WO2022202492A1 - 熱可塑性樹脂の製造方法、及び化合物 - Google Patents

熱可塑性樹脂の製造方法、及び化合物 Download PDF

Info

Publication number
WO2022202492A1
WO2022202492A1 PCT/JP2022/011631 JP2022011631W WO2022202492A1 WO 2022202492 A1 WO2022202492 A1 WO 2022202492A1 JP 2022011631 W JP2022011631 W JP 2022011631W WO 2022202492 A1 WO2022202492 A1 WO 2022202492A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
formula
bpa
thermoplastic resin
represented
Prior art date
Application number
PCT/JP2022/011631
Other languages
English (en)
French (fr)
Inventor
将平 富田
敏樹 門田
貢悦 伊藤
ツン ワン
バン ミュアーズ マーティン
ブン イン テイ
Original Assignee
三菱ケミカル株式会社
エージェンシー フォー サイエンス,テクノロジー アンド リサーチ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱ケミカル株式会社, エージェンシー フォー サイエンス,テクノロジー アンド リサーチ filed Critical 三菱ケミカル株式会社
Priority to CN202280023473.6A priority Critical patent/CN117120509A/zh
Priority to JP2023509049A priority patent/JPWO2022202492A1/ja
Priority to US18/552,088 priority patent/US20240199804A1/en
Publication of WO2022202492A1 publication Critical patent/WO2022202492A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G64/00Macromolecular compounds obtained by reactions forming a carbonic ester link in the main chain of the macromolecule
    • C08G64/20General preparatory processes
    • C08G64/30General preparatory processes using carbonates
    • C08G64/307General preparatory processes using carbonates and phenols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/12Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/16Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/87Non-metals or inter-compounds thereof

