4接近零电流关断,第三开关管Q3导通,进入下半个开关周期重复t0-t2。
以上控制策略可以实现滞后桥臂零电流关断,减少了开关管的关断损耗,有助于提高传输效率。同时通过滞后桥臂零电流关断的设计得到了移相角与开关频率之间的数量关系,解决了两者之间协调控制的问题。
由于在最大功率点跟踪中,对于单一工作点,输入电压Vin和输出电压Vout是确定值,输入电流Vin可以只是开关周期T或者移相时间Tps的函数,即:Iin=Iin2(T)=Iin2(Tps/α),Tps=T×α。
第二工作模式下能获得的最大电流为:
Iin_max2=Iin2(Tmax),Tmax为最大开关周期,即最低开关频率的倒数,一般,最低开关频率为谐振频率,将Iin_max2作为第一电流阈值;
第二工作模式下能获得的最小电流为:
Iin_min2=Iin2(Tmin),Tmin为最小开关周期,即最大开关频率的倒数,将Iin_min2作为第二电流阈值。
逆变器工作的最低开关频率(最大开关周期Tmax)接近谐振频率,当逆变器以第二工作模式进行工作,并且在最低开关频率时候,如果得到的最大输入电流Iin还是低于要求,则需要将移相角进一步减小,以增大有效开通时间Ton,可以继续提高电流,直到移相角减小到0为止,输入电流Iin达到最大。
第一工作模式为最低频变化移相角模式,在第一工作模式下,开关频率为最低开关频率,移相角与当前输入电流负相关。根据获得的移相角逐步减小来提高输入电流Iin,以达到需要的工作功率。
图4为本申请实施例提供的一种移相全桥变换器工作在第一工作模式下的波形图。如图4所示,包括原边全桥开关管的驱动信号PWM_Q1~Q4(10和11)、变压器原边电流12、变压器副边电容电压13、变压器原边漏感电流14和变压器原边励磁电流15。1个周期分为6个过程:
t0-t1:第一开关管Q1和第四开关管Q4导通,变压器电流从0开始增加为副边提供能量,副边第一二极管D1截止,第二二极管D2导通,第一电容C1放电,第二电容C2被充电。
t1-t2:t1时刻第一开关管Q1关断,原边漏感Lr通过变压器原边以及第四开关管Q4和第二开关管Q2的体二极管形成续流回路,继续为副边供电。此时第二开关管Q2可零电压开通。
t2-t3:t2时刻变压器原边电流还未续流到0,关断第四开关管Q4,接着导通第三开关管Q3,逆变器的原边全桥电路完成换相,变压器电流不能突变,但受输入电压影响,电流快速下降。
t3-t6:t3时刻变压器电流降到0。接着进入下半个开关周期重复t0-t3。
滞后桥臂零电流关断控制下的最低开关频率的最大输入电流公式:
Iin_max_zcs=Iin(Vin,Vout,Tps_zcs/T,Tmax);
滞后桥臂零电流关断控制下的最低开关频率的有效开通时间Ton公式:
Ton_zcs=ton(Vout/Vin,Tmax)=T/2-Tps_zcs;
将移相角进一步减小,以增大有效开通时间Ton,可以继续提高电流,达到需要的输入电流Iin,Iin=Iin1(Vin,Vout,Tps/T,Tmax);
Tps=(t2–t1)=T/2–Ton=tps(Vout/Vin,Lr,Lm,n,T);
移相角最小可以到0为止,有效开通时间Ton达到最大为T/2,这时电流是可能达到的最大电流。最大功率点跟踪中,对于单一工作点Vin和Vout是确定值,T是固定值Tmax,电流Iin就只是移相时间Tps的函数:
Iin=Iin1(Tps),其中,0<Tps<Tps_zcs;
Tps_zcs=tps(Vout/Vin,Lr,Lm,n,T)=tps(Tmax);
移相角最小可以到0为止,这是电流是可能达到的最大电流:
Iin_max1=Iin1(Tps=0)。
当逆变器以第二工作模式进行工作,并且以开关频率达到预先设定的上限时,如果得到的输入电流Iin还是大于要求,则需要将移相角进一步增大,以减小有效开通时间Ton,可以继续减小电流,但是移相角无法一直增大,需要对其进行限制。
第三工作模式为最高频变化移相角模式,在第三工作模式下,开关频率为最高开关频率,移相角与当前输入电流负相关。这个最高开关频率预先设定,从公式获得的移相时间Tps增大来减小有效开通时间Ton,从而降低电流,达到需要的工作电流。移相时间Tps的大小设定限制最大值Tps_max。
图5为本申请实施例提供的一种移相全桥变换器工作在第三工作模式下的波形图。如图5所示,包括原边全桥开关管的驱动信号PWM_Q1~Q4(10和11)、变压器原边电流12、变压器副边电容电压13、变压器原边漏感电流14和变压器原边励磁电流15。1个周期分为6个过程:
