WO2022205215A1 - 一种汇流构件、电池及用电设备 - Google Patents

一种汇流构件、电池及用电设备 Download PDF

Info

Publication number
WO2022205215A1
WO2022205215A1 PCT/CN2021/084736 CN2021084736W WO2022205215A1 WO 2022205215 A1 WO2022205215 A1 WO 2022205215A1 CN 2021084736 W CN2021084736 W CN 2021084736W WO 2022205215 A1 WO2022205215 A1 WO 2022205215A1
Authority
WO
WIPO (PCT)
Prior art keywords
fuse
battery
sectional area
fusing
cross
Prior art date
Application number
PCT/CN2021/084736
Other languages
English (en)
French (fr)
Inventor
王学辉
胡璐
陈小波
Original Assignee
宁德时代新能源科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德时代新能源科技股份有限公司 filed Critical 宁德时代新能源科技股份有限公司
Priority to EP21786311.7A priority Critical patent/EP4096012B1/en
Priority to KR1020217037531A priority patent/KR20220136886A/ko
Priority to JP2021571440A priority patent/JP7412454B2/ja
Priority to PCT/CN2021/084736 priority patent/WO2022205215A1/zh
Priority to CN202180003047.1A priority patent/CN115485927B/zh
Priority to US17/559,581 priority patent/US20220328945A1/en
Publication of WO2022205215A1 publication Critical patent/WO2022205215A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/583Devices or arrangements for the interruption of current in response to current, e.g. fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/204Racks, modules or packs for multiple batteries or multiple cells
    • H01M50/207Racks, modules or packs for multiple batteries or multiple cells characterised by their shape
    • H01M50/209Racks, modules or packs for multiple batteries or multiple cells characterised by their shape adapted for prismatic or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/503Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the shape of the interconnectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/505Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising a single busbar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/507Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing comprising an arrangement of two or more busbars within a container structure, e.g. busbar modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/514Methods for interconnecting adjacent batteries or cells
    • H01M50/516Methods for interconnecting adjacent batteries or cells by welding, soldering or brazing
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/502Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing
    • H01M50/521Interconnectors for connecting terminals of adjacent batteries; Interconnectors for connecting cells outside a battery casing characterised by the material
    • H01M50/522Inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/547Terminals characterised by the disposition of the terminals on the cells
    • H01M50/55Terminals characterised by the disposition of the terminals on the cells on the same side of the cell
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/543Terminals
    • H01M50/552Terminals characterised by their shape
    • H01M50/553Terminals adapted for prismatic, pouch or rectangular cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/574Devices or arrangements for the interruption of current
    • H01M50/581Devices or arrangements for the interruption of current in response to temperature
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/18Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for batteries; for accumulators
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0029Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries with safety or protection devices or circuits
    • H02J7/00304Overcurrent protection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/10Temperature sensitive devices
    • H01M2200/103Fuse
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/0042Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
    • H02J7/0045Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction concerning the insertion or the connection of the batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of battery technology, and in particular, to a confluence member, a battery and an electrical device.
  • Lithium-ion batteries have become the mainstream products of secondary batteries due to their outstanding advantages such as high energy density and good cycle performance, and are widely used in portable electrical appliances, power vehicles, mobile phones, spacecraft and other fields.
  • the safety of batteries is one of the main concerns of users and one of the main factors restricting the development of batteries. Therefore, how to improve the safety performance of the battery has become an urgent problem to be solved in the battery field.
  • an embodiment of the present application provides a confluence member, comprising a first connection portion for connecting a first electrode terminal of a first battery cell; a second connection portion for connecting a second electrode terminal of the second battery cell Electrode terminal; a plurality of fuse parts, one end of each fuse part is connected to the first connection part, and the other end is connected to the second connection part; wherein, the one with the largest overcurrent cross-sectional area among the plurality of fuse parts corresponds to The over-current cross-sectional area is S max , the over-current cross-sectional area corresponding to the one with the smallest over-current cross-sectional area in the plurality of fuse parts is S min , and S min and S max satisfy the following relationship: 0.3 ⁇ S min / Smax ⁇ 1 .
  • the sum of the cross-sectional areas of the multiple fuses is S total , wherein S min and S total satisfy the following relationship: 0.2 ⁇ S min /S total ; S max and S total satisfies the following relation: S max /S total ⁇ 0.6.
  • the ratio between the minimum overcurrent cross-sectional area S min and the total overcurrent cross-sectional area S total of all fuse parts is defined to be greater than or equal to 0.2 and the maximum overcurrent cross-sectional area S max and the overcurrent of all fuse parts.
  • the ratio between the sum of the cross-sectional areas S total is limited to be less than or equal to 0.6, which can further optimize the fusing time of the bus member and avoid a long-term short circuit between the first battery cell and the second battery cell.
  • At least two fuse parts in the plurality of fuse parts have unequal cross-sectional areas for current flow.
  • the overcurrent cross-sectional areas of all the fuse parts are constant, so that the fusing time difference between the confluence components has a minimum value, and the flow rate of the confluence components is further optimized. Fusing time to avoid long-term short circuit between the first battery cell and the second battery cell.
  • the number of the fuse parts is at least three; the at least three fuse parts are arranged side by side along the width direction of the bus member, and the overcurrent cutoff of the at least three fuse parts is The area decreases sequentially from both sides in the width direction of the confluence member toward the middle.
  • the two sides of the confluence member in the width direction bear a large torque, so the cross-sectional area of the fuse portion decreases sequentially from the two sides in the width direction of the confluence member to the middle.
  • the mechanical strength of the confluence member is enhanced, so that the confluence member can bear larger torque on both sides in the width direction.
  • the flow cross-sectional area of the fuse portion is greater than 1.5 times its thickness.
  • the confluence member since the confluence member is formed by stamping, it needs a sufficient width to ensure effective stamping. Therefore, if the cross-sectional area of the fuse section is greater than 1.5 times its thickness, the width of the fuse section is greater than 1.5 times the thickness. To enhance the manufacturability of the bus members.
  • At least one of the fusible links is provided with a bent portion configured to absorb stress in a width direction of the bus member.
  • the bending portion can absorb the stress in the width direction of the bus member and play a certain role in protecting the bus member and the battery cells.
  • the setting of the gap is convenient for placing the protective cover.
  • the gap can make room for other structures, and at the same time, the fuse part is kept at a certain distance from the inner wall of the battery box to prevent the fuse part from fusing.
  • the high temperature generated during the process damages the box.
  • one side in the width direction of the converging member forms a first gap with the first connecting portion and the second connecting portion, and the other side is connected with the first connecting portion and the second connecting portion.
  • the second connecting portion forms a second notch; the first notch and the second notch have different depths in the width direction of the bus member.
  • the depths of the first notch and the second notch are different.
  • the box body can be prevented from being damaged by high temperature when the fuse part is blown.
  • the protective cover can not only protect the fuse part, avoid mechanical breakage caused by the deformation of the box body, the change of the distance between the first battery cell and the second battery cell, etc.
  • the generated high temperature damages the box, the first battery cell and the second battery cell, so as to reduce the arc damage caused by the fusing behavior of the fuse section.
  • the protective cover also enhances the structural strength of the bus member.
  • embodiments of the present application provide a battery, including a first battery cell having a first electrode terminal; a second battery cell having a second electrode terminal; and a busbar provided according to any embodiment of the first aspect
  • the first connection portion is connected to the first electrode terminal, and the second connection portion is connected to the second electrode terminal.
  • the minimum cross-sectional area S min and the maximum cross-sectional area S max of all fuse parts satisfy: 0.3 ⁇ S min /S max ⁇ 1 , so that when the current flowing through the bus member exceeds the threshold value, the time difference from the start of fusing to complete fusing of all fuse parts is small, that is, the fusing time of the bus member is small, thereby reducing the first battery cell and the second battery cell.
  • the time when the short circuit occurs so as to avoid the accumulation of arcing energy during the fusing process of the short-circuit fuse part for a long time, which can reduce the arcing damage caused by the fusing process and further improve the safety performance of the battery.
  • an embodiment of the present application provides an electrical device, including the battery provided by the embodiment of the second aspect, where the battery is used to provide electrical energy.
  • the fusing time of the confluence member of the battery is short, so as to avoid the accumulation of arcing energy during the fusing process of the fusing part due to a long-term short-circuit, and can reduce the arcing caused during the fusing process. damage, and further improve the safety performance of the battery and the safety of electrical equipment.
  • FIG. 1 is a schematic structural diagram of a vehicle provided by some embodiments of the present application.
  • FIG. 2 is an exploded view of a battery provided by some embodiments of the present application.
  • FIG. 3 is an exploded view of a battery cell provided by some embodiments of the present application.
  • FIG. 4 is an assembly diagram of a battery cell provided by some embodiments of the present application.
  • FIG. 5 is an axonometric view of a plurality of battery cells connected by a bus member according to some embodiments of the present application
  • FIG. 6 is a top view of a plurality of battery cells provided by some embodiments of the present application after being connected by a bus member;
  • Fig. 7 is the partial enlarged view of A place in Fig. 5;
  • FIG. 8 is a schematic structural diagram of a confluence member with three fuse sections provided by some embodiments of the present application.
  • FIG. 9 is a schematic structural diagram of a confluence member with four fuse sections provided by some embodiments of the present application.
  • FIG. 10 is a schematic structural diagram of a confluence member with a part of the fuse part having a bent part according to some embodiments of the present application;
  • FIG. 11 is a schematic structural diagram of a confluence member with a fuse portion without a bent portion provided by some embodiments of the present application.
  • FIG. 12 is a schematic structural diagram of a confluence member with a gap formed on one side in the width direction according to some embodiments of the present application;
  • FIG. 13 is a schematic structural diagram of a confluence member without a gap provided by some embodiments of the present application.
  • FIG. 14 is a schematic structural diagram of a confluence member with a protective cover provided by some embodiments of the present application.
  • FIG. 15 is a schematic structural diagram of a confluence member with a protective cover provided by further embodiments of the present application.
  • plural refers to two or more (including two).
  • the battery cells may include lithium-ion secondary batteries, lithium-ion primary batteries, lithium-sulfur batteries, sodium-lithium-ion batteries, sodium-ion batteries, or magnesium-ion batteries, etc., which are not limited in the embodiments of the present application.
  • the battery cell may be in the form of a cylinder, a flat body, a rectangular parallelepiped, or other shapes, which are not limited in the embodiments of the present application.
  • the battery cells are generally divided into three types according to the packaging method: cylindrical battery cells, square-shaped battery cells, and soft-pack battery cells, which are not limited in the embodiments of the present application.
