WO2022205558A1 - 一种用于kn95口罩的熔喷布及其制备方法 - Google Patents

一种用于kn95口罩的熔喷布及其制备方法 Download PDF

Info

Publication number
WO2022205558A1
WO2022205558A1 PCT/CN2021/092263 CN2021092263W WO2022205558A1 WO 2022205558 A1 WO2022205558 A1 WO 2022205558A1 CN 2021092263 W CN2021092263 W CN 2021092263W WO 2022205558 A1 WO2022205558 A1 WO 2022205558A1
Authority
WO
WIPO (PCT)
Prior art keywords
melt
blown
polypropylene
carbon nanotube
10min
Prior art date
Application number
PCT/CN2021/092263
Other languages
English (en)
French (fr)
Inventor
沈智全
黎坛
王俊峰
赵洁
Original Assignee
海南赛诺实业有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 海南赛诺实业有限公司 filed Critical 海南赛诺实业有限公司
Publication of WO2022205558A1 publication Critical patent/WO2022205558A1/zh

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/54Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
    • D04H1/542Adhesive fibres
    • D04H1/544Olefin series
    • AHUMAN NECESSITIES
    • A41WEARING APPAREL
    • A41DOUTERWEAR; PROTECTIVE GARMENTS; ACCESSORIES
    • A41D13/00Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches
    • A41D13/05Professional, industrial or sporting protective garments, e.g. surgeons' gowns or garments protecting against blows or punches protecting only a particular body part
    • A41D13/11Protective face masks, e.g. for surgical use, or for use in foul atmospheres
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/46Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polyolefins