Definitions

  • the present invention relates to a method for producing at least one thermoplastic resin selected from the group consisting of polycarbonate, polyester, and polyester carbonate. More specifically, a method for producing at least one thermoplastic resin selected from the group consisting of polycarbonates, polyesters, and polyester carbonates using a transesterification catalyst that exhibits excellent reactivity even when added in a small amount and produces a small amount of specific by-products. Regarding.
  • the present invention also relates to a compound useful as a transesterification catalyst for producing at least one thermoplastic resin selected from the group consisting of polycarbonates, polyesters and polyester carbonates.
  • thermoplastic resin selected from the group consisting of polycarbonate, polyester, and polyester carbonate Several methods are known for producing at least one thermoplastic resin selected from the group consisting of polycarbonate, polyester, and polyester carbonate. Among them, a dihydroxy compound (e.g., bisphenol A) and an ester-forming compound (e.g., diaryl carbonate or dicarboxylic acid ester) are reacted by a melt transesterification method in the presence of a transesterification catalyst to produce polycarbonate, polyester, and
  • the process for producing at least one thermoplastic resin selected from the group consisting of polyester carbonate does not use solvents that affect the environment; the energy required for production is small; impurities such as contaminating chlorine in the product are small. It is preferred as a commercial process because it has several merits such as;
  • a method using a metal-based catalyst such as an alkali metal, an alkaline earth metal, or a transition metal is conventionally known.
  • a method using a quaternary onium salt such as a phosphonium salt or an ammonium salt see Patent Document 1
  • Patent Document 1 a method using an organic base catalyst such as a nitrogen-containing basic compound
  • Patent Documents 2 to 4 the above metal-based A method of combining a catalyst and an organic base catalyst has also been proposed (see Patent Documents 5 to 7, for example).
  • Patent Documents 8 and 9 disclose a method using a catalyst having an imidazole structure.
  • Patent document 10 discloses a method using a catalyst having a phosphazene structure.
  • thermoplastic resin selected from the group consisting of polycarbonates, polyesters, and polyester carbonates by transesterification
  • a dihydroxy compound and an ester-forming compound are brought into a molten state, and a transesterification catalyst is added to obtain a high Polycondensation is carried out under vacuum conditions while distilling off monohydroxy compounds (such as phenol).
  • This method has the problem of causing side reactions due to high temperature conditions and producing coloring components or specific by-products that adversely affect weather resistance and fluidity.
  • the color tone of at least one thermoplastic resin selected from the group consisting of polycarbonates, polyesters, and polyester carbonates tends to deteriorate, and in particular, by-products tend to form.
  • the thermal stability of at least one thermoplastic resin selected from the group consisting of polycarbonates, polyesters, and polyester carbonates obtained, particularly color tone stability during melt retention, and hydrolysis resistance at high temperatures. It also has the drawback of being inferior.
  • At least one thermoplastic resin selected from the group consisting of polycarbonates, polyesters, and polyester carbonates produced using organic catalysts is selected from the group consisting of polycarbonates, polyesters, and polyester carbonates obtained using metal catalysts. Although it tends to have less by-products than at least one thermoplastic resin, it was still not at a satisfactory level. Since organic catalysts have poor thermal stability compared to metal catalysts, it takes time for at least one thermoplastic resin selected from the group consisting of polycarbonates, polyesters, and polyester carbonates to reach the desired molecular weight. longer, i.e. lower reaction activity. Since the organic catalyst has low reaction activity and a long polymerization time, at least one thermoplastic resin selected from the group consisting of polycarbonates, polyesters, and polyester carbonates is subject to heat aging, and color tone tends to deteriorate. .
  • the polymerization time is improved, but the formation of by-products cannot be suppressed, and at least one selected from the group consisting of polycarbonates, polyesters, and polyester carbonates. cause deterioration of the color tone of the thermoplastic resin.
  • the method of combining a metal-based catalyst and an organic catalyst also increases the amount of by-products depending on the amount of the metal-based catalyst blended, and further deteriorates the color tone. For this reason, it is still impossible to balance polymerization activity and quality.
  • the time required for at least one thermoplastic resin selected from the group consisting of polycarbonate, polyester, and polyester carbonate to reach the target molecular weight is shortened.
  • a method for producing at least one thermoplastic resin selected from the group consisting of polycarbonates, polyesters, and polyester carbonates with a small amount of specific by-products, and a compound having this specific structure and used as an organic catalyst is shortened.
  • the present inventors have investigated the relationship between the reactivity and side reaction suppression during the production of at least one thermoplastic resin selected from the group consisting of polycarbonate, polyester, and polyester carbonate, the thermal stability of the transesterification catalyst, and the molecular structure.
  • thermoplastic resin selected from the group consisting of polycarbonate, polyester, and polyester carbonate
  • the thermal stability of the transesterification catalyst and the molecular structure.
  • the gist of the present invention is as follows.
  • R 1 to R 24 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group, and some of the carbon atoms of the alkyl group and cycloalkyl group are hetero Alkyl groups substituted on the same N atom among R 1 to R 24 may combine to form a ring.
  • R 5 , R 6 and R 7 , R 8 and R 1 may be combined to form a ring
  • R 9 or R 10 , R 1 or R 2 and R 11 or R 12 are each combined may form a ring
  • R 13 or R 14 , R 3 or R 4 , and R 15 or R 16 may each combine to form a ring
  • R 17 or R 18 , R 5 or R 6 and R 19 or R 20 may combine to form a ring
  • R 21 or R 22 , R 7 or R 8 and R 23 or R 24 may combine to form a ring.
  • R 1 or R 2 , R 3 or R 4 , and R 5 or R 6 may each combine to form a ring, and R 3 or R 4 and R 5 or R 6 and R 8 or R 7 may combine to form a ring, and R 5 or R 6 , R 8 or R 7 and R 1 or R 2 may combine to form a ring.
  • Each of a to d may independently 0 or 1.
  • X ⁇ represents a monovalent anion.
  • Ar 1 to Ar 12 each independently represent a substituted or unsubstituted aryl group.
  • M ⁇ represents a monovalent anion.
  • thermoplastic resin selected from the group consisting of polycarbonates, polyesters and polyester carbonates according to [1], wherein the dihydroxy compound is bisphenol A.
  • thermoplastic resin selected from the group consisting of polycarbonates, polyesters and polyester carbonates according to [1] or [2], wherein the diaryl carbonate is diphenyl carbonate.
  • thermoplastic resin selected from the group consisting of polycarbonates, polyesters, and polyester carbonates according to [6], wherein the formula (1) is represented by the following formula (1B).
  • R 29 to R 52 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. Among R 29 to R 52 , the same alkyl group substituted on the N atom may combine to form a ring, R 30 and R 31 , R 32 and R 33 , R 34 and R 35 , R 36 and R 29 may each combine to form a ring i to l are each independently 0 or 1. Y ⁇ represents a monovalent anion.
  • X - is a chloride ion, a bromide ion, a tetraphenylborate ion, a phenolate ion, a BPA monoanion represented by the following formula (3a), and the following formula (3b) Production of at least one thermoplastic resin selected from the group consisting of polycarbonates, polyesters, and polyester carbonates according to [6] or [7], which is at least one selected from BPA monoanionic BPA adducts represented by Method.
  • X - is selected from phenolate ions, BPA monoanions represented by the formula (3a), and BPA monoanions BPA adducts represented by the formula (3b).
  • a method for producing at least one thermoplastic resin selected from the group consisting of polycarbonate, polyester, and polyester carbonate according to [8], which is at least one.
  • Z 1- to Z 5- each independently represent a monovalent anion.
  • Me represents a methyl group.
  • thermoplastic resin selected from the group consisting of polycarbonates, polyesters and polyester carbonates according to [11], wherein Ar 1 to Ar 12 in formula (2) are phenyl groups.
  • M- is a chloride ion, a bromide ion, a tetraphenylborate ion, a phenolate ion, a BPA monoanion represented by the following formula (3a), and the following formula (3b) , (3c) which is at least one selected from the BPA monoanionic BPA adducts represented by (3c).
  • M- is a phenolate ion
  • the BPA monoanion BPA represented by the formulas (3b) and (3c) A method for producing at least one thermoplastic resin selected from the group consisting of polycarbonates, polyesters and polyester carbonates according to [13], which is at least one selected from adducts.
  • thermoplastic selected from the group consisting of polycarbonates, polyesters, and polyester carbonates according to any one of [1] to [15], wherein the temperature during the melt polycondensation reaction is 200 to 350°C A method for producing resin.
  • the viscosity average molecular weight [Mv] of at least one thermoplastic resin selected from the group consisting of polycarbonates, polyesters, and polyester carbonates is 5,000 to 40,000 [1] to [16] ]
  • Transesterification for producing at least one thermoplastic resin selected from the group consisting of polycarbonate, polyester, and polyester carbonate by melt polycondensation of a dihydroxy compound and a diaryl carbonate and/or a dicarboxylic acid ester
  • a transesterification catalyst comprising any one selected from the group of compounds represented by the following formula (1) and the following formula (2).
  • R 1 to R 24 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group, and some of the carbon atoms of the alkyl group and cycloalkyl group are hetero Alkyl groups substituted on the same N atom among R 1 to R 24 may combine to form a ring.
  • R 5 , R 6 and R 7 , R 8 and R 1 may be combined to form a ring
  • R 9 or R 10 , R 1 or R 2 and R 11 or R 12 are each combined may form a ring
  • R 13 or R 14 , R 3 or R 4 , and R 15 or R 16 may each combine to form a ring
  • R 17 or R 18 , R 5 or R 6 and R 19 or R 20 may combine to form a ring
  • R 21 or R 22 , R 7 or R 8 and R 23 or R 24 may combine to form a ring.
  • R 1 or R 2 , R 3 or R 4 , and R 5 or R 6 may each combine to form a ring, and R 3 or R 4 and R 5 or R 6 and R 8 or R 7 may combine to form a ring, and R 5 or R 6 , R 8 or R 7 and R 1 or R 2 may combine to form a ring.
  • Each of a to d may independently 0 or 1.
  • X ⁇ represents a monovalent anion.
  • Ar 1 to Ar 12 each independently represent a substituted or unsubstituted aryl group.
  • M ⁇ represents a monovalent anion.
  • L 1 ⁇ and L 2 ⁇ are a phenolate ion, a BPA monoanion represented by the following formula (3a), and a BPA represented by the following formula (3b) At least one selected from monoanionic BPA adducts.
  • L 3 ⁇ to L 5 ⁇ represent monovalent anions.Me represents a methyl group.
  • Ar 1 to Ar 12 each independently represent a substituted or unsubstituted aryl group.
  • M ⁇ represents a monovalent anion.
  • the total amount of the compounds represented by the following formulas (A) to (E) measured for the polycarbonate hydrolyzate is 300 mass ppm or more and 550 mass ppm or less with respect to the polycarbonate resin.
  • R a to R f each independently represent a hydrogen atom or a methyl group.
  • R a to R f each independently represent a hydrogen atom or a methyl group.
  • the hydrogen atom of may be substituted by a substituent.
  • the compound represented by the formula (1) and/or the compound represented by the formula (2) as a transesterification catalyst for the melt polycondensation reaction, a small addition amount and a high Side reactions can be suppressed while maintaining reaction activity, and the amount of by-products is reduced. It is possible to produce at least one thermoplastic resin selected from the group consisting of polycarbonates, polyesters, and polyester carbonates, which suppresses the deterioration of heat resistance, transparency and mechanical strength, and has a good color tone.
  • At least one thermoplastic resin selected from the group consisting of polycarbonates, polyesters, and polyester carbonates produced by the present invention is used as a material for manufacturing parts in automobile materials, electrical and electronic equipment materials, housing materials, and other industrial fields.
  • the thermoplastic resin can be suitably used alone or as a composition compounded with other resins and additives.
  • the compound of the present invention has high thermal stability and can be suitably used as a transesterification catalyst for the production of various thermoplastic resins.
  • thermoplastic resin of the present invention comprises dihydroxy A compound and a diaryl carbonate and/or a dicarboxylic acid ester as an ester-forming compound are combined with the compound represented by the formula (1) (hereinafter sometimes referred to as “compound (1)”) and/or the formula
  • compound (1) the compound represented by the formula (1)
  • compound (2) the compound represented by the formula (1)
  • compound (2) the compound represented by the formula (2)
  • thermoplastic resin of the present invention It is a method for producing at least one selected thermoplastic resin (hereinafter sometimes referred to as "thermoplastic resin of the present invention”).
  • Compounds (1) and (2) used as transesterification catalysts in the method for producing a thermoplastic resin of the present invention exhibit polycondensation activity without decomposing or volatilizing until the final stage of polycondensation and have a large molecular size. can effectively suppress side reactions.
  • Thermoplastic resin of the present invention is a thermoplastic resin obtained through a step of melt polycondensation of a dihydroxy compound and a diaryl carbonate and/or a dicarboxylic acid ester in the presence of an ester exchange catalyst.
  • Specific examples include polycarbonate, polyester carbonate, and polyester.
  • the thermoplastic resin of the present invention is not particularly limited, but polycarbonate is particularly preferable, and aromatic polycarbonate obtained by melt polycondensation of an aromatic dihydroxy compound and diaryl carbonate in the presence of the transesterification catalyst is particularly preferred. preferable.
  • dihydroxy compound In the method for producing a thermoplastic resin of the present invention, a dihydroxy compound and a diaryl carbonate and/or a dicarboxylic acid ester are used as raw materials.
  • the dihydroxy compound is not particularly limited, and examples thereof include the following, but are not limited to the following.
  • Dihydroxybiphenyls such as 2,5-dihydroxybiphenyl, 2,2'-dihydroxybiphenyl, 4,4'-dihydroxybiphenyl; 2,2'-dihydroxydiphenyl ether, 3,3'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxy-3,3'-dimethyldiphenyl ether, 1,4-bis(3-hydroxyphenoxy) dihydroxy diaryl ethers such as benzene, 1,3-bis(4-hydroxyphenoxy)benzene; 2,2-bis(4-hydroxyphenyl)propane (hereinafter sometimes abbreviated as "BPA"), 1,1-bis(4-hydroxyphenyl)propane, 2,2-bis(3-methoxy-4 -hydroxyphenyl)propane, 2-(4-hydroxyphenyl)-2-(3-methoxy-4-hydroxyphenyl)propane, 1,1-bis(3-ter
  • dihydroxy compound in particular, when bisphenol A is used, diaryl carbonate and/or dicarboxylic acid ester and melt polymerization are performed in the presence of a transesterification catalyst selected from compound (1) and/or compound (2). Condensation is preferable because the content of specific by-products in the obtained thermoplastic resin can be reduced.
  • diaryl carbonate, dicarboxylic acid ester In the method for producing a thermoplastic resin of the present invention, a dihydroxy compound and a diaryl carbonate and/or a dicarboxylic acid ester are used as raw materials.
  • the diaryl carbonate preferably includes a compound represented by the following formula (4).
  • R 53 and R 54 each independently represent a halogen atom, a nitro group, a cyano group, an alkyl group having 1 to 20 carbon atoms, an alkoxycarbonyl group having 1 to 20 carbon atoms, an alkoxycarbonyl group having 1 to 20 carbon atoms, represents a 20 cycloalkyl group or an aryl group having 6 to 20 carbon atoms, and p and q each independently represents an integer of 0 to 5.
  • diaryl carbonate examples include diphenyl carbonate (hereinafter sometimes referred to as "DPC"), bis(4-methylphenyl) carbonate, bis(4-chlorophenyl) carbonate, bis(4-fluorophenyl) carbonate. , bis(2-chlorophenyl) carbonate, bis(2,4-difluorophenyl) carbonate, bis(4-nitrophenyl) carbonate, bis(2-nitrophenyl) carbonate, bis(methylsalicylphenyl) carbonate, ditolyl carbonate, etc. of (substituted) diaryl carbonates. Among them, diphenyl carbonate is preferred.
  • These diaryl carbonates can be used individually or in mixture of 2 or more types.
  • dicarboxylic acid ester is not particularly limited, diphenyl terephthalate and diphenyl isophthalate are preferably used.
  • the ratio of diaryl carbonate to dicarboxylic acid ester is not particularly limited.
  • the dicarboxylic acid ester is 50 mol % or less, more preferably 30 mol % or less, relative to the diaryl carbonate.
  • the ratio of the raw material dihydroxy compound to the diaryl carbonate and/or dicarboxylic acid ester is arbitrary as long as the desired thermoplastic resin of the present invention can be obtained.
  • diaryl carbonate and/or dicarboxylic acid ester is polycondensed with a dihydroxy compound, it is preferable to use an excess of the dihydroxy compound as a raw material.
  • the amount of diaryl carbonate and/or dicarboxylic acid ester to be used is preferably at least 1.01 times (molar ratio), more preferably at least 1.02 times the amount of the dihydroxy compound.
  • the obtained thermoplastic resin of the present invention has good thermal stability.
  • the amount of diaryl carbonate and/or dicarboxylic acid ester to be used is preferably 1.30 times (molar ratio) or less, more preferably 1.20 times or less, relative to the dihydroxy compound.
  • transesterification catalyst In the method for producing a thermoplastic resin of the present invention, a compound (1) having a specific structure represented by the following formula (1) and/or a specific structure represented by the following formula (2) is used as a transesterification catalyst. It is characterized by using a catalyst composed of the compound (2) having. As the transesterification catalyst, compound (1) may be used alone or in combination of two or more. Compound (2) may also be used alone or in combination of two or more. Also, one or more of compound (1) and one or more of compound (2) may be mixed and used.
  • R 1 to R 24 are each independently a hydrogen atom, an alkyl group having 1 to 10 carbon atoms, or a cycloalkyl group, and some of the carbon atoms of the alkyl group and cycloalkyl group are hetero Alkyl groups substituted on the same N atom among R 1 to R 24 may combine to form a ring.
  • R 5 , R 6 and R 7 , R 8 and R 1 may be combined to form a ring
  • R 9 or R 10 , R 1 or R 2 and R 11 or R 12 are each combined may form a ring
  • R 13 or R 14 , R 3 or R 4 , and R 15 or R 16 may each combine to form a ring
  • R 17 or R 18 , R 5 or R 6 and R 19 or R 20 may combine to form a ring
  • R 21 or R 22 , R 7 or R 8 and R 23 or R 24 may combine to form a ring.
  • R 1 or R 2 , R 3 or R 4 , and R 5 or R 6 may each combine to form a ring, and R 3 or R 4 and R 5 or R 6 and R 8 or R 7 may combine to form a ring, and R 5 or R 6 , R 8 or R 7 and R 1 or R 2 may combine to form a ring.
  • Each of a to d may independently 0 or 1.
  • X ⁇ represents a monovalent anion.
  • the formula (1) is more preferably a structure represented by the following formula (1B).
  • Y - has the same meaning as X - in the formula (1).
  • R 29 to R 52 are each independently a hydrogen atom or an alkyl group having 1 to 10 carbon atoms. Among R 29 to R 52 , the same alkyl group substituted on the N atom may combine to form a ring, R 30 and R 31 , R 32 and R 33 , R 34 and R 35 , R 36 and R 29 may each combine to form a ring i to l are each independently 0 or 1. Y ⁇ represents a monovalent anion.
  • X ⁇ is not particularly limited as long as it is a monovalent anion, but is not limited to chloride ion, bromide ion, tetraphenylborate ion, phenolate ion, BPA represented by the following formula (3a) It is preferably at least one selected from monoanions, BPA monoanions and BPA adducts represented by the following formula (3b).
  • X 1 ⁇ is at least one selected from phenolate ions, BPA monoanions represented by the above formula (3a), and BPA monoanions represented by the above formula (3b) and BPA adducts.
  • Preferred examples of compound (1) include compounds represented by the following formulas (1a) to (1e) (hereinafter sometimes referred to as "compound (1A)").
  • compound (1A) has the same meaning as X - in the formula (1).
  • Z 1- to Z 5- each independently represent a monovalent anion.
  • Me represents a methyl group.
  • compound (1) include compounds represented by the following formulas (1a') to (1e'), which are compound (1A) of the present invention.
  • L 1 ⁇ and L 2 ⁇ are the phenolate ion, the BPA monoanion represented by the formula (3a), and the BPA represented by the formula (3b) At least one selected from monoanionic BPA adducts.
  • L 3 ⁇ to L 5 ⁇ represent monovalent anions. The monovalent anions are represented by formula (1 ), and the preferred ones are also the same.Me represents a methyl group.
  • Compound (1) can be obtained or produced, for example, by the following method.
  • the method for producing compound (1) is not limited to the following method.
  • a commercially available organic reagent having a structure other than that of formula (1) is used as a raw material to produce compound (1).
  • the anion of a compound having an anion different from the anion (X ⁇ ) of formula (1) is converted to the anion (X ⁇ ) of formula (1) before use.
  • the commercially available compound (1) is used as it is.
  • Ar 1 to Ar 12 each independently represent a substituted or unsubstituted aryl group.
  • M ⁇ represents a monovalent anion.
  • examples of the aryl group for Ar 1 to Ar 12 include a phenyl group and a naphthyl group.
  • the substituents that the aryl groups Ar 1 to Ar 12 may have include one or more of alkyl groups having 1 to 20 carbon atoms.
  • the aryl group may have only one of these substituents, or may have two or more.
  • Ar 1 to Ar 12 are each independently preferably an unsubstituted aryl group, particularly preferably an unsubstituted phenyl group.
  • M ⁇ is not particularly limited as long as it is a monovalent anion, and is represented by the following formula (3a): chloride ion, bromide ion, tetraphenylborate ion, phenolate ion. It is preferably at least one selected from BPA monoanions and BPA monoanions represented by the following formulas (3b) and (3c), BPA adducts represented by the following formulas (3b) and (3c), phenolate ions, and represented by the following formula (3a) It is preferably at least one selected from BPA monoanions and BPA monoanions and BPA adducts represented by the following formula (3b).
  • compound (2) include the following.
  • Compound (2) can be obtained or produced, for example, by the following method.
  • the method for producing compound (2) is not limited to the following method. Using commercially available organic reagents as starting materials, compound (2) is produced by the method described in Examples and the like.
  • the amount of compound (1) and/or compound (2) used as a transesterification catalyst in the melt polycondensation step is not particularly limited, but is 0 per 1 mol of the dihydroxy compound. It is preferably 0.01 ⁇ mol or more, more preferably 0.1 ⁇ mol or more, and even more preferably 1 ⁇ mol or more. By adjusting the amount to be equal to or higher than the above lower limit, polymerization activity can be obtained, and the desired thermoplastic resin of the present invention having a predetermined high molecular weight can be obtained.
  • the amount of compound (1) and/or compound (2) used is preferably 1000 ⁇ mol or less, more preferably 100 ⁇ mol or less, still more preferably 50 ⁇ mol or less, and particularly preferably 1 mol of the dihydroxy compound. 10 ⁇ mol or less, most preferably 5 ⁇ mol or less. Formation of by-products can be suppressed by setting the content to be equal to or less than the above upper limit.
  • compound (1) and/or compound Compounds other than (2) may also be used as catalyst components.
  • a basic compound different from compound (1) and/or compound (2) may be further added.
  • Such compounds include at least one selected from the group consisting of compounds of Group 1 elements of the periodic table (excluding hydrogen), compounds of Group 2 elements of the periodic table, basic boron compounds, and basic phosphorus compounds. and the compound of
  • Group 1 elements include, for example, lithium, sodium, potassium, rubidium, and cesium.
  • cesium compounds are preferred, and cesium carbonate, cesium hydrogencarbonate, and cesium hydroxide are particularly preferred.
  • Examples of the compounds of the Group 2 elements include inorganic compounds such as hydroxides and carbonates of beryllium, magnesium, calcium, strontium, barium, etc.; alcohols, phenols, salts thereof with organic carboxylic acids, etc. is mentioned.
  • Basic boron compounds include sodium salts, potassium salts, lithium salts, calcium salts, magnesium salts, barium salts, and strontium salts of boron compounds.
  • Boron compounds include, for example, tetramethylboron, tetraethylboron, tetrapropylboron, tetrabutylboron, trimethylethylboron, trimethylbenzylboron, trimethylphenylboron, triethylmethylboron, triethylbenzylboron, triethylphenylboron, tributylbenzylboron, Examples include tributylphenylboron, tetraphenylboron, benzyltriphenylboron, methyltriphenylboron, butyltriphenylboron and the like.
  • Basic phosphorus compounds include, for example, triethylphosphine, tri-n-propylphosphine, triisopropylphosphine, tri-n-butylphosphine, triphenylphosphine, tributylphosphine, triphenylphosphine, tri-t-butylphenylphosphine and the like.
  • Examples include trivalent phosphorus compounds.
  • the proportion of catalyst compounds other than compound (1) and/or compound (2) that may be included as catalyst components is compound (1) and/or compound (2).
  • other catalyst compound usually in the range of 10000:1 to 3:1, preferably in the range of 5000:1 to 5:1, more preferably in the range of 1000:1 to 10:1. The above range is preferable because the production of by-products can be suppressed.
  • any method can be used as the method for adding the transesterification catalyst.
  • the transesterification catalyst may be directly mixed with the raw material dihydroxy compound or ester-forming compound, or may be dissolved in a solvent in advance and used as a diluted solution. By using it as a diluted solution, it is possible to improve feed accuracy and dispersibility in raw materials.
  • the solvent and catalyst concentration to be used are not particularly limited, and may be appropriately selected according to the solubility. Examples of solvents include water, phenol, acetone, alcohol, toluene, ether, tetrahydrofuran and the like.
  • the properties of water are not particularly limited as long as the types and concentrations of impurities contained are constant. Generally, distilled water, deionized water, etc. are preferably used. An additional transesterification catalyst may be added during the polymerization.
