WO2022202391A1 - I/oユニット、および通信システム - Google Patents

I/oユニット、および通信システム Download PDF

Info

Publication number
WO2022202391A1
WO2022202391A1 PCT/JP2022/010778 JP2022010778W WO2022202391A1 WO 2022202391 A1 WO2022202391 A1 WO 2022202391A1 JP 2022010778 W JP2022010778 W JP 2022010778W WO 2022202391 A1 WO2022202391 A1 WO 2022202391A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
stage
processing circuit
master
units
Prior art date
Application number
PCT/JP2022/010778
Other languages
English (en)
French (fr)
Inventor
佐伯正博
桑畑眞一
前田翌檜
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to JP2023509009A priority Critical patent/JPWO2022202391A1/ja
Priority to CN202280022899.XA priority patent/CN117043691A/zh
Priority to US18/283,635 priority patent/US20240168449A1/en
Priority to EP22775183.1A priority patent/EP4318150A1/en
Publication of WO2022202391A1 publication Critical patent/WO2022202391A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • G05B19/054Input/output
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • G05B19/052Linking several PLC's
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F13/00Interconnection of, or transfer of information or other signals between, memories, input/output devices or central processing units
    • G06F13/38Information transfer, e.g. on bus
    • G06F13/42Bus transfer protocol, e.g. handshake; Synchronisation
    • G06F13/4247Bus transfer protocol, e.g. handshake; Synchronisation on a daisy chain bus
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L12/00Data switching networks
    • H04L12/02Details
    • H04L12/12Arrangements for remote connection or disconnection of substations or of equipment thereof
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/22Pc multi processor system
    • G05B2219/2231Master slave

