WO2022203044A1 - ウイルスクリアランス試験の方法 - Google Patents

ウイルスクリアランス試験の方法 Download PDF

Info

Publication number
WO2022203044A1
WO2022203044A1 PCT/JP2022/014401 JP2022014401W WO2022203044A1 WO 2022203044 A1 WO2022203044 A1 WO 2022203044A1 JP 2022014401 W JP2022014401 W JP 2022014401W WO 2022203044 A1 WO2022203044 A1 WO 2022203044A1
Authority
WO
WIPO (PCT)
Prior art keywords
virus
solution
protein
removal filter
channel
Prior art date
Application number
PCT/JP2022/014401
Other languages
English (en)
French (fr)
Inventor
浩伸 白瀧
エブナー ユルゲン
Original Assignee
旭化成メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成メディカル株式会社 filed Critical 旭化成メディカル株式会社
Priority to US18/283,596 priority Critical patent/US20240175098A1/en
Priority to EP22775825.7A priority patent/EP4317460A1/en
Priority to JP2023509329A priority patent/JPWO2022203044A1/ja
Publication of WO2022203044A1 publication Critical patent/WO2022203044A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/70Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving virus or bacteriophage
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/02Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving viable microorganisms
    • C12Q1/22Testing for sterility conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/06Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a liquid
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2750/00MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssDNA viruses
    • C12N2750/00011Details
    • C12N2750/14011Parvoviridae
    • C12N2750/14311Parvovirus, e.g. minute virus of mice
    • C12N2750/14321Viruses as such, e.g. new isolates, mutants or their genomic sequences