t0-t1:第一开关管Q1和第四开关管Q4导通,变压器电流从0开始增 加,为副边提供能量,副边第一二极管D1截止,第二二极管D2导通,第一电容C1放电,第二电容C2被充电。
t1-t2:t1时刻第一开关管Q1关断,变压器原边漏感Lr通过变压器原边、第四开关管Q4和第二开关管Q2的体二极管形成续流回路,此时第二开关管Q2可零电压开通。
t2-t3:t2时刻变压器原边电流续流到0,变压器不再传输能量,这时候滞后桥臂开关管的体电容、变压器漏感Lr和变压器励磁电感Lm一起谐振,能量很小可忽略,该阶段第四开关管Q4可接近零电流关段。
t3-t6:t3时刻第三开关管Q3导通,进入下半个开关周期重复t0-t3。
滞后桥臂零电流关断控制下的最高开关频率的最小输入电流公式:
Iin_min_zcs=Iin3(Vin/Vout,Tps_zcs/T,Tmin);
滞后桥臂零电流关断控制下的最高开关频率的有效开通时间Ton公式:
Ton_zcs=ton(Vout/Vin,Tmin)=T/2-Tps_zcs;
将移相角进一步增大,以减小有效开通时间Ton,可以继续降低电流,达到需要的输入电流Iin,Iin=Iin3(Vin,Vout,Tps/T,Tmin);
最大功率点跟踪中,对于单一工作点,输入电压Vin和输出电压Vout是确定值,开关周期T是固定值Tmin,电流Iin就只是移相时间Tps的函数:
Iin=Iin3(Tps);可以先定移相角Tps/Tmin最大可以到Tps_max/Tmin为止,有效开通时间Ton达到最小,这时电流Iin是可能达到的最小电流:
Iin_min3=Iin3(Tps=Tps_max),将Iin_min3作为第三电流阈值。
第四工作模式为固定移相角变频模式,在第四工作模式下,移相角为定值,开关管有工作周期和非工作周期,工作周期和非工作周期依据当前输入电流计算。当需要的电流低于第三工作模式的最小电流Iin_min3时,采用跳周期模式降低电流,开通这段采用ZCS公式获得的条件开关,进行Non个开关周期,然后停止Noff个周期,开通和停止的周期数由输入电流Iin决定:
Iin=Iin1(Tmin)×Non/(Non+Noff)。
图6为本申请实施例提供的一种移相全桥变换器工作在第四工作模式下的波形图。如图6所示,包括原边全桥开关管的驱动信号PWM_Q1~Q4(10和11)、变压器原边电流12、变压器副边电容电压13、变压器原边漏感电流14和变压器原边励磁电流15。工作周期为开关管的完整的开关周期,以工作周期Non=1为例,开通阶段是1个完整的开关周期。可以通过需要的电流Iin和Iin_min2计算获得停止区间的周期数Noff:
Noff=(Iin_min2/Iin–1)×Non。
图7为本申请实施例提供的另一种移相全桥变换器工作在第四工作模式下的波形图。需要说明的是,工作周期Non和非工作周期Noff可以是有效开通时间Ton的整数倍,也可以不是整数倍;工作周期Non可以是完整开关周期,如a所示,也可以是半个开关周期,正半周或者负半周,如b/c/d所示。工作周期Non是半个周期时,非工作周期Noff的前后可以是相同的正半周或者负半周,如b/c所示,也可以是不同的正半周和负半周,如d所示。
本申请实施例提供的移相全桥变换器的控制方法,通过计算多个不同模式对应的电流阈值,将需要的电流和阈值比较实现全桥工作模式的选择,通过开关频率下的高速模式切换,保障光伏逆变器的稳定工作,和对光伏组件最大功率的快速跟踪,保证光伏系统的最大发电量。
在上述实施例中,对于移相全桥变换器的控制方法进行了详细描述,本申请还提供移相全桥变换器的控制装置对应的实施例。需要说明的是,本申请从两个角度对装置部分的实施例进行描述,一种是基于功能模块的角度,另一种是基于硬件的角度。
图8为本申请实施例提供的一种移相全桥变换器的控制装置的结构示意图。如图8所示,基于功能模块的角度,该装置包括:
获取模块20,用于获取移相全桥变换器的当前输入电流;
选择模块21,用于根据预先设定的输入电流与工作模式的对应关系选择当前输入电流对应的工作模式;
控制模块22,用于在当前工作模式下,根据最大功率点跟踪算法获取移相全桥变换器的移相角和移相全桥变换器中开关管的开关频率以控制对应开关管进行相应动作。
由于装置部分的实施例与方法部分的实施例相互对应,因此装置部分的实施例请参见方法部分的实施例的描述,这里暂不赘述。
本申请所提供的移相全桥变换器的控制装置,获取到移相全桥变换器的当前输入电流后,根据预先设定的输入电流与工作模式的对应关系选择当前输入电流对应的工作模式,并在当前工作模式下,根据最大功率点跟踪算法获取移相全桥变换器的移相角和移相全桥变换器中开关管的开关频率以控制对应开关管进行相应动作。应用以上技术方案,在输入电流变化时,能够根据不同的输入电流对移相全桥变换器中的开关管实现不同模式下的控制,及时响应输入电流的快速变化,从而保证最大功率跟踪效率和稳定,进一步满足系统的需求。