Definitions

  • the present invention relates to an I/O unit that connects a master unit and a device and transmits signals between the master unit and the device, and a communication system having a plurality of such I/O units.
  • Japanese Patent Application Laid-Open No. 2016-110460 discloses a programmable logic controller system.
  • the programmable logic controller system has a base unit (master) and multiple expansion units (slaves).
  • a base unit and a plurality of expansion units are daisy-chained with a master unit at the head.
  • Each of the multiple expansion units is, for example, an I/O unit.
  • a base unit transmits and receives signals to a controlled device through a plurality of expansion units.
  • a controlled device is, for example, a sensor or an actuator.
  • the master unit and multiple I/O units are arranged along a predetermined installation direction with the master unit at the top.
  • the terminals of adjacent master units are connected to the terminals of the I/O units.
  • terminals of adjacent I/O units are connected to each other.
  • the master unit and the plurality of I/O units are communicably connected without requiring a separate cable or the like.
  • a mass consisting of a master unit and a plurality of I/O units communicatively connected is also referred to as a "station".
  • the station is configured without cables as described above. Therefore, the wiring state around the station is unlikely to become complicated. In addition, erroneous connection of cables does not occur.
  • the master unit has a predetermined processing circuit (master processing circuit).
  • the master processing circuit is a circuit responsible for signal processing in communication with the I/O unit.
  • the number of I/O units that can be connected to the master processing circuit is limited based on design.
  • An object of the present invention is to solve the above-described problems.
  • a first aspect of the present invention is an I/O unit that connects a master unit and a device and transmits signals between the master unit and the device, wherein the master unit provided in the preceding stage or the A plurality of front-stage-side terminals for connecting to the other I/O units provided, and a plurality of front-stage-side terminals provided for connection to the other I/O units provided at the rear stage and connected to the front-stage terminals different from each other.
  • a slave processing circuit connected to a plurality of rear-stage terminals, one of the plurality of front-stage terminals, and the rear-stage terminal connected to the one front-stage terminal and performing signal processing; .
  • a second aspect of the present invention is a communication system comprising a master unit and a plurality of I/O units connected to the master unit for transmitting signals between the master unit and devices, wherein the master Each unit includes a plurality of master processing circuits that perform signal processing and a plurality of tributary terminals connected to the different master processing circuits, and each of the plurality of I/O units is connected to the master processing circuit provided in the preceding stage. a plurality of front-stage-side terminals for connecting to the unit or other I/O units provided in the front stage; and the front-stage-side terminals that are provided to connect to the other I/O units provided in the rear stage and which are different from each other.
  • a slave processing circuit connected to a plurality of rear-stage terminals connected to a plurality of rear-stage terminals, one of the plurality of front-stage terminals, and the rear-stage terminal connected to the one front-stage terminal, and performing signal processing.
  • the plurality of I/O units are a plurality of first I/O units in which the slave processing circuit is connected to the first master processing circuit, and the first master processing circuit and a plurality of second I/O units in which the slave processing circuits are connected to different second master processing circuits.
  • an I/O unit that can be easily added within a station and a communication system having a plurality of such I/O units are provided.
  • FIG. 1 is a diagram showing a communication system according to a reference example of the present invention.
  • FIG. 2 is a diagram showing a communication system according to an embodiment of the invention.
  • 3A is a diagram showing an I/O unit according to Modification 1.
  • FIG. 3B is a diagram showing I/O units when the first connection relationship is selected.
  • FIG. 3C is a diagram showing I/O units when the second connection relationship is selected.
  • FIG. 4 is a diagram showing an I/O unit in which the arrangement of selection circuits is changed.
  • FIG. 5 is a diagram showing an I/O unit according to Modification 2.
  • FIG. 6 is a diagram showing a communication system having I/O units according to Modification 2.
  • FIG. 1 is a diagram showing a communication system according to a reference example of the present invention.
  • FIG. 2 is a diagram showing a communication system according to an embodiment of the invention.
  • 3A is a diagram showing an I/O unit according to Modification 1.
  • FIG. 3B is
  • FIG. 1 is a diagram showing a communication system 100 according to a reference example of the present invention.
  • the communication system 100 is a system that transmits signals between the control device 102 and the equipment 104 .
  • the equipment 104 is provided in a mechanical device. Mechanical devices are, for example, machine tools or robots.
  • Devices 104 include an output device 104a and an input device 104b.
  • the output device 104a is, for example, an actuator such as a switch.
  • the control device 102 sends a control signal to the output device 104a via the communication system 100 when driving the output device 104a.
  • the input device 104b is a sensor that detects pressure, voltage, current, or the like, for example.
  • the control device 102 acquires the detection signal from the input device 104b via the communication system 100.
  • the communication system 100 has a plurality of communication coupler units 106 (106a, 106b) and a plurality of I/O units 108.
  • the multiple I/O units 108 consist of multiple I/O units 108a and multiple I/O units 108b.
  • the control device 102, the communication coupler unit 106a, and the communication coupler unit 106b are sequentially connected in this order.
  • a communication path (main flow line La) that follows the control device 102, the communication coupler unit 106a, and the communication coupler unit 106b in this order is configured.
  • a cable is used to connect the control device 102 and the communication coupler unit 106a.
  • the communication coupler unit 106a and the communication coupler unit 106b are connected using another cable. Cables are provided by the operator.
  • a plurality of I/O units 108a are sequentially connected to the rear stage of the communication coupler unit 106a. Thereby, the communication coupler unit 106a and the plurality of I/O units 108a constitute one station. Also, a communication path (tributary line Lb1) is formed that sequentially follows the communication coupler unit 106a and the plurality of I/O units 108a.
  • a plurality of I/O units 108b are sequentially connected to the rear stage of the communication coupler unit 106b. Thereby, the communication coupler unit 106b and the plurality of I/O units 108b form one station. Also, a communication path (tributary line Lb2) is configured that sequentially follows the communication coupler unit 106b and the plurality of I/O units 108b.
  • a plurality of I/O units 108 are connected to a plurality of devices 104 .
  • a plurality of I/O units 108 in FIG. 1 are connected to devices 104 different from each other. However, multiple devices 104 may be connected to one I/O unit 108 .
  • Communication coupler unit 106 a and communication coupler unit 106 b each have master processing circuit 16 .
  • Each of I/O unit 108a and I/O unit 108b has slave processing circuitry 26 and interface 28 .
  • the slave processing circuit 26 is a circuit that inputs and outputs signals to and from the master processing circuit 16 .
  • Each of the master processing circuit 16 and the slave processing circuit 26 includes, for example, a CPU (Central Processing Unit).
  • each of master processing circuit 16 and slave processing circuit 26 may include, for example, an ASIC (Application Specific Integrated Circuit), a PLD (Programmable Logic Device), or an FPGA (Field Programmable Logic Gate Array).
  • the interface 28 is hardware (a circuit, a group of electronic components) that transmits signals between the slave processing circuit 26 and the device 104 .
  • the interface 28 connects the slave processing circuit 26 and the device 104 , and the slave processing circuit 26 inputs and outputs signals to and from the device 104 . Note that the specific configuration of the interface 28 differs depending on the type of device 104 .
  • the master processing circuit 16 of the communication coupler unit 106a and the master processing circuit 16 of the communication coupler unit 106b are daisy chain connected by the main flow line La with the control device 102 at the head. Also, the slave processing circuits 26 of the plurality of I/O units 108a are daisy-chained with the master processing circuit 16 of the communication coupler unit 106a at the head by the tributary line Lb1. Further, the slave processing circuits 26 of the plurality of I/O units 108b are daisy-chained with the master processing circuit 16 of the communication coupler unit 106b at the head by the tributary line Lb2.
  • control device 102 When the control device 102 sends a control signal to the device 104, the control device 102 outputs the control signal to the communication coupler unit 106a connected in the first stage (first) as seen from itself.
  • This control signal includes address information and the like of the I/O unit 108 to which the destination device 104 is connected.
  • the master processing circuit 16 of the communication coupler unit 106a determines whether the address information included in the control signal indicates any one of the plurality of I/O units 108a. If the address information does not indicate any of the plurality of I/O units 108a, the master processing circuit 16 of the communication coupler unit 106a outputs a control signal to the master processing circuit 16 of the communication coupler unit 106b.