  • thermoplastic resin In the method for producing a thermoplastic resin of the present invention, the dihydroxy compound and diaryl carbonate and/or dicarboxylic acid ester as raw materials are mixed, and the raw material mixture is polymerized in a polycondensation reactor in the presence of the transesterification catalyst. It is carried out by a condensation reaction.
  • a condensation reaction As the reaction system of this polycondensation step, a batch system, a continuous system, a combination thereof, or the like can be used.
  • thermoplastic resin of the present invention is produced through the step of forming pellets and the like.
  • the polycondensation process is usually carried out continuously in two stages or more, preferably in a multi-stage system of three to seven stages.
  • Specific reaction conditions are usually temperature: 150° C. to 350° C., pressure: normal pressure to 0.01 Torr (1.3 Pa), average residence time: 5 minutes to 150 minutes.
  • the temperature is increased stepwise and the vacuum is increased within the reaction conditions described above. set.
  • the temperature is preferable to set the temperature as low as possible and the residence time as short as possible. From this point of view, the reaction temperature is preferably 150°C to 320°C.
  • a plurality of reactors including a vertical reactor are provided to increase the average molecular weight of the thermoplastic resin of the present invention.
  • 3 to 6 reactors, preferably 4 to 5 reactors are installed.
  • reactors include stirred tank reactors, thin film reactors, centrifugal thin film evaporation reactors, surface renewal twin-screw kneading reactors, horizontal twin-screw stirring reactors, wet-wall reactors, and free-falling reactors.
  • a perforated plate reactor for polymerization, a perforated plate reactor with a wire for polymerizing while falling along a wire, and the like are used.
  • Examples of the type of stirring blades of the vertical reactor include turbine blades, paddle blades, Faudler blades, anchor blades, full zone blades (manufactured by Shinko Pantec Co., Ltd.), sunmera blades (manufactured by Mitsubishi Heavy Industries, Ltd.), and max. Blend blades (manufactured by Sumitomo Heavy Industries, Ltd.), helical ribbon blades, twisted lattice blades (manufactured by Hitachi Ltd.), and the like can be mentioned.
  • a horizontal reactor is one in which the rotating shaft of the stirring blade is horizontal (horizontal direction).
  • the stirring blades of the horizontal reactor include uniaxial stirring blades such as disk type and paddle type, HVR, SCR, N-SCR (manufactured by Mitsubishi Heavy Industries, Ltd.), and Bivolak (manufactured by Sumitomo Heavy Industries, Ltd.). (manufactured by Hitachi, Ltd.), or biaxial stirring blades such as spectacle blades and lattice blades (manufactured by Hitachi, Ltd.).
  • the molecular weight of the thermoplastic resin of the present invention obtained by the method for producing the thermoplastic resin of the present invention is arbitrary and may be appropriately selected and determined.
  • the viscosity average molecular weight [Mv] converted from the solution viscosity of the thermoplastic resin of the present invention is usually 5,000 or more, preferably 10,000 or more, more preferably 15,000 or more, and usually 40,000 or less. Yes, preferably 30,000 or less, more preferably 24,000 or less.
  • the intrinsic viscosity [ ⁇ ] is a value calculated by the following formula after measuring the specific viscosity [ ⁇ sp ] at each solution concentration [C] (g/dl).
  • the terminal hydroxyl group concentration of the thermoplastic resin of the present invention is not particularly limited, it is preferably 1500 ppm or less, more preferably 1000 ppm or less, still more preferably 800 ppm or less, and particularly preferably 600 ppm or less. As the terminal hydroxyl group concentration becomes lower, the retention heat stability of the thermoplastic resin of the present invention tends to be further improved.
  • the terminal hydroxyl group concentration of the thermoplastic resin of the present invention is preferably 50 ppm or more, more preferably 100 ppm or more, still more preferably 150 ppm or more, and particularly preferably 200 ppm or more. Color tone tends to be improved as the terminal hydroxyl group concentration increases.
  • the unit of terminal hydroxyl group concentration is the weight of terminal hydroxyl groups expressed in ppm with respect to the weight of the thermoplastic resin of the present invention.
  • the measurement method is colorimetric determination by the titanium tetrachloride/acetic acid method (the method described in Macromol. Chem. 88, 215 (1965)).
  • thermoplastic resin of the present invention when used as a raw material dihydroxy compound, when the resulting thermoplastic resin of the present invention is hydrolyzed, it may contain by-products such as those represented by the following formulas (A) to (E). be.
  • the presence of these by-products means that the structural units of the resulting thermoplastic resin contain heterogeneous structural units derived from bisphenol A.
  • R a to R f each independently represent a hydrogen atom or a methyl group.
  • one or more hydrogen atoms bonded to the benzene ring are alkyl groups having 1 to 5 carbon atoms, alkoxy groups having 1 to 10 carbon atoms, phenyl groups, and vinyl groups. , a cyano group, an ester group, an amide group, a nitro group, or the like.
  • the content of these by-products can be measured by analyzing the thermoplastic resin of the present invention after hydrolysis.
  • the total amount of by-products represented by the above formulas (A) to (E) is preferably 1000 ppm or less, preferably 800 ppm or less, relative to the entire thermoplastic resin obtained before hydrolysis. More preferably, it is 600 ppm or less.
  • the thermoplastic resin of the present invention has good color tone and light resistance.
  • the total amount of the by-products represented by the above formulas (A) to (E) is preferably 0 ppm. As a result, there is a problem that the color tone is deteriorated. For this reason, from the viewpoint of product color tone, it is usually preferably 100 ppm or more.
  • the thermoplastic resin of the present invention has a good color tone.
  • the pellet YI is usually 15 or less, preferably 10 or less, more preferably 8 or less.
  • the pellet YI was evaluated by measuring the YI value (yellow index value) of the thermoplastic resin pellet in reflected light according to ASTM D1925.
  • a spectrophotometer CM-5 manufactured by Konica Minolta Co., Ltd. was used as an apparatus, and a measurement diameter of 30 mm and SCE were selected as measurement conditions.
  • a calibration glass CM-A212 for petri dish measurement was fitted into the measurement part, and a zero calibration box CM-A124 was placed over it to perform zero calibration, followed by white calibration using a built-in white calibration plate.
  • L * is 99.40 ⁇ 0.05, a * is 0.03 ⁇ 0.01, b * is -0.43 ⁇ 0.01, YI is - It was confirmed to be 0.58 ⁇ 0.01.
  • the pellets were measured by packing them into a cylindrical glass container having an inner diameter of 30 mm and a height of 50 mm to a depth of about 40 mm. The operation of taking out the pellets from the glass container and measuring again was repeated twice, and the average value of the measured values of a total of three times was used. The smaller the YI value, the less yellowish the resin and the better the color tone.
  • thermoplastic resin of the present invention is, if necessary, the thermoplastic resin of the present invention, that is, at least one selected from the group consisting of polycarbonates, polyesters, and polyester carbonates produced by the method for producing a thermoplastic resin of the present invention.
  • a thermoplastic resin composition may be used by blending other components such as a polycarbonate resin, a polyester resin, other resins, and various resin additives other than the thermoplastic resin.
  • One or more of the other components may be contained in any combination and ratio.
  • Examples of other resins include polyolefin resins such as polyethylene resins and polypropylene resins; polyamide resins; polyimide resins; polyetherimide resins; polyurethane resins; .
  • resins may be contained alone, or two or more may be contained in any combination and ratio.
  • Resin additives include, for example, thermal stability agents, antioxidants, ultraviolet absorbers, release agents, lubricants, dyes and pigments, antistatic agents, antifog agents, antiblocking agents, fluidity improvers, plasticizers, dispersants agents, antibacterial agents, impact modifiers, flame retardants, reinforcing materials such as glass fiber and carbon fiber, and fillers such as talc, mica and silica.
  • One type of resin additive may be contained, or two or more types may be contained in any combination and ratio.
  • L 1 ⁇ and L 2 ⁇ are a phenolate ion, a BPA monoanion represented by the following formula (3a), and a BPA represented by the following formula (3b) At least one selected from monoanionic BPA adducts.
  • L 3 ⁇ to L 5 ⁇ represent monovalent anions. The monovalent anions are represented by formula (1 ), and the preferred ones are also the same.Me represents a methyl group.
  • L 3- is chloride ion, bromide ion, tetraphenylborate ion, phenolate ion, BPA monoanion represented by formula (3a), and formula (3b). is preferably at least one selected from the BPA monoanion BPA adduct represented by the phenolate ion, the BPA monoanion represented by formula (3a), and the BPA monoanion BPA adduct represented by formula (3b) At least one selected from is more preferable.
  • L 4- is chloride ion, bromide ion, tetraphenylborate ion, phenolate ion, BPA monoanion represented by formula (3a), and formula (3b).
  • L 5- is chloride ion, bromide ion, tetraphenylborate ion, phenolate ion, BPA monoanion represented by formula (3a), and formula (3b). It is preferably at least one selected from BPA monoanions BPA adducts, phenolate ions, BPA monoanions represented by formula (3a), and BPA monoanions BPA adducts represented by formula (3b) At least one selected is more preferable.
  • the compound (1A) of the present invention represented by formulas (1a') to (1e') is particularly useful as a transesterification catalyst in the method for producing a thermoplastic resin of the present invention, that is, as a transesterification catalyst of the present invention.
  • Ar 1 to Ar 12 each independently represent a substituted or unsubstituted aryl group.
  • M ⁇ represents a monovalent anion.
  • examples of the aryl group for Ar 1 to Ar 12 include a phenyl group and a naphthyl group.
  • the substituents that the aryl groups Ar 1 to Ar 12 may have include one or more of alkyl groups having 1 to 20 carbon atoms.
  • the aryl group may have only one of these substituents, or may have two or more.
  • Ar 1 to Ar 12 are each independently preferably an unsubstituted aryl group, particularly preferably an unsubstituted phenyl group.
  • M ⁇ is not particularly limited as long as it is a monovalent anion, and is represented by the following formula (3a): chloride ion, bromide ion, tetraphenylborate ion, phenolate ion. It is preferably at least one selected from BPA monoanions and BPA monoanions represented by the following formulas (3b) and (3c), BPA adducts represented by the following formulas (3b) and (3c), phenolate ions, and represented by the following formula (3a) It is preferably at least one selected from BPA monoanions and BPA monoanions and BPA adducts represented by the following formula (3b).
  • Specific examples of the compound (2) of the present invention represented by formula (2) include the specific examples of the compound (2) described above.
  • the compound (2) of the present invention represented by formula (2) is particularly useful as a transesterification catalyst in the method for producing a thermoplastic resin of the present invention, that is, as a transesterification catalyst of the present invention.
  • the polycarbonate of the present invention is a polycarbonate produced by the method for producing a thermoplastic resin of the present invention, and has a viscosity-average molecular weight [Mv] defined as above of 14,000 or more and 30,000 or less,
  • Mv viscosity-average molecular weight
  • the total amount of the compounds represented by the following formulas (A) to (E) (hereinafter sometimes referred to as "specific compounds") measured on the hydrolyzate of the polycarbonate is 300 mass with respect to the polycarbonate resin. ppm or more and 550 mass ppm or less.
  • the viscosity-average molecular weight [Mv] of the solution viscosity of the polycarbonate of the present invention is preferably 15,000 or more, more preferably 18,000 or more, and preferably 29,000 or less, more preferably 23,000 or less.
  • the viscosity-average molecular weight is at least the lower limit of the above range, the mechanical strength of the polycarbonate of the present invention can be further improved, which is more preferable when used in applications requiring high mechanical strength.
  • the viscosity-average molecular weight By setting the viscosity-average molecular weight to the upper limit of the above range or less, the decrease in fluidity of the polycarbonate of the present invention can be suppressed and improved, and the moldability can be enhanced to facilitate molding.
  • R a to R f each independently represent a hydrogen atom or a methyl group.
  • one or more hydrogen atoms bonded to the benzene ring are alkyl groups having 1 to 5 carbon atoms, alkoxy groups having 1 to 10 carbon atoms, phenyl groups, and vinyl groups. , a cyano group, an ester group, an amide group, a nitro group, or the like. It may be substituted with a substituent such as an ano group, an ester group, an amide group, or a nitro group.
  • the content of these specific compounds can be measured by hydrolyzing the polycarbonate of the present invention and then analyzing it. More preferably, the total amount of specific compounds is 500 ppm or less relative to the entire polycarbonate obtained before hydrolysis.
  • the polycarbonate of the present invention has good color tone and light resistance.
  • the total amount of the specific compounds is preferably 0 ppm, but if it is attempted to be extremely reduced, the polymerization activity must be lowered and the reaction must be carried out for a long time, resulting in a problem of deterioration in color tone. Therefore, from the viewpoint of product color tone, the content of the specific compound is preferably 100 ppm or more.
  • the terminal hydroxyl group concentration of the polycarbonate of the present invention is not particularly limited, it is preferably 1000 ppm or less, more preferably 800 ppm or less, still more preferably 700 ppm or less, and particularly preferably 600 ppm or less. As the terminal hydroxyl group concentration becomes lower, the residence heat stability of the polycarbonate of the present invention tends to be further improved.
  • the terminal hydroxyl group concentration of the polycarbonate of the present invention is preferably 250 ppm or more, more preferably 300 ppm or more, still more preferably 350 ppm or more, and particularly preferably 400 ppm or more. Color tone tends to be improved as the terminal hydroxyl group concentration increases.
  • Terminal hydroxyl group content of thermoplastic resin The terminal hydroxyl group content of the thermoplastic resin was measured by a colorimetric method using titanium tetrachloride/acetic acid according to the method described below.
  • thermoplastic resin (4) Content of by-products (specific compounds) represented by formulas (A) to (E) contained in thermoplastic resin
  • methanol 45 mL and 25 weight % sodium hydroxide aqueous solution was added and stirred at 70° C. for 30 minutes for hydrolysis (methylene chloride solution).
  • 6 N hydrochloric acid was added to this methylene chloride solution to adjust the pH of the solution to about 2, and the volume was adjusted to 100 mL with pure water.
  • Example 1 Synthesis of catalyst A> By treating 388 mg (0.50 mmol) of tetrakis[tris(dimethylamino)phosphoranylideneamino]phosphonium chloride (hereinafter sometimes abbreviated as P5-Cl) (manufactured by Sigma-Aldrich) according to Synthesis Example 1, A catalyst A (hereinafter sometimes abbreviated as P5-BPA 2 ) represented by the following structural formula was obtained with a yield of 53%.
  • P2(CyNH)-BF 4 1,1,1,3,3,3-hexakis(cyclohexylamino)-1 ⁇ 5 ,3 ⁇ 5 -diphosphazenium tetrafluoroborate
  • Step 3 1,1,1,3,3,3-hexakis(cyclohexyl(methyl)amino)-1 ⁇ 5 ,3 ⁇ 5 -diphosphazenium tetrafluoroborate (hereinafter abbreviated as P2(CyNMe)-BF 4 Synthesis of) P2(CyNH)-BF 4 (1.33 g, 1.77 mmol) was dissolved in 10 mL of chlorobenzene. Next, 10 mL of 50% sodium hydroxide aqueous solution and dimethyl sulfate (manufactured by Merck) (1.61 g, 12.7 mmol) were added in order.
  • P2(CyNMe)-BF 4 1,1,1,3,3,3-hexakis(cyclohexyl(methyl)amino)-1 ⁇ 5 ,3 ⁇ 5 -diphosphazenium tetrafluoroborate
  • Step 4 1,1,1,3,3,3-hexakis(cyclohexyl(methyl)amino)-1 ⁇ 5 ,3 ⁇ 5 -diphosphazenium 4-(2-(4-hydroxyphenyl)propane-2- yl) Synthesis of phenolate ion BPA adduct (hereinafter sometimes abbreviated as (P2( CyNMe )-BPA2))
  • P2( CyNMe )-BPA2 phenolate ion BPA adduct
  • Example 15 Synthesis of catalyst G> (Step 1: Synthesis of tetrakis[(triphenylphosphoranylidene)amino]phosphonium tetrafluoroborate (hereinafter sometimes abbreviated as P5(Ph) -BF4 ))
  • Literature M. Taillefer, N. Rahier, A. Hameau and J.-N. Volle, Chem. Commun. 2006, 3238-3239; M. G. Davidson, A. E. Goeta, J. A. K. Howard , CW Lehmann, GM McIntyre and RD Price , J. Organomet.
  • Step 2 Tetrakis[(triphenylphosphoranylidene)amino]phosphonium 4-(2-(4-hydroxyphenyl)propan-2-yl)phenolate BPA adduct (hereinafter P5(Ph)-BPA 1.67 and may be abbreviated))
  • P5(Ph)-BF 4 0.74 g, 0.61 mmol
  • K-BPA 2 potassium tert-butoxide (68 mg, 0.61 mmol) and BPA (68 mg, 0.61 mmol) in 5 mL of methanol). 278 mg, 1.22 mmol)
  • the mixture was stirred at room temperature for 1 hour.
  • Residual solvent in the filtrate was removed on a rotary evaporator and the solid was extracted with DCM.
  • DCM in the solution was removed with a rotary evaporator, and catalyst H (sometimes abbreviated as 2-Et-1,4-Ad 2 -3-Me-imy-BPA, purity 85%) represented by the following structural formula was obtained. 670 mg of was obtained.
  • Precipitated ammonium salt was removed with a filter.
  • DCM was distilled off from the solution and the resulting solution was separated on a silica gel column.
  • the product was eluted with a mixture of hexane and ethyl acetate (4:1 weight ratio) to give 3.2 g of a bluish yellow liquid.
  • 2.5 g of the resulting liquid was then mixed with 10.3 g of acetic anhydride and 0.84 mL of 37% aqueous hydrogen chloride solution was added.
  • the mixture was stirred at room temperature for 14 hours and 50 mL of diethyl ether was added.
  • the organic solution layer was collected and washed twice with 2 mL of diethyl ether.
  • the resulting oily substance was mixed with 20 mL of toluene and 2.0 g of mesitylamine and stirred at room temperature for 3 hours. After washing with 50 mL of anhydrous diethyl ether, 6 mL of acetic anhydride, 20 mL of toluene and 1.3 mL of 37% hydrogen chloride aqueous solution were mixed and stirred at 110° C. for 14 hours. Removal of the solvent on a rotary evaporator gave 1.4 g of white 2,4,5-Me 3 -1,3-Mes 2 -imy-Cl.
  • BEMP 2-tert-butylimino-2-diethylamino-1,3-dimethylperhydro-1,3,2-diazaphosphorine
  • TMAH tetramethylammonium hydroxide
  • thermoplastic resin ⁇ Example 7> 116.71 g (about 0.51 mol) of BPA and 117.95 (about 0.55 mol) of DPC were added to a 150 mL glass reactor equipped with a reactor stirrer, a reactor heating device, and a reactor pressure regulator, and the ester was A mixture was prepared by adding 3 ⁇ mol of catalyst A as an exchange catalyst to 1 mol of BPA.
  • the pressure inside the glass reactor was reduced to about 100 Pa (0.75 Torr), and then the pressure was restored to atmospheric pressure with nitrogen, which was repeated three times to replace the inside of the reactor with nitrogen.
  • the external temperature of the reactor was set to 220° C., and the internal temperature of the reactor was gradually increased to dissolve the mixture.
  • the stirrer was rotated at 100 rpm.
  • the pressure inside the reactor was increased from 101.3 kPa (760 Torr) to 13.3 kPa in absolute pressure over 40 minutes while distilling off the phenol that was a by-product of the oligomerization reaction of BPA and DPC that took place inside the reactor.
  • the pressure was reduced to (100 Torr).
  • the pressure in the reactor was maintained at 13.3 kPa, and transesterification was carried out for 80 minutes while further distilling off phenol.
  • the temperature outside the reactor was raised to 290° C.
  • the pressure inside the reactor was reduced from 13.3 kPa (100 Torr) to 399 Pa (3 Torr) in absolute pressure over 40 minutes, and the distilled phenol was removed from the system.
  • the absolute pressure in the reactor was reduced to 30 Pa (about 0.2 Torr) to carry out a polycondensation reaction.
  • the polycondensation reaction was terminated when the stirrer of the reactor reached a predetermined stirring power.
  • the reaction time from the start of the reaction to the end of the reaction was measured and shown in Table 2 as the polymerization time (unit: minutes).
  • Example 8 In Example 7, the same as in Example 7 except that 116.71 g (about 0.51 mol) of BPA and 117.73 g (about 0.55 mol) of DPC were added, and 2 ⁇ mol of catalyst A was added to 1 mol of BPA. Then, the polycarbonate resin was polymerized. Table 2 shows the polymerization time and the evaluation results of the obtained polycarbonate resin.
  • Example 9 In Example 7, the same as in Example 7 except that 116.71 g (about 0.51 mol) of BPA and 116.85 g (about 0.55 mol) of DPC were added, and catalyst A was added so as to be 1 ⁇ mol per 1 mol of BPA. Then, the polycarbonate resin was polymerized. Table 2 shows the polymerization time and the evaluation results of the obtained polycarbonate resin.
  • Example 10 ⁇ Example 10>
  • 116.71 g (about 0.51 mol) of BPA and 118.28 g (about 0.55 mol) of DPC were added, and transesterification catalyst B was added so as to be 2.5 ⁇ mol with respect to 1 mol of BPA.
  • Polymerization of a polycarbonate resin was carried out in the same manner as in Example 7.
  • Table 2 shows the polymerization time and the evaluation results of the obtained polycarbonate resin.
  • Example 11 ⁇ Example 11> In Example 7, 116.71 g (about 0.51 mol) of BPA and 118.28 g (about 0.55 mol) of DPC were added, and instead of catalyst A as a transesterification catalyst, catalyst C was added to 2.5 ⁇ mol per 1 mol of BPA. Polycarbonate resin was polymerized in the same manner as in Example 7, except that it was added to . Table 2 shows the polymerization time and the evaluation results of the obtained polycarbonate resin.
  • Example 12 Polymerization of a polycarbonate resin was carried out in the same manner as in Example 7, except that 3 ⁇ mol of catalyst D was used per 1 mol of BPA as a transesterification catalyst instead of catalyst A. Table 2 shows the polymerization time and the evaluation results of the obtained polycarbonate resin.
  • Example 13 a polycarbonate resin was polymerized in the same manner as in Example 7, except that 3 ⁇ mol of Catalyst E was used per 1 mol of BPA as a transesterification catalyst instead of Catalyst A. Table 2 shows the polymerization time and the evaluation results of the obtained polycarbonate resin.
  • Example 14 a polycarbonate resin was polymerized in the same manner as in Example 7, except that 3 ⁇ mol of Catalyst F was used per 1 mol of BPA as a transesterification catalyst instead of Catalyst A. Table 2 shows the polymerization time and the evaluation results of the obtained polycarbonate resin.
  • Example 16 Polymerization of a polycarbonate resin was carried out in the same manner as in Example 7, except that 3 ⁇ mol of catalyst G was used per 1 mol of BPA as a transesterification catalyst instead of catalyst A. Table 2 shows the polymerization time and the evaluation results of the obtained polycarbonate resin.
  • Example 7 116.71 g (about 0.51 mol) of BPA and 117.73 g (about 0.55 mol) of DPC were added, and catalyst H was added instead of catalyst A as a transesterification catalyst so that 7.7 ⁇ mol was added to 1 mol of BPA.
  • Polycarbonate resin was polymerized in the same manner as in Example 7, except that it was added to .
  • Table 2 shows the polymerization time and the evaluation results of the obtained polycarbonate resin.
  • Example 7 116.71 g (about 0.51 mol) of BPA and 117.73 g (about 0.55 mol) of DPC were added, and instead of catalyst A, catalyst I was added as a transesterification catalyst so that the amount would be 7 ⁇ mol per 1 mol of BPA.
  • a polycarbonate resin was polymerized in the same manner as in Example 7, except that Table 2 shows the polymerization time and the evaluation results of the obtained polycarbonate resin.
  • Example 7 116.71 g (approximately 0.51 mol) of BPA and 118.83 g (approximately 0.55 mol) of DPC were added, and Catalyst I was added as a transesterification catalyst instead of Catalyst A in an amount of 5 ⁇ mol per 1 mol of BPA.
  • a polycarbonate resin was polymerized in the same manner as in Example 7, except that Table 2 shows the polymerization time and the evaluation results of the obtained polycarbonate resin.
  • Example 7 116.71 g (approximately 0.51 mol) of BPA and 117.84 g (approximately 0.55 mol) of DPC were added, and Catalyst J was added as a transesterification catalyst instead of Catalyst A so as to be 7 ⁇ mol per 1 mol of BPA.
  • a polycarbonate resin was polymerized in the same manner as in Example 7, except that Table 2 shows the polymerization time and the evaluation results of the obtained polycarbonate resin.
  • Example 7 116.71 g (approximately 0.51 mol) of BPA and 117.73 g (approximately 0.55 mol) of DPC were added, and catalyst J was added as a transesterification catalyst instead of catalyst A so as to be 20 ⁇ mol per 1 mol of BPA.
  • a polycarbonate resin was polymerized in the same manner as in Example 7, except that Table 2 shows the polymerization time and the evaluation results of the obtained polycarbonate resin.
  • Example 7 116.71 g (about 0.51 mol) of BPA and 118.83 g (about 0.55 mol) of DPC were added, and instead of catalyst A as a transesterification catalyst, catalyst K was added so as to be 5 ⁇ mol per 1 mol of BPA.
  • a polycarbonate resin was polymerized in the same manner as in Example 7, except that Table 2 shows the polymerization time and the evaluation results of the obtained polycarbonate resin.
  • Example 7 116.71 g (approximately 0.51 mol) of BPA and 118.83 g (approximately 0.55 mol) of DPC were added, and Catalyst L was added as a transesterification catalyst in place of Catalyst A so as to be 5 ⁇ mol per 1 mol of BPA.
  • a polycarbonate resin was polymerized in the same manner as in Example 7, except that Table 2 shows the polymerization time and the evaluation results of the obtained polycarbonate resin.
  • Example 7 116.71 g (about 0.51 mol) of BPA and 115.43 g (about 0.54 mol) of DPC were added, and instead of catalyst A as a transesterification catalyst, catalyst M was added so as to be 10 ⁇ mol per 1 mol of BPA.
  • a polycarbonate resin was polymerized in the same manner as in Example 7, except that Table 2 shows the polymerization time and the evaluation results of the obtained polycarbonate resin.
  • Table 1 shows that the catalyst compounds of the present invention obtained in Examples 1, 2, 4 to 6 and 15 have low decomposition rates and excellent thermal stability.
  • catalysts J and M of Comparative Examples 3 and 12 had high decomposition rates and poor thermal stability.
  • Comparative Example 7 the same catalyst as in Comparative Example 6 was used, but 5 ⁇ mol, which was less than in Comparative Example 6, and the content of the specific by-product tended to be improved compared to Comparative Example 6, but the polymerization time was longer.
  • Comparative Example 8 contains less specific by-products at the same level as in Examples, but the polymerization time is long.
  • Comparative Example 9 the same catalyst as in Comparative Example 8 was used in an amount of 20 ⁇ mol, which was more than in Comparative Example 8, but no improvement in reactivity was observed, and the content of specific by-products tended to increase.
  • Comparative Examples 10, 11 and 12 used a larger amount of catalyst than the Examples, but the reaction time was longer and the specific by-product content was also higher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