  • the battery mentioned in the embodiments of the present application refers to a single physical module including a plurality of battery cells to provide higher voltage and capacity.
  • the batteries mentioned in this application may include battery modules or battery packs, and the like.
  • Batteries typically include a case for enclosing a plurality of battery cells. The box can prevent liquids or other foreign objects from affecting the charging or discharging of the battery cells.
  • the battery cell includes an electrode assembly and an electrolyte, and the electrode assembly is composed of a positive electrode sheet, a negative electrode sheet and a separator.
  • the battery cell mainly relies on the movement of metal ions between the positive and negative plates to work.
  • the positive electrode sheet includes a positive electrode current collector and a positive electrode active material layer, the positive electrode active material layer is coated on the surface of the positive electrode current collector, and the positive electrode current collector without the positive electrode active material layer protrudes from the positive electrode current collector that has been coated with the positive electrode active material layer. , the positive electrode current collector without the positive electrode active material layer is used as the positive electrode tab.
  • the material of the positive electrode current collector can be aluminum, and the positive electrode active material can be lithium cobalt oxide, lithium iron phosphate, ternary lithium, or lithium manganate.
  • the negative electrode sheet includes a negative electrode current collector and a negative electrode active material layer, the negative electrode active material layer is coated on the surface of the negative electrode current collector, and the negative electrode current collector without the negative electrode active material layer protrudes from the negative electrode current collector that has been coated with the negative electrode active material layer. , the negative electrode current collector without the negative electrode active material layer is used as the negative electrode tab.
  • the material of the negative electrode current collector can be copper, and the negative electrode active material can be carbon or silicon.
  • the number of positive tabs is multiple and stacked together, and the number of negative tabs is multiple and stacked together.
  • the material of the separator can be PP (polypropylene, polypropylene) or PE (polyethylene, polyethylene), and the like.
  • the electrode assembly may be a wound structure or a laminated structure, and the embodiment of the present application is not limited thereto.
  • the bus members are made of fusible materials. When the current flowing through the bus members exceeds the threshold, the bus members will be fused, thereby disconnecting the electrical connection between the battery cells and avoiding the continuous short circuit inside the battery. and generate high temperature.
  • the embodiment of the present application provides a technical solution, by setting a plurality of fuse parts on the confluence member, so that the minimum cross-sectional area S min and the maximum cross-sectional area S max of all fuse parts satisfy certain numerical conditions , so that when the current flowing through the bus member exceeds the threshold value, the time difference from the start of fusing to complete fusing of all fuse parts is small, that is, the fusing time of the bus member is small, thereby reducing the time for short circuit between battery cells, thereby Avoid serious safety accidents caused by long-term short-circuit fuses in the process of fusing.
  • Electrical equipment can be vehicles, mobile phones, portable devices, notebook computers, ships, spacecraft, electric toys and power tools, and so on.
  • Vehicles can be fuel vehicles, gas vehicles or new energy vehicles, and new energy vehicles can be pure electric vehicles, hybrid vehicles or extended-range vehicles, etc.
  • spacecraft include airplanes, rockets, space shuttles, spacecraft, etc.
  • electric toys include fixed Electric toys that are portable or mobile, such as game consoles, electric car toys, electric ship toys and electric airplane toys, etc.
  • electric tools include metal cutting power tools, grinding power tools, assembling power tools and railway power tools, such as, Electric drills, electric grinders, electric wrenches, electric screwdrivers, electric hammers, electric impact drills, concrete vibrators and electric planers, etc.
  • the embodiments of the present application do not impose special restrictions on the above-mentioned electrical equipment.
  • the electric device is a vehicle 1000 as an example for description.
  • FIG. 1 is a schematic structural diagram of a vehicle 1000 according to some embodiments of the present application.
  • the interior of the vehicle 1000 is provided with the battery 100 , and the battery 100 may be provided at the bottom or the head or the rear of the vehicle 1000 .
  • the battery 100 may be used for power supply of the vehicle 1000 , for example, the battery 100 may be used as an operating power source of the vehicle 1000 .
  • the vehicle 1000 may also include a controller 200 and a motor 300 for controlling the battery 100 to supply power to the motor 300 , eg, for starting, navigating, and running the vehicle 1000 for work power requirements.
  • the battery 100 can not only be used as the operating power source of the vehicle 1000 , but also can be used as the driving power source of the vehicle 1000 to provide driving power for the vehicle 1000 instead or partially instead of fuel or natural gas.
  • the battery 100 includes a case body 10 and a battery cell 20 , the battery cell 20 is accommodated in the case body 10 , the case body 10 provides an accommodation space for the battery cell 20 , and the case body 10 includes a first case body part 11 and a second case body The portion 12 , the first case portion 11 and the second case portion 12 are configured to jointly define an accommodation space for accommodating the battery cells 20 .
  • the battery 100 there are a plurality of battery cells 20, and the plurality of battery cells 20 can be connected in series or in parallel or in a mixed connection.
  • a mixed connection means that the plurality of battery cells 20 are both connected in series and in parallel.
  • the plurality of battery cells 20 can be directly connected in series or in parallel or mixed together, and then the whole formed by the plurality of battery cells 20 is accommodated in the box 10; of course, the plurality of battery cells 20 can also be connected in series first.
  • a battery module is formed in parallel or in a mixed connection, and a plurality of battery modules are connected in series or in parallel or in a mixed connection to form a whole, and are accommodated in the box 10 .
  • the battery cells 20 may be cylindrical, flat, or other shapes, or the like.
  • FIG. 3 is an exploded view of the battery cell 20 provided by some embodiments of the present application
  • FIG. 4 is an assembly view of the battery cell 20 in FIG. 3
  • the battery cell 20 includes a casing 21, an end cap assembly 22 and an electrode assembly 23.
  • the casing 21 has an opening, the electrode assembly 23 is accommodated in the casing 21, and the end cap assembly 22 is used to cover the opening.
  • the housing 21 may have various shapes, such as cylindrical, flat, and the like. The shape of the casing 21 may be determined according to the specific shape of the electrode assembly 23 .
  • the casing 21 can be selected as a cylindrical structure; if the electrode assembly 23 is a flat structure, the casing 21 can be selected as a rectangular parallelepiped structure.
  • the material of the casing 21 may also be various, for example, copper, iron, aluminum, stainless steel, aluminum alloy, etc., which is not particularly limited in the embodiment of the present application.
  • the end cap assembly 22 includes a cap body 221 , a first electrode terminal 222 and a second electrode terminal 223 , and the first electrode terminal 222 and the second electrode terminal 223 are respectively used to electrically connect with the positive electrode tab 231 and the negative electrode tab 232 of the electrode assembly 23 . connect.
  • FIG. 5 shows an axonometric view after a plurality of battery cells 20 are connected through the bus bar 30
  • FIG. 6 shows the battery cells 20 through the bus bar.
  • the battery 100 may further include a bussing member 30 , and the multiple battery cells 20 may be electrically connected through the bussing member 30 , so as to realize the series, parallel or mixed connection of the multiple battery cells 20 .
  • the two battery cells 20 that are electrically connected through the same bus member 30 are defined as the first battery cell 24 and the second battery cell 25 , respectively.
  • FIG. 7 is a partial enlarged view of A in FIG. 5 .
  • the bus member 30 includes a first connection portion 31 , a second connection portion 32 , and a plurality of fuse portions 33 .
  • the first connection part 31 is used for connecting the first electrode terminal 222 of the first battery cell 24
  • the second connection part 32 is used for connecting the second electrode terminal 223 of the second battery cell 25
  • one end of each fuse part 33 is connected to
  • the first connection part 31 is connected to the second connection part 32 at the other end.
  • the plurality of fuse portions 33 are arranged side by side in the width direction X of the bus member 30 .
  • Each fuse portion 33 is in a state of connecting the first connection portion 31 and the second connection portion 32 when the current flowing through the bus member 30 is lower than the threshold value, and the fuse portion 33 is configured to be configured when the current flowing through the bus member 30 exceeds When the threshold value is reached, it is blown, so that the first connection part 31 and the second connection part 32 are disconnected, that is, the electrical connection between the first battery cell 24 and the second battery cell 25 is disconnected.
  • the flow cross-sectional area corresponding to the one with the largest flow cross-sectional area among the plurality of fuse parts 33 is S max
  • the flow cross-sectional area corresponding to the one with the smallest flow cross-sectional area among the plurality of fuse sections 33 For S min , S min and S max satisfy the following relation: 0.3 ⁇ S min /S max ⁇ 1.
  • the minimum and maximum flow cross-sectional areas S min and S max of all the fuse parts 33 satisfy: 0.3 ⁇ S min /S max ⁇ 1, so that in the When the current flowing through the bus member 30 exceeds the threshold value, the time difference from the start of fusing to the complete fusing of all the fuse parts 33 is small, that is, the fusing time of the bus member 30 is small, thereby reducing the first battery cell 24 and the second battery cell. 25 is the time when a short circuit occurs, so as to avoid the accumulation of arcing energy during the fusing process of the fuse part 33 due to a long-term short-circuit, which can reduce the arcing damage caused during the fusing process.
  • arcing refers to the maximum ability of the switch to break the current at the limit, and arcing will damage the insulator, such as the high temperature of arcing will melt or break the insulator.
  • the number of fuse parts 33 can also enhance the heat dissipation performance of the bus member 30 during the overcurrent process. When some of the fuse parts 33 are mechanically disconnected by accident, the other unbroken fuse parts 33 can still ensure the normal operation of the bus member 30 .
  • the flow cross section of the fuse portion 33 is in the form of a variable cross-section, that is, along the direction Y from the first connection portion to the second connection portion of the fuse portion 33, the area of the flow cross section at some or all positions is different, and the fuse portion 33 has different areas.
  • the position where the fuse part 33 is fused should be the position with the smallest overcurrent cross-sectional area, and the overcurrent cross-sectional area of the fuse part 33 refers to its smallest overcurrent cross-sectional area.
  • “S min ” is not only the minimum value of the overcurrent cross-sectional area of the corresponding fuse portion 33 , but also the minimum value among the minimum overcurrent cross-sectional areas of all the fuse portions 33 .
  • S max is the minimum value of the overcurrent cross-sectional area of the corresponding fuse portion 33 , but is the maximum value among the minimum overcurrent cross-sectional areas of all the fuse portions 33 .
  • the flow cross section of the fuse portion 33 is in the form of an equal cross-section, that is, the flow cross section of the fuse portion 33 has the same area at each position along the direction Y from the first connection portion to the second connection portion. Then, “S min ” is the minimum value among the cross-sectional areas of all the fuses 33 for overcurrent. “S max ” is the maximum value among the overcurrent cross-sectional areas of all the fuse portions 33 .
  • At least two of the plurality of fuse parts 33 have different flow cross-sectional areas. Under the condition that the sum of the overcurrent cross-sectional areas of all the fuse parts 33 is constant, the overcurrent cross-sectional areas of at least two fuse parts 33 are different, so that the fusing time difference of the confluence member 30 has a minimum value, which further optimizes the fusing of the confluence member 30 time, to avoid a long-term short circuit between the first battery cell 24 and the second battery cell 25 .