Definitions

  • the invention relates to the technical field of masks, in particular to a meltblown cloth for KN95 masks and a preparation method thereof.
  • the traditional KN95 mask melt-blown cloth is generally prepared by blending polymer melt-blown material with electret masterbatch and non-woven by melt-blown method.
  • the breathing resistance will increase, and it is easy to make people feel difficult to breathe after wearing; while the breathing resistance is small ( ⁇ 120Pa), the filtration efficiency is difficult to meet the higher requirements. , the protection security is greatly reduced. Therefore, it is an urgent need in the mask market to prepare a meltblown cloth with both high salt filtration efficiency and low breathing resistance.
  • the present invention provides a melt-blown cloth for KN95 masks and a preparation method thereof.
  • the melt-blown cloth prepared by the present invention has higher salt filtration efficiency and lower breathing resistance, It is beneficial to be used in the production of KN95 masks.
  • the invention provides a preparation method of a melt-blown cloth for KN95 masks, comprising the following steps:
  • the carbon nanotube modified material is blended with polypropylene melt-blown material and electret masterbatch, and the material obtained by blending is made into a melt-blown cloth for KN95 mask by melt-blown non-woven method;
  • the content of carbon nanotubes in the carbon nanotube modified material is 0.2% to 0.5%; the melt index of the polypropylene meltblown material is 1400 to 1600g/10min; the polypropylene meltblown material and carbon nanotubes are modified
  • the mass ratio of the material to the electret masterbatch is (91-97): (1-6): (3-4).
  • the melt index of the carbon nanotube modified material is 400-600 g/10min.
  • the carbon nanotube modified material is obtained in the following manner: the meltblown material with a melt index of 1400-1600 g/10min is blended with multi-walled carbon nanotubes to obtain a preliminary modified material, and the The preliminary modified material is blended with polypropylene with a melt index of 35-45 g/10min to obtain a carbon nanotube modified material.
  • the multi-walled carbon nanotubes have a tube length of 5-20 ⁇ m and a tube diameter of 7-11 nm.
  • the mass ratio of the melt-blown material with a melt index of 1400-1600 g/10min and the multi-walled carbon nanotubes is (95-98): (2-5).
  • the polypropylene melt-blown material is prepared from polypropylene resin, a nucleating agent, a molecular weight regulator and an antioxidant; the electret masterbatch is a white particle.
  • the temperature of the twin-screw is set between 170-240° C. during the melt-blown non-woven process.
  • the present invention provides a melt-blown cloth for KN95 masks, which is prepared by the aforementioned preparation method.
  • the breathing resistance of the melt-blown cloth is below 110 Pa, and the salt filtration efficiency is above 98%.
  • the present invention provides a nano-modified material containing carbon nanotubes, and blends the nano-modified material, electret masterbatch and polypropylene melt-blown material according to a certain proportion for melt-blown spinning to prepare the nano-modified material.
  • the KN95 mask melt-blown cloth with excellent salt filtration efficiency and respiratory resistance was obtained.
  • the breathing resistance of the obtained melt-blown cloth material can be kept below 110 Pa, and the salt filtration efficiency can be kept above 98%. While using lower cost, the present invention realizes the characteristics of both high filtration efficiency and low resistance, and further meets market demands.
  • Fig. 1 is the production schematic diagram of meltblown cloth
  • Fig. 2 is a spinning process schematic diagram
  • Fig. 3 is that embodiment 1 and comparative example 1 two kinds of formula salt property filtration efficiency change contrast with placing time;
  • Figure 4 is a comparison of the respiratory resistance of two formulations of Example 1 and Comparative Example 1 over time.
  • the invention provides a preparation method of a melt-blown cloth for KN95 masks, comprising the following steps:
  • the carbon nanotube modified material is blended with polypropylene melt-blown material and electret masterbatch, and the material obtained by blending is made into a melt-blown cloth for KN95 mask by melt-blown non-woven method;
  • the content of carbon nanotubes in the carbon nanotube modified material is 0.2% to 0.5%; the melt index of the polypropylene meltblown material is 1400 to 1600g/10min; the polypropylene meltblown material and carbon nanotubes are modified
  • the mass ratio of the material to the electret masterbatch is (91-97): (1-6): (3-4).
  • melt-blown nonwoven fabric The full name of melt-blown nonwoven fabric is melt-blown non-woven fabric. Its production process is to send the polymer resin material into the screw extruder through the feeding device, extrude, melt and plasticize, and accurately meter it to the melt-blown die head through the metering pump. Then, it is stretched into ultra-fine fibers under the action of high-speed and high-pressure hot air flow, and then a melt-blown non-woven fabric is formed on the web-forming curtain. Finally, the filtration efficiency of the melt-blown cloth is further enhanced by the high-pressure electret equipment. Schematic diagram of the production of melt-blown cloth As shown in FIG. 1 (FIG. 1 mainly illustrates the formation of a meltblown nonwoven fabric, and does not clearly illustrate high-pressure electret equipment, etc.).
  • the principle of melt-blown cloth spinning is roughly as follows.
  • the polymer melt after extrusion and melting of the polymer resin is accurately metered by a metering pump, sent to a special melt distribution cavity, and then rectified into the spinning melt pool.
  • Spinning micro-holes are sprayed into filaments, and ultra-fine fibers are obtained under the jet stretching of high-speed hot air flow.
  • the spinning process is shown in Figure 2.
  • the present invention provides a preparation method of the KN95 mask melt-blown cloth with high salt filtration efficiency and low breathing resistance by modifying and blending the melt-blown material.
  • the present invention mainly adopts nanometer modified material containing carbon nanotubes (referred to as carbon nanotube modified material), and blends with polypropylene meltblown material and the like.
  • the nano-modified material described in the embodiment of the present invention is a mixture of polypropylene resin, multi-walled carbon nanotubes, etc., wherein the mass content of carbon nanotubes is 0.2% to 0.5%.
  • the fiber layer is more fluffy, the gas permeability is enhanced, and the breathing resistance is reduced;
  • the amount of its own charge enhances the adsorption capacity of salt particles.
  • the melt index of the carbon nanotube modified material may be 400-600 g/10min, preferably 450-550 g/10min.
  • the carbon nanotube modified material is first prepared: a meltblown material with a melt index of 1400-1600 g/10min can be blended with multi-walled carbon nanotubes to obtain a preliminary modified material. The material is blended with polypropylene with a melt index of 35-45 g/10min to obtain a carbon nanotube modified material.
  • the melt-blown material is preferably blended with multi-wall carbon nanotubes in a twin-screw extruder under the conditions of a multi-section screw zone temperature of 180-200°C and a die temperature of 190-200°C. , to obtain a preliminary modified material.
  • the melt index of the melt-blown material is preferably 1400-1600 g/10min, more preferably 1500 g/10min.
  • the specific raw materials for preparing the meltblown material in the embodiment of the present invention are polypropylene resin Y40, beta nucleating agent NAB-82, antioxidant 1010, antioxidant 168, and molecular weight regulator P10-101.
  • the multi-walled carbon nanotubes may have a tube length of 5-20 ⁇ m and a tube diameter of 7-11 nm, and a commercially available product may be used.
  • the mass ratio of the meltblown material with a melt index of 1400-1600 g/10min and the multi-walled carbon nanotubes is preferably (95-98):(2-5), more preferably 97:3.
  • the second step preferably under the conditions of a multi-stage screw zone temperature of 190-210°C and a die temperature of 200-210°C, in a twin-screw extruder, the preliminary modified material prepared in the first step is mixed with the described PP blended and granulated, the final nano-modified material with melt index of 400-600g/10min can be obtained.
  • the polypropylene is a pure polypropylene resin, and its melt index is preferably 35-45 g/10min, more preferably 40 g/10min, and the polypropylene resin is Y40.
  • the added mass ratio of the pure polypropylene and the preliminary modified material is 90:10; the actual effective content of the obtained carbon nanotubes is 0.3 wt %.
  • the Melt Flow Index (MI or MFI) mentioned above refers to a numerical value representing the flow properties of plastic materials during processing. characteristic method.
  • the measurement method of MI is generally measured according to the method specified in ASTM D1238. Under a certain load (Kg) and temperature (°C), the weight of the melt flowing through a pipe of a certain diameter for a specified time (10 minutes) (grams). The larger the MI value, the better the fluidity of the plastic; otherwise, the worse the fluidity.