Definitions

  • the present invention relates to a virus clearance test method.
  • Preparations containing biological substances include plasma derivatives purified from blood and biological preparations produced by biotechnology. There is a risk of viral contamination in these biologic-containing formulations. In general, biomaterial-containing preparations must be guaranteed to be safe against viruses. Therefore, in the production of biological substance-containing preparations, it is necessary to include a step of sufficiently removing or inactivating the virus contained in or possibly contained in the biological substance-containing preparation, that is, a virus removal step (for example, non-patented Reference 1). Testing the virus removal or inactivation ability in the virus removal process is called virus clearance test.
  • a virus removal step for example, non-patented Reference 1
  • a treatment step using a virus-removing medium such as a virus-removing membrane is superior in that it can be performed for all viruses regardless of the presence or absence of an envelope.
  • virus clearance tests in the manufacturing process of biological material-containing preparations measure the virus concentration before and after any manufacturing process, and evaluate the virus clearance ability by calculating the logarithmic reduction rate (LRV), for example (e.g., See Non-Patent Document 1).
  • LUV logarithmic reduction rate
  • the virus clearance ability of the virus removal step is evaluated by mixing the biological substance-containing solution and the virus solution and measuring the virus concentration in the mixture before and after contacting the mixture with the virus removal medium.
  • a useful non-specific model virus is an "animal parvovirus" (see, for example, Non-Patent Document 1).
  • MMV murine minute virus
  • PV porcine parvovirus
  • infectivity titration methods including endpoint assay methods and local focus calculation assay methods, and quantitative PCR (Quantitative-Polymerase Chain Reaction: qPCR) methods are mainly used.
  • quantitative PCR Quantitative-Polymerase Chain Reaction: qPCR
  • one object of the present invention is to provide a virus clearance test method applicable to continuous processes.
  • a protein solution is supplied to a first flow path provided with a protein purification section upstream and a virus removal filter downstream, and the protein solution is flowed to the protein purification section at a first constant velocity. and (b) supplying the virus solution at a second constant velocity to the second channel connected between the protein purification part of the first channel and the virus removal filter, and adding the virus solution to the purified protein solution. are mixed in the first channel, (c) the mixture of the protein solution and the virus solution is passed through the virus removal filter at a third constant velocity, and (d) mixing permeates the virus removal filter. measuring the virus contained in the liquid permeate.
  • C (m 2 ) is the membrane area of the virus removal filter
  • D min is the minimum value of b/(a+b)
  • D max is the maximum value of b/(a+b)
  • F min (LMH) is the value
  • F max (LMH) is the maximum flux of the permeated liquid in the virus removal filter
  • [18] further comprising comparing the amount of virus contained in the mixed liquid before passing through the virus removal filter and the amount of virus contained in the permeated liquid of the mixed liquid that has passed through the virus removal filter, [1 ] to [17].
  • FIG. 1 is a schematic diagram of a protein purification system according to an embodiment
  • FIG. 4 is a table showing purification conditions according to Examples 1 to 6.
  • FIG. 4 is a table showing purification results according to Examples 1 to 6.
  • FIG. 1 is a schematic diagram of a protein purification system according to Comparative Example 1.
  • FIG. 3 is a table showing purification conditions according to Comparative Examples 1 to 3.
  • FIG. 4 is a table showing purification results according to Comparative Examples 1 to 3.
  • FIG. 10 is a schematic diagram of a protein purification system according to Comparative Example 4; 10 is a table showing purification conditions according to Comparative Examples 4 to 9.
  • FIG. 10 is a table showing purification results according to Comparative Examples 4 to 9.
  • FIG. 10 is a table showing purification results according to Comparative Examples 4 to 9.
  • the protein purification system as shown in FIG.
  • a virus removal filter 12 provided downstream and a second channel 20 connected between the protein purification section 11 of the first channel 10 and the virus removal filter 12 are provided.
  • the first flow path 10 may be provided with a first pump 13 for flowing the protein solution to the protein purification section 11 at a first constant velocity.
  • a second pump 21 for flowing the virus solution at a second constant velocity may be provided in the second channel 20 .
  • the method of the virus clearance test method according to the embodiment is performed using, for example, the protein purification system shown in FIG.
  • the method of the virus clearance test according to the embodiment includes (a) supplying a protein solution to a first channel 10 having a protein purification section 11 upstream and a virus removal filter 12 downstream; (b) flow the protein solution through the protein purification unit 11 at a constant speed; supplying a virus solution at a constant speed, mixing the purified protein solution with the virus solution in the first channel 10; (d) measuring the virus contained in the permeate of the mixture that has passed through the virus removal filter 12;
  • the protein solution that flows through the first channel 10 contains protein.
  • the protein solution is preferably virus-free.
  • a protein solution is flowed from the protein solution tank 41 to the first channel 10, for example.
  • the first pump 13 is provided, for example, upstream of the protein purification section 11 in the first channel 10, but is not limited to this.
  • a positive displacement pump can be used as the first pump 13, but is not limited to this.
  • volumetric pumps include, but are not limited to, peristaltic pumps.
  • the first pump 13 continuously flows the protein solution to the protein purification section 11 at a first constant velocity.
  • proteins examples include antibodies.
  • Antibodies as commonly defined in biochemistry, are glycoprotein molecules (also called gamma globulin or immunoglobulin) produced by B lymphocytes as a defense mechanism in vertebrates.
  • B lymphocytes as a defense mechanism in vertebrates.
  • antibodies can be used as human pharmaceuticals and have substantially the same structure as antibodies in the human body to which they are administered.
  • the antibody may be a human antibody, or a non-human mammal-derived antibody such as bovine or mouse.
  • antibodies may be chimeric antibodies with human IgG, and humanized antibodies.
  • a chimeric antibody with human IgG is an antibody in which the variable region is derived from a non-human organism such as a mouse, but other constant regions are replaced with a human-derived immunoglobulin.
  • a humanized antibody is a variable region in which the complementarity-determining region (CDR) is derived from a non-human organism, but the other framework regions (FR) are derived from humans. an antibody. Humanized antibodies are even less immunogenic than chimeric antibodies.
  • the antibody class (isotype) and subclass are not limited.
  • antibodies are classified into five classes, IgG, IgA, IgM, IgD, and IgE, depending on differences in the structure of their constant regions.
  • antibodies can be of any of the five classes.
  • IgG has four subclasses, IgG1 to IgG4, and IgA has two subclasses, IgA1 and IgA2.
  • antibodies can be of any subclass.
  • Antibodies may also include antibody-related proteins such as Fc fusion proteins in which a protein is bound to the Fc region.
  • Antibodies can be classified according to their origin. However, antibodies may be any of natural human antibodies, recombinant human antibodies produced by gene recombination technology, monoclonal antibodies, and polyclonal antibodies. From the viewpoint of demand and importance as an antibody drug, human IgG is suitable as an antibody, but is not limited to this.
  • the protein purification unit 11 removes impurities contained in the protein and purifies the protein contained in the protein solution.
  • the protein purification section 11 is equipped with, for example, a chromatography column.
  • the chromatography column may be, for example, a cation exchange chromatography column.
  • protein aggregates such as antibody multimers are adsorbed to the cation exchange carrier as impurities, and proteins such as antibody monomers permeate the cation exchange chromatography column.
  • the cation exchange carrier has cation exchange groups.
  • the cation exchange groups may be strong cation exchange groups, weak cation exchange groups, or both.
  • the strong cation exchange group is charged in the pH range of the antibody solution, so the amount of charge is constant. Therefore, when the cation exchange carrier has a strong cation exchange group, a constant or more charge amount is always guaranteed. Therefore, when the cation exchange carrier has a strong cation exchange group, the charge amount change with respect to pH is suppressed, and the reproducibility of purification characteristics can be improved.
  • strong cation exchange groups include sulfonic acid groups.
  • the weak cation exchange group can change the amount of charge depending on the pH of the mobile phase. Therefore, the charge density of the cation exchange carrier can be adjusted by changing the pH of the mobile phase. Therefore, any impurities can be removed by adjusting the pH according to the characteristics of the impurities to be removed.
  • weak cation exchange groups include carboxyl groups, phosphonic acid groups, and phosphate groups.
  • Examples of the shape of the cation exchange carrier include, but are not limited to, membrane, bead, and monolith.
  • membrane-like cation exchange carriers examples include MustangTM S (Pall Corporation), SartobindTM S (Sartorius Stedim Biotech), and Natrix HD-Sb, Natrix HD-C (Natrix Separations). but not limited to these.
  • beaded cation exchange carriers examples include SP SepharoseTM Fast Flow, High Performance, XL, CaptoTM S (GE Healthcare), Fractogel® COO ⁇ , SO 3 ⁇ , SE Highcap, Eshumuno ®S, CPX (Merck Millipore Corporation), POROS® XS, HS (ThermoFisher), NuviaTM S, HR-S, UNOsphereTM S, Rapid S, Macro-PrepTM ) High S, CM, 25 S (Bio-Rad), and Cellufine® Max CM, Max S (JNC), Cellufine® DexS-HbP (JNC).
  • monolithic cation exchange carriers examples include, but are not limited to, CIM (registered trademark) SO3 (BIA Separations).
  • the chromatography column may be, for example, an anion exchange chromatography column.
  • impurities with low isoelectric points such as host cell-derived proteins (HCP), nucleic acids, and viruses are adsorbed to the anion exchange carrier, and proteins such as antibody monomers are absorbed by the anion exchange chromatography column. pass through.
  • HCP host cell-derived proteins
  • the anion exchange carrier has an anion exchange group.
  • the anion exchange groups may be strong anion exchange groups, weak anion exchange groups, or both.
  • strong anion exchange groups include quaternary ammonium having a trimethylamino group, a triethylamino group, or the like.
  • weak anion exchange groups include, but are not limited to, tertiary amines.
  • a tertiary amine having two or more alkyl groups having two or more carbon atoms can have moderate hydrophobicity.
  • Examples of tertiary amines include diethylamino, dipropylamino, diisopropylamino, and dibutylamino groups.
  • anion exchange carrier examples include, but are not limited to, membrane, bead, and monolith.
  • membranous anion exchange carriers examples include ChromasorbTM (Merck Millipore Corporation), MustangTM Q (Pall Corporation), SarotibindTM Q, STICTM PA (Sartorius Stedim Biotech). , NatriFlo® HD-Q (Natrix Separations), and QyuSpeedTM D (Asahi Kasei Medical Corp.).
  • beaded anion exchange carriers examples include Q SepharoseTM Fast Flow, High Performance, XL, QAE SephadexTM (GE Healthcare), FractogelTM TMAE, TMAE Highcap, DMAE, DEAE, Eshmuno ( Registered trademark) Q (Merck Millipore Corporation), POROS® XQ, HQ, D, PI (ThermoFisher), DEAE-Cellulose (Sigma-Aldrich), NuviaTM Q, UNOsphereTM Q, Macro-Prep (registered trademark) High Q, DEAE, 25 Q (Bio-Rad), CaptoQ (GE Healthcare Japan Ltd.), Cellufine (registered trademark) Max DEAE, and Max Q (JNC) not.
  • monolithic anion exchange carriers include, but are not limited to, CIM (registered trademark) QA, DEAE, and EDA (BIA Separations).
  • the chromatography column may be, for example, a mixed-mode chromatography column.
  • Mixed-mode chromatography columns combine reverse-phase chromatography and ion-exchange chromatography to purify protein solutions.
  • Carriers used in mixed mode chromatography include Cellufine MAX IB (JNC).
  • the protein purification unit 11 may or may not have virus removal ability.
  • the logarithmic removal rate (LRV) in the protein purification unit 11 may be, for example, 0 or more and 7 or less.
  • the lower limit of LRV in the protein purification unit 11 may be 0 or more, 1 or more, 2 or more, 3 or more, 4 or more, or 5 or more.
  • the upper limit of LRV in the protein purification unit 11 may be 7 or less, or 6 or less.
  • a protein concentration measuring device 31 that measures the protein concentration of the protein solution that has passed through the protein purification section 11 may be provided downstream of the protein purification section 11 in the first flow path 10 .
  • the protein concentration measuring device 31 measures the protein concentration of the protein solution that has passed through the protein refining section 11 by, for example, an ultraviolet absorption method.
  • a conductivity measuring device 32 that measures the conductivity of the protein solution that has passed through the protein purification section 11 may be provided downstream of the protein purification section 11 in the first flow path 10 .
  • the conductivity measuring device 32 measures the conductivity of the protein solution that has passed through the protein purification section 11 by, for example, an AC two-electrode method or an electromagnetic induction method.
  • a pH meter for measuring the pH of the protein solution that has passed through the protein purification section 11 Downstream of the protein purification section 11 in the first flow path 10, a pH meter for measuring the pH of the protein solution that has passed through the protein purification section 11, a thermometer for measuring temperature, and a pressure gauge for measuring pressure are provided.
  • the virus solution that flows through the second channel 20 contains viruses.
  • the virus solution is flowed from the virus solution tank 42 to the second channel 20, for example.
  • a volumetric pump can be used as the second pump 21, but is not limited to this.
  • volumetric pumps include, but are not limited to, peristaltic pumps.
  • the second pump 21 continuously flows the virus solution through the second channel 20 at a second constant velocity. Since the second channel 20 is connected to the first channel 10, the protein solution and the virus solution are mixed downstream of the first channel 10 from the connection point between the second channel 20 and the first channel 10. , becomes a mixture.