图9为本申请另一实施例提供的移相全桥变换器的控制装置的结构图,如图9所示,基于硬件结构的角度,该装置包括:存储器30,用于存储计算机程序;
处理器31,用于执行计算机程序时实现如上述实施例中移相全桥变换器的控制方法的步骤。
存储器30可以包括一个或多个计算机可读存储介质,该计算机可读存储介质可以是非暂态的。存储器30还可包括高速随机存取存储器,以及非易失性存储器,比如一个或多个磁盘存储设备、闪存存储设备,存储方式可以是短暂存储或者永久存储。存储器30在一些实施例中可以是通信装置的内部存储单元。
处理器31一些实施例中可以是一中央处理器(Central Processing Unit,CPU)、控制器、微控制器、微处理器或其他数据处理芯片,用于运行存储器30中存储的程序代码或处理数据,例如执行应用于从设备的通信方法对应的程序等。
在一些实施例中,还可以包含有总线32可以是外设部件互连标准 (peripheral component interconnect,简称PCI)总线或扩展工业标准结构(extended industry standard architecture,简称EISA)总线等。该总线可以分为地址总线、数据总线、控制总线等。为便于表示,图9中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
本领域技术人员可以理解,图9中示出的结构并不构成对通信装置的限定,可以包括比图示更多或更少的组件。
本申请实施例提供的移相全桥变换器的控制装置,包括存储器和处理器,处理器在执行存储器存储的程序时,能够实现如下方法:获取到移相全桥变换器的当前输入电流后,根据预先设定的输入电流与工作模式的对应关系选择当前输入电流对应的工作模式,并在当前工作模式下,根据最大功率点跟踪算法获取移相全桥变换器的移相角和移相全桥变换器中开关管的开关频率以控制对应开关管进行相应动作。应用以上技术方案,在输入电流变化时,能够根据不同的输入电流对移相全桥变换器中的开关管实现不同模式下的控制,及时响应输入电流的快速变化,从而保证最大功率跟踪效率和稳定,进一步满足系统的需求。
本申请还提供一种计算机可读存储介质对应的实施例。计算机可读存储介质上存储有计算机程序,计算机程序被处理器执行时实现如上述方法实施例中记载的步骤。
可以理解的是,如果上述实施例中的方法以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
最后,本申请还提供一种移相全桥变换器,如图1所示,包括以上实施例中的移相全桥变换器的控制装置,还包括:原边全桥电路、变压器、 第一电感Lr、第二电感Lm、第三电感Lrs、第一二极管D1、第二二极管D2、第一电容C1和第二电容C2;
原边全桥电路的第一输出端与第一电感Lr的第一端连接,第一电感Lr的第二端与变压器的原边第一端连接,原边全桥电路的第二输出端与变压器的原边第二端连接,第二电感Lm并联在变压器的原边的两端;变压器的副边第一端与第三电感Lrs的第一端连接,第三电感Lrs的第二端分别与第一电容C1和第二电容C2的第一端连接,第一电容C1的第二端与第一二极管D1的阴极连接,第一二极管D1的阳极与第二二极管D2的阴极连接,变压器的副边第二端与第二二极管D2的阴极连接,第二二极管D2的阳极与第二电容C2的第二端连接。
此外,还包括滤波电容C0和负载ZL。
由于在上文中对于移相全桥变换器及其控制方法结合移相全桥变换器详细说明,故本实施例不再赘述。
本实施例提供的移相全桥变换器,获取到移相全桥变换器的当前输入电流后,根据预先设定的输入电流与工作模式的对应关系选择当前输入电流对应的工作模式,并在当前工作模式下,根据最大功率点跟踪算法获取移相全桥变换器的移相角和移相全桥变换器中开关管的开关频率以控制对应开关管进行相应动作。应用以上技术方案,在输入电流变化时,能够根据不同的输入电流对移相全桥变换器中的开关管实现不同模式下的控制,及时响应输入电流的快速变化,从而保证最大功率跟踪效率和稳定,进一步满足系统的需求。
以上对本申请所提供的一种移相全桥变换器及其控制方法、装置及介质进行了详细介绍。说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以对本申请进行若干改进和修饰,这些改进和修饰也落入本申请 权利要求的保护范围内。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。