  • the components such as polypropylene melt-blown material, electret masterbatch, and the obtained nano-modified material are pre-mixed in a high-speed mixer in proportion; the uniformly mixed material is sent by the pumping system into a twin-screw extruder.
  • the fed material is sheared and blended by a twin-screw extruder, and then extruded from the die head. After being pulled by hot air, it exits the spinneret.
  • Meltblown cloth for KN95 masks (can be called KN95 mask meltblown cloth) is made.
  • the polypropylene melt-blown material described in the embodiment of the present invention is prepared from polypropylene resin, nucleating agent, molecular weight regulator and antioxidant; the specific preparation raw materials are: Sinopec Y40, Guangzhou Chenghe Technology Co., Ltd. NAB- 82, Shandong Shuanghe New Materials Co., Ltd. P10-101, BASF antioxidant 1010, BASF antioxidant 168.
  • the melt index of the polypropylene melt-blown material is 1400-1600 g/10min, preferably 1500 g/10min, which can be the same as the above-mentioned nano-modified material for preparing the raw material melt-blown material.
  • melt index of polypropylene meltblown material exceeds 1600g/10min, the breathing resistance will increase significantly in the later stage; if the melt index of polypropylene meltblown material is lower than 1400g/10min, it will easily lead to increased energy consumption of hot air and cold air systems, which is not conducive to production and costs. Increase.
  • the polypropylene melt-blown material specifically used in the embodiment can be self-made.
  • the polypropylene resin is a special material for Sinopec Y40 fiber grade mask non-woven fabric, and the melt index is 40 ⁇ 5g/10min, accounting for 90-95%.
  • the nucleating agent is polypropylene beta nucleating agent, the weight loss on heating is ⁇ 3%, the bulk density is 0.2-0.4g/cm 3 , the whiteness is ⁇ 94.0%, and the proportion is 0.03%-0.1%.
  • Antioxidant 1010 accounts for 0.1%-0.2%; antioxidant 168 accounts for 0.2%-0.3%.
  • the molecular weight regulator P10-101 is composed of 90% polypropylene and 10% 2,5-dimethyl-2,5-bis(tert-butylperoxy)hexane, accounting for 5%-7%.
  • the electret masterbatch described in the embodiment of the present invention is a white particulate matter, and commercially available products can be used, and the specific optional types are: Shanghai Ruoyi New Material Technology Co., Ltd. M60, M601A, M6010b; electret masterbatch volatile matter ⁇ 0.5%, bulk density 50-60g/100ml, melt index 1400-1500g/10min.
  • Electret masterbatch is a special functional masterbatch for melt-blown cloth. It is a micron-sized powder compounded by dispersants. It has the function of producing ions and storing charges, which can increase the electrostatic adsorption and negative ion sterilization capabilities of masks. Block droplets, dust, viruses, etc. below micron.
  • the mass ratio of the polypropylene melt-blown material, the carbon nanotube modified material and the electret masterbatch is (91-97): (1-6): (3-4), More preferably, it is (95-97):(1-2):(3-4), for example, the mass fraction of each raw material is 95%, 2%, and 3% in order.
  • twin screw is divided into seven sections during the melt-blown nonwoven according to the specific embodiment of the present invention, and the temperature is preferably set between 170-240°C, for example, 175°C, 195°C, 215°C, 230°C, 235°C in sequence. °C, 235 °C, 235 °C.
  • Other process conditions are preferably: pipeline temperature is set to 235 ° C; hot air temperature is set to 270 ° C;
  • the embodiment of the present invention provides a melt-blown cloth for KN95 masks, which is prepared by the preparation method described above.
  • the breathing resistance of the melt-blown cloth is below 110 Pa, and the salt filter efficiency is above 98%.
  • a KN95 mask melt-blown cloth material with high salt filter efficiency and low breathing resistance is prepared, and the production cost is low and has certain market advantages.
  • meltblown cloth for KN95 masks provided by the application and the preparation method thereof are specifically described below in conjunction with the examples.
  • these embodiments are implemented on the premise of the technical solution of the present invention, and the detailed implementation manner and specific operation process are given, only to further illustrate the features and advantages of the present invention, rather than to claim the present invention
  • the protection scope of the present invention is not limited to the following examples.
  • the polypropylene melt-blown material is prepared from polypropylene resin, nucleating agent, molecular weight regulator, and antioxidant. , accounting for 90-95%; Guangzhou Chenghe Technology Co., Ltd. NAB-82, the nucleating agent is polypropylene beta nucleating agent, heating loss ⁇ 3%, bulk density 0.2-0.4g/cm 3 , whiteness ⁇ 94.0%, accounting for 0.03%-0.1%; Shandong Shuanghe New Materials Co., Ltd.
  • molecular weight regulator P10-101 molecular weight regulator P10-101 consists of 90% polypropylene and 10% 2,5-dimethyl-2,5-bis (tert-butylperoxy)hexane, accounting for 5%-7%; BASF antioxidant 1010, BASF antioxidant 168, antioxidant 1010 accounting for 0.1%-0.2%, antioxidant 168 accounting for 0.2% -0.3%; the melt index of the polypropylene meltblown material is 1500g/10min.
  • the electret masterbatch is white particulate matter, specifically: Shanghai Ruoyi New Material Technology Co., Ltd. M6010b.
  • melt the melt in a twin-screw extruder under the conditions of screw 1 zone temperature 185°C, 2 zone temperature 205°C, 3 and 4 zone temperature 215°C, 5 zone temperature 200°C, and die temperature 195°C, melt the melt in a twin-screw extruder.
  • the melt-blown material with an index of 1500g/10min (same as the polypropylene melt-blown material below) is blended with multi-walled carbon nanotubes (Tiannai (Zhenjiang) Material Technology Co., Ltd. FT7000) with a tube length of 5-20 ⁇ m and a tube diameter of 7-11 nm.
  • the melt-blown material/carbon nanotube 97/3 mass ratio
  • the temperature in the screw 1 zone is 195°C
  • the temperature in zone 2 is 215°C
  • the temperature in zones 3 and 4 is 225°C
  • the temperature in zone 5 Under the conditions of a zone temperature of 210°C and a die temperature of 205°C, the preliminary modified material prepared in the first step was blended with pure polypropylene (Sinopec Y40) with a melt index of 40g/10min in a twin-screw extruder to obtain
  • the polypropylene melt-blown material, the electret masterbatch, and the above-mentioned carbon nanotube modified material are pre-mixed in a high-speed mixer for 15 minutes in proportion.
  • the polypropylene melt-blown material, the carbon nanotube modified material and the electret masterbatch The mass ratio of pellets is 95:2:3; the uniformly mixed material is fed into the twin-screw extruder by the pumping system, and the setting temperature of twin-screw 1-7 is set to 175°C, 195°C, 215°C, 230°C , 235°C, 235°C, 235°C; pipeline temperature is set to 235°C; hot air temperature is set to 270°C; Current 6.5mA.
  • the fed material is sheared and blended by a twin-screw extruder and then extruded by the die head. After being pulled by hot air, it exits the spinneret. Obtain the mask meltblown cloth material.
  • the gram weight of the obtained melt-blown cloth is 25(-1 ⁇ +2) g/m 2 , the thickness has no obvious requirement, the width is 260(-1 ⁇ +3) mm, the longitudinal and transverse breaking strength is more than 8N, and the longitudinal and transverse breaking elongation is ⁇ 20%.
  • the weight composition of its raw materials is as follows:
  • the present invention tests the performance of the prepared melt-blown cloth, according to the test method of T/JSFZXH001-2020 "Polypropylene Melt-blown Nonwovens for Masks": after the photometer is adjusted, the melt-blown cloth with a width of 260mm is placed on a double layer.
  • the mask and meltblown cloth breathing resistance test instrument marked by Guangjian set to the meltblown cloth test mode, set the NaCl aerosol flow rate to 85L/min, and the duration of 1min to obtain the data of the filtration efficiency and respiratory resistance of salt particles. Each sample was measured in three different areas, and the average value was taken.
  • the present invention is prepared by providing a nano-modified material containing carbon nanotubes, and blending the nano-modified material, electret masterbatch and polypropylene melt-blown material in a certain proportion for melt-blown spinning.
  • the KN95 mask melt-blown cloth with superior salt filtration efficiency and respiratory resistance.
  • the breathing resistance of the obtained melt-blown cloth material can be kept below 110Pa, and the salt filtration efficiency can be kept above 98%. While using lower cost, the present invention realizes the characteristics of both high filtration efficiency and low resistance, and further meets market demands.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Health & Medical Sciences (AREA)
  • Respiratory Apparatuses And Protective Means (AREA)
  • Filtering Materials (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Nonwoven Fabrics (AREA)
  • Electrostatic Separation (AREA)

