CN110034683B - 一种能实现自然双向功率流的llc变换器调制方法 - Google Patents

一种能实现自然双向功率流的llc变换器调制方法 Download PDF

Info

Publication number
CN110034683B
CN110034683B CN201910157044.8A CN201910157044A CN110034683B CN 110034683 B CN110034683 B CN 110034683B CN 201910157044 A CN201910157044 A CN 201910157044A CN 110034683 B CN110034683 B CN 110034683B
Authority
CN
China
Prior art keywords
voltage
resonant
current
switching
modulation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201910157044.8A
Other languages
English (en)
Other versions
CN110034683A (zh
Inventor
粟梅
蒋涛文
徐菁涛
许国
但汉兵
孙尧
王辉
刘永露
熊文静
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central South University
Original Assignee
Central South University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central South University filed Critical Central South University
Priority to CN201910157044.8A priority Critical patent/CN110034683B/zh
Publication of CN110034683A publication Critical patent/CN110034683A/zh
Application granted granted Critical
Publication of CN110034683B publication Critical patent/CN110034683B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33507Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters
    • H02M3/33523Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only with automatic control of the output voltage or current, e.g. flyback converters with galvanic isolation between input and output of both the power stage and the feedback loop
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/3353Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having at least two simultaneously operating switches on the input side, e.g. "double forward" or "double (switched) flyback" converter
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33584Bidirectional converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33576Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer
    • H02M3/33592Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements having at least one active switching element at the secondary side of an isolation transformer having a synchronous rectifier circuit or a synchronous freewheeling circuit at the secondary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Dc-Dc Converters (AREA)

Abstract

本发明提供一种能实现自然双向功率流的LLC变换器调制方法。这种调制方法下高压侧和低压侧的脉冲宽度调制(PWM)信号完全一致,不需要方向的判断和模式的切换,实现了能量的自然双向流动,并且很好地减少了双向系统控制的复杂度,使系统的可靠性也得到改善。工作在这种调制方法下的LLC变换器可以实现恒定电压增益,其本质可以等效为一个直流变压器(DCX)。此外,该调制方法实现了一侧的零电压开关(ZVS)和另外一侧的零电流开关(ZCS)。