ジヒドロキシ化合物と、ジアリールカーボネート及び/又はジカルボン酸エステルとを、下記式(1)で表される化合物及び/又は下記式(2)で表される化合物から選ばれるエステル交換触媒の存在下に溶融重縮合させる工程を含む、ポリカーボネート、ポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。 (1)(R1~R24は水素原子、炭素数1~10のアルキル基、又はシクロアルキル基であり、一部の炭素原子がヘテロ原子に置き換わっていてもよく、R1~R24のうち、同一のN原子に置換しているアルキル基同士等が結合して環を形成していてもよい。a~dは0または1。X-は1価のアニオン。) (2)(Ar1~Ar12は置換若しくは無置換のアリール基。M-は1価のアニオン。)

Description

熱可塑性樹脂の製造方法、及び化合物
 本発明は、ポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法に関する。より詳しくは、少量添加でも優れた反応性を示し、特定の副生成物量が少ないエステル交換触媒を用いたポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法に関する。本発明はまた、このポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造に用いるエステル交換触媒として有用な化合物に関する。
 ポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法として、いくつかの方法が知られている。中でも、ジヒドロキシ化合物(例えば、ビスフェノールA)と、エステル形成性化合物(例えば、ジアリールカーボネートやジカルボン酸エステル)とを、エステル交換触媒の存在下に、溶融エステル交換法により反応させてポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂を製造するプロセスが、環境に影響を与える溶媒を使用しない;製造に必要なエネルギーが小さい;生成物中の夾雑塩素などの不純物が少ない;といったいくつかのメリットを有するため商業的プロセスとして好ましい。
 上記エステル交換触媒としては、従来、アルカリ金属やアルカリ土類金属、遷移金属等の金属系触媒を用いる方法が知られている。
 ホスホニウム塩やアンモニウム塩などの第4級オニウム塩を用いる方法(特許文献1参照)、含窒素塩基性化合物などの有機系塩基触媒を用いる方法(例えば、特許文献2~4参照)、上記金属系触媒と有機系塩基触媒を組み合わせる方法(例えば特許文献5~7参照)も提案されている。
 特許文献8や9にはイミダゾール構造を有する触媒を用いる方法が開示されている。
 特許文献10にはホスファゼン構造を有する触媒を用いる方法が開示されている。
特表2004-526839号公報 特開平7-82363号公報 特開2016-183287号公報 特開平2-124934号公報 特開平5-1145号公報 特開平7-109346号公報 特開2014-101487号公報 中国特許出願公開第107573497号明細書 特開2020-132767号公報 特開平7-330886号公報
 エステル交換法によるポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造プロセスでは、ジヒドロキシ化合物とエステル形成性化合物とを溶融状態とし、エステル交換触媒を添加して高真空条件下でモノヒドロキシ化合物(フェノール等)を留去しながら重縮合を行う。この方法では、高温条件のために副反応を引き起こし、着色成分、或いは耐候性や流動性に悪影響を及ぼす特定の副生成物が生成するという課題がある。
 エステル交換触媒として金属系触媒を使用した場合は、ポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の色調が低下しやすく、特に副生成物が生成しやすいという課題がある。加えて、得られたポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂樹脂の熱安定性、特に溶融滞留時の色調安定性や、高温時の耐加水分解性も劣るという欠点もある。
 有機系触媒を用いて製造されたポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂は、金属系触媒によって得られるポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂よりも副生成物が少ない傾向にあるが、未だ満足のいくレベルではなかった。
 有機系触媒は、金属触媒と比較して熱安定性が悪いため、ポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂が目的の分子量に到達するまでにかかる時間が長くなる、すなわち反応活性が低い。
 有機系触媒は、反応活性が低く、重合時間が長くなるために、ポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂が熱による老化を受け、色調が悪くなりやすい。
 過剰量の有機系触媒を用いて重合した場合、重合時間の改善はみられるものの、副生成物の生成が抑えられず、さらにはポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の色調の悪化を引き起こす。
 金属系触媒と有機系触媒を組み合わせる手法もまた、金属系触媒の配合量に応じて副生成物が増加し、さらには色調が悪化する。このため、やはり重合活性と品質のバランスをとることができない。
 本発明は、特定の構造を持つ有機系触媒を用いることで、ポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂が目的の分子量に到達するまでにかかる時間が短く、特定の副生成物量が少ないポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂を製造する方法と、この特定の構造を持つ有機系触媒として用いる化合物を提供することを目的とする。
 本発明者は、ポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂製造の際の反応性や副反応抑制、エステル交換触媒の熱安定性や分子構造の関係性に注目して検討を重ねた結果、下記式(1)で表される化合物及び/又は下記式(2)で表される化合物を使用することにより、少量の添加でも優れた反応性を示し、副生成物量が少ない生成物を得ることができることを見出した。
 本発明は以下を要旨とする。
[1] ジヒドロキシ化合物と、ジアリールカーボネート及び/又はジカルボン酸エステルとを、下記式(1)で表される化合物及び/又は下記式(2)で表される化合物から選ばれるエステル交換触媒の存在下に溶融重縮合させる工程を含む、ポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000013
(式(1)中、R~R24はそれぞれ独立に水素原子、炭素数1~10のアルキル基、又はシクロアルキル基であり、該アルキル基及びシクロアルキル基の一部の炭素原子がヘテロ原子に置き換わっていてもよく、R~R24のうち、同一のN原子に置換しているアルキル基同士が結合して環を形成していてもよい。RとR、RとR、RとR、RとRはそれぞれ結合して環を形成していてもよい。RまたはR10と、RまたはRと、R11またはR12がそれぞれ結合して環を形成していてもよく、R13またはR14と、RまたはRと、R15またはR16がそれぞれ結合して環を形成していてもよく、R17またはR18と、RまたはRと、R19またはR20がそれぞれ結合して環を形成していてもよく、R21またはR22と、RまたはRと、R23またはR24がそれぞれ結合して環を形成していてもよい。RまたはRと、RまたはRと、RまたはRがそれぞれ結合して環を形成していてもよく、RまたはRと、RまたはRと、RまたはRがそれぞれ結合して環を形成していてもよく、RまたはRと、RまたはRと、RまたはRがそれぞれ結合して環を形成していてもよく、RまたはRと、RまたはRと、RまたはRがそれぞれ結合して環を形成していてもよい。a~dはそれぞれ独立に、0または1である。Xは1価のアニオンを表す。)
Figure JPOXMLDOC01-appb-C000014
(式(2)中、Ar~Ar12はそれぞれ独立に、置換若しくは無置換のアリール基を表す。Mは1価のアニオンを表す。)
[2] 前記ジヒドロキシ化合物がビスフェノールAである[1]に記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
[3] 前記ジアリールカーボネートがジフェニルカーボネートである[1]または[2]に記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
[4] 前記ジカルボン酸エステルが、テレフタル酸ジフェニル及び/またはイソフタル酸ジフェニルである[1]~[3]のいずれかに記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
[5] 芳香族ジヒドロキシ化合物とジアリールカーボネートとを前記エステル交換触媒の存在下に溶融重縮合させる工程を含む[1]~[4]のいずれかに記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
[6] 前記エステル交換触媒が、前記式(1)で表される化合物である[1]~[5]のいずれかに記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
[7] 前記式(1)が、下記式(1B)で表される[6]に記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000015
(式(1B)中、R29~R52はそれぞれ独立に水素原子、又は炭素数1~10のアルキル基である。R29~R52のうち、同一のN原子に置換しているアルキル基同士が結合して環を形成していてもよい。R30とR31、R32とR33、R34とR35、R36とR29はそれぞれ結合して環を形成していてもよい。i~lはそれぞれ独立に、0または1である。Yは1価のアニオンを表す。)
[8] 前記式(1)中、Xが、塩化物イオン、臭化物イオン、テトラフェニルホウ酸イオン、フェノラートイオン、下記式(3a)で表されるBPAモノアニオン、及び下記式(3b)で表されるBPAモノアニオンBPA付加物から選ばれる少なくとも1種である[6]または[7]に記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000016
[9] 前記式(1)中、Xが、フェノラートイオン、前記式(3a)で表されるBPAモノアニオン、及び前記式(3b)で表されるBPAモノアニオンBPA付加物から選ばれる少なくとも1種である[8]に記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
[10] 前記式(1)が、下記式(1a)~(1e)のいずれかで表される[6]~[9]のいずれかに記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000017
(式(1a)~(1e)中、Z1-~Z5-はそれぞれ独立に、1価のアニオンを表す。Meはメチル基を表す。)
[11] 前記エステル交換触媒が、前記式(2)で表される化合物である[1]~[5]のいずれかに記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
[12] 前記式(2)中、Ar~Ar12がフェニル基である[11]に記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
[13] 前記式(2)中、Mが塩化物イオン、臭化物イオン、テトラフェニルホウ酸イオン、フェノラートイオン、下記式(3a)で表されるBPAモノアニオン、並びに、下記式(3b),(3c)で表されるBPAモノアニオンBPA付加物から選ばれる少なくとも1種である[11]または[12]に記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
Figure JPOXMLDOC01-appb-C000018
[14] 前記式(2)中、Mが、フェノラートイオン、前記式(3a)で表されるBPAモノアニオン、並びに、前記式(3b),(3c)で表されるBPAモノアニオンBPA付加物から選ばれる少なくとも1種である[13]に記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
[15] 前記ジヒドロキシ化合物の1molに対して、前記エステル交換触媒0.01~1000μmolの存在下に前記溶融重縮合を行う[1]~[14]のいずれかに記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
[16] 前記溶融重縮合反応時の温度が200~350℃である[1]~[15]のいずれかに記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
[17] 製造された前記ポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の粘度平均分子量[Mv]が5,000~40,000である[1]~[16]のいずれかに記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
[18] ジヒドロキシ化合物と、ジアリールカーボネート及び/又はジカルボン酸エステルとを溶融重縮合させて、ポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂を生成するためのエステル交換触媒であって、下記式(1)で表される化合物及び下記式(2)で表される化合物群から選ばれるいずれか1つを含むエステル交換触媒。
Figure JPOXMLDOC01-appb-C000019
(式(1)中、R~R24はそれぞれ独立に水素原子、炭素数1~10のアルキル基、又はシクロアルキル基であり、該アルキル基及びシクロアルキル基の一部の炭素原子がヘテロ原子に置き換わっていてもよく、R~R24のうち、同一のN原子に置換しているアルキル基同士が結合して環を形成していてもよい。RとR、RとR、RとR、RとRはそれぞれ結合して環を形成していてもよい。RまたはR10と、RまたはRと、R11またはR12がそれぞれ結合して環を形成していてもよく、R13またはR14と、RまたはRと、R15またはR16がそれぞれ結合して環を形成していてもよく、R17またはR18と、RまたはRと、R19またはR20がそれぞれ結合して環を形成していてもよく、R21またはR22と、RまたはRと、R23またはR24がそれぞれ結合して環を形成していてもよい。RまたはRと、RまたはRと、RまたはRがそれぞれ結合して環を形成していてもよく、RまたはRと、RまたはRと、RまたはRがそれぞれ結合して環を形成していてもよく、RまたはRと、RまたはRと、RまたはRがそれぞれ結合して環を形成していてもよく、RまたはRと、RまたはRと、RまたはRがそれぞれ結合して環を形成していてもよい。a~dはそれぞれ独立に、0または1である。Xは1価のアニオンを表す。)
Figure JPOXMLDOC01-appb-C000020
(式(2)中、Ar~Ar12はそれぞれ独立に、置換若しくは無置換のアリール基を表す。Mは1価のアニオンを表す。)
[19] 下記式(1a’)~(1e’)のいずれかで表される化合物。
Figure JPOXMLDOC01-appb-C000021
(式(1a’)、(1b’)中、L1-、L2-は、フェノラートイオン、下記式(3a)で表されるBPAモノアニオン、及び下記式(3b)で表されるBPAモノアニオンBPA付加物から選ばれる少なくとも1種である。前記式(1c’)~(1e’)中、L3-~L5-は1価のアニオンを表す。Meはメチル基を表す。)
Figure JPOXMLDOC01-appb-C000022
[20] 下記式(2)で表される化合物。
Figure JPOXMLDOC01-appb-C000023
(式(2)中、Ar~Ar12はそれぞれ独立に、置換若しくは無置換のアリール基を表す。Mは1価のアニオンを表す。)
[21] [1]~[17]のいずれかに記載の熱可塑性樹脂の製造方法により製造されたポリカーボネートであって、前記ポリカーボネートの粘度平均分子量が、14,000以上、30,000以下であり、該ポリカーボネートの加水分解物について測定される下記式(A)~(E)で表される化合物の総量が、該ポリカーボネート樹脂に対して300質量ppm以上、550質量ppm以下であることを特徴とするポリカーボネート。
Figure JPOXMLDOC01-appb-C000024
(式(A)~(D)中、R~Rはそれぞれ独立に水素原子又はメチル基を表す。式(A)~(E)中のベンゼン環において、ベンゼン環に結合する1つ以上の水素原子は、置換基によって置換さていてもよい。)
[22] 前記ポリカーボネートの末端水酸基濃度が、400質量ppm以上、1000質量ppm以下である[21]に記載のポリカーボネート。
 本発明によれば、溶融重縮合反応のエステル交換触媒として、前記式(1)で表される化合物及び/又は前記式(2)で表される化合物を用いることにより、少ない添加量で、高い反応活性を維持した上で副反応を抑制することができ、副生成物量が少なくなるために、耐候性のよい、すなわち、長時間紫外線や可視光に曝露される場所で使用した際の、色相や透明性、機械的強度の悪化が抑制され、且つ色調が良好なポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂を製造することができる。
 本発明により製造されたポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂は、自動車材料、電気電子機器材料、住宅材料、その他の工業分野における部品製造用材料等として、当該熱可塑性樹脂単体で、または他の樹脂や添加剤をコンパウンドした組成物として好適に用いることができる。
 本発明の化合物は熱安定性が高く、エステル交換触媒として様々な熱可塑性樹脂の製造に好適に用いることができる。
 以下、本発明について実施形態および例示物等を示して詳細に説明する。本発明は以下に示す実施形態および例示物等に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施することができる。
 本明細書において、「~」とは、特に断りのない限り、その前後に記載される数値を下限値および上限値として含む意味で使用される。
[1.概要]
 本発明のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法(以下、「本発明の熱可塑性樹脂の製造方法」と称す場合がある。)は、ジヒドロキシ化合物とエステル形成性化合物であるジアリールカーボネート及び/又はジカルボン酸エステルとを、前記式(1)で表される化合物(以下、「化合物(1)」と称す場合がある。)及び/又は前記式(2)で表される化合物(以下、「化合物(2)」と称す場合がある。)から選ばれるエステル交換触媒の存在下に溶融重縮合して、ポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂(以下、「本発明の熱可塑性樹脂」と称す場合がある。)を製造する方法である。
 本発明の熱可塑性樹脂の製造方法でエステル交換触媒として用いる化合物(1)及び化合物(2)は、重縮合最終段階まで分解ないし揮発することなく重縮合活性を発揮し、かつ分子サイズが大きいために副反応を効率的に抑制することができる。
[2.熱可塑性樹脂・反応原料]
[2-1.熱可塑性樹脂]
 本発明の熱可塑性樹脂は、ジヒドロキシ化合物と、ジアリールカーボネート及び/又はジカルボン酸エステルとをエステル交換触媒の存在下に溶融重縮合させる工程を経て得られる熱可塑性樹脂である。具体例としては、ポリカーボネート、ポリエステルカーボネート、ポリエステルが挙げられる。本発明の熱可塑性樹脂には制限はないが、特にポリカーボネートが好適であり、とりわけ芳香族ジヒドロキシ化合物と、ジアリールカーボネートとを前記エステル交換触媒の存在下に溶融重縮合させて得られる芳香族ポリカーボネートが好ましい。
[2-2.ジヒドロキシ化合物]
 本発明の熱可塑性樹脂の製造方法においては、原料として、ジヒドロキシ化合物と、ジアリールカーボネート及び/又はジカルボン酸エステルとを用いる。
 ジヒドロキシ化合物としては、特に制限はなく、例えば以下のようなものが挙げられるが、何ら以下のものに限定されるものではない。
 2,5-ジヒドロキシビフェニル、 2,2’-ジヒドロキシビフェニル、4,4’-ジヒドロキシビフェニル等のジヒドロキシビフェニル類;
 2,2’-ジヒドロキシジフェニルエーテル、3,3’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルエーテル、1,4-ビス(3-ヒドロキシフェノキシ)ベンゼン、1,3-ビス(4-ヒドロキシフェノキシ)ベンゼン等のジヒドロキシジアリールエーテル類;
 2,2-ビス(4-ヒドロキシフェニル)プロパン(以下、「BPA」と略記することがある)、1,1-ビス(4-ヒドロキシフェニル)プロパン、2,2-ビス(3-メトキシ-4-ヒドロキシフェニル)プロパン、2-(4-ヒドロキシフェニル)-2-(3-メトキシ-4-ヒドロキシフェニル)プロパン、1,1-ビス(3-tert-ブチル-4-ヒドロキシフェニル)プロパン、2,2-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)プロパン、2,2-ビス(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、2-(4-ヒドロキシフェニル)-2-(3-シクロヘキシル-4-ヒドロキシフェニル)プロパン、α,α’-ビス(4-ヒドロキシフェニル)-1,4-ジイソプロピルベンゼン、1,3-ビス[2-(4-ヒドロキシフェニル)-2-プロピル]ベンゼン、ビス(4-ヒドロキシフェニル)メタン、ビス(4-ヒドロキシフェニル)シクロヘキシルメタン、ビス(4-ヒドロキシフェニル)フェニルメタン、ビス(4-ヒドロキシフェニル)(4-プロペニルフェニル)メタン、ビス(4-ヒドロキシフェニル)ジフェニルメタン、ビス(4-ヒドロキシフェニル)ナフチルメタン、1,1-ビス(4-ヒドロキシフェニル)エタン、2-ビス(4-ヒドロキシフェニル)エタン、1,1-ビス(4-ヒドロキシフェニル)-1-フェニルエタン、1,1-ビス(4-ヒドロキシフェニル)-1-ナフチルエタン、1-ビス(4-ヒドロキシフェニル)ブタン、2-ビス(4-ヒドロキシフェニル)ブタン、2,2-ビス(4-ヒドロキシフェニル)ペンタン、1,1-ビス(4-ヒドロキシフェニル)ヘキサン、2,2-ビス(4-ヒドロキシフェニル)ヘキサン、1-ビス(4-ヒドロキシフェニル)オクタン、2-ビス(4-ヒドロキシフェニル)オクタン、1-ビス(4-ヒドロキシフェニル)ヘキサン、2-ビス(4-ヒドロキシフェニル)ヘキサン、4,4-ビス(4-ヒドロキシフェニル)ヘプタン、2,2-ビス(4-ヒドロキシフェニル)ノナン、10-ビス(4-ヒドロキシフェニル)デカン、1-ビス(4-ヒドロキシフェニル)ドデカン、等のビス(ヒドロキシアリール)アルカン類;