Abstract

一种用于KN95口罩的熔喷布及其制备方法,制备方法包括步骤:S1、提供碳纳米管含量为0.2%~0.5%的碳纳米管改性材料;S2、将碳纳米管改性材料与熔融指数为1400~1600g/10min聚丙烯熔喷料、驻极母粒以质量比(1~6):(91~97):(3~4)共混,将共混得到的物料通过熔喷法非织造方式制成熔喷布;所述熔喷布具有较高的盐性滤效和较低的呼吸阻力。

Description

一种用于KN95口罩的熔喷布及其制备方法
本申请要求于2021年04月02日提交中国专利局、申请号为202110361237.2、发明名称为“一种用于KN95口罩的熔喷布及其制备方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及口罩技术领域,具体涉及一种用于KN95口罩的熔喷布及其制备方法。
背景技术
自2019年底以来,口罩的需求量迎来一次大的跳跃,口罩行业对口罩滤芯熔喷布要求也越来越高。在满足盐性颗粒物过滤效率(简称盐性滤效)较高的同时,呼吸阻力尽可能低的熔喷布在行业中竞争优势愈来愈明显。
传统KN95口罩熔喷布一般选用聚合物熔喷料与驻极母粒共混,通过熔喷法非织造方式制备而成。但是,通常要想提高盐性滤效(>98%),呼吸阻力就会增大,佩戴后就容易使人觉得呼吸困难;而呼吸阻力小(<120Pa),过滤效率又难以达到较高要求,防护安全性大打折扣。因此,制备高盐性滤效、低呼吸阻力两者兼顾的熔喷布是口罩市场迫切的需要。
发明内容
针对现有技术中存在的上述问题,本发明提供一种用于KN95口罩的熔喷布及其制备方法,本发明制备的熔喷布具有较高的盐性滤效和较低的呼吸阻力,利于用在生产KN95口罩中。
本发明提供一种用于KN95口罩的熔喷布的制备方法,包括以下步骤:
S1、提供碳纳米管改性材料;
S2、将所述碳纳米管改性材料与聚丙烯熔喷料、驻极母粒共混,将共混得到的物料通过熔喷法非织造方式,制成用于KN95口罩的熔喷布;
所述碳纳米管改性材料中碳纳米管含量为0.2%~0.5%;所述聚丙烯熔喷料的熔融指数为1400~1600g/10min;所述聚丙烯熔喷料、碳纳米管改性材料和驻极母粒的质量比为(91~97):(1~6):(3~4)。
在本发明的优选实施例中,所述碳纳米管改性材料的熔融指数为400~600g/10min。
在本发明的优选实施例中,所述碳纳米管改性材料按照以下方式获得:将熔融指数1400~1600g/10min的熔喷料与多壁碳纳米管共混,得到初步改性材料,将所述初步改性材料与熔融指数35~45g/10min的聚丙烯共混,得到碳纳米管改性材料。
在本发明的优选实施例中,所述多壁碳纳米管的管长5-20μm,管径7-11nm。
在本发明的优选实施例中,所述熔融指数1400~1600g/10min的熔喷料与多壁碳纳米管的质量比为(95~98):(2~5)。
在本发明的优选实施例中,所述聚丙烯熔喷料由聚丙烯树脂、成核剂、分子量调节剂和抗氧剂制备得到;所述驻极母粒为白色颗粒物。
在本发明的优选实施例中,所述熔喷法非织造时双螺杆温度设置在170-240℃之间。
本发明提供一种用于KN95口罩的熔喷布,由前文所述的制备方法制得,所述熔喷布的呼吸阻力在110Pa以下,盐性滤效在98%以上。
与现有技术相比,本发明通过提供含有碳纳米管的纳米改性材料,按照一定比例将该纳米改性材料、驻极母粒与聚丙烯熔喷料共混进行熔喷纺布,制备得到了盐性滤效与呼吸阻力均较优的KN95口罩熔喷布。本发明通过对聚丙烯熔喷料共混改性,所得熔喷布材料的呼吸阻力能保持在110Pa以下,盐性滤效能保持在98%以上。在使用较低成本的同时,本发明实现了高滤效与低阻力兼顾的特性,进一步满足市场需求。
附图说明
图1为熔喷布生产示意图;
图2为纺丝过程示意图;
图3为实施例1与比较例1两种配方盐性过滤效率随放置时间变化对比;
图4为实施例1与比较例1两种配方呼吸阻力随时间变化对比。
具体实施方式
下面对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明提供了一种用于KN95口罩的熔喷布的制备方法,包括以下步骤:
S1、提供碳纳米管改性材料;
S2、将所述碳纳米管改性材料与聚丙烯熔喷料、驻极母粒共混,将共混得到的物料通过熔喷法非织造方式,制成用于KN95口罩的熔喷布;
所述碳纳米管改性材料中碳纳米管含量为0.2%~0.5%;所述聚丙烯熔喷料的熔融指数为1400~1600g/10min;所述聚丙烯熔喷料、碳纳米管改性材料和驻极母粒的质量比为(91~97):(1~6):(3~4)。
熔喷布全称熔喷法非织造布,其生产流程是将高聚物树脂物料通过喂料装置送入螺杆挤出机,挤压熔融塑化,通过计量泵精确计量送给熔喷模头,再在高速高压热空气流的作用下拉伸成超细纤维,然后在成网帘上形成熔喷非织造布,最后经过高压驻极设备使熔喷布过滤效率进一步增强,熔喷布生产示意图如图1所示(图1主要示意形成熔喷非织造布,未明显示意高压驻极设备等)。
熔喷布纺丝原理大致如下,聚合物树脂经挤压熔融后的高聚物熔体通过计量泵精确计量,送入一特殊的熔体分配腔,再经过整流后进入纺丝熔体池,经纺丝微孔喷出成丝,在高速热风气流的喷射拉伸下得到超细纤维,纺丝过程如图2所示。
如何使口罩熔喷布达到高盐性滤效、低阻力兼顾,一方面可从驻极母粒,喷丝板孔径与孔目,高压驻电设备三方面着手;另一方面也可从工艺设备着手(如改用水驻极设备),但无论哪一方面,都意味着更大的生产成本。
针对现有KN95口罩熔喷布的缺陷,本发明通过对熔喷料改性共混,提供了一种高盐性滤效、低呼吸阻力的KN95口罩熔喷布的制备方法。