Description

一种能实现自然双向功率流的LLC变换器调制方法
技术领域
本发明涉及双向DC-DC变换器领域,更具体地,涉及一种能实现自然双向功率流的LLC变换器调制方法。
背景技术
近年来,隔离双向DC-DC变换器发展迅速,广泛应用于电动汽车、不间断电源和储能系统中。
考虑到这些应用的功率拓扑结构,一种解决方案是双有源全桥(DAB)变换器。它具有结构对称、零电压开通能力、自然双向功率流控制等优点。但受到软开关范围的限制,加上关断电流较大,导致功率转换效率降低。
考虑到效率问题,LLC谐振变换器是另一种有吸引力的拓扑结构,因为它的软开关特性适用于全负载范围下的所有功率器件。当转换增益范围较窄时,如工作在谐振频率下,它可以实现零电压开通和零电流关断,转换效率很高。而如果转换增益需要大范围调整时,则变换器开关频率需要远离谐振频率,这样会产生大的环流,从而大大降低效率。
为了解决大范围调压下的效率问题,两级式的变换结构得到提出。例如一种拓扑结构,其前级为LLC谐振变换器,固定工作在谐振频率点,实现电气隔离、固定增益,同时工作效率最高。而其第二级可以采用非隔离型DC-DC变换器(如Buck变换器)来实现电压增益范围的调节,这种拓扑结构下的LLC谐振变换器开关频率固定,且不参与调压。
但是大部分研究都还集中在单向电能传输的应用上。单向电能传输时,原边全桥是作为高频逆变器,副边全桥是作为一个同步整流器(SR)。原副边的驱动信号不一致,当功率方向改变时需要切换PWM信号逻辑。因此,工作在传统调制方法下的LLC谐振变换器是不能实现自然双向功率流的。
发明内容
基于上述缺陷,本发明提供了一种能实现自然双向功率流的LLC变换器调制方法。
本发明公开了一种能实现自然双向功率流的LLC变换器调制方法,在双向电能传输时,双向全桥LLC变换器开关管的高压侧和低压侧驱动信号是相同的、工作完全同步,开关频率固定并且小于谐振频率,并保证开关占空比等于半个谐振周期,即:
D=Tr/2Ts
其中Ts是开关周期,Tr是谐振周期,D是开关占空比;
谐振电流在设计合理的情况下是完全断续(DCM)的,且谐振电流过零点固定不变,只讨论断续模式下的动作,在断续模式下,一旦公式D=Tr/2Ts满足,电压比就取决于开关频率,同时,励磁电感也不参与到整个谐振周期当中,励磁电流仅仅用来实现软开关,所以正向运行和反向运行的工作模态是对称的;
系统的开关动作模态如下:
在t0之前,所有的开关关断,谐振电容电压VCr在它的最小值-ΔVCr,谐振电流iLr是断续的,励磁电流iLm通过体二极管D5和D8
模态1[t0,t1]:在t0时刻,开关管S1,S4,S5和S8打开,其中S5和S8零电压开通,电感Lr的谐振电流iLr有如下表达式:
Figure BDA0001983257710000031
其中
Figure BDA0001983257710000032
ωr=2πfr,Lr是谐振电感,Cr是谐振电容,fr是谐振频率,ΔVCr是谐振电容电压的峰值,n为变压器变比;
iLm,iLr和iLr2之间的关系式可表示为:
iLr2=iLr-iLm
其中iLr2为LLC变换器上变压器高压侧的绕组电流,变压器的励磁电感被钳位在低压侧电压VLV,因此励磁电流iLm可表示如下:
Figure BDA0001983257710000033
模态2[t1,t2]:在t1时刻,iLr等价于iLm,开关管S5和S8在此刻仍然是导通的,励磁电感Lm始终被低压侧电压钳位,因此,Lm并不参与谐振;
在iLr2为反向电流时,iLm,iLr和iLr2之间的关系式可表示为:
Figure BDA0001983257710000034
在t2时刻,谐振电流iLr减少到0,开关管S1,S4,S5和S8关闭,其中S1和S4零电流关断;
模态3[t2,t3]:在这个模态中,iLr为0,谐振电容电压
Figure BDA0001983257710000035
保持在
Figure BDA0001983257710000036
