WO2022202389A1 - マスターユニット、および通信システム - Google Patents

マスターユニット、および通信システム Download PDF

Info

Publication number
WO2022202389A1
WO2022202389A1 PCT/JP2022/010776 JP2022010776W WO2022202389A1 WO 2022202389 A1 WO2022202389 A1 WO 2022202389A1 JP 2022010776 W JP2022010776 W JP 2022010776W WO 2022202389 A1 WO2022202389 A1 WO 2022202389A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
connector
master
processing circuit
terminal
Prior art date
Application number
PCT/JP2022/010776
Other languages
English (en)
French (fr)
Inventor
佐伯正博
桑畑眞一
前田翌檜
Original Assignee
ファナック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ファナック株式会社 filed Critical ファナック株式会社
Priority to JP2022538421A priority Critical patent/JP7152632B1/ja
Priority to CN202280021740.6A priority patent/CN116997869A/zh
Priority to EP22775181.5A priority patent/EP4318148A1/en
Priority to US18/282,250 priority patent/US20240168448A1/en
Publication of WO2022202389A1 publication Critical patent/WO2022202389A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/05Programmable logic controllers, e.g. simulating logic interconnections of signals according to ladder diagrams or function charts
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • G05B19/042Programme control other than numerical control, i.e. in sequence controllers or logic controllers using digital processors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/10Plc systems
    • G05B2219/12Plc mp multi processor system
    • G05B2219/1215Master slave system
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/22Pc multi processor system
    • G05B2219/2231Master slave