为了兼顾KN95口罩熔喷布高滤效与低阻力的特点,本发明主要采用含有碳纳米管的纳米改性材料(简称为碳纳米管改性材料),与聚丙烯熔喷料等共混。本发明实施例所述的纳米改性材料为聚丙烯树脂、多壁碳纳米管等的混合 物,其中碳纳米管质量含量为0.2%~0.5%。本发明实施例通过引入中空环结构的多壁碳纳米管,使得纤维层更加蓬松,加强气体通透性,降低呼吸阻力;此外,层状结构的多壁碳纳米管也加强电荷储存,增强材料本身电荷量,加强对盐性颗粒物吸附能力。以上两方面使得传统配方KN95口罩熔喷布性能优化,进一步满足市场盐性高滤效、低阻力的需求。
在本发明的实施例中,所述碳纳米管改性材料的熔融指数可为400~600g/10min,优选为450-550g/10min。本发明实施例首先制备所述的碳纳米管改性材料:可将熔融指数1400~1600g/10min的熔喷料与多壁碳纳米管共混,得到初步改性材料,将所述初步改性材料与熔融指数35~45g/10min的聚丙烯共混,得到碳纳米管改性材料。
其中,第一步优选在180-200℃的多段螺杆区温度、模头温度190-200℃的条件下,在双螺杆挤出机中将所述的熔喷料与多壁碳纳米管共混,得到初步改性材料。所述的熔喷料熔融指数优选为1400~1600g/10min,更优选为1500g/10min。本发明实施例具体的熔喷料制备原料为聚丙烯树脂Y40,β成核剂NAB-82,抗氧剂1010,抗氧剂168,分子量调节剂P10-101。所述多壁碳纳米管的管长可为5-20μm,管径7-11nm,采用市售产品即可。所述熔融指数1400~1600g/10min的熔喷料与多壁碳纳米管的质量比优选为(95~98):(2~5),更优选为97:3。
接着是第二步,优选在190-210℃的多段螺杆区温度、模头温度200-210℃的条件下,在双螺杆挤出机中,将第一步制备的初步改性材料与所述的聚丙烯共混造粒,可得到熔融指数在400-600g/10min的最终纳米改性材料。所述的聚丙烯是纯聚丙烯树脂,其熔融指数优选为35~45g/10min,更优选为40g/10min,聚丙烯树脂Y40。作为优选,所述的纯聚丙烯与初步改性材料的添加质量比例为90:10;所得到的碳纳米管的实际有效含量为0.3wt%。
前文所述的熔融指数(Melt Flow Index,MI or MFI),是指一种表示塑胶材料加工时的流动性能的数值,最初是由美国量测标准协会根据美国Dupont(杜邦公司)惯用的鉴定塑料特性的方法制定而成。MI的测量方法一般是根据ASTM D1238所规范的方法测得,在一定的负荷(Kg)及温度(℃)下,用指定的时间(10分钟)经过一定直径的管子所流出来的融胶重量(克数)。MI 值越大,表示塑料的流动性越好;反之则流动性越差。
在本发明实施例加工时,先将聚丙烯熔喷料、驻极母粒、得到的纳米改性材料等组分按比例在高速混料机中预混合;混合均匀的物料由抽料系统送入双螺杆挤出机中。送入的材料经过双螺杆挤出机剪切、共混后由机头挤出,经热风牵引后出喷丝板,圆网收集输送后经过高压驻电,然后经过分切收卷成卷,制成用于KN95口罩的熔喷布(可称为KN95口罩熔喷布)。
其中,本发明实施例所述的聚丙烯熔喷料由聚丙烯树脂、成核剂、分子量调节剂和抗氧剂制备得到;具体制备原料如:中石化Y40,广州呈合科技股份有限公司NAB-82,山东双和新材料有限公司P10-101,巴斯夫抗氧剂1010,巴斯夫抗氧剂168。所述聚丙烯熔喷料的熔融指数为1400~1600g/10min,优选为1500g/10min,可与前文纳米改性材料制备原料熔喷料相同。如聚丙烯熔喷料熔融指数超过1600g/10min,后期呼吸阻力增大较为明显;聚丙烯熔喷料熔融指数低于1400g/10min,容易导致热风与冷风系统能耗增大,不利于生产,成本增加。
实施例具体采用的聚丙烯熔喷料可为自制,例如聚丙烯树脂为中石化Y40纤维级口罩无纺布专用料,熔融指数在40±5g/10min,占比90-95%。成核剂为聚丙烯β成核剂,加热减量≤3%,堆积密度0.2-0.4g/cm 3,白度≥94.0%,占比0.03%-0.1%。抗氧剂1010占比0.1%-0.2%;抗氧剂168占比0.2%-0.3%。分子量调节剂P10-101组成为90%聚丙烯和10%2,5-二甲基-2,5-双(叔丁基过氧)己烷,占比5%-7%。
并且,本发明实施例所述的驻极母粒为白色颗粒物,采用市售产品即可,具体可选种类如:上海若祎新材料科技有限公司M60,M601A,M6010b;驻极母粒挥发分≤0.5%,堆积密度50-60g/100ml,熔融指数1400-1500g/10min。驻极母粒是一种熔喷布专用的功能母粒,是分散剂复合而成的微米级粉体;其具有生产电离子储存电荷的功能,可增加口罩静电吸附和负离子杀菌的能力,有效阻隔微米以下的飞沫、粉尘、病毒等。
在本发明的优选实施例中,所述聚丙烯熔喷料、碳纳米管改性材料和驻极母粒的质量比为(91~97):(1~6):(3~4),进一步优选为(95~97):(1~2):(3~4),例如各原料质量分数依次为95%,2%,3%。
此外,本发明具体实施例所述熔喷法非织造时双螺杆分为七段区域,优选设置温度在170-240℃之间,例如依次为175℃、195℃、215℃、230℃、235℃、235℃、235℃。其他工艺条件优选为:管道温度设定为235℃;热风温度设定为270℃;热风量设定为900rpm,地抽风风机风量800rpm,冷风设定800rpm;驻极设备电压50KV,电流6.5mA。
本发明实施例提供了一种用于KN95口罩的熔喷布,由前文所述的制备方法制得,所述熔喷布的呼吸阻力在110Pa以下,盐性滤效在98%以上。本发明实施例制备了一种高盐性滤效、低呼吸阻力的KN95口罩熔喷布材料,且生产成本较低,具有一定的市场优势。
为了进一步理解本申请,下面结合实施例对本申请提供的用于KN95口罩的熔喷布及其制备方法进行具体地描述。但是应当理解,这些实施例是在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制,本发明的保护范围也不限于下述的实施例。
以下实施例中,所述的聚丙烯熔喷料由聚丙烯树脂、成核剂、分子量调节剂、抗氧剂制备而成,各原料牌号具体为:中石化Y40,熔融指数在40±5g/10min,占比90-95%;广州呈合科技股份有限公司NAB-82,成核剂为聚丙烯β成核剂,加热减量≤3%,堆积密度0.2-0.4g/cm 3,白度≥94.0%,占比0.03%-0.1%;山东双和新材料有限公司P10-101,分子量调节剂P10-101组成为90%聚丙烯和10%2,5-二甲基-2,5-双(叔丁基过氧)己烷,占比5%-7%;巴斯夫抗氧剂1010,巴斯夫抗氧剂168,抗氧剂1010占比0.1%-0.2%,抗氧剂168占比0.2%-0.3%;所述的聚丙烯熔喷料熔融指数为1500g/10min。
所述的驻极母粒为白色颗粒物,具体为:上海若祎新材料科技有限公司M6010b。
实施例1
1)碳纳米管改性材料制备
第一步,在螺杆1区温度185℃,2区温度205℃,3、4区温度215℃,5区温度200℃,模头温度195℃的条件下,在双螺杆挤出机中将熔融指数1500g/10min的熔喷料(与下文聚丙烯熔喷料相同)与管长5-20μm,管径7-11nm 的多壁碳纳米管(天奈(镇江)材料科技有限公司FT7000)共混,得到初步改性材料,此时熔喷料/碳纳米管=97/3质量比;第二步,在螺杆1区温度195℃,2区温度215℃,3、4区温度225℃,5区温度210℃,模头温度205℃的条件下,在双螺杆挤出机中将第一步制备的初步改性材料与熔融指数为40g/10min的纯聚丙烯(中石化Y40)共混,得到熔融指数在400-600g/10min的最终纳米改性材料,此时的添加比例为纯聚丙烯/初步改性材料=90/10。也就是说,所得碳纳米管改性材料中碳纳米管的实际有效含量为0.3%。
2)熔喷布制备
先将聚丙烯熔喷料、驻极母粒、上述碳纳米管改性材料按比例在高速混料机中预混合15min,所述聚丙烯熔喷料、碳纳米管改性材料与驻极母粒的质量比为95:2:3;混合均匀的物料由抽料系统送入双螺杆挤出机中,双螺杆1-7的设置温度设定为175℃、195℃、215℃、230℃、235℃、235℃、235℃;管道温度设定为235℃;热风温度设定为270℃;热风量设定为900rpm,地抽风风机风量800rpm,冷风设定800rpm;驻极设备电压50KV,电流6.5mA。送入的材料经过双螺杆挤出机剪切、共混后由机头挤出,经热风牵引后出喷丝板,圆网收集输送后经过高压驻电,然后经过分切收卷成卷,得到口罩熔喷布材料。
所得熔喷布的克重25(-1~+2)g/m 2,厚度无明显要求,幅宽260(-1~+3)mm,纵横向断裂强力>8N,纵横向断裂伸长率≥20%。
其原料的重量组成如下:
表1实施例1熔喷布的制备原料(记为配方一)
Figure PCTCN2021092263-appb-000001
比较例1
按照实施例1中2)制备得到传统KN95口罩熔喷布,不同的原料重量组成如下:
表2比较例1熔喷布的制备原料(记为配方二)
Figure PCTCN2021092263-appb-000002
本发明对制备的熔喷布进行性能测试,按照T/JSFZXH001-2020《口罩用聚丙烯熔喷非织造布》测试方法:光度计调好后,将幅宽为260mm的熔喷布双层放在广检标记的口罩及熔喷布呼吸阻力测试仪器,设定为熔喷布测试模式,NaCl气溶胶流量设定为85L/min,时长1min,得到盐性颗粒物过滤效率与呼吸阻力数据,每个样取三块不同区域测量,取平均值。
在不同放置时间(放置条件:恒温恒湿(25℃,60%相对湿度))测试的结果如图3、图4所示,加纳米改性材料的配方一与不加纳米改性材料的配方二进行对比,两者熔喷布盐性颗粒物过滤效率均保持在98%以上,而前者呼吸阻力一直保持在110Pa以下,后者后期则稳定在140Pa以上。由此表明,本发明在保证过滤性的同时,改性纳米材料的加入大大减小了熔喷布的呼吸阻力,让其在行业竞争中更具优势。
实施例2
按照实施例1进行制备,区别在于:原料配比聚丙烯熔喷料:驻极母粒:纳米改性材料=91:3;6,熔喷布盐性颗粒物滤效与呼吸阻力相较实施例1变化不大,但容易造成喷丝板堵塞。
实施例3
按照实施例1进行制备,区别在于:原料配比聚丙烯熔喷料:驻极母粒:纳米改性材料=94:4:2,熔喷布盐性颗粒物滤效与阻力变化不大,但成本有所提升。
由以上实施例可知,本发明通过提供含有碳纳米管的纳米改性材料,按照一定比例将该纳米改性材料、驻极母粒与聚丙烯熔喷料共混进行熔喷纺布,制备得到了盐性滤效与呼吸阻力均较优的KN95口罩熔喷布。本发明通过对聚丙烯熔喷料共混改性,所得熔喷布材料的呼吸阻力能保持在110Pa以下,盐性滤 效能保持在98%以上。在使用较低成本的同时,本发明实现了高滤效与低阻力兼顾的特性,进一步满足市场需求。
以上所述仅是本发明的优选实施方式,应当指出,对于使本技术领域的专业技术人员,在不脱离本发明技术原理的前提下,是能够实现对这些实施例的多种修改的,而这些修改也应视为本发明应该保护的范围。