  • An in-line mixer 33 may be provided downstream of the first flow path 10 from the connection point between the second flow path 20 and the first flow path 10 . An in-line mixer 33 facilitates mixing of the protein and virus solutions.
  • the virus can be an infectious virus.
  • the virus can be a naturally occurring virus.
  • the naturally-occurring virus includes a virus obtained by culturing a virus-infected host cell in a medium, and a virus obtained by transfecting a cell with a viral nucleic acid and culturing the cell.
  • viruses examples include Minutevirus of Mouse (MVM), Porcine Parvovirus (PPV), ReoVirus Type 3, PolioVirus, Pseudorabies Virus, Herpes Simplex Virus type 1 (Human Herpes Virus 1), xenotropic murine leukemia virus (X-MuLV), and bovine viral diarrhea virus (Bovine Viral Diarrhea Virus), but are not limited thereto.
  • MMV Minutevirus of Mouse
  • PDV Porcine Parvovirus
  • ReoVirus Type 3 PolioVirus
  • Pseudorabies Virus Herpes Simplex Virus type 1
  • Herpes Simplex Virus type 1 Human Herpes Virus 1
  • X-MuLV xenotropic murine leukemia virus
  • bovine viral diarrhea virus Bovine Viral Diarrhea Virus
  • the virus solution supplied to the second channel 20 contains the same protein as the protein solution supplied to the first channel 10 contains.
  • the protein concentration in the virus solution supplied to the second channel 20 is the same as the protein concentration in the protein solution supplied to the first channel 10 .
  • the protein concentration in the mixture of the protein solution and the virus solution becomes the same as the protein concentration in the protein solution supplied to the first channel 10 .
  • the virus infectivity titer (Log 10 TCID 50 (unit/mL)) of the mixture of protein solution and virus solution entering the virus removal filter 12 is, for example, 2 or more, 3 or more, or 4 or more.
  • the infectious titer (Log 10 TCID 50 (unit/mL)) of the virus in the mixture is, for example, 10 or less, 9 or less, 8 or less, or 7 or less.
  • a be the first constant velocity
  • b be the second constant velocity
  • x be the concentration of the virus in the mixture
  • y be the concentration of the virus in the virus solution
  • the ratio of the second constant velocity to the sum of the first constant velocity and the second constant velocity is, for example, 0.1% or more, 0.5% or more, 1.0% or more, 1.5% or more, 2.0% or more, or 3.0% or more. Also, the ratio of the second constant velocity to the sum of the first constant velocity and the second constant velocity is, for example, 20% or less, 15% or less, 10% or less, 9% or less, 8% or less, or 7% or less. .
  • the mixture of the protein solution and the virus solution continuously flows to the virus removal filter 12 at the third constant velocity.
  • the membrane area of the virus removal filter 12 is, for example, 0.0001 m 2 or more, 0.0002 m 2 or more, 0.0003 m 2 or more, 0.0006 m 2 or more, 0.0009 m 2 or more, or 0.0015 m 2 or more. Also, the membrane area of the virus removal filter 12 is, for example, 4 m 2 or less, 3 m 2 or less, 2 m 2 or less, or 1 m 2 or less.
  • the shape of the virus removal filter 12 may be a hollow fiber shape or a flat membrane shape.
  • hollow fiber virus removal filters examples include Planova 15N, 20N, 35N, and BioEX (Asahi Kasei Medical).
  • flat membrane virus removal filters examples include Viresolve Pro (EMD Millipore Corporation), Ultipor VF Grade DV20, DV50, Pegasus (trademark) SV4, Gradech LV6 (Pall Corporation), Virosart CPV, HC, Sartorius B Site ), and NFP (Merck Millipore Corporation).
  • the flux of the permeated liquid in the virus removal filter 12 is, for example, 0.1 LMH or more, 1.0 LMH or more, 2.0 LMH or more, 4.0 LMH or more, or 10.0 LMH or more.
  • the flux of the permeated liquid in the virus removal filter 12 is, for example, 500 LMH or less, 400 LMH or less, 300 LMH or less, 200 LMH or less, or 100 LMH or less.
  • the flux of the permeate in the virus removal filter 12 is adjusted by the first pump 13 and the second pump 21 .
  • C (m 2 ) is the membrane area of the virus removal filter 12
  • a is the first constant velocity
  • b is the second constant velocity
  • D min is the minimum value of b/(a+b)
  • D is the maximum value of b/(a+b).
  • max the minimum value of the permeate flux in the virus removal filter is F min (LMH)
  • the maximum value of the permeate flux in the virus removal filter is F max (LMH)
  • the minimum value of the first constant velocity a is a min ( mL/min) is given by the following formula (7), for example.
  • a min (1 ⁇ D max )(1000/60) ⁇ F min ⁇ C (7)
  • a max (1 ⁇ D min )(1000/60) ⁇ F max ⁇ C (8)
  • bmin Dmin ( 1000/60 ) x Fmin x C (9)
  • b max Dmax ( 1000/60) x Fmax x C (10)
  • the protein solution supplied to the first channel 10 is continuously flowed through the first channel 10 provided with the protein purification section 11 and the virus removal filter 12 .
  • the virus solution supplied to the second channel 20 is continuously flowed through the first channel 10 provided with the second channel 20 and the virus removal filter 12 .
  • “flowing continuously” means that the solution is flowed without being pooled in the middle of the channel.
  • the permeated liquid of the mixed liquid that has passed through the virus removal filter 12 is collected in the permeated liquid collection container 43, for example.
  • methods for measuring the virus contained in the permeate of the mixed liquid that has passed through the virus removal filter 12 include, but are not limited to, an infectious titer measurement method and a quantitative PCR method.
  • the infectious titer in the infectious titer measurement method is a unit representing the concentration of an infectious virus.
  • Infectious titer methods include an endpoint method for determining the minimum infectious unit and a method for calculating local lesions formed by viruses.
  • the virus is serially diluted, inoculated into a certain number or more of cultured cells, cultured for a certain period of time, and positive/negative of infection is determined to determine the dilution ratio at which 50% infection is positive.
  • the 50 % infection endpoint (TCID50: Tissue culture infectious dose50) method is common.
  • the plaque method is generally used, in which viruses are inoculated into cells cultured in sheets, the cells are covered with a medium containing agar, and the number of plaques formed by the number of inoculated viruses is measured.
  • the unit of infectious titer is TCID 50 when using the TCID 50 method and pfu when using the plaque method.
  • pfu is an abbreviation for plaque forming unit.
  • the unit of TCID 50 /mL and pfu/mL represents the infectious titer per mL.
  • the quantitative PCR method quantifies the nucleic acids contained in the virus. Since a virus usually encapsulates one molecule of nucleic acid per particle in its capsid, the number of nucleic acid molecules is equal to the number of virus particles.
  • the virus clearance capacity of the virus removal filter 12 is adjusted based on the amount of virus contained in the mixture before passing through the virus removal filter 12 and the amount of virus contained in the mixture after passing through the virus removal filter 12. evaluate.
  • the amount of virus may be represented by the infectious titer or the number of particles.
  • the virus clearance ability of the virus removal filter 12 is evaluated, for example, by the logarithmic removal rate (LRV) given by the following formula (11).
  • LRV Log10T1 - Log10T2 ( 11)
  • T1 represents the amount of virus contained in the mixture before passing through the virus removal filter 12
  • T2 represents the amount of virus contained in the mixture after passing through the virus removal filter 12 .
  • the washing liquid may be supplied to the first channel 10 after stopping the supply of the protein solution to the first channel 10 .
  • the cleaning liquid for example, flows from the cleaning liquid tank 44 to the first channel 10 .
  • the washing solution is a protein- and virus-free solvent.
  • the washing liquid may be passed through the protein purification section 11 and the virus removal filter 12, and the virus contained in the permeation liquid of the washing liquid that has passed through the virus removal filter 12 may be measured. If the amount of virus contained in the permeation liquid of the cleaning liquid is small, it can be evaluated that the virus removal filter 12 has a high virus retention capacity.
  • the time until the washing liquid is supplied to the first flow path 10 is, for example, 0 minutes or more, 5 minutes or more, 10 minutes or more, or 30 minutes. minutes or more.
  • the time (process pause) from when the supply of the protein solution to the first channel 10 is stopped until the cleaning solution is supplied to the first channel 10 is, for example, 24 hours or less, 20 hours or less, 10 hours or less, 5 hours or less, or 1 hour or less.
  • the virus load condition on the virus removal filter 12 becomes constant, and the virus can be detected with high reproducibility. Clearance studies can be performed. If the virus solution is not supplied to the second channel 20 at a constant speed, the reproducibility of the virus clearance test may be lowered. In addition, if the virus solution is not supplied to the second channel 20 at a constant speed, the virus spike amount may fluctuate, making it impossible to calculate the logarithmic removal rate (LRV).
  • LUV logarithmic removal rate
  • Example 1 A system similar to the protein purification system shown in FIG. 1 was constructed.
  • the protein purification section 11 a 0.5 mL column filled with a mixed-mode chromatography carrier (Cellufine MAX IB, JNC) was used.
  • Cellufine MAX IB has a ligand obtained by partially modifying a polyamine with a butyl group.
  • a 0.0003 m 2 Planova BioEX (Asahi Kasei Medical) was used as the virus removal filter 12 .
  • a protein solution containing 5 mg/mL IgG was prepared using a pH 6.5 solvent containing 20 mmol/L Tris-acetate and 100 mmol/L NaCl. Also, MVM was added to the protein solution to prepare a virus solution containing 10% MVM.
  • the first pump 13 and the second pump 21 were stopped and left to stand for 35 minutes. After that, a pH 6.5 solvent containing 20 mmol/L of tris-acetic acid and 100 mmol/L of NaCl was used as a cleaning liquid, and was flowed through the first channel 10 at a constant rate of 0.25 mL/min using the first pump 13. . A permeated liquid of the washing liquid that passed through the protein purification section 11 and the virus removal filter 12 was collected.
  • the virus infectivity titer in the permeated liquid of the collected mixed liquid is measured, and the virus infectivity titer in the permeated liquid of the mixed liquid and the virus infectivity titer in the mixed liquid before passing through the virus removal filter 12 are calculated.
  • the logarithmic removal rate (LRV) in the virus removal filter 12 was 5.56 or more.
  • the infectivity titer of the virus in the permeated liquid of the collected washing liquid is measured, and the infectivity titer of the virus in the permeated liquid of the mixed liquid, the infective titer of the virus in the permeated liquid of the washing liquid, and the infective titer of the mixed liquid before passing through the virus removal filter 12
  • the logarithmic removal rate (LRV) in the virus removal filter 12 calculated from the virus infection titer was 5.19 or higher. Purification conditions and purification results according to Example 1 are shown in FIGS.
  • Example 2 A protein solution and a virus solution were subjected to a protein purification system in the same manner as in Example 1, except that a 0.5 mL column packed with a strong cation exchange chromatography carrier (Cellufine MAX GS, JNC) was used as the protein purification unit 11. flowed to In this case, the infectious titer (Log 10 TCID 50 (unit/mL)) of the virus in the mixture was 6.813.
  • Virus removal filter 12 calculated from the virus infectivity in the mixed liquid permeated liquid, the virus infectivity in the washing liquid permeated liquid, and the virus infectivity in the mixed liquid before passing through the virus removal filter 12
  • the purification conditions and purification results according to Example 2 are shown in FIGS.
  • Example 3 A protein solution and a virus solution were subjected to protein purification in the same manner as in Example 1, except that a 0.5 mL column packed with a strong cation exchange chromatography carrier (Cellufine DexS-HbP, JNC) was used as the protein purification unit 11. sent to the system.
  • the virus infectious titer Log 10 TCID 50 (unit/mL)
  • the mixture was 6.875.
  • the logarithmic removal rate (LRV) in the virus removal filter 12 which is calculated from the virus infectivity in the mixed liquid permeated and the virus infectivity in the mixed liquid before passing through the virus removal filter 12. 56 or more.
  • Virus removal filter 12 calculated from the virus infectivity in the mixed liquid permeated liquid, the virus infectivity in the washing liquid permeated liquid, and the virus infectivity in the mixed liquid before passing through the virus removal filter 12
  • the purification conditions and purification results according to Example 3 are shown in FIGS.
  • Example 4 The protein and virus solutions were run through the protein purification system as in Example 1, except that the virus solution containing 10% x-MuLV was used. In this case, the infectious titer (Log 10 TCID 50 (unit/mL)) of the virus in the mixture was 5.075.
  • the logarithmic removal rate (LRV) in the virus removal filter 12 which is calculated from the virus infectivity in the permeated liquid of the mixture and the virus infectivity in the mixture before passing through the virus removal filter 12; 75 or more.
  • Virus removal filter 12 calculated from the virus infectivity in the mixed liquid permeated liquid, the virus infectivity in the washing liquid permeated liquid, and the virus infectivity in the mixed liquid before passing through the virus removal filter 12
  • Purification conditions and purification results according to Example 4 are shown in FIGS.
  • Example 5 The protein and virus solutions were run through the protein purification system as in Example 2, except that the virus solution containing 10% x-MuLV was used. In this case, the virus infectious titer (Log 10 TCID 50 (unit/mL)) in the mixture was 4.939.
  • the logarithmic removal rate (LRV) in the virus removal filter 12 which is calculated from the virus infectivity in the permeated liquid of the mixture and the virus infectivity in the mixture before passing through the virus removal filter 12; 62 or more.
  • Virus removal filter 12 calculated from the virus infectivity in the mixed liquid permeated liquid, the virus infectivity in the washing liquid permeated liquid, and the virus infectivity in the mixed liquid before passing through the virus removal filter 12
  • the purification conditions and purification results according to Example 5 are shown in FIGS. 2 and 3.
  • FIG. 1 The logarithmic rejection rate (LRV) at was greater than or equal to 3.26.
  • Example 6 The protein and virus solutions were run through the protein purification system as in Example 3, except that the virus solution containing 10% x-MuLV was used. In this case, the infectious titer (Log 10 TCID 50 (unit/mL)) of the virus in the mixture was 4.809.
  • the logarithmic removal rate (LRV) in the virus removal filter 12 which is calculated from the virus infectivity in the permeated liquid of the mixture and the virus infectivity in the mixture before passing through the virus removal filter 12; was 50 or more.