 1-ビス(4-ヒドロキシフェニル)シクロペンタン、1-ビス(4-ヒドロキシフェニル)シクロヘキサン、4-ビス(4-ヒドロキシフェニル)シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3-ジメチルシクロヘキサン、1-ビス(4-ヒドロキシフェニル)-3,4-ジメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,5-ジメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシ-3,5-ジメチルフェニル)-3,3,5-トリメチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3-プロピル-5-メチルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3-tert-ブチル-シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3-tert-ブチル-シクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-3-フェニルシクロヘキサン、1,1-ビス(4-ヒドロキシフェニル)-4-フェニルシクロヘキサン、等のビス(ヒドロキシアリール)シクロアルカン類;9,9-ビス(4-ヒドロキシフェニル)フルオレン、9,9-ビス(4-ヒドロキシ-3-メチルフェニル)フルオレン等のカルド構造含有ビスフェノール類;
 4,4’-ジヒドロキシジフェニルスルフィド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルフィド等のジヒドロキシジアリールスルフィド類;4,4’-ジヒドロキシジフェニルスルホキシド、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホキシド等のジヒドロキシジアリールスルホキシド類;4,4’-ジヒドロキシジフェニルスルホン、4,4’-ジヒドロキシ-3,3’-ジメチルジフェニルスルホン等のジヒドロキシジアリールスルホン類;
 イソソルビド、1,4-シクロヘキサンジメタノール、スピログリコール等の脂肪族ジオール類:
 これらのうち、ジヒドロキシ化合物としては、特に、ビスフェノールAを用いると、化合物(1)及び/又は化合物(2)から選ばれるエステル交換触媒の存在下に、ジアリールカーボネート及び/又はジカルボン酸エステルと溶融重縮合させた場合に、得られる熱可塑性樹脂の特定副生成物含有量を少なくすることができるため好ましい。
[2-3.ジアリールカーボネート、ジカルボン酸エステル]
 本発明の熱可塑性樹脂の製造方法においては、原料として、ジヒドロキシ化合物と、ジアリールカーボネート及び/又はジカルボン酸エステルとを用いる。
 ジアリールカーボネートとしては、好ましくは下記式(4)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000025
(式(4)中、R53及びR54は、それぞれ独立に、ハロゲン原子、ニトロ基、シアノ基、炭素数1~20のアルキル基、炭素数1~20のアルコキシカルボニル基、炭素数4~20のシクロアルキル基、または炭素数6~20のアリール基を表し、p及びqはそれぞれ独立に0~5の整数を表す。)
 ジアリールカーボネートとしては、具体的にはジフェニルカーボネート(以下、「DPC」と称する場合がある。)、ビス(4-メチルフェニル)カーボネート、ビス(4-クロロフェニル)カーボネート、ビス(4-フルオロフェニル)カーボネート、ビス(2-クロロフェニル)カーボネート、ビス(2,4-ジフルオロフェニル)カーボネート、ビス(4-ニトロフェニル)カーボネート、ビス(2-ニトロフェニル)カーボネート、ビス(メチルサリチルフェニル)カーボネート、ジトリルカーボネート等の(置換)ジアリールカーボネートが挙げられる。なかでもジフェニルカーボネートが好ましい。これらのジアリールカーボネートは、単独で又は2種以上を混合して用いることができる。
 ジカルボン酸エステルとしては、特に制限されないが、テレフタル酸ジフェニル、イソフタル酸ジフェニルが好適に用いられる。
 ジアリールカーボネートとジカルボン酸エステルを併用する場合、ジアリールカーボネートとジカルボン酸エステルの比率には特に制限はない。好ましくは、ジカルボン酸エステルがジアリールカーボネートに対して、50モル%以下、さらに好ましくは30モル%以下である。
[2-4.ジヒドロキシ化合物とジアリールカーボネート及び/又はジカルボン酸エステルとの比率]
 原料ジヒドロキシ化合物とジアリールカーボネート及び/又はジカルボン酸エステルとの比率は所望の本発明の熱可塑性樹脂が得られる限り任意である。ジアリールカーボネート及び/又はジカルボン酸エステルは、ジヒドロキシ化合物と重縮合させる際に、原料ジヒドロキシ化合物に対して過剰に用いることが好ましい。ジアリールカーボネート及び/又はジカルボン酸エステルの使用量は、ジヒドロキシ化合物に対して、1.01倍量(モル比)以上であることが好ましく、1.02倍量以上であることがより好ましい。モル比を上記下限以上とすることで、得られる本発明の熱可塑性樹脂の熱安定性が良好なものとなる。ジアリールカーボネート及び/又はジカルボン酸エステルの使用量は、ジヒドロキシ化合物に対して、1.30倍量(モル比)以下であることが好ましく、1.20倍量以下であることがより好ましい。モル比を上記上限以下とすることで、反応性が向上し、所望の分子量を有する本発明の熱可塑性樹脂の生産性が良好なものとなり、また、樹脂中の残存カーボネートエステル量が少なくなることにより、成形加工時や成形品としたとき、臭気の発生を抑制することができる。
[3.エステル交換触媒]
 本発明の熱可塑性樹脂の製造方法では、エステル交換触媒として、下記式(1)で表される特定の構造を有する化合物(1)及び/又は下記式(2)で表される特定の構造を有する化合物(2)よりなる触媒を用いることを特徴とする。
 エステル交換触媒として、化合物(1)は1種のみを用いてもよく、2種以上を混合して用いてもよい。化合物(2)についても、1種のみを用いてもよく、2種以上を混合して用いてもよい。また、化合物(1)の1種又は2種以上と化合物(2)の1種又は2種以上を混合して用いてもよい。
[3-1.化合物(1)]
 化合物(1)は下記式(1)で表される。
Figure JPOXMLDOC01-appb-C000026
(式(1)中、R~R24はそれぞれ独立に水素原子、炭素数1~10のアルキル基、又はシクロアルキル基であり、該アルキル基及びシクロアルキル基の一部の炭素原子がヘテロ原子に置き換わっていてもよく、R~R24のうち、同一のN原子に置換しているアルキル基同士が結合して環を形成していてもよい。RとR、RとR、RとR、RとRはそれぞれ結合して環を形成していてもよい。RまたはR10と、RまたはRと、R11またはR12がそれぞれ結合して環を形成していてもよく、R13またはR14と、RまたはRと、R15またはR16がそれぞれ結合して環を形成していてもよく、R17またはR18と、RまたはRと、R19またはR20がそれぞれ結合して環を形成していてもよく、R21またはR22と、RまたはRと、R23またはR24がそれぞれ結合して環を形成していてもよい。RまたはRと、RまたはRと、RまたはRがそれぞれ結合して環を形成していてもよく、RまたはRと、RまたはRと、RまたはRがそれぞれ結合して環を形成していてもよく、RまたはRと、RまたはRと、RまたはRがそれぞれ結合して環を形成していてもよく、RまたはRと、RまたはRと、RまたはRがそれぞれ結合して環を形成していてもよい。a~dはそれぞれ独立に、0または1である。Xは1価のアニオンを表す。)
 前記式(1)は、下記式(1B)で表される構造であることがより好ましい。下記式(1B)において、Yは、前記式(1)におけるXと同義である。
Figure JPOXMLDOC01-appb-C000027
(式(1B)中、R29~R52はそれぞれ独立に水素原子、又は炭素数1~10のアルキル基である。R29~R52のうち、同一のN原子に置換しているアルキル基同士が結合して環を形成していてもよい。R30とR31、R32とR33、R34とR35、R36とR29はそれぞれ結合して環を形成していてもよい。i~lはそれぞれ独立に、0または1である。Yは1価のアニオンを表す。)
 前記式(1)中、Xは1価のアニオンであれば特に制限はないが、塩化物イオン、臭化物イオン、テトラフェニルホウ酸イオン、フェノラートイオン、下記式(3a)で表されるBPAモノアニオン、及び下記式(3b)で表されるBPAモノアニオンBPA付加物から選ばれる少なくとも1種であることが好ましい。
Figure JPOXMLDOC01-appb-C000028
 特に好ましくは、Xは、フェノラートイオン、上記式(3a)で表されるBPAモノアニオン、及び上記式(3b)で表されるBPAモノアニオンBPA付加物から選ばれる少なくとも1種である。
 化合物(1)の好ましい例としては、下記式(1a)~(1e)で表される化合物(以下、「化合物(1A)」と称す場合がある。)が挙げられる。下記式(1a)~(1e)において、Zは前記式(1)におけるXと同義である。
Figure JPOXMLDOC01-appb-C000029
(式(1a)~(1e)中、Z1-~Z5-はそれぞれ独立に、1価のアニオンを表す。Meはメチル基を表す。)
 化合物(1)の特に好ましい具体例としては、本発明の化合物(1A)である下記式(1a’)~(1e’)で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000030
(式(1a’)、(1b’)中、L1-、L2-は、フェノラートイオン、前記式(3a)で表されるBPAモノアニオン、及び前記式(3b)で表されるBPAモノアニオンBPA付加物から選ばれる少なくとも1種である。式(1c’)~(1e’)中、L3-~L5-は1価のアニオンを表す。該1価のアニオンは式(1)におけるXと同義であり、好ましいものも同様である。Meはメチル基を表す。)
 化合物(1)は、例えば、以下の方法で入手または製造することができる。但し、化合物(1)の製造方法は以下の方法に限定されない。
(i) 市販の前記式(1)以外の構造の有機試薬を原料に使用して、化合物(1)を製造する。
(ii) 式(1)のアニオン(X)と異なるアニオンを有する化合物のアニオンを、前記式(1)のアニオン(X)に変換して使用する。
(iii) 市販の化合物(1)をそのまま使用する。
[3-2.化合物(2)]
 化合物(2)は下記式(2)で表される。
Figure JPOXMLDOC01-appb-I000031
(式(2)中、Ar~Ar12はそれぞれ独立に、置換若しくは無置換のアリール基を表す。Mは1価のアニオンを表す。)
 前記式(2)中、Ar~Ar12のアリール基としては、フェニル基、ナフチル基等が挙げられる。また、Ar~Ar12のアリール基が有していてもよい置換基としては、炭素数1~炭素数20のアルキル基等の1種又は2種以上が挙げられる。該アリール基はこれらの置換基を1つのみ有するものであってもよく、2つ以上有するものであってもよい。熱安定性の観点から、Ar~Ar12はそれぞれ独立に無置換のアリール基であることが好ましく、特に無置換のフェニル基であることが好ましい。
 前記式(2)中、Mは、1価のアニオンであれば特に制限はないが、塩化物イオン、臭化物イオン、テトラフェニルホウ酸イオン、フェノラートイオン、下記式(3a)で表されるBPAモノアニオン、並びに、下記式(3b),(3c)で表されるBPAモノアニオンBPA付加物から選ばれる少なくとも1種であることが好ましく、フェノラートイオン、下記式(3a)で表されるBPAモノアニオン、及び下記式(3b)で表されるBPAモノアニオンBPA付加物から選ばれる少なくとも1種であることが好ましい。
Figure JPOXMLDOC01-appb-C000032
 化合物(2)の特に好ましい具体例としては、以下のものが挙げられる。
Figure JPOXMLDOC01-appb-C000033
 化合物(2)は、例えば、以下の方法で入手または製造することができる。但し、化合物(2)の製造方法は以下の方法に限定されない。
 市販の有機試薬を原料に使用して、実施例等に記載の方法により化合物(2)を製造する。
[3-3.エステル交換触媒の使用量]
 本発明の熱可塑性樹脂の製造方法において、溶融重縮合工程におけるエステル交換触媒としての化合物(1)及び/又は化合物(2)の使用量は、特に制限されないが、ジヒドロキシ化合物1molに対して、0.01μmol以上であることが好ましく、より好ましくは0.1μmol以上であり、更により好ましくは1μmol以上である。上記下限以上とすることで、重合活性が得られ、目的とする所定の高い分子量の本発明の熱可塑性樹脂を得ることができる。一方、化合物(1)及び/又は化合物(2)の使用量は、ジヒドロキシ化合物の1molに対して、1000μmol以下であることが好ましく、より好ましくは100μmol以下、更により好ましくは50μmol以下、特に好ましくは10μmol以下、最も好ましくは5μmol以下である。上記上限以下とすることで、副生成物の生成を抑制することができる。
[3-4.その他の触媒成分]
 本発明の熱可塑性樹脂の製造方法においては、本発明の効果を著しく阻害しない範囲で、エステル交換触媒として化合物(1)及び/又は化合物(2)に加えて、化合物(1)及び/又は化合物(2)以外の化合物を更に触媒成分として用いてもよい。具体的には、化合物(1)及び/又は化合物(2)とは異なる塩基性化合物をさらに追加してもよい。このような化合物としては、周期表第1族元素(水素を除く)の化合物、周期表第2族元素の化合物、および塩基性ホウ素化合物、塩基性リン化合物からなる群より選ばれる少なくとも1種以上の化合物が挙げられる。
 前記の第1族元素(水素を除く)の化合物としては、第1族元素(水素を除く)の水酸化物、炭酸塩、炭酸水素化合物等の無機化合物;第1族元素(水素を除く)のアルコール類、フェノール類、有機カルボン酸類との塩等の有機化合物等が挙げられる。第1族元素(水素を除く)としては、例えば、リチウム、ナトリウム、カリウム、ルビジウム、セシウムが挙げられる。これらの第1族元素(水素を除く)の化合物の中でも、セシウム化合物が好ましく、特に、炭酸セシウム、炭酸水素セシウム、水酸化セシウムが好ましい。
 前記の第2族元素の化合物としては、例えば、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等の水酸化物、炭酸塩等の無機化合物;これらのアルコール類、フェノール類、有機カルボン酸類との塩等が挙げられる。
 塩基性ホウ素化合物としては、ホウ素化合物のナトリウム塩、カリウム塩、リチウム塩、カルシウム塩、マグネシウム塩、バリウム塩、ストロンチウム塩等が挙げられる。ホウ素化合物としては、例えば、テトラメチルホウ素、テトラエチルホウ素、テトラプロピルホウ素、テトラブチルホウ素、トリメチルエチルホウ素、トリメチルベンジルホウ素、トリメチルフェニルホウ素、トリエチルメチルホウ素、トリエチルベンジルホウ素、トリエチルフェニルホウ素、トリブチルベンジルホウ素、トリブチルフェニルホウ素、テトラフェニルホウ素、ベンジルトリフェニルホウ素、メチルトリフェニルホウ素、ブチルトリフェニルホウ素等が挙げられる。
 塩基性リン化合物としては、例えば、トリエチルホスフィン、トリ-n-プロピルホスフィン、トリイソプロピルホスフィン、トリ-n-ブチルホスフィン、トリフェニルホスフィン、トリブチルホスフィン、トリフェニルホスフィン、トリ-t-ブチルフェニルホスフィン等の3価のリン化合物等が挙げられる。
 本発明の熱可塑性樹脂の製造方法において、触媒の成分として含んでもよい化合物(1)及び/又は化合物(2)以外の他の触媒化合物の使用割合は、化合物(1)及び/又は化合物(2):他の触媒化合物(モル比率)で、通常10000:1~3:1の範囲、好ましくは5000:1~5:1の範囲、より好ましくは1000:1~10:1の範囲である。上記範囲とすることで、副生成物の生成を抑制することができるため好ましい。
[3-5.エステル交換触媒の添加方法]
 本発明の熱可塑性樹脂の製造方法において、上記エステル交換触媒の添加方法は任意の方法を用いることができる。エステル交換触媒は、原料であるジヒドロキシ化合物やエステル形成性化合物に直接混合してもよいし、予め溶媒に溶解させ、希釈溶液として用いてもよい。希釈溶液として用いることでフィード精度や原料への分散性を向上させることができる。使用する溶媒や触媒濃度については特に限定されず、溶解性に応じて適宜選択すればよい。溶媒としては、例えば水、フェノール、アセトン、アルコール、トルエン、エーテル、テトラヒドロフランなどが挙げられる。溶媒に水を使用する場合の水の性状は、含有される不純物の種類ならびに濃度が一定であれば特に限定されない。通常、蒸留水や脱イオン水等が好ましく用いられる。
 エステル交換触媒は重合中に追加で加えても構わない。
[4.熱可塑性樹脂の製造方法]
 本発明の熱可塑性樹脂の製造方法は、原料である前記ジヒドロキシ化合物とジアリールカーボネート及び/又はジカルボン酸エステルとを混合し、この原料混合物を、前記エステル交換触媒の存在下、重縮合反応装置で重縮合反応をさせることによって行われる。この重縮合工程の反応方式は、バッチ式、連続式、これらの組合せ等を用いることができる。重縮合工程後、反応を停止させ重合反応液中の未反応原料や反応副生物を脱揮除去する工程、熱安定剤、離型剤等を添加する工程、必要に応じて所定の粒径のペレットに形成する工程等を経て、本発明の熱可塑性樹脂が製造される。
 重縮合工程は、通常2段階以上、好ましくは3段~7段の多段方式で連続的に行われる。具体的な反応条件としては、通常、温度:150℃~350℃、圧力:常圧~0.01Torr(1.3Pa)、平均滞留時間:5分~150分の範囲である。
 多段方式においては、重縮合反応装置で、重縮合反応の進行とともに副生するフェノールをより効果的に系外に除去するために、前記の反応条件内で、段階的により高温、より高真空に設定する。
 得られる本発明の熱可塑性樹脂の色相等の品質低下を防止するためには、できるだけ低温、短滞留時間の設定が好ましい。このような観点から反応温度は150℃~320℃とすることが好ましい。
 重縮合工程を多段方式で行う場合は、通常、竪型反応器を含む複数基の反応器を設けて、本発明の熱可塑性樹脂の平均分子量を増大させる。反応器は通常3基~6基、好ましくは4基~5基設置される。
 反応器としては、例えば、攪拌槽型反応器、薄膜反応器、遠心式薄膜蒸発反応器、表面更新型二軸混練反応器、二軸横型攪拌反応器、濡れ壁式反応器、自由落下させながら重合する多孔板型反応器、ワイヤーに沿わせて落下させながら重合するワイヤー付き多孔板型反応器等が用いられる。
 竪型反応器の攪拌翼の形式としては、例えば、タービン翼、パドル翼、ファウドラー翼、アンカー翼、フルゾーン翼(神鋼パンテック(株)製)、サンメラー翼(三菱重工業(株)製)、マックスブレンド翼(住友重機械工業(株)製)、ヘリカルリボン翼、ねじり格子翼(日立製作所(株)製)等が挙げられる。
 横型反応器とは、攪拌翼の回転軸が横型(水平方向)であるものをいう。横型反応器の攪拌翼としては、例えば、円板型、パドル型等の一軸タイプの攪拌翼やHVR、SCR、N-SCR(三菱重工業(株)製)、バイボラック(住友重機械工業(株)製)、あるいはメガネ翼、格子翼(日立製作所(株)製)等の二軸タイプの攪拌翼が挙げられる。
[5.熱可塑性樹脂の物性]
 本発明の熱可塑性樹脂の製造方法で得られる本発明の熱可塑性樹脂の分子量は任意であり、適宜選択して決定すればよい。本発明の熱可塑性樹脂の溶液粘度から換算した粘度平均分子量[Mv]は、通常5,000以上であり、好ましくは10,000以上、より好ましくは15,000以上で、通常40,000以下であり、好ましくは30,000以下、より好ましくは24,000以下である。粘度平均分子量を前記範囲の下限値以上とすることにより本発明の熱可塑性樹脂の機械的強度をより向上させることができ、機械的強度の要求の高い用途に用いる場合により好ましいものとなる。粘度平均分子量を前記範囲の上限値以下とすることにより本発明の熱可塑性樹脂の流動性低下を抑制して改善でき、成形加工性を高めて成形加工を容易に行えるようになる。
 粘度平均分子量[Mv]とは、溶媒としてメチレンクロライドを使用し、ウベローデ粘度計を用いて温度20℃での極限粘度[η](単位dl/g)を求め、Schnellの粘度式、すなわち、η=1.23×10-4Mv0.83、から算出される値を意味する。極限粘度[η]とは、各溶液濃度[C](g/dl)での比粘度[ηsp]を測定し、下記式により算出した値である。
Figure JPOXMLDOC01-appb-M000034
 本発明の熱可塑性樹脂の末端水酸基濃度は、特に限定されないが、1500ppm以下が好ましく、より好ましくは1000ppm以下、更に好ましくは800ppm以下、特に好ましくは600ppm以下である。末端水酸基濃度が低くなるにつれて、本発明の熱可塑性樹脂の滞留熱安定性がより向上する傾向にある。本発明の熱可塑性樹脂の末端水酸基濃度は、50ppm以上が好ましく、より好ましくは100ppm以上、更に好ましくは150ppm以上、特に好ましくは200ppm以上である。末端水酸基濃度が高くなるにつれて、色調が改善される傾向にある。
 末端水酸基濃度の単位は、本発明の熱可塑性樹脂の重量に対する、末端水酸基の重量をppmで表示したものである。その測定方法は、四塩化チタン/酢酸法による比色定量(Macromol.Chem.88 215(1965)に記載の方法)である。
 原料ジヒドロキシ化合物としてビスフェノールAを用いた場合、得られる本発明の熱可塑性樹脂を加水分解した際に、例えば、下記式(A)~(E)に示されるような副生成物を含有することがある。これらの副生成物の存在は、得られる熱可塑性樹脂の構造単位の中にビスフェノールAに由来する異種結合構造単位を含むことを意味している。
Figure JPOXMLDOC01-appb-C000035
 式(A)~(D)中、R~Rは、それぞれ独立に水素原子又はメチル基を示す。式(A)~(E)中のベンゼン環において、ベンゼン環に結合する1つ以上の水素原子は、炭素数1~5のアルキル基、炭素数1~10のアルコキシ基、フェニル基、ビニル基、シアノ基、エステル基、アミド基、ニトロ基等の置換基によって置換さていてもよい。
 これらの副生成物は、本発明の熱可塑性樹脂を加水分解した後に分析することにより、含有量を測定することができる。上記式(A)~(E)で表される副生成物の合計量が、加水分解する前の得られた熱可塑性樹脂全体に対して1000ppm以下であることが好ましく、800ppm以下であることがより好ましく、600ppm以下であることがさらに好ましい。この副生成物の含有量の総量を上記範囲内とすることで、本発明の熱可塑性樹脂の色調や耐光性が良好となる。一方、上記式(A)~(E)で表される副生成物の合計量は0ppmであることが好ましいが、極端に減らそうとした場合、重合活性を低くし、長時間反応させる必要があり、その結果、色調が悪化するという不具合がある。このため、製品色調の観点から、通常100ppm以上とすることが好ましい。
 本発明の熱可塑性樹脂は、色調が良好である特徴を有しているが具体的には、ペレットYIで、通常15以下、好ましくは10以下、さらに好ましくは8以下である。このようなペレットYIの熱可塑性樹脂とすることで、着色した際の発色性や明度が向上し、製品デザインの自由度が向上する。