  • each fuse portion 33 may be the same, or the flow cross-sectional area of each fuse portion 33 may be different.
  • the fusing time of the converging member 30 is within 50ms, which can effectively prevent fire or explosion.
  • the test is performed with the bus member 30 having the three fuses 33 .
  • Test 1 The sum S total of the cross-sectional areas of the plurality of fuse parts 33 of the confluence member 30 is 18 mm 2 , including three fuse parts 33 .
  • Test process Connect the overcurrent protection structure, the relay switch and the DC resistance in series to the DC high voltage circuit, select the DC resistance with a specific resistance value according to the total voltage of the circuit, and the total current when the control circuit is closed is 8000A. Close the relay switch and monitor the current change in the loop after closing.
  • the time point when the current in the loop fluctuates is the starting point t1 when the fuse part 33 of the confluence member 30 is blown, and the time point when the current in the loop is completely reduced to 0A is the end point t2 when all the fuse parts 33 are blown, two time points.
  • the difference t2-t1 is the fusing time difference ⁇ t of the plurality of fusing parts 33 , and the parameters and test results of each fusing part 33 are shown in Table 1.
  • the overcurrent cross-sectional areas of the three fusing portions 33 are not equal or the overcurrent cross-sectional areas of at least two fusing portions 33 are not equal.
  • the sum of the overcurrent cross-sectional areas of the plurality of fuse parts 33 is S total , wherein S min and S total satisfy the following relationship: 0.2 ⁇ S min /S total ; S max and S total satisfy the following relationship Relational formula: S max /S total ⁇ 0.6, by defining the ratio between the minimum flow cross-sectional area S min and the total flow cross-sectional area S total of all fuse parts 33 to be greater than or equal to 0.2 and the maximum flow cross-sectional area S max and The ratio between the total overcurrent cross-sectional area S total of all the fuse parts 33 is limited to be less than or equal to 0.6, which can further optimize the fuse time of the bus member 30 and avoid long-term short circuit between the first battery cell 24 and the second battery cell 25 .
  • test 2 is carried out, as follows:
  • the fuse time difference can be controlled within 40ms.
  • the flow cross-sectional area of the fuse portion 33 is greater than 1.5 times its thickness to enhance the manufacturability of the bus member 30 .
  • the thickness direction Z is perpendicular to the width direction X and the direction Y along the first connection part to the second connection part.
  • the first connecting portion 31 is provided with a first concave portion 311 , and the first concave portion 311 is set corresponding to the connection position on the first connecting portion 31 for connecting with the first electrode terminal 222 .
  • the projection of the first concave portion 311 in the thickness direction Z and the projection of the first electrode terminal 222 in the thickness direction Z at least partially overlap.
  • the first concave portion 311 is recessed in a direction close to the first electrode terminal 222 . Since the bus member 30 and the first electrode terminal 222 are generally connected by welding, the first concave portion 311 is provided so that the thickness of the corresponding position of the first connecting portion 31 is smaller than other positions, which is convenient for laser welding.
  • the second connecting portion 32 is provided with a second concave portion 321 , and the second concave portion 321 is disposed corresponding to the connection position on the second connecting portion 32 for connecting with the second electrode terminal 223 .
  • the projection of the second concave portion 321 in the thickness direction Z at least partially overlaps with the projection of the second electrode terminal 223 in the thickness direction Z.
  • the second concave portion 321 is recessed in a direction close to the second electrode terminal 223 . Since the bus member 30 and the second electrode terminal 223 are generally connected by welding, the second concave portion 321 is provided so that the thickness of the corresponding position of the second connecting portion 32 is smaller than other positions, which is convenient for laser welding.
  • the number of the fuse parts 33 may be two, three, or other numbers of three or more.
  • the at least three fuse parts 33 are arranged side by side along the width direction X of the bus member 30, and the at least three fuse parts
  • the flow cross-sectional area of the portion 33 decreases sequentially from both sides in the width direction X of the confluence member 30 toward the middle.
  • both sides of the confluence member 30 in the width direction X bear a large torque, so the cross-sectional area of the fuse portion 33 decreases sequentially from the two sides in the width direction X of the confluence member 30 to the middle.
  • the flow cross-sectional area of the fuse portions 33 located on both sides of the width direction X is larger than that of the fuse portion 33 located in the middle, which enhances the mechanical strength of the confluence member 30, so that the confluence member 30 is located in the width direction X. Both sides can withstand large torque.
  • FIG. 8 is a schematic structural diagram of a confluence member 30 with three fuse portions 33 provided in some embodiments of the present application.
  • the number of the fuse parts 33 is three, the first fuse part 331 , the second fuse part 332 and the third fuse part 333 in the width direction X in sequence, the overcurrent cross-sectional area of the first fuse part 331 and the third fuse part 333 .
  • the flow cross-sectional area is larger than the flow cross-sectional area of the second fuse portion 332 .
  • the flow cross-sectional area of the first fuse portion 331 and the flow cross-sectional area of the third fuse portion 333 may be the same or different.
  • FIG. 9 is a schematic structural diagram of the bus members 30 with four fuse parts 33 provided in some embodiments of the present application.
  • the number of the fuse parts 33 is four, which are the first fuse part 331 , the second fuse part 332 , the third fuse part 333 and the fourth fuse part 334 in sequence along the width direction X.
  • the overcurrent cross-sectional area of the first fuse part 331 is larger than
  • the cross-sectional area of the second fuse part 332 and the cross-sectional area of the fourth fuse part 334 are larger than the cross-sectional area of the third fuse part 333 .
  • the flow cross-sectional area of the first fuse portion 331 and the flow cross-sectional area of the fourth fuse portion 334 may be the same or different.
  • the flow cross-sectional area of the second fuse portion 332 and the flow cross-sectional area of the third fuse portion 333 may be the same or different.
  • At least one fuse portion 33 is provided with a bent portion 335 configured to absorb stress along the width direction X of the bus member 30 .
  • the bent portion 335 can absorb the stress in the width direction X of the bus member 30 , so as to protect the bus member 30 and the battery cells 20 to a certain extent.
  • all fuse parts 33 are provided with bent parts 335 .
  • the bent portion 335 is bent to the side close to the first battery cell 24 and the second battery cell 25 , which can prevent the fuse portion 33 from being squeezed during the manufacture of the battery 100 and the assembly process of the battery 100 , resulting in mechanical breakage, and at the same time can The overcurrent temperature of the fuse part 33 and the damage of the fuse behavior to the casing 10 of the battery 100 are reduced.
  • FIG. 10 is a schematic structural diagram of a part of the fuse part 33 provided with a bending part 335 according to some embodiments of the present application.
  • the bus member 30 may be a structure in which a part of the fuse part 33 is provided with a bent part 335 , and the other part of the fuse part 33 is linearly extended.
  • the second fuse portion 332 and the third fuse portion 333 are linearly extending structures, and the first fuse portion 331 and the fourth fuse portion 334 have a bent portion 335 .
  • FIG. 11 is a schematic structural diagram of a bus member in which the fuse portion 33 is not provided with the bending portion 335 according to some embodiments of the present application.
  • the bending portion 335 may not be provided on each fuse portion 33 , and all the fuse portions 33 are linearly extending structures.
  • the plurality of fuse portions 33 form gaps with the first connection portion 31 and the second connection portion 32 on both sides of the bus member 30 in the width direction X.
  • the first fuse part 331 faces away from the first surface 3311 of the second fuse part 332
  • the first connection part 31 faces the second surface 312 of the second connection part 32
  • the second connection part 32 faces the third surface 322 of the first connection part 31
  • a first gap 34 is jointly defined; the fourth surface 3341 of the fourth fuse portion 334 facing away from the third fuse portion 333 , the fifth surface 313 of the first connecting portion 31 facing the second connecting portion 32 , and the second connecting portion 32 facing the first
  • the sixth surfaces 323 of the connecting portion 31 collectively define the second notch 35 .
  • the depths of the first notch 34 and the second notch 35 in the width direction X of the bus member 30 are different. Both the first notch 34 and the second notch 35 can make room for other structures inside the battery 100 , and the deeper notch in the width direction X can make the fuse part 33 far away from other structures to prevent the fuse part 33 from being blown off. The resulting high temperatures can damage other structures.
  • FIG. 12 is a schematic structural diagram of a bus member 30 with a gap formed on one side of the width direction X provided by an embodiment of the present application.
  • the upper side forms a gap with the first connecting portion 31 and the second connecting portion 32 .
  • the two surfaces 312 and the third surface 322 of the second connecting portion 32 facing the first connecting portion 31 together define the first gap 34 .
  • FIG. 13 is a schematic structural diagram of a confluence member 30 without a gap provided in some embodiments of the present application. Both sides of the plurality of fuse parts 33 in the width direction X of the bus member 30 are not formed with a gap with the first connection part 31 and the second connection part 32 .
  • the first surface 3311 of the first fuse part 331 facing away from the second fuse part 332, a surface of the first connection part 31 located in the width direction X and a surface of the second connection part 32 located in the width direction X are coplanar;
  • the fourth surface 3341 of the fourth fuse part 334 facing away from the third fuse part 333 , the other surface of the first connection part 31 in the width direction X and the other surface of the second connection part 32 in the width direction X are coplanar.
  • FIG. 14 is a schematic structural diagram of a confluence member 30 with a protective cover 36 provided in some embodiments of the present application.
  • the bus member 30 further includes a protective cover 36 configured to enclose the plurality of fuse parts 33 to protect the plurality of fuse parts 33 .
  • the protective cover 36 can not only protect the fuse part 33 to avoid the mechanical breakage of the fuse part 33 caused by the deformation of the box 10 and the change of the distance between the first battery cell 24 and the second battery cell 25, etc., but also reduce the fuse part 33. 33.
  • the damage to the box 10, the first battery cell 24 and the second battery cell 25 caused by the high temperature generated during the fusing process can reduce the harm of the arc generated by the fusing behavior.
  • the protective cover 36 can also enhance the structural strength of the bus member 30 .
  • the protective cover 36 may be a sleeve-like structure, and is directly sleeved on the outer periphery of the plurality of fuse parts 33 to wrap the plurality of fuse parts 33 .
  • the protective cover 36 may be a structure in which a band-shaped structure is wound around the outer periphery of the plurality of fuse portions 33 to wrap the plurality of fuse portions 33 .
  • the first connection portion 31 and the second connection portion 32 extend out of the protective cover 36 respectively, so that the bus member 30 is connected to the first electrode terminal 222 of the first battery cell 24 and the second electrode terminal 223 of the second battery cell 25 .
  • the protective cover 36 can also wrap the first connecting part 31 and the second connecting part 32 , and also play a protective role for the first connecting part 31 and the second connecting part 32 .
  • a portion of the protective cover 36 is located in the gap formed by the fuse portion 33 and the first connecting portion 31 and the second connecting portion 32 .
  • the protective cover is located at the first notch 34 and the second notch 35 on both sides of the width direction X, so that the size of the protective cover 36 in the width direction X of the bus member 30 is small, occupying the internal space of the battery 100 less.
  • the material of the protective cover 36 includes PP, PFA or ceramic.
  • FIG. 15 is a schematic structural diagram of a confluence member 30 with a protective cover 36 according to further embodiments of the present application.
  • the protective cover 36 completely protrudes from the first connecting part 31 and the second connecting part 32 on both sides in the width direction X The second connection portion 32 .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Connection Of Batteries Or Terminals (AREA)