Claims (10)

  1. 一种移相全桥变换器的控制方法,其特征在于,包括:
    获取所述移相全桥变换器的当前输入电流;
    根据预先设定的输入电流与工作模式的对应关系选择当前输入电流对应的工作模式;
    在当前工作模式下,根据最大功率点跟踪算法获取所述移相全桥变换器的移相角和所述移相全桥变换器中开关管的开关频率以控制对应开关管进行相应动作。
  2. 如权利要求1所述的移相全桥变换器的控制方法,其特征在于,所述根据预先设定的输入电流与工作模式的对应关系选择当前输入电流对应的工作模式,具体为:
    在当前输入电流大于第一电流阈值的情况下,在第一工作模式下控制所述开关管动作;
    在当前输入电流大于第二电流阈值且小于第一电流阈值的情况下,在第二工作模式下控制所述开关管动作;
    在当前输入电流大于第三电流阈值且小于第二电流阈值的情况下,在第三工作模式下控制所述开关管动作;
    在当前输入电流小于第三电流阈值的情况下,在第四工作模式下控制所述开关管动作。
  3. 如权利要求2所述的移相全桥变换器的控制方法,其特征在于,所述第一电流阈值依据预先设置的最低开关频率计算;
    所述第二电流阈值依据预先设置的最高开关频率计算;
    所述第三电流阈值依据预先设置的最高开关频率和最大移相角计算。
  4. 如权利要求3所述的移相全桥变换器的控制方法,其特征在于,在所述第一工作模式下,所述开关频率为所述最低开关频率,所述移相角与当前输入电流负相关;
    在所述第二工作模式下,所述移相角为定值,所述开关频率与当前输入电流负相关;
    在所述第三工作模式下,所述开关频率为所述最高开关频率,所述移 相角与当前输入电流负相关;
    在所述第四工作模式下,所述移相角为定值,所述开关管有工作周期和非工作周期,所述工作周期和所述非工作周期依据当前输入电流计算。
  5. 如权利要求4所述的移相全桥变换器的控制方法,其特征在于,在所述第四工作模式下,所述工作周期为所述开关管的完整的开关周期。
  6. 如权利要求1所述的移相全桥变换器的控制方法,其特征在于,还包括:
    当接收到开机指令时,控制所述移相全桥变换器的超前桥臂中的两个开关管交替导通,滞后桥臂中的两个开关管交替导通。
  7. 一种移相全桥变换器的控制装置,其特征在于,包括:
    获取模块,用于获取所述移相全桥变换器的当前输入电流;
    选择模块,用于根据预先设定的输入电流与工作模式的对应关系选择当前输入电流对应的工作模式;
    控制模块,用于在当前工作模式下,根据最大功率点跟踪算法获取所述移相全桥变换器的移相角和所述移相全桥变换器中开关管的开关频率以控制对应开关管进行相应动作。
  8. 一种移相全桥变换器的控制装置,其特征在于,包括存储器,用于存储计算机程序;
    处理器,用于执行所述计算机程序时实现如权利要求1至6任一项所述的移相全桥变换器的控制方法的步骤。
  9. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如权利要求1至6任一项所述的移相全桥变换器的控制方法的步骤。
  10. 一种移相全桥变换器,其特征在于,包括如权利要求8所述的移相全桥变换器的控制装置,还包括:原边全桥电路、变压器、第一电感、第二电感、第三电感、第一二极管、第二二极管、第一电容和第二电容;
    所述原边全桥电路的第一输出端与所述第一电感的第一端连接,所述第一电感的第二端与所述变压器的原边第一端连接,所述原边全桥电路的第二输出端与所述变压器的原边第二端连接,所述第二电感并联在所述变 压器的原边的两端;所述变压器的副边第一端与所述第三电感的第一端连接,所述第三电感的第二端分别与所述第一电容和所述第二电容的第一端连接,所述第一电容的第二端与所述第一二极管的阴极连接,所述第一二极管的阳极与所述第二二极管的阴极连接,所述变压器的副边第二端与所述第二二极管的阴极连接,所述第二二极管的阳极与所述第二电容的第二端连接。
PCT/CN2021/109955 2021-03-29 2021-08-02 一种移相全桥变换器及其控制方法、装置及介质 WO2022205718A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21934362.1A EP4283855A1 (en) 2021-03-29 2021-08-02 Phase-shifted full-bridge converter, control method and device thereof, and medium
BR112023019754A BR112023019754A2 (pt) 2021-03-29 2021-08-02 Conversor de ponte completa de fase deslocada, método de controle e dispositivo do mesmo, e meio
US18/279,065 US20240146204A1 (en) 2021-03-29 2021-08-02 Phase-shifted full-bridge converter, control method and device thereof, and medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110331837.4A CN112737350B (zh) 2021-03-29 2021-03-29 一种移相全桥变换器及其控制方法、装置及介质
CN202110331837.4 2021-03-29