 ペレットYIはASTM D1925に準拠して、熱可塑性樹脂のペレットの反射光におけるYI値(イエローインデックス値)を測定して評価した。装置はコニカミノルタ社製分光測色計CM-5を用い、測定条件は測定径30mm、SCEを選択した。シャーレ測定用校正ガラスCM-A212を測定部にはめ込み、その上からゼロ校正ボックスCM-A124をかぶせてゼロ校正を行い、続いて内蔵の白色校正板を用いて白色校正を行った。白色校正板CM-A210を用いて測定を行い、L*が99.40±0.05、a*が0.03±0.01、b*が-0.43±0.01、YIが-0.58±0.01となることを確認した。ペレットの測定は、内径30mm、高さ50mmの円柱ガラス容器にペレットを40mm程度の深さまで詰めて測定を行った。ガラス容器からペレットを取り出してから再度測定を行う操作を2回繰り返し、計3回の測定値の平均値を用いた。
 YI値が小さいほど樹脂の黄色味が少なく、色調に優れることを意味する。
[6.熱可塑性樹脂組成物]
 本発明の熱可塑性樹脂は、必要に応じて、本発明の熱可塑性樹脂、即ち、本発明の熱可塑性樹脂の製造方法により製造されたポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂以外の、ポリカーボネート樹脂やポリエステル樹脂、またはその他の樹脂や、各種樹脂添加剤などのその他の成分を配合して熱可塑性樹脂組成物として用いてもよい。前記その他の成分は1種または2種以上が任意の組み合わせ及び比率で含有されていてもよい。
 その他の樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂等のポリオレフィン樹脂;ポリアミド樹脂;ポリイミド樹脂;ポリエーテルイミド樹脂;ポリウレタン樹脂;ポリフェニレンエーテル樹脂;ポリフェニレンサルファイド樹脂;ポリスルホン樹脂;ポリメタクリレート樹脂等が挙げられる。
 その他の樹脂は、1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
 樹脂添加剤としては、例えば、熱安定性、酸化防止剤、紫外線吸収剤、離型剤、滑剤、染顔料、帯電防止剤、防曇剤、アンチブロッキング剤、流動性改良剤、可塑剤、分散剤、抗菌剤、衝撃改良材、難燃剤、ガラス繊維、炭素繊維などの強化材、タルク、マイカ、シリカなどの充填材などが挙げられる。樹脂添加剤は1種が含有されていてもよく、2種以上が任意の組み合わせ及び比率で含有されていてもよい。
[7.本発明の化合物]
[7-1.本発明の化合物(1A)]
 本発明の化合物(1A)は、下記式(1a’)~(1e’)のいずれかで表されるものである。
Figure JPOXMLDOC01-appb-C000036
(式(1a’)、(1b’)中、L1-、L2-は、フェノラートイオン、下記式(3a)で表されるBPAモノアニオン、及び下記式(3b)で表されるBPAモノアニオンBPA付加物から選ばれる少なくとも1種である。式(1c’)~(1e’)中、L3-~L5-は1価のアニオンを表す。該1価のアニオンは式(1)におけるXと同義であり、好ましいものも同様である。Meはメチル基を表す。)
Figure JPOXMLDOC01-appb-C000037
 式(1c’)において、L3-としては、塩化物イオン、臭化物イオン、テトラフェニルホウ酸イオン、フェノラートイオン、式(3a)で表されるBPAモノアニオン、及び式(3b)で表されるBPAモノアニオンBPA付加物から選ばれる少なくとも1種であることが好ましく、フェノラートイオン、式(3a)で表されるBPAモノアニオン、及び式(3b)で表されるBPAモノアニオンBPA付加物から選ばれる少なくとも1種であることがより好ましい。
 式(1d’)において、L4-としては塩化物イオン、臭化物イオン、テトラフェニルホウ酸イオン、フェノラートイオン、式(3a)で表されるBPAモノアニオン、及び式(3b)で表されるBPAモノアニオンBPA付加物から選ばれる少なくとも1種であることが好ましく、フェノラートイオン、式(3a)で表されるBPAモノアニオン、及び式(3b)で表されるBPAモノアニオンBPA付加物から選ばれる少なくとも1種であることがより好ましい。
 式(1e’)において、L5-としては塩化物イオン、臭化物イオン、テトラフェニルホウ酸イオン、フェノラートイオン、式(3a)で表されるBPAモノアニオン、及び式(3b)で表されるBPAモノアニオンBPA付加物から選ばれる少なくとも1種であることが好ましく、フェノラートイオン、式(3a)で表されるBPAモノアニオン、及び式(3b)で表されるBPAモノアニオンBPA付加物から選ばれる少なくとも1種であることがより好ましい。
 式(1a’)~(1e’)で表される本発明の化合物(1A)は、特に本発明の熱可塑性樹脂の製造方法におけるエステル交換触媒、即ち本発明のエステル交換触媒として有用である。
[7-2.本発明の化合物(2)]
 本発明の化合物(2)は、下記式(2)で表される前述の化合物(2)である。
Figure JPOXMLDOC01-appb-C000038
(前記式(2)中、Ar~Ar12はそれぞれ独立に、置換若しくは無置換のアリール基を表す。Mは1価のアニオンを表す。)
 前記式(2)中、Ar~Ar12のアリール基としては、フェニル基、ナフチル基等が挙げられる。また、Ar~Ar12のアリール基が有していてもよい置換基としては、炭素数1~炭素数20のアルキル基等の1種又は2種以上が挙げられる。該アリール基はこれらの置換基を1つのみ有するものであってもよく、2つ以上有するものであってもよい。熱安定性の観点から、Ar~Ar12はそれぞれ独立に無置換のアリール基であることが好ましく、特に無置換のフェニル基であることが好ましい。
 前記式(2)中、Mは、1価のアニオンであれば特に制限はないが、塩化物イオン、臭化物イオン、テトラフェニルホウ酸イオン、フェノラートイオン、下記式(3a)で表されるBPAモノアニオン、並びに、下記式(3b),(3c)で表されるBPAモノアニオンBPA付加物から選ばれる少なくとも1種であることが好ましく、フェノラートイオン、下記式(3a)で表されるBPAモノアニオン、及び下記式(3b)で表されるBPAモノアニオンBPA付加物から選ばれる少なくとも1種であることが好ましい。
Figure JPOXMLDOC01-appb-C000039
 式(2)で表される本発明の化合物(2)の具体例は、前述の化合物(2)の具体例として挙げたものが挙げられる。
 式(2)で表される本発明の化合物(2)は、特に本発明の熱可塑性樹脂の製造方法におけるエステル交換触媒、即ち本発明のエステル交換触媒として有用である。
[8.ポリカーボネート]
 本発明のポリカーボネートは、本発明の熱可塑性樹脂の製造方法により製造されたポリカーボネートであって、前述の通り定義された粘度平均分子量[Mv]が、14,000以上、30,000以下であり、該ポリカーボネートの加水分解物について測定される下記式(A)~(E)で表される化合物(以下、「特定化合物」と称す場合がある。)の総量が、該ポリカーボネート樹脂に対して300質量ppm以上、550質量ppm以下であることを特徴とする。
 本発明のポリカーボネートの溶液粘度の粘度平均分子量[Mv]は、好ましくは15,000以上、より好ましくは18,000以上で、好ましくは29,000以下、より好ましくは23,000以下である。粘度平均分子量を前記範囲の下限値以上とすることにより本発明のポリカーボネートの機械的強度をより向上させることができ、機械的強度の要求の高い用途に用いる場合により好ましいものとなる。粘度平均分子量を前記範囲の上限値以下とすることにより本発明のポリカーボネートの流動性低下を抑制して改善でき、成形加工性を高めて成形加工を容易に行えるようになる。
Figure JPOXMLDOC01-appb-C000040
 式(A)~(D)中、R~Rは、それぞれ独立に水素原子又はメチル基を示す。式(A)~(E)中のベンゼン環において、ベンゼン環に結合する1つ以上の水素原子は、炭素数1~5のアルキル基、炭素数1~10のアルコキシ基、フェニル基、ビニル基、シアノ基、エステル基、アミド基、ニトロ基等の置換基によって置換さていてもよい。
アノ基、エステル基、アミド基、ニトロ基等の置換基によって置換さていてもよい。
 前述の通り、これらの特定化合物は、本発明のポリカーボネートを加水分解した後に分析することにより、含有量を測定することができる。特定化合物の合計量は、加水分解する前の得られたポリカーボネート全体に対して500ppm以下であることがより好ましい。特定化合物の含有量の総量を上記範囲内とすることで、本発明のポリカーボネートの色調や耐光性が良好となる。一方、特定化合物の合計量は0ppmであることが好ましいが、極端に減らそうとした場合、重合活性を低くし、長時間反応させる必要があり、その結果、色調が悪化するという不具合がある。このため、製品色調の観点から、特定化合物の含有量は、通常100ppm以上とすることが好ましい。
 本発明のポリカーボネートの末端水酸基濃度は、特に限定されないが、1000ppm以下が好ましく、より好ましくは800ppm以下、更に好ましくは700ppm以下、特に好ましくは600ppm以下である。末端水酸基濃度が低くなるにつれて、本発明のポリカーボネートの滞留熱安定性がより向上する傾向にある。本発明のポリカーボネートの末端水酸基濃度は、250ppm以上が好ましく、より好ましくは300ppm以上、更に好ましくは350ppm以上、特に好ましくは400ppm以上である。末端水酸基濃度が高くなるにつれて、色調が改善される傾向にある。
 以下、実施例を示して本発明について更に具体的に説明する。ただし、本発明は以下の実施例に限定されるものではなく、本発明の要旨を逸脱しない範囲において任意に変更して実施できる。
[評価方法]
 まず、各評価の測定方法について、説明する。
(1)触媒化合物の熱安定性試験
 10mgの触媒と30mgのDPCを混合し、J.YOUNGバルブ付きNMR試料管に加え、アルゴン雰囲気下で密閉した。次に、J.YOUNGバルブ付きNMR試料管をオイルバス内で220℃で105分間、220℃から290℃で20分間、次に290℃で1時間加熱を行ったた。次に、熱処理したサンプルを室温まで冷却し、DMSO-d6に溶解した。31P NMRを積算回数512回で測定し、得られたスペクトルの積分値に基づいて触媒の分解率を、加熱処前の触媒の質量100%に対して、加熱後に減少した触媒の質量%として計算した。
(2)熱可塑性樹脂の粘度平均分子量(Mv)
 熱可塑性樹脂を塩化メチレンに溶解し(濃度6.0g/L)、ウベローデ粘度管(森友理化工業社製)を用いて、20℃における固有粘度(極限粘度)[η](単位dL/g)を求め、Schnellの粘度式(下記式)から粘度平均分子量(Mv)を算出した。
   η=1.23×10-4Mv0.83
(3)熱可塑性樹脂の末端水酸基量
 熱可塑性樹脂の末端水酸基量は、以下に記載の手法により四塩化チタン/酢酸を用いた比色定量法により測定した。
(a)5v/v%酢酸溶液の調製
 1000mLメスフラスコに酢酸50mLを加え、塩化メチレンでメスアップし混合することで、5v/v%酢酸溶液を調製した。
(b)四塩化チタン溶液の調製
 300mLのフラスコに塩化メチレンをメスシリンダーで90mL入れ、5v/v%酢酸溶液をメスシリンダーで10mL添加し、攪拌子を入れてマグネチックスターラーで攪拌しながら、5mLのメスピペットで四塩化チタン溶液を2.5mL、メタノールを2.0mL、ゆっくりと添加することで、四塩化チタン溶液を調製した。
(c)検量線試料の調製
 原料ジヒドロキシ化合物の末端水酸基量が10重量ppmになるように塩化メチレン溶液を調製し、25mLのメスフラスコにそれぞれ、0、3、5mLずつ加えた。続いて、5v/v%酢酸を5mLずつ、四塩化チタン溶液10mLずつ加えた。それぞれ、塩化メチレンでメスアップしてよく混合した。
(d)検量線の作成
 作成した検量試料の吸光度をそれぞれ検出波長546nmで測定した。得られた吸光度を、検量線試料の濃度に対してプロットした。この傾きの逆数をファクターとした。
(e)測定試料の調製と吸光度測定
 熱可塑性樹脂0.2gと、5mLの塩化メチレンを、25mLメスフラスコに加えて溶解させた。つぎに、5v/v%酢酸溶液5mL、四塩化チタン溶液10mLを加え、塩化メチレンでメスアップしよく混合した。このように調製した溶液の吸光度を検出波長546nmで測定した。
(f)末端水酸基量の算出
 測定した吸光度とファクターの積を、測定試料の濃度で除することで、熱可塑性樹脂中の末端水酸基量を算出した。
(4)熱可塑性樹脂に含まれる式(A)~(E)で表される副生成物(特定化合物)含有量
 熱可塑性樹脂0.5gを塩化メチレン5mLに溶解した後、メタノール45mLおよび25重量%水酸化ナトリウム水溶液5mLを加え、70℃で30分間攪拌して加水分解した(塩化メチレン溶液)。その後、この塩化メチレン溶液に6規定の塩酸を加え、溶液のpHを2程度とし、純水にて100mLとなるように調整した。
 次に、調整した塩化メチレン溶液20μlを液体クロマトグラフィーに注入し、前記式(A)~(E)で表される化合物の含有量を測定し(単位:ppm)、副生成物である特定化合物含有量とした。
 液体クロマトグラフィーおよび測定条件は以下の通りである。
  液体クロマトグラフィー:株式会社島津製作所製LC-10AD
  カラム:YMC PACK ODS-AM M-307-3
      4.6mmID×75mmL
  検出器:UV280nm
  溶離液:(A)0.05%トリフルオロ酢酸水溶液(B)メタノール
  グラジェント条件:0分(B=40%)、25分(B-95%)
 式(A)~(E)で表される特定化合物の含有量は、ビスフェノールAにより作成した検量線に基づき、各々のピーク面積より算出した。
[略号の説明]
 以下において、用いた原料や化合物中の置換基等の略号は以下の通りである。
 BPA:ビスフェノールA(三菱ケミカル社製)
 DPC:ジフェニルカーボネート(三菱ケミカル社製)
 THF:テトラヒドロフラン
 DCM:ジクロロメタン
 Ph:フェニル
 Ad:アダマンチル
 imy:イミダゾール
 Et:エチル
 Me:メチル
 Mes:メシチル
 Pr:プロピル
 BPA:前記式(3b)で表されるBPAモノアニオンBPA付加物
[触媒化合物の合成]
<合成例1:BPAモノアニオンBPA付加物の調製>
 対応する化合物を最小量のTHFおよびメタノール混合溶媒(v/v=4:1)に溶解させ、化合物溶液を得た。
 別に、カリウムtert-ブトキシド(シグマアルドリッチ社製)とビスフェノールAをTHFおよびメタノール混合溶媒(v/v=4:1)に加えることでK-BPAを合成した(in situ)。
 このK-BPAを前記化合物溶液に室温下で滴下した。反応液を2時間攪拌後、濾過して沈殿した無機塩を除去した。濾液中の溶媒をロータリーエバポレーターで除去し、残留物をイソプロパノールから再結晶して、純粋な生成物を得た。
<実施例1:触媒Aの合成>
 テトラキス[トリス(ジメチルアミノ)ホスホラニリデンアミノ]ホスホニウムクロリド(以下、P5-Clと略記することがある)(シグマアルドリッチ社製)388mg(0.50mmol)を、合成例1に従って処理することで、下記構造式で表される触媒A(以下、P5-BPAと略記することがある)を収率53%で得た。
Figure JPOXMLDOC01-appb-C000041
 NMR(核磁気共鳴)による構造同定は以下の通りであった。
 H NMR(400MHz,298K,d-DMSO)δ6.82,6.48(各d,H-H=7.6Hz,各8H,BPA-H),2.57(d,H-P=12.0Hz,72H,N-CH),1.47(s,12H,BPA-CH).
 13C{H}NMR(100MHz,298K,d-DMSO)δ158.4,138.3,126.9,115.3,40.5,36.6,31.3.
 31P{H}NMR(162MHz,298K,d-DMSO)δ6.7(d,P-P=51.8Hz),-34.1(quintet,P-P=51.8Hz)
 元素分析結果は、計算値がC5410316:C54.26,H8.69,N18.75に対し、実測値がC54.13,H8.72,N18.64であった。
 得られた化合物の熱安定性試験の結果を表1に示す。
<実施例2:触媒Bの合成>
 P5-Cl(0.42g、0.54mmol)を5mLのTHFに溶解させた。次に、アルゴン雰囲気下で、ナトリウムフェノキシド(0.063g、0.54mmol)を加え、反応混合物を室温で3時間攪拌した後、濾過により沈殿を除去した。次に、濾液中の溶媒をロータリーエバポレーターで除去した。残留物をエーテルで洗浄し、真空下で乾燥させることで下記構造式で表される触媒B(以下、P5-OPhと略記することがある)を定量的に得た。
Figure JPOXMLDOC01-appb-C000042
 NMR(核磁気共鳴)による構造同定は以下の通りであった。
 H NMR(400MHz,298K,d-DMSO)δ6.83(t,H-H=8.0Hz,2H,Ph-H)6.37(d,H-H=8.0Hz,2H,Ph-H),6.16(t,H-H=8.0Hz,1H,Ph-H),2.58(d,H-P=12.0Hz,72H,N-CH).
 13C{H}NMR(100MHz,298K,d-DMSO)δ128.6,117.4,36.6.
 31P{H}NMR(162MHz,298K,d-DMSO)δ6.7(d,P-P=53.4Hz),-34.1(quintet,P-P=53.4Hz)
 元素分析結果は、計算値がC307716OP:C43.26,H9.32,N26.91であるのに対し、実測値はC42.79,H9.13,N26.97であった。
 得られた化合物の熱安定性試験の結果を表1に示す。
<実施例3:触媒Cの合成>
 P5-Cl0.31g(0.41mmol)(シグマアルドリッチ社製)を5mLのジクロロメタンに溶解し、次に、テトラフェニルホウ酸ナトリウム(シグマアルドリッチ社製)0.14g(0.41mmol)を加えた。反応混合物を室温で一晩攪拌後、濾過により、形成された塩化ナトリウムを除去した。次に、濾液中のジクロロメタンをロータリーエバポレーターで除去した。残留物を10mLのエタノール中で30分間加熱還流させた。室温まで冷却した後、沈殿した白色結晶を濾過により単離し、真空下で乾燥させることで、下記構造式で表される触媒C(以下、P5-BPhと略記することがある)を収率99%で得た。
Figure JPOXMLDOC01-appb-C000043
 NMR(核磁気共鳴)による構造同定は以下の通りであった。
 H NMR(400MHz,298K,CDCl)δ7.31(m,8H,Ph-H)7.03(t,H-H=7.6Hz,8H,Ph-H),6.88(t,H-H=7.6Hz,4H,Ph-H),2.61(d,H-P=8.0Hz,72H,N-CH).
 13C{H}NMR(100MHz,298K,CDCl)δ164.5(m),136.3(d),126.0(m),122.1,37.2(d).
 31P{H}NMR(162MHz,298K,CDCl)δ6.3(d,P-P=55.0Hz),-34.7(quintet,P-P=55.0Hz)
 元素分析結果は、計算値がC4892BN16:C54.44,H8.76であるのに対し、実測値がC54.31,H8.67,N21.27であった。
<実施例4:触媒Dの合成>
 ビス[トリス(ジメチルアミノ)ホスホラニリデン]アンモニウム テトラフロオロボレート(以下、P2-BFと略記することがある)(シグマアルドリッチ社製)0.43g(1.0mmol)を、合成例1に従って処理することで、下記構造式で表される触媒D(以下、P2-BPAと略記することがある)を収率94%で得た。
Figure JPOXMLDOC01-appb-C000044
 NMR(核磁気共鳴)による構造同定は以下の通りであった。
 H NMR(400MHz,298K,d-DMSO)δ6.82,6.49(eachd,H-H=7.6Hzeach8H,BPA-H),2.60(m,36H,N-CH),1.48(s,12H,BPA-CH).
 13C{H}NMR(100MHz,298K,d-DMSO)δ158.5,138.3,126.9,115.3,40.5,36.2,31.1.
 31P{H}NMR(162MHz,298K,d-DMSO)δ17.5
 元素分析結果は、理論計算値がC4267:C63.38,H8.48,N12.32であるのに対して、実測値はC63.21,H8.35,N12.46であった。
 得られた化合物の熱安定性試験の結果を表1に示す。
<実施例5:触媒Eの合成>
 テトラキス[(トリ-1-ピロリジニルホスホラニリデン)アミノ]ホスホニウム テトラフロオロボレート(以下、P5(pyr)-BFと略記することがある)(Chem.Eur.J.2006,12,429-437に基づいて合成)1.14g(1.0mmol)を、合成例1に従って処理することで、下記構造式で表される触媒E(以下、P5(pyr)-BPAと略記することがある)を収率83%で得た。
Figure JPOXMLDOC01-appb-C000045
<実施例6:触媒Fの合成>
(ステップ1:トリクロロ[(トリクロロホスホラニリデン)アミノ]リン(V)ヘキサクロロホスフェート(以下、[ClP=N=PCl][PCl]と略記することがある)の合成)
 五塩化リン(アクロスオーガニクス社製)6.24g(30mmol)を15mLのジクロロメタンに懸濁させた。次に、水浴冷却をしながら、10mLのジクロロメタンに溶解させたトリス(トリメチルシリル)アミン(シグマアルドリッチ社製)(2.33g、10mmol)を滴下した。室温でさらに2時間攪拌した。沈殿した生成物を濾過により単離し、真空下で乾燥させて、淡黄色の固体を5.08g得た。収率は95%であった。
 NMR(核磁気共鳴)による構造同定は以下の通りであった。
 31P{H}NMR(162MHz,298K,CDCl)δ21.8,-296.6.
(ステップ2:1,1,1,3,3,3-ヘキサキス(シクロヘキシルアミノ)-1λ,3λ-ジホスファゼニウムテトラフルオロボレート(以下、P2(CyNH)-BFと略記することがある)の合成)
 2.39gの[ClP=N=PCl][PCl](4.5mmol)を、アルゴン雰囲気下で15mLの無水クロロベンゼンに懸濁し、次にシクロヘキシルアミン(シグマアルドリッチ社製)10.7g(108mmol)を氷浴で冷却しながら滴下した。次に、得られた反応混合物を130℃に加熱し、この温度で1時間攪拌した。反応混合物を室温まで冷却した後、20mLの水中のテトラフルオロホウ酸ナトリウム(0.49g、4.5mmol)を加え、混合物を1時間攪拌した。反応混合物を濾過し、濾液中のクロロベンゼンの相を分離し、硫酸ナトリウムで乾燥させた。クロロベンゼンをエバポレーターで留去し、残留物に30mLのエーテルを加え、沈殿した生成物を濾過により単離した。空気中で乾燥させることで2.43gの白色固体を得た。収率は72%であった。
 NMR(核磁気共鳴)による構造同定は以下の通りであった。
 H NMR(400MHz,298K,CDCl)δ2.92(m,6H,NCH),2.80(m,6H,NH),1.86(m,12H,Cy-H),1.73(m,12H,Cy-H),1.57(m,6H,Cy-H),1.24(m,30H,Cy-H).
 13C{H}NMR(100MHz,298K,CDCl)δ53.7,35.4,23.7.
 31P{H}NMR(162MHz,298K,CDCl)δ5.4.
(ステップ3:1,1,1,3,3,3-ヘキサキス(シクロヘキシル(メチル)アミノ)-1λ,3λ-ジホスファゼニウムテトラフルオロボレート(以下、P2(CyNMe)-BFと略記することがある)の合成)