  • the master processing circuit 16 of the communication coupler unit 106a When the address information indicates one of the plurality of I/O units 108a, the master processing circuit 16 of the communication coupler unit 106a outputs a control signal to the subsequent I/O unit 108a.
  • the slave processing circuit 26 of the I/O unit 108a that receives the control signal from the previous stage determines whether the address information included in the input control signal indicates itself. Here, when the address information indicates itself, the slave processing circuit 26 of the I/O unit 108a outputs a control signal to the device 104 connected thereto. This causes the device 104 to operate. On the other hand, if the address information included in the input control signal does not indicate itself, the I/O unit 108a outputs the control signal to the subsequent I/O unit 108a.
  • the I/O unit 108 may output the control signal to the subsequent I/O unit 108 when the address information included in the control signal indicates itself. Further, when the address information included in the control signal indicates the I/O unit 108 connected thereto, the communication coupler unit 106 may output the control signal to the subsequent communication coupler unit 106 .
  • the device 104 may output a signal toward the control device 102 .
  • the signal of device 104 is input to slave processing circuit 26 of I/O unit 108 to which device 104 is connected.
  • Slave processing circuit 26 sends a signal input from device 104 connected thereto to control device 102 .
  • the slave processing circuit 26 outputs a signal to the I/O unit 108 or communication coupler unit 106 connected to its previous stage.
  • the slave processing circuit 26 includes in the output signal the content output by the device 104 and the address information of the I/O unit 108 that output the signal. Since the input/output of signals between the communication coupler unit 106 and the I/O unit 108 is a well-known technique, further explanation is omitted.
  • a station headed by the communication coupler unit 106a and a station headed by the communication coupler unit 106b are configured.
  • the number of I/O units (slave processing circuits 26) 108 that can be connected as slaves to the master processing circuit 16 is limited. Therefore, if the number of I/O units 108 exceeds the limit, the operator has no choice but to install a plurality of stations and connect each station using a separately prepared cable.
  • the communication coupler unit 106 and the necessary I/O units 108 are all installed together as much as possible.
  • FIG. 2 is a diagram showing communication system 10 according to the embodiment of the present invention.
  • the communication system 10 has a communication coupler unit 12 and a plurality of I/O units 14 .
  • a plurality of I/O units 14 are sequentially connected to the rear stage of the communication coupler unit 12 .
  • the communication coupler unit 12 has a plurality of master processing circuits 16, a power supply 18, two connectors 20 (20a, 20b), a plurality of tributary terminals 22, and a housing 24.
  • a plurality of master processing circuits 16 , a power supply 18 , two connectors 20 ( 20 a and 20 b ), and a plurality of tributary terminals 22 are housed in a housing 24 .
  • the communication coupler unit 12 includes two master processing circuits 16 (16a, 16b). However, the communication coupler unit 12 may have three or more master processing circuits 16 . Of the two master processing circuits 16 provided in the same communication coupler unit 12, one master processing circuit 16a is also referred to as the first master processing circuit 16a in the following description. On the other hand, the other master processing circuit 16b is also described as the second master processing circuit 16b in the following description.
  • a power supply 18 supplies power to the two master processing circuits 16 .
  • Power supply 18 may also power at least one of slave processing circuitry 26 of I/O unit 14 and interface 28 .
  • the connector 20a is a connector for connecting with equipment provided in the front stage of the communication coupler unit 12 with respect to the main flow line La.
  • a device provided upstream of the communication coupler unit 12 with respect to the main flow line La is, for example, the control device 102 (see FIG. 2).
  • the connection between the connector 20a and the control device 102 is made by a cable as before.
  • the connector 20a may be connected to another communication coupler unit 12 or the communication coupler unit 106 provided in the preceding stage of the communication coupler unit 12 with respect to the main flow line La.
  • the connector 20b is a connector for connecting with another communication coupler unit 12 or the communication coupler unit 106 which is provided in the rear stage of the communication coupler unit 12 with respect to the main flow line La.
  • the connector 20b is open in the example of FIG. If another communication coupler unit 12 is provided after the communication coupler unit 12 with respect to the main flow line La, the connector 20b of the communication coupler unit 12 and the connector 20a of the other communication coupler unit 12 are connected by a cable. be.
  • the connector 20a is connected to the master processing circuit 16a. Also, the master processing circuit 16a is connected to the master processing circuit 16b. Therefore, the control device 102, the master processing circuit 16a, and the master processing circuit 16b are daisy-chained on the main flow line La.
  • Each of the plurality of tributary terminals 22 is a terminal for connecting with the I/O unit 14 provided in the subsequent stage of the communication coupler unit 12.
  • the number of tributary terminals 22 provided in the communication coupler unit 12 is the same as the number of master processing circuits 16 provided in the communication coupler unit 12 . That is, the communication coupler unit 12 has two tributary terminals 22 .
  • One of the two branch terminals 22 is also referred to as a branch terminal 22a in the following description.
  • the other tributary terminal 22 is also described as a tributary terminal 22b.
  • the tributary terminal 22a is connected to the master processing circuit 16a.
  • the tributary terminal 22b is connected to the master processing circuit 16b. That is, the plurality of tributary terminals 22 are connected to different master processing circuits 16 .
  • Each of the multiple I/O units 14 has a slave processing circuit 26 , an interface 28 , multiple front-stage terminals 30 , multiple rear-stage terminals 32 , and a housing 38 .
  • the slave processing circuit 26 , the interface 28 , the plurality of front-stage terminals 30 , and the plurality of rear-stage terminals 32 are housed in a housing 38 .
  • Each of the plurality of front-stage terminals 30 is a terminal for connecting with the communication coupler unit 12 provided at the front stage or another I/O unit 14 provided at the front stage.
  • the number of front-stage-side terminals 30 is the same as the number of tributary terminals 22 provided in the communication coupler unit 12 . That is, the I/O unit 14 has two front-stage terminals 30 .
  • One of the two front-stage terminals 30 is also referred to as a front-stage terminal 30a in the following description.
  • the other front-stage terminal 30 is also described as a front-stage terminal 30b.
  • Each of the plurality of rear-stage terminals 32 is a terminal for connecting to another I/O unit 14 provided at the rear stage.
  • the number of rear-stage terminals 32 is the same as the number of front-stage terminals 30 provided in the I/O unit 14 . That is, the I/O unit 14 has two post-stage terminals 32 .
  • One of the two rear-stage terminals 32 is also referred to as a rear-stage terminal 32a in the following description.
  • the other rear-stage terminal 32 is also referred to as a rear-stage terminal 32b in the following description.
  • the front-stage terminal 30 a is connected to the rear-stage terminal 32 a through the first signal line 34 . Also, the front-stage terminal 30b is connected to the rear-stage terminal 32b through the second signal line 36 . That is, for the I/O unit 14 alone, the plurality of front-stage terminals 30 are connected to the rear-stage terminals 32 different from each other.
  • the preceding stage side terminal 30a is connected to the tributary terminal 22a of the communication coupler unit 12.
  • the front-stage terminal 30b is connected to the tributary terminal 22b of the communication coupler unit 12.
  • the preceding stage side terminal 30a of the I/O unit 14 is connected to the succeeding stage side terminal 32a of the other I/O unit 14.
  • the front-stage terminal 30b of the I/O unit 14 is connected to the rear-stage terminal 32b of another I/O unit 14 .
  • the slave processing circuit 26 of each of the plurality of I/O units 14 is connected to one of the plurality of front-stage terminals 30 and the rear-stage terminal 32 connected to the front-stage terminal 30 .
  • the slave processing circuit 26 is connected to the front-stage terminal 30a and the rear-stage terminal 32a.
  • the slave processing circuit 26 may be connected to the front-stage terminal 30b and the rear-stage terminal 32b.
  • the plurality of I/O units 14 are classified into first I/O units 14A and second I/O units 14B.
  • the first I/O unit 14A is the I/O unit 14 in which the slave processing circuit 26 is provided on the first signal line 34.
  • the second I/O unit 14B is the I/O unit 14 in which the slave processing circuit 26 is provided on the second signal line 36.
  • the slave processing circuit 26 (26a) of the first I/O unit 14A is connected to the master processing circuit 16a on the tributary line Lb1.
  • the slave processing circuit 26 (26b) of the second I/O unit 14B is connected to the master processing circuit 16b on the tributary line Lb2.
  • Signals input to and output from the front-stage terminal 30b and the rear-stage terminal 32b of the first I/O unit 14A pass through the first I/O unit 14A through the second signal line 36 without interruption.
  • signals input to and output from the front-stage terminal 30a and the rear-stage terminal 32a of the second I/O unit 14B pass through the second I/O unit 14B through the first signal line 34 without interruption.
  • the first I/O unit 14A operates as a slave of the master processing circuit 16a.
  • the second I/O unit 14B operates as a slave of the master processing circuit 16b.
  • the first I/O unit 14A and the second I/O unit 14B are collectively installed in a row within one station. If the operator needs more I/O units 14 than the limited number of the master processing circuit 16a, the operator can install the excess I/O units 14 as slaves of the master processing circuit 16b.
  • an I/O unit 14 that can be easily added within a station and a communication system 10 having a plurality of I/O units 14 are provided.
  • the plurality of first I/O units 14A are provided on the front stage side of the plurality of second I/O units 14B.
  • Communication system 10 is not limited to this.
  • the plurality of second I/O units 14B may be arranged in front of the plurality of first I/O units 14A.
  • the plurality of first I/O units 14A and the plurality of second I/O units 14B may be arranged in a mixed manner.
  • FIG. 3A is a diagram showing an I/O unit 14' (14) according to Modification 1.
  • FIG. 3A is a diagram showing an I/O unit 14' (14) according to Modification 1.
  • the I/O unit 14' further comprises a selection circuit 40 as well as the components of the I/O unit 14 (see also FIG. 2).
  • the selection circuit 40 is a circuit that selects a combination of a plurality of front-stage terminals 30 and a plurality of rear-stage terminals 32 that are connected to each other.
  • the I/O unit 14 ′ has two front-stage terminals 30 and two rear-stage terminals 32 . In this case, the selection circuit 40 selects the connection relationship between the two front-stage terminals 30 and the two rear-stage terminals 32 from the following first connection relationship and second connection relationship.
  • FIG. 3B is a diagram showing the I/O unit 14' when the first connection relationship is selected.
  • the selection circuit 40 when selecting the first connection relationship, connects the front-stage terminal 30a to the rear-stage terminal 32a, and connects the front-stage terminal 30b to the rear-stage terminal 32b. .
  • FIG. 3C is a diagram showing the I/O unit 14' when the second connection relationship is selected.
  • the selection circuit 40 when selecting the second connection relationship, connects the front-stage terminal 30a to the rear-stage terminal 32b, and connects the front-stage terminal 30b to the rear-stage terminal 32a. Connecting.
  • the selection circuit 40 is appropriately configured using switches such as mechanical switches, electrical switches, and semiconductor switches, and conductors. Note that the selection circuit 40 may be configured as part of another circuit. For example, selection circuit 40 may be configured as part of an ASIC.
  • connection relationship between the two front-stage terminals 30 and the two rear-stage terminals 32 in the I/O unit 14 ′ is easily changed by the selection circuit 40 .
  • the differences between the first I/O unit 14A and the second I/O unit 14B are concentrated inside the selection circuit 40.
  • the selection circuit 40 is provided so as to be interposed between the slave processing circuit 26 and one of the two rear-stage terminals 32 .
  • the selection circuit 40 changes the master processing circuit 16 to be connected to the slave processing circuit 26 of another I/O unit 14 provided in the subsequent stage of the I/O unit 14 .
  • FIG. 4 is a diagram showing the I/O unit 14' in which the arrangement of the selection circuit 40 is changed.
  • the selection circuit 40 may be interposed between the slave processing circuit 26 and one of the two preceding-stage terminals 30 . In that case, the selection circuit 40 changes the master processing circuit 16 to be connected to the slave processing circuit 26 of the same I/O unit 14 as itself.
  • the selection circuit 40 has different functions depending on whether it is provided on the rear-stage terminal 32 side or the front-stage terminal 30 side with respect to the slave processing circuit 26 .
  • the I/O unit 14' includes a selection circuit 40 provided closer to the rear-stage terminal 32 than the slave processing circuit 26 and another selection circuit 40 provided closer to the front-stage terminal 30 than the slave processing circuit 26. and may be provided.
  • FIG. 5 is a diagram showing an I/O unit 14'' (14) according to Modification 2. As shown in FIG.
  • the I/O unit 14'' includes four front-stage terminals 30, four rear-stage terminals 32, and a selection circuit 40'.
  • the selection circuit 40' includes various switches and the like as appropriate, as in the first modification.
  • the selection circuit 40' selects a combination of the plurality of front-stage terminals 30 and the plurality of rear-stage terminals 32 that are connected to each other according to the first connection relationship (solid lines in FIG. 5) and the second connection relationship (broken lines in FIG. 5). ) and .
  • the first connection relationship is a connection relationship in which each of the plurality of front-stage terminals 30 is connected to one of the two rear-stage terminals 32 predetermined for itself.
  • the second connection relationship is a connection relationship in which each of the plurality of front-stage terminals 30 is connected to the other of the two rear-stage terminals 32 predetermined for itself. In both the first connection relationship and the second connection relationship, the plurality of front-stage terminals 30 are connected to different rear-stage terminals 32 .
  • the selection circuit 40' may be provided closer to the terminal 32 on the rear stage side than the slave processing circuit 26 in the I/O unit 14''. In this case, the selection circuit 40' changes the master processing circuit 16 to which the slave processing circuit 26 of another I/O unit 14 provided after the I/O unit 14'' is connected. Also, the selection circuit 40 ′ may be provided closer to the front-stage terminal 30 than the slave processing circuit 26 in the I/O unit 14 ′′. In this case, the selection circuit 40' changes the master processing circuit 16 to be connected to the slave processing circuit 26 of the I/O unit 14'' in which it is provided.
  • FIG. 6 is a diagram showing a communication system 10' having an I/O unit 14'' according to Modification 2. As shown in FIG. In FIG. 6, the numbers 1 to 4 given to the four master processing circuits 16 and the numbers 1 to 4 given to the four slave processing circuits 26 respectively refer to the master processing circuit 16 and its master processing circuit 16. 2 shows the correspondence with the slave processing circuit 26 connected to .
  • the overall configuration of the I/O unit 14'' is shared.
  • the selection circuit 40' it is possible to connect a plurality of slave processing circuits 26 to different master processing circuits 16 from each other.
  • Modification 3 When the communication coupler unit 12 has two or more master processing circuits 16, one of the two master processing circuits 16 may be a redundant circuit for the other. This makes the communication system 10 more secure and reliable.
  • a first invention is an I/O unit (14) that connects a master unit (12) and a device (104) and transmits signals between the master unit and the device, and is provided in the front stage.
  • a plurality of rear-stage terminals (32) connected to different front-stage terminals, one of the plurality of front-stage terminals, and the rear-stage terminal connected to the one front-stage terminal.
  • a slave processing circuit (26) for signal processing.
  • the first invention may comprise a selection circuit (40) that selects a combination of the plurality of front-stage terminals and the plurality of rear-stage terminals that are connected to each other. Accordingly, the combination of the plurality of front-stage terminals and the plurality of rear-stage terminals can be changed by changing only the selection circuit portion while maintaining the overall configuration of the I/O unit.
  • the master unit may have a plurality of master processing circuits (16), and the plurality of front-stage terminals may be connected to different master processing circuits.
  • signals are input to the I/O unit from a plurality of master processing circuits.
  • a signal from one of the plurality of master processing circuits is processed by the slave processing circuit, and signals from the other master processing circuits pass through to the subsequent stage.
  • the front-stage terminal and the rear-stage terminal connected to the slave processing circuit may be connected to each other via the slave processing circuit.
  • a plurality of slave processing circuits are daisy-chained by sequentially connecting a plurality of I/O units.
  • the first invention may further comprise an interface (28) for connecting the slave processing circuit and the device, and allowing the slave processing circuit to input/output signals with the device.
  • a second invention is a communication system comprising a master unit (12) and a plurality of I/O units (14) connected to the master unit and transmitting signals between the master unit and equipment (104).
  • the master unit comprises a plurality of master processing circuits (16) for signal processing and a plurality of tributary terminals (22) connected to the different master processing circuits;
  • Each of the I/O units includes a plurality of front-stage-side terminals (30) for connection with the master unit provided in the front stage or other I/O units provided in the front stage, and other I/O units provided in the rear stage.
  • a plurality of rear-stage terminals (32) provided for connection with an I/O unit and connected to different front-stage terminals; one of the plurality of front-stage terminals and one of the front-stage terminals; a slave processing circuit (26) that is connected to the latter-stage terminal that is connected to the terminal and performs signal processing; a plurality of first I/O units (14A) connected to a plurality of second I/O units (14A) connected to a plurality of second I/O units (14A) connected to the slave processing circuit to a second master processing circuit different from the first master processing circuit; and an O unit (14B).
  • the first master processing circuit may be a redundant circuit for the second master processing circuit. This makes the communication system more secure and reliable.
  • Each of the plurality of I/O units may further include an interface (28) for connecting the slave processing circuit and the device and for the slave processing circuit to input/output signals with the device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Small-Scale Networks (AREA)
  • Programmable Controllers (AREA)

Abstract

I/Oユニット(14)は、マスターユニット(12)または他のI/Oユニット(14)と接続するための複数の前段側端子(30)と、他のI/Oユニット(14)と接続するために設けられ、互いに異なる前段側端子(30)と接続される複数の後段側端子(32)と、複数の前段側端子(30)のうちの1つと、その1つの前段側端子(30)と接続される後段側端子(32)とに接続され、信号処理を行うスレーブ処理回路(26)と、を備える。

Description

I/Oユニット、および通信システム
 本発明は、マスターユニットと機器とを接続し、マスターユニットと機器との間で信号を伝送するI/Oユニットと、そのI/Oユニットを複数有する通信システムとに関する。
 特開2016-110460号公報には、プログラマブル・ロジック・コントローラシステムが開示されている。このプログラマブル・ロジック・コントローラシステムは、基本ユニット(マスター)と、複数の拡張ユニット(スレーブ)とを有する。基本ユニットと、複数の拡張ユニットとは、マスターユニットを先頭にして、デイジーチェーン接続される。複数の拡張ユニットの各々は、例えばI/Oユニットである。基本ユニットは、複数の拡張ユニットを介して、被制御装置に信号を送受信する。被制御装置は、例えばセンサ、またはアクチュエータである。
 マスターユニットと複数のI/Oユニットとは、マスターユニットを先頭にして所定の設置方向に沿って並べられる。隣り合うマスターユニットの端子と、I/Oユニットの端子とが接続される。また、隣り合うI/Oユニット同士の端子が互いに接続される。これにより、ケーブル等を別途必要とすることなく、マスターユニットと、複数のI/Oユニットとは、通信可能に接続される。以下において、通信可能に接続されたマスターユニットと複数のI/Oユニットとからなる塊は、「ステーション」とも記載される。ステーションは、上記の通りケーブルを使わずに構成される。したがって、ステーションの周辺の配線状態は、煩雑になりにくい。また、ケーブルの誤接続が発生しない。
 マスターユニットは、所定の処理回路(マスター処理回路)を備える。マスター処理回路は、I/Oユニットとの通信において信号処理を担う回路である。ただし、マスター処理回路に接続可能なI/Oユニットの数は、設計に基づいて制限される。
 したがって、オペレータは、使用したいI/Oユニットの台数がマスター処理回路に接続可能なI/Oユニットの制限台数を超える場合、ステーションを別途設置しなければならなかった。
 本発明は、上述した課題を解決することを目的とする。
 本発明の第1の態様は、マスターユニットと機器とを接続し、前記マスターユニットと前記機器との間で信号を伝送するI/Oユニットであって、前段に設けられる前記マスターユニットまたは前段に設けられる他の前記I/Oユニットと接続するための複数の前段側端子と、後段に設けられる他の前記I/Oユニットと接続するために設けられ、互いに異なる前記前段側端子と接続される複数の後段側端子と、複数の前記前段側端子のうちの1つと、その1つの前記前段側端子と接続される前記後段側端子とに接続され、信号処理を行うスレーブ処理回路と、を備える。
 本発明の第2の態様は、マスターユニットと、前記マスターユニットに接続され、前記マスターユニットと機器との間で信号を伝送する複数のI/Oユニットとを有する通信システムであって、前記マスターユニットは、信号処理を行う複数のマスター処理回路と、互いに異なる前記マスター処理回路と接続された複数の支流端子と、を備え、複数の前記I/Oユニットの各々は、前段に設けられる前記マスターユニットまたは前段に設けられる他の前記I/Oユニットと接続するための複数の前段側端子と、後段に設けられる他の前記I/Oユニットと接続するために設けられ、互いに異なる前記前段側端子と接続された複数の後段側端子と、複数の前記前段側端子のうちの1つと、その1つの前記前段側端子と接続された前記後段側端子とに接続され、信号処理を行うスレーブ処理回路と、を備え、複数の前記I/Oユニットは、前記スレーブ処理回路が第1の前記マスター処理回路に接続された複数の第1のI/Oユニットと、第1の前記マスター処理回路とは異なる第2の前記マスター処理回路に前記スレーブ処理回路が接続された複数の第2のI/Oユニットと、を有する。
 本発明の態様によれば、ステーション内での増設が容易なI/Oユニットと、そのI/Oユニットを複数有する通信システムとが提供される。
図1は、本発明の参考例に係る通信システムを表す図である。 図2は、本発明の実施の形態に係る通信システムを表す図である。 図3Aは、変形例1に係るI/Oユニットを表す図である。図3Bは、第1の接続関係が選択された場合におけるI/Oユニットを表す図である。図3Cは、第2の接続関係が選択された場合におけるI/Oユニットを表す図である。 図4は、選択回路の配置を変更したI/Oユニットを表す図である。 図5は、変形例2に係るI/Oユニットを表す図である。 図6は、変形例2に係るI/Oユニットを有する通信システムを表す図である。
 本発明のI/Oユニットと、通信システムとについて、好適な実施の形態を掲げ、添付の図面を参照しながら以下、詳細に説明する。
 [実施の形態]
 図1は、本発明の参考例に係る通信システム100を表す図である。
 通信システム100は、制御装置102と機器104との間で信号を伝送するシステムである。機器104は、機械装置に設けられる。機械装置は、例えば工作機械、またはロボットである。機器104は、出力機器104aと、入力機器104bとを含む。出力機器104aは、例えば、スイッチ等のアクチュエータである。制御装置102は、出力機器104aを駆動させる場合は、通信システム100を介して、出力機器104aに制御信号を送る。入力機器104bは、例えば押圧、電圧、または電流等を検出するセンサである。制御装置102は、入力機器104bからの検出信号を、通信システム100を介して取得する。
 通信システム100は、複数の通信カプラユニット106(106a、106b)と、複数のI/Oユニット108とを有する。複数のI/Oユニット108は、複数のI/Oユニット108aと、複数のI/Oユニット108bとからなる。
 制御装置102と、通信カプラユニット106aと、通信カプラユニット106bとは、この順序で順次接続される。これにより、制御装置102と、通信カプラユニット106aと、通信カプラユニット106bとをこの順序で辿る通信路(本流線La)が構成される。制御装置102と通信カプラユニット106aとの接続は、ケーブルを用いて行われる。また、通信カプラユニット106aと通信カプラユニット106bとの接続は、別のケーブルを用いて行われる。ケーブルは、オペレータが用意する。
 複数のI/Oユニット108aは、通信カプラユニット106aの後段に順次接続される。これにより、通信カプラユニット106aと、複数のI/Oユニット108aとは、1つのステーションを構成する。また、通信カプラユニット106aと、複数のI/Oユニット108aとを順に辿る通信路(支流線Lb1)が構成される。
 複数のI/Oユニット108bは、通信カプラユニット106bの後段に順次接続される。これにより、通信カプラユニット106bと、複数のI/Oユニット108bとは、1つのステーションを構成する。また、通信カプラユニット106bと、複数のI/Oユニット108bとを順に辿る通信路(支流線Lb2)が構成される。
 複数のI/Oユニット108は、複数の機器104と接続される。図1の複数のI/Oユニット108は、互いに異なる機器104と接続される。ただし、1つのI/Oユニット108に、複数の機器104が接続されてもよい。
[規則91に基づく訂正 29.03.2022] 
 通信カプラユニット106aと、通信カプラユニット106bとの各々は、マスター処理回路16を有する。I/Oユニット108aと、I/Oユニット108bとの各々は、スレーブ処理回路26と、インターフェース28とを有する。スレーブ処理回路26は、マスター処理回路16と信号の入出力を行う回路である。マスター処理回路16とスレーブ処理回路26との各々は、例えばCPU(中央処理装置)を含む。ただし、マスター処理回路16とスレーブ処理回路26との各々は、例えばASIC(特定用途向け集積回路)、PLD(プログラマブルロジックデバイス)、または、FPGA(フィールドプログラマブルロジックゲートアレー)等を含んでもよい。インターフェース28は、スレーブ処理回路26と機器104との間で信号を伝送するハードウェア(回路、電子部品群)である。インターフェース28は、スレーブ処理回路26と機器104とを接続し、スレーブ処理回路26が機器104と信号の入出力を行う。なお、インターフェース28の具体的な構成は、機器104の種類に応じて異なる。
 通信カプラユニット106aのマスター処理回路16と、通信カプラユニット106bのマスター処理回路16とは、本流線Laによって、制御装置102を先頭にしてデイジーチェーン接続される。また、複数のI/Oユニット108aのスレーブ処理回路26は、支流線Lb1によって、通信カプラユニット106aのマスター処理回路16を先頭にしてデイジーチェーン接続される。さらに、複数のI/Oユニット108bのスレーブ処理回路26は、支流線Lb2によって、通信カプラユニット106bのマスター処理回路16を先頭にしてデイジーチェーン接続される。
 制御装置102が機器104に制御信号を送る場合、制御装置102は、自分から見て初段(1番目)に接続された通信カプラユニット106aに制御信号を出力する。この制御信号は、送り先の機器104が接続されたI/Oユニット108のアドレス情報等を含む。通信カプラユニット106aのマスター処理回路16は、制御信号に含まれるアドレス情報が、複数のI/Oユニット108aのいずれかを示しているかを判断する。アドレス情報が複数のI/Oユニット108aのいずれをも示さない場合、通信カプラユニット106aのマスター処理回路16は、通信カプラユニット106bのマスター処理回路16に制御信号を出力する。アドレス情報が複数のI/Oユニット108aのいずれかを示す場合、通信カプラユニット106aのマスター処理回路16は、自身の後段のI/Oユニット108aに制御信号を出力する。前段から制御信号を入力されたI/Oユニット108aのスレーブ処理回路26は、入力された制御信号に含まれるアドレス情報が自身を示すかを判断する。ここで、I/Oユニット108aのスレーブ処理回路26は、アドレス情報が自身を示す場合、自身に接続された機器104に制御信号を出力する。これにより、機器104が動作する。その一方で、I/Oユニット108aは、入力された制御信号に含まれるアドレス情報が自身を示さない場合は、自身の後段のI/Oユニット108aに制御信号を出力する。なお、I/Oユニット108は、制御信号に含まれるアドレス情報が自身を示す場合において、後段側のI/Oユニット108に制御信号を出力してもよい。また、通信カプラユニット106は、制御信号に含まれるアドレス情報が自身に接続されたI/Oユニット108を示す場合において、後段側の通信カプラユニット106に制御信号を出力してもよい。
 機器104が制御装置102に向けて信号を出力する場合がある。この場合、機器104の信号は、機器104が接続されたI/Oユニット108のスレーブ処理回路26に入力される。スレーブ処理回路26は、自身に接続された機器104から入力された信号を、制御装置102に送る。この場合、スレーブ処理回路26は、自身の前段に接続されたI/Oユニット108、または通信カプラユニット106に信号を出力する。ここで、スレーブ処理回路26は、機器104が出力した内容と、信号を出力したI/Oユニット108のアドレス情報とを出力信号に含める。通信カプラユニット106とI/Oユニット108との間の信号の入出力は周知技術なので、これ以上の説明は省略する。
 ところで、参考例では、上記の通り、通信カプラユニット106aを先頭にしたステーションと、通信カプラユニット106bを先頭にしたステーションとが構成されている。
 既に説明したように、マスター処理回路16にスレーブとして接続可能なI/Oユニット(スレーブ処理回路26)108の数には、制限台数が決められている。したがって、I/Oユニット108の数が上記制限台数を上回る場合、オペレータは、複数のステーションを設置し、別途用意するケーブルを用いて各ステーションを接続せざるを得ない。
 しかしながら、オペレータにしてみると、通信カプラユニット106と、必要なI/Oユニット108との全てが、できるだけまとめて設置される方が、好ましい。
 以上を踏まえ、以下において、実施の形態が説明される。なお、参考例で説明された構成要素と同様の構成要素には、同一の参照符号を付してその説明を省略し、参考例とは異なる部分を主に説明する。
 図2は、本発明の実施の形態に係る通信システム10を表す図である。通信システム10は、通信カプラユニット12と、複数のI/Oユニット14とを有する。複数のI/Oユニット14は、通信カプラユニット12の後段に順次接続される。
 通信カプラユニット12は、複数のマスター処理回路16と、電源18と、2つのコネクタ20(20a、20b)と、複数の支流端子22と、筐体24とを有する。複数のマスター処理回路16と、電源18と、2つのコネクタ20(20a、20b)と、複数の支流端子22とは、筐体24に収容される。
 通信カプラユニット12は、2つのマスター処理回路16(16a、16b)を備える。ただし、通信カプラユニット12は、3つ以上のマスター処理回路16を備えてもよい。なお、同じ通信カプラユニット12に備わる2つのマスター処理回路16のうち、一方のマスター処理回路16aは、以下の説明において、第1のマスター処理回路16aとも記載される。これに対し、他方のマスター処理回路16bは、以下の説明において、第2のマスター処理回路16bとも記載される。
 電源18は、2つのマスター処理回路16に電力を供給する。また、電源18は、I/Oユニット14のスレーブ処理回路26と、インターフェース28との少なくとも一方に電力を供給してもよい。
 コネクタ20aは、本流線Laに関して通信カプラユニット12の前段に設けられる機器と接続するためのコネクタである。本流線Laに関して通信カプラユニット12の前段に設けられる機器は、例えば制御装置102である(図2参照)。コネクタ20aと制御装置102との接続は、従前通りケーブルによって行われる。ただし、コネクタ20aは、本流線Laに関して通信カプラユニット12の前段に設けられる別の通信カプラユニット12、または通信カプラユニット106に接続されてもよい。コネクタ20bは、本流線Laに関して通信カプラユニット12の後段に設けられる別の通信カプラユニット12、または通信カプラユニット106と接続するためのコネクタである。ただし、コネクタ20bは、図2の例では開放されている。仮に、本流線Laに関して通信カプラユニット12の後段に別の通信カプラユニット12が設けられる場合、通信カプラユニット12のコネクタ20bと、別の通信カプラユニット12のコネクタ20aとが、ケーブルによって接続される。
 コネクタ20aは、マスター処理回路16aと接続される。また、マスター処理回路16aは、マスター処理回路16bと接続される。したがって、制御装置102と、マスター処理回路16aとマスター処理回路16bとは、本流線La上でデイジーチェーン接続される。
 複数の支流端子22の各々は、通信カプラユニット12の後段に設けられるI/Oユニット14と接続するための端子である。通信カプラユニット12に設けられる支流端子22の数は、その通信カプラユニット12に備えられたマスター処理回路16の数と同数である。すなわち、通信カプラユニット12は、2つの支流端子22を備える。この2つの支流端子22のうち、一方の支流端子22は、以下の説明において支流端子22aとも記載される。これに対し、他方の支流端子22は、支流端子22bとも記載される。
 支流端子22aはマスター処理回路16aに接続される。支流端子22bは、マスター処理回路16bに接続される。すなわち、複数の支流端子22は、互いに異なるマスター処理回路16に接続される。
 複数のI/Oユニット14の各々は、スレーブ処理回路26と、インターフェース28と、複数の前段側端子30と、複数の後段側端子32と、筐体38とを有する。スレーブ処理回路26と、インターフェース28と、複数の前段側端子30と、複数の後段側端子32とは、筐体38に収容される。
 複数の前段側端子30の各々は、前段に設けられる通信カプラユニット12、または前段に設けられる別のI/Oユニット14と接続するための端子である。前段側端子30の数は、通信カプラユニット12に備えられる支流端子22の数と同数である。すなわち、I/Oユニット14は、2つの前段側端子30を備える。この2つの前段側端子30のうち、一方の前段側端子30は、以下の説明において前段側端子30aとも記載される。これに対し、他方の前段側端子30は、前段側端子30bとも記載される。
 複数の後段側端子32の各々は、後段に設けられる別のI/Oユニット14と接続するための端子である。後段側端子32の数は、I/Oユニット14に備えられる前段側端子30の数と同数である。すなわち、I/Oユニット14は、2つの後段側端子32を備える。この2つの後段側端子32のうち、一方の後段側端子32は、以下の説明において後段側端子32aとも記載される。これに対し、他方の後段側端子32は、以下の説明において後段側端子32bとも記載される。
 前段側端子30aは、第1信号線34を通じて後段側端子32aと接続される。また、前段側端子30bは、第2信号線36を通じて後段側端子32bと接続される。すなわち、I/Oユニット14単体について、複数の前段側端子30は、互いに異なる後段側端子32と接続される。
 I/Oユニット14の前段に通信カプラユニット12が設置される場合、前段側端子30aは、通信カプラユニット12の支流端子22aに接続される。また、前段側端子30bは、通信カプラユニット12の支流端子22bに接続される。その一方で、I/Oユニット14の前段に別のI/Oユニット14が設置される場合、I/Oユニット14の前段側端子30aは、別のI/Oユニット14の後段側端子32aに接続される。また、I/Oユニット14の前段側端子30bは、別のI/Oユニット14の後段側端子32bに接続される。
 複数のI/Oユニット14の各々のスレーブ処理回路26は、複数の前段側端子30のうちの1つと、その前段側端子30と接続される後段側端子32とに接続される。例えば、スレーブ処理回路26は、前段側端子30aと後段側端子32aとに接続される。ただし、スレーブ処理回路26は、前段側端子30bと後段側端子32bとに接続されてもよい。
 複数のI/Oユニット14は、第1のI/Oユニット14Aと、第2のI/Oユニット14Bとに分類される。第1のI/Oユニット14Aは、第1信号線34上にスレーブ処理回路26が設けられたI/Oユニット14である。第2のI/Oユニット14Bは、第2信号線36上にスレーブ処理回路26が設けられたI/Oユニット14である。第1のI/Oユニット14Aのスレーブ処理回路26(26a)は、支流線Lb1上でマスター処理回路16aに接続される。一方、第2のI/Oユニット14Bのスレーブ処理回路26(26b)は、支流線Lb2上でマスター処理回路16bに接続される。
 第1のI/Oユニット14Aの前段側端子30bと、後段側端子32bとに入出力される信号は、第2信号線36を通じて、第1のI/Oユニット14A内を素通りする。一方、第2のI/Oユニット14Bの前段側端子30aと、後段側端子32aとに入出力される信号は、第1信号線34を通じて、第2のI/Oユニット14B内を素通りする。
 本実施の形態によれば、第1のI/Oユニット14Aは、マスター処理回路16aのスレーブとして動作する。また、第2のI/Oユニット14Bは、マスター処理回路16bのスレーブとして動作する。しかも、第1のI/Oユニット14Aと、第2のI/Oユニット14Bとは、1つのステーション内にまとめて一列に設置される。オペレータは、仮にマスター処理回路16aの制限台数を超えるI/Oユニット14が必要である場合、その超過分をマスター処理回路16bのスレーブとして設置することができる。
 このように、本実施の形態によれば、ステーション内での増設が容易なI/Oユニット14と、そのI/Oユニット14を複数有する通信システム10とが提供される。
 なお、図2の例では、複数の第1のI/Oユニット14Aが、複数の第2のI/Oユニット14Bよりも前段側に設けられている。通信システム10は、これに限定されない。例えば、複数の第2のI/Oユニット14Bが、複数の第1のI/Oユニット14Aよりも前段側に並べられてもよい。また、複数の第1のI/Oユニット14Aと複数の第2のI/Oユニット14Bとが、混在するように並べられてもよい。
 [変形例]
 以上、本発明の一例として実施の形態が説明された。上記実施の形態には、多様な変更または改良を加えることが可能である。また、その様な変更または改良を加えた形態が本発明の技術的範囲に含まれ得ることは、請求の範囲の記載から明らかである。
 以下には、上記実施形態に係る変形例が記載される。ただし、上記実施形態と重複する説明は、以下の説明では可能な限り省略される。上記実施形態で説明済みの構成要素には、特に断らない限り、上記実施形態と同一の参照符号が付される。
 (変形例1)
 図3Aは、変形例1に係るI/Oユニット14’(14)を表す図である。
 I/Oユニット14’は、I/Oユニット14の構成要素(図2も参照)のみならず、選択回路40をさらに備える。選択回路40は、互いに接続される複数の前段側端子30と複数の後段側端子32との組み合わせを選択する回路である。なお、I/Oユニット14’は、2つの前段側端子30と、2つの後段側端子32とを備える。この場合、選択回路40は、2つの前段側端子30と、2つの後段側端子32との接続関係を、次の第1の接続関係と第2の接続関係とのうちから選択する。
 図3Bは、第1の接続関係が選択された場合におけるI/Oユニット14’を表す図である。
 例えば図3Bに示すように、選択回路40は、第1の接続関係を選択する場合には、前段側端子30aを後段側端子32aに接続し、前段側端子30bを後段側端子32bに接続する。
 図3Cは、第2の接続関係が選択された場合におけるI/Oユニット14’を表す図である。
 また、例えば図3Cに示すように、選択回路40は、第2の接続関係を選択する場合には、前段側端子30aを後段側端子32bに接続し、前段側端子30bを後段側端子32aに接続する。
 選択回路40は、例えば機械的スイッチ、電気的スイッチ、半導体スイッチ等のスイッチと、導体とを用いて適宜構成される。なお、選択回路40は、他の回路の一部として構成されてもよい。例えば、選択回路40は、ASICの一部として構成されてもよい。
 本変形例によれば、I/Oユニット14’における2つの前段側端子30と2つの後段側端子32との間の接続関係は、選択回路40によって容易に変更される。また、第1のI/Oユニット14Aと第2のI/Oユニット14Bとの相違点が、選択回路40の内部に集約される。すなわち、第1のI/Oユニット14Aと第2のI/Oユニット14Bとの構成が共通化される。接続関係の選択は常時可能である必要はなく、例えばI/Oユニット14の組み立て時にのみ選択可能としてもよい。
 図3A~図3Cの例示において、選択回路40は、スレーブ処理回路26と2つの後段側端子32のうち一方との間に介在するように設けられている。この場合、選択回路40は、I/Oユニット14の後段に設けられる他のI/Oユニット14のスレーブ処理回路26について、接続相手となるマスター処理回路16を変更する。
 図4は、選択回路40の配置を変更したI/Oユニット14’を表す図である。
 図4に示すように、選択回路40は、スレーブ処理回路26と、2つの前段側端子30のうち一方との間に介在するように設けられてもよい。その場合、選択回路40は、自身と同じI/Oユニット14のスレーブ処理回路26について、接続相手となるマスター処理回路16を変更する。
 このように、選択回路40は、スレーブ処理回路26に対して後段側端子32側に設けられるか、前段側端子30側に設けられるかによって、その作用が異なる。これを踏まえ、I/Oユニット14’は、スレーブ処理回路26よりも後段側端子32側に設けられる選択回路40と、スレーブ処理回路26よりも前段側端子30側に設けられる別の選択回路40とを備えてもよい。
 (変形例2)
 図5は、変形例2に係るI/Oユニット14’’(14)を表す図である。
 I/Oユニット14’’は、4つの前段側端子30と、4つの後段側端子32と、選択回路40’とを備える。
 選択回路40’は、変形例1と同様に、各種スイッチ等を適宜含む。選択回路40’は、互いに接続される複数の前段側端子30と複数の後段側端子32との組み合わせを、第1の接続関係(図5の実線)と第2の接続関係(図5の破線)とのうちから選択する。第1の接続関係は、複数の前段側端子30の各々が、自身について予め決められた2つの後段側端子32の一方と接続される接続関係である。第2の接続関係は、複数の前段側端子30の各々が、自身について予め決められた前述の2つの後段側端子32の他方と接続される接続関係である。第1の接続関係と第2の接続関係とのいずれの場合においても、複数の前段側端子30は、互いに異なる後段側端子32と接続される。
 選択回路40’は、I/Oユニット14’’のうち、スレーブ処理回路26よりも後段側端子32側に設けられてもよい。この場合、選択回路40’は、I/Oユニット14’’の後段に設けられる別のI/Oユニット14のスレーブ処理回路26の接続相手となるマスター処理回路16を変更する。また、選択回路40’は、I/Oユニット14’’のうち、スレーブ処理回路26よりも前段側端子30側に設けられてもよい。この場合、選択回路40’は、自身が備えられたI/Oユニット14’’のスレーブ処理回路26の接続相手となるマスター処理回路16を変更する。
 図6は、変形例2に係るI/Oユニット14’’を有する通信システム10’を表す図である。図6中、4つのマスター処理回路16のそれぞれに付した数字1~4と、4つのスレーブ処理回路26のそれぞれに付した数字1~4とは、マスター処理回路16と、そのマスター処理回路16に接続されたスレーブ処理回路26との対応関係を示す。
 本変形例によれば、図6に示すように、I/Oユニット14’’の全体的な構成が共通化される。また、選択回路40’の部分のみの変更(選択)により、複数のスレーブ処理回路26を互いに異なるマスター処理回路16に接続することが可能となる。
 (変形例3)
 通信カプラユニット12がマスター処理回路16を2つ以上有する場合において、2つのマスター処理回路16のうち一方は、他方の冗長回路であってもよい。これにより、通信システム10の安全性と信頼性とが良好になる。
 [実施の形態から得られる発明]
 上記実施の形態および変形例から把握しうる発明について、以下に記載する。
 <第1の発明>
 第1の発明は、マスターユニット(12)と機器(104)とを接続し、前記マスターユニットと前記機器との間で信号を伝送するI/Oユニット(14)であって、前段に設けられる前記マスターユニットまたは前段に設けられる他の前記I/Oユニットと接続するための複数の前段側端子(30)と、後段に設けられる他の前記I/Oユニットと接続するために設けられ、互いに異なる前記前段側端子と接続される複数の後段側端子(32)と、複数の前記前段側端子のうちの1つと、その1つの前記前段側端子と接続される前記後段側端子とに接続され、信号処理を行うスレーブ処理回路(26)と、を備える。
 これにより、ステーション内での増設が容易なI/Oユニットが提供される。
 第1の発明は、互いに接続される複数の前記前段側端子と複数の前記後段側端子との組み合わせを選択する選択回路(40)を備えてもよい。これにより、I/Oユニットの全体的な構成は維持しつつ、選択回路の部分のみの変更によって、複数の前記前段側端子と複数の前記後段側端子との組み合わせを変更することができる。
 前記マスターユニットは、複数のマスター処理回路(16)を有し、複数の前記前段側端子は、互いに異なる前記マスター処理回路に接続されてもよい。これにより、I/Oユニットには、複数のマスター処理回路から信号が入力される。複数あるうちの1つのマスター処理回路の信号はスレーブ処理回路で処理され、他のマスター処理回路の信号は後段側へと素通りする。
 前記スレーブ処理回路に接続される前記前段側端子および前記後段側端子は、前記スレーブ処理回路を介して互いに接続されてもよい。これにより、複数のI/Oユニットが順次接続されることで、複数のスレーブ処理回路がデイジーチェーン接続される。
 第1の発明は、前記スレーブ処理回路と前記機器とを接続し、前記スレーブ処理回路が前記機器と信号の入出力を行うためのインターフェース(28)をさらに備えてもよい。
 <第2の発明>
 第2の発明は、マスターユニット(12)と、前記マスターユニットに接続され、前記マスターユニットと機器(104)との間で信号を伝送する複数のI/Oユニット(14)とを有する通信システム(10)であって、前記マスターユニットは、信号処理を行う複数のマスター処理回路(16)と、互いに異なる前記マスター処理回路に接続された複数の支流端子(22)と、を備え、複数の前記I/Oユニットの各々は、前段に設けられる前記マスターユニットまたは前段に設けられる他の前記I/Oユニットと接続するための複数の前段側端子(30)と、後段に設けられる他の前記I/Oユニットと接続するために設けられ、互いに異なる前記前段側端子と接続された複数の後段側端子(32)と、複数の前記前段側端子のうちの1つと、その1つの前記前段側端子と接続された前記後段側端子とに接続され、信号処理を行うスレーブ処理回路(26)と、を備え、複数の前記I/Oユニットは、前記スレーブ処理回路が第1の前記マスター処理回路に接続された複数の第1のI/Oユニット(14A)と、第1のマスター処理回路とは異なる第2の前記マスター処理回路に前記スレーブ処理回路が接続された複数の第2のI/Oユニット(14B)と、を有する。
 これにより、ステーション内でのI/Oユニットの増設が容易な通信システムが提供される。
 第1の前記マスター処理回路は、第2の前記マスター処理回路の冗長回路であってもよい。これにより、通信システムの安全性および信頼性が良好になる。
 複数の前記I/Oユニットの各々は、前記スレーブ処理回路と前記機器とを接続し、前記スレーブ処理回路が前記機器と信号の入出力を行うためのインターフェース(28)をさらに備えてもよい。

Claims (8)

  1.  マスターユニット(12)と機器(104)とを接続し、前記マスターユニットと前記機器との間で信号を伝送するI/Oユニット(14)であって、
     前段に設けられる前記マスターユニットまたは前段に設けられる他の前記I/Oユニットと接続するための複数の前段側端子(30)と、
     後段に設けられる他の前記I/Oユニットと接続するために設けられ、互いに異なる前記前段側端子と接続される複数の後段側端子(32)と、
     複数の前記前段側端子のうちの1つと、その1つの前記前段側端子と接続される前記後段側端子とに接続され、信号処理を行うスレーブ処理回路(26)と、
     を備える、I/Oユニット。
  2.  請求項1に記載のI/Oユニットであって、
     互いに接続される複数の前記前段側端子と複数の前記後段側端子との組み合わせを選択する選択回路(40)を備える、I/Oユニット。
  3.  請求項1または2に記載のI/Oユニットであって、
     前記マスターユニットは、複数のマスター処理回路(16)を有し、
     複数の前記前段側端子は、互いに異なる前記マスター処理回路に接続される、I/Oユニット。
  4.  請求項3に記載のI/Oユニットであって、
     前記スレーブ処理回路に接続される前記前段側端子および前記後段側端子は、前記スレーブ処理回路を介して互いに接続されている、I/Oユニット。
  5.  請求項1~4のいずれか1項に記載のI/Oユニットであって、
     前記スレーブ処理回路と前記機器とを接続し、前記スレーブ処理回路が前記機器と信号の入出力を行うためのインターフェース(28)をさらに備える、I/Oユニット。
  6.  マスターユニット(12)と、前記マスターユニットに接続され、前記マスターユニットと機器(104)との間で信号を伝送する複数のI/Oユニット(14)とを有する通信システム(10)であって、
     前記マスターユニットは、
     信号処理を行う複数のマスター処理回路(16)と、
     互いに異なる前記マスター処理回路と接続された複数の支流端子(22)と、
     を備え、
     複数の前記I/Oユニットの各々は、
     前段に設けられる前記マスターユニットまたは前段に設けられる他の前記I/Oユニットと接続するための複数の前段側端子(30)と、
     後段に設けられる他の前記I/Oユニットと接続するために設けられ、互いに異なる前記前段側端子と接続された複数の後段側端子(32)と、
     複数の前記前段側端子のうちの1つと、その1つの前記前段側端子と接続された前記後段側端子とに接続され、信号処理を行うスレーブ処理回路(26)と、
     を備え、
     複数の前記I/Oユニットは、
     前記スレーブ処理回路が第1の前記マスター処理回路に接続された複数の第1のI/Oユニット(14A)と、
     第1の前記マスター処理回路とは異なる第2の前記マスター処理回路に前記スレーブ処理回路が接続された複数の第2のI/Oユニット(14B)と、
     を有する、通信システム。
  7.  請求項6に記載の通信システムであって、
     第1の前記マスター処理回路は、第2の前記マスター処理回路の冗長回路である、通信システム。
  8.  請求項6または7に記載の通信システムであって、
     複数の前記I/Oユニットの各々は、前記スレーブ処理回路と前記機器とを接続し、前記スレーブ処理回路が前記機器と信号の入出力を行うためのインターフェース(28)をさらに備える、通信システム。
PCT/JP2022/010778 2021-03-24 2022-03-11 I/oユニット、および通信システム WO2022202391A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023509009A JPWO2022202391A1 (ja) 2021-03-24 2022-03-11
CN202280022899.XA CN117043691A (zh) 2021-03-24 2022-03-11 I/o单元以及通信系统
US18/283,635 US20240168449A1 (en) 2021-03-24 2022-03-11 I/o unit and communication system
EP22775183.1A EP4318150A1 (en) 2021-03-24 2022-03-11 I/o unit and communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-050056 2021-03-24
JP2021050056 2021-03-24

Publications (1)

Publication Number Publication Date
WO2022202391A1 true WO2022202391A1 (ja) 2022-09-29

Family

ID=83395729

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010778 WO2022202391A1 (ja) 2021-03-24 2022-03-11 I/oユニット、および通信システム

Country Status (6)

Country Link
US (1) US20240168449A1 (ja)
EP (1) EP4318150A1 (ja)
JP (1) JPWO2022202391A1 (ja)
CN (1) CN117043691A (ja)
TW (1) TW202238293A (ja)
WO (1) WO2022202391A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09247766A (ja) * 1996-03-07 1997-09-19 Meidensha Corp 遠方監視制御システム
JP2002091519A (ja) * 2000-09-20 2002-03-29 Hitachi Ltd プログラマブルコントローラ及び誤配線修正方法
JP2011130307A (ja) * 2009-12-21 2011-06-30 Mitsubishi Electric Corp 冗長化通信装置
JP2016110460A (ja) 2014-12-08 2016-06-20 株式会社キーエンス プログラマブルコントローラ、プログラマブルコントローラの制御方法およびプログラム
JP2018157456A (ja) * 2017-03-21 2018-10-04 ファナック株式会社 スレーブ、シリアル通信システム、および、シリアル通信システムの通信方法
JP2019114085A (ja) * 2017-12-25 2019-07-11 オムロン株式会社 制御システムおよび制御装置
JP2021002172A (ja) * 2019-06-20 2021-01-07 株式会社日立製作所 デイジーチェーン接続システム及びシステム制御方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09247766A (ja) * 1996-03-07 1997-09-19 Meidensha Corp 遠方監視制御システム
JP2002091519A (ja) * 2000-09-20 2002-03-29 Hitachi Ltd プログラマブルコントローラ及び誤配線修正方法
JP2011130307A (ja) * 2009-12-21 2011-06-30 Mitsubishi Electric Corp 冗長化通信装置
JP2016110460A (ja) 2014-12-08 2016-06-20 株式会社キーエンス プログラマブルコントローラ、プログラマブルコントローラの制御方法およびプログラム
JP2018157456A (ja) * 2017-03-21 2018-10-04 ファナック株式会社 スレーブ、シリアル通信システム、および、シリアル通信システムの通信方法
JP2019114085A (ja) * 2017-12-25 2019-07-11 オムロン株式会社 制御システムおよび制御装置
JP2021002172A (ja) * 2019-06-20 2021-01-07 株式会社日立製作所 デイジーチェーン接続システム及びシステム制御方法

Also Published As

Publication number Publication date
EP4318150A1 (en) 2024-02-07
US20240168449A1 (en) 2024-05-23
TW202238293A (zh) 2022-10-01
JPWO2022202391A1 (ja) 2022-09-29
CN117043691A (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
US8531942B2 (en) Communication system having a master/slave structure
US20080284483A1 (en) Clock distribution circuit and test method
JP4648166B2 (ja) システム電源及び電力供給システム
WO2022202391A1 (ja) I/oユニット、および通信システム
WO2022202388A1 (ja) I/oユニット、マスターユニットおよび通信システム
WO2022202386A1 (ja) I/oユニット
US7709978B2 (en) System interface and installation with the system interface
WO2022202389A1 (ja) マスターユニット、および通信システム
US9812873B2 (en) Virtual channel abstraction layer for solid state power controls
US20240160589A1 (en) I/o unit
JPH04286239A (ja) 通信装置
JP7152631B1 (ja) マスターユニット
CN101989853B (zh) 开关控制电路及开关发送集成电路和开关执行集成电路
JPH02149040A (ja) データ伝送方式
TWI843068B (zh) 主單元及通信系統
JP6629474B1 (ja) 信号切替装置
JPH01231539A (ja) マルチポイント端末システム
JPH11205321A (ja) 通信路切替え装置
JPS63252042A (ja) 連続形バイパス制御装置
JP2002258908A (ja) 制御装置における分岐ユニット構造
JPH11150460A (ja) セレクト方法及びセレクタ
JP2003188938A (ja) マルチ接続インタフェース回路
JPH0666809B2 (ja) 内部バス接続方式
JP2001014076A (ja) ケーブル誤接続保護・検出手段
JP2001086038A (ja) 情報伝送装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775183

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280022899.X

Country of ref document: CN

Ref document number: 2023509009

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18283635

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022775183

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022775183

Country of ref document: EP

Effective date: 20231024