Publications (1)

Publication Number Publication Date
WO2022205718A1 true WO2022205718A1 (zh) 2022-10-06

Family

ID=75595986

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/109955 WO2022205718A1 (zh) 2021-03-29 2021-08-02 一种移相全桥变换器及其控制方法、装置及介质

Country Status (5)

Country Link
US (1) US20240146204A1 (zh)
EP (1) EP4283855A1 (zh)
CN (1) CN112737350B (zh)
BR (1) BR112023019754A2 (zh)
WO (1) WO2022205718A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115864856A (zh) * 2023-02-03 2023-03-28 西安图为电气技术有限公司 变换器控制方法、装置、设备、存储介质和程序产品

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112737350B (zh) * 2021-03-29 2021-06-25 昱能科技股份有限公司 一种移相全桥变换器及其控制方法、装置及介质
CN115864795B (zh) * 2023-02-28 2023-05-05 昱能科技股份有限公司 一种一级逆变电路的控制方法、电子设备及可读存储介质
CN117792106B (zh) * 2023-12-26 2024-06-04 广东浦立电气股份有限公司 移相全桥电路控制方法、装置、计算机设备和存储介质
CN118041085B (zh) * 2024-04-10 2024-06-21 昱能科技股份有限公司 一种移相全桥变换器及其控制方法、装置、介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008040664A (ja) * 2006-08-03 2008-02-21 Daihen Corp インバータ装置及びこのインバータ装置のpwm制御方法
US20170279375A1 (en) * 2016-03-25 2017-09-28 Sunpower Corporation Soft switching technique for a grid-tied inverter
CN109687719A (zh) * 2019-02-28 2019-04-26 西安交通大学 一种用于cllc双向隔离型dc-dc变换器的调制方法
CN110768535A (zh) * 2019-10-22 2020-02-07 广州金升阳科技有限公司 一种变拓扑llc谐振变换器的宽增益控制方法
CN111277145A (zh) * 2020-03-03 2020-06-12 合肥阳光电动力科技有限公司 一种dc-dc变换电路的控制装置和控制方法
CN112737350A (zh) * 2021-03-29 2021-04-30 昱能科技股份有限公司 一种移相全桥变换器及其控制方法、装置及介质