Abstract

本申请提供了一种汇流构件、电池及用电设备,涉及电池技术领域。汇流构件,包括第一连接部,用于连接第一电池单体的第一电极端子;第二连接部,用于连接第二电池单体的第二电极端子;多个熔断部,每个熔断部的一端连接第一连接部,另一端连接第二连接部;其中,多个熔断部中过流截面积最大的一个所对应的过流截面积为Smax,多个熔断部中过流截面积最小的一个所对应的过流截面积为Smin,Smin和Smax满足下述关系式:0.3≤Smin/Smax≤1。所有的熔断部中的最小过流截面积Smin和最大过流截面积Smax满足:0.3≤Smin/Smax≤1,在短路时,汇流构件的熔断部熔断时间较小,从而减小出现短路的时间,避免因长时间短路,熔断部在熔断的过程中拉弧能量积聚。

Description

一种汇流构件、电池及用电设备 技术领域
本申请涉及电池技术领域,具体而言,涉及一种汇流构件、电池及用电设备。
背景技术
锂离子蓄电池因其能量密度大、循环性能好等突出优点,成为二次电池的主流产品,并广泛应用于便携式电器、动力汽车、手机、航天器等领域。而电池的安全问题是用户主要关注的问题之一,也是制约电池发展的主要因素之一。因此,如何提高电池的安全性能成为电池领域亟待解决的问题。
发明内容
本申请实施例提供一种汇流构件、电池及用电设备,以提高电池的安全性能。
第一方面,本申请实施例提供一种汇流构件,包括第一连接部,用于连接第一电池单体的第一电极端子;第二连接部,用于连接第二电池单体的第二电极端子;多个熔断部,每个熔断部的一端连接所述第一连接部,另一端连接所述第二连接部;其中,所述多个熔断部中过流截面积最大的一个所对应的过流截面积为S max,所述多个熔断部中过流截面积最小的一个所对应的过流截面积为S min,S min和S max满足下述关系式:0.3≤S min/S max≤1。
上述技术方案中,通过在汇流构件上设置多个熔断部,所有的熔断部中的最小过流截面积S min和最大过流截面积S max满足:0.3≤S min/S max≤1,以使在流过汇流构件的电流超过阈值时,所有熔断部从开始熔断直至完全熔断的时间差较小,即汇流构件熔断时间较小,从而减小第一电池单体和第二电池单体出现短路的时间,从而避免因长时间短路熔断部在熔断的过程中拉弧能量积聚,能够减小熔断过程中带来的拉弧伤害。熔断部为多个,还能增强汇流构件在过流过程中的散热性能。当熔断部中的部分因意外机械断开后,其他未断开的熔断部仍然可以保证汇流构件的正常工作。
在第一方面的一些实施例中,S min和S max满足下述关系式:0.8≤S min/S max<1。
上述技术方案中,S min/S max的比值在0.8至1之间时,具有最小的熔断时间差,能够进一步减小所有熔断部从开始熔断直至完全熔断的时间差,即减小汇流构件熔断时间,从而进一步减小出现短路的时间,有效避免因长时间短路熔断部在熔断的过程中拉弧能量积聚,能够减小熔断过程中带来的拉弧伤害。
在第一方面的一些实施例中,所述多个熔断部的过流截面积总和为S total,其中,S min和S total满足下述关系式:0.2≤S min/S total;S max和S total满足下述关系式:S max/S total≤0.6。
上述技术方案中,通过将最小过流面积S min和所有的熔断部的过流截面积总和S total之间的比值限定大于等于0.2和最大过流截面积S max和所有的熔断部的过流截面积总和S total之间的比值限定小于等于0.6,能够进一步优化汇流构件的熔断时间,避免第一电池单体和第二电池单体长时间短路。
在第一方面的一些实施例中,所述多个熔断部中的至少两个熔断部的过流截面积不相等。
上述技术方案中,在所有熔断部的过流截面积总和一定的情况下,至少两个熔断部的过流截面积不相同,使得会汇流构件的熔断时间差具有最小值,进一步优化了汇流构件的熔断时间,避免第一电池单体和第二电池单体长时间短路。
在第一方面的一些实施例中,所述熔断部的数量为至少三个;所述至少三个熔断部沿所述汇流构件的宽度方向并排布置,所述至少三个熔断部的过流截面积从所述汇流构件的宽度方向上的两侧向中间依次减小。
上述技术方案中,在受到外力作用时,汇流构件的宽度方向的两侧承受较大的扭矩,因此,熔断部的过流截面积从汇流构件的宽度方向上的两侧向中间依次减小,增强汇流构件的机械强度,使得汇流构件在宽度方向的两侧能够承受较大的扭矩。
在第一方面的一些实施例中,所述熔断部的过流截面积大于其厚度的1.5倍。
上述技术方案中,由于汇流构件通过冲压成型,需要有足够的宽度尺寸才能保证冲压有效,因此,熔断部的过流截面积大于其厚度的1.5倍,则熔断部的宽度大于厚度的1.5倍,以增强汇流构件的可制造性。
在第一方面的一些实施例中,至少一个所述熔断部设有弯折部,所述弯折部被配置为吸收沿所述汇流构件的宽度方向上的应力。
上述技术方案中,通过在熔断部上设置弯折部,弯折部的设置能够吸收汇流构件的宽度方向的应力,对汇流构件和电池单体起到一定的保护作用。
在第一方面的一些实施例中,所述多个熔断部在所述汇流构件的宽度方向上的至少一侧与所述第一连接部和所述第二连接部构造出缺口。
上述技术方案中,缺口的设置便于安放保护罩,对于没有保护罩的汇流构件,缺口能够为其他结构让出空间,同时使得熔断部距离电池的箱体的内壁有一定的距离,避免熔断部熔断过程中产生的高温损坏箱体。
在第一方面的一些实施例中,所述汇流构件的宽度方向上的一侧与所述第一连接部和第二连接部构造出第一缺口,另一侧与所述第一连接部和第二连接部构造出第二缺口;所述第一缺口和所述第二缺口在所述汇流构件的宽度方向的深度不同。
上述技术方案中,第一缺口和第二缺口的深度不同,当将深度较深的缺口朝向电池的箱体距离汇流构件最近的内壁时,避免该熔断部熔断时产生的高温损坏箱体。
在第一方面的一些实施例中,所述汇流构件还包括保护罩,所述保护罩被配置为包裹所述多个熔断部以对所述多个熔断部进行防护。
上述技术方案中,保护罩不仅能够对熔断部进行防护,避免箱体变形、第一电池单体和第二电池单体之间距离变化等原因造成的机械折断,还能降低熔断部熔断过程中产生的高温对箱体、第一电池单体和第二电池单体损伤,以降低熔断部熔断行为产生的电弧危害。保护罩还能增强汇流构件的结构强度。
第二方面,本申请实施例提供一种电池,包括第一电池单体,具有第一电极端子;第二电池单体,具有第二电极端子;以及根据第一方面任一实施例提供的汇流构件,所述第一连接部与所述第一电极端子连接,所述第二连接部与所述第二电极端子连接。
上述技术方案中,通过在电池的汇流构件上设置多个熔断部,所有的熔断部中的最小过流截面积S min和最大过流截面积S max满足: 0.3≤S min/S max≤1,以使在流过汇流构件的电流超过阈值时,所有熔断部从开始熔断直至完全熔断的时间差较小,即汇流构件熔断时间较小,从而减小第一电池单体和第二电池单体出现短路的时间,从而避免因长时间短路熔断部在熔断的过程中拉弧能量积聚,能够减小熔断过程中带来的拉弧伤害,进一步提高电池的安全性能。
第三方面,本申请实施例提供一种用电设备,包括第二方面实施例提供的电池,所述电池用于提供电能。
上述技术方案中,当电池出现短路时,电池的汇流构件的熔断时间较短,从而避免因长时间短路熔断部在熔断的过程中拉弧能量积聚,能够减小熔断过程中带来的拉弧伤害,进一步提高电池的安全性能和用电设备的用电安全。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对本申请实施例中所需要使用的附图作简单地介绍,显而易见地,下面所描述的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据附图获得其他的附图。
图1为本申请一些实施例提供的车辆的结构示意图;
图2为本申请一些实施例提供的电池的爆炸图;
图3为本申请一些实施例提供的电池单体的爆炸图;
图4为本申请一些实施例提供的电池单体的组装图;
图5为本申请一些实施例提供的多个电池单体通过汇流构件连接后的轴测图;
图6为本申请一些实施例提供的多个电池单体通过汇流构件连接后的俯视图;
图7为图5中A处的局部放大图;
图8为本申请一些实施例提供的熔断部为三个的汇流构件的结构示意图;
图9为本申请一些实施例提供的熔断部为四个的汇流构件的结构示意图;
图10为本申请一些实施例提供的部分熔断部具有弯折部的汇流构件的结构示意图;
图11为本申请一些实施例提供的熔断部不具有弯折部的汇流构件的结构示意图;
图12为本申请一些实施例提供的宽度方向的一侧形成有缺口的汇流构件的结构示意图;
图13为本申请一些实施例提供的未设有缺口的汇流构件的结构示意图;
图14为本申请一些实施例提供的具有保护罩的汇流构件的结构示意图;
图15为本申请又一些实施例提供的具有保护罩的汇流构件的结构示意图。
标记说明:1000-车辆;100-电池;10-箱体;11-第一箱体部;12-第二箱体部;20-电池单体;21-外壳;22-端盖组件;221-盖体;222-第一电极端子;223-第二电极端子;23-电极组件;231-正极极耳;232-负极极耳;24-第一电池单体;25-第二电池单体;30-汇流构件;31-第一连接部;311-第一凹部;312-第二表面;313-第五表面;32-第二连接部;321-第二凹部;322-第三表面;323-第六表面;33-熔断部;331-第一熔断部;3311-第一表面;332-第二熔断部;333-第三熔断部;334-第四熔断部;3341-第四表面;335-弯折部;34-第一缺口;35-第二缺口;36-保护罩;200-控制 器;300-马达;X-宽度方向;Y-沿第一连接部到第二连接部的方向;Z-厚度方向。
具体实施方式
下面结合附图和实施例对本申请的实施方式作进一步详细描述。以下实施例的详细描述和附图用于示例性地说明本申请的原理,但不能用来限制本申请的范围,即本申请不限于所描述的实施例。
在本申请的描述中,需要说明的是,除非另有说明,“多个”的含义是两个以上;术语“上”、“下”、“左”、“右”、“内”、“外”等指示的方位或位置关系仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”、“第三”等仅用于描述目的,而不能理解为指示或暗示相对重要性。“垂直”并不是严格意义上的垂直,而是在误差允许范围之内。“平行”并不是严格意义上的平行,而是在误差允许范围之内。
下述描述中出现的方位词均为图中示出的方向,并不是对本申请的具体结构进行限定。在本申请的描述中,还需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可视具体情况理解上述术语在本申请中的具体含义。
本申请中出现的“多个”指的是两个以上(包括两个)。
本申请中,电池单体可以包括锂离子二次电池、锂离子一次电池、锂硫电池、钠锂离子电池、钠离子电池或镁离子电池等,本申请实施例对此并不限定。电池单体可呈圆柱体、扁平体、长方体或其它形状等,本申请实施例对此也不限定。电池单体一般按封装的方式分成三种:柱形电池单体、方体方形电池单体和软包电池单体,本申请实施例对此也不限定。