 P2(CyNH)-BF(1.33g、1.77mmol)を10mLのクロロベンゼンに溶解した。次に、50%水酸化ナトリウム水溶液10mL、および硫酸ジメチル(メルク社製)(1.61g、12.7mmol)を順番に加えた。混合物を室温で一晩攪拌した後、沈殿した硫酸ナトリウムを溶解するために10mLの水を加えた。クロロベンゼン相を分離し、硫酸ナトリウムで乾燥させた後、クロロベンゼンをエバポレーターで留去した。残留物に20mLのエーテルを加え、沈殿した生成物を濾過により単離し、空気中で乾燥させることで、1.10gの白色固体を収率74%で得た。
 NMR(核磁気共鳴)による構造同定は以下の通りであった。
 H NMR(400MHz,298K,CDCl)δ3.17(m,6H,NCH),2.49(m,18H,N-CH),1.86(m,12H,Cy-H),1.60(m,30H,Cy-H),1.23(m,12H,Cy-H),1.07(m,6H,Cy-H).
 13C{H}NMR(100MHz,298K,CDCl)δ55.7,33.1,28.1,26.1,25.2.
 31P{H}NMR(162MHz,298K,CDCl)δ14.1.
(ステップ4:1,1,1,3,3,3-ヘキサキス(シクロヘキシル(メチル)アミノ)-1λ,3λ-ジホスファゼニウム4-(2-(4-ヒドロキシフェニル)プロパン-2-イル)フェノラートイオンBPA付加物(以下、(P2(CyNMe)-BPAと略記することがある)の合成)
 0.84g(1.0mmol)のP2(CyNMe)-BFを、合成例1に従って処理することで、下記構造式で表される触媒F(以下、P2(CyNMe)-BPAと略記することがある)を収率86%で得た。
Figure JPOXMLDOC01-appb-C000046
 NMR(核磁気共鳴)による構造同定は以下の通りであった。
 H NMR(400MHz,298K,d-DMSO)δ6.82,6.46(eachd,H-H=7.6Hz,each8H,BPA-H),3.13(m,6H,NCH),2.45(m,18H,N-CH),1.78(m,12H,Cy-H),1.67-1.51(m,30H,Cy-H),1.47(s,12H,BPA-CH),1.20(m,12H,Cy-H),1.04(m,6H,Cy-H).
 13C{H}NMR(100MHz,298K,d-DMSO)δ157.6,139.1,127.0,115.1,54.9,40.6,30.9,30.3,27.5,25.5,24.7.
 31P{H}NMR(162MHz,298K,d-DMSO)δ13.9.
 元素分析は、理論計算値がC72115:C71.78,H9.62,N8.14であるのに対して、実測値がC71.70,H9.67,N8.27であった。
 得られた化合物の熱安定性試験の結果を表1に示す。
<実施例15:触媒Gの合成>
(ステップ1:テトラキス[(トリフェニルホスホラニリデン)アミノ]ホスホニウムテトラフルオロボレート(以下、P5(Ph)-BFと略記することがある)の合成)
文献(M.Taillefer,N.Rahier,A.Hameau and J.-N.Volle,Chem.Commun.2006,3238-3239;M.G.Davidson,A.E.Goeta,J.A.K.Howard,C.W.Lehmann,G.M.McIntyre and R.D.Price,J.Organomet.Chem.1998,550,449-452)記載の手法により得たPhP=NH(3.48g,12.5mmol)を、20mLの無水クロロベンゼンに溶解し、氷水浴で冷却した。アルゴン雰囲気下で五塩化リン(0.29g、1.40mmol)を加えた。反応混合物をゆっくりとオイルバスで160℃に加熱し、この温度で20時間維持した。得られた懸濁液を熱時濾過し、残った白色の固体を熱した10mLのクロロベンゼンで洗浄した。ろ液中のすべての揮発性物質をロータリーエバポレーターで除去した。残留物を10mLのエーテルで処理し、沈殿した固体を濾過により単離した。得られた固体を10mLのDCMに溶解し、5mLの水中のNaBF(0.20g、1.8mmol)で処理した。DCM層を分離し、NaSOで乾燥させた。DCMを除去した後、残った固体を10mLのエーテルで処理し、濾過し、空気中で乾燥させたところ、白色生成物としてP5(Ph)-BFを0.98g得た。収率は57%であった。
 NMR(核磁気共鳴)による構造同定は以下の通りであった。
 H NMR(400MHz,298K,CDCl)δ7.60(m,12H),7.24(m,24H),7.10(m,24H).
 13C{H}NMR(100MHz,298K,CDCl)δ132.9(d),131.6,131.3(dd),128.3(d).
 31P{H}NMR(162MHz,298K,CDCl)δ2.7(d,P-P=4.8Hz),-10.1(quintet,P-P=4.8Hz).
 元素分析は、理論計算値がC7277NO:C70.71,H4.95,N4.58であるのに対して、実測値がC70.12,H4.80,N4.45であった。
 ESI-MSスペクトルは、理論計算値がm/z:1135.35であるのに対して、実測値がm/z:1135.35であった。
(ステップ2:テトラキス[(トリフェニルホスホラニリデン)アミノ]ホスホニウム4-(2-(4-ヒドロキシフェニル)プロパン-2-イル)フェノラートBPA付加物(以下、P5(Ph)-BPA1.67と略記することがある)の合成)
 5mLのメタノールに溶解させたP5(Ph)-BF(0.74g、0.61mmol)に、K-BPA(5mLのメタノール中に、カリウムtert-ブトキシド(68mg、0.61mmol)とBPA(278mg、1.22mmol)を加えることでin situで調製)を加えた。混合物を室温で1時間攪拌した。10mLのDCMを加え、混合物を濾過した。すべての溶媒をエバポレーターで留去した。残った固体を10mLのメタノールで還流し、次に室温まで冷却した。沈殿した白色の固体を濾過により単離し、空気中で乾燥させることにより、触媒G(P5(Ph)-BPA1.67)を収率81%で0.78g得た。H NMRの分析結果は、生成物が1.67当量のBPAを含むことを示した。
 NMR(核磁気共鳴)による構造同定は以下の通りであった。
 H NMR(400MHz,298K,CDCl/CDOD=1:4)δ7.60(m,12H),7.24(m,24H),7.10(m,24H),6.98,6.62(eachd,H-H=7.6Hzeach6.6H,BPA-H),1.56(s,10H,BPA-CH).
 13C{H}NMR(100MHz,298K,CDCl/CDOD=1:4)δ157.0,140.9,132.9(d),131.6,131.3(dd),128.3(d),127.5,115.3,41.2,30.9.
 31P{H}NMR(162MHz,298K,CDCl)δ2.7(d,P-P=4.8Hz),‒10.2(quintet,P-P=4.8Hz).
 ESI-MSスペクトルは、理論計算値がm/z:1135.35であるのに対して、実測値がm/z:1135.35であった。
 得られた化合物の熱安定性試験の結果を表1に示す。
Figure JPOXMLDOC01-appb-C000047
<比較例1:触媒Hの合成>
 2-Et-1,4-Ad-imidazolium bromide0.8gをTHF5mLに溶解した。次に、カリウムtert-ブトキシド(シグマアルドリッチ製)188mgをTHF2mLに溶解した溶液に2-Et-1,4-Ad-imidazolium bromideを含む溶液に加えた。混合物は14時間、室温で攪拌した。ろ過物を回収し、ロータリーエバポレーターで残留溶媒を除去すると黄色い固形物(2-Et-1,4-Ad-imidazole)が580mg得られた。
 次に、2-Et-1,4-Ad-imidazole400mgをヨードメタン3mLに溶解させて45℃で14時間攪拌した。ロータリーエバポレーターでヨードメタンを除去後、ジエチルエーテル10mLを加えて固形物をろ過、乾燥させると青みがかった黄色い結晶が552mg得られた(2-Et-1,4-Ad-3-Me-imy-I)。
 次に、2-Et-1,4-Ad-3-Me-imy-I653mgをTHF3mLとエタノール1mLに溶解した。また、252mgのAgBFをTHF3mLとエタノール1mLに溶解した。AgBFを含む溶液を2-Et-1,4-Ad-3-Me-imy-Iを含む溶液に滴下した。次に、BPA294mgとカリウム ターシャリーブトキシド(シグマアルドリッチ製)145mgをTHF3mLとエタノール1mLに溶解した。この溶液を2-Et-1,4-Ad-3-Me-imy-Iを含む溶液と混合し、室温で4時間攪拌し、ろ過物を回収した。ろ過物中の残存溶媒はロータリーエバポレーターで除去し、固形物をDCMで抽出した。溶液中のDCMをロータリーエバポレーターで除去して下記構造式で表される触媒H(2-Et-1,4-Ad-3-Me-imy-BPAと略記することがある。純度85%)を670mg得た。
Figure JPOXMLDOC01-appb-C000048
 NMR(核磁気共鳴)による構造同定は以下の通りであった。
 H NMR(400MHz,298K):δ7.20(s,1H,5-H),6.70,6.32(each d,H-H=8.6Hz,each 4H,BPA-H),3.86(s,3H,N-CH),3.22(q,H-H=7.4Hz,2H,CHCH),2.18(9H,Ad-H),2.04(3H,Ad-H),1.96(6H,Ad-H),1.76-1.66(12H,Ad-H),1.44(s,6H,BPA-H),1.20(t,H-H=7.4Hz,3H,CHCH
<比較例2:触媒Iの合成>
 3-hydroxybutan-2-oneを13.2gとメシチルアミン13.5gとトルエン150mLと塩化水素0.05mLを混合し、窒素雰囲気下で3時間、還流した。得られた黄色い溶液を室温まで冷却後、溶媒をロータリーエバポレーターで除去し、3-(mesitylamino)butan-2-oneを15.4g得た。
 次に、3-(mesitylamino)butan-2-one 4.1gと、トリエチルアミン5.6mL、アセチルクロライド7.9g、DCM30mLを0℃で混合し、室温で14時間攪拌した。析出したアンモニウム塩をフィルターで除去した。溶液からDCMを留去し、得られた溶液をシリカゲルカラムで分離した。生成物をヘキサンおよび酢酸エチル混合液(重量比4:1)で溶離させて青みがかった黄色い液体を3.2g得た。次に、得られた液体2.5gを無水酢酸10.3gと混合し、37%塩化水素水溶液0.84mLを添加した。混合物を室温で14時間攪拌し、50mLのジエチルエーテルを添加した。有機溶液層を回収しジエチルエーテル2mLで2回洗浄した。得られた油状の物質をトルエン20mL、メシチルアミン2.0gと混合し室温で3時間攪拌した。無水ジエチルエーテル50mLで洗浄し、無水酢酸6mL、トルエン20mL、37%塩化水素水溶液1.3mLを混合し110℃で14時間攪拌した。溶媒をロータリーエバポレーターで除去すると白色の2,4,5-Me-1,3-Mes-imy-Clを1.4g得た。
 次に、2,4,5-Me-1,3-Mes-imy-Cl500mgをTHF 2mLとエタノール0.5mLに溶解させた。次に、BPA228mgとカリウムtert-ブトキシド112mgをTHF2mLとエタノール0.5mLに溶解させた。2,4,5-Me-1,3-Mes-imy-Clを含む溶液とBPAを含む溶液を60℃で1時間攪拌した後、ろ過物を回収した。ろ過物中の溶媒をロータリーエバポレーターで除去した後、DCM 5mLと混合した。DCMをロータリーエバポレーターで除去し、下記構造式で表される触媒I(以下、Mes-2,4,5-Me-imy-BPAと略記することがある。純度86%)を495mg得た。
Figure JPOXMLDOC01-appb-C000049
 NMR(核磁気共鳴)による構造同定は以下の通りであった。
 H NMR(400MHz,298K):δ7.23(s,4H,Ar-H),6.68(d,H-H=8.6Hz,4H,Ar-H),6.30(d,H-H=8.6Hz,4H,Ar-H),2.36(s,6H,C4,5-CH),2.10(s,3H,C2-CH),2.02(s,12H,Ar-CH),2.01(s,6H,Ar-CH),1.43(s,6H,BPA-CH
<比較例3:触媒Jの合成>
 1,3-Bis(1-adamantyl)imidazol-2-ylidene(Strem Chemicals製)15.7mgとTHF7.6mLとBPA10.6mgを混合し、1.5mLメタノールを添加して、下記構造式で表される触媒J(以下、Ad-imy-BPAと略記することがある)を含む溶液を得た。
 得られた化合物の熱安定性試験の結果を表1に示す。
Figure JPOXMLDOC01-appb-C000050
<比較例4:触媒Lの合成>
 ナトリウムフェノキサイド116mgとTHF1mLとiPr-imy-Cl(Strem Chemicals製、97%)189mgを混合し、室温で14時間攪拌した。固形物をろ過して除去し、溶液中のTHFをロータリーエバポレーターで留去して、下記構造式で表される触媒L(以下、iPr-imy-OPhと略記することがある)231mgを得た。
Figure JPOXMLDOC01-appb-C000051
<触媒M>
 触媒Mとしては、下記構造式で表される、2-tert-ブチルイミノ-2-ジエチルアミノ-1,3-ジメチルペルヒドロ-1,3,2-ジアザホスホリン(以下、BEMPと略記することがある)(シグマアルドリッチ製)を使用した。
Figure JPOXMLDOC01-appb-C000052
<触媒K>
 触媒Kとしては、下記構造式で表される水酸化テトラメチルアンモニウム(以下、TMAHと略記することがある)(97%、シグマアルドリッチ製)を使用した。
Figure JPOXMLDOC01-appb-C000053
[熱可塑性樹脂の製造]
<実施例7>
 反応器攪拌機、反応器加熱装置、反応器圧力調整装置を付帯した内容量150mLのガラス製反応器に、BPA116.71g(約0.51mol)、DPC117.95(約0.55mol)を投入しエステル交換触媒として触媒AをBPA1molに対し、3μmolとなるように添加して混合物を調製した。
 次に、ガラス製反応器内を約100Pa(0.75Torr)に減圧し、続いて、窒素で大気圧に復圧する操作を3回繰り返し、反応器の内部を窒素置換した。窒素置換後、反応器外部温度を220℃にし、反応器の内温を徐々に昇温させ、混合物を溶解させた。その後、100rpmで攪拌機を回転させた。そして、反応器の内部で行われるBPAとDPCのオリゴマー化反応により副生するフェノールを留去しながら、40分間かけて反応器内の圧力を絶対圧で101.3kPa(760Torr)から13.3kPa(100Torr)まで減圧した。
 続いて、反応器内の圧力を13.3kPaに保持し、フェノールをさらに留去させながら、80分間、エステル交換反応を行った。その後、反応器外部温度を290℃に昇温、40分間かけて反応器内圧力を絶対圧で13.3kPa(100Torr)から399Pa(3Torr)まで減圧し、留出するフェノールを系外に除去した。さらに反応器内の絶対圧を30Pa(約0.2Torr)まで減圧し、重縮合反応を行った。反応器の攪拌機が予め定めた所定の攪拌動力となったときに、重縮合反応を終了した。
 なお、反応開始から、反応終了までの反応時間を計測し、表2中に重合時間(単位:分)として記載した。
 次いで、反応器内を、窒素により絶対圧で101.3kPaに復圧の上、ゲージ圧で0.2MPaまで昇圧し、反応器の槽底からポリカーボネート樹脂をストランド状で抜き出し、ストランド状のポリカーボネート樹脂を得た後、回転式カッターを使用してペレット化した。
 得られたポリカーボネート樹脂の評価結果を表2に示す。
<実施例8>
 実施例7において、BPA116.71g(約0.51mol)、DPC117.73g(約0.55mol)を投入し、触媒AをBPA1molに対し、2μmolとなるように添加した以外は、実施例7と同様にして、ポリカーボネート樹脂の重合を行った。重合時間と得られたポリカーボネート樹脂の評価結果を表2に示す。
<実施例9>
 実施例7において、BPA116.71g(約0.51mol)、DPC116.85g(約0.55mol)を投入し、触媒AをBPA1molに対し、1μmolとなるように添加した以外は、実施例7と同様にして、ポリカーボネート樹脂の重合を行った。重合時間と得られたポリカーボネート樹脂の評価結果を表2に示す。
<実施例10>
 実施例7において、BPA116.71g(約0.51mol)、DPC118.28g(約0.55mol)を投入し、エステル交換触媒BをBPA1molに対し、2.5μmolとなるように添加した以外は、実施例7と同様にして、ポリカーボネート樹脂の重合を行った。重合時間と得られたポリカーボネート樹脂の評価結果を表2に示す。 
<実施例11>
 実施例7において、BPA116.71g(約0.51mol)、DPC118.28g(約0.55mol)を投入し、エステル交換触媒として触媒Aの代りに触媒CをBPA1molに対し、2.5μmolとなるように添加した以外は、実施例7と同様にして、ポリカーボネート樹脂の重合を行った。重合時間と得られたポリカーボネート樹脂の評価結果を表2に示す。
<実施例12>
 実施例7において、エステル交換触媒として触媒Aの代わりに触媒Dを、BPA1molに対し3μmol使用した以外は、実施例7と同様にして、ポリカーボネート樹脂の重合を行った。重合時間と得られたポリカーボネート樹脂の評価結果を表2に示す。
<実施例13>
 実施例7において、エステル交換触媒として触媒Aの代わりに触媒Eを、BPA1molに対し3μmol使用した以外は、実施例7と同様にして、ポリカーボネート樹脂の重合を行った。重合時間と得られたポリカーボネート樹脂の評価結果を表2に示す。
<実施例14>
 実施例7において、エステル交換触媒として触媒Aの代わりに触媒Fを、BPA1molに対し3μmol使用した以外は、実施例7と同様にして、ポリカーボネート樹脂の重合を行った。重合時間と得られたポリカーボネート樹脂の評価結果を表2に示す。
<実施例16>
 実施例7において、エステル交換触媒として触媒Aの代わりに触媒GをBPA1molに対し3μmol使用した以外は、実施例7と同様にして、ポリカーボネート樹脂の重合を行った。重合時間と得られたポリカーボネート樹脂の評価結果を表2に示す。
<比較例5>
 実施例7において、BPA116.71g(約0.51mol)、DPC117.73g(約0.55mol)を投入し、エステル交換触媒として触媒Aの代りに触媒HをBPA1molに対し、7.7μmolとなるように添加した以外は、実施例7と同様にして、ポリカーボネート樹脂の重合を行った。重合時間と得られたポリカーボネート樹脂の評価結果を表2に示す。
<比較例6>
 実施例7において、BPA116.71g(約0.51mol)、DPC117.73g(約0.55mol)を投入し、エステル交換触媒として触媒Aの代りに触媒IをBPA1molに対し、7μmolとなるように添加した以外は、実施例7と同様にして、ポリカーボネート樹脂の重合を行った。重合時間と得られたポリカーボネート樹脂の評価結果を表2に示す。
<比較例7>
 実施例7において、BPA116.71g(約0.51mol)、DPC118.83g(約0.55mol)を投入し、エステル交換触媒として触媒Aの代りに触媒IをBPA1molに対し、5μmolとなるように添加した以外は、実施例7と同様にして、ポリカーボネート樹脂の重合を行った。重合時間と得られたポリカーボネート樹脂の評価結果を表2に示す。
<比較例8>
 実施例7において、BPA116.71g(約0.51mol)、DPC117.84g(約0.55mol)を投入し、エステル交換触媒として触媒Aの代りに触媒JをBPA1molに対し、7μmolとなるように添加した以外は、実施例7と同様にして、ポリカーボネート樹脂の重合を行った。重合時間と得られたポリカーボネート樹脂の評価結果を表2に示す。
<比較例9>
 実施例7において、BPA116.71g(約0.51mol)、DPC117.73g(約0.55mol)を投入し、エステル交換触媒として触媒Aの代りに触媒JをBPA1molに対し、20μmolとなるように添加した以外は、実施例7と同様にして、ポリカーボネート樹脂の重合を行った。重合時間と得られたポリカーボネート樹脂の評価結果を表2に示す。
<比較例10>
 実施例7において、BPA116.71g(約0.51mol)、DPC118.83g(約0.55mol)を投入し、エステル交換触媒として触媒Aの代りに触媒KをBPA1molに対し、5μmolとなるように添加した以外は、実施例7と同様にして、ポリカーボネート樹脂の重合を行った。重合時間と得られたポリカーボネート樹脂の評価結果を表2に示す。
<比較例11>
 実施例7において、BPA116.71g(約0.51mol)、DPC118.83g(約0.55mol)を投入し、エステル交換触媒として触媒Aの代りに触媒LをBPA1molに対し、5μmolとなるように添加した以外は、実施例7と同様にして、ポリカーボネート樹脂の重合を行った。重合時間と得られたポリカーボネート樹脂の評価結果を表2に示す。
<比較例12>
 実施例7において、BPA116.71g(約0.51mol)、DPC115.43g(約0.54mol)を投入し、エステル交換触媒として触媒Aの代りに触媒MをBPA1molに対し、10μmolとなるように添加した以外は、実施例7と同様にして、ポリカーボネート樹脂の重合を行った。重合時間と得られたポリカーボネート樹脂の評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000054
Figure JPOXMLDOC01-appb-T000055
[考察]
 表1より、実施例1、2、4~6、15で得られた本発明の触媒化合物は、分解率が低く、熱安定性に優れていることが分かる。
 これに対して、比較例3、12の触媒J,Mは分解率が高く、熱安定性に劣る。
 表2より明らかなように、本発明にかかるエステル交換触媒を用いた実施例7~14、16では、3μmol以下と少ない触媒量でも重合時間が245分以下と短いため、反応性に優れており、特定副生成物含有量も550ppm以下と少なく、良好である。
 これに対して、比較例5は7.7μmolの触媒を用いているが、実施例と同等以上の反応時間を要しており、また特定副生成物含有量も実施例より多い。
 比較例6は、7μmolの触媒を用いているが、実施例と同等以上の反応時間を要しており、また特定副生成物含有量も実施例より多い。
 比較例7では、比較例6と同じ触媒を、比較例6よりも少ない5μmol用いており、特定副生成物含有量は比較例6よりも改善傾向であるが、重合時間が長い。
 比較例8は、特定副生成物が実施例同等レベルで少ないが、重合時間が長い。
 比較例9では、比較例8と同じ触媒を、比較例8よりも多い20μmol用いたが、反応性の改善は見られず、さらに特定副生成物含有量も増える傾向であった。
 比較例10,11,12は、実施例よりも用いた触媒量が多いが、反応時間は長く、また特定副生成物含有量も多い。
 本発明を特定の態様を用いて詳細に説明したが、本発明の意図と範囲を離れることなく様々な変更が可能であることは当業者に明らかである。
 本出願は、2021年3月23日付で出願された日本特許出願2021-048264に基づいており、その全体が引用により援用される。

