WO2022202936A1 - 炭化珪素半導体装置およびそれを用いたインバータ回路、炭化珪素半導体装置の製造方法 - Google Patents

炭化珪素半導体装置およびそれを用いたインバータ回路、炭化珪素半導体装置の製造方法 Download PDF

Info

Publication number
WO2022202936A1
WO2022202936A1 PCT/JP2022/013713 JP2022013713W WO2022202936A1 WO 2022202936 A1 WO2022202936 A1 WO 2022202936A1 JP 2022013713 W JP2022013713 W JP 2022013713W WO 2022202936 A1 WO2022202936 A1 WO 2022202936A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
semiconductor device
silicon carbide
deep
conductivity type
Prior art date
Application number
PCT/JP2022/013713
Other languages
English (en)
French (fr)
Inventor
準市 上原
優介 羽山
Original Assignee
株式会社デンソー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022045676A external-priority patent/JP2022151776A/ja
Application filed by 株式会社デンソー filed Critical 株式会社デンソー
Priority to CN202280023731.0A priority Critical patent/CN117083719A/zh
Publication of WO2022202936A1 publication Critical patent/WO2022202936A1/ja
Priority to US18/366,002 priority patent/US20230378292A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • H01L29/4236Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66893Unipolar field-effect transistors with a PN junction gate, i.e. JFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7811Vertical DMOS transistors, i.e. VDMOS transistors with an edge termination structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure
    • H01L29/7832Field effect transistors with field effect produced by an insulated gate with multiple gate structure the structure comprising a MOS gate and at least one non-MOS gate, e.g. JFET or MESFET gate

Definitions

  • the present disclosure relates to a silicon carbide (hereinafter also simply referred to as SiC) semiconductor device having a trench gate structure, an inverter circuit using the same, and a method for manufacturing the SiC semiconductor device.
  • SiC silicon carbide
  • a SiC semiconductor device in which a MOSFET (abbreviation for metal oxide semiconductor field effect transistor) having a trench gate structure is formed has been proposed (see, for example, Patent Document 1).
  • MOSFET abbreviation for metal oxide semiconductor field effect transistor
  • an n ⁇ -type buffer layer having an impurity concentration lower than that of the substrate is formed on an n + -type substrate, and an impurity concentration lower than that of the buffer layer is formed on the buffer layer.
  • a low-concentration layer is formed.
  • a p-type first deep layer extending in one direction as a longitudinal direction and an n-type JFET portion are formed on the low-concentration layer.
  • the first deep layers and the JFET portions are alternately arranged along the direction intersecting the longitudinal direction of the first deep layers and the JFET portions so that the JFET portions are arranged between adjacent first deep layers. It is An n-type current spreading layer and a p-type second deep layer are disposed on the first deep layer and the JFET portion. A p-type base layer is disposed on the current spreading layer and the second deep layer. The second deep layer is arranged to connect the first deep layer and the base layer.
  • n + -type source region is formed in the surface layer portion of the base layer.
  • a plurality of trenches are formed through the source region and the base layer to reach the current spreading layer, and a gate insulating film and a gate electrode are sequentially formed in each trench.
  • a trench gate structure is thus formed.
  • a parasitic diode is formed by a pn junction between the base layer and the like and the current spreading layer and the like. Therefore, it is conceivable that such a SiC semiconductor device utilizes a parasitic diode when reverse conduction occurs.
  • basal plane dislocations (hereinafter simply referred to as BPDs) may exist in the substrate.
  • BPDs basal plane dislocations
  • SFs stacking faults
  • An object of the present disclosure is to provide a SiC semiconductor device capable of suppressing an increase in on-voltage, an inverter circuit using the SiC semiconductor device, and a method for manufacturing the SiC semiconductor device.
  • a SiC semiconductor device has a cell portion in which a switching element is formed and an outer peripheral portion surrounding the cell portion, and the cell portion is a substrate of a first conductivity type made of SiC. a buffer layer of the first conductivity type formed on the substrate and having an impurity concentration lower than that of the substrate; and a low concentration layer of the first conductivity type formed on the buffer layer and having an impurity concentration lower than that of the substrate.
  • a first deep layer of a second conductivity type formed on the low-concentration layer and having a plurality of linear portions having a longitudinal direction in one direction in the surface direction of the substrate; a first conductivity type JFET portion having a linear portion sandwiched between deep layers; a first conductivity type current spreading layer disposed on the JFET portion and having an impurity concentration higher than that of the low concentration layer; a second conductive type second deep layer disposed on the deep layer; a second conductive type base layer disposed on the current spreading layer and the second deep layer; A trench gate having an impurity region of a first conductivity type, a gate insulating film formed on a wall surface of the trench penetrating the impurity region and the base layer and reaching the current spreading layer, and a gate electrode formed on the gate insulating film.
  • a defective portion is formed in the JFET portion.
  • the SiC semiconductor device when the SiC semiconductor device is in reverse conduction, it is possible to prevent carriers (for example, holes) from reaching the BPD due to being trapped in the defect. Therefore, it is possible to suppress the expansion of BPD to SF, and to suppress the on-voltage from increasing.
  • carriers for example, holes
  • an inverter circuit having an arm in which a MOSFET and a freewheeling diode are connected in parallel includes the SiC semiconductor device described above, the MOSFET is composed of a switching element, and the freewheeling diode is a switching It is composed of a parasitic diode configured within the element.
  • a parasitic diode configured in the SiC semiconductor device is used as the freewheeling diode provided in the inverter circuit. Therefore, there is no need to prepare a separate member that constitutes the free wheel diode separately from the MOSFET, and the configuration can be simplified.
  • the above-described manufacturing method for a SiC semiconductor device configures the JFET section by arranging the low-concentration layer as an epitaxial layer and performing ion implantation on the surface layer of the low-concentration layer. Then, ion implantation is performed to form a defective portion in the JFET portion.
  • FIG. 1 is a cross-sectional view of a SiC semiconductor device according to a first embodiment
  • FIG. FIG. 2 is a perspective view showing a cell portion in FIG. 1
  • 2 is a diagram showing an inverter circuit configured using the SiC semiconductor device shown in FIG. 1
  • FIG. FIG. 4 is a diagram showing the relationship between forward voltage and current density when the SiC semiconductor device is in reverse conduction; It is a figure which shows the relationship between a forward current and an SF area occupation ratio.
  • FIG. 4 is a diagram showing the relationship between the impurity concentration of the JFET portion and the SF area occupation ratio; It is a figure which shows the relationship between channel length and SF area occupation ratio.
  • FIG. 4 is a diagram showing the relationship between the width of the first deep layer and the hole current density;
  • FIG. 4 is a diagram showing the relationship between trench spacing and hole current density;
  • FIG. 4 is a diagram showing the relationship between the interval of the first deep layer and the ON voltage;
  • FIG. 4 is a diagram showing the relationship between the interval of the first deep layer and the electric field applied to the gate insulating film;
  • FIG. 4 is a diagram showing the relationship between the spacing of the first deep layer and the feedback capacitance; It is a perspective view showing a cell portion of the SiC semiconductor device in the second embodiment.
  • FIG. 4 is a diagram showing the relationship between the width of the first deep layer and the hole current density;
  • FIG. 4 is a diagram showing the relationship between trench spacing and hole current density;
  • FIG. 4 is a diagram showing the relationship between the interval of the first deep layer and the ON voltage;
  • FIG. 4 is a diagram showing the relationship between the interval of the first deep layer and the electric field applied to the gate insulating film
  • FIG. 11 is a perspective view showing a cell portion of a SiC semiconductor device according to a third embodiment; It is a figure which shows the relationship between the depth and the impurity concentration of a p-type. It is sectional drawing which shows the manufacturing process of the SiC semiconductor device in 3rd Embodiment. 17B is a cross-sectional view showing the manufacturing process of the SiC semiconductor device following FIG. 17A; FIG.
  • FIG. 1 A first embodiment will be described with reference to FIGS. 1 and 2.
  • FIG. 1 of the present embodiment an inverted MOSFET having a trench gate structure is formed as a switching element.
  • the SiC semiconductor device S1 has a cell portion 1 in which a MOSFET having a trench gate structure is formed, and an outer peripheral portion 2 surrounding the cell portion 1 .
  • the outer peripheral portion 2 has a guard ring portion 2a and a connecting portion 2b arranged inside the guard ring portion 2a.
  • the outer peripheral portion 2 has a guard ring portion 2a and a connecting portion 2b arranged between the cell portion 1 and the guard ring portion 2a.
  • one direction in the surface direction of the substrate 11 to be described later is defined as the X-axis direction
  • a direction intersecting one direction in the surface direction of the substrate is defined as the Y-axis direction
  • a direction orthogonal to the X-axis direction and the Y-axis direction is defined as the Z-axis direction. described as a direction.
  • the X-axis direction and the Y-axis direction are orthogonal.
  • the horizontal direction on the page corresponds to the X-axis direction
  • the depth direction on the page corresponds to the Y-axis direction
  • the vertical direction on the page corresponds to the Z-axis direction.
  • the SiC semiconductor device S1 is configured using semiconductor substrate 10 .
  • the SiC semiconductor device S1 includes an n + -type substrate 11 made of SiC.
  • the substrate 11 has, for example, an off angle of 0 to 8° with respect to the (0001) Si plane, and the concentration of n-type impurities such as nitrogen and phosphorus is 1.0 ⁇ 10 19 /cm 3 . and a thickness of about 300 ⁇ m is used.
  • the substrate 11 constitutes a drain region in this embodiment.
  • n ⁇ -type buffer layer 12 made of SiC is formed on the surface of the substrate 11 .
  • the buffer layer 12 is formed by epitaxial growth on the surface of the substrate 11 .
  • the buffer layer 12 has an n-type impurity concentration between the substrate 11 and the low-concentration layer 13 described later, and has a thickness of about 1 ⁇ m.
  • an n.sup.--type silicon nitride film made of SiC having an n - type impurity concentration of 5.0 to 10.0.times.10.sup.15/ cm.sup.3 and a thickness of about 10 to 15 .mu.m is formed on the surface of the buffer layer 12.
  • a density layer 13 is formed on the surface of the buffer layer 12.
  • the impurity concentration of the low-concentration layer 13 may be constant in the Z-axis direction, but the concentration distribution is inclined so that the low-concentration layer 13 on the substrate 11 side is closer to the substrate 11 than on the side away from the substrate 11 . It is also preferred that the concentration is also high.
  • the low-concentration layer 13 preferably has an impurity concentration of about 2.0 ⁇ 10 15 /cm 3 in a portion about 3 to 5 ⁇ m from the surface of the substrate 11 higher than that in other portions. With such a configuration, the internal resistance of the low-concentration layer 13 can be reduced, and the on-resistance can be reduced. Also, the low-concentration layer 13 is composed of an epitaxial layer formed by epitaxial growth.
  • a JFET portion 14 and a first deep layer 15 are formed in the surface layer portion of the low-concentration layer 13 at the connecting portion 2 b between the cell portion 1 and the outer peripheral portion 2 .
  • the JFET portion 14 and the first deep layer 15 each extend along the X-axis direction and have linear portions alternately and repeatedly arranged in the Y-axis direction.
  • the JFET portion 14 and the first deep layer 15 each have a stripe shape extending along the X-axis direction in the direction normal to the surface of the substrate 11 (hereinafter also simply referred to as the normal direction).
  • the layout is such that they are alternately arranged along the Y-axis direction.
  • the normal direction to the surface of the substrate 11 in other words, when viewed from the normal direction to the surface of the substrate 11.
  • the JFET portion 14 is of n-type with a higher impurity concentration than the low-concentration layer 13 and has a depth of 0.3 to 1.5 ⁇ m.
  • the JFET portion 14 has an n-type impurity concentration of 7.0 ⁇ 10 16 to 5.0 ⁇ 10 17 /cm 3 .
  • the JFET portion 14 of the present embodiment is an ion-implanted layer formed by ion-implanting n-type impurities into the low-concentration layer 13, and the defect portion D formed by ion-implanting is formed.
  • the first deep layer 15 has, for example, a p-type impurity concentration such as boron of 2.0 ⁇ 10 17 to 2.0 ⁇ 10 18 /cm 3 .
  • the first deep layer 15 of this embodiment extends from the JFET section 14 to the side of the guard ring section 2a.
  • the first deep layer 15 of this embodiment is formed shallower than the JFET section 14 .
  • the first deep layer 15 is formed so that the bottom is positioned inside the JFET section 14 .
  • the first deep layer 15 is formed so that the JFET portion 14 is positioned between the low-concentration layer 13 and the first deep layer 15 .
  • the width L1 of the first deep layer 15 of this embodiment is 0.9 ⁇ m or less.
  • the width L1 of the first deep layer 15 is the length in the direction perpendicular to the longitudinal direction of the first deep layer 15 and the length in the plane direction of the semiconductor substrate 10 . That is, the width L1 of the first deep layer 15 is the length of the first deep layer 15 along the Y-axis direction.
  • the interval L2 between adjacent first deep layers 15 is 0.75 to 1.1 ⁇ m.
  • the interval L2 between adjacent first deep layers 15 is the length along the Y-axis direction of the portion sandwiched between the first deep layers 15 in the JFET section 14 .
  • a plurality of p-type guard rings 16 are provided on the surface layer of the low-concentration layer 13 so as to surround the cell section 1 in the guard ring section 2 a of the outer peripheral section 2 .
  • the upper surface layout of the guard ring 16 is in the shape of a rectangle with rounded corners, a circle, or the like in the normal direction.
  • a current spreading layer 17 and a second deep layer 18 are formed on the JFET section 14 and the first deep layer 15 in the cell section 1 .
  • the current spreading layer 17 is composed of an n-type impurity layer and has a thickness of 0.5 to 2 ⁇ m. Further, the n-type impurity concentration of the current spreading layer 17 is, for example, 1.0 ⁇ 10 16 to 5.0 ⁇ 10 17 /cm 3 . Also, the current spreading layer 17 is connected to the JFET section 14 . Therefore, in the present embodiment, the low-concentration layer 13, the JFET section 14, and the current spreading layer 17 are connected, and the drift layer 19 is configured by these.
  • the second deep layer 18 is formed in the cell section 1, and has a p-type impurity concentration of, for example, 2.0 ⁇ 10 17 to 2.0 ⁇ 10 18 /cm 3 and a thickness equal to that of the current spreading layer. 17. Also, the second deep layer 18 is formed so as to be connected to the first deep layer 15 .
  • the current spreading layer 17 and the second deep layer 18 extend in a direction crossing the striped portion of the JFET section 14 and the longitudinal direction of the first deep layer 15 .
  • the current spreading layers 17 and the second deep layers 18 are laid out with the Y-axis direction as the longitudinal direction and arranged alternately in the X-axis direction.
  • the formation pitch of the current spreading layer 17 and the second deep layer 18 is matched with the formation pitch of the trench gate structure described later, and the second deep layer 18 is formed so as to sandwich the trench 24 described later.
  • a current spreading layer 17 and a resurf layer 20 are formed on the low-concentration layer 13 , JFET section 14 , first deep layer 15 , and guard ring 16 in the outer peripheral portion 2 .
  • the resurf layer 20 is formed in the connecting portion 2 b of the outer peripheral portion 2 and is formed so as to be connected to the first deep layer 15 .
  • a P-type base layer 21 is formed on the current spreading layer 17 , the second deep layer 18 , and the RESURF layer 20 .
  • An n + -type source region 22 and a p + -type contact region 23 are formed in the surface layer portion of the base layer 21 in the cell portion 1 .
  • the source region 22 is formed in contact with the side surface of a trench 24 to be described later, and the contact region 23 is formed on the opposite side of the trench 24 with the source region 22 interposed therebetween.
  • the source region 22 corresponds to the impurity region.
  • the base layer 21 has, for example, a p-type impurity concentration of 3.0 ⁇ 10 17 /cm 3 or less. Also, the base layer 21 of the present embodiment is formed by, for example, ion implantation, and the impurity concentration in the cell section 1 is higher than that in the outer peripheral section 2 .
  • the source region 22 has an n-type impurity concentration in the surface layer, ie, a surface concentration of 1.0 ⁇ 10 21 /cm 3 , for example.
  • the contact region 23 has a p-type impurity concentration in the surface layer, ie, a surface concentration of 1.0 ⁇ 10 21 /cm 3 , for example.
  • the thickness of the base layer 21 and the source region 22 are adjusted so that the channel length is 0.4 ⁇ m or less.
  • the channel length is the length of the portion of the base layer 21 along the side surface of the trench 24 in the Z-axis direction (that is, the stacking direction of the substrate 11 and the buffer layer 12). .
  • the channel length is the length between the source region 22 of the base layer 21 and the current spreading layer 17 .
  • the semiconductor substrate 10 is configured by stacking the contact regions 23 and the like.
  • the surface of the semiconductor substrate 10 facing the substrate 11 is referred to as the other surface 10b of the semiconductor substrate 10
  • the surface facing the source region 22 and the contact region 23 is referred to as one surface 10a of the semiconductor substrate 10.
  • FIG. Source region 22 and contact region 23 are exposed from one surface 10 a of semiconductor substrate 10 .
  • the semiconductor substrate 10 has a width of, for example, 1.4 to 2.0 ⁇ m so that it reaches the current spreading layer 17 through the base layer 21 and the like, and the bottom surface is located in the current spreading layer 17. and a trench 24 is formed. Note that the trench 24 is formed so as not to reach the JFET portion 14 and the first deep layer 15 . That is, the trench 24 is formed so that the JFET portion 14 and the first deep layer 15 are located below the bottom surface.
  • a plurality of trenches 24 extend along the Y-axis direction, and are arranged in stripes at equal intervals in the X-axis direction. That is, in this embodiment, the trench 24 is formed so that its longitudinal direction is perpendicular to the longitudinal direction of the first deep layer 15 . Also, the trench 24 is formed so as to be sandwiched between the second deep layers 18 in the normal direction.
  • the trenches 24 of the present embodiment are formed such that the distance between the centers of adjacent trenches 24 (that is, the trench pitch) is 3.0 ⁇ m or less.
  • the trench 24 is filled with a gate insulating film 25 formed on the inner wall surface and a gate electrode 26 made of doped Poly-Si formed on the surface of the gate insulating film 25 .
  • a trench gate structure is thus formed.
  • the gate insulating film 25 is formed on the inner wall surface of the trench 24 by thermal oxidation or CVD (abbreviation for chemical vapor deposition).
  • the gate insulating film 25 has a thickness of about 100 nm on both the side and bottom sides of the trench 24 .
  • the gate insulating film 25 is also formed on surfaces other than the inner wall surface of the trench 24 . Specifically, the gate insulating film 25 is formed so as to also partially cover the one surface 10 a of the semiconductor substrate 10 . More specifically, the gate insulating film 25 is formed so as to also partially cover the surface of the source region 22 . In other words, in the gate insulating film 25, a contact hole 25a exposing the remaining portions of the contact region 23 and the source region 22 is formed in a portion different from the portion where the gate electrode 26 is arranged.
  • the gate insulating film 25 is also formed on the surface of the base layer 21 in the connecting portion 2b. Similarly to the gate insulating film 25, the gate electrode 26 also extends to the surface of the gate insulating film 25 at the connecting portion 2b.
  • the trench gate structure of the present embodiment is constructed as described above.
  • a concave portion 10 c is formed in the guard ring portion 2 a of the outer peripheral portion 2 so as to penetrate the base layer 21 and reach the resurf layer 20 and the current spreading layer 17 .
  • a mesa structure is formed in the SiC semiconductor device S1 of the present embodiment.
  • a contact region 23 is formed in the surface layer portion of the base layer 21 in the connecting portion 2b, as in the cell portion 1. As shown in FIG.
  • An interlayer insulating film 27 is formed on one surface 10a of the semiconductor substrate 10 so as to cover the gate electrode 26, the gate insulating film 25, and the like.
  • the interlayer insulating film 27 is made of BPSG (abbreviation for Borophosphosilicate Glass) or the like.
  • a contact hole 27a is formed in the interlayer insulating film 27 to communicate with the contact hole 25a and expose the source region 22 and the contact region 23 .
  • a contact hole 27b is formed in the interlayer insulating film 27 to expose a portion of the gate electrode 26 extending to the connecting portion 2b. That is, the interlayer insulating film 27 has a contact hole 27 a formed in the cell portion 1 and a contact hole 27 b formed in the outer peripheral portion 2 .
  • the contact hole 27a formed in the interlayer insulating film 27 is formed so as to communicate with the contact hole 25a formed in the gate insulating film 25, and functions together with the contact hole 25a as one contact hole. Therefore, hereinafter, the contact hole 25a and the contact hole 27a are collectively referred to as the contact hole 25b.
  • the pattern of the contact holes 25b is arbitrary, and examples thereof include a pattern in which a plurality of square holes are arranged, a pattern in which rectangular linear holes are arranged, a pattern in which linear holes are arranged, and the like. be done. In this embodiment, the contact hole 25b is linear along the longitudinal direction of the trench 24 .
  • a source electrode 28 electrically connected to the source region 22 and the contact region 23 through the contact hole 25b is formed on the interlayer insulating film 27. As shown in FIG. The source electrode 28 of this embodiment is also connected to the contact region 23 formed in the base layer 21 of the outer peripheral portion 2 . A gate wiring 29 electrically connected to the gate electrode 26 through a contact hole 27b is formed on the interlayer insulating film 27. As shown in FIG. Incidentally, in this embodiment, the source electrode 28 corresponds to the first electrode.
  • the source electrode 28 of this embodiment is composed of a plurality of metals such as Ni/Al, for example.
  • a portion of the plurality of metals, which is in contact with the portion forming the n-type SiC (that is, the source region 22), is made of a metal capable of making ohmic contact with the n-type SiC.
  • At least the portion of the plurality of metals that contacts p-type SiC (that is, contact region 23) is made of a metal capable of making ohmic contact with p-type SiC.
  • the gate wiring 29 may have the same structure as the source electrode, or may be made of Al--Si or the like.
  • a protective film 30 made of polyimide or the like is formed so as to cover the connecting portion 2b and the guard ring portion 2a.
  • the protective film 30 is formed from the outer peripheral portion 2 to the outer edge portion of the cell portion 1 in order to suppress creeping discharge from occurring between the source electrode 28 and the drain electrode 31, which will be described later.
  • the protective film 30 is formed so as to cover the portion of the source electrode 28 on the side of the outer peripheral portion 2 while exposing the portion of the source electrode 28 on the inner edge side. .
  • a drain electrode 31 electrically connected to the substrate 11 is formed on the other surface 10b side of the semiconductor substrate 10 .
  • the drain electrode 31 corresponds to the second electrode.
  • such a structure constitutes a MOSFET having a trench gate structure, which is an n-channel type inversion type.
  • a parasitic diode is formed by a pn junction between the drift layer 19 and the base layer 21 and the like.
  • n + type, n type, and n ⁇ type correspond to the first conductivity type
  • p ⁇ type, p type, and p + type correspond to the second conductivity type.
  • the SiC semiconductor device S1 is used, for example, to configure an inverter circuit 100 as shown in FIG.
  • the inverter circuit 100 is used, for example, to drive a three-phase motor 101 and is used to supply an alternating current to the three-phase motor 101 using a DC power supply 102 .
  • the inverter circuit 100 connects in parallel a plurality of bridge circuits in which the upper arm and the lower arm are connected in series to the DC power supply 102, and the upper arm and the lower arm of each bridge circuit are alternately turned on and off repeatedly. to supply alternating current to the load.
  • the inverter circuit 100 is configured by connecting a freewheeling diode S12 in parallel to the MOSFET S11.
  • each of the upper arm and the lower arm of each phase is configured with the SiC semiconductor device S1. More specifically, the MOSFET of the SiC semiconductor device S1 constitutes the MOSFET S11 of each arm, and the parasitic diode of the SiC semiconductor device S1 constitutes the free wheel diode S12 of each arm.
  • each bridge circuit of the inverter circuit 100 current is supplied to the load by turning on the MOSFET S11 of the upper arm and turning off the MOSFET S11 of the lower arm. Further, after that, the current supply is stopped by turning off the MOSFET S11 of the upper arm and turning on the MOSFET S11 of the lower arm.
  • the operation of the upper arm SiC semiconductor device S1 is as follows. That is, in this SiC semiconductor device S1, an inversion layer is not formed in the base layer 21 in the OFF state before the gate voltage is applied to the gate electrode 26. FIG. Therefore, even if a positive voltage of, for example, 1600 V is applied to the drain electrode 31, electrons do not flow from the source region 22 into the base layer 21, and the SiC semiconductor device S1 is located between the source electrode 28 and the drain electrode 31. becomes an off state in which no current flows through.
  • the SiC semiconductor device S1 when the SiC semiconductor device S1 is in the off state, an electric field is applied between the drain and the gate, and electric field concentration may occur at the bottom of the gate insulating film 25.
  • FIG. 1 in the SiC semiconductor device S ⁇ b>1 described above, the first deep layer 15 and the JFET portion 14 are provided at positions deeper than the trench 24 . Therefore, the depletion layer formed between the first deep layer 15 and the JFET portion 14 suppresses the rising of the equipotential lines due to the influence of the drain voltage, making it difficult for the high electric field to enter the gate insulating film 25 . Therefore, in this embodiment, it is possible to prevent the gate insulating film 25 from being destroyed.
  • a predetermined gate voltage for example 20 V
  • a channel is formed on the surface of the base layer 21 that is in contact with the trench 24.
  • a current flows between the source electrode 28 and the drain electrode 31, and the SiC semiconductor device S1 is turned on.
  • electrons passing through the channel flow to the substrate 11 through the current spreading layer 17, the JFET portion 14 and the lightly doped layer 13. Therefore, the current spreading layer 17, the JFET portion 14 and the lightly doped layer 13 are It can be said that the drift layer 19 having
  • the defect portion D is formed in the JFET portion 14 .
  • the defect portion D functions as a hole trap. Therefore, as shown in FIG. 4, compared to the SiC semiconductor device S1 in which the defect portion D is not formed, the current density during reverse conduction can be reduced, and the holes are suppressed from reaching the low-concentration layer 13. can. As a result, it is possible to suppress the expansion of the BPD to the SF and suppress the increase in the on-voltage.
  • the cell portion 1 of the base layer 21 has a higher impurity concentration than the outer peripheral portion 2 . Therefore, when SiC semiconductor device S1 is in the reverse conducting state, the forward voltage of cell portion 1 tends to be lower than the forward voltage of outer peripheral portion 2 . Therefore, the forward current can easily flow into the cell section 1 in which the defect portion D is formed, and the expansion of the BPD to the SF in the outer peripheral portion 2 can be suppressed.
  • SiC semiconductor device S1 of the present embodiment Further detailed conditions and effects of the SiC semiconductor device S1 of the present embodiment will be described below.
  • the first deep layer 15 is formed shallower than the JFET section 14 .
  • a JFET portion 14 is also arranged between the first deep layer 15 and the low-concentration layer 13 . Therefore, holes can also be trapped by the JFET portion 14 between the first deep layer 15 and the low-concentration layer 13 . Therefore, as shown in FIG. 5, the SF area occupation ratio can be reduced.
  • the JFET portion 14 and the first deep layer 15 have the same depth, and the SiC semiconductor device S1 in which the JFET portion 14 is not arranged between the first deep layer 15 and the low-concentration layer 13 is compared. It is shown as an example. Further, the SF area occupation ratio indicates the ratio of stacking faults in the SiC semiconductor device S1. A small SF area occupation ratio indicates that BPD is difficult to expand to SF.
  • the SiC semiconductor device S1 of this embodiment is configured to satisfy the following conditions.
  • the JFET section 14 of this embodiment is composed of an ion-implanted layer obtained by ion-implanting an n-type impurity into the low-concentration layer 13 . Therefore, as the impurity concentration of the JFET portion 14 increases (that is, the dose amount increases), the number of defect portions D increases, and the function as a hole trap layer increases. Specifically, as shown in FIG. 6, it is confirmed that the SF area occupation ratio of the JFET portion 14 decreases when the impurity concentration is 7.0 ⁇ 10 16 /cm 3 or more. However, it is confirmed that the SF area occupation ratio of the JFET portion 14 increases when the impurity concentration is 5.0 ⁇ 10 17 /cm 3 or more.
  • the JFET section 14 is composed of an ion-implanted layer and has an impurity concentration of 7.0 ⁇ 10 16 to 5.0 ⁇ 10 17 /cm 3 .
  • the ratio of the electron current flowing in the base layer 21 in the punch-through mode can be increased by shortening the channel length, so that the ratio of the hole current can be reduced.
  • the ratio of the hole current By reducing the ratio of the hole current, the number of holes reaching the BPD can also be reduced, so it is possible to suppress the expansion of the BPD to the SF.
  • the SF area occupation ratio may become 0 when the channel length is 0.4 ⁇ m or less, and the SF area occupation ratio decreases as the channel length becomes smaller than 0.4 ⁇ m. It is confirmed that Therefore, in this embodiment, the thickness of the base layer 21 and the depth of the source region 22 are adjusted so that the channel length is 0.4 ⁇ m or less.
  • the impurity concentration of the base layer 21 may be lowered. Specifically, as shown in FIG. 8, when the impurity concentration of the base layer 21 is 3.0 ⁇ 10 17 /cm 3 or less, the SF area occupancy may become zero. Therefore, in this embodiment, the impurity concentration of the base layer 21 is 3.0 ⁇ 10 17 /cm 3 or less.
  • the width L1 of the first deep layer 15 may be defined. Specifically, as shown in FIG. 9, when the width L1 of the first deep layer 15 is 0.9 ⁇ m or less, the hole current density can be 4.5 ⁇ 10 16 /cm 3 or less. Therefore, in this embodiment, the width L1 of the first deep layer 15 is set to 0.9 ⁇ m or less. Note that the hole current density in FIG. 9 indicates the density of the hole current flowing into the buffer layer 12 .
  • the distance between the centers of adjacent trenches 24 may be defined.
  • the hole current density can be reduced to 4.5 ⁇ 10 16 /cm 3 or less by setting the distance between the centers of adjacent trenches 24 to 3.0 ⁇ m or less. Note that the hole current density in FIG. 10 indicates the density of the hole current flowing into the buffer layer 12 .
  • the following characteristics are also important characteristics.
  • the on-voltage that is, Von
  • the SiC semiconductor device S1 when the SiC semiconductor device S1 is in the on-state increases in the first deep layers 15 as the interval L2 between the adjacent first deep layers 15 increases. Since the width of the sandwiched JFET portion 14 is widened, it becomes small. At present, it is desired that the on-voltage be 0.9 V or less when 200 A is applied. Therefore, the interval L2 between adjacent first deep layers 15 is set to 0.75 ⁇ m or more.
  • the electric field (that is, Emax) applied to the gate insulating film 25 in the OFF state is sandwiched between the first deep layers 15 as the distance L2 between the adjacent first deep layers 15 is increased. Since the width of the JFET portion 14 that is connected to the substrate is widened, the height is increased. At present, it is desired that the electric field applied to the gate insulating film 25 in the OFF state is 5 MV/cm or less. Therefore, the interval L2 between adjacent first deep layers 15 is set to 1.2 ⁇ m or less.
  • the feedback capacitance (that is, Crss) increases the width of the JFET portion 14 sandwiched between the first deep layers 15 as the interval L2 between the adjacent first deep layers 15 increases. get higher At present, it is desired to set the feedback capacitance to 50 pF or less. Therefore, the interval L2 between adjacent first deep layers 15 is set to 1.1 ⁇ m or less.
  • the interval L2 between adjacent first deep layers 15 is 0.75 to 1.1 ⁇ m.
  • the defective portion D is formed in the JFET portion 14 . Therefore, it is possible to prevent holes from being trapped in the defect portion D and reaching the BPD during reverse conduction of the SiC semiconductor device S1. Therefore, it is possible to suppress the expansion of BPD to SF, and to suppress the on-voltage from increasing.
  • the impurity concentration of the base layer 21 in the cell section 1 is higher than that in the outer peripheral section 2 . Therefore, when SiC semiconductor device S1 is in the reverse conducting state, the forward voltage of cell portion 1 is lower than the forward voltage of outer peripheral portion 2 . Therefore, the forward current can easily flow into the cell section 1 in which the defect portion D is formed, and the expansion of the BPD to the SF in the outer peripheral portion 2 can be suppressed.
  • the first deep layer 15 is formed shallower than the JFET section 14 .
  • a JFET portion 14 is arranged between the first deep layer 15 and the low-concentration layer 13 . Therefore, holes can also be trapped by the JFET portion 14 between the first deep layer 15 and the low-concentration layer 13 . Therefore, it is possible to further suppress the holes from reaching the BPD, and further suppress the expansion of the BPD to the SF.
  • the JFET portion 14 has an impurity concentration of 7.0 ⁇ 10 16 to 5.0 ⁇ 10 17 /cm 3 . Therefore, the density of the hole current flowing into the buffer layer 12 can be reduced to 4.5 ⁇ 10 16 /cm 3 or less, and expansion of BPD to SF can be suppressed.
  • the channel length is 0.4 ⁇ m. Therefore, the density of the hole current flowing into the buffer layer 12 can be reduced to 4.5 ⁇ 10 16 /cm 3 or less, and expansion of BPD to SF can be suppressed.
  • the impurity concentration of the base layer 21 is 3.0 ⁇ 10 17 /cm 3 . Therefore, the density of the hole current flowing into the buffer layer 12 can be reduced to 4.5 ⁇ 10 16 /cm 3 or less, and expansion of BPD to SF can be suppressed.
  • the first deep layer 15 has a width L1 of 0.9 ⁇ m or less. Therefore, the density of the hole current flowing into the buffer layer 12 can be reduced to 4.5 ⁇ 10 16 /cm 3 or less, and expansion of BPD to SF can be suppressed.
  • the first deep layer 15 extends to the outer peripheral portion 2 . Therefore, diode characteristics in the outer peripheral portion 2 can be improved.
  • the distance between the centers of adjacent trenches 24 is 3.0 ⁇ m or less. Therefore, the density of the hole current flowing into the buffer layer 12 can be reduced to 4.5 ⁇ 10 16 /cm 3 or less, and expansion of BPD to SF can be suppressed.
  • the interval L2 between adjacent first deep layers 15 is 0.75 ⁇ m or more. Therefore, an increase in ON voltage can be suppressed.
  • the interval L2 between adjacent first deep layers 15 is 1.1 ⁇ m or less. Therefore, it is possible to suppress an increase in the electric field applied to the gate insulating film 25 in the OFF state, and an increase in the feedback capacitance.
  • a parasitic diode configured in the SiC semiconductor device S1 is used as the freewheeling diode S12 provided in the inverter circuit 100.
  • FIG. Therefore, there is no need to prepare a separate member that constitutes the free wheel diode S12 in addition to the MOSFETS11, so that the configuration can be simplified.
  • the linear portions of the first deep layer 15 and the current spreading layer 17 are extended with the Y-axis direction as the longitudinal direction. Also, the first deep layer 15 is formed so as to sandwich the trench 24 in the normal direction.
  • the base layer 21 is formed with the defective portion D1
  • the current spreading layer 17 is formed with the defective portion D2.
  • the defect portion D1 of the base layer 21 is formed by configuring the base layer 21 by ion implantation.
  • the defect portion D2 of the current spreading layer 17 is formed when p-type impurities enter the current spreading layer 17 when the base layer 21 is formed by ion implantation.
  • the base layer 21 and the current spreading layer 17 are configured such that the p-type impurity exists in the current spreading layer 17 in the p-type impurity concentration distribution. .
  • base layer 21 and current spreading layer 17 are formed such that tail portion T in the p-type impurity concentration distribution is located in current spreading layer 17 .
  • the tail portion T in the impurity concentration distribution is the portion on the side of the other surface 10b in the depth direction.
  • the base layer 21 and the current spreading layer 17 are formed by performing ion implantation a plurality of times while changing the acceleration voltage to form the base layer 21, and removing the p-type impurity in forming the base layer 21 with a current. It is formed by penetrating into the dispersion layer 17 .
  • FIG. 16 shows a diagram when ion implantation is performed three times while changing the acceleration voltage.
  • the base layer 21 and the current spreading layer 17 of the present embodiment have a p-type impurity concentration of 1.0 ⁇ 10 in the current spreading layer 17 so that the defect D2 is sufficiently formed in the current spreading layer 17. It is configured to have a portion of 15 /cm 3 or more. According to the studies of the present inventors, when the current spreading layer 17 is configured to have a portion where the p-type impurity concentration is 1.0 ⁇ 10 15 /cm 3 or more, the defect portion is sufficient. It has been confirmed that D2 is formed.
  • the above is the configuration of the SiC semiconductor device S1 in this embodiment.
  • a method for forming the defective portion D1 of the base layer 21 and the defective portion D2 of the current spreading layer 17 in the SiC semiconductor device S1 will be described with reference to FIGS. 17A and 17B.
  • a substrate 11, a buffer layer 12, a low-concentration layer 13, a JFET portion 14, a first deep layer 15, a current spreading layer 17, and a second deep layer 18 are prepared.
  • the base layer constituting layer 210 constituting the base layer 21 is arranged as an epitaxially grown epitaxial layer.
  • the base layer-constituting layer 210 is epitaxially grown so as to have an impurity concentration that is one order of magnitude lower than the impurity concentration when the base layer 21 is formed by ion implantation, which will be described later.
  • the thickness of the base layer-constituting layer 210 of the present embodiment is equal to that of the base layer 21 .
  • the base layer configuration layer 210 may have a thickness equal to the sum of the thickness of the base layer 21 and the thickness of the source region 22 .
  • the base layer 21 is formed by performing ion implantation a plurality of times while changing the acceleration voltage.
  • the current spreading layer 17 includes a portion having a p-type impurity concentration of 1.5 ⁇ 10 15 /cm 3 .
  • the base layer 21 is formed by ion implantation while changing the voltage. Note that FIG. 16 shows a case where ion implantation is performed three times while changing the acceleration voltage. As a result, the base layer 21 is formed with the defective portion D1, and the current spreading layer 17 is formed with the defective portion D2.
  • the defect portion D of the JFET portion 14 is formed by ion implantation.
  • the defect D1 of the base layer 21 and the defect D2 of the current spreading layer 17 are formed by ion implantation.
  • the ion implantation is performed so that a larger number of defects than those which may occur when the low-concentration layer 13 and the base layer-constituting layer 210 for forming the JFET section 14 are epitaxially grown and arranged.
  • the temperature is such that D, D1 and D2 are formed.
  • the temperature at which each ion implantation is performed is from room temperature to 200° C. or less.
  • the room temperature in this embodiment means a temperature of about 1 to 30.degree.
  • the SiC semiconductor device S1 is manufactured by forming the source region 22, the contact region 23, the trench gate structure, and the like.
  • the defective portion D is formed in the JFET portion 14, it is possible to obtain the same effects as in the first embodiment.
  • the defect portion D1 is formed in the base layer 21 and the defect portion D2 is formed in the current spreading layer 17 . Therefore, in the path through which the hole current flows, the portions that become the defective portions D1 and D2 increase, and the holes can be trapped in areas other than the defective portion D of the JFET portion 14, so that the holes can be further suppressed from reaching the BPD. .
  • the current spreading layer 17 is configured to have a portion where the p-type impurity concentration is 1.0 ⁇ 10 15 /cm 3 or more. Therefore, the defect D2 caused by the p-type impurity can be easily formed in the current spreading layer 17 .
  • the base layer 21 is formed by performing ion implantation multiple times. Therefore, the current spreading layer 17 having a portion with a p-type impurity concentration of 1.0 ⁇ 10 15 /cm 3 or more can be easily formed.
  • the base layer 21 is formed by performing ion implantation a plurality of times, the impurity concentration distribution in the depth direction in the base layer 21 varies as compared with the case where the base layer 21 is formed by, for example, one ion implantation. can be suppressed. Therefore, it is possible to suppress the fluctuation of the threshold voltage to the gate electrode 26 required to turn on the SiC semiconductor.
  • the impurity concentration is set to be lower than that of the base layer 21 by one order of magnitude or more.
  • in-plane variations in impurity concentration can be suppressed compared to the case where the base layer 21 having a desired impurity concentration is formed by epitaxial growth.
  • ion implantation is performed at a temperature of 200° C. or less. Therefore, it is possible to prevent the defects D, D1, and D2 from being properly formed at the time of ion implantation.
  • the first conductivity type is the n-type and the second conductivity type is the p-type has been described.
  • At least one of the first deep layer 15 and the second deep layer 18 may have a defective portion D formed therein.
  • the portion that becomes the defective portion D may be increased in the path through which the hole current flows.
  • the defect portion D is to be formed in the first deep layer 15
  • the first deep layer 15 is ion-implanted or the like so that the defect portion D is formed in the first deep layer 15 . It should be formed with According to this, since holes can be trapped in areas other than the defective portion D of the JFET portion 14, it is possible to further suppress the holes from reaching the BPD.
  • the defect portion D does not have to be formed by ion implantation.
  • the defect portion D may be formed by irradiating an electron beam such as helium after forming the JFET portion 14 by epitaxial growth or the like.
  • the defect portion D may be formed by adding p-type impurities such as boron, gallium, and aluminum to increase the total amount of impurities. That is, the defect portion D may be formed at the same time as the epitaxial film is formed, instead of ion implantation or electron beam irradiation.
  • the defect portion D When forming the defect portion D by mixing p-type impurities in this way, it is preferable to adjust the total amount of n-type impurities so that the impurity concentration of the entire JFET portion 14 does not become too low. . Further, when the JFET portion 14 is formed by epitaxial growth, impurities such as vanadium, titanium, iron, etc. having a higher hole capture rate than the electron capture rate may be mixed. According to this, it is possible to further suppress the holes from being discharged from the JFET section 14 .
  • the first deep layer 15 is formed as follows. That is, the first deep layer 15 is formed by forming the JFET portion 14 entirely on the low-concentration layer 13 in the cell portion 1 and then ion-implanting predetermined portions of the JFET portion 14 . In this case, since the defect portion D is formed in the JFET portion 14 arranged entirely on the low-concentration layer 13 , the defect portion D is also formed in the first deep layer 15 . Therefore, the discharge of holes from the first deep layer 15 can also be suppressed.
  • the cell section 1 may be configured to have the same forward voltage as that of the outer peripheral section 2 during reverse conduction.
  • the JFET section 14 and the first deep layer 15 may have the same thickness. That is, the JFET section 14 may not be arranged between the first deep layer 15 and the low concentration layer 13 .
  • the impurity concentration of the JFET portion 14 and the like, the impurity concentration of the base layer 21, the width L1 of the first deep layer 15, and the like may be changed as appropriate. Even in such a SiC semiconductor device S1, since the defective portion D is formed in the JFET portion 14, expansion of the BPD to the SF can be suppressed, and an increase in the ON voltage can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

炭化珪素からなる第1導電型の基板(11)と、基板(11)上に形成された第1導電型のバッファ層(12)と、バッファ層(12)上に形成された低濃度層(13)と、低濃度層(13)上に形成された第1ディープ層(15)およびJFET部(14)と、JFET部(14)上に配置され、低濃度層(13)よりも高不純物濃度とされた第1導電型の電流分散層(17)と、第1ディープ層(15)上に配置された第2導電型の第2ディープ層(18)と、電流分散層(17)および第2ディープ層(18)の上に配置された第2導電型のベース層(21)と、ベース層(21)の表層部に形成された第1導電型の不純物領域(22)と、不純物領域(22)およびベース層(21)を貫通して電流分散層(17)に達するように形成されたトレンチゲート構造とを備える。そして、JFET部(14)には、欠陥部(D)が形成されるようにする。

Description

炭化珪素半導体装置およびそれを用いたインバータ回路、炭化珪素半導体装置の製造方法 関連出願への相互参照
 本出願は、2021年3月24日に出願された日本特許出願番号2021-049875号および2022年3月22日に出願された日本特許出願番号2022-045676号に基づくもので、ここにその記載内容が参照により組み入れられる。
 本開示は、トレンチゲート構造を有する炭化珪素(以下では、単にSiCともいう)半導体装置およびそれを用いたインバータ回路、SiC半導体装置の製造方法に関するものである。
 従来より、トレンチゲート構造を有するMOSFET(metal oxide semiconductor field effect transistorの略)が形成されたSiC半導体装置が提案されている(例えば、特許文献1参照)。具体的には、このSiC半導体装置では、n型の基板上に、基板よりも低不純物濃度とされたn型のバッファ層が形成され、バッファ層上に、バッファ層よりも低不純物濃度とされた低濃度層が形成されている。そして、低濃度層上には、一方向を長手方向として延設されたp型の第1ディープ層と、n型のJFET部とが形成されている。なお、第1ディープ層およびJFET部は、隣合う第1ディープ層の間にJFET部が配置されるように、第1ディープ層とJFET部とが長手方向と交差する方向に沿って交互に配置されている。
 第1ディープ層およびJFET部上には、n型の電流分散層およびp型の第2ディープ層が配置されている。電流分散層および第2ディープ層上には、p型のベース層が配置されている。なお、第2ディープ層は、第1ディープ層とベース層とを接続するように配置されている。
 ベース層の表層部には、n型のソース領域が形成されている。そして、ソース領域およびベース層を貫通して電流分散層に達するように複数のトレンチが形成されており、各トレンチには、ゲート絶縁膜およびゲート電極が順に形成されている。これにより、トレンチゲート構造が形成されている。
特開2019-016775号公報
 ところで、上記のようなSiC半導体装置は、ベース層等と電流分散層等とのpn接合によって寄生ダイオードが構成される。このため、このようなSiC半導体装置は、逆導通した際に寄生ダイオードを利用することが考えられる。
 しかしながら、上記のようなSiC半導体装置では、基板に基底面転位(すなわち、basal plane dislocation:以下では、単にBPDともいう)が存在する場合がある。そして、上記のようなSiC半導体装置では、逆導通時に注入されるホールが基底面転位に達することにより、基底面転位が積層欠陥(stacking fault:以下では、単にSFともいう)に拡張してしまう可能性がある。この場合、BPDは、線状欠陥であるために素子動作に及ぼす影響が小さいが、SFは、面状欠陥となるために素子動作に及ぼす影響が大きくなる。したがって、上記のようなSiC半導体装置では、オン電圧が高くなる可能性がある。
 本開示は、オン電圧が高くなることを抑制できるSiC半導体装置およびそれを用いたインバータ回路、SiC半導体装置の製造方法を提供することを目的とする。
 本開示の1つの観点によれば、SiC半導体装置は、スイッチング素子が形成されるセル部と、セル部を囲む外周部と、を有し、セル部は、SiCからなる第1導電型の基板と、基板上に形成され、基板よりも低不純物濃度とされた第1導電型のバッファ層と、バッファ層上に形成され、基板よりも低不純物濃度とされた第1導電型の低濃度層と、低濃度層上に形成され、基板の面方向における一方向を長手方向とする複数の線状部分を有する第2導電型の第1ディープ層と、低濃度層上に配置され、第1ディープ層に挟まれた線状部分を有する第1導電型のJFET部と、JFET部上に配置され、低濃度層よりも高不純物濃度とされた第1導電型の電流分散層と、第1ディープ層上に配置された第2導電型の第2ディープ層と、電流分散層および第2ディープ層の上に配置された第2導電型のベース層と、ベース層の表層部に形成された第1導電型の不純物領域と、不純物領域およびベース層を貫通して電流分散層に達するトレンチの壁面に形成されたゲート絶縁膜と、ゲート絶縁膜上に形成されたゲート電極とを有するトレンチゲート構造と、不純物領域およびベース層と電気的に接続される第1電極と、基板と電気的に接続される第2電極と、を備えている。そして、JFET部には、欠陥部が形成されている。
 これによれば、SiC半導体装置の逆導通時において、キャリア(例えば、ホール)が欠陥部にトラップされることでBPDに到達することを抑制できる。したがって、BPDがSFに拡張することを抑制でき、オン電圧が高くなることを抑制できる。
 本開示の別の観点によれば、MOSFETと還流ダイオードとが並列に接続されたアームを有するインバータ回路は、上記のSiC半導体装置を備え、MOSFETは、スイッチング素子で構成され、還流ダイオードは、スイッチング素子内に構成される寄生ダイオードによって構成されている。
 これによれば、インバータ回路に備えられる還流ダイオードとして、SiC半導体装置に構成される寄生ダイオードを利用している。このため、MOSFETとは別に還流ダイオードを構成する別部材を用意する必要がなく、構成の簡略化を図ることができる。
 本開示の別の観点によれば、上記のSiC半導体装置に関する製造方法は、低濃度層をエピタキシャル層で配置することと、低濃度層の表層部にイオン注入を行うことでJFET部を構成することを行い、イオン注入を行うことでJFET部に欠陥部を形成する。
 これによれば、逆導通時にキャリア(例えば、ホール)をトラップする欠陥部が形成されたSiC半導体装置を容易に製造できる。
 なお、各構成要素等に付された括弧付きの参照符号は、その構成要素等と後述する実施形態に記載の具体的な構成要素等との対応関係の一例を示すものである。
第1実施形態におけるSiC半導体装置の断面図である。 図1中のセル部を示す斜視図である。 図1に示すSiC半導体装置を用いて構成したインバータ回路を示す図である。 SiC半導体装置が逆導通時である際の順方向電圧と電流密度との関係を示す図である。 順方向電流とSF面積占有率との関係を示す図である。 JFET部の不純物濃度とSF面積占有率との関係を示す図である。 チャネル長とSF面積占有率との関係を示す図である。 ベース層の不純物濃度とSF面積占有率との関係を示す図である。 第1ディープ層の幅とホール電流密度との関係を示す図である。 トレンチの間隔とホール電流密度との関係を示す図である。 第1ディープ層の間隔とオン電圧との関係を示す図である。 第1ディープ層の間隔とゲート絶縁膜に印加される電界との関係を示す図である。 第1ディープ層の間隔と帰還容量との関係を示す図である。 第2実施形態におけるSiC半導体装置のセル部を示す斜視図である。 第3実施形態におけるSiC半導体装置のセル部を示す斜視図である。 深さとp型の不純物濃度との関係を示す図である。 第3実施形態におけるSiC半導体装置の製造工程を示す断面図である。 図17Aに続くSiC半導体装置の製造工程を示す断面図である。
 以下、本開示の実施形態について図に基づいて説明する。なお、以下の各実施形態相互において、互いに同一もしくは均等である部分には、同一符号を付して説明を行う。
 (第1実施形態)
 第1実施形態について、図1および図2を参照しつつ説明する。本実施形態のSiC半導体装置S1は、スイッチング素子として、トレンチゲート構造の反転型のMOSFETが形成されている。
 SiC半導体装置S1は、トレンチゲート構造のMOSFETが形成されるセル部1と、このセル部1を囲む外周部2とを有する構成とされている。外周部2は、ガードリング部2aと、ガードリング2a部よりも内側に配置される繋ぎ部2bとを有する構成とされている。言い換えると、外周部2は、ガードリング部2aと、セル部1とガードリング部2aとの間に配置される繋ぎ部2bとを有する構成とされている。以下では、後述する基板11の面方向における一方向をX軸方向とし、基板の面方向における一方向と交差する方向をY軸方向とし、X軸方向およびY軸方向と直交する方向をZ軸方向として説明する。なお、本実施形態では、X軸方向とY軸方向とは直交している。また、図1では、紙面左右方向がX軸方向に相当し、紙面奥行き方向がY軸方向に相当し、紙面上下方向がZ軸方向に相当している。
 SiC半導体装置S1は、半導体基板10を用いて構成されている。具体的には、SiC半導体装置S1は、SiCからなるn型の基板11を備えている。本実施形態では、基板11として、例えば、(0001)Si面に対して0~8°のオフ角を有し、窒素やリン等のn型不純物濃度が1.0×1019/cmとされ、厚さが300μm程度とされたものが用いられる。なお、基板11は、本実施形態ではドレイン領域を構成するものである。
 基板11の表面上には、SiCからなるn型のバッファ層12が形成されている。バッファ層12は、基板11の表面にエピタキシャル成長を行うことによって構成される。そして、バッファ層12は、n型不純物濃度が、基板11と、後述する低濃度層13との間の不純物濃度とされ、厚さが1μm程度とされている。
 バッファ層12の表面上には、例えば、n型不純物濃度が5.0~10.0×1015/cmとされ、厚さが10~15μm程度とされたSiCからなるn型の低濃度層13が形成されている。この低濃度層13は、不純物濃度がZ軸方向において一定とされていてもよいが、濃度分布に傾斜が付けられ、低濃度層13のうちの基板11側の方が基板11から離れる側よりも高濃度となるようにされると好ましい。例えば、低濃度層13は、基板11の表面から3~5μm程度の部分の不純物濃度が2.0×1015/cm程度他の部分よりも高くされるのが好ましい。このような構成にすることにより、低濃度層13の内部抵抗を低減でき、オン抵抗を低減することができる。また、低濃度層13は、エピタキシャル成長によるエピタキシャル層で構成される。
 低濃度層13の表層部には、セル部1および外周部2の繋ぎ部2bにおいて、JFET部14および第1ディープ層15が形成されている。本実施形態では、JFET部14および第1ディープ層15は、それぞれX軸方向に沿って延設されると共に、Y軸方向において交互に繰り返し並べて配置された線状部分を有している。つまり、JFET部14および第1ディープ層15は、基板11の表面に対する法線方向(以下では、単に法線方向ともいう)において、それぞれX軸方向に沿って延設されたストライプ状とされ、それらがY軸方向に沿って交互に並べられたレイアウトとなる構成とされている。なお、基板11の表面に対する法線方向においてとは、言い換えると、基板11の表面に対する法線方向から視たときということもできる。
 JFET部14は、低濃度層13よりも高不純物濃度とされたn型とされており、深さが0.3~1.5μmとされている。本実施形態では、JFET部14は、n型不純物濃度が7.0×1016~5.0×1017/cmとされている。また、本実施形態のJFET部14は、低濃度層13に対してn型不純物をイオン注入することによって形成されたイオン注入層とされており、イオン注入することで構成される欠陥部Dが形成されている。
 第1ディープ層15は、例えば、ボロン等のp型不純物濃度が2.0×1017~2.0×1018/cmとされている。なお、本実施形態の第1ディープ層15は、JFET部14よりもガードリング部2a側まで延設されている。
 そして、本実施形態の第1ディープ層15は、JFET部14より浅く形成されている。つまり、第1ディープ層15は、底部がJFET部14内に位置するように形成されている。言い換えると、第1ディープ層15は、低濃度層13との間にJFET部14が位置するように形成されている。
 また、本実施形態の第1ディープ層15は、幅L1が0.9μm以下とされている。なお、第1ディープ層15の幅L1とは、第1ディープ層15の長手方向と直交する方向の長さであって、半導体基板10の面方向に沿った方向の長さである。すなわち、第1ディープ層15の幅L1とは、第1ディープ層15のY軸方向に沿った長さのことである。
 さらに、第1ディープ層15は、隣合う第1ディープ層15の間隔L2が0.75~1.1μmとされている。なお、隣合う第1ディープ層15の間隔L2とは、JFET部14のうちの第1ディープ層15で挟まれる部分のY軸方向に沿った長さのことである。
 また、低濃度層13の表層部には、外周部2のガードリング部2aにおいて、セル部1を囲むように、複数本のp型のガードリング16が備えられている。本実施形態では、ガードリング16の上面レイアウトは、法線方向において、四隅が丸められた四角形状や円形状等とされている。
 セル部1におけるJFET部14および第1ディープ層15上には、電流分散層17および第2ディープ層18が形成されている。
 電流分散層17は、n型不純物層で構成され、厚さが0.5~2μmとされている。また、電流分散層17のn型不純物濃度は、例えば、1.0×1016~5.0×1017/cmとされている。また、電流分散層17は、JFET部14と繋がっている。このため、本実施形態では、低濃度層13、JFET部14、および電流分散層17が繋がり、これらによってドリフト層19が構成されている。
 第2ディープ層18は、セル部1に形成されており、例えば、p型不純物濃度が2.0×1017~2.0×1018/cmとされており、厚さが電流分散層17と等しくされている。また、第2ディープ層18は、第1ディープ層15と接続されるように形成されている。
 電流分散層17および第2ディープ層18は、JFET部14のうちのストライプ状とされた部分や、第1ディープ層15の長手方向に対して交差する方向に延設されている。本実施形態では、電流分散層17および第2ディープ層18は、Y軸方向を長手方向として延設されると共に、X軸方向において交互に複数本並べたレイアウトとされている。なお、電流分散層17および第2ディープ層18の形成ピッチは、後述するトレンチゲート構造の形成ピッチに合わせてあり、第2ディープ層18は、後述するトレンチ24を挟むように形成されている。
 また、外周部2における低濃度層13、JFET部14、第1ディープ層15、ガードリング16上には、電流分散層17およびリサーフ層20が形成されている。リサーフ層20は、外周部2のうちの繋ぎ部2bに形成されており、第1ディープ層15と接続されるように形成されている。
 電流分散層17、第2ディープ層18、リサーフ層20上には、P型のベース層21が形成されている。そして、セル部1におけるベース層21の表層部には、n型のソース領域22およびp型のコンタクト領域23が形成されている。ソース領域22は、後述するトレンチ24の側面に接するように形成され、コンタクト領域23は、ソース領域22を挟んでトレンチ24と反対側に形成されている。なお、本実施形態では、ソース領域22が不純物領域に相当している。
 ベース層21は、例えば、p型不純物濃度が3.0×1017/cm以下とされている。また、本実施形態のベース層21は、例えば、イオン注入等で形成され、セル部1の方が外周部2よりも不純物濃度が高くなっている。ソース領域22は、表層部におけるn型不純物濃度、すなわち表面濃度が例えば1.0×1021/cmとされている。コンタクト領域23は、表層部におけるp型不純物濃度、すなわち表面濃度が例えば1.0×1021/cmとされている。
 また、ベース層21およびソース領域22は、チャネル長が0.4μm以下となるように、厚さが調整されている。なお、ここでのチャネル長とは、Z軸方向(すなわち、基板11とバッファ層12との積層方向)において、ベース層21のうちのトレンチ24の側面に沿った部分の長さのことである。言い換えると、チャネル長とは、ベース層21のうちのソース領域22と電流分散層17との間の長さのことである。
 本実施形態では、このように、基板11、バッファ層12、低濃度層13、JFET部14、第1ディープ層15、電流分散層17、第2ディープ層18、ベース層21、ソース領域22、コンタクト領域23等が積層されて半導体基板10が構成されている。以下、半導体基板10のうちの基板11側の面を半導体基板10の他面10bとし、ソース領域22およびコンタクト領域23側の面を半導体基板10の一面10aとする。そして、ソース領域22およびコンタクト領域23は、半導体基板10の一面10aから露出した状態となっている。
 半導体基板10には、セル部1において、ベース層21等を貫通して電流分散層17に達すると共に、底面が電流分散層17内に位置するように、例えば幅が1.4~2.0μmとされたトレンチ24が形成されている。なお、トレンチ24は、JFET部14および第1ディープ層15に達しないように形成されている。つまり、トレンチ24は、底面よりも下方にJFET部14および第1ディープ層15が位置するように形成されている。
 また、トレンチ24は、Y軸方向に沿って延びるように複数本が延設されていると共に、X軸方向に等間隔で並べられてストライプ状に形成されている。つまり、本実施形態では、トレンチ24は、長手方向が第1ディープ層15の長手方向と直交するように形成されている。また、トレンチ24は、法線方向において、第2ディープ層18に挟まれるように形成されている。そして、本実施形態のトレンチ24は、隣合うトレンチ24の中心間の距離(すなわち、トレンチピッチ)が3.0μm以下となるように形成されている。
 トレンチ24は、内壁面に形成されたゲート絶縁膜25と、ゲート絶縁膜25の表面に形成されたドープトPoly-Siによって構成されるゲート電極26によって埋め込まれている。これにより、トレンチゲート構造が構成されている。特に限定されるものではないが、ゲート絶縁膜25は、トレンチ24の内壁面を熱酸化またはCVD(chemical vapor depositionの略)で形成される。そして、ゲート絶縁膜25は、厚さがトレンチ24の側面側および底面側で共に100nm程度とされている。
 なお、ゲート絶縁膜25は、トレンチ24の内壁面以外の表面にも形成されている。具体的には、ゲート絶縁膜25は、半導体基板10の一面10aの一部も覆うように形成されている。より詳しくは、ゲート絶縁膜25は、ソース領域22の表面の一部も覆うように形成されている。言い換えると、ゲート絶縁膜25には、ゲート電極26が配置される部分と異なる部分において、コンタクト領域23およびソース領域22の残部を露出させるコンタクトホール25aが形成されている。
 また、ゲート絶縁膜25は、繋ぎ部2bにおけるベース層21の表面にも形成されている。ゲート電極26についても、ゲート絶縁膜25と同様に、繋ぎ部2bにおけるゲート絶縁膜25の表面上まで延設されている。以上のようにして、本実施形態のトレンチゲート構造が構成されている。
 また、半導体基板10には、外周部2のうちのガードリング部2aにおいて、ベース層21を貫通してリサーフ層20および電流分散層17に達するように凹部10cが形成されている。本実施形態のSiC半導体装置S1は、このような構造とされたメサ構造が形成されている。そして、繋ぎ部2bには、セル部1と同様に、ベース層21の表層部にコンタクト領域23が形成されている。
 半導体基板10の一面10a上には、ゲート電極26やゲート絶縁膜25等を覆うように、層間絶縁膜27が形成されている。層間絶縁膜27は、BPSG(Borophosphosilicate Glassの略)等で構成されている。
 層間絶縁膜27には、コンタクトホール25aと連通してソース領域22およびコンタクト領域23を露出させるコンタクトホール27aが形成されている。また、層間絶縁膜27には、ゲート電極26のうちの繋ぎ部2bまで延設された部分を露出させるコンタクトホール27bが形成されている。つまり、層間絶縁膜27には、セル部1にコンタクトホール27aが形成され、外周部2にコンタクトホール27bが形成されている。
 なお、層間絶縁膜27に形成されたコンタクトホール27aは、ゲート絶縁膜25に形成されたコンタクトホール25aと連通するように形成されており、当該コンタクトホール25aと共に1つのコンタクトホールとして機能する。このため、以下では、コンタクトホール25aおよびコンタクトホール27aを纏めてコンタクトホール25bともいう。そして、コンタクトホール25bのパターンは、任意であり、例えば複数の正方形のものを配列させたパターン、長方形のライン状のものを配列させたパターン、または、ライン状のものを並べたパターン等が挙げられる。本実施形態では、コンタクトホール25bは、トレンチ24の長手方向に沿ったライン状とされている。
 層間絶縁膜27上には、コンタクトホール25bを通じてソース領域22およびコンタクト領域23と電気的に接続されるソース電極28が形成されている。なお、本実施形態のソース電極28は、外周部2のベース層21に形成されたコンタクト領域23とも接続されている。また、層間絶縁膜27上には、コンタクトホール27bを通じてゲート電極26と電気的に接続されるゲート配線29が形成されている。なお、本実施形態では、ソース電極28が第1電極に相当している。
 本実施形態のソース電極28は、例えば、Ni/Al等の複数の金属にて構成されている。そして、複数の金属のうちのn型SiC(すなわち、ソース領域22)を構成する部分と接触する部分は、n型SiCとオーミック接触可能な金属で構成されている。また、複数の金属のうちの少なくともp型SiC(すなわち、コンタクト領域23)と接触する部分は、p型SiCとオーミック接触可能な金属で構成されている。なお、ゲート配線29は、ソース電極と同様の構成とされていてもよいし、Al-Si等で構成されていてもよい。
 さらに、繋ぎ部2bおよびガードリング部2aを覆うように、ポリイミド等によって構成される保護膜30が形成されている。本実施形態では、保護膜30は、ソース電極28と後述するドレイン電極31との間で沿面放電が発生することを抑制するため、外周部2からセル部1の外縁部上まで形成されている。具体的には、保護膜30は、セル部1において、ソース電極28のうちの外周部2側の部分を覆いつつ、ソース電極28のうちの内縁側の部分を露出させるように形成されている。
 半導体基板10の他面10b側には、基板11と電気的に接続されるドレイン電極31が形成されている。なお、本実施形態では、ドレイン電極31が第2電極に相当している。本実施形態のSiC半導体装置S1では、このような構造により、nチャネルタイプの反転型であるトレンチゲート構造のMOSFETが構成されている。また、本実施形態のSiC半導体装置S1では、このような構造により、ドリフト層19とベース層21等とのpn接合によって寄生ダイオードが構成される。
 以上が本実施形態におけるSiC半導体装置S1の構成である。なお、本実施形態では、n型、n型、n型が第1導電型に相当しており、p型、p型、p型が第2導電型に相当している。次に、上記SiC半導体装置S1の作動および効果について説明する。
 上記SiC半導体装置S1は、例えば、図3に示されるようなインバータ回路100を構成するのに用いられる。インバータ回路100は、例えば、三相モータ101の駆動等に用いられ、直流電源102を用いて三相モータ101に対して交流電流を供給する際に用いられる。
 具体的には、インバータ回路100は、直流電源102に対して上アームと下アームを直列接続したブリッジ回路を複数個並列接続し、各ブリッジ回路の上アームと下アームを交互に繰り返しオンオフさせることで、負荷に対して交流電流を供給する。インバータ回路100は、MOSFETS11に対して還流ダイオードS12が並列接続されることで構成される。そして、本実施形態のSiC半導体装置S1を用いてインバータ回路100を構成する場合、各相の上アームと下アームのそれぞれが上記SiC半導体装置S1で構成される。さらに詳しくは、SiC半導体装置S1のMOSFETによって各アームのMOSFETS11が構成され、SiC半導体装置S1の寄生ダイオードによって各アームの還流ダイオードS12が構成される。
 そして、このようなインバータ回路100の各ブリッジ回路では、上アームのMOSFETS11をオン、下アームのMOSFETS11をオフすることで負荷に対して電流供給を行う。また、その後に、上アームのMOSFETS11をオフ、下アームのMOSFETS11をオンすることで電流供給を停止する。
 この際、例えば、上アームのSiC半導体装置S1の作動は次のようになる。すなわち、このSiC半導体装置S1では、ゲート電極26にゲート電圧が印加される前のオフ状態では、ベース層21に反転層が形成されない。このため、ドレイン電極31に正の電圧、例えば1600Vが印加されたとしても、ソース領域22からベース層21内に電子が流れず、SiC半導体装置S1は、ソース電極28とドレイン電極31との間に電流が流れないオフ状態となる。
 また、SiC半導体装置S1がオフ状態である場合には、ドレイン-ゲート間に電界がかかり、ゲート絶縁膜25の底部に電界集中が発生し得る。しかしながら、上記SiC半導体装置S1では、トレンチ24よりも深い位置に、第1ディープ層15およびJFET部14が備えられている。このため、第1ディープ層15およびJFET部14との間に構成される空乏層により、ドレイン電圧の影響による等電位線のせり上がりが抑制され、高電界がゲート絶縁膜25に入り込み難くなる。したがって、本実施形態では、ゲート絶縁膜25が破壊されることを抑制できる。
 そして、ゲート電極26に所定のゲート電圧、例えば20Vが印加されると、ベース層21のうちのトレンチ24に接している表面にチャネルが形成される。これにより、ソース電極28とドレイン電極31との間に電流が流れ、SiC半導体装置S1がオン状態となる。なお、本実施形態では、チャネルを通過した電子が電流分散層17、JFET部14および低濃度層13を通過して基板11へ流れるため、電流分散層17、JFET部14および低濃度層13を有するドリフト層19が構成されているといえる。
 その後、SiC半導体装置S1は、オン状態からオフ状態になると、逆バイアスが印加されて逆導通状態となるため、寄生ダイオードが還流ダイオードS12として機能し、寄生ダイオードを通じて還流電流が流れる。そして、寄生ダイオードを構成するpn接合のp型層側からn型層側に拡散したホールとn型層中の電子が再結合する。この際、再結合エネルギーが大きいために、基板11やバッファ層12内の基底面転位(以下、BPDという)が拡張して積層欠陥になる可能性がある。
 このため、本実施形態では、JFET部14に欠陥部Dを形成している。これにより、SiC半導体装置S1が逆導通時である場合、欠陥部Dがホールトラップとして機能する。したがって、図4に示されるように、欠陥部Dが形成されていないSiC半導体装置S1と比較すると、逆導通時である際の電流密度を低減でき、ホールが低濃度層13に達することを抑制できる。これにより、BPDがSFに拡張することを抑制でき、オン電圧が高くなることを抑制できる。
 また、本実施形態では、ベース層21は、セル部1の方が外周部2よりも不純物濃度が高くされている。このため、SiC半導体装置S1が逆導通状態である際、セル部1の順方向電圧が外周部2の順方向電圧よりも低くなり易い。したがって、順方向電流は、欠陥部Dが形成されているセル部1に流れ易くなり、外周部2にてBPDがSFに拡張することを抑制できる。
 以下、本実施形態のSiC半導体装置S1におけるさらなる詳細な条件および効果について説明する。
 まず、上記SiC半導体装置S1では、第1ディープ層15がJFET部14よりも浅く形成されている。そして、第1ディープ層15と低濃度層13との間にもJFET部14が配置されている。このため、第1ディープ層15と低濃度層13との間のJFET部14によってもホールをトラップすることができる。したがって、図5に示されるように、SF面積占有率を小さくすることができる。
 なお、図5中では、JFET部14と第1ディープ層15とを同じ深さとし、第1ディープ層15と低濃度層13との間にJFET部14を配置していないSiC半導体装置S1を比較例として示してある。また、SF面積占有率とは、SiC半導体装置S1における積層欠陥の割合を示している。そして、SF面積占有率が小さいとは、BPDがSFに拡張し難くなっていることを示している。
 また、SiC半導体装置S1では、逆導通時にバッファ層12へ流れるホールのホール密度が4.5×1016/cm以上になると、BPDがSFに拡張し易いことが報告されている。そして、本発明者らにおいても、バッファ層12へ流れるホールのホール密度が4.5×1016/cm以上になると、BPDがSFに拡張し易いことを確認している。このため、本実施形態のSiC半導体装置S1では、以下の条件を満たすように構成されている。
 まず、本実施形態のJFET部14は、低濃度層13にn型不純物がイオン注入されたイオン注入層で構成されている。このため、JFET部14は、不純物濃度が高くなる(すなわち、ドーズ量が多くなる)につれて欠陥部Dが多くなり、ホールトラップ層としての機能が大きくなる。具体的には、図6に示されるように、JFET部14は、不純物濃度が7.0×1016/cm以上になると、SF面積占有率が小さくなることが確認される。但し、JFET部14は、不純物濃度が5.0×1017/cm以上になると、SF面積占有率が増加することが確認される。これは、JFET部14に形成される欠陥部Dが多くなり過ぎることにより、BPDがSFに拡張するのではなく、当該欠陥部Dに起因してSFが形成されるためであると推定される。したがって、本実施形態では、JFET部14は、イオン注入層で構成され、不純物濃度が7.0×1016~5.0×1017/cmとされている。
 そして、SiC半導体装置S1における逆導通時においては、チャネル長さを短くすることにより、ベース層21内をパンチスルーモードによって流れる電子電流の割合を増加できるため、ホール電流の割合を低減できる。そして、ホール電流の割合を低減することにより、BPDに達するホールも低減できるため、BPDがSFに拡張することを抑制できる。具体的には、図7に示されるように、チャネル長が0.4μm以下になるとSF面積占有率が0となる場合があり、チャネル長が0.4μmより小さくなるについてSF面積占有率が小さくなることが確認される。したがって、本実施形態では、チャネル長が0.4μm以下となるように、ベース層21の厚さやソース領域22の深さが調整されている。
 また、電子電流の割合を増加してホール電流の割合を低減する構造としては、ベース層21の不純物濃度を低くするようにしてもよい。具体的には、図8に示されるように、ベース層21の不純物濃度を3.0×1017/cm以下とすると、SF面積占有率が0となる場合がある。したがって、本実施形態では、ベース層21の不純物濃度が3.0×1017/cm以下とされている。
 さらに、電子電流の割合を増加してホール電流の割合を低減する構造としては、第1ディープ層15の幅L1を規定するようにしてもよい。具体的には、図9に示されるように、第1ディープ層15の幅L1は、0.9μm以下であると、ホール電流密度を4.5×1016/cm以下とできる。したがって、本実施形態では、第1ディープ層15の幅L1は、0.9μm以下とされている。なお、図9のホール電流密度は、バッファ層12へ流れるホール電流の密度を示している。
 また、電子電流の割合を増加してホール電流の割合を低減する構造としては、隣合うトレンチ24の中心間の距離(すなわち、トレンチピッチ)を規定するようにしてもよい。具体的には、図10に示されるように、隣合うトレンチ24の中心間の距離を3.0μm以下とすることにより、ホール電流密度を4.5×1016/cm以下とできる。なお、図10のホール電流密度は、バッファ層12へ流れるホール電流の密度を示している。
 そして、上記のようなSiC半導体装置S1では、以下の特性も重要な特性となる。
 まず、図11に示されるように、SiC半導体装置S1がオン状態である際のオン電圧(すなわち、Von)は、隣合う第1ディープ層15の間隔L2を長くするほど第1ディープ層15で挟まれるJFET部14の幅が広がるため、小さくなる。そして、現状では、200Aを流す場合において、オン電圧を0.9V以下とすることが望まれている。したがって、隣合う第1ディープ層15の間隔L2は、0.75μm以上とされている。
 また、図12に示されるように、オフ状態においてゲート絶縁膜25に印加される電界(すなわち、Emax)は、隣合う第1ディープ層15の間隔L2を長くするほど第1ディープ層15で挟まれるJFET部14の幅が広がるため、高くなる。そして、現状では、オフ状態においてゲート絶縁膜25に印加される電界を5MV/cm以下とすることが望まれている。したがって、隣合う第1ディープ層15の間隔L2は、1.2μm以下とされている。
 さらに、図13に示されるように、帰還容量(すなわち、Crss)は、隣合う第1ディープ層15の間隔L2を長くするほど第1ディープ層15で挟まれるJFET部14の幅が広がるため、高くなる。そして、現状では、帰還容量を50pF以下とすることが望まれている。したがって、隣合う第1ディープ層15の間隔L2は、1.1μm以下とされている。
 つまり、本実施形態では、隣合う第1ディープ層15の間隔L2が0.75~1.1μmとされている。
 以上説明した本実施形態によれば、JFET部14には、欠陥部Dが形成されている。このため、SiC半導体装置S1の逆導通時において、ホールが欠陥部DにトラップされることでBPDに到達することを抑制できる。したがって、BPDがSFに拡張することを抑制でき、オン電圧が高くなることを抑制できる。
 (1)本実施形態では、セル部1は、外周部2よりも、ベース層21の不純物濃度が高くされている。このため、SiC半導体装置S1が逆導通状態である際、セル部1の順方向電圧が外周部2の順方向電圧よりも低くなる。したがって、順方向電流は、欠陥部Dが形成されているセル部1に流れ易くなり、外周部2にてBPDがSFに拡張することを抑制できる。
 (2)本実施形態では、第1ディープ層15は、JFET部14よりも浅く形成されている。そして、第1ディープ層15と低濃度層13との間には、JFET部14が配置されている。このため、第1ディープ層15と低濃度層13との間のJFET部14によってもホールをトラップすることができる。したがって、さらにホールがBPDに到達することを抑制でき、さらにBPDがSFに拡張することを抑制できる。
 (3)本実施形態では、JFET部14は、不純物濃度が7.0×1016~5.0×1017/cmとされている。このため、バッファ層12に流れ込むホール電流の密度を4.5×1016/cm以下とでき、BPDがSFに拡張することを抑制できる。
 (4)本実施形態では、チャネル長が0.4μmとされている。このため、バッファ層12に流れ込むホール電流の密度を4.5×1016/cm以下とでき、BPDがSFに拡張することを抑制できる。
 (5)本実施形態では、ベース層21の不純物濃度が3.0×1017/cmとされている。このため、バッファ層12に流れ込むホール電流の密度を4.5×1016/cm以下とでき、BPDがSFに拡張することを抑制できる。
 (6)本実施形態では、第1ディープ層15は、幅L1が0.9μm以下とされている。このため、バッファ層12に流れ込むホール電流の密度を4.5×1016/cm以下とでき、BPDがSFに拡張することを抑制できる。
 (7)本実施形態では、第1ディープ層15が外周部2まで延設されている。このため、外周部2でのダイオード特性を向上できる。
 (8)本実施形態では、隣合うトレンチ24の中心間の距離は、3.0μm以下とされている。このため、バッファ層12に流れ込むホール電流の密度を4.5×1016/cm以下とでき、BPDがSFに拡張することを抑制できる。
 (9)本実施形態では、隣合う第1ディープ層15の間隔L2が0.75μm以上とされている。このため、オン電圧が増加することを抑制できる。
 (10)本実施形態では、隣合う第1ディープ層15の間隔L2が1.1μm以下とされている。このため、オフ状態である際にゲート絶縁膜25に印加される電界が大きくなることを抑制できると共に、帰還容量が大きくなることを抑制できる。
 (11)本実施形態では、インバータ回路100に備えられる還流ダイオードS12として、SiC半導体装置S1に構成される寄生ダイオードを利用している。このため、MOSFETS11とは別に還流ダイオードS12を構成する別部材を用意する必要がなく、構成の簡略化を図ることができる。
 (第2実施形態)
 第2実施形態について説明する。本実施形態は、第1実施形態に対し、第1ディープ層15の長手方向を変更したものである。その他に関しては、第1実施形態と同様であるため、ここでは説明を省略する。
 本実施形態では、図14に示されるように、セル部1において、第1ディープ層15および電流分散層17は、線状部分がY軸方向を長手方向として延設されている。また、第1ディープ層15は、法線方向において、トレンチ24を挟むように形成されている。
 以上説明した本実施形態のように、第1ディープ層15および電流分散層17をY軸方向に沿って延設するようにしても、JFET部14に欠陥部Dが形成されていることにより、上記第1実施形態と同様に、オン電圧が高くなることを抑制できる。
 (第3実施形態)
 第3実施形態について説明する。本実施形態は、第1実施形態に対し、ベース層21および電流分散層17に欠陥部を形成したものである。その他に関しては、第1実施形態と同様であるため、ここでは説明を省略する。
 本実施形態では、図15に示されるように、ベース層21に欠陥部D1が形成されていると共に、電流分散層17に欠陥部D2が形成されている。ベース層21の欠陥部D1は、ベース層21をイオン注入によって構成することで形成される。電流分散層17の欠陥部D2は、ベース層21をイオン注入で形成する際のp型の不純物が電流分散層17に入り込むことで形成される。
 具体的には、図16に示されるように、ベース層21および電流分散層17は、p型の不純物濃度分布において、電流分散層17にもp型の不純物が存在するように構成されている。言い換えると、ベース層21および電流分散層17は、p型の不純物濃度分布におけるテール部Tが電流分散層17内に位置するように形成されている。不純物濃度分布におけるテール部Tとは、深さ方向における他面10b側の部分のことである。なお、このようなベース層21および電流分散層17は、加速電圧を変更しながら複数回のイオン注入を行ってベース層21を形成し、ベース層21を形成する際のp型の不純物を電流分散層17に入り込ませることで形成される。図16は、加速電圧を変更しながら3回のイオン注入を行った場合の図を示している。
 また、本実施形態のベース層21および電流分散層17は、電流分散層17に欠陥部D2が十分に形成されるように、電流分散層17内にp型の不純物濃度が1.0×1015/cm以上となる部分を有するように構成されている。なお、本発明者らの検討によれば、p型の不純物濃度が1.0×1015/cm以上となる部分を有するように電流分散層17が構成されている場合、十分に欠陥部D2が形成されることが確認されている。
 以上が本実施形態におけるSiC半導体装置S1の構成である。次に、上記SiC半導体装置S1におけるベース層21の欠陥部D1および電流分散層17の欠陥部D2の形成方法について、図17A、図17Bを参照しつつ説明する。
 まず、図17Aに示されるように、基板11、バッファ層12、低濃度層13、JFET部14、第1ディープ層15、電流分散層17、第2ディープ層18が形成されたものを用意する。そして、電流分散層17および第2ディープ層18上に、ベース層21を構成するベース層構成層210をエピタキシャル成長させたエピタキシャル層で配置する。本実施形態では、ベース層構成層210は、後述するイオン注入を行ってベース層21を構成した際の不純物濃度よりも1桁以上小さい不純物濃度となるように、エピタキシャル成長で構成される。これにより、所望の不純物濃度を有するベース層21をエピタキシャル成長によって形成する場合と比較して、不純物濃度の面内ばらつきを抑制できる。なお、本実施形態のベース層構成層210は、厚さがベース層21と等しくされている。但し、ベース層構成層210は、厚さがベース層21の厚さおよびソース領域22の厚さの和と等しくされていてもよい。
 次に、図17Bに示されるように、加速電圧を変更しながら複数回のイオン注入を行うことでベース層21を構成する。例えば、ベース層21を構成する際には、図16に示されるように、電流分散層17にp型の不純物濃度が1.5×1015/cmとなる部分が含まれるように、加速電圧を変更しながらイオン注入を行ってベース層21を構成する。なお、図16では、加速電圧を変更しながら3回のイオン注入を行った場合の図が示されている。これにより、ベース層21に欠陥部D1が構成されると共に、電流分散層17に欠陥部D2が構成される。
 また、上記のように、JFET部14の欠陥部Dは、イオン注入を行うことによって形成される。ベース層21の欠陥部D1および電流分散層17の欠陥部D2は、イオン注入を行うことによって形成される。ここで、SiCにイオン注入を行う場合、高温でイオン注入すると欠陥部が発生し難くなることが報告されている。このため、本実施形態では、イオン注入は、JFET部14を構成するための低濃度層13やベース層構成層210をエピタキシャル成長させて配置する際に発生し得る欠陥部よりも、多量の欠陥部D、D1、D2が形成される温度で行う。具体的には、本実施形態では、各イオン注入を行う際の温度を室温から200℃以下の温度とする。これにより、イオン注入時に各欠陥部D、D1、D2が形成されないことを抑制できる。なお、本発明者らの検討によれば、200℃以下の温度でイオン注入を行うことにより、各欠陥部D、D1、D2が適切に形成されることが確認されている。また、本実施形態における室温とは、1~30℃程度の温度のことである。
 その後は、特に図示しないが、ソース領域22、コンタクト領域23、トレンチゲート構造等を形成することにより、上記SiC半導体装置S1が製造される。
 以上説明した本実施形態によれば、JFET部14に欠陥部Dが形成されているため、上記第1実施形態と同様の効果を得ることができる。
 (1)本実施形態では、ベース層21に欠陥部D1を形成すると共に電流分散層17に欠陥部D2を形成している。このため、ホール電流が流れる経路において、欠陥部D1、D2となる部分が増加し、JFET部14の欠陥部D以外でもホールをトラップすることができるため、さらにBPDにホールが達することを抑制できる。
 (2)本実施形態では、電流分散層17は、p型の不純物濃度が1.0×1015/cm以上となる部分を有するように構成されている。このため、電流分散層17にp型の不純物に起因する欠陥部D2を容易に形成できる。
 (3)本実施形態では、複数回のイオン注入を行ってベース層21を形成している。このため、p型の不純物濃度が1.0×1015/cm以上となる部分を有する電流分散層17を容易に形成できる。また、複数回のイオン注入行ってベース層21を形成するため、例えば、1回のイオン注入でベース層21を形成する場合と比較とすると、ベース層21における深さ方向の不純物濃度分布がばらつくことを抑制できる。したがって、SiC半導体をオン状態とするのに必要なゲート電極26への閾値電圧が変動することも抑制できる。
 (4)本実施形態では、ベース層構成層210を構成する際には、不純物濃度がベース層21の不純物濃度よりも1桁以上小さくなるようにしている。これにより、所望の不純物濃度を有するベース層21をエピタキシャル成長によって形成する場合と比較して、不純物濃度の面内ばらつきを抑制できる。
 (5)本実施形態では、イオン注入を200℃以下の温度で行っている。このため、イオン注入時に各欠陥部D、D1、D2が適切に形成されないことを抑制できる。
 (他の実施形態)
 本開示は、実施形態に準拠して記述されたが、本開示は当該実施形態や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 例えば、上記各実施形態では、第1導電型をn型とすると共に第2導電型をp型とした例について説明したが、第1導電型をp型とすると共に第2導電型をn型としてもよい。
 また、上記各実施形態において、第1ディープ層15および第2ディープ層18の少なくとも一方において、内部に欠陥部Dが形成されるようにしてもよい。つまり、ホール電流が流れる経路において、欠陥部Dとなる部分が増えるようにしてもよい。この場合、例えば、第1ディープ層15に欠陥部Dが形成されるようにする場合には、第1ディープ層15に欠陥部Dが形成されるように、第1ディープ層15をイオン注入等で形成すればよい。これによれば、JFET部14の欠陥部D以外でもホールをトラップすることができるため、さらにBPDにホールが達することを抑制できる。
 さらに、上記各実施形態において、欠陥部Dは、イオン注入で形成されていなくてもよい。例えば、欠陥部Dは、JFET部14をエピタキシャル成長等で構成した後、ヘリウム等の電子線を照射することで形成されるようにしてもよい。また、JFET部14をエピタキシャル成長等で構成する場合には、ボロン、ガリウム、アルミニウム等のp型の不純物を混入し、不純物の総量を増加させることによって欠陥部Dを構成するようにしてもよい。つまり、欠陥部Dは、イオン注入や電子線等の照射ではなく、エピタキシャル膜を形成する際に同時に形成されるようにしてもよい。なお、このようにp型の不純物を混入させて欠陥部Dを構成する場合には、JFET部14の全体の不純物濃度が低くなり過ぎないように、n型不純物の総量を調整することが好ましい。また、JFET部14をエピタキシャル成長で構成する場合には、バナジウム、チタン、鉄等のホール捕獲率が電子捕獲率よりも高い不純物を混入させるようにしてもよい。これによれば、さらにJFET部14からホールが排出されることを抑制できる。
 また、エピタキシャル成長でJFET部14を構成しつつJFET部14に欠陥部Dを構成する場合、第1ディープ層15は次のように形成される。すなわち、第1ディープ層15は、セル部1において低濃度層13上の全体にJFET部14を形成した後、JFET部14の所定箇所にイオン注入等をすることによって形成される。この場合、低濃度層13上の全体に配置されたJFET部14には欠陥部Dが形成されているため、第1ディープ層15にも欠陥部Dが形成された状態となる。したがって、第1ディープ層15からホールが排出されることも抑制できる。
 また、上記各実施形態において、セル部1は、逆導通時において、外周部2と同じ順方向電圧となるように構成されていてもよい。上記各実施形態において、JFET部14と第1ディープ層15とが同じ厚さとされていてもよい。すなわち、第1ディープ層15と低濃度層13との間にJFET部14が配置されていなくてもよい。また、上記各実施形態において、JFET部14等の不純物濃度、ベース層21の不純物濃度、第1ディープ層15の幅L1等は、適宜変更してもよい。このようなSiC半導体装置S1としても、JFET部14に欠陥部Dが形成されていることにより、BPDがSFに拡張することを抑制でき、オン電圧が高くなることを抑制できる。

Claims (18)

  1.  トレンチゲート構造を有するMOS構造のスイッチング素子が形成された炭化珪素半導体装置であって、
     前記スイッチング素子が形成されるセル部(1)と、
     前記セル部を囲む外周部(2)と、を有し、
     前記セル部は、
     炭化珪素からなる第1導電型の基板(11)と、
     前記基板上に形成され、前記基板よりも低不純物濃度とされた第1導電型のバッファ層(12)と、
     前記バッファ層上に形成され、前記基板よりも低不純物濃度とされた第1導電型の低濃度層(13)と、
     前記低濃度層上に形成され、前記基板の面方向における一方向を長手方向とする複数の線状部分を有する第2導電型の第1ディープ層(15)と、
     前記低濃度層上に配置され、前記第1ディープ層に挟まれた線状部分を有する第1導電型のJFET部(14)と、
     前記JFET部上に配置され、前記低濃度層よりも高不純物濃度とされた第1導電型の電流分散層(17)と、
     前記第1ディープ層上に配置された第2導電型の第2ディープ層(18)と、
     前記電流分散層および前記第2ディープ層の上に配置された第2導電型のベース層(21)と、
     前記ベース層の表層部に形成された第1導電型の不純物領域(22)と、
     前記不純物領域および前記ベース層を貫通して前記電流分散層に達するトレンチ(24)の壁面に形成されたゲート絶縁膜(25)と、前記ゲート絶縁膜上に形成されたゲート電極(26)とを有する前記トレンチゲート構造と、
     前記不純物領域および前記ベース層と電気的に接続される第1電極(28)と、
     前記基板と電気的に接続される第2電極(31)と、を備え、
     前記JFET部には、欠陥部(D)が形成されている炭化珪素半導体装置。
  2.  前記セル部は、前記外周部より、前記スイッチング素子が逆導通状態である際の順方向電圧が低くされている請求項1に記載の炭化珪素半導体装置。
  3.  前記JFET部は、前記第1ディープ層と前記低濃度層との間にも配置されている請求項1または2に記載の炭化珪素半導体装置。
  4.  前記JFET部は、イオン注入層で構成され、不純物濃度が7.0×1016~5.0×1017/cmとされている請求項1ないし3のいずれか1つに記載の炭化珪素半導体装置。
  5.  前記ベース層は、前記基板と前記バッファ層との積層方向において、前記トレンチと接する部分の長さが0.4μm以下とされている請求項1ないし4のいずれか1つに記載の炭化珪素半導体装置。
  6.  前記ベース層は、不純物濃度が3.0×1017/cm以下とされている請求項1ないし5のいずれか1つに記載の炭化珪素半導体装置。
  7.  前記第1ディープ層は、前記長手方向と交差する方向であって、前記基板の面方向に沿った幅(L1)が0.9μm以下とされている請求項1ないし6のいずれか1つに記載の炭化珪素半導体装置。
  8.  前記第1ディープ層は、前記セル部から前記外周部まで延設されている請求項7に記載の炭化珪素半導体装置。
  9.  隣合う前記トレンチの中心間の距離は、3.0μm以下とされている請求項1ないし8のいずれか1つに記載の炭化珪素半導体装置。
  10.  隣合う前記第1ディープ層の間隔(L2)は、0.75~1.1μmとされている請求項1ないし9のいずれか1つに記載の炭化珪素半導体装置。
  11.  前記ベース層、前記第1ディープ層、および前記第2ディープ層の少なくとも1つには、欠陥部が形成されている請求項1ないし10のいずれか1つに記載の炭化珪素半導体装置。
  12.  前記ベース層に欠陥部(D1)が形成されており、
     前記電流分散層は、第2導電型の不純物を含む構成とされ、欠陥部(D2)が形成されている請求項11に記載の炭化珪素半導体装置。
  13.  前記電流分散層は、第2導電型の不純物濃度が1.0×1015/cm以上とされている部分を有している請求項12に記載の炭化珪素半導体装置。
  14.  MOSFET(S11)と還流ダイオード(S12)とが並列に接続されたアームを有するインバータ回路であって、
     請求項1ないし13のいずれか1つに記載の炭化珪素半導体装置を備え、
     前記MOSFETは、前記スイッチング素子で構成され、
     前記還流ダイオードは、前記スイッチング素子内に構成される寄生ダイオードによって構成されているインバータ回路。
  15.  MOS構造のスイッチング素子が形成されるセル部(1)と、
     前記セル部を囲む外周部(2)と、を有し、
     前記セル部は、
     炭化珪素からなる第1導電型の基板(11)と、
     前記基板上に形成され、前記基板よりも低不純物濃度とされた第1導電型のバッファ層(12)と、
     前記バッファ層上に形成され、前記基板よりも低不純物濃度とされた第1導電型の低濃度層(13)と、
     前記低濃度層上に形成され、前記基板の面方向における一方向を長手方向とする複数の線状部分を有する第2導電型の第1ディープ層(15)と、
     前記低濃度層上に配置され、前記第1ディープ層に挟まれた線状部分を有する第1導電型のJFET部(14)と、
     前記JFET部上に配置され、前記低濃度層よりも高不純物濃度とされた第1導電型の電流分散層(17)と、
     前記第1ディープ層上に配置された第2導電型の第2ディープ層(18)と、
     前記電流分散層および前記第2ディープ層の上に配置された第2導電型のベース層(21)と、
     前記ベース層の表層部に形成された第1導電型の不純物領域(22)と、
     前記不純物領域および前記ベース層を貫通して前記電流分散層に達するトレンチ(24)の壁面に形成されたゲート絶縁膜(25)と、前記ゲート絶縁膜上に形成されたゲート電極(26)とを有するトレンチゲート構造と、
     前記不純物領域および前記ベース層と電気的に接続される第1電極(28)と、
     前記基板と電気的に接続される第2電極(31)と、を備え、
     前記JFET部には、欠陥部(D)が形成されている炭化珪素半導体装置の製造方法であって、
     前記低濃度層をエピタキシャル層で配置することと、
     前記低濃度層の表層部にイオン注入を行うことで前記JFET部を構成することを行い、
     前記イオン注入を行うことで前記JFET部に前記欠陥部を形成する炭化珪素半導体装置の製造方法。
  16.  前記電流分散層上に、前記ベース層を構成するベース層構成層(210)をエピタキシャル層で配置することと、
     前記ベース層構成層に加速電圧を変更しながら複数回のイオン注入を行い、前記ベース層を構成すると共に前記ベース層に欠陥部(D1)を形成し、さらに前記ベース層を構成する際の不純物を前記電流分散層に入り込ませて前記電流分散層に欠陥部(D2)を形成する請求項15に記載の炭化珪素半導体装置の製造方法。
  17.  前記ベース層構成層を配置することでは、前記ベース層を構成した際の不純物濃度よりも1桁以上小さい不純物濃度とされた前記ベース層構成層を配置する請求項15または16に記載の炭化珪素半導体装置の製造方法。
  18.  前記イオン注入を行うことでは、前記エピタキシャル層を配置する際に発生し得る欠陥部よりも多量の前記欠陥部が形成される温度で行う請求項15ないし17のいずれか1つに記載の炭化珪素半導体装置の製造方法。
PCT/JP2022/013713 2021-03-24 2022-03-23 炭化珪素半導体装置およびそれを用いたインバータ回路、炭化珪素半導体装置の製造方法 WO2022202936A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280023731.0A CN117083719A (zh) 2021-03-24 2022-03-23 碳化硅半导体装置及使用它的逆变器电路、碳化硅半导体装置的制造方法
US18/366,002 US20230378292A1 (en) 2021-03-24 2023-08-07 Silicon carbide semiconductor device, inverter circuit using the same, and method for manufacturing silicon carbide semiconductor device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-049875 2021-03-24
JP2021049875 2021-03-24
JP2022-045676 2022-03-22
JP2022045676A JP2022151776A (ja) 2021-03-24 2022-03-22 炭化珪素半導体装置およびそれを用いたインバータ回路、炭化珪素半導体装置の製造方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/366,002 Continuation US20230378292A1 (en) 2021-03-24 2023-08-07 Silicon carbide semiconductor device, inverter circuit using the same, and method for manufacturing silicon carbide semiconductor device

Publications (1)

Publication Number Publication Date
WO2022202936A1 true WO2022202936A1 (ja) 2022-09-29

Family

ID=83395795

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/013713 WO2022202936A1 (ja) 2021-03-24 2022-03-23 炭化珪素半導体装置およびそれを用いたインバータ回路、炭化珪素半導体装置の製造方法

Country Status (2)

Country Link
US (1) US20230378292A1 (ja)
WO (1) WO2022202936A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075432A1 (ja) * 2022-10-06 2024-04-11 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021304A (ja) * 2011-06-15 2013-01-31 Denso Corp 半導体装置
WO2017047276A1 (ja) * 2015-09-16 2017-03-23 富士電機株式会社 半導体装置および半導体装置の製造方法
WO2018110703A1 (ja) * 2016-12-16 2018-06-21 富士電機株式会社 半導体装置および製造方法
JP2018133377A (ja) * 2017-02-13 2018-08-23 富士電機株式会社 半導体装置および半導体装置の製造方法
WO2019044921A1 (ja) * 2017-08-31 2019-03-07 株式会社デンソー 炭化珪素半導体装置およびその製造方法
JP2019140242A (ja) * 2018-02-09 2019-08-22 株式会社デンソー 炭化珪素基板および炭化珪素半導体装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013021304A (ja) * 2011-06-15 2013-01-31 Denso Corp 半導体装置
WO2017047276A1 (ja) * 2015-09-16 2017-03-23 富士電機株式会社 半導体装置および半導体装置の製造方法
WO2018110703A1 (ja) * 2016-12-16 2018-06-21 富士電機株式会社 半導体装置および製造方法
JP2018133377A (ja) * 2017-02-13 2018-08-23 富士電機株式会社 半導体装置および半導体装置の製造方法
WO2019044921A1 (ja) * 2017-08-31 2019-03-07 株式会社デンソー 炭化珪素半導体装置およびその製造方法
JP2019140242A (ja) * 2018-02-09 2019-08-22 株式会社デンソー 炭化珪素基板および炭化珪素半導体装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024075432A1 (ja) * 2022-10-06 2024-04-11 富士電機株式会社 炭化珪素半導体装置および炭化珪素半導体装置の製造方法

Also Published As

Publication number Publication date
US20230378292A1 (en) 2023-11-23

Similar Documents

Publication Publication Date Title
JP7105752B2 (ja) 絶縁ゲート型炭化珪素半導体装置
KR102216528B1 (ko) 주입된 측벽들을 가진 게이트 트렌치들을 갖는 전력 반도체 디바이스들 및 관련 방법들
KR102204272B1 (ko) 게이트 트렌치들 및 매립된 종단 구조체들을 갖는 전력 반도체 디바이스들 및 관련 방법들
US7723783B2 (en) Semiconductor device
JP3951522B2 (ja) 超接合半導体素子
US11626477B2 (en) Silicon carbide field-effect transistor including shielding areas
US20210183995A1 (en) Superjunction silicon carbide semiconductor device and method of manufacturing superjunction silicon carbide semiconductor device
JP5867606B2 (ja) 半導体装置および半導体装置の製造方法
JP6415749B2 (ja) 炭化珪素半導体装置
JP7006280B2 (ja) 半導体装置
US20230378292A1 (en) Silicon carbide semiconductor device, inverter circuit using the same, and method for manufacturing silicon carbide semiconductor device
JP6870516B2 (ja) 半導体装置および半導体装置の製造方法
JP2019160901A (ja) 半導体装置
US11282926B2 (en) Semiconductor device with a semiconductor body of silicon carbide
JP2023056697A (ja) 半導体装置およびその製造方法
JP2022151776A (ja) 炭化珪素半導体装置およびそれを用いたインバータ回路、炭化珪素半導体装置の製造方法
JP4765104B2 (ja) 超接合半導体素子の製造方法
WO2023112547A1 (ja) 半導体装置
CN117083719A (zh) 碳化硅半导体装置及使用它的逆变器电路、碳化硅半导体装置的制造方法
JP7439746B2 (ja) 炭化珪素半導体装置
JP2022175975A (ja) 炭化珪素半導体装置
JP2023070568A (ja) 半導体装置およびその製造方法
JP2023158575A (ja) 半導体装置
JP2024011224A (ja) 炭化珪素半導体装置
JP2024013911A (ja) 半導体装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775718

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280023731.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775718

Country of ref document: EP

Kind code of ref document: A1