本申请的实施例所提到的电池是指包括多个电池单体以提供更高的电压和容量的单一的物理模块。例如,本申请中所提到的电池可以包括电池模块或电池包等。电池一般包括用于封装多个电池单体的箱体。箱体可以避免液体或其他异物影响电池单体的充电或放电。
电池单体包括电极组件和电解液,电极组件由正极片、负极片和隔离膜组成。电池单体主要依靠金属离子在正极片和负极片之间移动来工作。正极片包括正极集流体和正极活性物质层,正极活性物质层涂覆于正极集流体的表面,未涂敷正极活性物质层的正极集流体凸出于已涂覆正极活性物质层的正极集流体,未涂敷正极活性物质层的正极集流体作为正极极耳。以锂离子电池为例,正极集流体的材料可以为铝,正极活性物质可以为钴酸锂、磷酸铁锂、三元锂或锰酸锂等。负极片包括负极集流体和负极活性物质层,负极活性物质层涂覆于负极集流体的表面,未涂敷负极活性物质层的负极集流体凸出于已涂覆负极活性物质层的负极集流体,未涂敷负极活性物质层的负极集流体作为负极极耳。负极集流体的材料可以为铜,负极活性物质可以为碳或硅等。为了保证通过大电流而不发生熔断,正极极耳的数量为多个且层叠在一起,负极极耳的数量为多个且层叠在一起。隔离膜的材质可以为PP(polypropylene,聚丙烯)或PE(polyethylene,聚乙烯)等。此外,电极组件可以是卷绕式结构,也可以是叠片式结构,本申请实施例并不限于此。
电池技术的发展要同时考虑多方面的设计因素,例如,能量密度、循环寿命、放电容量、充放电倍率等性能参数,另外,还需要考虑电池的安全性。
对包括多个电池单体的电池来说,主要的安全问题来自电池单体之间的短路。当电池单体之间出现短路时,电池单体之间的电流会在较短的时间内增大并使得电连接电池单体的汇流构件产生高温,持续短路温度 会持续增高,严重时会起火或者爆炸。为了保证电池的安全,一般汇流构件会采用易熔断的材料,当流过汇流构件的电流超过阈值时,汇流构件会被熔断,从而断开电池单体之间的电连接,避免电池内部持续短路并产生高温。
发明人发现,在电池内部出现短路时,由于汇流构件熔断的时间过长,在汇流构件还未完全熔断时,因为短路产生的高温已经损坏了电池单体和电池的箱体,甚至在汇流构件还未完全熔断时电池已经起火或者爆炸。
鉴于此,本申请实施例提供一种技术方案,通过汇流构件上设置多个熔断部,将所有的熔断部中的最小过流截面积S min和最大过流截面积S max满足一定的数值条件,以使在流过汇流构件的电流超过阈值时,所有熔断部从开始熔断直至完全熔断的时间差较小,即汇流构件熔断时间较小,从而减小电池单体之间出现短路的时间,从而避免因长时间短路熔断部在熔断的过程中造成严重的安全事故。
本申请实施例描述的技术方案适用于电池以及使用电池的用电设备。
用电设备可以是车辆、手机、便携式设备、笔记本电脑、轮船、航天器、电动玩具和电动工具等等。车辆可以是燃油汽车、燃气汽车或新能源汽车,新能源汽车可以是纯电动汽车、混合动力汽车或增程式汽车等;航天器包括飞机、火箭、航天飞机和宇宙飞船等等;电动玩具包括固定式或移动式的电动玩具,例如,游戏机、电动汽车玩具、电动轮船玩具和电动飞机玩具等等;电动工具包括金属切削电动工具、研磨电动工具、装配电动工具和铁道用电动工具,例如,电钻、电动砂轮机、电动扳手、电动螺丝刀、电锤、冲击电钻、混凝土振动器和电刨等等。本申请实施例对上述用电设备不做特殊限制。
以下实施例为了方便说明,以用电设备为车辆1000为例进行说明。
请参照图1,图1为本申请一些实施例提供的车辆1000的结构示意图。车辆1000的内部设置有电池100,电池100可以设置在车辆1000的底部或头部或尾部。电池100可以用于车辆1000的供电,例如,电池100可以作为车辆1000的操作电源。车辆1000还可以包括控制器200和马达300,控制器200用来控制电池100为马达300供电,例如,用于车辆1000的启动、导航和行驶时的工作用电需求。
在本申请一些实施例中,电池100不仅仅可以作为车辆1000的操作电源,还可以作为车辆1000的驱动电源,代替或部分地代替燃油或天然气为车辆1000提供驱动动力。
请参照图2,图2为本申请一些实施例提供的电池的爆炸图。电池100包括箱体10和电池单体20,电池单体20收容于箱体10内,箱体10为电池单体20提供容纳空间,箱体10包括第一箱体部11和第二箱体部12,第一箱体部11和第二箱体部12被配置为共同限定出用于收容电池单体20的容纳空间。在电池100中,电池单体20为多个,多个电池单体20之间可串联或并联或混联,混联是指多个电池单体20中既有串联又有并联。多个电池单体20之间可直接串联或并联或混联在一起,再将多个电池单体20构成的整体容纳于箱体10内;当然,也可以是多个电池单体20先串联或并联或混联组成电池模块,多个电池模块再串联或并联或混联形成一个整体,并容纳于箱体10内。电池单体20可呈圆柱体、扁平体或其它形状等。
如图3、图4所示,图3为本申请一些实施例提供的电池单体20的爆炸图,图4为图3中的电池单体20的组装图。电池单体20包括外壳21、端盖组件22和电极组件23,外壳21具有开口,电极组件23容纳于 外壳21内,端盖组件22用于封盖于开口。外壳21可以是多种形状,比如,圆柱体、扁平状等。外壳21的形状可根据电极组件23的具体形状来确定。比如,若电极组件23为圆柱体结构,外壳21则可选用为圆柱体结构;若电极组件23为扁平状结构,外壳21则可选用长方体结构。外壳21的材质也可以是多种,比如,铜、铁、铝、不锈钢、铝合金等,本申请实施例对此不作特殊限制。
端盖组件22包括盖体221、第一电极端子222和第二电极端子223,第一电极端子222和第二电极端子223分别用于与电极组件23的正极极耳231和负极极耳232电连接。
在一些实施例中,如图5、图6所示,图5示出的是多个电池单体20通过汇流构件30连接后的轴测图,图6示出的是电池单体20通过汇流构件30连接后的俯视图。电池100还可以包括汇流构件30,多个电池单体20之间可通过汇流构件30实现电连接,以实现多个电池单体20的串联或并联或混联。定义通过同一个汇流构件30电连接的两个电池单体20分别为第一电池单体24和第二电池单体25。
在一些实施例中,请参照图7,图7为图5中的A处的局部放大图。汇流构件30包括第一连接部31、第二连接部32和多个熔断部33。第一连接部31用于连接第一电池单体24的第一电极端子222,第二连接部32用于连接第二电池单体25的第二电极端子223,每个熔断部33的一端连接第一连接部31,另一端连接第二连接部32。
多个熔断部33沿汇流构件30的宽度方向X并排布置。当流过汇流构件30的电流低于阈值时,每个熔断部33处于连接第一连接部31和第二连接部32的状态,且熔断部33被配置为当流过汇流构件30的电流超过阈值时,被熔断,使得第一连接部31和第二连接部32断开,即使得第一电池单体24和第二电池单体25之间的电连接断开。
在一些实施例中,多个熔断部33中过流截面积最大的一个所对应的过流截面积为S max,多个熔断部33中过流截面积最小的一个所对应的过流截面积为S min,S min和S max满足下述关系式:0.3≤S min/S max≤1。通过在汇流构件30上设置多个熔断部33,所有的熔断部33中的最小过流截面积S min和最大过流截面积S max满足:0.3≤S min/S max≤1,以使在流过汇流构件30的电流超过阈值时,所有熔断部33从开始熔断直至完全熔断的时间差较小,即汇流构件30熔断时间较小,从而减小第一电池单体24和第二电池单体25出现短路的时间,从而避免因长时间短路熔断部33在熔断的过程中拉弧能量积聚,能够减小熔断过程中带来的拉弧伤害。其中,拉弧是指开关绝限断开电流的最大能力,拉弧会对绝缘体产生损坏,如拉弧的高温会使绝缘体融化或碎裂。
此外,熔断部33为多个,还能增强汇流构件30在过流过程中的散热性能。当熔断部33中的部分因意外机械断开后,其他未断开的熔断部33仍然可以保证汇流构件30的正常工作。
在一些实施例中,熔断部33的过流截面为变截面形式,即熔断部33沿第一连接部到第二连接部的方向Y上,部分或者全部位置的过流截面的面积不同,熔断部33熔断的位置应是过流截面积最小的位置,则熔断部33的过流截面积指其最小的过流截面积。则“S min”既是对应的熔断部33的过流截面积的最小值,也是所有熔断部33的最小过流截面积中的最小值。“S max”是对应的熔断部33的过流截面积的最小值,却是所有熔断部33的最小过流截面积中的最大值。
示例性地,S1、S2、S3和S4分别为对应的四个熔断部33的最小过流截面积,其中,S1>S2>S3>S4,则S min=S4,S max=S1。
在一些实施例中,熔断部33的过流截面为等截面形式,即熔断部33沿第一连接部到第二连接部的方向Y上,各个位置的过流截面的面 积相同。则“S min”是所有熔断部33的过流截面积中的最小值。“S max”是所有熔断部33的过流截面积中的最大值。
示例性地,S1、S2、S3和S4分别为对应的四个熔断部33的过流截面积,其中,S1>S2>S3>S4,则S min=S4,S max=S1。
在一些实施例中,S min和S max满足下述关系式:0.8≤S min/S max<1。S min/S max的比值在0.8至1之间时,具有最小的熔断时间差,能够进一步减小所有熔断部33从开始熔断直至完全熔断的时间差,即减小汇流构件30熔断时间,从而进一步减小出现短路的时间,以使在短路情况发生后汇流构件30能够瞬间熔断,切断整个回路。有效避免因长时间短路熔断部33在熔断的过程中拉弧能量积聚,能够减小熔断过程中带来的拉弧伤害,从而避免电池出现长时间短路时过温或发生热失控。
在一些实施例中,多个熔断部33中的至少两个熔断部33的过流截面积不相等。在所有熔断部33的过流截面积总和一定的情况下,至少两个熔断部33的过流截面积不相同,使得会汇流构件30的熔断时间差具有最小值,进一步优化了汇流构件30的熔断时间,避免第一电池单体24和第二电池单体25长时间短路。
在一些实施例中,每个熔断部33的过流截面积可以相同或者各个熔断部33的过流截面积均不相同。
为了验证上述数值范围是否能够降低汇流构件30中多个熔断部33的熔断时间差,以使熔断时间差小于50ms。其中,一般情况下,汇流构件30的熔断时间在50ms以内能有效防止起火或者爆炸。下面以具有三个熔断部33的汇流构件30进行测试。
测试一:汇流构件30的多个熔断部33的过流截面积总和S total为18mm 2,包含三个熔断部33。测试过程:将过流保护结构与继电器开关、直流电阻串联至直流高压回路中,根据回路的总电压,选取特定阻值的直 流电阻,控制回路闭合时的总电流为8000A。闭合继电器开关,监控闭合后回路中的电流变化。回路中电流出现波动的时刻点为汇流构件30出现熔断部33的熔断的起始点t1,回路中电流彻底降为0A的时刻点为所有熔断部33全部被熔断的终止点t2,两个时间点之差t2-t1为多个熔断部33的熔断时间差Δt,各个熔断部33的参数及测试结果如表1所示。
表1:熔断部33的参数及测试结果
Figure PCTCN2021084736-appb-000001