Claims (22)

  1.  ジヒドロキシ化合物と、ジアリールカーボネート及び/又はジカルボン酸エステルとを、下記式(1)で表される化合物及び/又は下記式(2)で表される化合物から選ばれるエステル交換触媒の存在下に溶融重縮合させる工程を含む、ポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、R~R24はそれぞれ独立に水素原子、炭素数1~10のアルキル基、又はシクロアルキル基であり、該アルキル基及びシクロアルキル基の一部の炭素原子がヘテロ原子に置き換わっていてもよく、R~R24のうち、同一のN原子に置換しているアルキル基同士が結合して環を形成していてもよい。RとR、RとR、RとR、RとRはそれぞれ結合して環を形成していてもよい。RまたはR10と、RまたはRと、R11またはR12がそれぞれ結合して環を形成していてもよく、R13またはR14と、RまたはRと、R15またはR16がそれぞれ結合して環を形成していてもよく、R17またはR18と、RまたはRと、R19またはR20がそれぞれ結合して環を形成していてもよく、R21またはR22と、RまたはRと、R23またはR24がそれぞれ結合して環を形成していてもよい。RまたはRと、RまたはRと、RまたはRがそれぞれ結合して環を形成していてもよく、RまたはRと、RまたはRと、RまたはRがそれぞれ結合して環を形成していてもよく、RまたはRと、RまたはRと、RまたはRがそれぞれ結合して環を形成していてもよく、RまたはRと、RまたはRと、RまたはRがそれぞれ結合して環を形成していてもよい。a~dはそれぞれ独立に、0または1である。Xは1価のアニオンを表す。)
    Figure JPOXMLDOC01-appb-C000002
    (式(2)中、Ar~Ar12はそれぞれ独立に、置換若しくは無置換のアリール基を表す。Mは1価のアニオンを表す。)
  2.  前記ジヒドロキシ化合物がビスフェノールAである請求項1に記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
  3.  前記ジアリールカーボネートがジフェニルカーボネートである請求項1または2に記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
  4.  前記ジカルボン酸エステルが、テレフタル酸ジフェニル及び/またはイソフタル酸ジフェニルである請求項1~3のいずれか1項に記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
  5.  芳香族ジヒドロキシ化合物とジアリールカーボネートとを前記エステル交換触媒の存在下に溶融重縮合させる工程を含む請求項1~4のいずれか1項に記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
  6.  前記エステル交換触媒が、前記式(1)で表される化合物である請求項1~5のいずれか1項に記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
  7.  前記式(1)が、下記式(1B)で表される請求項6に記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000003
    (式(1B)中、R29~R52はそれぞれ独立に水素原子、又は炭素数1~10のアルキル基である。R29~R52のうち、同一のN原子に置換しているアルキル基同士が結合して環を形成していてもよい。R30とR31、R32とR33、R34とR35、R36とR29はそれぞれ結合して環を形成していてもよい。i~lはそれぞれ独立に、0または1である。Yは1価のアニオンを表す。)
  8.  前記式(1)中、Xが、塩化物イオン、臭化物イオン、テトラフェニルホウ酸イオン、フェノラートイオン、下記式(3a)で表されるBPAモノアニオン、及び下記式(3b)で表されるBPAモノアニオンBPA付加物から選ばれる少なくとも1種である請求項6または7に記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000004
  9.  前記式(1)中、Xが、フェノラートイオン、前記式(3a)で表されるBPAモノアニオン、及び前記式(3b)で表されるBPAモノアニオンBPA付加物から選ばれる少なくとも1種である請求項8に記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
  10.  前記式(1)が、下記式(1a)~(1e)のいずれかで表される請求項6~9のいずれか1項に記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000005
    (式(1a)~(1e)中、Z1-~Z5-はそれぞれ独立に、1価のアニオンを表す。Meはメチル基を表す。)
  11.  前記エステル交換触媒が、前記式(2)で表される化合物である請求項1~5のいずれか1項に記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
  12.  前記式(2)中、Ar~Ar12がフェニル基である請求項11に記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
  13.  前記式(2)中、Mが塩化物イオン、臭化物イオン、テトラフェニルホウ酸イオン、フェノラートイオン、下記式(3a)で表されるBPAモノアニオン、並びに、下記式(3b),(3c)で表されるBPAモノアニオンBPA付加物から選ばれる少なくとも1種である請求項11または12に記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
    Figure JPOXMLDOC01-appb-C000006
  14.  前記式(2)中、Mが、フェノラートイオン、前記式(3a)で表されるBPAモノアニオン、並びに、前記式(3b),(3c)で表されるBPAモノアニオンBPA付加物から選ばれる少なくとも1種である請求項13に記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
  15.  前記ジヒドロキシ化合物の1molに対して、前記エステル交換触媒0.01~1000μmolの存在下に前記溶融重縮合を行う請求項1~14のいずれか1項に記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
  16.  前記溶融重縮合反応時の温度が200~350℃である請求項1~15のいずれか1項に記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
  17.  製造された前記ポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の粘度平均分子量[Mv]が5,000~40,000である請求項1~16のいずれか1項に記載のポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂の製造方法。
  18.  ジヒドロキシ化合物と、ジアリールカーボネート及び/又はジカルボン酸エステルとを溶融重縮合させて、ポリカーボネート、ポリエステル、及びポリエステルカーボネートからなる群より選ばれる少なくとも1種の熱可塑性樹脂を生成するためのエステル交換触媒であって、下記式(1)で表される化合物及び下記式(2)で表される化合物群から選ばれるいずれか1つを含むエステル交換触媒。
    Figure JPOXMLDOC01-appb-C000007
    (式(1)中、R~R24はそれぞれ独立に水素原子、炭素数1~10のアルキル基、又はシクロアルキル基であり、該アルキル基及びシクロアルキル基の一部の炭素原子がヘテロ原子に置き換わっていてもよく、R~R24のうち、同一のN原子に置換しているアルキル基同士が結合して環を形成していてもよい。RとR、RとR、RとR、RとRはそれぞれ結合して環を形成していてもよい。RまたはR10と、RまたはRと、R11またはR12がそれぞれ結合して環を形成していてもよく、R13またはR14と、RまたはRと、R15またはR16がそれぞれ結合して環を形成していてもよく、R17またはR18と、RまたはRと、R19またはR20がそれぞれ結合して環を形成していてもよく、R21またはR22と、RまたはRと、R23またはR24がそれぞれ結合して環を形成していてもよい。RまたはRと、RまたはRと、RまたはRがそれぞれ結合して環を形成していてもよく、RまたはRと、RまたはRと、RまたはRがそれぞれ結合して環を形成していてもよく、RまたはRと、RまたはRと、RまたはRがそれぞれ結合して環を形成していてもよく、RまたはRと、RまたはRと、RまたはRがそれぞれ結合して環を形成していてもよい。a~dはそれぞれ独立に、0または1である。Xは1価のアニオンを表す。)
    Figure JPOXMLDOC01-appb-C000008
    (式(2)中、Ar~Ar12はそれぞれ独立に、置換若しくは無置換のアリール基を表す。Mは1価のアニオンを表す。)
  19.  下記式(1a’)~(1e’)のいずれかで表される化合物。
    Figure JPOXMLDOC01-appb-C000009
    (式(1a’)、(1b’)中、L1-、L2-は、フェノラートイオン、下記式(3a)で表されるBPAモノアニオン、及び下記式(3b)で表されるBPAモノアニオンBPA付加物から選ばれる少なくとも1種である。前記式(1c’)~(1e’)中、L3-~L5-は1価のアニオンを表す。Meはメチル基を表す。)
    Figure JPOXMLDOC01-appb-C000010
  20.  下記式(2)で表される化合物。
    Figure JPOXMLDOC01-appb-C000011
    (式(2)中、Ar~Ar12はそれぞれ独立に、置換若しくは無置換のアリール基を表す。Mは1価のアニオンを表す。)
  21.  請求項1~17のいずれか1項に記載の熱可塑性樹脂の製造方法により製造されたポリカーボネートであって、
     前記ポリカーボネートの粘度平均分子量が、14,000以上、30,000以下であり、
     該ポリカーボネートの加水分解物について測定される下記式(A)~(E)で表される化合物の総量が、該ポリカーボネート樹脂に対して300質量ppm以上、550質量ppm以下であることを特徴とするポリカーボネート。
    Figure JPOXMLDOC01-appb-C000012
    (式(A)~(D)中、R~Rはそれぞれ独立に水素原子又はメチル基を表す。式(A)~(E)中のベンゼン環において、ベンゼン環に結合する1つ以上の水素原子は、置換基によって置換さていてもよい。)
  22.  前記ポリカーボネートの末端水酸基濃度が、400質量ppm以上、1000質量ppm以下である請求項21に記載のポリカーボネート。

     
PCT/JP2022/011631 2021-03-23 2022-03-15 熱可塑性樹脂の製造方法、及び化合物 WO2022202492A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280023473.6A CN117120509A (zh) 2021-03-23 2022-03-15 热塑性树脂的制备方法及化合物
JP2023509049A JPWO2022202492A1 (ja) 2021-03-23 2022-03-15
US18/552,088 US20240199804A1 (en) 2021-03-23 2022-03-15 Method for producing thermoplastic resin, and compound therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021048264 2021-03-23
JP2021-048264 2021-03-23

Publications (1)

Publication Number Publication Date
WO2022202492A1 true WO2022202492A1 (ja) 2022-09-29

Family

ID=83396132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/011631 WO2022202492A1 (ja) 2021-03-23 2022-03-15 熱可塑性樹脂の製造方法、及び化合物

Country Status (4)

Country Link
US (1) US20240199804A1 (ja)
JP (1) JPWO2022202492A1 (ja)
CN (1) CN117120509A (ja)
WO (1) WO2022202492A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128830A (ja) * 1998-08-20 2000-05-09 Mitsui Chemicals Inc 1,2―ジオキシエタン誘導体の製造方法
JP2003183198A (ja) * 2001-12-17 2003-07-03 Mitsui Chemicals Inc ジアルキルカーボネートとグリコールの同時製造方法
JP2006036709A (ja) * 2004-07-28 2006-02-09 Mitsui Chemicals Inc イオン液体
JP2011219426A (ja) * 2010-04-12 2011-11-04 Mitsui Chemicals Inc 含フッ素芳香族(メタ)アクリル酸エステル化合物の製造方法、及び含フッ素芳香族(メタ)アクリル酸エステル化合物
CN108239265A (zh) * 2016-12-26 2018-07-03 青岛科技大学 有机磷腈盐催化剂及其制备方法和用途

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000128830A (ja) * 1998-08-20 2000-05-09 Mitsui Chemicals Inc 1,2―ジオキシエタン誘導体の製造方法
JP2003183198A (ja) * 2001-12-17 2003-07-03 Mitsui Chemicals Inc ジアルキルカーボネートとグリコールの同時製造方法
JP2006036709A (ja) * 2004-07-28 2006-02-09 Mitsui Chemicals Inc イオン液体
JP2011219426A (ja) * 2010-04-12 2011-11-04 Mitsui Chemicals Inc 含フッ素芳香族(メタ)アクリル酸エステル化合物の製造方法、及び含フッ素芳香族(メタ)アクリル酸エステル化合物
CN108239265A (zh) * 2016-12-26 2018-07-03 青岛科技大学 有机磷腈盐催化剂及其制备方法和用途

Also Published As

Publication number Publication date
CN117120509A (zh) 2023-11-24
US20240199804A1 (en) 2024-06-20
JPWO2022202492A1 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
TW527374B (en) Method for preparing high molecular weight polycarbonate
JP5977917B2 (ja) ポリカーボネート樹脂
JP2009091417A (ja) 植物由来成分を有するポリカーボネートの製造方法
WO2009044907A1 (ja) 植物由来成分を有するポリカーボネート及びその製造方法
KR20130088742A (ko) 폴리카보네이트 수지 조성물 및 성형품
KR101687831B1 (ko) 열가소성 수지의 제조 방법, 폴리에스테르 수지 및 폴리카보네이트 수지, 그리고 그들의 용도
US8648163B2 (en) High molecular weight, random, bisphenol based copoly(phosphonate carbonate)s
JP5936803B2 (ja) ポリカーボネート樹脂
US3409704A (en) Polycarbonate compositions
JP7243271B2 (ja) ポリカーボネート樹脂の製造方法
WO1999048947A1 (fr) Polycarbonate et materiau optique
US5312890A (en) Polycarbonate compositions comprising bisphosphine oxide monomer
WO2022202492A1 (ja) 熱可塑性樹脂の製造方法、及び化合物
JP2011111613A (ja) ポリカーボネート樹脂
KR20140086774A (ko) 분지형 폴리카보네이트 및 이의 제조방법
KR101959599B1 (ko) 폴리카보네이트 수지의 제조 방법 및 폴리카보네이트 수지 조성물
JP6435953B2 (ja) ポリカーボネート樹脂の製造方法及びポリカーボネート樹脂
EP1963399B1 (en) Polycyclic dihydroxy compounds and methods for preparation
JP3508488B2 (ja) 芳香族ポリカーボネートの製造方法
JP2015025139A (ja) ポリカーボネート樹脂
JP5907232B2 (ja) ポリカーボネート樹脂
JPH0827263A (ja) 非着色性ポリカーボネート樹脂
JP2003206350A (ja) 含リンポリカーボネート、その製造方法及び樹脂組成物
JP3971383B2 (ja) 金型離型性に優れたポリカーボネート組成物
TWI757939B (zh) 聚碳酸酯樹脂及其製備方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775282

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023509049

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18552088

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 11202307062R

Country of ref document: SG

122 Ep: pct application non-entry in european phase

Ref document number: 22775282

Country of ref document: EP

Kind code of ref document: A1