Definitions

  • the present invention relates to a master unit that transmits signals with devices via I/O units, and a communication system having the master unit.
  • Japanese Patent Application Laid-Open No. 2016-110460 discloses a programmable logic controller system.
  • the programmable logic controller system has a base unit (master) and multiple expansion units (slaves).
  • a base unit and a plurality of expansion units are daisy-chained with a master unit at the head.
  • Each of the multiple expansion units is, for example, an I/O unit.
  • a base unit transmits and receives signals to a controlled device through a plurality of expansion units.
  • a controlled device is, for example, a sensor or an actuator.
  • the master unit and multiple I/O units are arranged along a predetermined installation direction with the master unit at the top.
  • the terminals of adjacent master units are connected to the terminals of the I/O units.
  • terminals of adjacent I/O units are connected to each other.
  • the master unit and the plurality of I/O units are communicably connected.
  • a mass consisting of a master unit and a plurality of I/O units communicatively connected is also referred to as a "station".
  • the operator sequentially connects the master unit of each station to the control device.
  • the master unit of each station is connected by a connection member such as a cable separately prepared by the operator.
  • two stations may be arranged side by side in the predetermined installation direction described above.
  • the operator connects the heads (master units) of the two stations with the connecting member.
  • a plurality of I/O units connected to one master unit are installed between the master units of the two stations.
  • the operator has to wire the connection member so as to bypass the plurality of I/O units.
  • An object of the present invention is to solve the above-described problems.
  • a first aspect of the present invention is a master unit that transmits a signal to a device connected to the I/O unit via the I/O unit, comprising: a master processing circuit that performs signal processing; A first connector for connecting to another master unit provided in the rear stage of the circuit, a second connector for connecting to a control device or another master unit provided in the front stage of the master processing circuit, and the I/O. a tributary terminal for connecting to a unit; and a power supply section for supplying power to the master processing circuit.
  • the master unit includes a first connector module having the first connector, the master processing circuit, and the master processing circuit.
  • a main module having the second connector connected to the master processing circuit, the tributary terminal, and the power supply section, and the first connector module and the main module are connected to the I/O unit through the I/O unit. It further has a first connection terminal for connecting the first connector and the master processing circuit.
  • a second aspect of the present invention is a communication system having an I/O unit to which a device is connected, and a master unit for transmitting signals to and from the device via the I/O unit, wherein the master unit , a master processing circuit that performs signal processing, a first connector for connecting to another master unit provided in the subsequent stage of the master processing circuit, and a control device or other master unit provided in the previous stage of the master processing circuit.
  • a first connector module comprising a second connector for connection, a tributary terminal for connection to the I/O unit, and a power supply section for supplying power to the master processing circuit, and having the first connector.
  • the first connector module and the main module further has a first connection terminal for connecting the first connector and the master processing circuit through the I/O unit, the I/O unit being connected to the main module provided in the preceding stage.
  • a front-stage main stream terminal and a front-stage branch terminal connectable to the No.
  • connection terminal and the branch terminal 1 connection terminal and the branch terminal; a rear-stage branch terminal connectable to the front-stage branch terminal of another I/O unit provided at a rear stage; a slave processing circuit connected to the preceding-stage branch terminal and the latter-stage branch terminal and performing input/output of signals with the master processing circuit; a post-stage main stream terminal connectable to the first connection terminal of the provided first connector module.
  • a master unit that can be connected to the master unit of another station from the latter stage of the station, and a communication system that includes the master unit.
  • FIG. 1 is a diagram showing a communication system according to a reference example of the present invention.
  • FIG. 2 is a diagram showing a communication system according to an embodiment of the invention.
  • FIG. 3 is a diagram showing a communication coupler unit according to Modification 1.
  • FIG. 4 is a diagram showing a communication coupler unit according to Modification 2.
  • FIG. 5 is a diagram showing a station according to Modification 2.
  • FIG. 6 is a diagram showing a common connector module according to Modification 3.
  • FIG. 1 is a diagram showing a communication system according to a reference example of the present invention.
  • FIG. 2 is a diagram showing a communication system according to an embodiment of the invention.
  • FIG. 3 is a diagram showing a communication coupler unit according to Modification 1.
  • FIG. 4 is a diagram showing a communication coupler unit according to Modification 2.
  • FIG. 5 is a diagram showing a station according to Modification 2.
  • FIG. 6 is a diagram showing a common connector module according to Modification 3.
  • FIG. 1 is a diagram showing a communication system 100 according to a reference example of the present invention.
  • the communication system 100 is a system that transmits signals between the control device 102 and the equipment 104 .
  • the equipment 104 is provided in a mechanical device. Mechanical devices are, for example, machine tools or robots.
  • Devices 104 include an output device 104a and an input device 104b.
  • the output device 104a is, for example, an actuator such as a switch.
  • the control device 102 sends a control signal to the output device 104a via the communication system 100 when driving the output device 104a.
  • the input device 104b is a sensor that detects pressure, voltage, current, or the like, for example.
  • the control device 102 acquires the detection signal from the input device 104b via the communication system 100.
  • the communication system 100 has two communication coupler units 106 (106a, 106b) and a plurality of I/O units 108 (108a, 108b). A plurality of I/O units 108a are sequentially connected after the communication coupler unit 106a.
  • the communication coupler unit 106a is the master unit for the multiple I/O units 108a.
  • Each of the plurality of I/O units 108a is a slave unit of the communication coupler unit 106a.
  • the communication coupler unit 106a and multiple I/O units 108a constitute one station S10.
  • Arrow D in FIG. 1 indicates the installation direction (+D: rear stage side, ⁇ D: front stage side) in which the communication coupler unit 106a and the plurality of I/O units 108a are arranged.
  • the plurality of I/O units 108b are sequentially connected to the rear stage of the communication coupler unit 106b. Therefore, the communication coupler unit 106b is the master unit for the multiple I/O units 108b. Each of the plurality of I/O units 108b is a slave unit of the communication coupler unit 106b.
  • the communication coupler unit 106b and the plurality of I/O units 108b constitute one station S20.
  • the communication coupler unit 106b and the plurality of I/O units 108b are arranged in the installation direction D. As shown in FIG.
  • the communication coupler unit 106 has a master processing circuit 20, a tributary terminal 22, a power supply section 24, a first connector 26, a second connector 28, and a housing 110.
  • the master processing circuit 20 , the tributary terminal 22 , the power supply section 24 , the first connector 26 and the second connector 28 are housed in the housing 110 .
  • the master processing circuit 20 includes, for example, a CPU (Central Processing Unit). However, the master processing circuit 20 may include an ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), FPGA (Field Programmable Logic Gate Array), or the like.
  • ASIC Application Specific Integrated Circuit
  • PLD Process-Demand Generation
  • FPGA Field Programmable Logic Gate Array
  • the power supply unit 24 supplies power to the master processing circuit 20 .
  • the power supply section 24 may supply power to a plurality of I/O units 108 provided on the downstream side of the communication coupler unit 106 .
  • the first connector 26 is a connector for connecting with another communication coupler unit 106 provided at the rear stage of the communication coupler unit 106 .
  • the second connector 28 is a connector for connecting with the control device 102 provided in the preceding stage of the communication coupler unit 106 or another communication coupler unit 106 provided in the preceding stage of the communication coupler unit 106 .
  • the first connector 26 and the second connector 28 are connected to the master processing circuit 20 .
  • the first connector 26 and the second connector 28 are provided on the front (-D) side of the communication coupler unit 106, as shown in FIG. 1, for example.
  • the first connector 26 of the communication coupler unit 106a is connected to the second connector 28 of the communication coupler unit 106b via a connection member Cab1 separately prepared by the operator.
  • the connection member Cab1 is, for example, a cable.
  • the second connector 28 of the communication coupler unit 106a is connected to the control device 102 via a connection member Cab2 separately prepared by the operator.
  • the control device 102, the master processing circuit 20 of the communication coupler unit 106a, and the master processing circuit 20 of the communication coupler unit 106b are connected in this order.
  • the first connector 26 of the communication coupler unit 106b is open in this reference example.
  • the first connector 26 of the communication coupler unit 106b is connected to the second connector 28 of the other communication coupler unit 106 when another communication coupler unit 106 is installed in the subsequent stage of the communication coupler unit 106b.
  • the tributary terminal 22 is a terminal connected to the I/O unit 108 . Within one communication coupler unit 106 , the tributary terminal 22 is connected to the master processing circuit 20 . The tributary terminal 22 is provided on the side surface of the communication coupler unit 106 on the rear stage (+D) side.
  • the I/O unit 108 has a slave processing circuit 32 , an interface 34 , a front-stage branch terminal 36 , a rear-stage branch terminal 38 , and a housing 112 .