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112332674A (zh) * 2020-10-28 2021-02-05 广州金升阳科技有限公司 一种llc谐振变换器及宽增益控制方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008040664A (ja) * 2006-08-03 2008-02-21 Daihen Corp インバータ装置及びこのインバータ装置のpwm制御方法
US20170279375A1 (en) * 2016-03-25 2017-09-28 Sunpower Corporation Soft switching technique for a grid-tied inverter
CN109687719A (zh) * 2019-02-28 2019-04-26 西安交通大学 一种用于cllc双向隔离型dc-dc变换器的调制方法
CN110768535A (zh) * 2019-10-22 2020-02-07 广州金升阳科技有限公司 一种变拓扑llc谐振变换器的宽增益控制方法
CN111277145A (zh) * 2020-03-03 2020-06-12 合肥阳光电动力科技有限公司 一种dc-dc变换电路的控制装置和控制方法
CN112737350A (zh) * 2021-03-29 2021-04-30 昱能科技股份有限公司 一种移相全桥变换器及其控制方法、装置及介质

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MUMTAHINA UMME; WOLFS PETER: "PV module integrated LLC resonant converter with an extended input voltage range", 2017 AUSTRALASIAN UNIVERSITIES POWER ENGINEERING CONFERENCE (AUPEC), IEEE, 19 November 2017 (2017-11-19), pages 1 - 6, XP033316402, DOI: 10.1109/AUPEC.2017.8282477 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115864856A (zh) * 2023-02-03 2023-03-28 西安图为电气技术有限公司 变换器控制方法、装置、设备、存储介质和程序产品

Also Published As

Publication number Publication date
EP4283855A1 (en) 2023-11-29
US20240146204A1 (en) 2024-05-02
BR112023019754A2 (pt) 2023-10-31
CN112737350A (zh) 2021-04-30
CN112737350B (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
WO2022205718A1 (zh) 一种移相全桥变换器及其控制方法、装置及介质
Rodrigues et al. Three-level zero-voltage switching pulse-width modulation DC–DC boost converter with active clamping
US9590518B2 (en) Power converter and controlling method thereof
TWI596880B (zh) 準諧振半橋轉換器及其控制方法
CN110190751B (zh) 一种恒增益双向dc-dc谐振变换器及其控制方法
CN109104108B (zh) 一种带有有源箝位的软开关型单级式高频隔离整流器
CN110707931A (zh) 一种llc谐振变换器及控制方法
CN114301301A (zh) 一种宽范围谐振式软开关双向直流变换器及其控制方法
KR101000561B1 (ko) 직렬 공진형 컨버터
CN110034683B (zh) 一种能实现自然双向功率流的llc变换器调制方法
Hwu et al. An interleaved AC–DC converter based on current tracking
TWI807472B (zh) 適用於寬範圍輸出電壓的變換器及其控制方法
CN114301300A (zh) 一种宽范围双向谐振式软开关直流变换器及其控制方法
CN111934567B (zh) 一种左右交替辅助换流的无桥双Boost功率因数校正整流器
WO2024179076A1 (zh) 一种控制方法、装置及开关电源
CN112994499B (zh) 一种三电平半桥软开关变流电路、控制系统及其控制方法
CN111934568B (zh) 一种上下交替辅助换流的无桥双Boost功率因数校正整流器
CN115378265A (zh) 适用于宽范围输出电压的变换器及其控制方法
Chien et al. Implementation of an interleaved resonant converter for high-voltage applications
de Alvarenga et al. Development of a new single phase high power factor rectifier with ZVS commutation and high frequency isolation
WO2023010233A1 (zh) 一种变换器及变换器的控制方法
Roja et al. Reexamining phase-shifted full-bridge converter with PWM ripple current
CN113708644A (zh) 一种简化的cllc谐振变换器同步整流方法及装置
CN112054689A (zh) 一种隔离三电平直流变换器
Bakeer et al. Series resonant DC-DC converter with single-switch full-bridge boost rectifier operating at fixed switching frequency

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934362

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021934362

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 18279065

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021934362

Country of ref document: EP

Effective date: 20230824

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023019754

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112023019754

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20230926

NENP Non-entry into the national phase

Ref country code: DE