  • Virus removal filter 12 calculated from the virus infectivity in the mixed liquid permeated liquid, the virus infectivity in the washing liquid permeated liquid, and the virus infectivity in the mixed liquid before passing through the virus removal filter 12
  • the purification conditions and purification results according to Example 6 are shown in FIGS.
  • Comparative example 1 A protein purification system according to Comparative Example 1 as shown in FIG. 4 was produced.
  • the protein purification system according to Comparative Example 1 was provided with channel 110 , pump 113 provided in channel 110 , and virus removal filter 12 provided in channel 110 .
  • a 0.0003 m 2 Planova BioEX (Asahi Kasei Medical) was used as the virus removal filter 12 .
  • the protein purification system according to Comparative Example 1 did not include a protein purification section.
  • the protein purification system according to Comparative Example 1 did not include the second channel and the second pump.
  • a virus solution containing 1% MVM was prepared using the same material as in Example 1, and 30 mL of the virus solution was flowed through channel 110 at a constant rate of 0.025 mL/min using pump 113 .
  • a virus solution with a virus infection titer (Log 10 TCID 50 (unit/mL)) of 6.13 flowed through the virus removal filter 12, and the flux of the permeated liquid was 5 LHM.
  • the virus solution permeate was collected.
  • Example 2 After 30 mL of the solution flowed through the virus removal filter 12, the pump 113 was stopped and left to stand for 35 minutes. After that, the same washing liquid as in Example 1 was flowed through the channel 110 at a constant speed of 0.25 mL/min using the pump 113 . A permeated liquid of the washing liquid that passed through the virus removal filter 12 was collected.
  • the infectivity of the virus in the permeate of the collected virus solution is measured, and the infectivity of the virus in the permeate of the virus solution and the infectivity of the virus in the virus solution before passing through the virus removal filter 12 are calculated.
  • the logarithmic removal rate (LRV) in the virus removal filter 12 was 5.27 or more.
  • the infectivity titer of the virus in the permeate liquid of the collected washing liquid is measured, and the infectivity titer of the virus in the permeate liquid of the virus solution, the infectivity titer of the virus in the permeate liquid of the washing liquid, and the virus infectivity of the virus solution before passing through the virus removal filter 12
  • the logarithmic removal rate (LRV) in the virus removal filter 12 calculated from the virus infection titer was 5.13 or more. Purification conditions and purification results according to Comparative Example 1 are shown in FIGS.
  • the LRV obtained in Comparative Example 1 approximates the LRV obtained in Examples 1 to 3. From this, it was shown that in Examples 1 to 3, even if the protein purification unit 11 was located upstream of the virus removal filter 12, the virus removal ability of only the virus removal filter 12 could be tested.
  • Comparative example 2 The virus solution was passed through the protein purification system according to Comparative Example 1 in the same manner as in Comparative Example 1, except that the virus solution was passed through the channel 110 at a constant velocity of 0.05 mL/min.
  • the virus infectious titer (Log 10 TCID 50 (unit/mL)) in the virus solution was 6.25, and the flux of the permeate was 10 LHM.
  • the infectivity of the virus in the permeate of the collected virus solution is measured, and the infectivity of the virus in the permeate of the virus solution and the infectivity of the virus in the virus solution before passing through the virus removal filter 12 are calculated.
  • the logarithmic removal rate (LRV) in the virus removal filter 12 was 5.40 or more.
  • the infectivity titer of the virus in the permeate liquid of the collected washing liquid is measured, and the infectivity titer of the virus in the permeate liquid of the virus solution, the infectivity titer of the virus in the permeate liquid of the washing liquid, and the virus infectivity of the virus solution before passing through the virus removal filter 12
  • the logarithmic removal rate (LRV) of the virus removal filter 12 calculated from the virus infection titer was 5.24 or more. Purification conditions and purification results according to Comparative Example 2 are shown in FIGS.
  • Comparative Example 3 The virus solution was passed through the protein purification system according to Comparative Example 1 in the same manner as in Comparative Example 1, except that the virus solution was passed through the channel 110 at a constant velocity of 0.1 mL/min.
  • the virus infectious titer (Log 10 TCID 50 (unit/mL)) in the virus solution was 6.44, and the flux of the permeate was 20 LHM.
  • the infectivity of the virus in the permeate of the collected virus solution is measured, and the infectivity of the virus in the permeate of the virus solution and the infectivity of the virus in the virus solution before passing through the virus removal filter 12 are calculated.
  • the logarithmic removal rate (LRV) in the virus removal filter 12 was 5.59 or more.
  • the infectivity titer of the virus in the permeate liquid of the collected washing liquid is measured, and the infectivity titer of the virus in the permeate liquid of the virus solution, the infectivity titer of the virus in the permeate liquid of the washing liquid, and the virus infectivity of the virus solution before passing through the virus removal filter 12
  • the logarithmic removal rate (LRV) of the virus removal filter 12 calculated from the virus infection titer was 5.43 or higher. Purification conditions and purification results according to Comparative Example 3 are shown in FIGS.
  • Comparative Example 4 A protein purification system according to Comparative Example 4 as shown in FIG. 7 was produced.
  • the protein purification system according to Comparative Example 4 had a channel 210 , a pump 213 provided in the channel 210 , and a protein purification section 11 provided in the channel 210 .
  • the protein purification system according to Comparative Example 4 did not have a virus removal filter. Also, the protein purification system according to Comparative Example 4 did not include the second channel and the second pump.
  • a virus solution containing 5% MVM was prepared using the same materials as in Example 1, and 30 mL of the virus solution was flowed through channel 110 at a constant rate of 0.25 mL/min using pump 213 .
  • a virus solution with a virus infection titer (Log 10 TCID 50 (unit/mL)) of 7.741 flowed through the protein purification section 11 .
  • the virus solution permeate was collected.
  • Example 1 After 30 mL of the solution flowed through the protein purification section 11, the pump 213 was stopped and left to stand for 0.05 minutes. After that, the same washing liquid as in Example 1 was flowed through the channel 210 at a constant speed of 0.25 mL/min using the pump 213 . A permeated liquid of the washing liquid that has passed through the protein purification section 11 was collected.
  • the infectivity of the virus in the permeate of the collected virus solution is measured, and the infectivity of the virus in the permeate of the virus solution and the infectivity of the virus in the virus solution before passing through the protein purification section 11 are calculated.
  • the logarithmic removal rate (LRV) in the protein purification section 11 was 3.94.
  • the infectivity titer of the virus in the permeate liquid of the collected washing liquid is measured, and the infectivity titer of the virus in the permeate liquid of the virus solution, the infectivity titer of the virus in the permeate liquid of the washing liquid, and the virus infectivity of the virus solution before permeating the protein purification unit 11
  • the logarithmic removal rate (LRV) in the protein purification section 11 calculated from the infectious titer of the virus was 1.96. Purification conditions and purification results according to Comparative Example 4 are shown in FIGS.
  • Comparative Example 5 The virus solution was passed through the protein purification system in the same manner as in Comparative Example 4, except that a 0.5 mL column packed with a strong cation exchange chromatography carrier (Cellufine MAX GS, JNC) was used as the protein purification unit 11. .
  • a virus solution with a virus infection titer (Log 10 TCID 50 (unit/mL)) of 7.741 flowed through the protein purification section 11 .
  • the infectivity of the virus in the permeate of the collected virus solution is measured, and the infectivity of the virus in the permeate of the virus solution and the infectivity of the virus in the virus solution before passing through the protein purification section 11 are calculated.
  • the logarithmic removal rate (LRV) in the protein purification section 11 was 0.25.
  • the infectivity titer of the virus in the permeate liquid of the collected washing liquid is measured, and the infectivity titer of the virus in the permeate liquid of the virus solution, the infectivity titer of the virus in the permeate liquid of the washing liquid, and the virus infectivity of the virus solution before permeating the protein purification unit 11
  • the logarithmic removal rate (LRV) in the protein purification section 11 calculated from the virus infectivity titer was 0.21.
  • Purification conditions and purification results according to Comparative Example 5 are shown in FIGS. 8 and 9.
  • Comparative Example 6 The virus solution was passed through the protein purification system in the same manner as in Comparative Example 4, except that a 0.5 mL column packed with a strong cation exchange chromatography carrier (Cellufine DexS-HbP, JNC) was used as the protein purification unit 11. did. As a result, a virus solution with a virus infection titer (Log 10 TCID 50 (unit/mL)) of 7.738 flowed through the protein purification section 11 .
  • a virus infection titer Log 10 TCID 50 (unit/mL)
  • the infectivity of the virus in the permeate of the collected virus solution is measured, and the infectivity of the virus in the permeate of the virus solution and the infectivity of the virus in the virus solution before passing through the protein purification section 11 are calculated.
  • the logarithmic removal rate (LRV) in protein purification section 11 was ⁇ 0.39.
  • the infectivity titer of the virus in the permeate liquid of the collected washing liquid is measured, and the infectivity titer of the virus in the permeate liquid of the virus solution, the infectivity titer of the virus in the permeate liquid of the washing liquid, and the virus infectivity of the virus solution before permeating the protein purification unit 11
  • the logarithmic removal rate (LRV) in the protein purification section 11 calculated from the virus infectivity titer was 0.38.
  • Purification conditions and purification results according to Comparative Example 6 are shown in FIGS. 8 and 9.
  • FIG. 8 and 9 Purification conditions and purification results according to Comparative Example 6 are shown in FIGS. 8 and 9.
  • Comparative Example 7 The virus solution was run through the protein purification system according to Comparative Example 4 in the same manner as in Comparative Example 4, except that the virus solution containing 10% x-MuLV was used. In this case, the virus infectious titer (Log 10 TCID 50 (unit/mL)) in the virus solution was 6.614.
  • the infectivity of the virus in the permeate of the collected virus solution is measured, and the infectivity of the virus in the permeate of the virus solution and the infectivity of the virus in the virus solution before passing through the protein purification section 11 are calculated.
  • the logarithmic removal rate (LRV) in the protein purification section 11 was 2.25.
  • the infectivity titer of the virus in the permeate liquid of the collected washing liquid is measured, and the infectivity titer of the virus in the permeate liquid of the virus solution, the infectivity titer of the virus in the permeate liquid of the washing liquid, and the virus infectivity of the virus solution before permeating the protein purification unit 11
  • the logarithmic removal rate (LRV) in the protein purification section 11 calculated from the infectious titer of the virus was 1.96. Purification conditions and purification results according to Comparative Example 7 are shown in FIGS. 8 and 9.
  • FIG. 8 and 9 Purification conditions and purification results according to Comparative Example 7 are shown in FIGS. 8 and 9.
  • Comparative Example 8 The virus solution was run through the protein purification system according to Comparative Example 4 in the same manner as in Comparative Example 5, except that the virus solution containing 10% x-MuLV was used. In this case, the virus infectious titer (Log 10 TCID 50 (unit/mL)) in the virus solution was 6.239.
  • the infectivity of the virus in the permeate of the collected virus solution is measured, and the infectivity of the virus in the permeate of the virus solution and the infectivity of the virus in the virus solution before passing through the protein purification section 11 are calculated.
  • the logarithmic removal rate (LRV) in the protein purification section 11 was 0.13.
  • the infectivity titer of the virus in the permeate liquid of the collected washing liquid is measured, and the infectivity titer of the virus in the permeate liquid of the virus solution, the infectivity titer of the virus in the permeate liquid of the washing liquid, and the virus infectivity of the virus solution before passing through the protein purification unit 11
  • the logarithmic removal rate (LRV) in the protein purification section 11 calculated from the virus infectivity titer was 0.21.
  • Purification conditions and purification results according to Comparative Example 8 are shown in FIGS. 8 and 9.
  • Comparative Example 9 The virus solution was run through the protein purification system according to Comparative Example 4 in the same manner as in Comparative Example 6, except that the virus solution containing 10% x-MuLV was used. In this case, the virus infectious titer (Log 10 TCID 50 (unit/mL)) in the virus solution was 6.368.
  • the infectivity of the virus in the permeate of the collected virus solution is measured, and the infectivity of the virus in the permeate of the virus solution and the infectivity of the virus in the virus solution before passing through the protein purification section 11 are calculated. , the logarithmic removal rate (LRV) in the protein purification section 11 was 0.44.
  • the infectivity titer of the virus in the permeate liquid of the collected washing liquid is measured, and the infectivity titer of the virus in the permeate liquid of the virus solution, the infectivity titer of the virus in the permeate liquid of the washing liquid, and the virus infectivity of the virus solution before permeating the protein purification unit 11
  • the logarithmic removal rate (LRV) in the protein purification section 11 calculated from the virus infectivity titer was 0.38.
  • Purification conditions and purification results according to Comparative Example 9 are shown in FIGS. 8 and 9.
  • FIG. 8 and 9 Purification conditions and purification results according to Comparative Example 9 are shown in FIGS. 8 and 9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Genetics & Genomics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Virology (AREA)
  • Electrochemistry (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Peptides Or Proteins (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

上流にタンパク質精製部11が設けられ、下流にウイルス除去フィルター12が設けられた第1流路10に、タンパク質溶液を供給し、第1等速でタンパク質溶液を、タンパク質精製部11に流すことと、第1流路のタンパク質精製部11とウイルス除去フィルター12の間に接続された第2流路20に、第2等速でウイルス溶液を供給し、精製されたタンパク質溶液に、ウイルス溶液を、第1流路10において、混合することと、第3等速で、タンパク質溶液とウイルス溶液の混合液を、ウイルス除去フィルター12に流すことと、ウイルス除去フィルター12を透過した混合液の透過液に含まれるウイルスを測定することと、を含む、ウイルスクリアランス試験の方法。

Description

ウイルスクリアランス試験の方法
 本発明は、ウイルスクリアランス試験の方法に関する。
 生物物質含有製剤には、血液から精製される血漿分画製剤や、バイオテクノロジーによって生産される生物学的製剤がある。これらの生物物質含有製剤には、ウイルス混入のリスクがある。一般的に生物物質含有製剤は、ウイルスに対する安全性が保障されている必要がある。そのため、生物物質含有製剤の製造においては、生物物質含有製剤に含まれる又は含まれる可能性のあるウイルスを十分に除去又は不活化する工程、すなわちウイルス除去工程をおく必要がある(例えば、非特許文献1参照。)。ウイルス除去工程におけるウイルス除去又は不活化能力を試験することを、ウイルスクリアランス試験という。
 生物物質含有製剤の製造工程の中でもロバストなウイルス除去工程といわれるのは、低pH処理又はウイルス除去媒体による処理工程である(例えば、非特許文献2参照。)。ウイルス除去膜等のウイルス除去媒体による処理工程は、エンベロープの有無に関わらず全てのウイルスに対して実施することができる点で優れている。
 通常、生物物質含有製剤の製造工程におけるウイルスクリアランス試験は、任意の製造工程の前後におけるウイルス濃度を測定し、例えばその対数減少率(LRV)を計算することでウイルスクリアランス能力を評価する(例えば、非特許文献1参照。)。例えば、生物物質含有溶液とウイルス溶液を混合し、混合液をウイルス除去媒体に接触させる前及び後の混合液におけるウイルス濃度を測定することにより、ウイルス除去工程のウイルスクリアランス能力を評価する。
 ウイルスクリアランス能力を評価する際に使用するウイルスの種類に関しては、ICH(International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use:日米欧医薬品規制調和国際会議)のq5aにガイドラインが記載されており、有用な非特異的モデルウイルスの例として「動物パルボウイルス」が挙げられている(例えば、非特許文献1参照。)。その中でも、ICH-q5aを引用した多くのウイルスクリアランス試験において、マウス微小ウイルス(MVM)及び豚パルボウイルス(PPV)が高頻度で使用されている。
 ウイルス濃度を測定するための方法としては、主にエンドポイント方式アッセイ法や局所病巣算定方式アッセイ法を含む感染価測定法、及び定量PCR (Quantitative-Polymerase Chain Reaction:qPCR)法が用いられている(例えば、非特許文献2、3参照。)。
国際公開第2014/080676A1号 米国特許出願公開第2012/0088228号明細書 特許第4024041号公報
Virul Safety Evalation of Biotechnology Product Derived from Celline of Human or Animal Origin Q5A(R1) Note For Guidance On Virus Validation Studies:The Design, Contribution And Interpretation Of Studies Validating The Inactivation and Removal Of Viruses 血漿分画製剤のウイルスに対する安全性確保に関するガイドライン(平成11年8月30日付医薬発第1047号医薬安全局長通知) Raphael Wolfisberg et al., Journal of Virology (2016) Beatriz Maroto et al., JOURNAL OF VIROLOGY (2004) ウイルス実験学各論、丸善出版、国立衛生研究所学友会編 pp22-23 V. Hutornojs at. al (2012) Env, Exp. Biol. 10: pp.117-123 Anthony M. D’Abramo Jr. et al., 2005 Virology Joshua C Grieger et al., Molecular Therapy 2015 Pavel Plevka et al., JOURNAL OF VIROLOGY (2011) PETER TATTERSALL et al., JOURNAL OF VIROLOGY (1976)
 本発明者らは、連続プロセスに適用可能なウイルスクリアランス試験の方法が有益であると考えた。そこで、本発明は、連続プロセスに適用可能なウイルスクリアランス試験の方法を提供することを課題の一つとする。
 [1](a)上流にタンパク質精製部が設けられ、下流にウイルス除去フィルターが設けられた第1流路に、タンパク質溶液を供給し、第1等速でタンパク質溶液を、タンパク質精製部に流すことと、(b)第1流路のタンパク質精製部とウイルス除去フィルターの間に接続された第2流路に、第2等速でウイルス溶液を供給し、精製されたタンパク質溶液に、ウイルス溶液を、第1流路において、混合することと、(c)第3等速で、タンパク質溶液とウイルス溶液の混合液を、ウイルス除去フィルターに流すことと、(d)ウイルス除去フィルターを透過した混合液の透過液に含まれるウイルスを測定することと、を含む、ウイルスクリアランス試験の方法。
 [2]第1流路に、第1等速でタンパク質溶液をタンパク質精製部に流すための第1ポンプが設けられている、[1]に記載の方法。
 [3]第2流路に、第2等速でウイルス溶液を流すための第2ポンプが設けられている、[1]又は[2]に記載の方法。
 [4]タンパク質溶液を、連続的に、タンパク質精製部に流す、[1]から[3]のいずれかに記載の方法。
 [5]ウイルス溶液を、連続的に、第2流路に流す、[1]から[4]のいずれかに記載の方法。
 [6]混合液を、連続的に、ウイルス除去フィルターに流す、[1]から[5]のいずれかに記載の方法。
 [7]第1等速をa、第2等速をb、混合液におけるウイルス濃度をx、ウイルス溶液におけるウイルス濃度をyとして、a,b,x,yが下記式(1)を満たす、[1]から[6]のいずれかに記載の方法。
  x/y=b/(a+b)   (1)
 [8]第1等速と第2等速の和に対する第2等速の比が0.1%以上20%以下である、[1]から[7]のいずれかに記載の方法。
 [9]混合液におけるウイルスの感染価(Log10 TCID50(unit/mL))が、2以上10以下である、[1]から[8]のいずれかに記載の方法。
 [10]ウイルス除去フィルターの膜面積が、0.0001m以上4m以下である、[1]から[9]のいずれかに記載の方法。
 [11]ウイルス除去フィルターにおける透過液のフラックスが、0.1LMH以上500LMH以下である、[1]から[10]のいずれかに記載の方法。
 [12]ウイルス除去フィルターの膜面積をC(m)、b/(a+b)の最小値をDmin、b/(a+b)の最大値をDmax、ウイルス除去フィルターにおける透過液のフラックスの最小値をFmin(LMH)、ウイルス除去フィルターにおける透過液のフラックスの最大値をFmax(LMH)として、
 第1等速aの最小値amin(mL/分)が下記式(2)で与えられ、
  amin=(1-Dmax)(1000/60)×Fmin×C   (2)
 第1等速aの最大値amax(mL/分)が下記式(3)で与えられ、
  amax=(1-Dmin)(1000/60)×Fmax×C   (3)
 第2等速bの最小値bmin(mL/分)が下記式(4)で与えられ、
  bmin=Dmin(1000/60)×Fmin×C   (4)
 第2等速bの最大値bmax(mL/分)が下記式(5)で与えられる、
  bmax=Dmax(1000/60)×Fmax×C   (5)
 [7]に記載の方法。
 [13]第1流路に、タンパク質溶液を供給することを停止した後、第1流路に、洗浄液を供給し、洗浄液を、タンパク質精製部及びウイルス除去フィルターに流すことと、ウイルス除去フィルターを透過した洗浄液の透過液に含まれるウイルスを測定することと、さらに含む、[1]から[12]のいずれかに記載の方法。
 [14]第1流路に、タンパク質溶液を供給することを停止した後、第1流路に、洗浄液を供給するまでの時間が、0分以上24時間以下である、[13]に記載の方法。
 [15]ウイルス溶液が、タンパク質を含む、[1]から[14]のいずれかに記載の方法。
 [16]ウイルス溶液が、タンパク質溶液が含むタンパク質と同じタンパク質を含む、[1]から[15]のいずれかに記載の方法。
 [17]ウイルス溶液におけるタンパク質の濃度が、タンパク質溶液におけるタンパク質の濃度と同じである、[15]又は[16]に記載の方法。
 [18]ウイルス除去フィルターを透過する前の混合液に含まれるウイルスの量と、ウイルス除去フィルターを透過した混合液の透過液に含まれるウイルスの量と、を比較することを更に含む、[1]から[17]のいずれかに記載の方法。
 [19]タンパク質精製部が、ウイルスの除去能を有する、[1]から[18]のいずれかに記載の方法。
 [20]タンパク質精製部11における対数除去率(LRV)が、0以上7以下である、[19]に記載の方法。
 本発明によれば、連続プロセスに適用可能なウイルスクリアランス試験の方法を提供可能である。
実施形態に係るタンパク質精製システムの模式図である。 実施例1から6に係る精製条件を示す表である。 実施例1から6に係る精製結果を示す表である。 比較例1に係るタンパク質精製システムの模式図である。 比較例1から3に係る精製条件を示す表である。 比較例1から3に係る精製結果を示す表である。 比較例4に係るタンパク質精製システムの模式図である。 比較例4から9に係る精製条件を示す表である。 比較例4から9に係る精製結果を示す表である。
 以下、本発明を実施するための形態(以下、「実施形態」ということがある)について説明する。本発明は、以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施できる。また、以下に示す実施形態は、この発明の技術的思想を具体化するための方法等を例示するものであって、これらの例示に限定されるものではない。
 実施形態に係るタンパク質精製システムは、図1に示すように、タンパク質溶液が流れる第1流路10と、第1流路10の上流に設けられたタンパク質精製部11と、第1流路10の下流に設けられたウイルス除去フィルター12と、第1流路10のタンパク質精製部11とウイルス除去フィルター12の間に接続された第2流路20と、を備える。第1流路10に、第1等速でタンパク質溶液をタンパク質精製部11に流すための第1ポンプ13が設けられていてもよい。第2流路20に、第2等速でウイルス溶液を流すための第2ポンプ21が設けられていてもよい。
 実施形態に係るウイルスクリアランス試験の方法の方法は、例えば、図1に示すタンパク質精製システムを用いて実施される。実施形態に係るウイルスクリアランス試験の方法の方法は、(a)上流にタンパク質精製部11が設けられ、下流にウイルス除去フィルター12が設けられた第1流路10に、タンパク質溶液を供給し、第1等速でタンパク質溶液を、タンパク質精製部11に流すことと、(b)第1流路10のタンパク質精製部11とウイルス除去フィルター12の間に接続された第2流路20に、第2等速でウイルス溶液を供給し、精製されたタンパク質溶液に、ウイルス溶液を、第1流路10において、混合することと、(c)第3等速で、タンパク質溶液とウイルス溶液の混合液を、ウイルス除去フィルター12に流すことと、(d)ウイルス除去フィルター12を透過した混合液の透過液に含まれるウイルスを測定することと、を含む。
 第1流路10に流されるタンパク質溶液は、タンパク質を含む。タンパク質溶液は、好ましくは、ウイルスを含まない。タンパク質溶液は、例えば、タンパク質溶液タンク41から第1流路10に流される。
 第1ポンプ13は、例えば、第1流路10のタンパク質精製部11の上流に設けられるが、これに限定されない。第1ポンプ13として、容積ポンプが使用可能であるが、これに限定されない。容積ポンプの例としては、蠕動ポンプが挙げられるが、これに限定されない。第1ポンプ13は、第1等速で、タンパク質溶液をタンパク質精製部11に連続的に流す。
 タンパク質の例としては、抗体が挙げられる。抗体は、生化学における一般的な定義のとおり、脊椎動物の感染防禦機構としてBリンパ球が産生する糖タンパク質分子(ガンマグロブリン又は免疫グロブリンともいう)である。例えば、抗体は、ヒトの医薬品として使用され、投与対象であるヒトの体内にある抗体と実質的に同一の構造を有し得る。
 抗体は、ヒト抗体であってもよく、ヒト以外のウシ及びマウス等の哺乳動物由来抗体であってもよい。あるいは、抗体は、ヒトIgGとのキメラ抗体、及びヒト化抗体であってもよい。ヒトIgGとのキメラ抗体とは、可変領域がマウスなどのヒト以外の生物由来であるが、その他の定常領域がヒト由来の免疫グロブリンに置換された抗体である。また、ヒト化抗体とは、可変領域のうち、相補性決定領域(complementarity-determining region: CDR)がヒト以外の生物由来であるが、その他のフレームワーク領域(framework region: FR)がヒト由来である抗体である。ヒト化抗体は、キメラ抗体よりも免疫原性がさらに低減される。
 抗体のクラス(アイソタイプ)及びサブクラスは限定されない。例えば、抗体は、定常領域の構造の違いにより、IgG、IgA、IgM、IgD、及びIgEの5種類のクラスに分類される。しかし、抗体は、5種類のクラスの何れであってもよい。また、ヒト抗体においては、IgGにはIgG1からIgG4の4つのサブクラスがあり、IgAにはIgA1とIgA2の2つのサブクラスがある。しかし、抗体のサブクラスは、いずれであってもよい。なお、Fc領域にタンパク質を結合したFc融合タンパク質等の抗体関連タンパク質も、抗体に含まれ得る。
 抗体は、由来によって分類することができる。しかし、抗体は、天然のヒト抗体、遺伝子組換え技術により製造された組換えヒト抗体、モノクローナル抗体、及びポリクローナル抗体の何れであってもよい。抗体医薬としての需要や重要性の観点から、ヒトIgGが抗体として好適であるが、これに限定されない。
 タンパク質精製部11は、タンパク質に含まれる不純物を除去し、タンパク質溶液に含まれるタンパク質を精製する。タンパク質精製部11は、例えば、クロマトグラフィーカラムを備える。
 クロマトグラフィーカラムは、例えば、カチオン交換クロマトグラフィーカラムであってもよい。カチオン交換クロマトグラフィーカラムにおいて、抗体の多量体等のタンパク質の凝集体等が不純物としてカチオン交換担体に吸着し、抗体の単量体等のタンパク質は、カチオン交換クロマトグラフィーカラムを透過する。
 カチオン交換担体は、カチオン交換基を有する。カチオン交換基は、強カチオン交換基であってもよいし、弱カチオン交換基であってもよいし、これら両方であってもよい。
 一般に、強カチオン交換基は、抗体溶液のpH領域で荷電しているため、荷電量が一定である。したがって、カチオン交換担体が強カチオン交換基を有すると、常に一定以上の荷電量が保証される。そのため、カチオン交換担体が強カチオン交換基を有すると、pHに対する荷電量変化が抑制され、精製特性の再現性が向上し得る。強カチオン交換基の例としては、スルホン酸基が挙げられる。
 弱カチオン交換基は、移動相のpHにより、荷電量を変化させることが可能である。そのため、移動相のpHを変化させることにより、カチオン交換担体の電荷密度の調整が可能となる。したがって、除去すべき不純物の特性に合わせて、pHを調整することにより、任意の不純物の除去が可能となる。弱カチオン交換基の例としては、カルボキシル基、ホスホン酸基、及びリン酸基が挙げられる。
 カチオン交換担体の形状の例としては、膜状、ビーズ状、及びモノリス状が挙げられるが、これらに限定されない。
 膜状のカチオン交換担体の例としては、Mustang(商標)S(Pall Corporation)、Sartobind(登録商標)S(Sartorius Stedim Biotech)、及びNatrix HD-Sb、Natrix HD-C(Natrix Separations)が挙げられるが、これらに限定されない。
 ビーズ状のカチオン交換担体の例としては、SP Sepharose(商標)Fast Flow、High Performance、XL、Capto(商標)S(GE Healthcare)、Fractogel(登録商標)COO、SO 、SE Highcap、Eshumuno(登録商標)S、CPX(Merck Millipore Corporation)、POROS(登録商標)XS、HS(ThermoFisher)、Nuvia(商標)S、HR-S、UNOsphere(商標)S、Rapid S、Macro-Prep(登録商標)High S、CM、25 S(Bio-Rad)、及びCellufine(登録商標)Max CM、Max S(JNC)、Cellufine(登録商標)DexS-HbP(JNC)が挙げられるが、これらに限定されない。
 モノリス状のカチオン交換担体の例としては、CIM(登録商標)SO3(BIA Separations)等が挙げられるが、これに限定されない。
 クロマトグラフィーカラムは、例えば、アニオン交換クロマトグラフィーカラムであってもよい。アニオン交換クロマトグラフィーカラムにおいて、宿主細胞由来タンパク質(HCP)、核酸、及びウイルス等の等電点の低い不純物がアニオン交換担体に吸着し、抗体の単量体等のタンパク質は、アニオン交換クロマトグラフィーカラムを透過する。
 アニオン交換担体は、アニオン交換基を有する。アニオン交換基は、強アニオン交換基であってもよいし、弱アニオン交換基であってもよいし、これら両方であってもよい。
 強アニオン交換基の例としては、トリメチルアミノ基、トリエチルアミノ基等を有する4級アンモニウムが挙げられる。
 弱アニオン交換基の例としては、3級アミンが挙げられるが、これに限定されない。炭素数が2以上のアルキル基を2つ以上有する3級アミンは、適度な疎水性を有し得る。3級アミンの例としては、ジエチルアミノ基、ジプロピルアミノ基、ジイソプロピルアミノ基、及びジブチルアミノ基が挙げられる。
 アニオン交換担体の形状の例としては、膜状、ビーズ状、及びモノリス状が挙げられるが、これらに限定されない。
 膜状のアニオン交換担体の例としては、Chromasorb(商標)(Merck Millipore Corporation)、Mustang(登録商標)Q(Pall Corporation)、Sarotibind(登録商標)Q、STIC(登録商標)PA(Sartorius Stedim Biotech)、NatriFlo(登録商標)HD-Q(Natrix Separations)、及びQyuSpeed(商標)D(旭化成メディカル株式会社)が挙げられるが、これらに限定されない。
 ビーズ状のアニオン交換担体の例としては、Q Sepharose(商標)Fast Flow、High Performance、XL、QAE Sephadex(商標)(GE Healthcare)、Fractogel(登録商標)TMAE、TMAE Highcap、DMAE、DEAE、Eshmuno(登録商標)Q(Merck Millipore Corporation)、POROS(登録商標)XQ、HQ、D、PI(ThermoFisher)、DEAE―Cellulose(Sigma-Aldrich)、Nuvia(商標)Q、UNOsphere(商標)Q、Macro-Prep(登録商標)High Q、DEAE、25 Q(Bio-Rad)、CaptoQ(GEヘルスケア・ジャパン株式会社)、Cellufine(登録商標)Max DEAE、及びMax Q(JNC)が挙げられるが、これらに限定されない。
 モノリス状のアニオン交換担体の例としては、CIM(登録商標)QA、DEAE、EDA(BIA Separations)が挙げられるが、これに限定されない。
 クロマトグラフィーカラムは、例えば、ミックスモードクロマトグラフィーカラムであってもよい。ミックスモードクロマトグラフィーカラムにおいては、逆相クロマトグラフィーとイオン交換クロマトグラフィーが組合わされ、タンパク質溶液が精製される。ミックスモードクロマトグラフィーに用いられる担体としては、セルファインMAX IB(JNC)が挙げられる。
 タンパク質精製部11は、ウイルスの除去能を有していてもよいし、ウイルスの除去能を有していなくてもよい。タンパク質精製部11における対数除去率(LRV)は、例えば、0以上7以下であってもよい。タンパク質精製部11におけるLRVの下限は、0以上、1以上、2以上、3以上、4以上、あるいは5以上であってもよい。タンパク質精製部11におけるLRVの上限は、7以下、あるいは6以下であってもよい。
 第1流路10のタンパク質精製部11の下流には、タンパク質精製部11を透過したタンパク質溶液のタンパク質濃度を測定するタンパク質濃度測定器31が設けられていてもよい。タンパク質濃度測定器31は、例えば、紫外吸収法により、タンパク質精製部11を透過したタンパク質溶液のタンパク質濃度を測定する。
 第1流路10のタンパク質精製部11の下流には、タンパク質精製部11を透過したタンパク質溶液の導電率を測定する導電率測定器32が設けられていてもよい。導電率測定器32は、例えば、交流二電極法や電磁誘導法により、タンパク質精製部11を透過したタンパク質溶液の導電率を測定する。
 第1流路10のタンパク質精製部11の下流には、タンパク質精製部11を透過したタンパク質溶液のpHを測定するpH測定器、温度を測定する温度計、及び圧力を測定する圧力計が設けられていてもよい。
 第2流路20に流されるウイルス溶液は、ウイルスを含む。ウイルス溶液は、例えば、ウイルス溶液タンク42から第2流路20に流される。
 第2ポンプ21として、容積ポンプが使用可能であるが、これに限定されない。容積ポンプの例としては、蠕動ポンプが挙げられるが、これに限定されない。第2ポンプ21は、第2等速で、ウイルス溶液を第2流路20に連続的に流す。第2流路20は第1流路10に接続されているため、第2流路20と第1流路10の接続点から第1流路10の下流において、タンパク質溶液とウイルス溶液が混合し、混合液となる。第2流路20と第1流路10の接続点から第1流路10の下流に、インラインミキサー33が設けられていてもよい。インラインミキサー33は、タンパク質溶液とウイルス溶液の混合を促進する。
 ウイルスは、感染性ウイルスであり得る。ウイルスは、天然由来のウイルスであり得る。天然由来のウイルスとは、ウイルスを感染させた宿主細胞を培地で培養して得られるウイルス、及びウイルス核酸を細胞にトランスフェクションして細胞を培養して得られるウイルスを含む。
 ウイルスの例としては、マウス微小ウイルス(MVM:Minutevirusofmice)、豚パルボウイルス(PPV:Porcineparvovirus)、レオウイルス3型(ReoVirusType3)、急性灰白髄炎ウイルス(PolioVirus)、豚ヘルペスウイルス(PseudorabiesVirus)、単純ヘルペスウイルス1型(HumanHerpesVirus1)、異種指向性マウス白血病ウイルス(X-MuLV:Xenotropic murine leukemia virus)、及びウシウイルス性下痢症ウイルス(BovineViralDiarrheaVirus)が挙げられるが、これらに限定されない。
 例えば、第2流路20に供給されるウイルス溶液は、第1流路10に供給されるタンパク質溶液が含むタンパク質と同じタンパク質を含む。また、例えば、第2流路20に供給されるウイルス溶液におけるタンパク質の濃度は、第1流路10に供給されるタンパク質溶液におけるタンパク質の濃度と同じである。これにより、タンパク質溶液とウイルス溶液の混合液におけるタンパク質の濃度が、第1流路10に供給されたタンパク質溶液におけるタンパク質の濃度と同じになる。
 ウイルス除去フィルター12に入るタンパク質溶液とウイルス溶液の混合液におけるウイルスの感染価(Log10 TCID50(unit/mL))は、例えば、2以上、3以上、あるいは4以上である。また、混合液におけるウイルスの感染価(Log10 TCID50(unit/mL))は、例えば、10以下、9以下、8以下、あるいは7以下である。
 第1等速をa、第2等速をb、混合液におけるウイルスの濃度をx、ウイルス溶液におけるウイルスの濃度をyとして、a,b,x,yが下記式(6)を満たすよう、第1等速、第2等速、タンパク質溶液の供給量、ウイルス溶液の供給量、及びウイルス溶液におけるウイルスの濃度を調整してもよい。
  x/y=b/(a+b)   (6)
 第1等速と第2等速の和に対する第2等速の比は、例えば、0.1%以上、0.5%以上、1.0%以上、1.5%以上、2.0%以上、あるいは3.0%以上である。また、第1等速と第2等速の和に対する第2等速の比は、例えば、20%以下、15%以下、10%以下、9%以下、8%以下、あるいは7%以下である。第1等速と第2等速の和に対する第2等速の比を上記範囲内とすることにより、タンパク質溶液の流れが、ウイルス溶液の流れによって大きく影響されにくくなる傾向にある。
 タンパク質溶液とウイルス溶液の混合液は、第3等速で、連続的に、ウイルス除去フィルター12に流れる。
 ウイルス除去フィルター12の膜面積は、例えば、0.0001m以上、0.0002m以上、0.0003m以上、0.0006m以上、0.0009m以上、あるいは0.0015m以上である。また、ウイルス除去フィルター12の膜面積は、例えば、4m以下、3m以下、2m以下、あるいは1m以下である。
 ウイルス除去フィルター12の形状は、中空糸状であってもよいし、平膜状であってもよい。
 中空糸状のウイルス除去フィルターの例としては、Planova 15N、20N、35N、BioEX(旭化成メディカル)が挙げられる。
 平膜状のウイルス除去フィルターの例としては、Viresolve Pro(EMD Millipore Corporation)、Ultipor VF Grade DV20、DV50、Pegasus(商標)SV4、Grade LV6(Pall Corporation)、Virosart CPV、HC、HF(Sartorius Stedim Biotech)、及びNFP(Merck Millipore Corporation)が挙げられる。
 ウイルス除去フィルター12における透過液のフラックスは、例えば、0.1LMH以上、1.0LMH以上、2.0LMH以上、4.0LMH以上、あるいは、10.0LMH以上である。ウイルス除去フィルター12における透過液のフラックスは、例えば、500LMH以下、400LMH以下、300LMH以下、200LMH以下、あるいは100LMH以下である。ウイルス除去フィルター12における透過液のフラックスは、第1ポンプ13及び第2ポンプ21によって調整される。
 ウイルス除去フィルター12の膜面積をC(m)、第1等速をa、第2等速をb、b/(a+b)の最小値をDmin、b/(a+b)の最大値をDmax、ウイルス除去フィルターにおける透過液のフラックスの最小値をFmin(LMH)、ウイルス除去フィルターにおける透過液のフラックスの最大値をFmax(LMH)として、第1等速aの最小値amin(mL/分)は、例えば、下記式(7)で与えられる。
  amin=(1-Dmax)(1000/60)×Fmin×C   (7)
 第1等速aの最大値amax(mL/分)は、例えば、下記式(8)で与えられる。
  amax=(1-Dmin)(1000/60)×Fmax×C   (8)
 第2等速bの最小値bmin(mL/分)は、例えば、下記式(9)で与えられる。
  bmin=Dmin(1000/60)×Fmin×C   (9)
 第2等速bの最大値bmax(mL/分)は、例えば、下記式(10)で与えられる、
  bmax=Dmax(1000/60)×Fmax×C   (10)
 第1流路10に供給されたタンパク質溶液は、タンパク質精製部11及びウイルス除去フィルター12が設けられた第1流路10に連続的に流される。また、第2流路20に供給されたウイルス溶液は、第2流路20及びウイルス除去フィルター12が設けられた第1流路10に連続的に流される。ここで、連続的に流されるとは、流路の途中で溶液がプールされることなく、流されることをいう。
 ウイルス除去フィルター12を透過した混合液の透過液は、例えば、透過液回収容器43で回収される。ウイルス除去フィルター12を透過した混合液の透過液に含まれるウイルスを測定する方法の例としては、感染価測定法、及び定量PCR法が挙げられるが、これらに限定されない。
 感染価測定法における感染価とは、感染性を有するウイルスの濃度を表記する単位である。感染価測定法には、最小感染単位を決定するエンドポイント方式と、ウイルスによって形成される局所病巣算定方式と、がある。エンドポイント方式としては、ウイルスを段階希釈して一定数以上の培養細胞に接種し、一定期間培養して、感染の陽性/陰性を判定することで、50%感染陽性となる希釈倍率を求める、50%感染終末点(TCID50: Tissue culture infectious dose50)法が一般的である。局所病巣算定方式としては、シート状に培養した細胞にウイルスを接種し、寒天を含む培地を重層して細胞を覆い、接種したウイルスの数だけ形成されるプラークを測定する、プラーク法が一般的である。感染価の単位は、TCID50法を利用する場合はTCID50、プラーク法を利用する場合はpfuである。pfuはplaque forming unit(プラーク形成単位)の略である。また、TCID50/mL、及びpfu/mLという単位によって、1mLあたりの感染価が表される。
 定量PCR法では、ウイルスに内包されていた核酸を定量する。通常、ウイルスは1粒子につき1分子の核酸をキャプシドに内包するため、核酸の分子数はウイルスの粒子数と等しくなる。
 ウイルス除去フィルター12を透過する前の混合液に含まれるウイルスの量と、ウイルス除去フィルター12を透過した後の混合液に含まれるウイルスの量と、に基づき、ウイルス除去フィルター12のウイルスクリアランス能力を評価する。ウイルスの量は、感染価で表してもよいし、粒子数で表してもよい。ウイルス除去フィルター12のウイルスクリアランス能力は、例えば、下記式(11)で与えられる対数除去率(LRV)で評価される。
  LRV=Log10-Log10   (11)
 ここで、Tはウイルス除去フィルター12を透過する前の混合液に含まれるウイルスの量を表し、Tはウイルス除去フィルター12を透過した後の混合液に含まれるウイルスの量を表す。
 LRVが大きいほど、ウイルス除去フィルター12のウイルスクリアランス能力が高いと評価することが可能である。
 第1流路10に、タンパク質溶液を供給することを停止した後、第1流路10に、洗浄液を供給してもよい。洗浄液は、例えば、洗浄液タンク44から第1流路10に流される。洗浄液は、タンパク質及びウイルスを含まない溶媒である。洗浄液を、タンパク質精製部11及びウイルス除去フィルター12に流し、ウイルス除去フィルター12を透過した洗浄液の透過液に含まれるウイルスを測定してもよい。洗浄液の透過液に含まれるウイルスの量が少なければ、ウイルス除去フィルター12のウイルス保持能力が高いと評価することが可能である。
 第1流路10に、タンパク質溶液を供給することを停止した後、第1流路10に、洗浄液を供給するまでの時間は、例えば、0分以上、5分以上、10分以上、あるいは30分以上である。また、第1流路10に、タンパク質溶液を供給することを停止した後、第1流路10に、洗浄液を供給するまでの時間(プロセスポーズ)は、例えば、24時間以下、20時間以下、10時間以下、5時間以下、あるいは1時間以下である。
 実施形態に係るウイルスクリアランス試験の方法の方法によれば、第2流路20にウイルス溶液を等速で供給することにより、ウイルス除去フィルター12へのウイルス負荷条件が一定となり、再現性の高いウイルスクリアランス試験を実施することが可能である。第2流路20にウイルス溶液を等速で供給しない場合、ウイルスクリアランス試験の再現性が低下し得る。また、第2流路20にウイルス溶液を等速で供給しない場合、ウィルススパイク量が変動して、対数除去率(LRV)の計算が不可能になり得る。
 (実施例1)
 図1に示すようなタンパク質精製システムと同様のシステムを作製した。タンパク質精製部11としては、ミックスモード用クロマトグラフィー担体(セルファインMAX IB、JNC)を充填した0.5mLのカラムを用いた。セルファインMAX IBは、ポリアミンの一部をブチル基で修飾したリガンドを有する。ウイルス除去フィルター12としては、0.0003mのPlanova BioEX(旭化成メディカル)を用いた。
 20mmol/Lのトリス酢酸、100mmol/LのNaClを含むpH6.5の溶媒を用いて、5mg/mLのIgGを含むタンパク質溶液を調製した。また、タンパク質溶液にMVMを添加して、10%のMVMを含むウイルス溶液を調製した。
 第1ポンプ13を用いて、27mLのタンパク質溶液を0.225mL/分の第1等速で第1流路10に流した。また、第2ポンプ21を用いて、3mLのウイルス溶液を0.025mL/分の第2等速で第2流路20に流した。第1等速と第2等速の和に対する第2等速の割合は、10%であった。これにより、ウイルスの感染価(Log10 TCID50(unit/mL))が6.884の混合液が、ウイルス除去フィルター12を流れ、透過液のフラックスは、50LHMであった。混合液の透過液は回収された。
 30mLの溶液がウイルス除去フィルター12を流れたあと、第1ポンプ13及び第2ポンプ21を停止させ、35分間静置した。その後、20mmol/Lのトリス酢酸、100mmol/LのNaClを含むpH6.5の溶媒を洗浄液として、第1ポンプ13を用いて、0.25mL/分の等速で第1流路10に流した。タンパク質精製部11及びウイルス除去フィルター12を透過した洗浄液の透過液を回収した。
 回収した混合液の透過液におけるウイルスの感染価を測定し、混合液の透過液におけるウイルスの感染価と、ウイルス除去フィルター12を透過する前の混合液におけるウイルスの感染価と、から算出される、ウイルス除去フィルター12における対数除去率(LRV)は、5.56以上であった。
 回収した洗浄液の透過液におけるウイルスの感染価を測定し、混合液の透過液におけるウイルスの感染価と、洗浄液の透過液におけるウイルスの感染価と、ウイルス除去フィルター12を透過する前の混合液におけるウイルスの感染価と、から算出される、ウイルス除去フィルター12における対数除去率(LRV)は、5.19以上であった。実施例1に係る精製条件及び精製結果を図2及び図3に示す。
 (実施例2)
 タンパク質精製部11として、強カチオン交換クロマトグラフィー担体(セルファインMAX GS、JNC)を充填した0.5mLのカラムを用いた以外は、実施例1と同様に、タンパク質溶液とウイルス溶液をタンパク質精製システムに流した。この場合、混合液におけるウイルスの感染価(Log10 TCID50(unit/mL))は6.813であった。
 混合液の透過液におけるウイルスの感染価と、ウイルス除去フィルター12を透過する前の混合液におけるウイルスの感染価と、から算出される、ウイルス除去フィルター12における対数除去率(LRV)は、5.50以上であった。
 混合液の透過液におけるウイルスの感染価と、洗浄液の透過液におけるウイルスの感染価と、ウイルス除去フィルター12を透過する前の混合液におけるウイルスの感染価と、から算出される、ウイルス除去フィルター12における対数除去率(LRV)は、5.13以上であった。実施例2に係る精製条件及び精製結果を図2及び図3に示す。
 (実施例3)
 タンパク質精製部11として、強カチオン交換クロマトグラフィー担体(セルファインDexS-HbP、JNC)を充填した0.5mLのカラムを用いた以外は、実施例1と同様に、タンパク質溶液とウイルス溶液をタンパク質精製システムに流した。この場合、混合液におけるウイルスの感染価(Log10 TCID50(unit/mL))は6.875であった。
 混合液の透過液におけるウイルスの感染価と、ウイルス除去フィルター12を透過する前の混合液におけるウイルスの感染価と、から算出される、ウイルス除去フィルター12における対数除去率(LRV)は、5.56以上であった。
 混合液の透過液におけるウイルスの感染価と、洗浄液の透過液におけるウイルスの感染価と、ウイルス除去フィルター12を透過する前の混合液におけるウイルスの感染価と、から算出される、ウイルス除去フィルター12における対数除去率(LRV)は、5.19以上であった。実施例3に係る精製条件及び精製結果を図2及び図3に示す。
 (実施例4)
 10%のx-MuLVを含むウイルス溶液を用いた以外は、実施例1と同様に、タンパク質溶液とウイルス溶液をタンパク質精製システムに流した。この場合、混合液におけるウイルスの感染価(Log10 TCID50(unit/mL))は5.075であった。
 混合液の透過液におけるウイルスの感染価と、ウイルス除去フィルター12を透過する前の混合液におけるウイルスの感染価と、から算出される、ウイルス除去フィルター12における対数除去率(LRV)は、3.75以上であった。
 混合液の透過液におけるウイルスの感染価と、洗浄液の透過液におけるウイルスの感染価と、ウイルス除去フィルター12を透過する前の混合液におけるウイルスの感染価と、から算出される、ウイルス除去フィルター12における対数除去率(LRV)は、3.39以上であった。実施例4に係る精製条件及び精製結果を図2及び図3に示す。
 (実施例5)
 10%のx-MuLVを含むウイルス溶液を用いた以外は、実施例2と同様に、タンパク質溶液とウイルス溶液をタンパク質精製システムに流した。この場合、混合液におけるウイルスの感染価(Log10 TCID50(unit/mL))は4.939であった。
 混合液の透過液におけるウイルスの感染価と、ウイルス除去フィルター12を透過する前の混合液におけるウイルスの感染価と、から算出される、ウイルス除去フィルター12における対数除去率(LRV)は、3.62以上であった。
 混合液の透過液におけるウイルスの感染価と、洗浄液の透過液におけるウイルスの感染価と、ウイルス除去フィルター12を透過する前の混合液におけるウイルスの感染価と、から算出される、ウイルス除去フィルター12における対数除去率(LRV)は、3.26以上であった。実施例5に係る精製条件及び精製結果を図2及び図3に示す。
 (実施例6)
 10%のx-MuLVを含むウイルス溶液を用いた以外は、実施例3と同様に、タンパク質溶液とウイルス溶液をタンパク質精製システムに流した。この場合、混合液におけるウイルスの感染価(Log10 TCID50(unit/mL))は4.809であった。
 混合液の透過液におけるウイルスの感染価と、ウイルス除去フィルター12を透過する前の混合液におけるウイルスの感染価と、から算出される、ウイルス除去フィルター12における対数除去率(LRV)は、3.50以上であった。
 混合液の透過液におけるウイルスの感染価と、洗浄液の透過液におけるウイルスの感染価と、ウイルス除去フィルター12を透過する前の混合液におけるウイルスの感染価と、から算出される、ウイルス除去フィルター12における対数除去率(LRV)は、3.12以上であった。実施例6に係る精製条件及び精製結果を図2及び図3に示す。
 (比較例1)
 図4に示すような比較例1に係るタンパク質精製システムを作製した。比較例1に係るタンパク質精製システムは、流路110と、流路110に設けられたポンプ113と、流路110に設けられたウイルス除去フィルター12と、を備えていた。ウイルス除去フィルター12としては、0.0003mのPlanova BioEX(旭化成メディカル)を用いた。比較例1に係るタンパク質精製システムは、タンパク質精製部を備えなかった。また、比較例1に係るタンパク質精製システムは、第2流路及び第2ポンプを備えなかった。
 実施例1と同様の材料を用いてで1%のMVMを含むウイルス溶液を用意し、ポンプ113を用いて、30mLのウイルス溶液を0.025mL/分の等速で流路110に流した。これにより、ウイルスの感染価(Log10 TCID50(unit/mL))が6.13のウイルス溶液が、ウイルス除去フィルター12を流れ、透過液のフラックスは、5LHMであった。ウイルス溶液の透過液は回収された。
 30mLの溶液がウイルス除去フィルター12を流れたあと、ポンプ113を停止させ、35分間静置した。その後、実施例1と同じ洗浄液を、ポンプ113を用いて、0.25mL/分の等速で流路110に流した。ウイルス除去フィルター12を透過した洗浄液の透過液を回収した。
 回収したウイルス溶液の透過液におけるウイルスの感染価を測定し、ウイルス溶液の透過液におけるウイルスの感染価と、ウイルス除去フィルター12を透過する前のウイルス溶液におけるウイルスの感染価と、から算出される、ウイルス除去フィルター12における対数除去率(LRV)は、5.27以上であった。
 回収した洗浄液の透過液におけるウイルスの感染価を測定し、ウイルス溶液の透過液におけるウイルスの感染価と、洗浄液の透過液におけるウイルスの感染価と、ウイルス除去フィルター12を透過する前のウイルス溶液におけるウイルスの感染価と、から算出される、ウイルス除去フィルター12における対数除去率(LRV)は、5.13以上であった。比較例1に係る精製条件及び精製結果を図5及び図6に示す。
 比較例1で得られたLRVは、実施例1から3で得られたLRVと近似する。このことから、実施例1から3においては、ウイルス除去フィルター12の上流にタンパク質精製部11があっても、ウイルス除去フィルター12のみのウイルス除去能を試験できていたことが示された。
 (比較例2)
 ウイルス溶液を0.05mL/分の等速で流路110に流した以外は、比較例1と同様に、ウイルス溶液を比較例1に係るタンパク質精製システムに流した。この場合、ウイルス溶液におけるウイルスの感染価(Log10 TCID50(unit/mL))は6.25であり、透過液のフラックスは、10LHMであった。
 回収したウイルス溶液の透過液におけるウイルスの感染価を測定し、ウイルス溶液の透過液におけるウイルスの感染価と、ウイルス除去フィルター12を透過する前のウイルス溶液におけるウイルスの感染価と、から算出される、ウイルス除去フィルター12における対数除去率(LRV)は、5.40以上であった。
 回収した洗浄液の透過液におけるウイルスの感染価を測定し、ウイルス溶液の透過液におけるウイルスの感染価と、洗浄液の透過液におけるウイルスの感染価と、ウイルス除去フィルター12を透過する前のウイルス溶液におけるウイルスの感染価と、から算出される、ウイルス除去フィルター12における対数除去率(LRV)は、5.24以上であった。比較例2に係る精製条件及び精製結果を図5及び図6に示す。
 (比較例3)
 ウイルス溶液を0.1mL/分の等速で流路110に流した以外は、比較例1と同様に、ウイルス溶液を比較例1に係るタンパク質精製システムに流した。この場合、ウイルス溶液におけるウイルスの感染価(Log10 TCID50(unit/mL))は6.44であり、透過液のフラックスは、20LHMであった。
 回収したウイルス溶液の透過液におけるウイルスの感染価を測定し、ウイルス溶液の透過液におけるウイルスの感染価と、ウイルス除去フィルター12を透過する前のウイルス溶液におけるウイルスの感染価と、から算出される、ウイルス除去フィルター12における対数除去率(LRV)は、5.59以上であった。
 回収した洗浄液の透過液におけるウイルスの感染価を測定し、ウイルス溶液の透過液におけるウイルスの感染価と、洗浄液の透過液におけるウイルスの感染価と、ウイルス除去フィルター12を透過する前のウイルス溶液におけるウイルスの感染価と、から算出される、ウイルス除去フィルター12における対数除去率(LRV)は、5.43以上であった。比較例3に係る精製条件及び精製結果を図5及び図6に示す。
 (比較例4)
 図7に示すような比較例4に係るタンパク質精製システムを作製した。比較例4に係るタンパク質精製システムは、流路210と、流路210に設けられたポンプ213と、流路210に設けられたタンパク質精製部11と、を備えていた。タンパク質精製部11としては、ミックスモード用クロマトグラフィー担体(セルファインMAX IB、JNC)を充填した0.5mLのカラムを用いた。比較例4に係るタンパク質精製システムは、ウイルス除去フィルターを備えなかった。また、比較例4に係るタンパク質精製システムは、第2流路及び第2ポンプを備えなかった。
 実施例1と同様の材料を用いて5%のMVMを含むウイルス溶液を調製し、ポンプ213を用いて、30mLのウイルス溶液を0.25mL/分の等速で流路110に流した。これにより、ウイルスの感染価(Log10 TCID50(unit/mL))が7.741のウイルス溶液が、タンパク質精製部11を流れた。ウイルス溶液の透過液は回収された。
 30mLの溶液がタンパク質精製部11を流れたあと、ポンプ213を停止させ、0.05分間静置した。その後、実施例1と同じ洗浄液を、ポンプ213を用いて、0.25mL/分の等速で流路210に流した。タンパク質精製部11を透過した洗浄液の透過液を回収した。
 回収したウイルス溶液の透過液におけるウイルスの感染価を測定し、ウイルス溶液の透過液におけるウイルスの感染価と、タンパク質精製部11を透過する前のウイルス溶液におけるウイルスの感染価と、から算出される、タンパク質精製部11における対数除去率(LRV)は、3.94であった。
 回収した洗浄液の透過液におけるウイルスの感染価を測定し、ウイルス溶液の透過液におけるウイルスの感染価と、洗浄液の透過液におけるウイルスの感染価と、タンパク質精製部11を透過する前のウイルス溶液におけるウイルスの感染価と、から算出される、タンパク質精製部11における対数除去率(LRV)は、1.96であった。比較例4に係る精製条件及び精製結果を図8及び図9に示す。
 この結果は、タンパク質精製部11でウイルスが除去されることを示している。したがって、この結果は、図1に示すシステムで、ウイルス溶液をタンパク質精製部11の上流から流すと、ウイルス除去フィルター12のみのLRVを正確に測定し得ないことを示している。
 (比較例5)
 タンパク質精製部11として、強カチオン交換クロマトグラフィー担体(セルファインMAX GS、JNC)を充填した0.5mLのカラムを用いた以外は、比較例4と同様に、ウイルス溶液をタンパク質精製システムに流した。これにより、ウイルスの感染価(Log10 TCID50(unit/mL))が7.741のウイルス溶液が、タンパク質精製部11を流れた。
 回収したウイルス溶液の透過液におけるウイルスの感染価を測定し、ウイルス溶液の透過液におけるウイルスの感染価と、タンパク質精製部11を透過する前のウイルス溶液におけるウイルスの感染価と、から算出される、タンパク質精製部11における対数除去率(LRV)は、0.25であった。
 回収した洗浄液の透過液におけるウイルスの感染価を測定し、ウイルス溶液の透過液におけるウイルスの感染価と、洗浄液の透過液におけるウイルスの感染価と、タンパク質精製部11を透過する前のウイルス溶液におけるウイルスの感染価と、から算出される、タンパク質精製部11における対数除去率(LRV)は、0.21であった。比較例5に係る精製条件及び精製結果を図8及び図9に示す。
 (比較例6)
 タンパク質精製部11として、強カチオン交換クロマトグラフィー担体(セルファインDexS-HbP、JNC)を充填した0.5mLのカラムを用いた以外は、比較例4と同様に、ウイルス溶液をタンパク質精製システムに流した。これにより、ウイルスの感染価(Log10 TCID50(unit/mL))が7.738のウイルス溶液が、タンパク質精製部11を流れた。
 回収したウイルス溶液の透過液におけるウイルスの感染価を測定し、ウイルス溶液の透過液におけるウイルスの感染価と、タンパク質精製部11を透過する前のウイルス溶液におけるウイルスの感染価と、から算出される、タンパク質精製部11における対数除去率(LRV)は、-0.39であった。
 回収した洗浄液の透過液におけるウイルスの感染価を測定し、ウイルス溶液の透過液におけるウイルスの感染価と、洗浄液の透過液におけるウイルスの感染価と、タンパク質精製部11を透過する前のウイルス溶液におけるウイルスの感染価と、から算出される、タンパク質精製部11における対数除去率(LRV)は、0.38であった。比較例6に係る精製条件及び精製結果を図8及び図9に示す。
 (比較例7)
 10%のx-MuLVを含むウイルス溶液を用いた以外は、比較例4と同様に、ウイルス溶液を比較例4に係るタンパク質精製システムに流した。この場合、ウイルス溶液におけるウイルスの感染価(Log10 TCID50(unit/mL))は6.614であった。
 回収したウイルス溶液の透過液におけるウイルスの感染価を測定し、ウイルス溶液の透過液におけるウイルスの感染価と、タンパク質精製部11を透過する前のウイルス溶液におけるウイルスの感染価と、から算出される、タンパク質精製部11における対数除去率(LRV)は、2.25であった。
 回収した洗浄液の透過液におけるウイルスの感染価を測定し、ウイルス溶液の透過液におけるウイルスの感染価と、洗浄液の透過液におけるウイルスの感染価と、タンパク質精製部11を透過する前のウイルス溶液におけるウイルスの感染価と、から算出される、タンパク質精製部11における対数除去率(LRV)は、1.96であった。比較例7に係る精製条件及び精製結果を図8及び図9に示す。
 (比較例8)
 10%のx-MuLVを含むウイルス溶液を用いた以外は、比較例5と同様に、ウイルス溶液を比較例4に係るタンパク質精製システムに流した。この場合、ウイルス溶液におけるウイルスの感染価(Log10 TCID50(unit/mL))は6.239であった。
 回収したウイルス溶液の透過液におけるウイルスの感染価を測定し、ウイルス溶液の透過液におけるウイルスの感染価と、タンパク質精製部11を透過する前のウイルス溶液におけるウイルスの感染価と、から算出される、タンパク質精製部11における対数除去率(LRV)は、0.13であった。
 回収した洗浄液の透過液におけるウイルスの感染価を測定し、ウイルス溶液の透過液におけるウイルスの感染価と、洗浄液の透過液におけるウイルスの感染価と、タンパク質精製部11を透過する前のウイルス溶液におけるウイルスの感染価と、から算出される、タンパク質精製部11における対数除去率(LRV)は、0.21であった。比較例8に係る精製条件及び精製結果を図8及び図9に示す。
 (比較例9)
 10%のx-MuLVを含むウイルス溶液を用いた以外は、比較例6と同様に、ウイルス溶液を比較例4に係るタンパク質精製システムに流した。この場合、ウイルス溶液におけるウイルスの感染価(Log10 TCID50(unit/mL))は6.368であった。
 回収したウイルス溶液の透過液におけるウイルスの感染価を測定し、ウイルス溶液の透過液におけるウイルスの感染価と、タンパク質精製部11を透過する前のウイルス溶液におけるウイルスの感染価と、から算出される、タンパク質精製部11における対数除去率(LRV)は、0.44であった。
 回収した洗浄液の透過液におけるウイルスの感染価を測定し、ウイルス溶液の透過液におけるウイルスの感染価と、洗浄液の透過液におけるウイルスの感染価と、タンパク質精製部11を透過する前のウイルス溶液におけるウイルスの感染価と、から算出される、タンパク質精製部11における対数除去率(LRV)は、0.38であった。比較例9に係る精製条件及び精製結果を図8及び図9に示す。
 10・・・第1流路、11・・・タンパク質精製部、12・・・ウイルス除去フィルター、13・・・第1ポンプ、20・・・第2流路、21・・・第2ポンプ、31・・・タンパク質濃度測定器、32・・・導電率測定器、33・・・インラインミキサー

Claims (20)

  1.  上流にタンパク質精製部が設けられ、下流にウイルス除去フィルターが設けられた第1流路に、タンパク質溶液を供給し、第1等速で前記タンパク質溶液を、前記タンパク質精製部に流すことと、
     前記第1流路の前記タンパク質精製部と前記ウイルス除去フィルターの間に接続された第2流路に、第2等速でウイルス溶液を供給し、精製された前記タンパク質溶液に、前記ウイルス溶液を、前記第1流路において、混合することと、
     第3等速で、前記タンパク質溶液と前記ウイルス溶液の混合液を、前記ウイルス除去フィルターに流すことと、
     前記ウイルス除去フィルターを透過した前記混合液の透過液に含まれるウイルスを測定することと、
     を含む、ウイルスクリアランス試験の方法。
  2.  前記第1流路に、前記第1等速で前記タンパク質溶液を前記タンパク質精製部に流すための第1ポンプが設けられている、請求項1に記載の方法。
  3.  前記第2流路に、前記第2等速で前記ウイルス溶液を流すための第2ポンプが設けられている、請求項1又は2に記載の方法。
  4.  前記タンパク質溶液を、連続的に、前記タンパク質精製部に流す、請求項1から3のいずれか1項に記載の方法。
  5.  前記ウイルス溶液を、連続的に、前記第2流路に流す、請求項1から4のいずれか1項に記載の方法。
  6.  前記混合液を、連続的に、前記ウイルス除去フィルターに流す、請求項1から5のいずれか1項に記載の方法。
  7.  前記第1等速をa、前記第2等速をb、前記混合液におけるウイルス濃度をx、前記ウイルス溶液におけるウイルス濃度をyとして、a,b,x,yが下記式(1)を満たす、請求項1から6のいずれか1項に記載の方法。
      x/y=b/(a+b)   (1)
  8.  前記第1等速と前記第2等速の和に対する前記第2等速の比が0.1%以上20%以下である、請求項1から7のいずれか1項に記載の方法。
  9.  前記混合液におけるウイルスの感染価(Log10 TCID50(unit/mL))が、2以上10以下である、請求項1から8のいずれか1項に記載の方法。
  10.  前記ウイルス除去フィルターの膜面積が、0.0001m以上4m以下である、請求項1から9のいずれか1項に記載の方法。
  11.  前記ウイルス除去フィルターにおける前記透過液のフラックスが、0.1LMH以上500LMH以下である、請求項1から10のいずれか1項に記載の方法。
  12.  前記ウイルス除去フィルターの膜面積をC(m)、b/(a+b)の最小値をDmin、b/(a+b)の最大値をDmax、前記ウイルス除去フィルターにおける前記透過液のフラックスの最小値をFmin(LMH)、前記ウイルス除去フィルターにおける前記透過液のフラックスの最大値をFmax(LMH)として、
     前記第1等速aの最小値amin(mL/分)が下記式(2)で与えられ、
      amin=(1-Dmax)(1000/60)×Fmin×C   (2)
     前記第1等速aの最大値amax(mL/分)が下記式(3)で与えられ、
      amax=(1-Dmin)(1000/60)×Fmax×C   (3)
     前記第2等速bの最小値bmin(mL/分)が下記式(4)で与えられ、
      bmin=Dmin(1000/60)×Fmin×C   (4)
     前記第2等速bの最大値bmax(mL/分)が下記式(5)で与えられる、
      bmax=Dmax(1000/60)×Fmax×C   (5)
     請求項7に記載の方法。
  13.  前記第1流路に、前記タンパク質溶液を供給することを停止した後、前記第1流路に、洗浄液を供給し、前記洗浄液を、前記タンパク質精製部及び前記ウイルス除去フィルターに流すことと、
     前記ウイルス除去フィルターを透過した前記洗浄液の透過液に含まれるウイルスを測定することと、
     をさらに含む、請求項1から12のいずれか1項に記載の方法。
  14.  前記第1流路に、前記タンパク質溶液を供給することを停止した後、前記第1流路に、前記洗浄液を供給するまでの時間が、0分以上24時間以下である、請求項13に記載の方法。
  15.  前記ウイルス溶液が、タンパク質を含む、請求項1から14のいずれか1項に記載の方法。
  16.  前記ウイルス溶液が、前記タンパク質溶液が含むタンパク質と同じタンパク質を含む、請求項1から15のいずれか1項に記載の方法。
  17.  前記ウイルス溶液における前記タンパク質の濃度が、前記タンパク質溶液における前記タンパク質の濃度と同じである、請求項15又は16に記載の方法。
  18.  前記ウイルス除去フィルターを透過する前の前記混合液に含まれる前記ウイルスの量と、前記ウイルス除去フィルターを透過した前記混合液の透過液に含まれるウイルスの量と、を比較することを更に含む、請求項1から17のいずれか1項に記載の方法。
  19.  前記タンパク質精製部が、ウイルスの除去能を有する、請求項1から18のいずれか1項に記載の方法。
  20.  前記タンパク質精製部11における対数除去率(LRV)が、0以上7以下である、請求項19に記載の方法。
PCT/JP2022/014401 2021-03-26 2022-03-25 ウイルスクリアランス試験の方法 WO2022203044A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US18/283,596 US20240175098A1 (en) 2021-03-26 2022-03-25 Viral clearance test method
EP22775825.7A EP4317460A1 (en) 2021-03-26 2022-03-25 Viral clearance test method
JP2023509329A JPWO2022203044A1 (ja) 2021-03-26 2022-03-25

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021053527 2021-03-26
JP2021-053527 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022203044A1 true WO2022203044A1 (ja) 2022-09-29

Family

ID=83397485

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/014401 WO2022203044A1 (ja) 2021-03-26 2022-03-25 ウイルスクリアランス試験の方法

Country Status (4)

Country Link
US (1) US20240175098A1 (ja)
EP (1) EP4317460A1 (ja)
JP (1) JPWO2022203044A1 (ja)
WO (1) WO2022203044A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4024041B2 (ja) 1999-08-20 2007-12-19 旭化成メディカル株式会社 生理活性物質溶液用濾過膜
US20120088228A1 (en) 2010-04-14 2012-04-12 Millipore Corporation Methods of producing high titer, high purity virus stocks and methods of use thereof
WO2014080676A1 (ja) 2012-11-22 2014-05-30 旭化成メディカル株式会社 高感染価のパルボウイルスの生産方法
WO2018075716A1 (en) * 2016-10-21 2018-04-26 Bayer Healthcare Llc Validation of continuous viral clearance

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4024041B2 (ja) 1999-08-20 2007-12-19 旭化成メディカル株式会社 生理活性物質溶液用濾過膜
US20120088228A1 (en) 2010-04-14 2012-04-12 Millipore Corporation Methods of producing high titer, high purity virus stocks and methods of use thereof
WO2014080676A1 (ja) 2012-11-22 2014-05-30 旭化成メディカル株式会社 高感染価のパルボウイルスの生産方法
WO2018075716A1 (en) * 2016-10-21 2018-04-26 Bayer Healthcare Llc Validation of continuous viral clearance

Non-Patent Citations (15)

* Cited by examiner, † Cited by third party
Title
"Guideline for safety guarantee of plasma fractionated product against virus", 30 August 1999, PHARMACEUTICAL AND FOOD SAFETY BUREAU
"Note For Guidance On Virus Validation Studies", THE DESIGN, CONTRIBUTION AND INTERPRETATION OF STUDIES VALIDATING THE INACTIVATION AND REMOVAL OF VIRUSES
ANTHONY M. D'ABRAMO JR. ET AL., VIROLOGY, 2005
BEATRIZ MAROTO ET AL., JOURNAL OF VIROLOGY, 2004
BIRTE KLEINDIENST, ANIKA MANZKE, PETER KOSIOL: "Continuous Processing: Challenges and Opportunities of Virus Filtration", PHARMACEUTICAL TECHNOLOGY, vol. 43, no. 1, 2 January 2019 (2019-01-02), pages 38 - 40, XP002805245 *
BOHONAK DAVID M., MEHTA USHMA, WEISS ERIC R., VOYTA GREG: "Adapting virus filtration to enable intensified and continuous monoclonal antibody processing", BIOTECHNOLOGY PROGRESS, AMERICAN CHEMICAL SOCIETY, vol. 37, no. 2, 1 March 2021 (2021-03-01), XP055969924, ISSN: 8756-7938, DOI: 10.1002/btpr.3088 *
JOSHUA C GRIEGER ET AL., MOLECULAR THERAPY, 2015
PAVEL PLEVKA ET AL., JOURNAL OF VIROLOGY, 2011
PETER TATTERSALL ET AL., JOURNAL OF VIROLOGY, 1976
RAPHAEL WOLFISBERG ET AL., JOURNAL OF VIROLOGY, 2016
SARAH A. JOHNSON; MATTHEW R. BROWN; SCOTT C. LUTE; KURT A. BRORSON: "Adapting viral safety assurance strategies to continuous processing of biological products", BIOTECHNOLOGY AND BIOENGINEERING, JOHN WILEY, HOBOKEN, USA, vol. 114, no. 6, 20 April 2017 (2017-04-20), Hoboken, USA, pages 1362 - 1362, XP071153347, ISSN: 0006-3592, DOI: 10.1002/bit.26245 *
SHIRATAKI HIRONOBU, YOKOYAMA YOSHIRO, TANIGUCHI HIROKI, AZEYANAGI MIKU: "Analysis of filtration behavior using integrated column chromatography followed by virus filtration", BIOTECHNOLOGY AND BIOENGINEERING, JOHN WILEY, HOBOKEN, USA, vol. 118, no. 9, 1 September 2021 (2021-09-01), Hoboken, USA, pages 3569 - 3580, XP055969931, ISSN: 0006-3592, DOI: 10.1002/bit.27840 *
V. HUTORNOJS, ENV, EXP., vol. 10, 2012, pages 117 - 123
VIRUL SAFETY EVALATION OF BIOTECHNOLOGY PRODUCT DERIVED FROM CELLINE OF HUMAN OR ANIMAL ORIGIN Q5A
YOSHIMOTO NORIKO, ICHIHARA TAKAMITSU, YAMAMOTO SHUICHI: "Connected flow-through chromatography processes as continuous downstream processing of proteins", MATEC WEB OF CONFERENCES, vol. 268, 1 January 2019 (2019-01-01), pages 01003, XP055969912, DOI: 10.1051/matecconf/201926801003 *

Also Published As

Publication number Publication date
JPWO2022203044A1 (ja) 2022-09-29
US20240175098A1 (en) 2024-05-30
EP4317460A1 (en) 2024-02-07

Similar Documents

Publication Publication Date Title
JP6457575B2 (ja) タンパク質精製プロセス中のウイルスの不活性化方法
EP2697369B1 (en) Novel protein purification methods
JP5730211B2 (ja) ウイルスのアルギニン不活化
CN102459331B (zh) 生产用于皮下使用的高度浓缩的免疫球蛋白制品的方法
JP5711369B2 (ja) 蛋白製剤の製造方法
TW202102518A (zh) 用於病毒滅活之替代性清潔劑
Johnson et al. Virus filtration: A review of current and future practices in bioprocessing
WO2022203044A1 (ja) ウイルスクリアランス試験の方法
US9910041B2 (en) Method of determining virus removal from a sample containing a target protein using activated carbon
Roberts Efficient removal of viruses by a novel polyvinylidene fluoride membrane filter
Barnette et al. Pathogen safety profile of a 10% IgG preparation manufactured using a depth filtration-modified process
KR20220114019A (ko) 환경 친화적 세제에 의한 바이러스 불활성화 방법
JP2011041475A (ja) 抗体製造方法
Saab Investigation the Plugging Behavior of Virus filters
JP2021011446A (ja) タンパク質含有溶液のろ過方法
NZ615579B2 (en) Novel protein purification methods

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775825

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023509329

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18283596

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022775825

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022775825

Country of ref document: EP

Effective date: 20231026