由上述测试结果可知,当0.3≤S min/S max≤1时,Δt<50ms,符合一般情况下为保证电池100安全对汇流构件30的多个熔断部33的熔断时间差的要求。
此外,当0.8≤S min/S max<0.9时,熔断时间差Δt逐渐减小,当0.9<S min/S max<1时,熔断时间差Δt逐渐增大,因此,在0.8≤S min/S max<1这个区段,熔断时间差相对其他区段的熔断时间差是更小的,且在0.8≤S min/S max<1这个区段存在最小的熔断时间差。
由于最小熔断时间差出现在0.8≤S min/S max<1范围内,该范围内,三个熔断部33的过流截面积均不相等或者至少有两个熔断部33的过流截面积不相等。
由此可知,当0.3≤S min/S max≤1时,是能够缩短汇流构件30的多个熔断部33的熔断时间差,并将熔断时间差保持在能保证电池100安全的范围之内,即将熔断时间差保持在50ms以内。
在一些实施例中,多个熔断部33的过流截面积总和为S total,其中,S min和S total满足下述关系式:0.2≤S min/S total;S max和S total满足下述关系式:S max/S total≤0.6,通过将最小过流面积S min和所有的熔断部33的过流截面积总和S total之间的比值限定大于等于0.2和最大过流截面积S max和所有的熔断部33的过流截面积总和S total之间的比值限定小于等于0.6,能够进一步优化汇流构件30的熔断时间,避免第一电池单体24和第二电池单体25长时间短路。
示例性地,当熔断部33的数量为三个,三个熔断部33的过流截面积分别为S1、S2和S3,则S total=S1+S2+S3。
一般情况,当熔断时间差小于40ms时,则对电池100的损害是最小的,能够降低电池100的损耗。为了获得更短的熔断时间差,以使熔断时间差能够小于40ms,在测试一的基础上,进行测试二,如下:
针对优选设计的汇流构件30进行熔断测试,即在满足0.3≤S min/S max≤1的情况下进行测试二。测试流程及相关参数与测试一保持一致。通过监控闭合后回路中的电流变化,提取熔断起始点t1,熔断终止点t2,以及熔断时间差Δt,各个熔断部33的参数及测试结果如表2所示。
表2:熔断部33的参数及测试结果
Figure PCTCN2021084736-appb-000002
Figure PCTCN2021084736-appb-000003
由上述测试结果可知,当S min/S total≥0.2时,且S max/S total≤0.6
时,则熔断时间差能控制在40ms以内。
经上述测试验证,本申请的技术方案能够将汇流构件30的熔断时间差控制在安全范围内。
由于汇流构件30通过冲压成型,在一些实施例中,熔断部33的过流截面积大于其厚度的1.5倍以增强汇流构件30的可制造性。厚度方向Z与宽度方向X和沿第一连接部到第二连接部的方向Y垂直。
需要说明的是,熔断部33的过流截面积与其厚度的比较是指两者的数值比较。
请继续参照图7,第一连接部31上设有第一凹部311,第一凹部311与第一连接部31上用于与第一电极端子222连接的连接位置相对应设置,当第一连接部31与第一电极端子222连接后,第一凹部311在厚度方向Z上的投影与第一电极端子222在厚度方向Z上的投影至少有部分重合。第一凹部311向靠近第一电极端子222的方向凹陷。由于汇流构件30与第一电极端子222一般采用焊接的方式实现连接,第一凹部311设置使得第一连接部31对应位置的厚度相对其他位置较小,便于实现激光焊接。
第二连接部32上设有第二凹部321,第二凹部321与第二连接部32上用于与第二电极端子223连接的连接位置相对应设置,当第二连接部32与第二电极端子223连接后,第二凹部321在厚度方向Z上的投影与第二电极端子223在厚度方向Z上的投影至少有部分重合。第二凹部321向靠近第二电极端子223的方向凹陷。由于汇流构件30与第二电极端子223一般采用焊接的方式实现连接,第二凹部321设置使得第二连接部32对应位置的厚度相对其他位置较小,便于实现激光焊接。
在本申请实施例中,熔断部33的数量可以是两个、三个及三个以上的其他个数。
在一些实施例中,当熔断部33的数量为至少三个(三个及三个以上的个数)时,至少三个熔断部33沿汇流构件30的宽度方向X并排布置,至少三个熔断部33的过流截面积从汇流构件30的宽度方向X上的两侧向中间依次减小。由于在受到外力作用时,汇流构件30的宽度方向X的两侧承受较大的扭矩,因此,熔断部33的过流截面积从汇流构件30的宽度方向X上的两侧向中间依次减小,即位于宽度方向X两侧的熔断部33的过流截面积相较于位于中部的熔断部33的过流截面积较大,增强汇流构件30的机械强度,使得汇流构件30在宽度方向X的两侧能够承受较大的扭矩。
请参照图8,图8为本申请一些实施例提供的熔断部33为三个的汇流构件30的结构示意图。熔断部33的数量为三个,沿宽度方向X依次为第一熔断部331、第二熔断部332和第三熔断部333,第一熔断部331的过流截面积和第三熔断部333的过流截面积均大于第二熔断部332的过流截面积。第一熔断部331的过流截面积和第三熔断部333的过流截面积可以相同,也可以不相同。
在一些实施例中,请参照图9,图9为本申请一些实施例提供的熔断部33为四个的汇流构件30的结构示意图。熔断部33的数量为四个,沿宽度方向X依次为第一熔断部331、第二熔断部332、第三熔断部333和第四熔断部334,第一熔断部331的过流截面积大于第二熔断部332的过流截面积,第四熔断部334的过流截面积大于第三熔断部333的过流截面积。第一熔断部331的过流截面积和第四熔断部334的过流截面积可以相同,也可以不相同。第二熔断部332的过流截面积和第三熔断部333的过流截面积可以相同,也可以不相同。
在一些实施例中,至少一个熔断部33设有弯折部335,弯折部335被配置为吸收沿汇流构件30的宽度方向X上的应力。弯折部335的设置能够吸收汇流构件30的宽度方向X的应力,对汇流构件30和电池单体20起到一定的保护作用。
在一些实施例中,请继续参照图9,所有熔断部33上均设有弯折部335。弯折部335向靠近第一电池单体24和第二电池单体25的一侧弯折,能够避免熔断部33在电池100制造及电池100装配过程中被挤压,造成机械折断,同时能够降低熔断部33过流温度及熔断行为对电池100的箱体10的危害。
在一些实施例中,请参照图10,图10为本申请一些实施例提供的部分熔断部33设有弯折部335的结构示意图。汇流构件30可以是部分熔断部33上设有弯折部335,另一部分熔断部33为直线延伸的结构。图10中,第二熔断部332和第三熔断部333为直线延伸的结构,第一熔断部331和第四熔断部334具有弯折部335。
在一些实施例中,请参照图11,图11为本申请一些实施例提供的熔断部33未设有弯折部335的汇流构件的结构示意图。每个熔断部33上也可以不设置弯折部335,所有的熔断部33均为直线延伸的结构。
在一些实施例中,多个熔断部33在汇流构件30的宽度方向X上的至少一侧与第一连接部31和第二连接部32构造出缺口。缺口的设置不仅能够为其他结构让出空间,同时使得熔断部33距离电池100的箱体10或者与其相邻的结构较远,避免熔断部33熔断过程中产生的高温损坏箱体10或者与其相邻的结构。
在一些实施例中,请继续参照图11,多个熔断部33在汇流构件30的宽度方向X上的两侧与第一连接部31和第二连接部32构造出缺口。第一熔断部331背离第二熔断部332的第一表面3311、第一连接部31朝向第二连接部32的第二表面312和第二连接部32朝向第一连接部31的第三表面322共同限定出第一缺口34;第四熔断部334背离第三熔断部333的第四表面3341、第一连接部31朝向第二连接部32的第五表面313和第二连接部32朝向第一连接部31的第六表面323共同限定出第二缺口35。
在一些实施例中,第一缺口34和第二缺口35在汇流构件30的宽度方向X的深度不同。第一缺口34和第二缺口35均能够为电池100内部的其他结构让出空间,且在宽度方向X上深度较深的缺口能够使得熔断部33距离其他结构较远,避免该熔断部33熔断时产生的高温损坏其他结构。
在一些实施例中,请参照图12,图12为本申请实施例提供的宽度方向X的一侧形成有缺口的汇流构件30的结构示意图、多个熔断部33在汇流构件30的宽度方向X上的一侧与第一连接部31和第二连接部32构造出缺口,第一熔断部331背离第二熔断部332的第一表面3311、第一连接部31朝向第二连接部32的第二表面312和第二连接部32朝向第一连接部31的第三表面322共同限定出第一缺口34。
在一些实施例中,请参照图13,图13为本申请一些实施例提供的未设有缺口的汇流构件30的结构示意图。多个熔断部33在汇流构件30 的宽度方向X上的两侧均未与第一连接部31和第二连接部32构造出缺口。在13中,第一熔断部331背离第二熔断部332的第一表面3311、第一连接部31的位于宽度方向X的一个表面和第二连接部32位于宽度方向X的一个表面共面;第四熔断部334背离第三熔断部333的第四表面3341、第一连接部31的位于宽度方向X的另一个表面和第二连接部32位于宽度方向X的另一个表面共面。
在一些实施例中,请参照图14,图14为本申请一些实施例提供的具有保护罩36的汇流构件30的结构示意图。汇流构件30还包括保护罩36,保护罩36被配置为包裹多个熔断部33以对多个熔断部33进行防护。保护罩36不仅能够对熔断部33进行防护,避免箱体10变形、第一电池单体24和第二电池单体25之间距离变化等原因造成的熔断部33机械折断,还能降低熔断部33熔断过程中产生的高温对箱体10、第一电池单体24和第二电池单体25的损伤,能够降低熔断行为产生的电弧的危害。保护罩36还能增强汇流构件30的结构强度。
保护罩36可以是套状结构,直接套设在多个熔断部33的外周以包裹多个熔断部33。保护罩36也可以是带状结构缠绕于多个熔断部33的外周后形成的包裹多个熔断部33的结构。
第一连接部31和第二连接部32分别延伸出保护罩36,便于汇流构件30与第一电池单体24的第一电极端子222和第二电池单体25的第二电极端子223连接。
在一些实施例中,保护罩36还可以包裹第一连接部31和第二连接部32,对第一连接部31和第二连接部32也起到防护作用。
在一些实施例中,保护罩36的部分位于熔断部33与第一连接部31和第二连接部32构造出的缺口。请继续参照图14,防护罩在宽度方向 X的两侧分别位于第一缺口34和第二缺口35,使得保护罩36在汇流构件30的宽度方向X上的尺寸较小,占用电池100内部空间较少。
保护罩36的材质包括PP、PFA或陶瓷。
在一些实施例中,请参照图15,图15为本申请又一些实施例提供的具有保护罩36的汇流构件30的结构示意图。当多个熔断部33宽度方向X的两侧未与第一连接部31和第二连接部32构造出缺口时,则保护罩36在宽度方向X的两侧完全凸出第一连接部31和第二连接部32。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (12)