Claims (8)

  1. 一种用于KN95口罩的熔喷布的制备方法,包括以下步骤:
    S1、提供碳纳米管改性材料;
    S2、将所述碳纳米管改性材料与聚丙烯熔喷料、驻极母粒共混,将共混得到的物料通过熔喷法非织造方式,制成用于KN95口罩的熔喷布;
    所述碳纳米管改性材料中碳纳米管含量为0.2%~0.5%;所述聚丙烯熔喷料的熔融指数为1400~1600g/10min;所述聚丙烯熔喷料、碳纳米管改性材料和驻极母粒的质量比为(91~97):(1~6):(3~4)。
  2. 根据权利要求1所述的熔喷布的制备方法,其特征在于,所述碳纳米管改性材料的熔融指数为400~600g/10min。
  3. 根据权利要求2所述的熔喷布的制备方法,其特征在于,所述碳纳米管改性材料按照以下方式获得:将熔融指数1400~1600g/10min的熔喷料与多壁碳纳米管共混,得到初步改性材料,将所述初步改性材料与熔融指数35~45g/10min的聚丙烯共混,得到碳纳米管改性材料。
  4. 根据权利要求3所述的熔喷布的制备方法,其特征在于,所述多壁碳纳米管的管长5-20μm,管径7-11nm。
  5. 根据权利要求3所述的熔喷布的制备方法,其特征在于,所述熔融指数1400~1600g/10min的熔喷料与多壁碳纳米管的质量比为(95~98):(2~5)。
  6. 根据权利要求1-5任一项所述的熔喷布的制备方法,其特征在于,所述聚丙烯熔喷料由聚丙烯树脂、成核剂、分子量调节剂和抗氧剂制备得到;所述驻极母粒为白色颗粒物。
  7. 根据权利要求1-5任一项所述的熔喷布的制备方法,其特征在于,所述熔喷法非织造时双螺杆温度设置在170-240℃之间。
  8. 一种用于KN95口罩的熔喷布,由权利要求1-7任一项所述的制备方法制得,所述熔喷布的呼吸阻力在110Pa以下,盐性滤效在98%以上。
PCT/CN2021/092263 2021-04-02 2021-05-08 一种用于kn95口罩的熔喷布及其制备方法 WO2022205558A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110361237.2A CN113073425B (zh) 2021-04-02 2021-04-02 一种用于kn95口罩的熔喷布及其制备方法
CN202110361237.2 2021-04-02

Publications (1)

Publication Number Publication Date
WO2022205558A1 true WO2022205558A1 (zh) 2022-10-06

Family

ID=76614925

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/092263 WO2022205558A1 (zh) 2021-04-02 2021-05-08 一种用于kn95口罩的熔喷布及其制备方法

Country Status (2)

Country Link
CN (1) CN113073425B (zh)
WO (1) WO2022205558A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067005A1 (de) * 2009-12-02 2011-06-09 Bundesanstalt für Materialforschung und -Prüfung (BAM) Kopfschutz
CN102190882A (zh) * 2010-03-10 2011-09-21 华中科技大学 无机纳米粒改性聚氨酯海绵口罩材料及其制备方法和应用
CN104759148A (zh) * 2015-03-18 2015-07-08 蚌埠德美过滤技术有限公司 一种污水处理用熔喷聚丙烯掺混碳纳米管的高效复合滤料及其制备方法
CN105595465A (zh) * 2014-11-15 2016-05-25 王翊臻 一种空气幕防护口罩
CN108642712A (zh) * 2018-06-22 2018-10-12 合肥洁诺医疗用品有限公司 一种用于医用口罩的无纺布
CN111484678A (zh) * 2020-06-29 2020-08-04 金发科技股份有限公司 低阻力口罩用熔喷无纺布用驻极母粒及其制备方法
US10757988B1 (en) * 2020-04-07 2020-09-01 Molecular Rebar Design, Llc Personal protective equipment with functionalized nanotube compositions to control pathogens such as SARS CoV-2 (coronavirus)
US20200340145A1 (en) * 2019-04-26 2020-10-29 Thomas Jefferson University Hemp-based char or oils and polymers formed as fibers or films having enhanced properties
CN112323167A (zh) * 2020-11-09 2021-02-05 上海桐轩医疗科技有限公司 一种防护口罩及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2488124T3 (es) * 2010-11-26 2014-08-26 Eurofilters N.V. Mascarilla facial con material de absorción en polvo aplicado a fibras cortadas cargadas electrostáticamente
CN109701504A (zh) * 2018-12-17 2019-05-03 宿迁市美达净化科技有限公司 一种石墨烯抑菌口罩过滤材料及其制备方法和应用
DE202020101786U1 (de) * 2020-04-02 2020-05-04 SCi Kontor GmbH Mehrlagiger Filter für einen wiederkehrenden Gebrauch und Reinigungsmöglichkeit
CN111408282B (zh) * 2020-04-29 2022-05-20 郑州大学 一种碳纳米管/碳纳米纤维复合薄膜及其制备方法和应用

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011067005A1 (de) * 2009-12-02 2011-06-09 Bundesanstalt für Materialforschung und -Prüfung (BAM) Kopfschutz
CN102190882A (zh) * 2010-03-10 2011-09-21 华中科技大学 无机纳米粒改性聚氨酯海绵口罩材料及其制备方法和应用
CN105595465A (zh) * 2014-11-15 2016-05-25 王翊臻 一种空气幕防护口罩
CN104759148A (zh) * 2015-03-18 2015-07-08 蚌埠德美过滤技术有限公司 一种污水处理用熔喷聚丙烯掺混碳纳米管的高效复合滤料及其制备方法
CN108642712A (zh) * 2018-06-22 2018-10-12 合肥洁诺医疗用品有限公司 一种用于医用口罩的无纺布
US20200340145A1 (en) * 2019-04-26 2020-10-29 Thomas Jefferson University Hemp-based char or oils and polymers formed as fibers or films having enhanced properties
US10757988B1 (en) * 2020-04-07 2020-09-01 Molecular Rebar Design, Llc Personal protective equipment with functionalized nanotube compositions to control pathogens such as SARS CoV-2 (coronavirus)
CN111484678A (zh) * 2020-06-29 2020-08-04 金发科技股份有限公司 低阻力口罩用熔喷无纺布用驻极母粒及其制备方法
CN112323167A (zh) * 2020-11-09 2021-02-05 上海桐轩医疗科技有限公司 一种防护口罩及其制备方法

Also Published As

Publication number Publication date
CN113073425B (zh) 2022-07-26
CN113073425A (zh) 2021-07-06

Similar Documents

Publication Publication Date Title
WO2022000939A1 (zh) 低阻力口罩用熔喷无纺布用驻极母粒及其制备方法
WO2021253720A1 (zh) 口罩用熔喷无纺布专用有机驻极母粒及其制备方法、制成的熔喷无纺布
CN106633834A (zh) 一种黑色母粒、锦纶6纤维及其制备方法
CN106521805A (zh) 一种导电‑增韧用熔喷复合无纺布的制备方法
CN108754644B (zh) 一种高强粗旦聚丙烯纺粘长丝及其制备方法
CN113981550B (zh) 液/固态添加剂在熔喷纤维特定位置的添加方法和设备
CN112870848A (zh) 一种多功能熔喷滤芯及其制备工艺
CN111334931A (zh) 一种新型聚丙烯熔喷布配方及其加工工艺
WO2022205558A1 (zh) 一种用于kn95口罩的熔喷布及其制备方法
CN111876902A (zh) 一种熔喷无纺布驻极体添加装置及其添加方法
CN112694667A (zh) 一种聚丙烯驻极母粒、熔喷布及其制备方法
CN103541152A (zh) 一种无阻力高效无纺布的生产方法
CN106149094B (zh) 一种聚丙烯纳米纤维及其制备方法
TW200928027A (en) Fiber and method of forming the same
CN106757511A (zh) 一种含高分散性石墨烯片晶及液相表面导电膜的改性锦纶纤维及其制备工艺
TWI428484B (zh) 含聚縮醛之分割型複合纖維、使用該複合纖維的纖維成形體與製品
CN101205638A (zh) 一种熔体直纺生产皮芯结构抗菌纤维的方法
CN110079903B (zh) 电纺尼龙纳米纤维连续长线高支纱的制备方法和应用
EP2171138B1 (de) Spinnverfahren
CN101235553A (zh) 一种熔体直纺生产皮芯结构抗紫外功能纤维的方法
CN103741246A (zh) 一种抗静电纳米二氧化钛复合丙纶单丝及其制备方法
CN212426370U (zh) 一种熔喷无纺布驻极体添加装置
CN108560079A (zh) 自卷曲导电纤维及其制备方法
CN111945240A (zh) 一种用于高分子熔喷纤维的驻极材料及其检测方法
KR19980061106A (ko) 초극세 폴리에스터 복합섬유의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21934209

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21934209

Country of ref document: EP

Kind code of ref document: A1