励磁电流iLm通过低压侧的体二极管D6,D7续流,
Figure BDA0001983257710000037
Figure BDA0001983257710000038
之间的关系式可表示为:
Figure BDA0001983257710000039
Figure BDA0001983257710000041
在1/4谐振周期中从0变化到
Figure BDA0001983257710000042
谐振电容电压的峰值
Figure BDA0001983257710000043
可表示为:
Figure BDA0001983257710000044
其中P代表变换器的传输功率,fs代表开关频率,VHV代表高压侧输入电压,在t3时刻之后,变换器将工作在一个新的工作周期。
进一步的,固定开关频率下,其中fr为谐振频率,当fs<fr时,所提调制方法下的电压传输比保持恒定且不受负载影响,因此电压传输比等同于变压器变比,具体推导步骤如下:
步骤1:谐振电流iLr(t)的周期平均值等价于高压侧电流IHV,它可以被推导出如下:
Figure BDA0001983257710000045
步骤2:当低压侧电压VLV对应的电阻是RLV时,忽略系统损耗,则高压侧电流能表示为:
Figure BDA0001983257710000046
步骤3:将式子
Figure BDA0001983257710000047
和步骤1所得式子带入步骤2所得式子,推导出高压侧电压VHV和低压侧电压VLV之间的关系式为:
Figure BDA0001983257710000048
进一步的,该调制方法下,谐振电容的参数需要满足于变换器DCM模式的边界条件,具体推导步骤如下:
步骤a:忽略体二极管的正向电压降和线路损耗,则D1、D4、D6、D7四个体二极管的导通条件为:
Figure BDA0001983257710000051
这里iLr可表示为:
Figure BDA0001983257710000052
步骤b:假设谐振电流是连续的,然后ΔVCr-(VHV+nVLV)近似为0,因此电感上的谐振电压L·dILr/dt可以被忽略,根据以上步骤a的式子,可以得到续流二极管的导通条件如下:
Figure BDA0001983257710000053
此表达式显示出,当满足条件
Figure BDA0001983257710000054
时,所有的二极管反向偏置,因此谐振电流不能反向,从而得出谐振电容的参数范围为:
Figure BDA0001983257710000055
此外,本发明还公开了一种能实现自然双向功率流的LLC变换器调制设备,包括处理器、通信接口、存储器和总线,其中,处理器,通信接口,存储器通过总线完成相互间的通信,处理器可以调用存储器中的逻辑指令,以执行如上述任一所述的能实现自然双向功率流的LLC变换器调制方法。
此外,本发明还公开了一种计算机可读存储介质,其上存储有计算机程序,该计算机程序被处理器执行时实现如上述任一所述的能实现自然双向功率流的LLC变换器调制方法。
相对于现有技术,本发明具备如下的有益效果:在本发明的调制方法下,双向全桥LLC谐振变换器高压侧和低压侧的PWM信号完全一致,不需要方向的判断和模式的切换,实现了能量的自然双向流动,并且很好地减少了双向系统控制的复杂度,使系统的可靠性也得到改善。工作在本发明的调制方法下的LLC变换器可以实现恒定电压增益,其本质可以等效为一个高效的直流变压器,此外,该调制方法实现了一侧的零电压开关(ZVS)和另外一侧的零电流开关(ZCS)。
附图说明
为了更清楚地说明本发明或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为一种两级式解决方案系统结构图;
图2为本发明实施例所依据的LLC谐振变换器拓扑结构图;
图3中的图a-b分别为根据本发明实施例的正向运行开关动作相关波形和反向运行开关动作相关波形;
图4为根据本发明实施例的正向运行时详细工作波形图;
图5(a)为根据本发明实施例的开关周期的第I个阶段工作模态的等效电路图;
图5(b)为根据本发明实施例的开关周期的第II个阶段工作模态的等效电路图;
图5(c)为根据本发明实施例的开关周期的第III个阶段工作模态的等效电路图;
图5(d)为根据本发明实施例的开关周期的第IV个阶段工作模态的等效电路图;
图6(a)为根据本发明实施例的CCM模式下变换器工作情况等效电路图。
图6(b)为根据本发明实施例的CCM模式下变换器工作情况简化的谐振腔电路图。
图7为根据本发明实施例的DCM模式边界条件图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明的实施例中,参考图1-2,本发明以双向全桥LLC变换器为研究对象,高压侧和低压侧的两组开关管同开同关。
双向全桥LLC谐振变换器拓扑如图2所示,图2中,开关管S1~S4组成高压侧H桥,S5~S8组成低压侧H桥,D1~D8为对应于S1~S8的体二极管,C1~C8为S1~S8的寄生电容,具体的,S1和S2、S3和S4、S5和S6、S7和S8组成四组桥臂,S1、S3、S5、S7位于四组桥臂中点的上方,S2、S4、S6、S8位于四组桥臂中点的下方。
定义高压侧电压VHV,低压侧电压VLV,变比n和电压比之间的关系可表示如下:
Figure BDA0001983257710000081
谐振频率fr有如下定义:
Figure BDA0001983257710000082
同时定义fN=fs/fr,fs为开关频率。
Figure BDA0001983257710000083
Lr是谐振电感,Cr是谐振电容,Rload是等效负载电阻。
定义当电源从高压侧传输到低压侧时,即为正向电能传输,反之为反向电能运行。
S1,S4,S5和S8开关管同时动作,S2,S3,S6和S7开关管同时动作,在双向电能传输时,开关管的高压侧和低压侧驱动信号是相同的、工作完全同步,开关频率固定并且小于谐振频率。需要去保证开关占空比等于半个谐振周期,即:
D=Tr/2Ts
其中Ts是开关周期,Tr是谐振周期,D是开关占空比。
如图3所示为依据本发明实施例的双向功率流下的开关动作相关波形。在这里本发明只讨论断续模式下的动作。
在断续模式下,一旦公式D=Tr/2Ts满足,电压比就取决于开关频率。同时,励磁电感Lm也不参与到整个谐振周期当中,励磁电流仅仅用来实现软开关。所以正向运行和反向运行的工作模态是对称的,在这里本发明只分析正向运行这种情况。该调制方法下的正向运行详细工作波形如图4所示。
图5(a)为模态1之前的状态,图5(c)-图5(d)对应模态1-3,在t0之前,所有的开关关断。谐振电容电压
Figure BDA00019832577100000910
在它的最小值-ΔVCr。谐振电流iLr是断续的,励磁电流iLm通过体二极管D5和D8
模态1[t0,t1]:在t0时刻,开关管S1,S4,S5和S8打开,其中S5和S8零电压开通。电感的谐振电流iLr有如下表达式:
Figure BDA0001983257710000091
其中
Figure BDA0001983257710000092
ωr=2πfr
Figure BDA0001983257710000093
是谐振电容电压的峰值。
iLm,iLr和iLr2之间的关系式可表示为:
iLr2=iLr-iLm
其中iLr2为双向全桥LLC变换器上变压器高压侧的绕组电流,变压器的励磁电感被钳位在低压侧电压VLV。因此iLm可表示如下,
Figure BDA0001983257710000094
模态2[t1,t2]:在t1时刻,iLr等价于iLm。开关管S5和S8在此刻仍然是导通的。励磁电感Lm始终被低压侧电压钳位。因此,Lm并不参与谐振。
在iLr2为反向电流时,iLm,iLr和iLr2之间的关系式可表示为:
Figure BDA0001983257710000095
在t2时刻,谐振电流iLr减少到0。开关管S1,S4,S5和S8关闭,其中S1和S4零电流关断。
模态3[t2,t3]:在这个模态中,iLr为0,谐振电容电压
Figure BDA0001983257710000096
保持在
Figure BDA0001983257710000097
励磁电流通过低压侧的体二极管D6,D7续流。
Figure BDA0001983257710000098
Figure BDA0001983257710000099
之间的关系式可表示为:
Figure BDA0001983257710000101
Figure BDA0001983257710000102
在1/4谐振周期中从0变化到
Figure BDA0001983257710000103
Figure BDA0001983257710000104
可表示为:
Figure BDA0001983257710000105
其中P代表变换器的传输功率。
在t3时刻之后,变换器将工作在一个新的工作周期。
对于电压增益的推导,我们有谐振电流iLr(t)的周期平均值等价于高压侧电流IHV,它可以被推导出如下:
Figure BDA0001983257710000106
当低压侧电压VLV对应的电阻是RLV时,忽略系统损耗,则高压侧电流能表示为:
Figure BDA0001983257710000107
将式子
Figure BDA0001983257710000108
和式子
Figure BDA0001983257710000109
代入上述式子
Figure BDA00019832577100001010
从而推导出高压侧电压VHV和低压侧电压VLV之间的关系式为:
Figure BDA00019832577100001011
当fs<fr时,所提调制方法下的电压传输比保持恒定且不受负载影响,因此电压传输比等同于变压器变比。
对于满足LLC变换器DCM断续模式边界条件下的谐振电容参数的设计。如图4所示,在t2时刻,当
Figure BDA0001983257710000111
等于
Figure BDA0001983257710000112
时,iLr等于0。谐振回路中,假设谐振电流iLr反向时,谐振电容处于放电。如图6(a),假设谐振电流反向,高压侧谐振电流将通过体二极管D1,D4续流,低压侧电流将要通过体二极管D6,D7续流。在这种情况下,变换器工作在CCM连续模式。
简化的谐振腔电路如图6(b)所示。忽略体二极管的正向电压降和线路损耗,则D1、D4、D6、D7四个体二极管的导通条件为:
Figure BDA0001983257710000113
这里iLr可表示为:
Figure BDA0001983257710000114
假设谐振电流是连续的,然后ΔVCr-(VHV+nVLV)近似为0。因此电感上的谐振电压L·dILr/dt可以被忽略。根据以上步骤的式子,可以得到续流二极管的导通条件如下:
Figure BDA0001983257710000115
此表达式显示出,当满足条件
Figure BDA0001983257710000116
时,所有的二极管反向偏置,因此谐振电流不能反向。从而得出谐振电容的参数范围为:
Figure BDA0001983257710000121
综上所述,为了实现自然的双向功率流和易于控制,本发明实施例具有如下优势:
(1)本发明实施例的调制方法中,谐振电流在设计合理的情况下是完全断续(DCM)的,且谐振电流过零点固定不变。同时,励磁电流仅仅用来实现软开关,而不参与谐振。考虑到以上情况,固定开关频率下(低于谐振频率),当负载变化时,该变换器都能实现恒定电压增益。
(2)在双向电能传输时,高压侧和低压侧的驱动信号是相同的。因此在本调制方法下LLC谐振变换器是一个自然的双向拓扑,没有开关模态切换的判断,减少了双向系统的控制复杂度,系统的可靠性也得到改善,且不需要改变现有的双向全桥LLC变换器的结构(例如:加额外的辅助电感)。
最后说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (5)