  1. 一种汇流构件,其中,包括:
    第一连接部,用于连接第一电池单体的第一电极端子;
    第二连接部,用于连接第二电池单体的第二电极端子;
    多个熔断部,每个熔断部的一端连接所述第一连接部,另一端连接所述第二连接部;
    其中,所述多个熔断部中过流截面积最大的一个所对应的过流截面积为S max,所述多个熔断部中过流截面积最小的一个所对应的过流截面积为S min,S min和S max满足下述关系式:
    0.3≤S min/S max≤1。
  2. 根据权利要求1所述的汇流构件,其中,S min和S max满足下述关系式:
    0.8≤S min/S max<1。
  3. 根据权利要求1或2所述的汇流构件,其中,所述多个熔断部的过流截面积总和为S total,其中,S min和S total满足下述关系式:
    0.2≤S min/S total
    S max和S total满足下述关系式:
    S max/S total≤0.6。
  4. 根据权利要求1-3任一项所述的汇流构件,其中,所述多个熔断部中的至少两个熔断部的过流截面积不相等。
  5. 根据权利要求1-4任一项所述的汇流构件,其中,所述熔断部的数量为至少三个;
    所述至少三个熔断部沿所述汇流构件的宽度方向并排布置,所述至少三个熔断部的过流截面积从所述汇流构件的宽度方向上的两侧向中间依次 减小。
  6. 根据权利要求1-5任一项所述的汇流构件,其中,所述熔断部的过流截面积大于其厚度的1.5倍。
  7. 根据权利要求1-6任一项所述的汇流构件,其中,至少一个所述熔断部设有弯折部,所述弯折部被配置为吸收沿所述汇流构件的宽度方向上的应力。
  8. 根据权利要求1-7任一项所述的汇流构件,其中,所述多个熔断部在所述汇流构件的宽度方向上的至少一侧与所述第一连接部和所述第二连接部构造出缺口。
  9. 根据权利要求8所述的汇流构件,其中,所述汇流构件的宽度方向上的一侧与所述第一连接部和第二连接部构造出第一缺口,另一侧与所述第一连接部和第二连接部构造出第二缺口;
    所述第一缺口和所述第二缺口在所述汇流构件的宽度方向的深度不同。
  10. 根据权利要求1-9任一项所述的汇流构件,其中,所述汇流构件还包括保护罩,所述保护罩被配置为包裹所述多个熔断部以对所述多个熔断部进行防护。
  11. 一种电池,其中,包括:
    第一电池单体,具有第一电极端子;
    第二电池单体,具有第二电极端子;以及
    根据权利要求1-10任一项所述的汇流构件,所述第一连接部与所述第一电极端子连接,所述第二连接部与所述第二电极端子连接。
  12. 一种用电设备,其中,包括根据权利要求11所述的电池,所述电池用于提供电能。
PCT/CN2021/084736 2021-03-31 2021-03-31 一种汇流构件、电池及用电设备 WO2022205215A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP21786311.7A EP4096012B1 (en) 2021-03-31 2021-03-31 Busbar component, battery, and electrical device
KR1020217037531A KR20220136886A (ko) 2021-03-31 2021-03-31 버스바, 배터리 및 전기 장치
JP2021571440A JP7412454B2 (ja) 2021-03-31 2021-03-31 バス部材、電池及び電力消費機器
PCT/CN2021/084736 WO2022205215A1 (zh) 2021-03-31 2021-03-31 一种汇流构件、电池及用电设备
CN202180003047.1A CN115485927B (zh) 2021-03-31 2021-03-31 一种汇流构件、电池及用电设备
US17/559,581 US20220328945A1 (en) 2021-03-31 2021-12-22 Bus member, battery and power consumption device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/084736 WO2022205215A1 (zh) 2021-03-31 2021-03-31 一种汇流构件、电池及用电设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/559,581 Continuation US20220328945A1 (en) 2021-03-31 2021-12-22 Bus member, battery and power consumption device

Publications (1)

Publication Number Publication Date
WO2022205215A1 true WO2022205215A1 (zh) 2022-10-06

Family

ID=83457704

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/084736 WO2022205215A1 (zh) 2021-03-31 2021-03-31 一种汇流构件、电池及用电设备

Country Status (6)

Country Link
US (1) US20220328945A1 (zh)
EP (1) EP4096012B1 (zh)
JP (1) JP7412454B2 (zh)
KR (1) KR20220136886A (zh)
CN (1) CN115485927B (zh)
WO (1) WO2022205215A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024128143A1 (ja) * 2022-12-15 2024-06-20 株式会社Gsユアサ 蓄電装置
CN116799394B (zh) * 2023-08-29 2023-12-22 深圳海辰储能控制技术有限公司 储能装置及用电设备

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201556664U (zh) * 2009-12-16 2010-08-18 河南新太行电源有限公司 动力锂电池组合过流保护装置
CN201927667U (zh) * 2010-12-23 2011-08-10 珠海金峰航电源科技有限公司 新型的具有保险功能的电池组
EP2793291A2 (en) * 2013-04-18 2014-10-22 Samsung SDI Co., Ltd. Rechargeable battery module
CN104134774A (zh) * 2014-07-16 2014-11-05 苏州宇量电池有限公司 一种带熔断功能用于连接电池的焊片
CN107305938A (zh) * 2016-04-25 2017-10-31 比亚迪股份有限公司 电池连接片、电池模组以及动力电池包
CN107507952A (zh) * 2016-12-30 2017-12-22 比亚迪股份有限公司 用于电池组的保护装置、电池组及车辆
CN209104250U (zh) * 2018-11-19 2019-07-12 宁德时代新能源科技股份有限公司 电池模组
CN110890508A (zh) * 2018-09-11 2020-03-17 Sk新技术株式会社 汇流条及具有该汇流条的电池组

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5638842B2 (ja) 2010-06-01 2014-12-10 矢崎総業株式会社 ヒューズユニット
JP6045802B2 (ja) * 2012-03-21 2016-12-14 株式会社東芝 二次電池装置
KR20130121423A (ko) * 2012-04-27 2013-11-06 주식회사 엘지화학 전극 단자간 연결 부위의 단면적이 감소된 이차전지 모듈
JP6707367B2 (ja) 2016-02-29 2020-06-10 三洋電機株式会社 二次電池及び組電池
CN109155387B (zh) 2016-05-31 2022-07-08 松下知识产权经营株式会社 端子连接构造、电池层叠体以及端子连接构造的形成方法
CN108807827A (zh) * 2017-04-28 2018-11-13 比亚迪股份有限公司 一种电极引出片及电池
WO2019069837A1 (ja) 2017-10-05 2019-04-11 日立オートモティブシステムズ株式会社 電池モジュール
KR20190112575A (ko) * 2018-03-26 2019-10-07 에이치엘그린파워 주식회사 배터리 모듈 고전압용 버스바 구조
CN211654935U (zh) * 2020-05-12 2020-10-09 远景动力技术(江苏)有限公司 汇流排和电池模组

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201556664U (zh) * 2009-12-16 2010-08-18 河南新太行电源有限公司 动力锂电池组合过流保护装置
CN201927667U (zh) * 2010-12-23 2011-08-10 珠海金峰航电源科技有限公司 新型的具有保险功能的电池组
EP2793291A2 (en) * 2013-04-18 2014-10-22 Samsung SDI Co., Ltd. Rechargeable battery module
CN104134774A (zh) * 2014-07-16 2014-11-05 苏州宇量电池有限公司 一种带熔断功能用于连接电池的焊片
CN107305938A (zh) * 2016-04-25 2017-10-31 比亚迪股份有限公司 电池连接片、电池模组以及动力电池包
CN107507952A (zh) * 2016-12-30 2017-12-22 比亚迪股份有限公司 用于电池组的保护装置、电池组及车辆
CN110890508A (zh) * 2018-09-11 2020-03-17 Sk新技术株式会社 汇流条及具有该汇流条的电池组
CN209104250U (zh) * 2018-11-19 2019-07-12 宁德时代新能源科技股份有限公司 电池模组

Also Published As

Publication number Publication date
EP4096012B1 (en) 2023-10-04
EP4096012A4 (en) 2022-11-30
CN115485927A (zh) 2022-12-16
EP4096012A1 (en) 2022-11-30
US20220328945A1 (en) 2022-10-13
JP2023523106A (ja) 2023-06-02
CN115485927B (zh) 2023-12-08
KR20220136886A (ko) 2022-10-11
JP7412454B2 (ja) 2024-01-12

Similar Documents

Publication Publication Date Title
EP3965213B1 (en) Battery and related apparatus thereof, preparation method and preparation device
KR100914839B1 (ko) 안전성이 향상된 전지모듈 및 이를 포함하는 중대형 전지팩
US20230344044A1 (en) End cover assembly, battery, electric device, battery cell, and manufacturing method thereof
JP5952418B2 (ja) 安全性の向上した電池パック
EP2339672B1 (en) Battery module and battery pack using same
CN107408646B (zh) 电源装置以及具备该电源装置的车辆
EP2357685B1 (en) Rechargeable battery
JP5575761B2 (ja) 安全性を改良した中型又は大型バッテリーパック
EP3958388B1 (en) Battery and electric device
EP3965197A1 (en) Battery, electric device, and battery preparation method and device
EP3958378A1 (en) Battery, electric device, and method and device for preparing battery
WO2023098258A1 (zh) 电池单体、电池以及用电装置
WO2022205215A1 (zh) 一种汇流构件、电池及用电设备
EP4092818A1 (en) Battery box body, battery, electric device, method and apparatus for preparing box body
WO2023273390A1 (zh) 集流构件、电池单体、电池以及用电装置
US20220320673A1 (en) Battery, power consumption device, method and device for producing battery
CN114467225A (zh) 电池模块、电池包以及使用电池作为电源的装置
WO2022006896A1 (zh) 电池及其相关装置、制备方法和制备设备
JPH11339766A (ja) 電池パック
WO2022205080A1 (zh) 电池、用电装置、制备电池的方法和装置
WO2022082389A1 (zh) 电池、用电设备、制备电池的方法和装置
CN218827692U (zh) 连接件、电池单体、电池以及用电装置
US20240204341A1 (en) Battery cell, battery cell manufacturing method and equipment, battery, and electrical device
WO2024082220A1 (zh) 电池单体、电池、用电设备及电池单体包裹绝缘膜的方法
RU2805991C1 (ru) Батарея и связанное с ней устройство, способ ее изготовления и устройство для ее изготовления

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021786311

Country of ref document: EP

Effective date: 20211020

ENP Entry into the national phase

Ref document number: 2021571440

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE