WO2022202518A1 - 蛍光体粉末、複合体および発光装置 - Google Patents

蛍光体粉末、複合体および発光装置 Download PDF

Info

Publication number
WO2022202518A1
WO2022202518A1 PCT/JP2022/011833 JP2022011833W WO2022202518A1 WO 2022202518 A1 WO2022202518 A1 WO 2022202518A1 JP 2022011833 W JP2022011833 W JP 2022011833W WO 2022202518 A1 WO2022202518 A1 WO 2022202518A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor
phosphor powder
particles
light
shape
Prior art date
Application number
PCT/JP2022/011833
Other languages
English (en)
French (fr)
Inventor
萌子 田中
真義 市川
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to CN202280017711.2A priority Critical patent/CN116888240A/zh
Priority to JP2023509058A priority patent/JPWO2022202518A1/ja
Priority to KR1020237035045A priority patent/KR20230157435A/ko
Publication of WO2022202518A1 publication Critical patent/WO2022202518A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/61Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing fluorine, chlorine, bromine, iodine or unspecified halogen elements
    • C09K11/617Silicates
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/66Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing germanium, tin or lead
    • C09K11/664Halogenides
    • C09K11/665Halogenides with alkali or alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/674Halogenides
    • C09K11/675Halogenides with alkali or alkaline earth metals
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Definitions

  • the present invention relates to phosphor powders, composites and light-emitting devices.
  • KSF phosphor As a phosphor capable of converting blue light emitted from a blue light emitting diode into red light, a fluoride phosphor represented by K 2 SiF 6 :Mn (often abbreviated as “KSF phosphor”) is known. . This phosphor is efficiently excited by blue light. In addition, the half width of the emission spectrum of this phosphor is narrow and sharp. Therefore, by using this phosphor as the red phosphor, it is possible to realize a white LED with high brightness and excellent color rendering and color reproducibility.
  • KSF phosphor fluoride phosphor represented by K 2 SiF 6 :Mn
  • Patent Document 1 As a prior art of fluoride phosphors, for example, Patent Document 1 can be cited. Patent Document 1 describes a fluorine composition represented by the general formula A 2 M (1 ⁇ n) F 6 :Mn 4+ n , having a bulk density of 0.80 g/cm 3 or more and a mass median diameter of 30 ⁇ m or less. Compound phosphors are described. In the general formula, 0 ⁇ n ⁇ 0.1, element A is one or more alkali metal elements containing K, element M is Si simple substance, Ge simple substance, or Si and Ge, Sn, Ti, Zr and Hf. It is a combination with one or more elements selected from the group.
  • the present inventor conducted various studies with the goal of obtaining a fluoride phosphor with good light emission characteristics.
  • the present invention is as follows.
  • a phosphor powder containing phosphor particles whose composition is represented by the following general formula (1), wherein the phosphor particles comprise first phosphor particles having any shape selected from the group consisting of a truncated hexahedral shape, a cuboctahedral shape and a truncated octahedral shape, A phosphor powder, wherein 65% or more of the phosphor particles in the phosphor powder on a number basis are the first phosphor particles.
  • Element A is one or more alkali metal elements containing K
  • the element M is Si alone, Ge alone, or a combination of Si and one or more elements selected from the group consisting of Ge, Sn, Ti, Zr and Hf.
  • a composite comprising the above phosphor powder and a sealing material that seals the phosphor powder.
  • a light-emitting device comprising a light-emitting element that emits excitation light and the composite that converts the wavelength of the excitation light.
  • a fluoride phosphor with good emission characteristics is provided.
  • 1 is an electron microscope image of a phosphor powder obtained in an example.
  • 1 is an electron microscope image of a phosphor powder obtained in an example.
  • 1 is an electron microscope image of a phosphor powder obtained in an example.
  • 1 is an electron microscope image of a phosphor powder obtained in an example.
  • 1 is an electron microscope image of a phosphor powder obtained in an example.
  • 1 is an electron microscope image of a phosphor powder obtained in an example.
  • 1 is an electron microscope image of a phosphor powder obtained in an example.
  • 1 is an electron microscope image of a phosphor powder obtained in an example.
  • 1 is an electron microscope image of a phosphor powder obtained in an example.
  • 1 is an electron microscope image of a phosphor powder obtained in an example.
  • 1 is an electron microscope image of a phosphor powder obtained in an example.
  • 4 is an electron microscope image of phosphor powder obtained in Comparative Example.
  • the phosphor powder of the present embodiment contains phosphor particles having a composition represented by general formula (1) below. Due to this composition, the phosphor powder of this embodiment converts blue light normally emitted from a blue LED into red light.
  • Element A is one or more alkali metal elements containing K
  • the element M is Si alone, Ge alone, or a combination of Si and one or more elements selected from the group consisting of Ge, Sn, Ti, Zr and Hf.
  • At least part of the phosphor particles in the phosphor powder of the present embodiment is the first phosphor having any shape selected from the group consisting of a truncated hexahedral shape, a cuboctahedral shape, and a truncated octahedral shape. particles. Furthermore, 65% or more of the phosphor particles in the phosphor powder of the present embodiment are first phosphor particles on a number basis.
  • the first phosphor particles have a shape closer to a sphere than the cubic phosphor particles. It is believed that this reduces the specific surface area of the phosphor particles, thereby reducing the reflection of light on the particle surfaces and, as a result, improving the light emission properties. In addition, it is considered that by including 65% or more of the first phosphor particles in the phosphor powder on a number basis, it becomes easier to obtain the effect of the first phosphor particles having a nearly spherical shape.
  • the phosphor powder of the present embodiment can be produced by using suitable raw materials and adopting a suitable production method and production conditions. Although the details will be described later, for example, when the phosphor powder is deposited by controlling the saturation of the aqueous solution, one of the points is to instantly increase the saturation by adding water to the system at once in a short time. It is mentioned as. Also, the "order" of putting each raw material into the system is one of the points. By adding water to the system all at once in a short period of time, phosphor particles with a shape different from the cubic shape expected from the crystal system (cubic system) were produced, unlike the usual "slow” precipitation of crystals. It is considered to be obtained.
  • Element A is one or more K-containing alkali metal elements. Specifically, K alone, or a combination of K and one or more alkali metal elements selected from Li, Na, Rb, and Cs can be used. From the viewpoint of chemical stability, the content of K in element A is preferably high (for example, K accounts for 50 mol % or more in element A), and element A is more preferably K alone.
  • the element M is Si alone, Ge alone, or a combination of Si and one or more elements selected from the group consisting of Ge, Sn, Ti, Zr and Hf. From the viewpoint of chemical stability, the content of Si in the element M is preferably high (for example, Si accounts for 50 mol % or more in the element M), and the element M is more preferably Si alone.
  • the phosphor powder of the present embodiment contains first phosphor particles having any shape selected from the group consisting of truncated hexahedron, cuboctahedron, and truncated octahedron.
  • the truncated hexahedron, the cuboctahedron, and the truncated octahedron are illustrated in FIG.
  • the first phosphor particles need not be "mathematically exact” truncated hexahedral, cuboctahedral, or truncated octahedral shapes.
  • the first phosphor particles also include truncated hexahedron-like phosphor particles whose sides do not have the same length.
  • the crystal system of the first phosphor particles is considered to be a cubic system. It is considered that the (100) plane and the (111) plane are exposed in the first phosphor particles.
  • the particle size distribution of the phosphor powder of the present embodiment is appropriate, the luminescence characteristics may be further improved, and the phosphor powder may be easily applied to various applications.
  • D50 is preferably 10 ⁇ m or more and 40 ⁇ m or less, more preferably 20 ⁇ m or more and 35 ⁇ m or less, when the cumulative 50 % value in the volume-based particle size distribution curve of the phosphor powder of the present embodiment is D50. Due to the moderate value of D50 , it is easy to obtain sufficient quantum efficiency, and when it is necessary to mix phosphor powder with resin etc. to form a film or sheet containing phosphor, it is uniform. They tend to form smooth films or sheets.
  • the cumulative 10% value in the volume-based particle size distribution curve of the phosphor powder of the present embodiment is D 10
  • the cumulative 50% value is D 50
  • the cumulative 90% value is D 90
  • (D 90 ⁇ D10 )/ D50 is preferably 0.9 or less, more preferably 0.75 or less. Although there is no particular lower limit, it is, for example, 0.3 or more, specifically 0.5 or more.
  • (D 90 ⁇ D 10 )/D 50 can be regarded as an index representing the “width” of the particle size distribution. The fact that the width of the particle size distribution of the phosphor powder is narrow means that the particle size of the phosphor particles in the phosphor powder is relatively “uniform”. Therefore, when (D 90 ⁇ D 10 )/D 50 is 0.9 or less, for example, when phosphor powder needs to be mixed with resin or the like to form a film or sheet containing phosphor, Easy to form a uniform and smooth film or sheet.
  • a volume-based particle size distribution curve can be obtained through measurement by the laser diffraction scattering method.
  • the details of the measuring method refer to the examples given later.
  • the phosphor powder may contain more than 65% of the first phosphor particles on a number basis.
  • the number of phosphor particles in the phosphor powder is preferably 70% or more, more preferably 80% or more, still more preferably 90% or more, and particularly preferably 95% or more.
  • First phosphor particles. The upper limit of this value may be 100%.
  • the phosphor powder is the second phosphor that does not correspond to the first phosphor particles. Contains body particles.
  • the second phosphor particles are similar to the first phosphor particles (composition, etc.) except that the shape is neither truncated hexahedral, cuboctahedral, nor truncated octahedral.
  • the ratio (number basis) of the first phosphor particles in the phosphor powder is determined by observing the shape of at least 50 phosphor particles whose shape can be confirmed in an image of the phosphor powder that is enlarged with an electron microscope. can ask.
  • the phosphor powder of this embodiment can be manufactured by using an appropriate material and selecting an appropriate manufacturing method and manufacturing conditions. By selecting an appropriate manufacturing method and manufacturing conditions, it is easy to manufacture a phosphor powder containing many first phosphor particles. Examples of specific manufacturing methods will be described in Examples below, and two manufacturing methods will be described below as “manufacturing method 1” and “manufacturing method 2”.
  • Manufacturing method 1 mainly includes a dissolution step, a Mn source input step, and a precipitation step. These steps will be described below. These steps can be performed at room temperature.
  • hydrofluoric acid aqueous solution of HF
  • a raw material containing element A such as K
  • a raw material containing element M preferably Si
  • a raw material containing element M preferably Si
  • a concentration of hydrogen fluoride in hydrofluoric acid before dissolving the raw materials is preferably 50 to 60% by mass.
  • the raw material containing the element A for example, oxides, hydroxides, fluorides, and carbonates of the element A can be used.
  • the raw material containing F can be a fluoride as a raw material for other elements (A, M, Mn). F is also supplied from hydrogen fluoride in hydrofluoric acid used as a solvent.
  • a particularly preferred raw material (other than hydrofluoric acid in hydrofluoric acid) used in the dissolution step is K 2 SiF 6 .
  • Mn source input step the raw material containing Mn is added to the solution obtained in the dissolution step, and water is added to the system in the precipitation step described later. Stir for seconds to 10 minutes.
  • solute concentration in the solution may change because the dissolution is not completed until about 4 seconds after the addition.
  • Raw materials containing Mn include hexafluoromanganates, permanganates, oxides (excluding permanganates), fluorides (excluding hexafluoromanganates), chlorides, sulfates, and nitrates. be done.
  • fluorides are preferred because Mn can be efficiently substituted for the Si site in the fluoride phosphor and good light emission characteristics can be obtained, and among fluorides, hexafluoromanganate is preferred.
  • Hexafluoromanganates include Na 2 MnF 6 , K 2 MnF 6 , Rb 2 MnF 6 and the like.
  • K 2 MnF 6 is preferable because it simultaneously contains F and K (corresponding to element A) constituting the fluoride phosphor in addition to Mn.
  • the precipitation step In the precipitation step, an appropriate amount of water is put into the system as quickly as possible. As a result, the system suddenly becomes supersaturated, and the phosphor particles having the composition represented by the general formula (1) are precipitated.
  • “as quickly as possible” depends on the scale of the system, but for example, when 1 L of hydrofluoric acid is used in the dissolution step, water is preferably about 1.5 L in about 3 seconds. It means to put it into the system. By such an operation to rapidly supersaturate the system, phosphor particles having a shape different from the cubic shape expected from the structure of the crystal lattice can be obtained, unlike the usual “slow” crystal precipitation. It is considered possible.
  • the phosphor powder obtained in the deposition step is collected by solid-liquid separation by filtration or the like, and washed with an organic solvent such as methanol, ethanol, or acetone. If the fluoride-based phosphor powder is washed with water, part of it is hydrolyzed to produce a brown manganese compound, which may degrade the properties of the phosphor. Therefore, it is preferable to use an organic solvent in the cleaning step. Further, by washing several times with an aqueous solution of hydrofluoric acid before washing with an organic solvent, impurities generated in trace amounts can be dissolved and removed.
  • an organic solvent such as methanol, ethanol, or acetone.
  • the concentration of hydrofluoric acid in the hydrofluoric acid aqueous solution used for cleaning is preferably 5% by mass or more from the viewpoint of suppressing decomposition of the fluoride phosphor, and is preferably 60% by mass or less from the viewpoint of the solubility of the phosphor powder. .
  • a sieve with a predetermined mesh size may be used for classification, or coarse particles may be removed.
  • Manufacturing method 2 Although the production method 2 is different from the production method 1, it is similar to the production method 1 in that the phosphor particles having the composition represented by the general formula (1) are precipitated by rapidly bringing the system into a supersaturated state.
  • Manufacturing method 2 mainly includes a dissolving step, a Mn source charging step, a core particle charging step, and a precipitation step. These steps will be described below. These steps can be performed at room temperature.
  • the dissolution process in production method 2 can be basically the same as in production method 1 .
  • the Mn source charging step in manufacturing method 2 can be basically the same as manufacturing method 1 .
  • the stirring time (the time from the introduction of the raw material containing Mn to the start of the introduction of core particles described below) is preferably 1 to 60 seconds, more preferably 10 to 50 seconds, and still more preferably 20 to 40 seconds. seconds.
  • nucleus particles represented by the composition formula K 2 SiF 6 :Mn, which can serve as nuclei for crystal growth
  • the core particles for example, phosphor particles obtained as described above (manufacturing method 1) can be used.
  • the core particles may or may not contain the first phosphor particles.
  • the interval between the Mn source input step and the precipitation step is short (about 1 second).
  • Precipitation step 2 The precipitation step in production method 2 can be basically the same as in production method 1.
  • the method of post-processing (separation and recovery, washing, etc.) of the phosphor powder obtained in the precipitation step in production method 2 can be basically the same as in production method 1.
  • the composite of this embodiment includes the phosphor powder described above and a sealing material that seals the phosphor powder. Further, the light-emitting device of the present embodiment includes a light-emitting element that emits excitation light and the composite that converts the wavelength of the excitation light. The light-emitting device of this embodiment is preferably used, for example, as a backlight for a display.
  • FIG. 2 is a schematic diagram of the light emitting device 1.
  • FIG. A light-emitting device 1 includes a composite 10 and a light-emitting element 20 .
  • the composite 10 is provided in contact with the top of the light emitting element 20 .
  • Light emitting element 20 is typically a blue LED.
  • a terminal exists below the light emitting element 20 .
  • the light emitting element 20 can emit light by connecting the terminals to the power supply.
  • the excitation light emitted from the light emitting element 20 is wavelength-converted by the composite 10 . When the excitation light is blue light, the blue light is wavelength-converted into red light by the composite 10 containing the phosphor powder.
  • the composite 10 can be composed of the phosphor powder described above and a sealing material that seals the phosphor powder.
  • a sealing material for example, various curable resin materials (materials that are cured by heat and/or light) can be used. Any curable resin material can be used as long as it is sufficiently transparent and provides the optical properties required for displays and lighting devices. Examples of sealing materials include silicone resin materials. Curable silicone resin materials are supplied by Dow Corning Toray Co., Ltd. and Shin-Etsu Chemical Co., Ltd. Silicone resin materials are highly transparent and have excellent heat resistance. preferable. Further, as the sealing material, an epoxy resin material, a urethane resin material, or the like can be used. The amount of phosphor powder particles in the composite 10 is, for example, 10 to 70% by weight, preferably 25 to 55% by weight.
  • the size and shape of the light emitting element 20 are not particularly limited. Depending on the application of the light emitting device 1, the light emitting element 20 can be of any size and shape.
  • HF 55% by mass aqueous solution manufactured by Stella Chemifa K 2 SiF 6 : manufactured by Morita Chemical Co., Ltd.
  • K 2 MnF 6 prepared by the method described in paragraph 0042 of JP-A-2019-1897
  • KHF 2 Special reagent manufactured by Fujifilm Wako Pure Chemical Industries, Ltd.
  • SiO 2 FB-50R manufactured by Denka Co., Ltd.
  • KSF core particles manufactured as follows
  • KSF core particles were produced in the following procedure. (1) At room temperature, 55 g of K 2 SiF 6 was added to 1000 mL of an HF aqueous solution having a concentration of 55% by mass in a Teflon (registered trademark) beaker and stirred for 10 minutes. This gave a homogeneous solution. (2) 5.9 g of K 2 MnF 6 was put into a beaker while stirring was continued. (3) One second after the K 2 MnF 6 was added, 1500 mL of ion-exchanged water was added to the beaker at a rate of 500 mL/s. This started the precipitation of a yellow solid. Stirring was then continued for 5 minutes.
  • Example 1-1 A phosphor powder was produced by the following procedure. (1) At room temperature, 50 g of K 2 SiF 6 was added to 1000 mL of an HF aqueous solution having a concentration of 55% by mass in a Teflon (registered trademark) beaker and stirred for 10 minutes. This gave a homogeneous solution. (2) While continuing stirring, 6 g of K 2 MnF 6 was put into a beaker and stirred for 1 second. (3) Subsequently, 1500 mL of ion-exchanged water was added to the beaker at a rate of 500 mL/s. This started the precipitation of a yellow solid. Stirring was then continued for 5 minutes.
  • Example 1-2 to 1-7 Phosphor powder was prepared in the same manner as in Example 1-1, except that the stirring time between the addition of K 2 MnF 6 and the start of addition of 1500 mL of ion-exchanged water was changed from 1 second to the following time. Obtained.
  • Example 1-2 2 seconds
  • Example 1-3 3 seconds
  • Example 1-4 5 seconds
  • Example 1-5 30 seconds
  • Example 1-6 60 seconds
  • Example 1-7 300 seconds
  • Example 2-1 A phosphor powder was produced by the following procedure. (1) At room temperature, 50 g of K 2 SiF 6 was added to 1000 mL of an HF aqueous solution having a concentration of 55% by mass in a Teflon (registered trademark) beaker and stirred for 10 minutes. This gave a homogeneous solution. (2) While continuing stirring, 6 g of K 2 MnF 6 was put into a beaker and stirred for 10 seconds. (3) Subsequently, 8 g of KSF core particles were put into a beaker and stirred for 2 minutes. (4) Subsequently, 1500 mL of ion-exchanged water was added to the beaker at a rate of 500 mL/s. This started the precipitation of a yellow solid. Stirring was then continued for 5 minutes.
  • Example 1-1 After stirring, precipitation treatment, solid content washing treatment, separation and recovery, drying treatment, sieving, etc. were performed in the same manner as in Example 1-1. As described above, a phosphor powder was obtained.
  • Example 2-2 Phosphor powder was obtained in the same manner as in Example 2-1, except that the amount of KSF core particles charged in (3) above was changed from 8 g to the amount described below.
  • Example 2-2 8.5 g
  • Example 2-3 9g
  • Example 2-4 9.5 g
  • Example 2-5 10 g
  • Example 2-6 10.5 g
  • Example 2-7 11 g
  • Example 2-8 11.5 g
  • Example 2-9 12 g
  • a phosphor powder was produced by the following procedure. (1) At room temperature, 87.9 g of SiO 2 was added to 1000 mL of an HF aqueous solution having a concentration of 55% by mass in a Teflon (registered trademark) beaker and stirred for 15 minutes. This gave a homogeneous solution. (2) While continuing stirring, 19.6 g of K 2 MnF 6 was put into a beaker and stirred for 30 seconds.
  • ⁇ Particle size distribution measurement by laser diffraction scattering method 30 mL of ethanol was weighed into a 50 mL beaker, and 0.03 g of phosphor powder was put therein. Next, the container was set in a homogenizer (manufactured by Nippon Seiki Seisakusho Co., Ltd., trade name US-150E) whose output was adjusted to "Altitude: 100%" in advance, and pretreatment was performed for 3 minutes. A volume-based particle size distribution curve was obtained from the solution thus prepared using a laser diffraction scattering particle size distribution analyzer (trade name: MT3300EXII, manufactured by Microtrack Bell). Then, D 10 , D 50 and D 90 were determined from the obtained curve, and (D 90 ⁇ D 10 )/D 50 was further determined.
  • a homogenizer manufactured by Nippon Seiki Seisakusho Co., Ltd., trade name US-150E
  • a volume-based particle size distribution curve was obtained from the solution thus prepared using a laser
  • the phosphor powder obtained in each example was photographed with an electron microscope.
  • 50 particles whose shape can be confirmed are randomly selected, and each particle is (i) any one selected from the group consisting of a truncated hexahedral shape, a cuboctahedral shape, and a truncated octahedral shape. or (ii) a shape other than these.
  • the ratio (number basis) of the first phosphor particles in the phosphor powder was calculated.
  • a standard reflector plate manufactured by Labsphere, trade name Spectralon having a reflectance of 99% was set in a side opening ( ⁇ 10 mm) of an integrating sphere ( ⁇ 60 mm).
  • a monochromatic light with a wavelength of 455 nm from a light emission source (Xe lamp) was introduced into this integrating sphere through an optical fiber, and the spectrum of the reflected light was measured with a spectrophotometer (manufactured by Otsuka Electronics Co., Ltd., trade name MCPD-7000).
  • the number of excitation light photons was calculated from the spectrum in the wavelength range of 450 to 465 nm.
  • a concave cell filled with the phosphor powder obtained in each example was set in the opening of an integrating sphere so as to have a smooth surface, and was irradiated with monochromatic light having a wavelength of 455 nm to cause excitation.
  • Spectra of reflected light and fluorescence were measured with a spectrophotometer.
  • the number of excited reflected light photons (Qref) and the number of fluorescence photons (Qem) were calculated from the obtained spectral data.
  • Phosphor particles containing 65% or more of the first phosphor particles having any shape selected from the group consisting of a truncated hexahedral shape, a cuboctahedral shape and a truncated octahedral shape as shown in the table above. showed good luminescence properties.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

組成が一般式(1):A2MF6:Mnで表される蛍光体粒子を含む蛍光体粉末。ここでの蛍光体粒子は、切頂六面体形状、立方八面体形状および切頂八面体形状からなる群より選ばれるいずれかの形状の第一蛍光体粒子を含む。また、蛍光体粉末中の蛍光体粒子のうち、個数基準で65%以上が、第一蛍光体粒子である。一般式(1)において、元素AはKを含有する1種以上のアルカリ金属元素であり、元素MはSi単体、Ge単体、または、SiとGe、Sn、Ti、ZrおよびHfからなる群から選ばれる1種以上の元素との組み合わせであり、0<n≦0.1である。

Description

蛍光体粉末、複合体および発光装置
 本発明は、蛍光体粉末、複合体および発光装置に関する。
 青色発光ダイオードから発せられる青色光を赤色光に変換可能な蛍光体として、KSiF:Mnで表されるフッ化物蛍光体(しばしば「KSF蛍光体」と略記される)が知られている。この蛍光体は青色光で効率良く励起される。また、この蛍光体の発光スペクトルの半値幅は、狭く、シャープである。このため、赤色蛍光体としてこの蛍光体を用いることで、高輝度で演色性や色再現性に優れた白色LEDを実現できる。
 フッ化物蛍光体の先行技術としては、例えば、特許文献1が挙げられる。特許文献1には、組成が一般式A(1-n):Mn4+ で表され、嵩密度が0.80g/cm以上、かつ、質量メジアン径が30μm以下であるフッ化物蛍光体が記載されている。一般式において、0<n≦0.1、元素AはKを含有する1種以上のアルカリ金属元素、元素MはSi単体、Ge単体、またはSiとGe、Sn、Ti、ZrおよびHfからなる群から選ばれる1種以上の元素との組み合わせである。
特開2019-001897号公報
 白色LEDの普及に伴い、フッ化物蛍光体の発光特性のより一層の向上が求められている。
 本発明者は、発光特性が良好なフッ化物蛍光体を得ることを課題として、様々な検討を行った。
 検討を通じ、本発明者らは、以下に提供される発明を完成させた。
 本発明は、以下である。
 組成が以下一般式(1)で表される蛍光体粒子を含む蛍光体粉末であって、
 前記蛍光体粒子が、切頂六面体形状、立方八面体形状および切頂八面体形状からなる群より選ばれるいずれかの形状の第一蛍光体粒子を含み、
 当該蛍光体粉末中の蛍光体粒子のうち、個数基準で65%以上が、前記第一蛍光体粒子である、蛍光体粉末。
   一般式(1):AMF:Mn
 一般式(1)において、
 元素AはKを含有する1種以上のアルカリ金属元素であり、
 元素MはSi単体、Ge単体、または、SiとGe、Sn、Ti、ZrおよびHfからなる群から選ばれる1種以上の元素との組み合わせである。
 また、本発明は以下である。
 上記の蛍光体粉末と、その蛍光体粉末を封止する封止材と、を備える複合体。
 また、本発明は以下である。
 励起光を発する発光素子と、励起光の波長を変換する上記複合体と、を備える発光装置。
 本発明によれば、発光特性が良好なフッ化物蛍光体が提供される。
切頂六面体形状、立方八面体形状および切頂八面体形状を説明するための図である。 発光装置の一例を説明するための模式的な図である。 実施例で得られた蛍光体粉末の電子顕微鏡画像である。 実施例で得られた蛍光体粉末の電子顕微鏡画像である。 実施例で得られた蛍光体粉末の電子顕微鏡画像である。 実施例で得られた蛍光体粉末の電子顕微鏡画像である。 実施例で得られた蛍光体粉末の電子顕微鏡画像である。 実施例で得られた蛍光体粉末の電子顕微鏡画像である。 実施例で得られた蛍光体粉末の電子顕微鏡画像である。 実施例で得られた蛍光体粉末の電子顕微鏡画像である。 実施例で得られた蛍光体粉末の電子顕微鏡画像である。 比較例で得られた蛍光体粉末の電子顕微鏡画像である。
 以下、本発明の実施形態について、図面を参照しつつ、詳細に説明する。
 図面はあくまで説明用のものである。図面に示された形状や寸法比などは、必ずしも現実の物品と対応しない。
<蛍光体粉末>
 本実施形態の蛍光体粉末は、以下一般式(1)で表される組成の蛍光体粒子を含む。この組成により、本実施形態の蛍光体粉末は、通常、青色LEDから発せられる青色光を赤色光に変換する。
  一般式(1):AMF:Mn
 一般式(1)において、
 元素AはKを含有する1種以上のアルカリ金属元素であり、
 元素MはSi単体、Ge単体、または、SiとGe、Sn、Ti、ZrおよびHfからなる群から選ばれる1種以上の元素との組み合わせである。
 また、本実施形態の蛍光体粉末中の蛍光体粒子の少なくとも一部は、切頂六面体形状、立方八面体形状および切頂八面体形状からなる群より選ばれるいずれかの形状の第一蛍光体粒子である。
 さらに、本実施形態の蛍光体粉末中の蛍光体粒子のうち、個数基準で、65%以上が第一蛍光体粒子である。
 第一蛍光体粒子は、立方体形状の蛍光体粒子に比べて球体に近い形状である。このことにより、蛍光体粒子の比表面積が減り、そのため粒子表面での光の反射が減って、結果として発光特性が向上すると考えられる。また、蛍光体粉末中に第一蛍光体粒子が個数基準で65%以上含まれることにより、第一蛍光体粒子が球体に近い形状であることの効果がより得やすくなると考えられる。
 本実施形態の蛍光体粉末は、適切な原料を用い、適切な製法およびその製造条件を採用することにより製造することができる。詳細は後述するが、例えば、水溶液の飽和度をコントロールして蛍光体粉末を析出させる際に、水を短時間で一気に系中に加えて瞬間的に飽和度を高めることが、ポイントの1つとして挙げられる。また、各原料を系中に入れる「順番」もポイントの1つである。
 水を短時間で一気に系中に加えるという操作により、通常の「ゆっくりと」結晶を析出させる場合と異なり、結晶系(立方晶系)から予想される立方体形状とは異なる形状の蛍光体粒子が得られると考えられる。詳細は不明であるが、おそらく、立方体の各面の法線方向の結晶成長の速度と、立方体の対角方向の結晶成長の速度が比較的近いことが、「立方体の角が取れたような形状」の蛍光体粒子が得られることに関係していると推測される。
(組成:一般式(1)について)
 元素AはKを含有する1種以上のアルカリ金属元素である。具体的にはK単体、または、KとLi、Na、Rb、Csのなかから選ばれる1種以上のアルカリ金属元素との組み合わせであることができる。化学的安定性の観点から、元素A中のKの含有割合は高いこと(例えば元素A中50モル%以上がKであること)が好ましく、元素AはK単体であることがより好ましい。
 元素MはSi単体、Ge単体、または、SiとGe、Sn、Ti、ZrおよびHfからなる群から選ばれる1種以上の元素との組み合わせである。化学的安定性の観点から、元素M中のSiの含有割合は高いこと(例えば元素M中50モル%以上がSiであること)が好ましく、元素MはSi単体であることがより好ましい。
(蛍光体粒子の形状について)
 前述の通り、本実施形態の蛍光体粉末は、切頂六面体形状、立方八面体形状および切頂八面体形状からなる群より選ばれるいずれかの形状の第一蛍光体粒子を含む。切頂六面体形、立方八面体および切頂八面体形がそれどれどのような立体図形であるかは、図1に例示した。
 本実施形態において、第一蛍光体粒子は、「数学的に厳密な」切頂六面体形状、立方八面体形状または切頂八面体形状でなくてもよい。
 例えば、数学的には、切頂六面体様の立体図形のうち、各辺の長さが全て同じもののみを切頂六面体と定義することもあるようである。しかし、本実施形態では、各辺の長さが同じではない切頂六面体様の蛍光体粒子も、第一蛍光体粒子に含まれる。
 別の言い方として、数学的には本来同じ長さとなるべき2つの辺の長さが同じではない場合であっても、電子顕微鏡写真を一見することで「立方体の角が取れたような形状」と十分に判別可能な、擬切頂六面体形状、擬立方八面体形状または擬切頂八面体形状の蛍光体粒子も、第一蛍光体粒子に含まれる。
 ちなみに、第一蛍光体粒子の結晶系は、立方晶系と考えられる。そして、第一蛍光体粒子においては、(100)面および(111)面が露出していると考えられる。
(粒径分布について)
 本実施形態の蛍光体粉末の粒径分布が適当であることにより、発光特性がより良化したり、様々な応用用途に蛍光体粉末を適用しやすくなったりすることがある。
 本実施形態の蛍光体粉末の、体積基準の粒子径分布曲線における累積50%値をD50としたとき、D50は、好ましくは10μm以上40μm以下、より好ましくは20μm以上35μm以下である。D50が適度な値であることにより、十二分な量子効率を得やすかったり、蛍光体粉末を樹脂等と混合して蛍光体を含むフィルムまたはシートを形成する必要があるときに、均一で平滑なフィルムまたはシートを形成しやすかったりする。
 また、本実施形態の蛍光体粉末の、体積基準の粒子径分布曲線における累積10%値をD10、累積50%値をD50、累積90%値をD90としたとき、(D90-D10)/D50は、好ましくは0.9以下、より好ましくは0.75以下である。この下限は特にないが、例えば0.3以上、具体的には0.5以上である。
 (D90-D10)/D50は、粒径分布の「幅」を表す指標と捉えることができる。蛍光体粉末の粒径分布の幅が狭いということは、蛍光体粉末中の蛍光体粒子の粒径が比較的「揃っている」ということである。よって、(D90-D10)/D50が0.9以下であることで、例えば、蛍光体粉末を樹脂等と混合して蛍光体を含むフィルムまたはシートを形成する必要があるときに、均一で平滑なフィルムまたはシートを形成しやすい。
 体積基準の粒子径分布曲線は、レーザ回折散乱法による測定を通じて得ることができる。測定方法の詳細は後掲の実施例を参照されたい。
(蛍光体粉末中の蛍光体粒子の割合)
 第一蛍光体粒子による効果を十二分に得る観点で、蛍光体粉末中には、個数基準で65%よりも多くの第一蛍光体粒子が含まれていてもよい。
 具体的には、蛍光体粉末中の蛍光体粒子のうち、個数基準で、好ましくは70%以上、より好ましくは80%以上、さらに好ましくは90%以上、特に好ましくは95%以上第一蛍光体粒子である。この値の上限値は100%であってよい。念のため述べておくと、蛍光体粉末中の蛍光体粒子のうち、個数基準で100%が第一蛍光体粒子ではない場合、蛍光体粉末は、第一蛍光体粒子に該当しない第二蛍光体粒子を含む。第二蛍光体粒子は、形状が切頂六面体形状、立方八面体形状および切頂八面体形状のいずれでもないこと以外は、第一蛍光体粒子と同様である(組成など)。
 蛍光体粉末中の第一蛍光体粒子の比率(個数基準)は、蛍光体粉末を電子顕微鏡で拡大撮影した画像中、形状を確認可能な少なくとも50個の蛍光体粒子の形状を観察することにより求めることができる。
<蛍光体粉末の製造方法>
 本実施形態の蛍光体粉末は、適切な素材を用い、適切な製造方法・製造条件を選択することで製造可能である。適切な製造方法・製造条件を選択することにより、第一蛍光体粒子が多く含まれた蛍光体粉末を製造しやすい。
 具体的な製造方法の例は後掲の実施例にて記載しているが、以下で「製造方法1」および「製造方法2」として2つの製造方法を説明する。
(製造方法1)
 製造方法1は、主に、溶解工程と、Mn源投入工程と、析出工程とを含む。以下、これら工程について説明する。これら工程は、室温下で行うことができる。
・溶解工程
 溶解工程においては、通常、フッ化水素酸(HFの水溶液)に、(i)元素A(Kなど)を含む原料、(ii)元素M(好ましくはSi)を含む原料、(iii)Fを含む原料などを溶解させる。一つの原料が、(i)~(iii)のうち2以上を兼ねてもよい。例えば、実施例で使用のKSiFは、(i)~(iii)の原料全てを兼ねる。
 原料を溶解させる前のフッ化水素酸中のフッ化水素の濃度は、好ましくは50~60質量%である。
 元素Aを含む原料としては、例えば、元素Aの酸化物、水酸化物、フッ化物、炭酸塩を使用することができる。
 Fを含む原料は、他の元素(A、M、Mn)の原料としてのフッ化物であることができる。また、溶媒に用いられるフッ化水素酸中のフッ化水素からも、Fは供給される。
 溶解工程で用いられる特に好ましい原料(フッ化水素酸中のフッ化水素酸以外)としては、KSiFが挙げられる。
・Mn源投入工程
 Mn源投入工程においては、溶解工程で得られた溶液に、Mnを含む原料を投入して、後述の析出工程で水を系中に投入するまでの間、例えば0.5秒から10分程度攪拌する。ちなみに、例えばMnを含む原料としてKMnFを用いる場合、投入から4秒程度までは溶解が終了していないため、溶液中の溶質濃度の変化が生じうる。
 Mnを含む原料としては、ヘキサフルオロマンガン酸塩、過マンガン酸塩、酸化物(過マンガン酸塩を除く)、フッ化物(ヘキサフルオロマンガン酸塩を除く)、塩化物、硫酸塩、硝酸塩が挙げられる。なかでも、フッ化物蛍光体中のSiサイトにMnを効率よく置換させることができ、良好な発光特性が得られることからフッ化物が好ましく、フッ化物の中でもヘキサフルオロマンガン酸塩が好ましい。ヘキサフルオロマンガン酸塩として、NaMnF、KMnF、RbMnFなどが挙げられる。特にKMnFは、Mn以外にもフッ化物蛍光体を構成するFやK(元素Aに該当)を同時に含むため好ましい。
・析出工程
 析出工程においては、適量の水を、可能な限り素早く系中に投入する。これにより、系が急激に過飽和な状態となり、一般式(1)で表される組成の蛍光体粒子が析出する。ここでの「可能な限り素早く」とは、系のスケールにもよるが、例えば溶解工程において1Lのフッ化水素酸を用いた場合、水については、好ましくは1.5L程度を3秒程度で系中に投入することを言う。
 このような、系を急激に過飽和な状態とする操作により、通常の「ゆっくりと」結晶を析出させる場合と異なり、結晶格子の構造から予想される立方体形状とは異なる形状の蛍光体粒子が得られると考えられる。詳細は不明であるが、おそらく、立方体の各面の法線方向の結晶成長の速度と、立方体の対角方向の結晶成長の速度が比較的近いことが、「立方体の角が取れたような形状」の蛍光体粒子が得られることに関係していると推測される。
 析出工程で得られた蛍光体粉末は、ろ過などにより固液分離して回収し、メタノール、エタノール、アセトンなどの有機溶剤で洗浄する。フッ化物系の蛍光体粉末を水で洗浄してしまうと、その一部が加水分解して茶色のマンガン化合物が生成し、蛍光体の特性を低下させることがある。このため、洗浄工程では有機溶剤を用いることが好ましい。
 また、有機溶剤での洗浄前に、フッ化水素酸水溶液で数回洗浄を行うと、微量生成していた不純物を溶解除去することができる。洗浄に用いるフッ化水素酸水溶液におけるフッ化水素酸の濃度は、フッ化物蛍光体の分解抑制の観点から、5質量%以上が好ましく、蛍光体粉末の溶解性の観点から60質量%以下が好ましい。洗浄工程後には、蛍光体粉末を乾燥させて洗浄液を十分に蒸発させることが好ましい。
 また、所定の目開きの篩を用いて分級したり、粗大粒子を取り除いたりしてもよい。
(製造方法2)
 製造方法2は、製造方法1とは異なるものの、系を急激に過飽和な状態とすることにより一般式(1)で表される組成の蛍光体粒子を析出させる点では製造方法1と類似している。製造方法2は、主に、溶解工程と、Mn源投入工程と、核粒子投入工程と、析出工程とを含む。以下、これら工程について説明する。これら工程は、室温下で行うことができる。
・溶解工程
 製造方法2における溶解工程は、基本的には製造方法1と同様とすることができる。
・Mn源投入工程
 製造方法2におけるMn源投入工程は、基本的には製造方法1と同様とすることができる。ただし、攪拌時間(Mnを含む原料の投入から、後述の核粒子の投入開始までの時間)は、好ましくは1秒から60秒、より好ましくは10秒から50秒、さらに好ましくは20秒から40秒である。
・核粒子投入工程
 核粒子投入工程では、例えば、組成式KSiF:Mnで表される、結晶成長の核となりうる「核粒子」を、系に投入する。
 核粒子としては、例えば、上記(製造方法1)のようにして得られた蛍光体粒子を用いることができる。ただし、核粒子は、第一蛍光体粒子を含んでいなくてもよいし、含んでいてもよい。
 なお、製造方法1のようにして核粒子を得る場合、Mn源投入工程と析出工程の間は短い(1秒程度である)ことが好ましい。あくまで推測ではあるが、このようにして核粒子を得ることで、核粒子中に、切頂六面体形状、立方八面体形状または切頂八面体形状の蛍光体粒子を得るのに好ましい化学構造が形成されやすくなると推測される。
・析出工程
 製造方法2における析出工程は、基本的には製造方法1と同様とすることができる。
 製造方法2における析出工程で得られた蛍光体粉末の後処理(分離回収、洗浄など)のやり方は、基本的には製造方法1と同様とすることができる。
<複合体および発光装置>
 本実施形態の複合体は、上述の蛍光体粉末と、その蛍光体粉末を封止する封止材と、を備える。
 また、本実施形態の発光装置は、励起光を発する発光素子と、その励起光の波長を変換する上記複合体と、を備える。
 本実施形態の発光装置は、例えば、ディスプレイのバックライトとして好ましく用いられる。
 以下、図2を参照しつつ、複合体および発光装置の一例を説明する。
 図2は、発光装置1の模式図である。
 発光装置1は、複合体10と、発光素子20とを備える。複合体10は、発光素子20の上部に接して設けられている。
 発光素子20は、典型的には青色LEDである。発光素子20の下部には端子が存在する。端子が電源と接続されることで、発光素子20は発光することができる。
 発光素子20から発せられた励起光は、複合体10により波長変換される。励起光が青色光である場合、青色光は、蛍光体粉末を含む複合体10により、赤色光に波長変換される。
 複合体10は、上述の蛍光体粉末と、その蛍光体粉末を封止する封止材とにより構成することができる。
 封止材としては、例えば、各種の硬化性樹脂材料(熱および/または光により硬化する材料)を用いることができる。十分に透明であり、ディスプレイや照明装置に必要な光学特性を得られるものである限り、任意の硬化性樹脂材料を用いることができる。
 封止材としては、例えばシリコーン樹脂材料を挙げることができる。シリコーン樹脂材料については、東レ・ダウコーニング社や信越化学社などから、硬化性のものが供給されている、シリコーン樹脂材料は、透明性が高いことに加え、耐熱性に優れることなどの観点でも好ましい。また、封止材としては、エポキシ樹脂材料やウレタン樹脂材料なども挙げることができる。
 複合体10中における蛍光体粉末の粒子の量は、例えば10~70質量%、好ましくは25~55質量%である。
 発光素子20の大きさや形は特に限定されない。発光装置1の用途により、発光素子20は、任意の大きさや形であることができる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することができる。また、本発明は上述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれる。
 本発明の実施態様を、実施例および比較例に基づき詳細に説明する。念のため述べておくと、本発明は実施例のみに限定されない。
<原料> 
 原料としては以下を用いた。
 HF:ステラケミファ株式会社製の濃度55質量%の水溶液
 KSiF:森田化学株式会社製のもの
 KMnF:特開2019-1897号公報の段落0042に記載の方法で準備したもの
 KHF:富士フィルム和光純薬株式会社製の特級試薬
 SiO:デンカ株式会社製のFB-50R
 KSF核粒子:以下のようにして製造したもの
(KSF核粒子の製造方法)
 以下手順でKSF核粒子を製造した。
(1)室温下で、テフロン(登録商標)製ビーカーに入れた濃度55質量%のHF水溶液1000mLに、KSiF 55gを投入し、10分間攪拌した。これにより均一な溶液を得た。
(2)攪拌を継続しながら、ビーカーに、KMnF 5.9gを投入した。
(3)上記のKMnFの投入から1秒後、ビーカーに、イオン交換水1500mLを、500mL/sの速さで投入した。これにより黄色の固形分の析出が開始した。その後、5分間攪拌を継続した。
(4)攪拌終了後、溶液を静置して黄色の固形分を沈殿させた。沈殿確認後、上澄み液を除去し、黄色の固形分を、濃度約24質量%のフッ化水素酸で洗浄し、その後、メタノールを用いて洗浄した。洗浄した固形分を濾過して固形分を分離回収し、更に乾燥処理により、残存メタノールを蒸発除去した。乾燥処理後、目開き75μmのナイロン製篩を用い、この篩を通過した黄色粉末だけを分級して回収した。
<蛍光体粉末の製造>
(実施例1-1)
 以下手順で蛍光体粉末を製造した。
(1)室温下で、テフロン(登録商標)製ビーカーに入れた濃度55質量%のHF水溶液1000mLに、KSiF 50gを投入し、10分間攪拌した。これにより均一な溶液を得た。
(2)攪拌を継続しながら、ビーカーに、KMnF 6gを投入し、1秒攪拌した。
(3)続けて、ビーカーに、イオン交換水1500mLを、500mL/sの速さで投入した。これにより黄色の固形分の析出が開始した。その後、5分間攪拌を継続した。
 攪拌終了後、溶液を静置して黄色の固形分を沈殿させた。沈殿確認後、上澄み液を除去し、黄色の固形分を、濃度約24質量%のフッ化水素酸で洗浄し、その後、メタノールを用いて洗浄した。洗浄した固形分を濾過して固形分を分離回収し、更に乾燥処理により、残存メタノールを蒸発除去した。乾燥処理後、目開き75μmのナイロン製篩を用い、この篩を通過した黄色粉末だけを分級して回収した。
 以上により、蛍光体粉末を得た。
(実施例1-2~1-7)
 KMnFの投入と、イオン交換水1500mLの投入開始と、の間の攪拌時間を、1秒ではなく以下の時間に変更した以外は、実施例1-1と同様にして蛍光体粉末を得た。
 実施例1-2:2秒
 実施例1-3:3秒
 実施例1-4:5秒
 実施例1-5:30秒
 実施例1-6:60秒
 実施例1-7:300秒
(実施例2-1)
 以下手順で蛍光体粉末を製造した。
(1)室温下で、テフロン(登録商標)製ビーカーに入れた濃度55質量%のHF水溶液1000mLに、KSiF 50gを投入し、10分間攪拌した。これにより均一な溶液を得た。
(2)攪拌を継続しながら、ビーカーに、KMnF 6gを投入し、10秒攪拌した。
(3)続けて、ビーカーに、KSF核粒子8gを投入し、2分攪拌した。
(4)さらに続けて、ビーカーに、イオン交換水1500mLを、500mL/sの速さで投入した。これにより黄色の固形分の析出が開始した。その後、5分間攪拌を継続した。
 攪拌終了後、実施例1-1と同様にして、沈殿処理、固形分の洗浄処理、分離回収、乾燥処理、ふるい分けなどを行った。
 以上により、蛍光体粉末を得た。
(実施例2-2~2-9)
 上記(3)におけるKSF核粒子の投入量を、8gではなく以下に記載の量とした以外は、実施例2-1と同様にして蛍光体粉末を得た。
 実施例2-2:8.5g
 実施例2-3:9g
 実施例2-4:9.5g
 実施例2-5:10g
 実施例2-6:10.5g
 実施例2-7:11g
 実施例2-8:11.5g
 実施例2-9:12g
(比較例)
 以下手順で蛍光体粉末を製造した。
(1)室温下で、テフロン(登録商標)製ビーカーに入れた濃度55質量%のHF水溶液1000mLに、SiO 87.9gを投入し、15分間攪拌した。これにより均一な溶液を得た。
(2)攪拌を継続しながら、ビーカーに、KMnF 19.6gを投入し、30秒攪拌した。
(3)上記(2)のビーカーとは別のテフロン(登録商標)製ビーカーに準備しておいた溶液(濃度55質量%のHF水溶液1500mLにKHF 311gを投入して15分攪拌することで調製)を、上記(2)のビーカーに500mL/sの速さで投入した。これにより黄色の固形分の析出が開始した。その後、5分間攪拌を継続した。
 攪拌終了後、実施例1-1と同様にして、沈殿処理、固形分の洗浄処理、分離回収、乾燥処理、ふるい分けなどを行った。以上により、蛍光体粉末を得た。
<同定:結晶相測定、組成測定など>
 各実施例で得られた蛍光体粉末(黄色粉末)について、X線回折装置を用いて、X線回折パターンを得た。得られたX線回折パターンは、KSiF結晶と同一パターンであった。このことから、KSiF:Mnが単相で得られたことを確認した。
<レーザ回折散乱法による粒径分布測定>
 50mLのビーカーにエタノール30mLを計量し、その中に蛍光体粉末0.03gを投入した。次に、その容器を事前に出力を「Altitude:100%」に調整したホモジナイザー(日本精機製作所社製、商品名US-150E)にセットし、3分間前処理を実施した。
 このようにして準備した溶液を対象にして、レーザ回折散乱式粒度分布測定装置(マイクロトラックベル社製、商品名MT3300EXII)を用いて、体積基準の粒子径分布曲線を得た。そして、得られた曲線から、D10、D50およびD90を求め、さらに(D90-D10)/D50を求めた。
<第一蛍光体粒子の比率のカウント>
 各実施例で得られた蛍光体粉末を、電子顕微鏡で撮影した。撮影された画像中、形状を確認可能な粒子をランダムに50個選択し、各粒子が、(i)切頂六面体形状、立方八面体形状および切頂八面体形状からなる群より選ばれるいずれかの形状であるか、または、(ii)これら以外の形状であるか、を判別した。そして、蛍光体粉末中の第一蛍光体粒子の比率(個数基準)を算出した。
<発光特性評価(量子効率など)>
 積分球(φ60mm)の側面開口部(φ10mm)に、反射率が99%の標準反射板(Labsphere社製、商品名スペクトラロン)をセットした。この積分球に、発光光源(Xeランプ)から455nmの波長に分光した単色光を光ファイバーにより導入し、反射光のスペクトルを分光光度計(大塚電子社製、商品名MCPD-7000)により測定した。この際、450~465nmの波長範囲のスペクトルから励起光フォトン数(Qex)を算出した。
 次に、凹型のセルに表面が平滑になるように、各実施例で得られた蛍光体粉末を充填したものを積分球の開口部にセットし、波長455nmの単色光を照射し、励起の反射光および蛍光のスペクトルを分光光度計により測定した。得られたスペクトルデータから励起反射光フォトン数(Qref)および蛍光フォトン数(Qem)を算出した。励起反射光フォトン数は、励起光フォトン数と同じ波長範囲で、蛍光フォトン数は、465~800nmの範囲で算出した。得られた三種類のフォトン数から、吸収率(=(Qex-Qref)/Qex×100)、内部量子効率(=Qem/(Qex-Qref)×100)および外部量子効率(=Qem/Qex×100)を求めた。
 上記の結果をまとめて表1および2に示す。
 また、各蛍光体粉末のSEM画像を図3~12に示す。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 上表に示されるとおり、切頂六面体形状、立方八面体形状および切頂八面体形状からなる群より選ばれるいずれかの形状の第一蛍光体粒子を、個数基準で65%以上含む蛍光体粒子は、良好な発光特性を示した。
 この出願は、2021年3月26日に出願された日本出願特願2021-052745号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
1  発光装置
10 複合体
20 発光素子

Claims (5)

  1.  組成が以下一般式(1)で表される蛍光体粒子を含む蛍光体粉末であって、
     前記蛍光体粒子が、切頂六面体形状、立方八面体形状および切頂八面体形状からなる群より選ばれるいずれかの形状の第一蛍光体粒子を含み、
     当該蛍光体粉末中の蛍光体粒子のうち、個数基準で65%以上が、前記第一蛍光体粒子である、蛍光体粉末。
       一般式(1):AMF:Mn
     一般式(1)において、
     元素AはKを含有する1種以上のアルカリ金属元素であり、
     元素MはSi単体、Ge単体、または、SiとGe、Sn、Ti、ZrおよびHfからなる群から選ばれる1種以上の元素との組み合わせである。
  2.  請求項1に記載の蛍光体粉末であって、
     体積基準の粒子径分布曲線における累積50%値D50が、10μm以上40μm以下である、蛍光体粉末。
  3.  請求項1または2に記載の蛍光体粉末であって、
     体積基準の粒子径分布曲線における累積10%値をD10、累積50%値をD50、累積90%値をD90としたとき、(D90-D10)/D50が0.9以下である、蛍光体粉末。
  4.  請求項1から3のいずれか1項に記載の蛍光体粉末と、前記蛍光体粉末を封止する封止材と、を備える複合体。
  5.  励起光を発する発光素子と、前記励起光の波長を変換する請求項4に記載の複合体と、を備える発光装置。
PCT/JP2022/011833 2021-03-26 2022-03-16 蛍光体粉末、複合体および発光装置 WO2022202518A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280017711.2A CN116888240A (zh) 2021-03-26 2022-03-16 荧光体粉末、复合体和发光装置
JP2023509058A JPWO2022202518A1 (ja) 2021-03-26 2022-03-16
KR1020237035045A KR20230157435A (ko) 2021-03-26 2022-03-16 형광체 분말, 복합체 및 발광 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021052745 2021-03-26
JP2021-052745 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022202518A1 true WO2022202518A1 (ja) 2022-09-29

Family

ID=83397173

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011833 WO2022202518A1 (ja) 2021-03-26 2022-03-16 蛍光体粉末、複合体および発光装置

Country Status (5)

Country Link
JP (1) JPWO2022202518A1 (ja)
KR (1) KR20230157435A (ja)
CN (1) CN116888240A (ja)
TW (1) TW202246462A (ja)
WO (1) WO2022202518A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016133110A1 (ja) * 2015-02-18 2016-08-25 デンカ株式会社 蛍光体の製造方法
JP2018178129A (ja) * 2008-09-05 2018-11-15 三菱ケミカル株式会社 蛍光体及びその製造方法と、その蛍光体を用いた蛍光体含有組成物及び発光装置、並びに、その発光装置を用いた画像表示装置及び照明装置
JP2019167474A (ja) * 2018-03-24 2019-10-03 国立大学法人 新潟大学 赤色フッ化物蛍光体及びその母体結晶の製造方法
WO2022044860A1 (ja) * 2020-08-25 2022-03-03 デンカ株式会社 フッ化物蛍光体、複合体および発光装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6273394B1 (ja) 2017-06-14 2018-01-31 デンカ株式会社 フッ化物蛍光体とそれを用いた発光装置
JP6273395B1 (ja) * 2017-06-14 2018-01-31 デンカ株式会社 フッ化物蛍光体とそれを用いた発光装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018178129A (ja) * 2008-09-05 2018-11-15 三菱ケミカル株式会社 蛍光体及びその製造方法と、その蛍光体を用いた蛍光体含有組成物及び発光装置、並びに、その発光装置を用いた画像表示装置及び照明装置
WO2016133110A1 (ja) * 2015-02-18 2016-08-25 デンカ株式会社 蛍光体の製造方法
JP2019167474A (ja) * 2018-03-24 2019-10-03 国立大学法人 新潟大学 赤色フッ化物蛍光体及びその母体結晶の製造方法
WO2022044860A1 (ja) * 2020-08-25 2022-03-03 デンカ株式会社 フッ化物蛍光体、複合体および発光装置

Also Published As

Publication number Publication date
TW202246462A (zh) 2022-12-01
CN116888240A (zh) 2023-10-13
KR20230157435A (ko) 2023-11-16
JPWO2022202518A1 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
JP6273394B1 (ja) フッ化物蛍光体とそれを用いた発光装置
JP6867292B2 (ja) フッ化物蛍光体、発光装置及びフッ化物蛍光体の製造方法
JP2015044973A (ja) フッ化物蛍光体及びそれを用いる発光装置
JP6024850B2 (ja) フッ化物蛍光体及びそれを用いる発光装置
TWI758494B (zh) 氟化物螢光體及使用其之發光裝置
JP7554833B2 (ja) フッ化物蛍光体、複合体および発光装置
US10669476B2 (en) Potassium fluoromanganate for use as raw material of manganese-activated complex fluoride phosphor and manganese-activated complex fluoride phosphor production method using same
JP6826445B2 (ja) 六フッ化マンガン酸カリウム及びそれを用いたマンガン付活複フッ化物蛍光体
WO2022202518A1 (ja) 蛍光体粉末、複合体および発光装置
WO2022202689A1 (ja) 蛍光体粒子、複合体および発光装置
WO2022202687A1 (ja) 蛍光体粒子、複合体および発光装置
CN107406763B (zh) 荧光体以及发光装置
JP2022031338A (ja) フッ化物蛍光体、発光装置及びフッ化物蛍光体の製造方法
JP6964524B2 (ja) フッ化物蛍光体とそれを用いた発光装置
JP6812231B2 (ja) フッ化物蛍光体の製造方法
CN107429159B (zh) 荧光体、发光装置及荧光体的制造方法
WO2023176559A1 (ja) 複フッ化物蛍光体の製造方法
TW202334375A (zh) 紅色螢光體及其製造方法
CN114174465A (zh) 六氟锰酸钾和锰活化的复合氟化物荧光体的制造方法
JP2019001985A (ja) フッ化物蛍光体とそれを用いた発光装置
JP2019011429A (ja) フッ化物蛍光体粉末及びそれを用いた発光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775307

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280017711.2

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023509058

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20237035045

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020237035045

Country of ref document: KR

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22775307

Country of ref document: EP

Kind code of ref document: A1