  • the slave processing circuit 32 , the interface 34 , the front-stage tributary terminal 36 , and the rear-stage tributary terminal 38 are housed in the housing 112 .
  • the slave processing circuit 32 includes, for example, a CPU (Central Processing Unit). However, slave processing circuitry 32 may include an ASIC (Application Specific Integrated Circuit), PLD (Programmable Logic Device), FPGA (Field Programmable Logic Gate Array), or the like. The slave processing circuit 32 inputs and outputs signals to and from the master processing circuit 20 .
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Logic Gate Array
  • the interface 34 is hardware (circuit, electronic component group) for connecting the slave processing circuit 32 and the device 104 and allowing the slave processing circuit 32 to input/output signals to/from the device 104 .
  • a specific configuration of the interface 34 differs according to the type of the device 104 .
  • a plurality of I/O units 108 are connected to a plurality of devices 104 .
  • a plurality of I/O units 108 in FIG. 1 are connected to devices 104 different from each other. However, multiple devices 104 may be connected to one I/O unit 108 .
  • the front-stage branch terminal 36 is a terminal for connecting with the communication coupler unit 106 provided at the front stage or another I/O unit 108 provided at the front stage.
  • the front-stage branch terminal 36 is provided on the front-stage ( ⁇ D) side of the I/O unit 108 .
  • the post-stage branch terminal 38 is a terminal for connecting to another I/O unit 108 provided in the post-stage.
  • the post-stage branch terminal 38 is provided on the post-stage (+D) side of the I/O unit 108 .
  • the front-stage branch terminal 36 and the rear-stage branch terminal 38 are connected to each other via the slave processing circuit 32 .
  • the preceding stage of the I/O unit 108 is the communication coupler unit 106
  • the preceding stage branch terminal 36 is connected to the branch terminal 22 .
  • the master processing circuit 20 of the communication coupler unit 106 is connected to the slave processing circuit 32 of the subsequent I/O unit 108 .
  • the preceding stage of the I/O unit 108 is another I/O unit 108
  • the preceding stage branch terminal 36 is connected to the succeeding stage branch terminal 38 of the other I/O unit 108 .
  • the slave processing circuits 32 of the plurality of I/O units 108 are daisy-chained.
  • control device 102 When the control device 102 sends a control signal to the device 104, the control device 102 outputs the control signal to the communication coupler unit 106a connected in the first stage (first) as seen from itself.
  • This control signal includes address information and the like of the I/O unit 108 to which the destination device 104 is connected.
  • the master processing circuit 20 of the communication coupler unit 106a determines whether the address information included in the control signal indicates any one of the plurality of I/O units 108a. If the address information does not indicate any of the plurality of I/O units 108a, the master processing circuit 20 of the communication coupler unit 106a outputs a control signal to the master processing circuit 20 of the communication coupler unit 106b.
  • the master processing circuit 20 of the communication coupler unit 106a When the address information indicates one of the plurality of I/O units 108a, the master processing circuit 20 of the communication coupler unit 106a outputs a control signal to the subsequent I/O unit 108a.
  • the slave processing circuit 32 of the I/O unit 108a to which the control signal is input from the previous stage determines whether the address information included in the input control signal indicates itself.
  • the slave processing circuit 32 of the I/O unit 108a outputs a control signal to the device 104 connected thereto. This causes the device 104 to operate.
  • the I/O unit 108a outputs the control signal to the subsequent I/O unit 108a.
  • the I/O unit 108 may output the control signal to the subsequent I/O unit 108 when the address information included in the control signal indicates itself. Further, when the address information included in the control signal indicates the I/O unit 108 connected thereto, the communication coupler unit 106 may output the control signal to the subsequent communication coupler unit 106 .
  • the device 104 may output a signal toward the control device 102 .
  • the signal of device 104 is input to slave processing circuit 32 of I/O unit 108 to which device 104 is connected.
  • the slave processing circuit 32 sends a signal input from the device 104 connected thereto to the control device 102 .
  • the slave processing circuit 32 outputs a signal to the I/O unit 108 or communication coupler unit 106 connected to its previous stage.
  • the slave processing circuit 32 includes in the output signal the content output by the device 104 and the address information of the I/O unit 108 that output the signal. Since the input/output of signals between the communication coupler unit 106 and the I/O unit 108 is a well-known technique, further explanation is omitted.
  • connection member Cab1 must bypass the plurality of I/O units 108a in order to connect the station S10 and the station S20 (see FIG. 1).
  • FIG. 2 is a diagram showing communication system 10 according to the embodiment of the present invention.
  • the communication system 10 has a communication coupler unit 12a, a communication coupler unit 12b, multiple I/O units 14a, and multiple I/O units 14b.
  • the communication coupler unit 12a is a master unit for a plurality of I/O units 14a.
  • the communication coupler unit 12a and the plurality of I/O units 14a constitute a station S1.
  • the communication coupler unit 12b is a master unit for the plurality of I/O units 14b.
  • the communication coupler unit 12b and the plurality of I/O units 14b constitute a station S2.
  • the communication coupler unit 12a and the communication coupler unit 12b are also simply referred to as the communication coupler unit 12.
  • the I/O unit 14a and the I/O unit 14b are simply referred to as the I/O unit 14 as well.
  • the communication coupler unit 12 includes a plurality of modules separable from each other. That is, the communication coupler unit 12 has a main module 16 and a connector module (first connector module) 18 . The main module 16 and connector module 18 are separable from each other.
  • the main module 16 has a master processing circuit 20, a tributary terminal 22, a power supply section 24, and a second connector 28.
  • the second connector 28 is provided at a location avoiding the rear stage (+D) side of the main module 16 .
  • the second connector 28 is provided on the front stage (-D) side of the main module 16 (see FIG. 2).
  • the tributary terminal 22 is provided on the rear stage (+D) side of the main module 16 .
  • the master processing circuit 20 is connected to a tributary terminal 22 , a power supply section 24 and a second connector 28 .
  • the connector module 18 has a first connector 26 .
  • the first connector 26 is provided on the rear stage (+D) side of the connector module 18 .
  • connection terminals 30 of the main module 16 are also referred to as connection terminals 30a
  • connection terminals 30 of the connector module 18 are also referred to as connection terminals 30b.
  • the connection terminal 30 a is provided on the rear stage (+D) side of the main module 16 and is connected to the master processing circuit 20 .
  • the connection terminal 30 b is provided on the front stage ( ⁇ D) side of the connector module 18 and connected to the first connector 26 .
  • the I/O unit 14 includes a slave processing circuit 32 , an interface 34 , a front-stage branch terminal 36 , a rear-stage branch terminal 38 , a front-stage main stream terminal 40 , a rear-stage main stream terminal 42 , and a housing 44 .
  • the slave processing circuit 32 , the interface 34 , the front-stage branch terminal 36 , the rear-stage branch terminal 38 , the front-stage main stream terminal 40 , and the rear-stage main stream terminal 42 are housed in a housing 44 .
  • the upstream terminal 40 is a terminal for connecting to the main module 16 provided in the previous stage or other I/O unit 14 provided in the previous stage.
  • the front-stage main stream terminal 40 is provided on the front-stage ( ⁇ D) side of the I/O unit 14 .
  • the post-stage main stream terminal 42 is a terminal for connecting to the connector module 18 provided in the post-stage or another I/O unit 14 provided in the post-stage.
  • the post-stage main stream terminal 42 is provided on the post-stage (+D) side of the I/O unit 14 .
  • the front stage of the I/O unit 14 is the main module 16
  • the front stage side mainstream terminal 40 of the I/O unit 14 is connected to the connection terminal 30a.
  • the front-stage main stream terminal 40 of the I/O unit 14 is connected to the rear-stage main stream terminal 42 of the other I/O unit 14 .
  • the connector module 18 is located after the I/O unit 14
  • the downstream main stream terminal 42 of the I/O unit 14 is connected to the connection terminal 30b.
  • the branch terminal 38 on the downstream side of the I/O unit 14 remains open.
  • the upstream terminal 40 and the downstream terminal 42 are connected to each other. Therefore, the upstream terminal 40 and the downstream terminal 42 are connected to the master processing circuit 20 of the main module 16 provided before the I/O unit 14 and the first connector module provided after the I/O unit 14 . 18 first connectors 26 can be connected. The upstream terminal 40 and the downstream terminal 42 are connected without the slave processing circuit 32 (see also FIG. 2).
  • Each of station S1 and station S2 includes a main module 16 .
  • a plurality of I/O units 14 are sequentially connected to the rear stage of the main module 16 of the station S1.
  • a communication path (tributary line Lb1) in which the master processing circuit 20 and a plurality of slave processing circuits 32 are sequentially connected is configured.
  • a plurality of I/O units 14 different from the station S1 are sequentially connected to the rear stage of the main module 16 of the station S2.
  • a communication path (tributary line Lb2) in which the master processing circuit 20 and a plurality of slave processing circuits 32 are sequentially connected is configured.
  • first connector module 18 is provided at the last stage of each of the station S1 and the station S2.
  • master processing circuit 20 of main module 16 and first connector 26 of first connector module 18 are connected through I/O unit 14 .
  • the second connector 28 of the main module 16 of the station S1 is connected to the control device 102 by the connection member Cab2. Also, the second connector 28 of the main module 16 of station S2 is connected to the first connector 26 of the connector module 18 of station S1 by a connecting member Cab1.
  • a communication path (main flow line La) is formed in which the master processing circuit 20 of the station S1 and the master processing circuit 20 of the station S2 are sequentially connected in this order, starting with the control device 102 .
  • the slave processing circuit 32 is not arranged on the main flow line La. Therefore, signals transmitted between the master processing circuit 20 of station S1 and the master processing circuit 20 of station S2 are not erroneously input to the slave processing circuit 32 in the communication system 10.
  • the first connector 26 is arranged at the last stage of the station S1. The operator does not need to bypass the plurality of I/O units 14a with respect to the connection member Cab1 that connects the second connector 28 of station S2 and the first connector 26 of station S1.
  • FIG. 3 is a diagram showing the communication coupler unit 12A (12) according to Modification 1. As shown in FIG.
  • the connector module 18 of FIG. 2 is also referred to as the first connector module 18. Further, hereinafter, the connection terminals 30 (30a, 30b) in FIG. 2 are also described as the first connection terminals 30 (30a, 30b).
  • the communication coupler unit 12A has a main module 16 . However, the main module 16 according to this modified example can be further divided into a signal processing module 46 and a second connector module 48 .
  • the signal processing module 46 is a module having a master processing circuit 20 , a tributary terminal 22 and a power supply section 24 .
  • a second connector module 48 is a module having the second connector 28 .
  • Each of the signal processing module 46 and the second connector module 48 further has a second connection terminal 50 .
  • the second connection terminals 50 of the signal processing module 46 are also referred to as second connection terminals 50a
  • the second connection terminals 50 of the second connector module 48 are also referred to as second connection terminals 50b.
  • the second connection terminal 50a and the second connection terminal 50b are detachably interconnected.
  • the signal processing module 46 and the second connector module 48 are connected by connecting the second connection terminal 50a and the second connection terminal 50b.
  • the second connection terminal 50 a is provided on the front stage (-D) side of the signal processing module 46 and is connected to the master processing circuit 20 within the signal processing module 46 .
  • the second connection terminal 50 b is provided on the rear (+D) side of the second connector module 48 and is connected to the second connector 28 inside the second connector module 48 . According to this modification, the master processing circuit 20 and the second connector 28 are connected to each other by connecting the second connection terminal 50a and the second connection terminal 50b to each other.
  • the maintainability of the main module 16 is improved. For example, if the second connector 28 fails, the operator can complete the maintenance work on the main module 16 simply by replacing the second connector module 48 while maintaining the normal parts such as the master processing circuit 20 and the power supply unit 24. can do.
  • Modification 2 In relation to Modification 1, substantially the same type of module may be configured in which the first connector module 18 and the second connector module 48 are made common.
  • FIG. 4 is a diagram showing the communication coupler unit 12B (12) according to Modification 2.
  • FIG. 4 is a diagram showing the communication coupler unit 12B (12) according to Modification 2.
  • the communication coupler unit 12B (12) has a signal processing module 46 and two common connector modules 56. A description of the signal processing module 46 is omitted (see Modification 1).
  • Each of the two common connector modules 56 has a first connection terminal 30b (30), a second connection terminal 50b (50), and a common connector 58 connected thereto.
  • the first connection terminal 30b (30) is provided on the front stage (-D) side of the common connector module .
  • the second connection terminal 50 b ( 50 ) is provided on the rear (+D) side of the common connector module 56 .
  • the common connector 58 is a connector that makes the first connector 26 and the second connector 28 common. Common connector 58 can be used as both first connector 26 and second connector 28 .
  • the common connector 58 is provided in a portion of the common connector module 56 that avoids the front (-D) side and the rear (+D) side, for example, the surface on the side perpendicular to the installation direction D (direction F in FIG. 4). Accordingly, even when other devices are provided either on the front stage side or the rear stage side of the common connector module 56, connecting the connection members (Cab1, Cab2) to the common connector 58 is not hindered.
  • FIG. 5 is a diagram showing the station S3 according to Modification 2.
  • FIG. 5 is a diagram showing the station S3 according to Modification 2.
  • the station S3 has a communication coupler unit 12B (12) and an I/O unit (a plurality of I/O units) 14.
  • the second connection terminal 50 b ( 50 ) of one ( 56 A) of the two common connector modules 56 can be connected to the second connection terminal 50 a of the signal processing module 46 .
  • the common connector 58 of the common connector module 56A is connected to the control device 102 provided in the preceding stage of the station S3. That is, the common connector 58 of the common connector module 56A functions as the second connector module 48 (see Modification 1).
  • the first connection terminal 30b of the other (56B) of the two common connector modules 56 can be connected to the downstream main stream terminal 42 of the I/O unit 14.
  • the common connector 58 of the common connector module 56B is connected to another communication coupler unit 12 (not shown in FIG. 5) provided after the station S3. That is, the common connector 58 of the common connector module 56B can be used as the connector module 18 (see embodiment).
  • the production line can be shared between the first connector module 18 and the second connector module 48 (unified as a production line for the common connector module 56). Therefore, the communication coupler unit 12 according to this modified example is advantageous in reducing manufacturing costs. Further, the operator does not have to consciously use the first connector module 18 (for connection with the rear stage side) and the second connector module 48 (for connection with the front stage side) separately.
  • FIG. 6 is a diagram showing a common connector module 56C (56) according to Modification 3. As shown in FIG.
  • the common connector module 56C has a structure in which the first connection terminal 30b (30), the second connection terminal 50b (50), and the common connector 58 are connected in a T shape.
  • the stub length of the circuit (signal line) connecting the first connection terminal 30b (30), the second connection terminal 50b (50), and the common connector 58 is shorter than in the configuration example of FIG. By shortening the stub length, signal noise between the first connection terminal 30b (30) and the common connector 58 or between the second connection terminal 50b (50) and the common connector 58 is reduced.
  • a first invention is a master unit (12) for transmitting a signal to a device (104) connected to the I/O unit (14) through the I/O unit (14), wherein the master unit (12) performs signal processing.
  • a power supply (24) said master unit comprising: a first connector module (18, 56) having said first connector; said master processing circuit; and said second connector connected to said master processing circuit.
  • the tributary terminals and a main module (16) having the power supply section, wherein the first connector module and the main module are connected to the first connector and the master processing circuit through the I/O unit. It further has a first connection terminal (30) for connecting to.
  • This provides a master unit that can be connected to the master unit of another station from the rear stage of the station.
  • the main module is divided into a second connector module (48, 56) having the second connector and a signal processing module (46) having the tributary terminal, the master processing circuit and the power supply,
  • the second connector module and the signal processing module may further have second connection terminals (50) for connecting the second connector and the master processing circuit. This improves maintainability of the main module.
  • the first connector module and the second connector module are configured as a common connector module (56), and the common connector module includes the first connection terminal and the second connection terminal. and a common connector (58) that is a common connector for the first connector and the second connector and is connected to the first connection terminal and the second connection terminal. This improves the convenience of the master unit from both the producer's and operator's point of view.
  • the first connection terminal, the second connection terminal, and the common connector may be T-connected. This reduces noise.
  • a second invention is a communication system (10) having an I/O unit (14) to which a device (104) is connected, and a master unit (12) for transmitting signals to and from the device via the I/O unit.
  • the master unit includes a master processing circuit (20) that performs signal processing, and first connectors (26, 58) for connecting to another master unit (12) that is provided downstream of the master processing circuit. ), a second connector (28, 58) for connecting to a control device (102) or another master unit (12) provided before the master processing circuit, and a second connector (28, 58) for connecting to the I/O unit.
  • a first connector module (18, 56) comprising a tributary terminal (22) and a power supply unit (24) for supplying power to the master processing circuit and having the first connector; the master processing circuit; and a main module (16) having the second connector connected to the master processing circuit, the tributary terminal, and the power supply unit, wherein the first connector module and the main module are connected to the I/ It further has a first connection terminal (30) for connecting the first connector and the master processing circuit through an O unit, and the I/O unit is connected to the first connection of the main module provided in the preceding stage.
  • a front-stage main stream terminal (40) and a front-stage branch terminal (36) connectable to the terminal and the branch terminal, and connectable to the front-stage branch terminal of another I/O unit (14) provided at the rear stage.
  • a slave processing circuit (32) connected to a downstream tributary terminal (38), the upstream tributary terminal and the downstream tributary terminal for inputting and outputting signals with the master processing circuit;
  • a rear-stage main stream terminal (42) connected to the front-stage main stream terminal without being connected to the front-stage main stream terminal and connectable to the first connection terminal of the first connector module provided at the rear stage.
  • This provides a communication system having a master unit that can be connected to the master unit of another station from the latter side of the station.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Programmable Controllers (AREA)
  • Cable Transmission Systems, Equalization Of Radio And Reduction Of Echo (AREA)
  • Small-Scale Networks (AREA)

Abstract

I/Oユニット(14)に接続された機器(104)と信号を伝送するマスターユニット(12)は、第1コネクタ(26)を有するコネクタモジュール(18)と、マスター処理回路(20)、第2コネクタ(28)、支流端子(22)、および電源部(24)を有するメインモジュール(16)とに分割され、第2コネクタ(28)とマスター処理回路(20)とはコネクタモジュール(18)およびメインモジュール(16)に設けられた第1接続端子(30)により接続される。

Description

マスターユニット、および通信システム
 本発明は、I/Oユニットを介して機器と信号を伝送するマスターユニットと、そのマスターユニットを有する通信システムとに関する。
 特開2016-110460号公報には、プログラマブル・ロジック・コントローラシステムが開示されている。このプログラマブル・ロジック・コントローラシステムは、基本ユニット(マスター)と、複数の拡張ユニット(スレーブ)とを有する。基本ユニットと、複数の拡張ユニットとは、マスターユニットを先頭にして、デイジーチェーン接続される。複数の拡張ユニットの各々は、例えばI/Oユニットである。基本ユニットは、複数の拡張ユニットを介して、被制御装置に信号を送受信する。被制御装置は、例えばセンサ、またはアクチュエータである。
 マスターユニットと複数のI/Oユニットとは、マスターユニットを先頭にして所定の設置方向に沿って並べられる。隣り合うマスターユニットの端子と、I/Oユニットの端子とが接続される。また、隣り合うI/Oユニット同士の端子が互いに接続される。これにより、マスターユニットと、複数のI/Oユニットとは、通信可能に接続される。以下において、通信可能に接続されたマスターユニットと複数のI/Oユニットとからなる塊は、「ステーション」とも記載される。
 オペレータは、複数のステーションを設置する場合には、各ステーションのマスターユニットを制御装置に対して順次接続する。ここで、各ステーションのマスターユニットは、オペレータが別途用意するケーブル等の接続部材によって接続される。
 ここで、2つのステーションが、上記した所定の設置方向で並ぶ場合がある。この場合においても、オペレータは、2つのステーションの先頭(マスターユニット)同士を、接続部材によって接続する。ここで、2つのステーションのマスターユニットの間には、一方のマスターユニットに接続された複数のI/Oユニットが設置されている。この場合、オペレータは、その複数のI/Oユニットを迂回するように、接続部材を配線しなければならない。
 本発明は、上述した課題を解決することを目的とする。
 本発明の第1の態様は、I/Oユニットを介して、前記I/Oユニットに接続された機器と信号を伝送するマスターユニットであって、信号処理を行うマスター処理回路と、前記マスター処理回路の後段に設けられる他のマスターユニットに接続するための第1コネクタと、前記マスター処理回路の前段に設けられる制御装置または他のマスターユニットに接続するための第2コネクタと、前記I/Oユニットに接続するための支流端子と、前記マスター処理回路に電力を供給する電源部と、を備え、前記マスターユニットは、前記第1コネクタを有する第1コネクタモジュールと、前記マスター処理回路、および前記マスター処理回路に接続された前記第2コネクタ、前記支流端子、ならびに前記電源部を有するメインモジュールと、に分割されており、前記第1コネクタモジュールおよび前記メインモジュールは、前記I/Oユニットを通じて前記第1コネクタと前記マスター処理回路とを接続するための第1接続端子をさらに有する。
 本発明の第2の態様は、機器が接続されるI/Oユニットと、前記I/Oユニットを介して前記機器と信号を伝送するマスターユニットとを有する通信システムであって、前記マスターユニットは、信号処理を行うマスター処理回路と、前記マスター処理回路の後段に設けられる他のマスターユニットに接続するための第1コネクタと、前記マスター処理回路の前段に設けられる制御装置または他のマスターユニットに接続するための第2コネクタと、前記I/Oユニットに接続するための支流端子と、前記マスター処理回路に電力を供給する電源部と、を備えると共に、前記第1コネクタを有する第1コネクタモジュールと、前記マスター処理回路、および前記マスター処理回路に接続された前記第2コネクタ、前記支流端子、ならびに前記電源部を有するメインモジュールと、に分割されており、前記第1コネクタモジュールおよび前記メインモジュールは、前記I/Oユニットを通じて前記第1コネクタと前記マスター処理回路とを接続するための第1接続端子をさらに有し、前記I/Oユニットは、前段に設けられた前記メインモジュールの前記第1接続端子および前記支流端子に接続可能な前段側本流端子および前段側支流端子と、後段に設けられた他のI/Oユニットの前記前段側支流端子に接続可能な後段側支流端子と、前記前段側支流端子と前記後段側支流端子とに接続され、前記マスター処理回路と信号の入出力を行うスレーブ処理回路と、前記スレーブ処理回路を介さずに前記前段側本流端子に接続され、後段に設けられた前記第1コネクタモジュールの前記第1接続端子に接続可能な後段側本流端子と、を備える。
 本発明の態様によれば、ステーションの後段側から他のステーションのマスターユニットに接続可能なマスターユニットと、該マスターユニットを有する通信システムとが提供される。
図1は、本発明の参考例に係る通信システムを表す図である。 図2は、本発明の実施の形態に係る通信システムを表す図である。 図3は、変形例1に係る通信カプラユニットを表す図である。 図4は、変形例2に係る通信カプラユニットを表す図である。 図5は、変形例2に係るステーションを表す図である。 図6は、変形例3に係る共通コネクタモジュールを表す図である。
 本発明のマスターユニットと、通信システムとについて、好適な実施の形態を掲げ、添付の図面を参照しながら以下、詳細に説明する。
 [実施の形態]
 図1は、本発明の参考例に係る通信システム100を表す図である。
 通信システム100は、制御装置102と機器104との間で信号を伝送するシステムである。機器104は、機械装置に設けられる。機械装置は、例えば工作機械、またはロボットである。機器104は、出力機器104aと、入力機器104bとを含む。出力機器104aは、例えば、スイッチ等のアクチュエータである。制御装置102は、出力機器104aを駆動させる場合は、通信システム100を介して、出力機器104aに制御信号を送る。入力機器104bは、例えば押圧、電圧、または電流等を検出するセンサである。制御装置102は、入力機器104bからの検出信号を、通信システム100を介して取得する。
 通信システム100は、2つの通信カプラユニット106(106a、106b)と、複数のI/Oユニット108(108a、108b)とを有する。通信カプラユニット106aの後段に、複数のI/Oユニット108aが順次接続される。この場合、通信カプラユニット106aは、複数のI/Oユニット108aのマスターユニットである。複数のI/Oユニット108aの各々は、通信カプラユニット106aのスレーブユニットである。
 通信カプラユニット106aと、複数のI/Oユニット108aとは、一つのステーションS10を構成する。図1の矢印Dは、通信カプラユニット106aと、複数のI/Oユニット108aとが並ぶ設置方向(+D:後段側、-D:前段側)を示している。
 また、複数のI/Oユニット108bは、通信カプラユニット106bの後段に順次接続される。したがって、通信カプラユニット106bは、複数のI/Oユニット108bのマスターユニットである。複数のI/Oユニット108bの各々は、通信カプラユニット106bのスレーブユニットである。通信カプラユニット106bと、複数のI/Oユニット108bとは、一つのステーションS20を構成する。通信カプラユニット106bと複数のI/Oユニット108bとは、設置方向Dに並ぶ。
 以下の説明において、通信カプラユニット106と、I/Oユニット108との各々の構成が、順を追ってさらに説明される。
 通信カプラユニット106は、マスター処理回路20と、支流端子22と、電源部24と、第1コネクタ26と、第2コネクタ28と、筐体110とを有する。マスター処理回路20と、支流端子22と、電源部24と、第1コネクタ26と、第2コネクタ28とは、筐体110に収容される。
[規則91に基づく訂正 29.03.2022] 
 マスター処理回路20は、例えばCPU(中央処理装置)を含む。ただし、マスター処理回路20は、ASIC(特定用途向け集積回路)、PLD(プログラマブルロジックデバイス)、またはFPGA(フィールドプログラマブルロジックゲートアレー)等を含んでもよい。
 電源部24は、マスター処理回路20に電力を供給する。ただし、電源部24は、通信カプラユニット106の後段側に設けられた複数のI/Oユニット108に電力を供給してもよい。
 第1コネクタ26は、通信カプラユニット106の後段に設けられる他の通信カプラユニット106と接続するためのコネクタである。第2コネクタ28は、通信カプラユニット106の前段に設けられる制御装置102、または通信カプラユニット106の前段に設けられる他の通信カプラユニット106と接続するためのコネクタである。一つの通信カプラユニット106内において、第1コネクタ26と第2コネクタ28とは、マスター処理回路20に接続されている。第1コネクタ26と第2コネクタ28とは、例えば図1に示すように、通信カプラユニット106のうちの前段(-D)側の側面に設けられる。
 図1の例では、通信カプラユニット106aの第1コネクタ26は、オペレータが別途用意する接続部材Cab1を介して、通信カプラユニット106bの第2コネクタ28に接続される。接続部材Cab1は、例えば、ケーブルである。また、通信カプラユニット106aの第2コネクタ28は、オペレータが別途用意する接続部材Cab2を介して、制御装置102に接続される。これにより、制御装置102と、通信カプラユニット106aのマスター処理回路20と、通信カプラユニット106bのマスター処理回路20とが、この順番で接続される。通信カプラユニット106bの第1コネクタ26は、この参考例においては開放されている。通信カプラユニット106bの第1コネクタ26は、通信カプラユニット106bのさらに後段に他の通信カプラユニット106が設置される場合、その他の通信カプラユニット106の第2コネクタ28と接続される。
 支流端子22は、I/Oユニット108に接続される端子である。一つの通信カプラユニット106内において、支流端子22は、マスター処理回路20に接続されている。支流端子22は、通信カプラユニット106のうちの後段(+D)側の側面に設けられる。
 I/Oユニット108は、スレーブ処理回路32と、インターフェース34と、前段側支流端子36と、後段側支流端子38と、筐体112とを有する。スレーブ処理回路32と、インターフェース34と、前段側支流端子36と、後段側支流端子38とは、筐体112に収容される。
[規則91に基づく訂正 29.03.2022] 
 スレーブ処理回路32は、例えばCPU(中央処理装置)を含む。ただし、スレーブ処理回路32は、ASIC(特定用途向け集積回路)、PLD(プログラマブルロジックデバイス)、またはFPGA(フィールドプログラマブルロジックゲートアレー)等を含んでもよい。スレーブ処理回路32は、マスター処理回路20と信号の入出力を行う。
 インターフェース34は、スレーブ処理回路32と機器104とを接続し、スレーブ処理回路32が機器104と信号の入出力を行うためのハードウェア(回路、電子部品群)である。インターフェース34の具体的な構成は機器104の種類に応じて異なる。
 複数のI/Oユニット108は、複数の機器104と接続される。図1の複数のI/Oユニット108は、互いに異なる機器104と接続される。ただし、1つのI/Oユニット108に、複数の機器104が接続されてもよい。
 前段側支流端子36は、前段に設けられる通信カプラユニット106、または前段に設けられる他のI/Oユニット108と接続するための端子である。前段側支流端子36は、I/Oユニット108の前段(-D)側に設けられる。後段側支流端子38は、後段に設けられる他のI/Oユニット108と接続するための端子である。後段側支流端子38は、I/Oユニット108の後段(+D)側に設けられる。一つのI/Oユニット108内において、前段側支流端子36と後段側支流端子38とは、スレーブ処理回路32を介して互いに接続されている。
 I/Oユニット108の前段が通信カプラユニット106である場合、前段側支流端子36は支流端子22と接続される。これにより、通信カプラユニット106のマスター処理回路20に、その後段のI/Oユニット108のスレーブ処理回路32が接続される。
 また、I/Oユニット108の前段が他のI/Oユニット108である場合、前段側支流端子36は当該他のI/Oユニット108の後段側支流端子38と接続される。これにより、通信カプラユニット106のマスター処理回路20を先頭にして、複数のI/Oユニット108のスレーブ処理回路32がデイジーチェーン接続される。
 制御装置102が機器104に制御信号を送る場合、制御装置102は、自分から見て初段(1番目)に接続された通信カプラユニット106aに制御信号を出力する。この制御信号は、送り先の機器104が接続されたI/Oユニット108のアドレス情報等を含む。通信カプラユニット106aのマスター処理回路20は、制御信号に含まれるアドレス情報が、複数のI/Oユニット108aのいずれかを示しているかを判断する。アドレス情報が複数のI/Oユニット108aのいずれをも示さない場合、通信カプラユニット106aのマスター処理回路20は、通信カプラユニット106bのマスター処理回路20に制御信号を出力する。アドレス情報が複数のI/Oユニット108aのいずれかを示す場合、通信カプラユニット106aのマスター処理回路20は、自身の後段のI/Oユニット108aに制御信号を出力する。前段から制御信号を入力されたI/Oユニット108aのスレーブ処理回路32は、入力された制御信号に含まれるアドレス情報が自身を示すかを判断する。ここで、I/Oユニット108aのスレーブ処理回路32は、アドレス情報が自身を示す場合、自身に接続された機器104に制御信号を出力する。これにより、機器104が動作する。その一方で、I/Oユニット108aは、入力された制御信号に含まれるアドレス情報が自身を示さない場合は、自身の後段のI/Oユニット108aに制御信号を出力する。なお、I/Oユニット108は、制御信号に含まれるアドレス情報が自身を示す場合において、後段側のI/Oユニット108に制御信号を出力してもよい。また、通信カプラユニット106は、制御信号に含まれるアドレス情報が自身に接続されたI/Oユニット108を示す場合において、後段側の通信カプラユニット106に制御信号を出力してもよい。
 機器104が制御装置102に向けて信号を出力する場合がある。この場合、機器104の信号は、機器104が接続されたI/Oユニット108のスレーブ処理回路32に入力される。スレーブ処理回路32は、自身に接続された機器104から入力された信号を、制御装置102に送る。この場合、スレーブ処理回路32は、自身の前段に接続されたI/Oユニット108、または通信カプラユニット106に信号を出力する。ここで、スレーブ処理回路32は、機器104が出力した内容と、信号を出力したI/Oユニット108のアドレス情報とを出力信号に含める。通信カプラユニット106とI/Oユニット108との間の信号の入出力は周知技術なので、これ以上の説明は省略する。
 ところで、接続部材Cab1は、ステーションS10と、ステーションS20とを接続するために、複数のI/Oユニット108aを迂回しなければならない(図1参照)。
 以上を踏まえ、以下において、実施の形態が説明される。なお、参考例で説明された構成要素と同様の構成要素には、同一の参照符号を付してその説明を省略し、参考例とは異なる部分を主に説明する。
 図2は、本発明の実施の形態に係る通信システム10を表す図である。
 図2に示すように、通信システム10は、通信カプラユニット12aと、通信カプラユニット12bと、複数のI/Oユニット14aと、複数のI/Oユニット14bとを有する。通信カプラユニット12aは、複数のI/Oユニット14aのマスターユニットである。通信カプラユニット12aと複数のI/Oユニット14aとは、ステーションS1を構成する。また、通信カプラユニット12bは、複数のI/Oユニット14bのマスターユニットである。通信カプラユニット12bと複数のI/Oユニット14bとは、ステーションS2を構成する。
 なお、以下の説明において、通信カプラユニット12aと、通信カプラユニット12bとは、単に通信カプラユニット12とも記載される。また、以下の説明において、I/Oユニット14aと、I/Oユニット14bとは、単にI/Oユニット14とも記載される。
 通信カプラユニット12は、互いに分離可能な複数のモジュールを備える。すなわち、通信カプラユニット12は、メインモジュール16と、コネクタモジュール(第1コネクタモジュール)18とを有する。メインモジュール16とコネクタモジュール18とは、互いに分割可能である。
 メインモジュール16は、マスター処理回路20と、支流端子22と、電源部24と、第2コネクタ28とを有する。第2コネクタ28は、メインモジュール16の後段(+D)側を避けた箇所に設けられる。例えば、第2コネクタ28は、メインモジュール16の前段(-D)側に設けられる(図2参照)。支流端子22は、メインモジュール16の後段(+D)側に設けられる。マスター処理回路20は、支流端子22と、電源部24と、第2コネクタ28とに接続されている。
 コネクタモジュール18は、第1コネクタ26を有する。第1コネクタ26は、コネクタモジュール18の後段(+D)側に設けられる。
 メインモジュール16とコネクタモジュール18との各々は、接続端子(第1接続端子)30をさらに有する。以下の説明において、メインモジュール16の接続端子30は接続端子30aとも記載され、コネクタモジュール18の接続端子30は接続端子30bとも記載される。接続端子30aは、メインモジュール16の後段(+D)側に設けられ、マスター処理回路20と接続されている。一方、接続端子30bは、コネクタモジュール18の前段(-D)側に設けられ、第1コネクタ26と接続されている。
 I/Oユニット14は、スレーブ処理回路32と、インターフェース34と、前段側支流端子36と、後段側支流端子38と、前段側本流端子40と、後段側本流端子42と、筐体44とを有する。スレーブ処理回路32と、インターフェース34と、前段側支流端子36と、後段側支流端子38と、前段側本流端子40と、後段側本流端子42とは、筐体44に収容される。
 前段側本流端子40は、前段に設けられたメインモジュール16、または、前段に設けられた他のI/Oユニット14と接続するための端子である。前段側本流端子40は、I/Oユニット14の前段(-D)側に設けられる。後段側本流端子42は、後段に設けられたコネクタモジュール18、または、後段に設けられた他のI/Oユニット14と接続するための端子である。後段側本流端子42は、I/Oユニット14の後段(+D)側に設けられる。
 I/Oユニット14の前段がメインモジュール16である場合、I/Oユニット14の前段側本流端子40は、接続端子30aと接続される。I/Oユニット14の前段が他のI/Oユニット14である場合、I/Oユニット14の前段側本流端子40は、他のI/Oユニット14の後段側本流端子42と接続される。I/Oユニット14の後段がコネクタモジュール18である場合、I/Oユニット14の後段側本流端子42は、接続端子30bと接続される。なお、I/Oユニット14の後段がコネクタモジュール18である場合、該I/Oユニット14の後段側支流端子38は、開放された状態のままである。
 一つのI/Oユニット14内において、前段側本流端子40と、後段側本流端子42とは相互に接続されている。したがって、前段側本流端子40と後段側本流端子42とは、I/Oユニット14の前段に設けられるメインモジュール16のマスター処理回路20と、I/Oユニット14の後段に設けられる第1コネクタモジュール18の第1コネクタ26とを接続できる。なお、前段側本流端子40と後段側本流端子42とは、スレーブ処理回路32を介さずに接続される(図2も参照)。
 I/Oユニット14の構成を踏まえ、ステーションS1と、ステーションS2とがさらに説明される。ステーションS1と、ステーションS2との各々は、メインモジュール16を含む。ステーションS1のメインモジュール16の後段には、複数のI/Oユニット14が順次接続されている。これにより、ステーションS1において、マスター処理回路20と複数のスレーブ処理回路32とが順次接続された通信路(支流線Lb1)が構成される。また、ステーションS2のメインモジュール16の後段に、ステーションS1とは別の複数のI/Oユニット14が順次接続されている。これにより、ステーションS2において、マスター処理回路20と複数のスレーブ処理回路32とが順次接続された通信路(支流線Lb2)が構成される。
 また、ステーションS1と、ステーションS2との各々の最後段には、第1コネクタモジュール18が設けられる。ステーションS1と、ステーションS2との各々において、メインモジュール16のマスター処理回路20と、第1コネクタモジュール18の第1コネクタ26とは、I/Oユニット14を通じて接続される。
 ステーションS1のメインモジュール16の第2コネクタ28は、接続部材Cab2によって、制御装置102に接続される。また、ステーションS2のメインモジュール16の第2コネクタ28は、接続部材Cab1によって、ステーションS1のコネクタモジュール18の第1コネクタ26に接続される。これにより、制御装置102を先頭にして、ステーションS1のマスター処理回路20と、ステーションS2のマスター処理回路20とがこの順序で順次接続された通信路(本流線La)が構成される。ここで、本流線La上には、スレーブ処理回路32が配置されない。したがって、ステーションS1のマスター処理回路20とステーションS2のマスター処理回路20との間で伝送される信号が、通信システム10内のスレーブ処理回路32に誤って入力されることはない。
 以上の通信システム10によれば、第1コネクタ26がステーションS1の最後段に配置される。オペレータは、ステーションS2の第2コネクタ28とステーションS1の第1コネクタ26とを接続する接続部材Cab1に関して、複数のI/Oユニット14aを迂回させる必要がない。
 [変形例]
 以上、本発明の一例として実施の形態が説明された。上記実施の形態には、多様な変更または改良を加えることが可能である。また、その様な変更または改良を加えた形態が本発明の技術的範囲に含まれ得ることは、請求の範囲の記載から明らかである。
 以下には、上記実施形態に係る変形例が記載される。ただし、上記実施形態と重複する説明は、以下の説明では可能な限り省略される。上記実施形態で説明済みの構成要素には、特に断らない限り、上記実施形態と同一の参照符号が付される。なお、実施形態で説明済みの構成要素には、機能的に同一の要素が含まれる。
 (変形例1)
 図3は、変形例1に係る通信カプラユニット12A(12)を表す図である。
 以下において、図2のコネクタモジュール18は第1コネクタモジュール18とも記載される。また、以下において、図2の接続端子30(30a、30b)は、第1接続端子30(30a、30b)とも記載される。通信カプラユニット12Aは、メインモジュール16を備える。ただし、本変形例に係るメインモジュール16は、信号処理モジュール46と、第2コネクタモジュール48と、にさらに分割可能である。信号処理モジュール46は、マスター処理回路20と、支流端子22と電源部24を有するモジュールである。第2コネクタモジュール48は、第2コネクタ28を有するモジュールである。
 信号処理モジュール46と第2コネクタモジュール48との各々は、第2接続端子50をさらに有する。なお、以下の説明において、信号処理モジュール46の第2接続端子50は第2接続端子50aとも記載され、第2コネクタモジュール48の第2接続端子50は第2接続端子50bとも記載される。第2接続端子50aと第2接続端子50bとは、着脱可能に相互接続される。第2接続端子50aと第2接続端子50bとが接続されることで、信号処理モジュール46と第2コネクタモジュール48とが接続される。
 第2接続端子50aは、信号処理モジュール46の前段(-D)側に設けられ、該信号処理モジュール46内においてマスター処理回路20に接続される。また、第2接続端子50bは、第2コネクタモジュール48の後段(+D)側に設けられ、該第2コネクタモジュール48内において第2コネクタ28に接続される。本変形例によれば、第2接続端子50aと、第2接続端子50bとが互いに接続されることで、マスター処理回路20と第2コネクタ28とが互いに接続される。
 本変形例によれば、メインモジュール16の保守性が向上する。例えば第2コネクタ28が故障した場合、オペレータは、マスター処理回路20、電源部24等の正常な部分を維持したまま、第2コネクタモジュール48を交換するだけで、メインモジュール16の保守作業を完了することができる。
 (変形例2)
 変形例1に関連して、第1コネクタモジュール18と第2コネクタモジュール48とを共通化した略同型のモジュールが構成されてもよい。
 図4は、変形例2に係る通信カプラユニット12B(12)を表す図である。
 通信カプラユニット12B(12)は、信号処理モジュール46と、2つの共通コネクタモジュール56とを有する。信号処理モジュール46の説明は、割愛する(変形例1を参照)。
 2つの共通コネクタモジュール56の各々は、第1接続端子30b(30)と、第2接続端子50b(50)と、これらに接続された共通コネクタ58とを有する。第1接続端子30b(30)は、共通コネクタモジュール56のうち前段(-D)側に設けられる。第2接続端子50b(50)は、共通コネクタモジュール56のうち後段(+D)側に設けられる。共通コネクタ58は、第1コネクタ26および第2コネクタ28を共通化したコネクタである。共通コネクタ58は、第1コネクタ26としても、第2コネクタ28としても使用可能である。
 共通コネクタ58は、共通コネクタモジュール56のうち前段(-D)側および後段(+D)側を避けた箇所、例えば設置方向Dと直交する方向(図4の方向F)側の面に設けられる。これにより、共通コネクタモジュール56の前段側と後段側とのいずれに他の機器が設けられる場合であっても、共通コネクタ58に接続部材(Cab1、Cab2)を繋ぐことは阻害されない。
 図5は、変形例2に係るステーションS3を表す図である。
 ステーションS3は、通信カプラユニット12B(12)と、I/Oユニット(複数のI/Oユニット)14とを有する。
 2つの共通コネクタモジュール56のうち一方(56A)の第2接続端子50b(50)は、信号処理モジュール46の第2接続端子50aに接続することができる。この場合、共通コネクタモジュール56Aの共通コネクタ58は、ステーションS3の前段に設けられる制御装置102と接続される。すなわち、共通コネクタモジュール56Aの共通コネクタ58は、第2コネクタモジュール48(変形例1参照)として機能する。
 一方、2つの共通コネクタモジュール56のうち他方(56B)の第1接続端子30bは、I/Oユニット14の後段側本流端子42に接続することができる。この場合、共通コネクタモジュール56Bの共通コネクタ58は、ステーションS3の後段に設けられる他の通信カプラユニット12(図5では不図示)と接続される。すなわち、共通コネクタモジュール56Bの共通コネクタ58は、コネクタモジュール18(実施の形態参照)として使用可能である。
 本変形例によれば、第1コネクタモジュール18と第2コネクタモジュール48とで生産ラインを共通化(共通コネクタモジュール56の生産ラインとして一本化)することができる。したがって、本変形例に係る通信カプラユニット12は、製造コストの低廉化に有利である。また、第1コネクタモジュール18(後段側との接続用)と第2コネクタモジュール48(前段側との接続用)とをオペレータが意識して使い分ける必要がなくなる。
 (変形例3)
 図6は、変形例3に係る共通コネクタモジュール56C(56)を表す図である。
 共通コネクタモジュール56Cは、第1接続端子30b(30)と、第2接続端子50b(50)と、共通コネクタ58とがT字状に接続された構造を有する。この場合、第1接続端子30b(30)と、第2接続端子50b(50)と、共通コネクタ58とを結ぶ回路(信号線)のスタブ長は、図4の構成例よりも短縮される。スタブ長が短縮されることで、第1接続端子30b(30)と共通コネクタ58との間、または第2接続端子50b(50)と共通コネクタ58との間における信号ノイズが低減される。
 [実施の形態から得られる発明]
 上記実施の形態および変形例から把握しうる発明について、以下に記載する。
 <第1の発明>
 第1の発明は、I/Oユニット(14)を介して、前記I/Oユニットに接続された機器(104)と信号を伝送するマスターユニット(12)であって、信号処理を行うマスター処理回路(20)と、前記マスター処理回路の後段に設けられる他のマスターユニット(12)に接続するための第1コネクタ(26、58)と、前記マスター処理回路の前段に設けられる制御装置(102)または他のマスターユニット(12)に接続するための第2コネクタ(28、58)と、前記I/Oユニットに接続するための支流端子(22)と、前記マスター処理回路に電力を供給する電源部(24)と、を備え、前記マスターユニットは、前記第1コネクタを有する第1コネクタモジュール(18、56)と、前記マスター処理回路、および前記マスター処理回路に接続された前記第2コネクタ、前記支流端子、ならびに前記電源部を有するメインモジュール(16)と、に分割されており、前記第1コネクタモジュールおよび前記メインモジュールは、前記I/Oユニットを通じて前記第1コネクタと前記マスター処理回路とを接続するための第1接続端子(30)をさらに有する。
 これにより、ステーションの後段側から他のステーションのマスターユニットに接続可能なマスターユニットが提供される。
 前記メインモジュールは、前記第2コネクタを有する第2コネクタモジュール(48、56)と、前記支流端子、前記マスター処理回路および前記電源部を有する信号処理モジュール(46)と、に分割されており、前記第2コネクタモジュールおよび前記信号処理モジュールは、前記第2コネクタと前記マスター処理回路とを接続するための第2接続端子(50)をさらに有してもよい。これにより、メインモジュールの保守性が良好となる。
 前記第1コネクタモジュールと前記第2コネクタモジュールとは互いに共通化されたコネクタモジュール(56)として構成されており、共通化された前記コネクタモジュールは、前記第1接続端子と、前記第2接続端子と、前記第1コネクタおよび前記第2コネクタを共通化したコネクタであって、前記第1接続端子および前記第2接続端子と接続された共通コネクタ(58)と、を有してもよい。これにより、生産者とオペレータとの両者の視点で、マスターユニットの利便性が向上する。
 前記第1接続端子と、前記第2接続端子と、前記共通コネクタとがT字接続されてもよい。これにより、ノイズが低減される。
 <第2の発明>
 第2の発明は、機器(104)が接続されるI/Oユニット(14)と、前記I/Oユニットを介して前記機器と信号を伝送するマスターユニット(12)とを有する通信システム(10)であって、前記マスターユニットは、信号処理を行うマスター処理回路(20)と、前記マスター処理回路の後段に設けられる他のマスターユニット(12)に接続するための第1コネクタ(26、58)と、前記マスター処理回路の前段に設けられる制御装置(102)または他のマスターユニット(12)に接続するための第2コネクタ(28、58)と、前記I/Oユニットに接続するための支流端子(22)と、前記マスター処理回路に電力を供給する電源部(24)と、を備えると共に、前記第1コネクタを有する第1コネクタモジュール(18、56)と、前記マスター処理回路、および前記マスター処理回路に接続された前記第2コネクタ、前記支流端子、ならびに前記電源部を有するメインモジュール(16)と、に分割されており、前記第1コネクタモジュールおよび前記メインモジュールは、前記I/Oユニットを通じて前記第1コネクタと前記マスター処理回路とを接続するための第1接続端子(30)をさらに有し、前記I/Oユニットは、前段に設けられた前記メインモジュールの前記第1接続端子および前記支流端子に接続可能な前段側本流端子(40)および前段側支流端子(36)と、後段に設けられた他のI/Oユニット(14)の前記前段側支流端子に接続可能な後段側支流端子(38)と、前記前段側支流端子と前記後段側支流端子とに接続され、前記マスター処理回路と信号の入出力を行うスレーブ処理回路(32)と、前記スレーブ処理回路を介さずに前記前段側本流端子に接続され、後段に設けられた前記第1コネクタモジュールの前記第1接続端子に接続可能な後段側本流端子(42)と、を備える。
 これにより、ステーションの後段側から他のステーションのマスターユニットに接続可能なマスターユニットを有する通信システムが提供される。

Claims (5)

  1.  I/Oユニット(14)を介して、前記I/Oユニットに接続された機器(104)と信号を伝送するマスターユニット(12)であって、
     信号処理を行うマスター処理回路(20)と、
     前記マスター処理回路の後段に設けられる他のマスターユニット(12)に接続するための第1コネクタ(26、58)と、
     前記マスター処理回路の前段に設けられる制御装置(102)または他のマスターユニット(12)に接続するための第2コネクタ(28、58)と、
     前記I/Oユニットに接続するための支流端子(22)と、
     前記マスター処理回路に電力を供給する電源部(24)と、
     を備え、
     前記マスターユニットは、
     前記第1コネクタを有する第1コネクタモジュール(18、56)と、
     前記マスター処理回路、および前記マスター処理回路に接続された前記第2コネクタ、前記支流端子、ならびに前記電源部を有するメインモジュール(16)と、
     に分割されており、
     前記第1コネクタモジュールおよび前記メインモジュールは、前記I/Oユニットを通じて前記第1コネクタと前記マスター処理回路とを接続するための第1接続端子(30)をさらに有する、マスターユニット。
  2.  請求項1に記載のマスターユニットであって、
     前記メインモジュールは、
     前記第2コネクタを有する第2コネクタモジュール(48、56)と、
     前記支流端子、前記マスター処理回路および前記電源部を有する信号処理モジュール(46)と、
     に分割されており、
     前記第2コネクタモジュールおよび前記信号処理モジュールは、前記第2コネクタと前記マスター処理回路とを接続するための第2接続端子(50)をさらに有する、マスターユニット。
  3.  請求項2に記載のマスターユニットであって、
     前記第1コネクタモジュールと前記第2コネクタモジュールとは互いに共通化されたコネクタモジュール(56)として構成されており、
     共通化された前記コネクタモジュールは、
     前記第1接続端子と、
     前記第2接続端子と、
     前記第1コネクタおよび前記第2コネクタを共通化したコネクタであって、前記第1接続端子および前記第2接続端子と接続された共通コネクタ(58)と、
     を有する、マスターユニット。
  4.  請求項3に記載のマスターユニットであって、
     前記第1接続端子と、前記第2接続端子と、前記共通コネクタとがT字接続されている、マスターユニット。
  5.  機器(104)が接続されるI/Oユニット(14)と、前記I/Oユニットを介して前記機器と信号を伝送するマスターユニット(12)とを有する通信システム(10)であって、
     前記マスターユニットは、
     信号処理を行うマスター処理回路(20)と、
     前記マスター処理回路の後段に設けられる他のマスターユニット(12)に接続するための第1コネクタ(26、58)と、
     前記マスター処理回路の前段に設けられる制御装置(102)または他のマスターユニット(12)に接続するための第2コネクタ(28、58)と、
     前記I/Oユニットに接続するための支流端子(22)と、
     前記マスター処理回路に電力を供給する電源部(24)と、
     を備えると共に、
     前記第1コネクタを有する第1コネクタモジュール(18、56)と、
     前記マスター処理回路、および前記マスター処理回路に接続された前記第2コネクタ、前記支流端子、ならびに前記電源部を有するメインモジュール(16)と、
     に分割されており、
     前記第1コネクタモジュールおよび前記メインモジュールは、前記I/Oユニットを通じて前記第1コネクタと前記マスター処理回路とを接続するための第1接続端子(30)をさらに有し、
     前記I/Oユニットは、
     前段に設けられた前記メインモジュールの前記第1接続端子および前記支流端子に接続可能な前段側本流端子(40)および前段側支流端子(36)と、
     後段に設けられた他のI/Oユニット(14)の前記前段側支流端子に接続可能な後段側支流端子(38)と、
     前記前段側支流端子と前記後段側支流端子とに接続され、前記マスター処理回路と信号の入出力を行うスレーブ処理回路(32)と、
     前記スレーブ処理回路を介さずに前記前段側本流端子に接続され、後段に設けられた前記第1コネクタモジュールの前記第1接続端子に接続可能な後段側本流端子(42)と、
     を備える、通信システム。
PCT/JP2022/010776 2021-03-24 2022-03-11 マスターユニット、および通信システム WO2022202389A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022538421A JP7152632B1 (ja) 2021-03-24 2022-03-11 マスターユニット、および通信システム
CN202280021740.6A CN116997869A (zh) 2021-03-24 2022-03-11 主单元以及通信系统
EP22775181.5A EP4318148A1 (en) 2021-03-24 2022-03-11 Master unit and communication system
US18/282,250 US20240168448A1 (en) 2021-03-24 2022-03-11 Master unit and communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021050020 2021-03-24
JP2021-050020 2021-03-24

Publications (1)

Publication Number Publication Date
WO2022202389A1 true WO2022202389A1 (ja) 2022-09-29

Family

ID=83394906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010776 WO2022202389A1 (ja) 2021-03-24 2022-03-11 マスターユニット、および通信システム

Country Status (6)

Country Link
US (1) US20240168448A1 (ja)
EP (1) EP4318148A1 (ja)
JP (1) JP7152632B1 (ja)
CN (1) CN116997869A (ja)
TW (1) TWI843068B (ja)
WO (1) WO2022202389A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09247766A (ja) * 1996-03-07 1997-09-19 Meidensha Corp 遠方監視制御システム
JP2002091519A (ja) * 2000-09-20 2002-03-29 Hitachi Ltd プログラマブルコントローラ及び誤配線修正方法
JP2011130307A (ja) * 2009-12-21 2011-06-30 Mitsubishi Electric Corp 冗長化通信装置
JP2016110460A (ja) 2014-12-08 2016-06-20 株式会社キーエンス プログラマブルコントローラ、プログラマブルコントローラの制御方法およびプログラム
JP2018157456A (ja) * 2017-03-21 2018-10-04 ファナック株式会社 スレーブ、シリアル通信システム、および、シリアル通信システムの通信方法
JP2019114085A (ja) * 2017-12-25 2019-07-11 オムロン株式会社 制御システムおよび制御装置
JP2021002172A (ja) * 2019-06-20 2021-01-07 株式会社日立製作所 デイジーチェーン接続システム及びシステム制御方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6609034B1 (en) * 2000-03-29 2003-08-19 Epicenter, Incorporated System and method for remotely controlling and monitoring a plurality of computer systems
KR101240703B1 (ko) * 2011-08-17 2013-03-11 엘에스산전 주식회사 Plc 네트워크 증설방법 및 이를 이용한 네트워크 증설시스템
US10649948B2 (en) * 2011-10-05 2020-05-12 Analog Devices, Inc. Two-wire communication systems and applications
US10971110B2 (en) * 2019-08-26 2021-04-06 Novatek Microelectronics Corp. Circuit and method for use in a first display device to facilitate communication with a second display device, and display communication system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09247766A (ja) * 1996-03-07 1997-09-19 Meidensha Corp 遠方監視制御システム
JP2002091519A (ja) * 2000-09-20 2002-03-29 Hitachi Ltd プログラマブルコントローラ及び誤配線修正方法
JP2011130307A (ja) * 2009-12-21 2011-06-30 Mitsubishi Electric Corp 冗長化通信装置
JP2016110460A (ja) 2014-12-08 2016-06-20 株式会社キーエンス プログラマブルコントローラ、プログラマブルコントローラの制御方法およびプログラム
JP2018157456A (ja) * 2017-03-21 2018-10-04 ファナック株式会社 スレーブ、シリアル通信システム、および、シリアル通信システムの通信方法
JP2019114085A (ja) * 2017-12-25 2019-07-11 オムロン株式会社 制御システムおよび制御装置
JP2021002172A (ja) * 2019-06-20 2021-01-07 株式会社日立製作所 デイジーチェーン接続システム及びシステム制御方法

Also Published As

Publication number Publication date
CN116997869A (zh) 2023-11-03
JP7152632B1 (ja) 2022-10-12
EP4318148A1 (en) 2024-02-07
US20240168448A1 (en) 2024-05-23
JPWO2022202389A1 (ja) 2022-09-29
TW202238291A (zh) 2022-10-01
TWI843068B (zh) 2024-05-21

Similar Documents

Publication Publication Date Title
US7783814B2 (en) Safety module and automation system
US8531942B2 (en) Communication system having a master/slave structure
US10963412B2 (en) Flexible expandable automation device with hot-swappable I/O-units
US7508690B2 (en) Monitoring and control device and bridge module therefor
US11699867B2 (en) Removable terminal block assembly that permits an I/O base to operate in simplex mode or duplex mode
JP7529896B2 (ja) I/oユニット
JP4648166B2 (ja) システム電源及び電力供給システム
WO2022202389A1 (ja) マスターユニット、および通信システム
WO2022202388A1 (ja) I/oユニット、マスターユニットおよび通信システム
WO2022202391A1 (ja) I/oユニット、および通信システム
JP7152631B1 (ja) マスターユニット
CN101141362B (zh) 系统接口以及带有该系统接口的设备
JP7529895B2 (ja) I/oユニット
EP2369790B1 (en) Communication device
US20220030733A1 (en) Distributed modular input/output (i/o) system with redundant ethernet backplane networks for improved fault tolerance
US20220197250A1 (en) Pneumatic control device
JP2007134906A (ja) 監視制御装置
JP2013085251A (ja) フィールドバスネットワークアダプタおよびフィールドバスネットワーク加入者機器
JP4148729B2 (ja) ネットワーク制御システム
JPH1195814A (ja) プログラマブルコントローラの信号伝送方法
JPS61235927A (ja) バスインタ−フエ−ス回路

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022538421

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22775181

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18282250

Country of ref document: US

Ref document number: 202280021740.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022775181

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022775181

Country of ref document: EP

Effective date: 20231024