1.一种能实现自然双向功率流的LLC变换器调制方法,其特征在于,在双向电能传输时,双向全桥LLC变换器开关管的高压侧和低压侧驱动信号是相同的、工作完全同步,开关频率固定并且小于谐振频率,并保证开关占空比等于半个谐振周期与开关周期的比值,即:
D=Tr/2Ts
其中Ts是开关周期,Tr是谐振周期,D是开关占空比;
只讨论断续模式下的动作,在断续模式下,一旦公式D=Tr/2Ts满足,电压比就取决于开关频率,同时,励磁电感也不参与到整个谐振周期当中,励磁电流仅仅用来实现软开关,所以正向运行和反向运行的工作模态是对称的;开关管S1~S4组成高压侧H桥,S5~S8组成低压侧H桥,D1~D8为对应于S1~S8的体二极管,C1~C8为S1~S8的寄生电容,具体的,S1和S2、S3和S4、S5和S6、S7和S8组成四组桥臂,S1、S3、S5、S7位于四组桥臂中点的上方,S2、S4、S6、S8位于四组桥臂中点的下方;系统的开关动作模态如下:
在t0之前,所有的开关关断,谐振电容电压
Figure FDA0002635373290000011
在它的最小值-ΔVCr,谐振电流iLr是断续的,励磁电流iLm通过体二极管D5和D8
模态1[t0,t1]:在t0时刻,开关管S1,S4,S5和S8打开,其中S5和S8零电压开通,电感Lr的谐振电流iLr有如下表达式:
Figure FDA0002635373290000012
其中
Figure FDA0002635373290000013
ωr=2πfr,Lr是谐振电感,Cr是谐振电容,fr是谐振频率,ΔVCr是谐振电容电压的峰值,n为变压器变比;
iLm,iLr和iLr2之间的关系式可表示为:
iLr2=iLr-iLm
其中iLr2为LLC变换器上变压器高压侧的绕组电流,变压器的励磁电感被钳位在低压侧电压VLV,因此谐振电流iLr可表示如下:
Figure FDA0002635373290000021
模态2[t1,t2]:在t1时刻,iLr的大小为iLm的值,开关管S5和S8在此刻仍然是导通的,励磁电感Lm始终被低压侧电压钳位,因此,Lm并不参与谐振;
在iLr2为反向电流时,iLm,iLr和iLr2之间的关系式可表示为:
Figure FDA0002635373290000022
在t2时刻,谐振电流iLr减少到0,开关管S1,S4,S5和S8关闭,其中S1和S4零电流关断;
模态3[t2,t3]:在这个模态中,iLr为0,谐振电容电压
Figure FDA0002635373290000023
保持在
Figure FDA0002635373290000024
励磁电流iLm通过低压侧的体二极管D6,D7续流,
Figure FDA0002635373290000025
Figure FDA0002635373290000026
之间的关系式可表示为:
Figure FDA0002635373290000027
Figure FDA0002635373290000028
在1/4谐振周期中从0变化到
Figure FDA0002635373290000029
谐振电容电压的峰值
Figure FDA00026353732900000210
可表示为:
Figure FDA00026353732900000211
其中P代表变换器的传输功率,fs代表开关频率,VHV代表高压侧输入电压,在t3时刻之后,变换器将工作在一个新的工作周期。
2.根据权利要求1所述的一种能实现自然双向功率流的LLC变换器调制方法,其特征在于,固定开关频率下,其中fr为谐振频率,当fs<fr时,所提调制方法下的电压传输比保持恒定且不受负载影响,因此电压传输比等同于变压器变比,具体推导步骤如下:
步骤1:谐振电流iLr(t)的周期平均值等价于高压侧电流IHV,它可以被推导出如下:
Figure FDA0002635373290000031
步骤2:当低压侧电压VLV对应的电阻是RLV时,忽略系统损耗,则高压侧电流能表示为:
Figure FDA0002635373290000032
步骤3:将式子
Figure FDA0002635373290000033
和步骤1所得式子带入步骤2所得式子,推导出高压侧电压VHV和低压侧电压VLV之间的关系式为:
Figure FDA0002635373290000034
3.根据权利要求2所述的一种能实现自然双向功率流的LLC变换器调制方法,其特征在于,该调制方法下,谐振电容的参数需要满足于变换器DCM模式的边界条件,具体推导步骤如下:
步骤a:忽略体二极管的正向电压降和线路损耗,则D1、D4、D6、D7四个体二极管的导通条件为:
Figure FDA0002635373290000041
这里iLr可表示为:
Figure FDA0002635373290000042
步骤b:假设谐振电流是连续的,然后ΔVCr-(VHV+nVLV)近似为0,因此电感上的谐振电压L·dILr/dt可以被忽略,根据以上步骤a的式子,可以得到续流二极管的导通条件如下:
Figure FDA0002635373290000043
此表达式显示出,当满足条件
Figure FDA0002635373290000044
时,所有的二极管反向偏置,因此谐振电流不能反向,从而得出谐振电容的参数范围为:
Figure FDA0002635373290000045
4.一种能实现自然双向功率流的LLC变换器调制设备,其特征在于,包括处理器、通信接口、存储器和总线,其中,处理器,通信接口,存储器通过总线完成相互间的通信,处理器可以调用存储器中的逻辑指令,以执行如权利要求1至3任一所述的能实现自然双向功率流的LLC变换器调制方法。
5.一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该计算机程序被处理器执行时实现如权利要求1至3任一所述的能实现自然双向功率流的LLC变换器调制方法。
CN201910157044.8A 2019-03-01 2019-03-01 一种能实现自然双向功率流的llc变换器调制方法 Active CN110034683B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910157044.8A CN110034683B (zh) 2019-03-01 2019-03-01 一种能实现自然双向功率流的llc变换器调制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910157044.8A CN110034683B (zh) 2019-03-01 2019-03-01 一种能实现自然双向功率流的llc变换器调制方法

Publications (2)

Publication Number Publication Date
CN110034683A CN110034683A (zh) 2019-07-19
CN110034683B true CN110034683B (zh) 2020-10-23

Family

ID=67235036

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910157044.8A Active CN110034683B (zh) 2019-03-01 2019-03-01 一种能实现自然双向功率流的llc变换器调制方法

Country Status (1)

Country Link
CN (1) CN110034683B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112106287B (zh) * 2019-12-17 2024-05-24 法雷奥新能源汽车(深圳)有限公司 谐振回路电路和用于配置谐振回路电路的方法
CN111245247B (zh) * 2020-01-19 2022-09-27 天津大学 一种隔离型双向谐振软开关dc-dc变换器
CN111262443A (zh) * 2020-01-23 2020-06-09 哈尔滨工业大学 一种具有双极输出电压自平衡能力的直流固态变压器
US11005363B1 (en) * 2020-04-08 2021-05-11 Delta Electronics (Thailand) Public Company Limited Resonant power converter and current synthesizing method therefor
CN111464039B (zh) * 2020-05-20 2022-03-25 矽力杰半导体技术(杭州)有限公司 谐振变换器、控制电路和控制方法
CN112019002A (zh) * 2020-08-06 2020-12-01 杭州电子科技大学 一种llc谐振变换器原边恒流控制装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107465347A (zh) * 2017-06-26 2017-12-12 北京交通大学 适用于llc谐振型变换器的能量双向控制策略

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101662230B (zh) * 2009-09-22 2012-09-26 南京航空航天大学 非接触多输入电压源型谐振变换器
US9847710B2 (en) * 2015-04-02 2017-12-19 Virginia Tech Intellectual Properties, Inc. Universal system structure for low power adapters

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107465347A (zh) * 2017-06-26 2017-12-12 北京交通大学 适用于llc谐振型变换器的能量双向控制策略

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
"High efficiency LLC DCX battery chargers with sinusoidal power decoupling control";Dong-Jie Gu et al.,;《 2016 IEEE Energy Conversion Congress and Exposition (ECCE)》;20160922;正文第2页至第4页 *
"一种两级式隔离型双向DCDC变换器的分析与设计";张东;《电源学报》;20160531(第3期);第76页至第78页 *

Also Published As

Publication number Publication date
CN110034683A (zh) 2019-07-19

Similar Documents

Publication Publication Date Title
CN110034683B (zh) 一种能实现自然双向功率流的llc变换器调制方法
CN109560711B (zh) 一种隔离型双向dc-dc变换器及其调制方法
KR100772658B1 (ko) 능동 클램프 전류원 푸쉬풀 직류-직류 컨버터
CN114301301A (zh) 一种宽范围谐振式软开关双向直流变换器及其控制方法
CN104201884B (zh) 一种软开关dc‑dc变换电路
CN110707931A (zh) 一种llc谐振变换器及控制方法
KR20180004675A (ko) 보조 lc 공진 회로를 갖는 양방향 컨버터 및 그 구동 방법
CN114337344B (zh) 一种基于自适应混合整流多开关谐振llc变换器的控制方法
CN114301300A (zh) 一种宽范围双向谐振式软开关直流变换器及其控制方法
CN115224952B (zh) 双向功率变换装置的控制方法及双向功率变换装置
US11764693B2 (en) Dual-capacitor resonant circuit for use with quasi-resonant zero-current-switching DC-DC converters
CN104578806A (zh) 级联双向软开关dc/dc电路拓扑
CN217087777U (zh) 一种宽范围谐振式软开关双向直流变换器
CN109302078B (zh) 基于同步整流模式的dc-dc开关电源
JP6452226B2 (ja) Dc−dcコンバータの補助回路及びその補助回路を用いた双方向昇降圧dc−dcコンバータ
CN109742957B (zh) 一种双环全谐振型软开关变换器
CN110995004A (zh) 三相星型连接双向llc变换器
CN104935173A (zh) 一种带辅助换流电路的电流源型全桥pwm变换器
CN108923659A (zh) 直流-直流变换器及其控制方法和控制电路、存储介质
CN117458860A (zh) 一种宽输出llc谐振变换器拓扑结构与控制方法
CN110224605B (zh) 一种全桥变换电路
CN208401741U (zh) 直流-直流变换器
CN216819713U (zh) 一种宽范围双向谐振式软开关直流变换器
Han et al. A new full-bridge converter with phase-shifted coupled inductor rectifier
CN115441746A (zh) 一种宽输入范围内输出电压可调节的直流变换器拓扑结构

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant