WO2022201768A1 - モータ - Google Patents

モータ Download PDF

Info

Publication number
WO2022201768A1
WO2022201768A1 PCT/JP2022/001004 JP2022001004W WO2022201768A1 WO 2022201768 A1 WO2022201768 A1 WO 2022201768A1 JP 2022001004 W JP2022001004 W JP 2022001004W WO 2022201768 A1 WO2022201768 A1 WO 2022201768A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
phase
magnetic
pole
rotor
Prior art date
Application number
PCT/JP2022/001004
Other languages
English (en)
French (fr)
Inventor
政行 梨木
Original Assignee
政行 梨木
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 政行 梨木 filed Critical 政行 梨木
Publication of WO2022201768A1 publication Critical patent/WO2022201768A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/12Stationary parts of the magnetic circuit
    • H02K1/16Stator cores with slots for windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K21/00Synchronous motors having permanent magnets; Synchronous generators having permanent magnets
    • H02K21/12Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets
    • H02K21/14Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures
    • H02K21/16Synchronous motors having permanent magnets; Synchronous generators having permanent magnets with stationary armatures and rotating magnets with magnets rotating within the armatures having annular armature cores with salient poles
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P25/00Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details
    • H02P25/02Arrangements or methods for the control of AC motors characterised by the kind of AC motor or by structural details characterised by the kind of motor
    • H02P25/022Synchronous motors

Definitions

  • the present invention relates to a main engine motor for an electric vehicle EV, a home appliance motor, an industrial machine motor, and driving technology thereof. It is involved in motor high torque, high efficiency, miniaturization, weight reduction, cost reduction, etc.
  • Fig. 63 shows an example of a cross-sectional view of a conventional 3-phase switched reluctance motor.
  • a stator 639 is a three-phase stator having six salient stator magnetic poles.
  • 63B is the rotor shaft.
  • 63A, 63F, etc. are salient magnetic poles of the rotor, which have a width of 30° in the circumferential direction and are arranged at equal intervals in four places on the entire circumference.
  • Reference numeral 631 denotes an A-phase stator pole, in which an A-phase concentrated winding 637 is wound as indicated by a double line at the coil end. The current in each winding of this motor is unidirectional, and each winding is indicated by a current symbol to indicate the direction of current flow.
  • the mark encircling the X character energizes the A-phase current Ia flowing from the front side to the back side of the paper, and the mark enclosing the black circle energizes the A-phase current Ia flowing from the back side to the front side of the paper. Therefore, when current is applied, the A-phase stator pole 631 becomes the S pole.
  • Reference numeral 632 denotes an A/phase stator pole that has a reverse phase relationship with the A phase, and an A/phase concentrated winding 638 is wound as indicated by a double line at the coil end portion. The A/phase winding is also supplied with the A-phase current Ia, and the A/phase stator pole 632 becomes the N pole.
  • 633 is a B-phase stator pole, which winds a concentrated winding 63C and conducts a B-phase current Ib.
  • Reference numeral 634 denotes a B/phase stator pole, which winds a concentrated winding 63D and supplies a B-phase current Ib.
  • the B-phase magnetic flux passing from stator poles 634 to 633 is ⁇ b.
  • a C-phase stator pole 635 is wound with a concentrated winding 63G to pass a C-phase current Ic.
  • Reference numeral 636 denotes a C/phase stator pole, which is wound with a concentrated winding 63G to pass a C-phase current Ic.
  • the phase C magnetic flux passing from stator poles 636 to 635 is ⁇ c.
  • each stator pole is 30° in the circumferential direction, and they are arranged at equal intervals in 6 locations around the circumference.
  • the name of each stator magnetic pole, such as the A phase, is shown as (A) outside the stator 639 with parentheses for easy understanding.
  • the rotational position of the rotor is defined as the starting point of the rotor.
  • the rotor rotation angle .theta.r is the rotation angle from this starting point to the end of the rotor magnetic pole 63A in the CCW direction, as shown.
  • the horizontal axis is the rotor rotation angle ⁇ r, and is shown from -5° to 30°.
  • the vertical axis is the relative value of the torque T.
  • the peak value of the torque increases as shown by the dashed line in FIG. decrease significantly.
  • the cause of this decrease in torque width is related to the air gap between the stator magnetic pole and rotor magnetic pole, the distribution of leakage magnetic flux in the front and rear vicinity thereof, the magnetic saturation of the stator teeth, and the magnetic saturation of the rotor teeth.
  • the rotor has a simple structure and is robust, so high-speed rotation is easy. Also, it can be driven without using a permanent magnet.
  • the torque is generated by the attraction force, which is the reluctance force, and the driving algorithm is relatively simple.
  • the stator winding also has a concentrated winding structure on salient poles, which is simple and easy to manufacture. In addition, since expensive rare earth permanent magnets are not required, the motor system can be constructed at low cost.
  • the first problem is that when a large amount of torque is generated, magnetic saturation occurs in the teeth of the stator and rotor, reducing the torque constant.
  • the second problem is that 1/3 of the total windings are used to generate torque sequentially, so the utilization rate of the windings is as low as 33%, the winding resistance is relatively large, and the copper loss is large. is.
  • the excitation load for exciting the magnetic flux of each phase is also large. Compared to other permanent magnet type motors, etc., the size of the motor tends to be increased.
  • a third problem is that torque saturation occurs partially when a large torque is generated, resulting in an increase in the size of the inverter.
  • the fourth problem is that, compared to other permanent magnet type motors, etc., torque ripple tends to be large, and vibration and noise accompanying fluctuations in the attractive force between the stator and rotor are large.
  • permanent magnets are used in the rotor to achieve rotor poles that are capable of significantly increasing the flux that can pass in the forward direction, while at the same time allowing less flux to pass in the reverse direction.
  • a motor composed of As a result the torque is increased, the efficiency of the motor is improved, and the size is reduced.
  • Permanent magnets are also used for the stator to achieve stator poles that greatly increase the flux that can pass in the forward direction, while at the same time realizing stator poles that allow less flux to pass in the reverse direction.
  • the combination of the number of stator magnetic poles and the number of rotor magnetic poles will be optimized to improve the utilization rate of windings and drive transistors, and reduce the size and cost of the motor and inverter.
  • the invention according to claim 1 comprises a plurality of stator magnetic poles Ps arranged in the circumferential direction of the stator, slots SLs between the stator magnetic poles Ps, and the stator magnetic poles Ps arranged in the slots SLs.
  • a stator winding Ws to be excited a unidirectional drive circuit Dhv capable of driving a unidirectional current to each stator winding Ws, a plurality of N-pole rotor magnetic poles Prn arranged in the circumferential direction of the rotor, A plurality of S-pole rotor magnetic poles Prs arranged alternately with the N-pole magnetic poles Prn in the circumferential direction, and a magnetic path MPrn of a soft magnetic material that magnetically connects the back yoke common to the rotors to the rotor magnetic poles Prn of the N-poles.
  • a magnetic path MPrs of a soft magnetic material that is magnetically connected from the back yoke common to the rotors to the rotor magnetic pole Prs of each of the S poles;
  • This is a configuration of a motor provided with permanent magnets PMrbi arranged so that the polarities of Prn and Prs match the directions of the magnetic poles. According to this configuration, a large magnetic flux can act on the rotor magnetic poles that act upon excitation, so that a large torque can be generated.
  • the invention according to claim 2 is based on claim 1, wherein the stator magnetic poles Ps have N poles and S poles alternately arranged in the circumferential direction, and the N pole stator magnetic poles Psn acting as N poles, and the N poles S-pole stator magnetic poles Pss that are alternately arranged in the circumferential direction with the stator magnetic poles Psn and act as S-poles;
  • the configuration of the motor includes the permanent magnets PMsbi arranged so that the polarities of the magnetic poles Psn and Pss match the directions of the magnetic poles. According to this configuration, a large magnetic flux can act on the stator magnetic poles and the rotor magnetic poles Prn and Prs that act upon excitation, so that a large torque can be generated.
  • the stator magnetic pole winding Ws is a concentrated winding winding Wscp that excites each of the stator magnetic poles Ps. According to this configuration, each stator pole winding Ws is less affected by the control state of other stator poles, and can be freely excited to drive the rotor.
  • the stator magnetic pole winding Ws has a full-pitch stator winding Wsfp in which the winding pitch is approximately 1/2 of the magnetic pole pair period of the stator.
  • Ns and Nr are integers of 1 or more.
  • the N-pole stator magnetic poles Psn, the S-pole stator magnetic poles Pss, the stator windings, the N-pole rotor magnetic poles Prn, and the S-pole rotor magnetic poles Prs can be evenly arranged in the circumferential direction, resulting in high torque generation efficiency. , and the manufacturability of the motor is also excellent.
  • the invention according to claim 6 is based on claim 1, wherein the number of phases of the plurality of stator magnetic poles Ps is Nph, and the rotor magnetic pole pitch between the N pole magnetic poles Prn and the S pole magnetic poles Prs alternately arranged in the rotor circumferential direction. is ⁇ ppr, and Nph stator magnetic poles whose phases with respect to the rotor magnetic poles differ by (2 ⁇ ppr)/Nph are partially provided in the circumferential direction of the stator.
  • Nph is an integer of 2 or more.
  • the invention according to claim 7 is based on claim 1, wherein Lsg is the circumferential length of the magnetic pole facing the air gap portion of the stator magnetic pole Ps, and Lsg is the circumferential width of a part of the tooth of the stator magnetic pole Ps.
  • Lsg is the circumferential length of the magnetic pole facing the air gap portion of the stator magnetic pole Ps
  • Lsg is the circumferential width of a part of the tooth of the stator magnetic pole Ps.
  • the permanent magnets are arranged near the air gap between the N pole magnetic pole Psn and the S pole magnetic pole Pss of the stator magnetic pole Ps so that the directions of the polarities of the stator magnetic poles match. It is a motor configuration with PMssur. According to this configuration, the burden of exciting the magnetic flux can be reduced, that is, the reactive current that excites the magnetic flux can be reduced, and the adverse effect of the voltage caused by the input and output of magnetic energy between the power supply and the motor can be reduced.
  • the number of the stator magnetic poles Ps is Nkb ⁇ N1.
  • a DC current Isfp1 is applied to the pitch winding Wsfp1, and the full pitch winding Wsfp1, the full pitch winding Wsfp2, and the transistor TR2 are connected in series, and the transistor TR2 connects the full pitch winding Wsfp2.
  • the full-pitch winding Wsfp2, the full-pitch winding Wsfp3, and the transistor TR3 are connected in series, and the transistor TR3 supplies the direct current Isfp3 to the full-pitch winding Wsfp3.
  • the transistor TR4 energizes the full-pitch winding Wsfp4 with the direct current Isfp4, and Each full-pitch winding and each transistor TR1, TR2, TR3, TR4 connected in series are energized with each excitation current to excite each stator pole Ps1, Ps2, Ps3, Ps4, Ps5, and the full-pitch winding of the motor is performed.
  • Nkb is the number of magnetic pole pairs of the stator and is an integer of 1 or more
  • N1 is an integer of 6 or more
  • N2 is an integer of 6 or more.
  • the invention according to claim 10 is characterized in that, in claim 1, the components of the magnetic flux excitation current corresponding to the operating conditions are continuously supplied to each phase winding of the stator winding Ws, or each slot of the stator is supplied.
  • This is a configuration of a motor in which a magnetic flux excitation winding is wound around and connected in series to supply a magnetic flux excitation current. According to this configuration, magnetic energy is automatically input and output between the power supply and the motor by continuously applying a constant current, and in particular, a large magnetic flux change when regenerating magnetic energy, that is, an excessive voltage is reduced. Therefore, it is possible to reduce adverse effects on the current control of other phases.
  • the invention according to claim 11 is, in claim 1, a DC power supply POS2, a DC power supply POS3 arranged in series with the DC power supply POS2, and an intermediate potential section TYV between the DC power supply POS2 and the DC power supply POS3. , a transistor TR7 connected to the DC power supply POS2, a winding Ws2 arranged between the transistor TR7 and the intermediate potential section TYV, a transistor TR8 connected to the DC power supply POS3, the transistor TR8 and the intermediate potential and a winding Ws3 arranged between a portion TYV and a motor in which a current is supplied to each stator winding Ws using the DC power supply POS2 and the DC power supply POS3.
  • one DC current can be driven by one transistor, so it is effective in terms of space and cost, especially when the number of currents to be controlled is large.
  • a reverse drive circuit Drhv in the first aspect and the reverse drive circuit Drhv adds a negative current component to the positive current component of the stator winding Ws to supply current.
  • This is the configuration of the motor. According to this configuration, since both positive and negative currents can be passed through, the opportunity to generate torque is doubled, the motor torque can be increased, and the motor efficiency can be improved.
  • the invention according to claim 13 is the invention according to claim 1, in which the current component of Isfpv1 is applied to the full-pitch winding Wsfpv1 arranged in the slot Slsv adjacent to one stator magnetic pole Psv1, and the slot Slsv of the stator magnetic pole Psv1
  • This is a configuration of a motor in which part or all of the current component of (-Isfpv1) is energized to one or more full-pitch windings WsfpvN arranged in slots two or more apart in the direction opposite to .
  • the motor operates as a vernier motor, and the copper loss of the motor can be reduced and the efficiency can be improved.
  • the stator magnetic pole PsvN is arranged in one or more full-pitch windings arranged in two or more slots away from the current component of Isfpv1 in the circumferential direction at the time of low-speed rotation.
  • the winding WsfpvN is excited by the current component (-Isfpv1) of the winding WsfpvN, and during high-speed rotation, the full-pitch windings WsfpvF and WsfpvR adjacent to the stator magnetic pole PsvN in the circumferential direction are connected in series, and the stator magnetic pole PsvN is a configuration of a motor that supplies a current component IsvN that excites . According to this configuration, at low speed rotation, it rotates and drives as a vernier motor with high torque and high efficiency characteristics. less and can output large torque.
  • the invention according to claim 15 is the invention according to claim 1, wherein the main magnetic circuit of the rotor is composed of a member made of a soft magnetic material MagA, and the rotor magnetic pole Prn of the N pole of the rotor and the rotor magnetic pole Prs of the S pole of the rotor are air magnetized.
  • This is a configuration of a motor using a member of a soft magnetic material MagB having a higher saturation magnetic flux density than the soft magnetic material MagA in the vicinity of the gap portion. According to this configuration, the motor is configured by combining the features of a plurality of types of soft magnetic materials and utilizing them more effectively.
  • an amorphous magnetic steel sheet with low iron loss but low saturation magnetic flux density is used as the soft magnetic material MagA
  • a permendur magnetic steel sheet with high saturation magnetic flux density but high iron loss is used as the soft magnetic material MagB.
  • a motor with high maximum torque can be realized.
  • the present invention proposes a new rotor magnetic pole that utilizes permanent magnets and a new stator magnetic pole that utilizes permanent magnets. By realizing the reduction, it is possible to reduce the size, weight, and cost of the motor.
  • Sectional view of the motor of the present invention Cross section showing magnetic flux components
  • Cross section showing magnetic flux components Exciting current and magnetic flux density of soft magnetic material
  • Linear development of cross section Linear development of cross section Linear development of cross section
  • Linear development of cross section Linear development of cross section
  • a linear development diagram showing the operation Example of current waveform Sectional view of the motor of the present invention
  • Linear development of cross section Linear development of cross section Linear development of cross section Linear development of cross section Linear development of cross section Linear development of cross section
  • Enlarged view of cross section Sectional view of a rotor with 40 rotor poles Example of partial enlarged view of rotor cross section
  • Sectional view of the motor of the present invention Current waveform and voltage waveform
  • Example of drive circuit for unidirectional current Cross-sectional view of a full-pitch winding motor Cross-sectional view of a 2-pole pair motor with full-pitch winding
  • Examples of current and voltage waveforms Example of a drive
  • FIG. It is a cross-sectional view of a motor.
  • 17 is a stator, and the outer circular outer peripheral portion thereof is a back yoke of the stator.
  • 11 is the A-phase stator pole, and 1A is the A-phase winding.
  • This A-phase winding 1A is a concentrated winding, and its coil end portion is symbolically indicated by a double line.
  • the current in each winding of this motor is unidirectional, and each winding is indicated by a current symbol to indicate the direction of current flow.
  • the mark encircling the X character energizes the A-phase current Ia that flows from the front side to the back side of the paper, and the mark enclosing the black circle energizes the A-phase current Ia that flows from the back side to the front side of the paper. Therefore, the A-phase stator pole 11 becomes the S pole when the A-phase current Ia is energized.
  • Reference numeral 14 denotes an A/phase stator pole, which is wound with a concentrated A/phase winding 1D whose coil end is indicated by a double line.
  • the A-phase current Ia which is a unidirectional current, is applied to the A/phase winding 1D, and the A/phase stator magnetic pole 14 becomes the N pole.
  • 13 is a B-phase stator pole, which is wound with a concentrated winding 1C, and supplies a one-way B-phase current Ib.
  • the B-phase stator pole 13 becomes the S pole when the B-phase current Ib is applied.
  • a B/phase stator pole 16 is wound with a concentrated B-phase winding 1F.
  • a B-phase current Ib is applied to the B/phase winding 1F, and the B/phase stator magnetic pole 16 becomes an N pole.
  • the same B-phase current Ib is applied to the B-phase winding 1C and the B/phase winding 1F to generate a B-phase magnetic flux ⁇ b between the B-phase stator pole 13 and the B/phase stator pole 16. .
  • This B-phase magnetic flux ⁇ b makes a circuit through the back yoke of the stator.
  • reference numeral 15 denotes a C-phase stator pole, which is wound with a concentrated C-phase winding 1E and conducts a one-way C-phase current Ic.
  • the C-phase stator pole 15 becomes the S pole when the C-phase current Ic is applied.
  • a C/phase stator pole 12 is wound with a concentrated C/phase winding 1B.
  • a C-phase current Ic is applied to the C/phase winding 1B, and the C/phase stator poles 12 become N poles.
  • the same C-phase current Ic is applied to the C-phase winding 1E and the C/phase winding 1B to generate a C-phase magnetic flux ⁇ c between the C-phase stator pole 15 and the B/phase stator pole 12. .
  • This C-phase magnetic flux ⁇ c makes a circuit through the back yoke of the stator.
  • (A), (A/), (B), (B/), (C), and (C/) are added near the outer circumference of the motor in Fig. 1, and each stator magnetic pole shows the position of
  • 1S is the rotor shaft.
  • 1H is the N magnetic pole of the rotor made of a soft magnetic material.
  • 1L is an S pole magnetic pole located on the opposite side of the rotor N pole magnetic pole 1H by 180°.
  • 1J is the S magnetic pole of the rotor made of a soft magnetic material.
  • 1M is an N pole magnetic pole located on the opposite side of the rotor S pole magnetic pole 1J, separated by 180°. Two rotor poles 180° apart will have their polarities reversed. However, the shape is point symmetrical with respect to the rotor center. Then, the rotor N magnetic poles and the rotor S magnetic poles are alternately arranged in the circumferential direction to arrange a total of 10 rotor magnetic poles.
  • the width in the circumferential direction between the stator poles and the openings of the slots on the air gap surface is 30°.
  • the circumferential width of the soft magnetic bodies such as the rotor magnetic poles 1G, 1H and 1J is 30° in this example.
  • the width in the circumferential direction of the air gap surface of the portion where the permanent magnets 1N, 1P, etc. are arranged between the rotor magnetic poles is 6°.
  • a permanent magnet 1N whose polarity faces the direction of the rotor magnetic pole is arranged between the rotor S magnetic pole 1G and the rotor N magnetic pole 1H.
  • the magnetic flux of the permanent magnet 1N is generated as indicated by the arrowed dashed line.
  • a permanent magnet 1P whose polarity faces the direction of the rotor magnetic pole is arranged between the rotor N magnetic pole 1H and the rotor S magnetic pole 1J.
  • the magnetic flux of the permanent magnet 1N is generated as indicated by the arrowed dashed line.
  • the area surrounded by the square line 1T and its vicinity are the soft magnetic parts of the rotor N magnetic poles 1H, and as described above, the magnetic flux of the permanent magnets shown by the dashed lines with arrows passes through in the state of FIG.
  • the magnetic flux of the soft magnetic portion changes in various ways depending on the rotor rotational position ⁇ r and the values of the stator currents.
  • a permanent magnet 1Q whose polarity faces the direction of the rotor magnetic pole is arranged between the rotor N magnetic pole 1K and the rotor S magnetic pole 1L. When the magnetomotive force from the stator side does not act, the magnetic flux of the permanent magnet 1Q is generated as indicated by the arrowed dashed line.
  • a permanent magnet 1R whose polarity faces the direction of the rotor magnetic pole is arranged between the rotor S magnetic pole 1L and the rotor N magnetic pole 1M.
  • the magnetic flux of the permanent magnet 1R is generated as indicated by the arrowed dashed line.
  • the other six permanent magnets are also arranged at the boundary between the rotor N pole magnetic pole and the rotor S pole magnetic pole, and have similar characteristics.
  • the directions of the polarities of the permanent magnets 1N, 1P, 1Q, and 1R are indicated by small arrows at the centers of the permanent magnets. Also, when the magnetic flux of each permanent magnet is large, part of the magnetic flux of each permanent magnet passes through the air gap side and the stator side outside the rotor, but they are not shown here.
  • the description rules in the specification of the present invention are defined and described.
  • the motor model is called (Nps)S(Npr)R.
  • the motor in FIG. 1 is 6S10R.
  • the circumferential width of the rotor magnetic poles between the N pole and the S pole is defined as an electrical angle of 360°.
  • the stator magnetic poles are separated in the circumferential direction, and the rotor magnetic poles are also separated in the circumferential direction.
  • the definition is inadequate.
  • the period of one magnetic pole pair of the stator is defined as an electrical angle of 360 degrees.
  • the electrical angle of the stator is determined based on the stator.
  • the mechanical angle is 360°.
  • the stator magnetic pole pitch ⁇ pps, the rotor magnetic pole pitch ⁇ ppr, etc. will be shown and explained later in terms of the electrical angle [°].
  • the width in the circumferential direction of the two rotor magnetic poles, the N pole and the S pole is defined as 360° in electrical angle, and the width between the two rotor magnetic poles is 1 magnetic pole pair.
  • the motor configuration is defined and indicated by "the number of stator magnetic pole pairs Nkb" so that all the stator magnetic poles are included.
  • the stator magnetic pole of a certain phase and the stator magnetic pole of the 180° opposite side are counted as one phase.
  • the motor configuration of 6S10R in FIG. 1 it is also called a three-phase motor.
  • the motor and the like shown in FIG. 1 are motors that pass current in one direction, and are different from conventional three-phase AC motors. There are also motors that have an odd number of stator poles and are not symmetrical about the center point of the rotor.
  • the toroidal winding which is wound from the stator slot through the outside of the back yoke, is almost equivalent to a full-pitch winding when two toroidal windings separated by an electrical angle of 180° are connected in series. Therefore, the description of the full-pitch winding also applies to the toroidal winding.
  • full-width characters and half-width characters are treated as the same characters and are not distinguished.
  • Uppercase and lowercase letters are treated as different characters.
  • the operation of the motor will be mainly described by linear development of the shape of the stator magnetic poles and the shape of the rotor magnetic poles facing the air gap portion of the motor.
  • the resistance value of the stator winding will be ignored assuming that the resistance value is 0 [ ⁇ ].
  • the magnitude of the magnetic flux will be described assuming that the magnetic flux passes only through the portions where the stator magnetic poles and the rotor magnetic poles face each other.
  • the magnetic properties of the soft magnetic material are treated as simplified properties as shown in FIG. 6 below.
  • the maximum magnetic flux density is assumed to be 2 [T], and simplified calculations are shown. Ignoring the magnetic resistance of the soft magnetic material such as the back yoke, the principle model will be explained. However, when the magnetic flux density of the air gap exceeds 2.0 [T], the state of the vicinity of the air gap will be explained separately from the characteristics of FIG.
  • the magnetic resistance [A/Wb] of the air gap portion is also included in the characteristics of FIG. 6, but the regenerative operation of magnetic energy, which is one of the important issues of the motor of the present invention, will be described separately.
  • FIG. 2 shows the A-phase winding in a state in which the rotor N-pole magnetic pole 1H is exactly opposed to the A-phase stator magnetic pole 11, and the rotor S-pole magnetic pole 1L is just opposed to the A/phase stator magnetic pole 14. It shows a state in which the A-phase current Ia is applied to 1A and the A/phase winding 1D. 21 and 22 indicating the A-phase magnetic flux component ⁇ a are excited by the A-phase current Ia.
  • FIG. 3 is a diagram in which the magnetic flux distribution shown in FIG. 2 so that two magnetic flux components are superimposed is rewritten into an actual magnetic flux distribution. Therefore, FIGS. 2 and 3 show the same magnetic flux distribution. Specifically, the overlap of the two magnetic flux components in the areas enclosed by the square lines 35 and 36 in FIG. 3 is eliminated. Magnetic flux components indicated by 31, 32, 33, and 34 in FIG. It passes through the magnetic pole 11. These magnetic fluxes circle through the back yoke of the stator. Inside the rotor, the magnetic flux can pass without difficulty regardless of where it is placed. However, in the vicinity of the tips of the rotor S magnetic pole 1L and the rotor N magnetic pole 1H, that is, in the vicinity of the air gap, magnetic fluxes from three directions are concentrated, so the magnetic flux density increases.
  • the distribution of the magnetic flux inside the rotor in FIG. 3 and the method of passage of the magnetic flux will be considered.
  • the magnetic flux components 31, 32, 33, and 34 passing through the rotor N pole magnetic pole 1H the magnetic flux components 31 and 32 pass through the soft magnetic magnetic path of the rotor S magnetic pole 1L and the soft magnetic magnetic path of the rotor N magnetic pole 1H. passing through the road.
  • the magnetic flux 33 uses the soft magnetic path of the rotor S pole magnetic pole 1J, which is not used in the state of FIG. is guided by
  • the magnetic flux 34 uses the soft magnetic path of the rotor S pole magnetic pole 1G, which is not used in the state of FIG. is guided by
  • the magnetic flux density on the rotor magnetic pole surface may exceed 2 [T].
  • the output torque of the motor can be increased by increasing the magnetic flux density in the air gap.
  • a configuration and a method for increasing the magnetic flux density of the air gap to exceed 2 [T] will be described later.
  • the action of the magnetic flux passing through the rotor N pole magnetic pole 1H is the same for the rotor S pole magnetic pole 1L in FIG. 1, 2 and 3, the A-phase stator pole 11 and the A/phase stator pole 14 cannot generate torque.
  • the stator poles 11 and 14 can pass the greatest magnetic flux.
  • the magnitude of the magnetic flux that can pass through is approximately proportional to the magnitude of the output torque.
  • FIG. 4 shows and explains the characteristics when the stator magnetic poles Ps and the rotor magnetic poles Pr have the same polarity and face each other with an air gap between them.
  • FIG. 5 shows an example in which the rotor rotational position ⁇ r is 12°.
  • FIG. 4 when the A-phase current Ia is passed through the A-phase winding 1A and the A/phase winding 1D, a magnetic flux component indicated by a dashed line 45 is generated.
  • the magnetic flux component of the permanent magnet indicated by the arrowed dashed line is directed upward from the lower side of the paper surface. are in the same direction, the magnetic resistance passing through is large.
  • the action of the permanent magnets 1R and 44 increases the magnetic resistance through which the magnetic flux 45 passes. Therefore, the magnetic flux component 45 in FIG. 4 is suppressed to a relatively small value.
  • FIG. 4 shows the rotor rotational position ⁇ r at which the torque that can be generated by the A-phase stator magnetic pole 11 and the A/phase stator magnetic pole 14 is exactly 0 [Nm]. ], the following will be described.
  • the rotor rotational position ⁇ r 30[°].
  • FIG. 5 shows an example of a state in which counterclockwise CCW torque T is generated, and will be explained.
  • a magnetic flux component 53 indicated by a thick solid line is generated.
  • the magnetic flux component 53 is the magnetic flux component shown in FIGS. 2 and 3, and since the magnetic resistance in the rotor is small, the magnetic flux density is large at the air gap surface.
  • a magnetic flux component indicated by a thin dashed line 54 is also generated in parallel.
  • the magnetic flux component 54 is the magnetic flux component shown in FIG. 4, and since the magnetic resistance in the rotor is large, the magnetic flux density is relatively small at the air gap surface. As a result, the magnetic flux density of the air gap surface created by the magnetic flux component 53 is superior, and torque T[T] in the counterclockwise rotation direction CCW is generated.
  • FIG. 6 showing an example of the magnetic characteristics of the soft magnetic material.
  • the magnetic properties of an electromagnetic steel sheet such as a silicon steel sheet are non-linear properties as indicated by a dashed line 61 in FIG.
  • the horizontal axis of FIG. 6 is the excitation current Iexe [A]
  • the vertical axis is the magnetic flux density B [T].
  • the motor of the present invention is driven by a unidirectional current, but magnetically, by utilizing permanent magnets, both positive and negative magnetic flux density regions in FIG. 6 are utilized.
  • both positive and negative magnetic flux density regions in FIG. 6 are utilized.
  • the magnetic operating points of the region with the highest magnetic flux density are, for example, values 63 to 64 in FIG.
  • the magnetic flux passing through the area surrounded by the square line 35 in FIG. 3 is directed from the lower side to the upper side of the paper surface, and its magnetic flux density is, for example, values from 67 to 66 in FIG.
  • the magnetic flux density B of the soft magnetic material portion of the rotor N magnetic pole 1H changes from -2 [T] to +2 [T] in FIG.
  • the magnetic flux passes from the lower side to the upper side of the paper and acts as an N pole magnetic pole.
  • the soft magnetic body can also be regarded as a state in which the magnetic flux is reversely biased by the permanent magnets 1P and 1N.
  • the drive current is a unidirectional current, and the magnetic flux density of each part of the motor is driven using only unidirectional magnetic characteristics.
  • FIGS. 1 and 2 show the cross section of one magnetic pole pair of the stator, the shape of the soft magnetic material portion of each rotor magnetic pole is fan-shaped. Each slot shape of the stator is also fan-shaped.
  • the shapes of the soft magnetic material portions of the rotor magnetic poles and the slots of the stator shown in FIG. 7 are linearly deformed, so that they become rectangular and change their shapes.
  • a motor with a large output capacity of 3 k [kW] to 100 [kW] has a large motor shape and is often multipolar.
  • the soft magnetic material portions of the rotor magnetic poles and the shape of each slot of the stator are closer to a rectangular fan shape.
  • the motors shown in FIGS. 1 and 2 are 3-phase motors, but in 5-, 7-, 9-, and 11-phase motors, which will be described later, the number of stator magnetic poles and the number of rotor magnetic poles increase.
  • FIG. 7 linearly develops the motor configuration of FIG. As in the case of FIG. 2, the A-phase current Ia is applied, and the A-phase magnetic flux ⁇ a is generated as 79 and 7A.
  • 71 is a stator and 73 is a rotor. Each stator magnetic pole Ps of the stator 71 and the rotor magnetic pole Pr of the rotor 73 face each other with an air gap therebetween.
  • the air gap length is 7F, which is greatly enlarged for easy visual understanding. In a motor of about 10 [kW], the air gap length is usually about 0.5 [mm] to 1 [mm].
  • 72 is the back yoke of the stator
  • 74 is the back yoke of the rotor.
  • 7D is the stator back yoke
  • 7E is the length of the stator tooth and the depth of the slot.
  • the left and right ends of the drawing in FIG. 7 are indicated by broken lines, indicating that the left and right ends in FIG. 7 are connected in a circle.
  • the electrical angle of 360° of one magnetic pole pair of the stator is described slightly wider.
  • the right direction on the paper surface is the counterclockwise rotation direction CCW of the rotor in FIGS.
  • the reference is the CCW direction from the first quadrant to the second quadrant.
  • linear movement is based on movement from left to right. Therefore, in FIGS. 1, 2 and 7, the direction in which the stator poles are arranged is reversed.
  • the leftward movement of the rotor around the A phase S pole stator pole 11 in FIGS. 1 and 2 is the rightward movement of the rotor around the A phase S pole stator pole 7L in FIG. , visually in the opposite direction. 1 and 2 are viewed from the back side of the page and considered to be linearly developed, the visual left-to-right movement matches that of FIG.
  • 7J in FIG. 7 is a B/phase N pole stator pole, which corresponds to 16 in FIG. 7L is an A-phase S pole stator pole, which corresponds to 11 in FIG.
  • Reference numeral 75 denotes a C/phase N-pole stator pole, which corresponds to 12 in FIG. 7M is an A/phase N pole stator pole, which corresponds to 14 in FIG. 7N is the rotor N magnetic pole of the rotor and corresponds to 1H in FIG. 7P is a concentrated A-phase winding that excites the A-phase S pole stator pole 7L, and corresponds to 1A in FIG. 7Q is a concentrated A/phase winding that excites the A/phase N-pole stator pole 7M, and corresponds to 14 in FIG.
  • the rotor 73 in FIG. 7 has N and S rotor magnetic poles arranged alternately in the circumferential direction.
  • 7N is the rotor N magnetic pole
  • 7K is the rotor S magnetic pole.
  • Permanent magnets such as 76 and 77 aligned with the direction of the rotor magnetic poles are arranged at the boundaries of each rotor magnetic pole.
  • the magnetic flux generated by each permanent magnet circulates mainly in the soft magnetic material in the rotor and forms a closed path when the stator current is not supplied.
  • Magnetic fluxes are generated like the magnetic fluxes indicated by the broken lines 78 and 7R of the permanent magnet 76, and most of the magnetic fluxes circulate in the soft magnetic body and form a closed circuit.
  • the magnetic flux components indicated by the broken lines 78 and 7R will flow toward the air gap even when the stator current is not supplied.
  • Leakage magnetic flux component increases.
  • part of the leakage magnetic flux component also passes through the stator poles and circulates. Note that the leakage magnetic flux component to the air gap side is described in FIG. 10 and the like.
  • the magnetic flux components 78, 7R, etc. follow complicated magnetic flux paths as shown in FIGS.
  • the A-phase magnetic flux component ⁇ a completes one cycle.
  • the area surrounded by square lines 7B and 7C shows a state in which the A-phase magnetic flux component ⁇ a of 79 and 7A and the magnetic flux component of the permanent magnet indicated by the dashed line with arrow are superimposed.
  • the names of the A-phase, B-phase, C-phase, etc. of each stator pole are shown in parentheses in the upper part of the paper surface of FIG.
  • FIG. 8(a) is an enlarged view of the periphery of the stator S magnetic pole 7L of FIG. 81, 82, 83, 84, etc. indicated by dashed lines with arrows are the magnetic flux components of the permanent magnets.
  • the A-phase magnetic flux ⁇ a of 79 and the magnetic flux component of the permanent magnet indicated by the dashed line are overlapped in the area enclosed by the square line 7B.
  • FIG. 8 is a diagram in which the overlapping magnetic flux components of (a) of FIG. 8 are rewritten into an actual magnetic flux distribution.
  • This is the state in which the A-phase current Ia is applied to the A-phase winding 7P and the A/phase winding 7Q.
  • the area surrounded by the square line 89 is at the magnetic operating point 64 in FIG.
  • the sign of the magnetic flux density of 68 is negative. That is, in FIG.
  • FIG. 8(b) shows a state in which the A-phase current Ia is supplied such that the magnetic flux density in the area surrounded by the square line 89 becomes 0 [T].
  • the magnetic fluxes 85, 86, 87, 88 passing through the S pole stator magnetic pole 7L do not pass through the square region 89 of the rotor, but pass through the permanent magnets located on the left and right sides of the N pole rotor magnetic pole 7N on the paper surface.
  • a magnetic flux is supplied to the S pole stator magnetic pole 7L.
  • the magnetic fluxes 85, 86, 87, 88 passing through the S pole stator magnetic pole 7L are distributed to the rotor magnetic poles 7K, 7S on both sides of the rotor N pole magnetic pole 7N on the paper surface. , the magnetic flux passes through and is supplied to the S pole stator magnetic pole 7L. Therefore, since the magnetic flux density is 0 [T] around the area surrounded by the square line 89 of the rotor N pole magnetic pole 7N, there is still sufficient remaining magnetic flux supply power to the stator.
  • the rotor of this structure "can supply magnetic flux to the vicinity of the air gap of the rotor magnetic poles and to the stator magnetic poles by utilizing the soft magnetic magnetic paths of the rotor magnetic poles located next to each other in the circumferential direction.” It can also be said.
  • the teeth of the stator shown in FIG. 1 and the like have sufficient spaces in the slots between the teeth as shown, and it is possible to increase the passing magnetic flux by widening the width of the teeth in the circumferential direction. I will explain later. It is also possible to add permanent magnets between the teeth of the stator to increase the magnetic flux acting on the stator poles, as will be explained in detail later.
  • FIG. 9 shows the magnetic flux distribution when the A-phase current Ia of 7P is increased from the state of FIG. 8(b).
  • magnetic fluxes 91 and 92 increase compared to the state of FIG. 8(b).
  • the magnetic flux passing through the area surrounded by the square line 89 is increased. 6 if the region 89 is at the operating point 64 when the A-phase current Ia is 0 [A], then if the magnetic flux density is 2 [T] in the state of FIG. Assuming that the magnetic flux density in the region 89 has increased as 69 in FIG.
  • the permanent magnets of the rotor are effectively used to change the magnetic flux density of the rotor magnetic poles from a negative value to a positive value as shown in FIG. It is used by changing it up to. It is also a technique that utilizes the soft magnetic magnetic paths of unused rotor magnetic poles that are adjacent in the circumferential direction.
  • FIG. 10 shows an example in which the permanent magnets 77, 10A, 10B, etc. of the rotor have slightly higher performance and a higher magnetic flux density.
  • the broken lines 101, 102, 103, and 104 which are the magnetic flux components of the rotor permanent magnets 10A and 10B, circulate through the back yoke side of the rotor.
  • the magnetic resistance increases, so the magnetic flux components 107 and 108 on the air gap side become too large to be ignored.
  • Other magnetic flux components 106, 109 are similar. Although the magnetic flux components on the air gap side are ignored in FIGS. 8 and 9, the magnetic flux components 106, 107, 108 and 109 are added in FIG.
  • the A-phase current Ia is applied to the A-phase winding 7P and the A/phase winding 7Q in (a) of FIG. 10 to excite the magnetic flux component of 10C.
  • the magnetic flux component indicated by the broken line of each permanent magnet of the rotor and the magnetic flux component 10C are shown superimposed. As described above, since the magnetic flux density in the square area 105 is already high, the magnetic resistance, the magnetic flux component 10C passing through the square area 10D, cannot become a large value.
  • FIG. 11 is a diagram qualitatively rewritten as a magnetic flux distribution that combines the two types of magnetic flux components written in (b) of FIG. 10 .
  • the magnetic flux component 107 in (b) of FIG. 10 looks like the magnetic flux component 111 in (a) of FIG.
  • a magnetic flux component 113 directly passing from the magnetic pole 7S to the S magnetic pole 7L of the stator. Since the magnetic flux density in the square area 118 is already high, the reluctance is high to further increase the passing flux, and the magnetic flux components 111, 112, 113 are small values.
  • the magnetic flux 114 passes through the magnetic path of the S pole magnetic pole 7K on the left side of the rotor N pole magnetic pole 7N that generates force with the A phase current Ia, passes through the permanent magnet 77, and reaches the A phase stator S pole magnetic pole of the stator. Go through 7L.
  • the magnetic fluxes of 115 and 116 pass through the magnetic path of the S pole magnetic pole 7S on the right side of the rotor N pole magnetic pole 7N, through the permanent magnet 10A, and through the stator S pole magnetic pole 7L of the A phase of the stator.
  • the magnetic flux of 117 is the magnetic flux that passes through the rotor S pole magnetic pole 7S and directly through the stator S pole magnetic pole 7L of the A phase of the stator.
  • the magnetic flux density of the rectangular area 11A is such that the magnetic flux of the permanent magnet 77 and the magnetic flux 102 pass from the upper side to the lower side of the paper surface, and the magnetic flux density from the lower side to the upper side of the paper surface is a negative magnetic flux density. be. Therefore, there is sufficient surplus power to supply magnetic flux from the N magnetic pole 7N of the rotor to the S magnetic pole 7L of the stator.
  • the method of blocking or reducing the magnetic flux shown in (b) of FIG. 10 and (a) of FIG. 11 is important. That is, for example, as shown in FIG. 11A, in a state in which the stator magnetic poles and the rotor magnetic poles of the same polarity face each other, the magnetic flux density B in the rectangular area 118 is the maximum value 2 [T] of the soft magnetic material. In this method, the value is close to . Since the magnetic flux density increases in the region 118, the relative magnetic permeability decreases, the magnetic resistance increases, and the magnetic flux of 113 can be suppressed to a small value. As for the magnetic flux components 111 and 112 coming around, the magnitude of the magnetic flux is also suppressed by the action of increasing the magnetic resistance of the region 118 .
  • One method of suppressing this is to increase the magnitude of the magnetic flux generated by the permanent magnet of the rotor as shown in FIG. 10(b). However, in that case, the magnetic fluxes 106, 107, 108, 109, etc. shown in FIG.
  • Another suppression method is to dispose permanent magnets in the vicinity of the surface of the rotor facing the air gap in the direction of the rotor magnetic poles.
  • Another suppression method is to add a field winding to the rotor and apply a field current. It is also possible to control the magnitude of the field current.
  • the torque T [Nm] is not the magnitude of the interlinkage magnetic flux ⁇ [Wb], but the rate of change d ⁇ /d ⁇ or ⁇ of the interlinkage magnetic flux ⁇ [Wb] / ⁇ .
  • Electric power Pe [W] is supplied as shown in equation (2) and is electromagnetically converted into mechanical power Pm [W] as in equations (4) and (5). That is, the conventional switched reluctance motor shown in FIG. 63 utilizes the change in magnetic flux density [T] in one direction shown in 6B of FIG.
  • a torque T [Nm] is generated using the change in the magnetic flux density [T] in both directions shown in 69 and 6A. For the sake of simplification, the motor internal loss and magnetic energy are ignored here.
  • FIG. 12 shows a linear development diagram showing the operation of the 6S10R motor in Fig. 1.
  • the developed view of FIG. 12 shows the shape of the stator magnetic poles facing the air gap surface and the shape of the rotor magnetic poles, allowing analysis of mutual passing magnetic flux and electromagnetic action.
  • FIG. 12 is a linear development diagram for the purpose of plotting a CCW torque generation section.
  • the CCW direction in FIG. 1 is the forward rotation direction
  • the right direction in FIG. 12 is the CCW direction.
  • FIG. 12 represents the rotor rotation angle ⁇ r, which represents the rotor rotation position at which the upper left corner of the N pole magnetic pole 1H of the rotor reaches the lower right corner of the S pole stator pole 11 of the A phase, which is the first phase in FIG.
  • ⁇ r 0°.
  • FIG. 12 shows the rotor rotation angle ⁇ r from -30° to 360°.
  • each stator pole in the circumferential direction is 30°
  • the width of each slot in the circumferential direction is 30°
  • the stator pole pitch ⁇ pps is 60°.
  • the pitch ⁇ ppr of each rotor magnetic pole is 36°
  • a total of 10 rotor N-pole magnetic poles and rotor S-pole magnetic poles are alternately arranged around the entire circumference.
  • FIG. 12 shows a case where the circumferential width of each rotor magnetic pole is 30°.
  • FIG. 12(a) shows the shape of each stator pole facing the air gap surface. .theta.r indicates the A-phase S-pole stator poles between 0.degree. and 30.degree.
  • stator poles of the C/phase, B phase, A/phase, C phase, and B/phase are similarly arranged.
  • the circumferential width of the stator magnetic poles and the circumferential width of the rotor magnetic poles can be modified and designed by reducing or expanding them within the range allowed by space.
  • the positions of the stator magnetic poles in FIG. Check the section where CCW torque can be generated. At the top of each row, the section where CCW torque can be generated is indicated by a thick line above the rotor magnetic pole shape. At this time, the position and width of the thick line correspond to the position and width of the corresponding stator pole.
  • FIG. 12(b) shows the shape of the rotor magnetic poles facing the air gap surface.
  • a total of 10 rotor magnetic poles are arranged at a pitch of 36°, with the rotor's N and S magnetic poles alternating.
  • Each stator magnetic pole in FIG. 12(a) and each rotor magnetic pole in FIG. 12(b) face each other with an air gap interposed therebetween.
  • the value of the rotor rotational position ⁇ r is shown at the left end of FIG. 12(b).
  • the torque in the CCW direction in FIG. 1 is torque in the right direction on the page of FIG.
  • This attractive force generation section is indicated by a thick line on the upper right side of the N magnetic pole 121 .
  • 122 is the rotor S pole magnetic pole 180° away from the N pole magnetic pole 121 at an electrical angle of 180° which is 1/2 of the electrical angle 360° of the stator 1 magnetic pole pair.
  • This attractive force generation section is indicated by a thick line substantially above the N pole magnetic pole 124 .
  • the N magnetic pole 121 of the rotor is the same as the N magnetic pole 125 indicated by the dashed line at the position where the phase difference is 360°.
  • the stator poles 13 and 16 are unable to generate an attractive force to the right of the page.
  • the A-phase stator S-pole magnetic pole 11 and the A/phase stator N-pole magnetic pole generate a rightward attraction force.
  • the magnetic poles of both the stator and rotor have fixed north and south polarities, the other four stator poles cannot generate CCW torque.
  • the state of FIG. 12(h) returns to the same state as the state of FIG. 12(b).
  • the motor shown in FIG. 1 repeats the same operation 5 times at a cycle of 72° to make one rotation of the rotor.
  • FIG. 13 shows an example of the current applied to each phase winding, and some methods of applying current will be described.
  • FIGS. 13A, 13B, and 13C are examples of the A-phase current Ia, B-phase current Ib, and C-phase current Ic that are applied when the motor in FIG. 1 and the motor in FIG. 12 operate.
  • the circumferential width of the stator magnetic poles and the circumferential width of the rotor magnetic poles are both 30°, rotate in the CCW direction, and generate torque in the CCW direction.
  • the rectangular wave-shaped thick solid line currents in (a), (b), and (c) of FIG. B-phase current Ib is energized from 51° to 75°, and these operations are repeated in each 72° cycle.
  • A-phase, C-phase, and B-phase generate 24-degree torque sequentially, and in terms of the motor model, it is possible to continuously output a substantially uniform torque.
  • the trapezoidal A-phase current Ia, B-phase current Ib, and C-phase current Ic indicated by broken lines in (a), (b), and (c) of FIG. 13 can be applied.
  • the A-phase current Ia increases from 0° to 6°, is constant from 6° to 24°, decreases from 24° to 30° to 0 [A], and supplies a trapezoidal current.
  • the C-phase current Ic is a trapezoidal current between 24° and 54°.
  • the B-phase current Ib is a trapezoidal current between 48° and 78°. Then, these operations are repeated at a cycle of 72° for each.
  • stator magnetic pole circumferential width ⁇ sg facing the air gap in FIGS. 1 and 12 and the rotor magnetic pole circumferential width ⁇ rg are both 36.
  • One method can be driven by a square-wave-like current indicated by a thick solid line in FIG. 13(d), (e), and (f).
  • the A-phase current Ia in (d) of FIG. 13 is energized from 0° to 36°
  • the C-phase current Ic in (f) is energized from 24° to 60°
  • the B-phase current Ib in (e) is 48°. to 84°, and these operations are repeated in a 72° cycle for each.
  • the average torque increases, torque pulsation is expected, and measures to reduce torque pulsation must also be considered.
  • Various methods can be applied, such as amplitude correction.
  • Ia, Ib, and Ic can also be driven with trapezoidal currents, as indicated by broken lines (d), (e), and (f) in FIG.
  • the A-phase current Ia in (d) of FIG. A trapezoidal current is applied.
  • the C-phase current Ic is a trapezoidal current between 24° and 60°.
  • the B-phase current Ib also conducts a trapezoidal current between 48° and 84°. Then, these operations are repeated at a cycle of 72° for each. If these Ia, Ib, and Ic are added, a logically uniform torque can be expected by an energization method that always maintains a constant value.
  • 13A, 13B, and 13C shows a more gradual increase/decrease in current than the trapezoid shape.
  • a reduction in vibration and noise can also be expected.
  • a trapezoidal current waveform close to a square wave is used to generate large torque
  • a trapezoidal current waveform that gradually increases and decreases is used. I can think of a way.
  • FIGS. 12 and 13 are examples in which the stator magnetic pole width and the rotor magnetic pole width are 30°.
  • the torque generation width is 24 degrees
  • each phase torque is generated sequentially, and the motor can output continuous torque.
  • each phase torque must generate 30° in order to output continuous torque of the motor. This characteristic is different from that of the motor configuration of FIG. In the configuration of 6S10R with the rotor magnetic pole characteristics shown in Fig. 1, the torque width of each phase is 24°. You can also add time. This degree of freedom in the energization time is one of the features of the motor shown in FIG.
  • the magnetic pole shape can be adjusted not only by the width in the circumferential direction, but also by adjusting the skew, the shape of the magnetic pole, the unevenness in the radial direction, the air gap inside the magnetic pole, and the like, and by adjusting the magnetic resistance and adding a permanent magnet.
  • the current waveform applied to the stator windings it is possible to use rectangular wave current, trapezoidal current, sinusoidal current, quadratic current increase/decrease, or correction of current amplitude.
  • a specific driving method at low speed rotation, it is driven with a current waveform close to a square wave to increase the average torque, and at high speed rotation, it is driven with a trapezoidal current waveform, and the current is gradually increased and decreased to increase and decrease the current drive. It reduces the load, and at the same time, it can drive with reduced torque ripple and vibration noise.
  • a conventional reluctance motor such as that shown in FIG. 63, which is driven by a unidirectional current, has rotor magnetic poles made of a soft magnetic material and does not have polarities such as N poles and S poles.
  • the rotor magnetic poles are N poles and S poles, and the polarities are fixed.
  • the motor configuration is such that both the magnetic poles of the stator and rotor have N-pole and S-pole polarities.
  • the stator is similar to the conventional reluctance motor shown in Fig. 63, but permanent magnets can be used in the rotor by fixing the rotor magnetic poles to the N and S poles. Then, by utilizing the permanent magnets in the rotor in a unique arrangement as shown in FIG. b), it can be utilized like 85, 86, 87, 88 in (a) of FIG. As a result, the torque can be increased by greatly enhancing the magnetic flux supply capability on the rotor side.
  • square regions 118 are magnetically saturated to increase the magnetic resistance, as indicated by 101, 102, 103, and 104 in FIG.
  • stator winding in FIG. 1 is shown as an example of concentrated winding, it can also be a full-pitch winding. This is an electrification method in which each part of the rotor is selectively excited with a full-pitch winding of a unidirectional current, and the direction of excitation is also set in a specific direction.
  • the combination of the stator magnetic poles and the rotor magnetic poles has been explained in the example of 3 phases in Fig. 1, but it can be expanded to 5 phases, 7 phases, 9 phases, 11 phases, etc., and the utilization rate inside the motor is high, making it very practical.
  • the teeth of the stator shown in FIG. 1 have sufficient spaces in the slots between the teeth as shown in the figure, and it is possible to increase the passing magnetic flux by expanding the width of the teeth in the circumferential direction and deforming them.
  • An embodiment of Item 7 will be described.
  • the term "winding utilization factor" is used as the usage ratio of the motor windings.
  • the usage rate of the transistor TR is used as the usage rate of the current driving transistor TR. The rate at which current can be passed through the windings to generate torque is, in turn, related to the winding resistance of the motor.
  • a motor that generates torque in 50% of the windings will energize half the windings with twice the current. , increasing the total copper loss by a factor of 2.
  • the utilization rate of the transistor TR is 50% compared to the utilization rate of the transistor TR of 100%, the total current capacity of all the transistors TR of the inverter is doubled by simple calculation. Overall, a high utilization rate enables miniaturization, weight reduction, and cost reduction.
  • FIG. 14 shows a configuration in which permanent magnets 145, 146, 147, 148, 149 and 14A are added to the configuration of FIGS.
  • An arrow mark on each permanent magnet indicates its polar direction.
  • Dashed lines 14B and 14C indicate magnetic flux components of the permanent magnets.
  • A-phase current Ia is applied to the A-phase winding 1A and the A/phase winding 1D of the stator to excite A-phase magnetic flux components 141 and 142 .
  • a rectangular line 143 indicates the region of the soft magnetic material portion of the N magnetic pole 1N of the rotor.
  • a rectangular line 144 indicates the region of the soft magnetic material portion of the S magnetic pole 1R of the rotor.
  • the A-phase magnetic flux components 141 and 142 are superimposed on the magnetic flux of each permanent magnet of the rotor indicated by broken lines and the magnetic flux of each permanent magnet of the stator indicated by broken lines. It goes around through the back yoke of the stator. Reference numerals for other components in FIG. 14 are the same as those in FIGS.
  • the permanent magnets 145, 146, 147, 148, 149, and 14A are elongated in the circumferential direction.
  • the length of each permanent magnet in the circumferential direction is about 1/4.
  • the cross-sectional shape of the permanent magnet approaches a parallelogram.
  • the shape of the soft magnetic material in the portion in contact with each permanent magnet can be freely changed according to the shape of the permanent magnet.
  • FIG. 15 is a linear development of the cross-sectional view of the motor in FIG. 151 is a stator and 152 is a back yoke of the stator.
  • 15L is the A-phase stator S magnetic pole and corresponds to 11 in FIG. 14
  • 15M is the A/phase N-pole magnetic pole and corresponds to 14 in FIG. 14
  • 15J is the B/phase N-pole magnetic pole and corresponds to 16 in FIG. 155 corresponds to 12 in FIG. 14 with the C/phase stator N pole magnetic poles.
  • 15P is an A-phase winding
  • 15Q is an A/phase winding.
  • Permanent magnets such as 15H and 15S are arranged between the stator poles so as to face the polarities of the stator poles.
  • the broken line of 15G is the magnetic flux component of the permanent magnet 15H
  • the broken line of 15T is the magnetic flux component of the permanent magnet 15S. The same applies to the other permanent magnets of the stator and the magnetic flux components indicated by dashed lines.
  • FIG. 16(a) is an enlarged view of the periphery of the stator S magnetic pole 15L of FIG.
  • FIG. 16(a) shows the distribution state of the magnetic flux components 15G and 15T of the permanent magnets of the stator and the magnetic flux components 78 and 7R of the permanent magnets of the rotor without applying a stator current.
  • Magnetic flux components 15G and 15T pass through the teeth of the A-phase stator S pole magnetic pole 15L from the upper side to the lower side of the paper surface. In the opposite direction, the magnetic flux density is negatively biased.
  • the magnetic flux in the region surrounded by the square line 161 of the rotor N pole magnetic pole 7N of the rotor is directed downward from the upper side of the paper surface, and is opposite to the direction of the magnetic flux acting on the stator for the rotor N pole magnetic pole 7N to generate torque. , where the magnetic flux density is negatively biased.
  • the corresponding operating point is 63 or 64, and the magnetic flux density change of 6A or 69 is possible.
  • the A-phase stator S pole magnetic pole 15L faces the rotor N pole magnetic pole 7N with an air gap interposed therebetween.
  • FIG. 16(b) shows the state of FIG. 16(a) in which the A-phase current Ia is applied to the A-phase winding 15P and the A/phase winding 15Q to excite the A-phase magnetic flux ⁇ a of 159. ing.
  • Each magnetic flux component generated by the permanent magnets of the stator and rotor and 159 of the A-phase magnetic flux ⁇ a are shown superimposed.
  • the magnetic flux component produced by the permanent magnet of the rotor and the A-phase magnetic flux ⁇ a 159 are in the opposite direction and cancel each other.
  • the magnetic flux component 15G produced by the stator permanent magnet 15H and the magnetic flux component 15T produced by the stator permanent magnet 15S and the A-phase magnetic flux ⁇ a 159 cancel each other out.
  • FIG. 17(a) shows a case where the A-phase current Ia of the A-phase winding 15P is not so large
  • FIG. 17(b) shows a magnetic flux distribution example when the A-phase current Ia is large.
  • Magnetic fluxes 171 and 172 in FIG. 17(a) pass through the soft magnetic path of the rotor S pole magnetic pole 7K, through the permanent magnet 77, through the rotor N pole magnetic pole 7N, through the air gap, and through the stator S pole magnetic pole. 15L, the permanent magnet 15H, the teeth of the stator N magnetic pole 15J, and the stator back yoke.
  • the magnetic fluxes 173 and 174 pass through the soft magnetic path of the rotor S magnetic pole 7S, through the permanent magnet 10A, through the rotor N magnetic pole 7N, through the air gap, through the stator S magnetic pole 15L, and through the permanent magnet 15S. , through the teeth of the stator north magnetic pole 155, and through the stator back yoke.
  • magnetic fluxes 171, 172, 173, and 174 are excited by the A-phase current Ia of the A-phase winding 15P and the A/phase winding 15Q, and pass through the air gap from the rotor N-pole magnetic pole 7N. It passes to the stator S pole magnetic pole 15L.
  • these magnetic fluxes have not yet passed through the area surrounded by the square line 161, which is the soft magnetic material portion of the rotor N pole magnetic pole 7N, and the teeth of the stator S pole magnetic pole 15L. Therefore, by increasing the A-phase current Ia, the magnetic flux passing between the rotor N-pole magnetic pole 7N and the stator S-pole magnetic pole 15L can be increased.
  • the magnetic flux passing near the air gap indicated by the elliptical thick dashed line 179 is the value of the magnetic flux component 159 in FIG. 16(b).
  • the region 177 which is the tooth of the stator S magnetic pole 15L and the soft magnetic material portion of the rotor N magnetic pole 7N, is still negatively biased by the permanent magnet, there is no relation to those states.
  • the magnetic flux passing through the air gap near 179 has a positive value, which is the value of the magnetic flux component 159 .
  • FIG. 17 is an example of the magnetic flux distribution when the A-phase current Ia of (a) of FIG. 17 is increased.
  • magnetic fluxes 171, 172, 173, 174, 175, and 176 pass from the rotor N pole magnetic pole 7N to the stator S magnetic pole 15L through the vicinity of the air gap in the area indicated by the thick elliptical broken line 17A.
  • the magnetic fluxes 175 and 176 are increased compared to FIG. 17(a).
  • These magnetic fluxes 175 and 176 pass through the area surrounded by the square line 161, which is the soft magnetic material portion of the rotor N pole magnetic pole 7N, pass through the vicinity of the air gap indicated by the thick elliptical broken line 17A, and pass through the stator S pole magnetic pole 15L. pass through the teeth.
  • the magnetic fluxes 175 and 176 cause the area surrounded by the square line 161, which is the soft magnetic material portion of the rotor N-pole magnetic pole 7N, and the A-phase
  • the magnetic flux density of the teeth of the stator S pole magnetic pole 15L is a magnetic flux ⁇ a1 of 2.0 [T]
  • the sum of the magnetic fluxes 171, 172, 173, and 174 is a magnetic flux ⁇ a2 of the same magnitude.
  • the magnetic flux density Bagap of the air gap in the area indicated by the elliptical thick dashed line 17A is 4.0 [T] in a simple magnetic model.
  • the magnetic resistance of not only the air gap portion but also the soft magnetic material portion in the vicinity of the air gap is greatly increased.
  • the relative magnetic permeability of the soft magnetic material for magnetic flux components exceeding 2.0 [T] approaches 1.0.
  • the magnetic flux density does not exceed 2.0 [T] except for the region indicated by the thick elliptical dashed line 17A. Therefore, if the A-phase current Ia is increased, a large amount of magnetomotive force [A] will be applied to the area indicated by the elliptical thick dashed line 17A, resulting in a large magnetic field strength [A/m] and the magnetic flux density increases up to 4.0 [T].
  • the soft magnetic material outside the 17A region has a magnetic flux density of 2.0 [T] or less and a relative magnetic permeability of 100 or more.
  • the thickness of the back yoke portion of the stator can be made sufficiently large so that the magnetic resistance can be kept small.
  • the magnetic path of the adjacent rotor magnetic poles 7K and 7S and the teeth of the adjacent stator magnetic poles 15J and 155 are used. If the stator magnetic poles 15J and 155 are not excited at the same time as the stator S magnetic pole 15L is excited, the electromagnetic operation will not become complicated.
  • a driving method that does not use the stator poles on both sides in the circumferential direction at the same time, a driving method that reduces the size and uses them simultaneously, or a driving method that uses them at the same time. A driving method will be described later.
  • FIG. 18(a) shows a state in which an A-phase current Ia is applied to the A-phase winding 15P and the A/phase winding 15Q to excite an A-phase magnetic flux ⁇ a indicated by a thick dashed line with an arrow 181.
  • FIG. 18(a) shows a state in which an A-phase current Ia is applied to the A-phase winding 15P and the A/phase winding 15Q to excite an A-phase magnetic flux ⁇ a indicated by a thick dashed line with an arrow 181.
  • the A-phase magnetic flux ⁇ a of 181 and each magnetic flux component indicated by a rather thin broken line of each permanent magnet of the stator and rotor are overlapped.
  • the A-phase magnetic flux ⁇ a of 181 can easily pass through because the teeth of the A-phase stator S pole magnetic pole 15L on the stator side are in the reverse bias state of the magnetic flux.
  • the direction of the magnetic flux of the permanent magnets 10A and 10B is the same in the area surrounded by the square line 182 of the rotor S pole magnetic pole 7S, the magnetic flux density is high and the magnetic resistance is large. is difficult to pass through. As a result, the value of the A-phase magnetic flux ⁇ a of 181 becomes smaller.
  • FIG. 18 shows the magnetic flux distribution, which is drawn by qualitatively converting the superimposed magnetic flux components of (a) of FIG. 18 into a distribution state.
  • the A-phase magnetic flux ⁇ a component 184 passes from the rotor back yoke through the area surrounded by the square line 183, which is the soft magnetic material portion of the rotor S pole magnetic pole 7S, to the A-phase magnetic flux on the stator side. passes through the tip of the stator S pole magnetic pole 15L, through the permanent magnet 15H, through the teeth of the stator N pole magnetic pole 15J, and through the stator back yoke.
  • the A-phase magnetic flux ⁇ a component 185 passes from the rotor back yoke through the area surrounded by the square line 183, which is the soft magnetic material portion of the rotor S-pole magnetic pole 7S, and reaches the tip of the A-phase stator S-pole magnetic pole 15L on the stator side. , through the permanent magnet 15S, through the teeth of the stator N magnetic pole 155, and through the stator back yoke.
  • the magnetic flux components 184 and 185 have small values because the magnetic flux density in the area enclosed by the square line 183 is already high, so the reluctance is large. Therefore, the magnetic flux component 187 of the permanent magnet 15H and the magnetic flux component 188 of the permanent magnet 15S remain to the extent that they decrease slightly.
  • the teeth of the A-phase stator S pole magnetic pole 15L are still magnetically reverse-biased by the magnetic flux components 187 and 188.
  • FIGS. 19(a) and 19(b) illustrate and explain the state of generating torque in the CCW direction.
  • Half of the rotor N pole magnetic pole 7N and half of the rotor S magnetic pole 7S face the A phase stator S pole magnetic pole 15L via an air gap.
  • the A-phase current Ia is applied to the A-phase winding 15P and the A/phase winding 15Q, and the A-phase magnetic flux ⁇ a of 191 passing through the rotor N-pole magnetic pole 7N is indicated by a thick line with an arrow.
  • These magnetic flux components 191 and 192 are shown superimposed on the magnetic flux components of the respective permanent magnets indicated by dashed lines.
  • the magnetic flux component 191 indicated by the thick line can easily pass through because the magnetic flux component of the permanent magnet is generated in the opposite direction in the area surrounded by the square line 196 of the rotor N pole magnetic pole 7N and is biased in the opposite direction.
  • the entire magnetic flux component 192 indicated by the thin broken line is magnetic flux in the same direction as the magnetic flux component of the permanent magnet in the area surrounded by the square line 197 of the rotor S pole magnetic pole 7S, so the magnetic resistance is large and the magnetic flux passing through is small.
  • FIG. 19 shows the magnetic flux distribution, which is drawn by qualitatively converting the superimposed magnetic flux components of (a) of FIG. 19 into a distribution state.
  • the magnetic flux component 193 passes from the rotor back yoke through the area surrounded by the square line 198 of the rotor S pole magnetic pole 7K, through the permanent magnet 77, through the rotor N pole magnetic pole 7N, through the air gap, and into the stator side A It passes through the tip of the stator S magnetic pole 15L of the phase, through the permanent magnet 15H, through the teeth of the stator N magnetic pole 15J, and through the stator back yoke.
  • the magnetic flux component 194 passes from the rotor back yoke through the area surrounded by the square line 19A of the rotor S pole magnetic pole 7S, through the permanent magnet 7A, through the rotor N pole magnetic pole 7N, through the air gap, to the stator side A It passes through the stator S magnetic pole 15L of the phase, through the permanent magnet 15S, through the teeth of the stator N magnetic pole 155, and through the stator back yoke.
  • the magnetic flux component 195 passes from the rotor back yoke through the area surrounded by the square line 19A, from the rotor S pole magnetic pole 7S through the air gap, through the stator S pole magnetic pole 15L of the A phase on the stator side, through the permanent magnet 15S, It passes through the teeth of the stator north magnetic pole 155 and through the stator back yoke. In this distribution state, there is no magnetic flux passing through the teeth of the A-phase stator S magnetic pole 15L, and the magnetic flux of the permanent magnets 15H and 15S is in a reverse biased state. Therefore, there remains sufficient power to pass through the stator S magnetic pole 15L by increasing the A-phase current Ia.
  • the magnetic flux component 193 is already a large value, and the magnetic flux component 19C of the permanent magnet 15H is a small value. Further, when the A-phase current Ia increases or the rotor rotation angle .theta.r increases, the magnetic flux component 193 increases and the initial magnetic flux component 19C of the permanent magnet 15H disappears. The magnetic flux component 194 is already a large value, and the magnetic flux component 19D of the permanent magnet 15S is a small value. Further, when the A-phase current Ia increases or the rotor rotation angle .theta.r increases, the magnetic flux component 194 increases and the initial magnetic flux component 19D of the permanent magnet 15S disappears.
  • the magnetic flux is concentrated in the soft magnetic materials of the stator S pole magnetic pole 15L and the rotor N pole magnetic pole 7N and the air gap portion between them, indicated by the thick dashed circular line 19B. and a large magnetic flux density. Except for the circular area 19B indicated by the thick dashed line, the remaining force through which the magnetic flux of the other magnetic paths pass is sufficiently large and the magnetic resistance is small. Therefore, since the magnetomotive force [A ⁇ turn] corresponding to the increase in the A-phase current Ia can be applied to the circular region 19B indicated by the thick broken line, a large magnetic field strength [A/m] can be applied to excite the magnetic field.
  • the circular region 19B indicated by the thick dashed line is the air gap portion, the soft magnetic portion near the tip of the stator pole where the magnetic flux density is 2.0 [T] or more and the magnetic permeability is greatly reduced, and the tip of the rotor pole.
  • This is the soft magnetic material part in the vicinity.
  • the magnetic flux density becomes 2.0 [T] or more
  • the relative magnetic permeability of the soft magnetic material decreases to a small value close to 1.
  • the magnetic flux density of that part can be made as large as 4.0 [T] or more.
  • the force and torque of the square of the magnetic flux density can be obtained.
  • ⁇ o is the vacuum permeability.
  • the current when a motor of 10 [kW] or more outputs its maximum torque is a realistic value as the magnetomotive force obtained by multiplying the winding current by the number of turns.
  • 4.0 [T] has four times the force and torque compared to 2.0 [T].
  • magnetic flux densities between 2.0 and 4.0 [T] can also be used, for example, 3.0 [T] can be calculated as 2.25 times the force and torque compared to 2.0 [T].
  • the radius of the rotor is Rr, and the length in the axial direction is Lr.
  • the circumferential angle at the air gap surface between the stator magnetic pole and the rotor magnetic pole is 30°, and the circumferential width, that is, the circumferential length Lpcir [m] is given by the following equation.
  • Lpcir 30° x (2 ⁇ /180) x Rr (8)
  • the teeth of the stator S magnetic pole 15L are reverse-biased by the permanent magnets 15H and 15S and have a negative magnetic flux with a negative magnetic flux density Ba2.
  • the interlinkage magnetic flux ⁇ a1 [Wb] of the A-phase winding 15P at this time is given by the following equation.
  • the magnetic flux density Bgap1 and the magnetic flux ⁇ gap1 of the air gap portion at this time are also 0 [Wb].
  • the magnetic flux ⁇ a2 of the teeth of the stator S pole magnetic pole 15L is the sum of the reverse bias magnetic flux components 19C and 19D generated by the permanent magnets 15H and 15S, ⁇ a1, and the sum of the ⁇ gap2, which is exactly canceled to 0 [Wb].
  • the magnetic flux ⁇ a3 of the teeth of the stator S magnetic pole 15L is the sum of the reverse bias magnetic flux component ⁇ a1 and the ⁇ gap3, and is given by the following equation.
  • the magnetic flux density and magnetic flux in the air gap and the magnetic flux of the stator S pole when the rotor rotation position ⁇ r rotates at 0°, 15°, and 30° while the A-phase current Ia Ia1 is applied.
  • the magnetic flux density and the magnetic flux of the teeth of 15L, that is, the interlinking magnetic flux ⁇ of the A-phase winding 15P are shown in equations (9) to (15).
  • the interlinkage magnetic flux ⁇ of the A-phase winding 15P changes from a negative value in equation (10) to 0 in equation (12) and a positive value in equation (14).
  • Equation (3) indicates that the magnetic flux ⁇ is proportional to the rotation rate of change, not to the magnitude of the magnetic flux ⁇ . That is, for example, when the interlinkage magnetic flux changes from 0 to 2 to 4 and from -2 to 0 to 2, the power supply in equation (3) is the same. there is therefore, it has been shown that each permanent magnet can be used to bias each magnetic path of the stator and rotor to a negative magnetic flux as shown in FIG. 16 and the like.
  • torque is generated by using a change in the magnetic flux density of 69 or 6 A, which indicates a change from a negative value to a positive value in the magnetic flux density when driven with a unidirectional current. can be generated.
  • the value of torque T [Nm] of the motor in FIG. ⁇ / ⁇ is the angle change rate of the magnetic flux interlinking with the windings, so it is the angle change rate of the values of equations (10), (12) and (14) that increase with the rotor rotation angle ⁇ r.
  • the magnetic flux in equation (12) is 0, as shown in FIG. A torque proportional to the angle change rate of the interlinkage magnetic flux is generated.
  • the torque equation (7) is an equation for indirectly estimating and calculating the torque from the power supplied to the motor, as shown in the equations (2) and (3). Internal losses in the motor are ignored.
  • the interlinking magnetic flux ⁇ a of the A-phase winding 15P shown in equations (10), (12) and (14) and the magnetic flux ⁇ gap in the air gap shown in equations (9), (11) and (13) are linked.
  • the interlinkage magnetic flux ⁇ a of the A-phase winding 15P changes from the magnetic flux ⁇ gap of the air gap to the permanent magnet of the stator. It is a value obtained by subtracting the reverse bias magnetic flux ⁇ bias.
  • ⁇ a ⁇ gap - ⁇ bias (16)
  • the magnetic flux ⁇ in the equation (7) is replaced by the following equation.
  • the circumferential force Fmaxwell [N] in equation (19) is obtained by observing the magnetic flux distribution and magnetic flux density in the air gap as a result of excitation with current, so the current value is included in equation (19). not
  • the force Fmaxwell [N] can be considered and designed only from the magnetic flux distribution and magnetic flux density.
  • this circumferential force Fmaxwell [N] is the force density. is multiplied by the axial length Lr [m] to obtain the motor torque T [Nm].
  • Equation (19) also indicates that the force Fmaxwell [N] is proportional to the square of the magnetic flux density.
  • the force and torque will quadruple. In principle, if it can be further increased to 6.0 [T], the force and torque can be increased ninefold. Therefore, if a motor configuration capable of increasing the magnetic flux density can be realized, a significant increase in torque can be expected.
  • the torque equation in equation (7), and the Lorentz force in equation (20) doubling the excitation current results in doubling the magnetic flux density.
  • the magnetic flux density exceeds 2.0 [T]
  • the torque is only quadrupled according to the equation (19). This is the case, for example, when 0.5 times the magnetomotive force [A] of the excitation current is consumed by some magnetic resistance part through which the magnetic flux passes.
  • the motor of the present invention shown in FIG. 14 as well it is assumed that a very small part of the magnetic path of the soft magnetic material near the air gap exceeds the magnetic flux density of 2.0 [T] and becomes magnetically saturated. Such magnetic energy does not become heat, but is regenerated into electrical energy.
  • FIG. 20 shows a simplified example of extracting part of the torque generating part of the motor in Fig. 14 .
  • FIG. 20 is partially enlarged and the peripheral configuration is omitted.
  • 201 in FIG. 20 is the stator S magnetic pole 15L in FIG. 19(b).
  • Reference numeral 202 in FIG. 20 denotes the rotor N magnetic pole 7N in FIG. 19(b).
  • the air gap portion is shown in an extremely enlarged manner for the sake of explanation.
  • 203 and 204 in FIG. 20 are the A-phase winding 15P in FIG. 19(b).
  • Permanent magnets 15H, 15S, 77, 10A and their outer peripheral portions are omitted.
  • the distribution of the magnetic flux other than the air gap portion is simplified and shown in principle.
  • 207, 208, and 209 indicate magnetic fluxes
  • 205 is the radial magnetic flux density component Brad[T] of equation (19)
  • 206 is the circumferential magnetic flux density component Bcir[T].
  • the direction of torque T is indicated by an arrow.
  • the torque of the motor is represented by the magnetic flux distribution in the air gap, and it can be confirmed that the torque proportional to the magnitude of the magnetic flux density can be obtained.
  • the value of formula (19) can be calculated by obtaining the magnetic flux density distribution of the air gap with a finite element method analysis FEM using a personal computer. However, the amount of calculation is large, and it is difficult to obtain it by manual calculation on a desk. Also, the torque T obtained for the entire circumference of the motor using the equation (7) and the torque T obtained using the equation (19) are substantially the same. Also, from the equation (19), it can be inferred that the torque T[T] can be expected to increase if the magnetic flux density in the air gap portion can be increased. It can be said that this is an effective torque evaluation method.
  • the Lorentz force or the force F [N] of the following formula is the length Lr [m] arranged in a uniform magnetic flux density B [T] and the number of turns Nw. It is expressed as the following equation for the winding and its current I[A].
  • Torque T is obtained by multiplying the rotor radius Rr.
  • F B x (Nw x I) x Lr (20)
  • ⁇ in equation (7) is expressed by equation (22) and substituted into equation (7).
  • equation (21) and equation (24), which is a modification of equation (7), are the same. That is, the torque generated by the current with uniform magnetic flux density B[T] and the torque generated by the attractive force between the salient poles as shown in FIG. 20 are the same. It can be said that both conditions are common from the viewpoint of the change rate of the interlinkage magnetic flux. Also, the torque calculated from Fmaxwell, which is the density of force in equation (19), becomes the same as equation (21) when deformed. Since it is an expression that observes the same physical phenomenon from different viewpoints, it can be used to grasp and evaluate the state.
  • the present invention motor in FIG. 14 and the conventional switched reluctance motor in FIG. 63 are compared. Assuming that the soft magnetic material has the magnetic characteristics shown in FIG. 6, the motor of the present invention shown in FIG. can be increased up to In that case, the maximum torque of the motor of the present invention shown in FIG. 14 is four times that of the conventional switched reluctance motor shown in FIG.
  • the amount of magnetic flux that reversely biases the magnetic path of the soft magnetic material by the permanent magnet is determined by the teeth of the stator S magnetic pole 15L and the rotor N magnetic pole 7N in FIG. It was assumed and set so that the maximum value of the magnetic flux density in the area enclosed by the square line would be -2.0 [T]. It also matches the magnetic properties of the soft magnetic material assumed in FIG. Based on that assumption, the expressions (9) to (15) have been explained.
  • the stator S Since the stator poles 15J and 155 on both sides of the magnetic pole 15L can be used, the magnetic flux passing through these soft magnetic bodies is tripled at maximum, and the air gap magnetic flux density Bgap [T] is 6.0 [ T].
  • the maximum torque of the motor of the present invention shown in FIG. 14 is 9 times that of the conventional switched reluctance motor shown in FIG. It should be noted that the size and cost of the motor are often designed based on the severest driving conditions rather than the motor efficiency at light load.
  • FIG. 17(b) shows the distribution of the magnetic flux at the rotor rotation position where the acting magnetic flux is maximum, and is a diagram for analyzing the magnitude of the magnetic flux of each magnetic path.
  • the maximum torque of the motor does not refer to the maximum torque at a partial specific angle of the rotor rotation angle ⁇ r as in the example of FIG. 64, but refers to the maximum value of the average torque when the rotor rotates once.
  • the current value is naturally small, and the magnetic flux density at the tip of the stator magnetic pole near the air gap and the tip of the rotor magnetic pole do not exceed the saturation magnetic flux density of 2.0 [T]. do.
  • the current is increased to increase the magnetic flux density in the region 19B indicated by the dashed circle in FIG. 19(b).
  • the magnetic flux density in the area indicated by the circle 19B can be increased to 4.0 [T] to 6.0 [T].
  • the magnetic path of the soft magnetic material other than the region marked with a circle 19B has a magnetic flux density of 2.0 [T] or less.
  • the relative magnetic permeability is large, and the magnetic flux can pass through without difficulty.
  • FIGS. 21 and 22 examples of the shape of the permanent magnets of the rotor and their vicinity are shown in FIGS. 21 and 22 and will be described.
  • the motor shown in FIG. 14 has a 6S10R structure with six stator poles and ten rotor poles.
  • motor designs with motor diameters greater than 200mm can also use a larger number of stator pole pairs for compactness.
  • FIG. 21 shows an example of a rotor shape having 40 rotor magnetic poles.
  • 211 is a rotor shaft
  • 212 is a permanent magnet
  • 213 is an N magnetic pole
  • 214 is an S magnetic pole.
  • the magnetic poles of the permanent magnets are oriented in the direction of the polarities of the rotor magnetic poles.
  • FIG. 22 various examples of rotor magnetic poles are shown in (a) to (f) of FIG. 22 and explained. 21. These are partially enlarged views of the dashed circle indicated by 215 in FIG. 221 in (a) of FIG. 22 is a permanent magnet. The direction of the magnetic flux of each permanent magnet is indicated by the direction of the arrow drawn on the magnet. 222 is the S magnetic pole, and 22H is the N magnetic pole. The shape of the south magnetic pole 223 in FIG. 22(b) is not symmetrical in the circumferential direction, and the CCW torque and CW torque characteristics are different. In motors for applications where one-way torque is important, it is possible to emphasize one-way torque and sacrifice the torque characteristics in the opposite direction to some extent.
  • the shape of the permanent magnet 226 in (d) of FIG. 22 is a shape in which the thickness in the circumferential direction is large on the air gap side and the thickness in the circumferential direction decreases toward the inner diameter side.
  • the air gap side of the permanent magnet 226 has a shape that is difficult to demagnetize. Note that the shape of the permanent magnet 226 can be modified, such as a shape intermediate between the permanent magnets 224 and 225 .
  • 227 in (d) of FIG. 22 is an example in which the shape of the S pole magnetic pole is a convex shape, which can be rectangular or trapezoidal.
  • the S magnetic pole 229 in FIG. 22(e) has an arcuate shape.
  • the magnetic pole shape of the rotor can be modified.
  • the permanent magnet 228 and the permanent magnet 22A in FIG. 22(e) have different thicknesses in the circumferential direction and are arranged separately in the radial direction.
  • 22B and 22C are spaces, which may be made of a non-magnetic material such as resin.
  • 22D, 22E, 22F and 22G in (f) of FIG. 22 indicate magnets of different types and characteristics. A part of these magnets may be non-magnetic material such as space or resin.
  • a slit which is an elongated space of 22J, is arranged in the 22K S pole magnetic pole.
  • the torque characteristics can be changed. It is also possible to change the direction of the slit 22J and arrange it obliquely to change the characteristics of the CCW torque and the CW torque.
  • the number and shape of the slits 22J can also be changed.
  • the slit 22J can also be replaced with a permanent magnet.
  • the space on the rotor side may be relatively insufficient.
  • the degree of freedom in designing the rotor can be improved by adopting a so-called outer rotor structure in which the rotor is arranged on the outer diameter side and the stator is arranged on the inner diameter side.
  • the motor structure has a relatively wide slot cross-sectional area of the stator, even if the stator is arranged on the inner diameter side, the slot cross-sectional area, that is, the winding space can be secured.
  • stator side and the rotor side can be magnetically equivalently arranged.
  • FIG. 14 shows an example of a concentrated winding, a full-pitch winding can be used to exhibit different characteristics, and the technique will be described later.
  • the number of phases is shown as an example of 3 phases, 5 phases, 7 phases, 9 phases, 11 phases, 13 phases, etc. are possible. When the number of phases is a prime number and becomes a large number, there is an effect of canceling out the harmonic components of the generated force, and it is easy to reduce noise.
  • Claim 3 is a motor having a so-called concentrated winding structure, in which the stator magnetic poles 11 and 12 of FIGS. 1 and 14 are wound around the teeth.
  • One of the features of FIGS. 1 and 14 is that the magnetic flux passing through the rotor magnetic poles can be increased as described above, so that the torque can be increased by reducing the magnetic resistance of the rotor magnetic poles.
  • FIG. 13 there is also a feature that the degree of freedom of the current waveform during rotation is increased compared to the conventional motor of FIG. 63, such as using a trapezoidal current waveform.
  • the winding is easier to manufacture, the space factor of the winding is easier to improve, and the size of the motor can be expected to be reduced.
  • the length of protrusion of the coil end portion in the axial direction can be reduced. Since the length of the motor can be reduced, it is excellent in terms of miniaturization. On the contrary, there are problems, and the problems to be solved will be explained one by one.
  • This rotor rotational position ⁇ r is the rotational position ⁇ r at which the A-phase stator N-pole magnetic poles 11 start generating torque.
  • the voltage of the A-phase concentrated winding 1A and the A/phase concentrated winding 1D in FIG. becomes.
  • the flux linkage of the A-phase concentrated winding 1A is ( ⁇ a- ⁇ biasa)
  • the flux linkage of the A/-phase concentrated winding 1D is ( ⁇ a- ⁇ biasa/).
  • the magnetic flux passing through the portion where the S pole magnetic pole 11 of the stator faces the S pole magnetic pole 1J of the rotor is small because it is the same S pole, and there is no passing magnetic flux here.
  • Va Nw/2 ⁇ d( ⁇ a- ⁇ biasa)/dt+Nw/2 ⁇ d( ⁇ a- ⁇ biasa/)/dt (31)
  • B-phase voltage Vb and C-phase voltage Vc are given by the following equations.
  • Vb Nw/2 ⁇ d( ⁇ b- ⁇ biasb)/dt+Nw/2 ⁇ d( ⁇ b- ⁇ biasb/)/dt (32)
  • Va Nw/2 ⁇ d( ⁇ c- ⁇ biasc)/dt+Nw/2 ⁇ d( ⁇ c- ⁇ biasc/)/dt (33)
  • the number of turns of each concentrated winding is Nw/2 [turn].
  • ⁇ biasa is the bias magnetic flux of the teeth of the A-phase stator S-pole magnetic pole 11 by the permanent magnets 145 and 146 arranged on the side surfaces of the A-phase stator S-pole magnetic pole 11 .
  • ⁇ biasa/ is the bias magnetic flux of the teeth of the A/phase stator N pole magnetic pole 14 by the permanent magnets 148 and 149 arranged on the sides of the A/phase stator S magnetic pole 14 .
  • ⁇ biasb is the bias magnetic flux of the teeth of the B-phase stator S pole magnetic pole 13 .
  • ⁇ biasb/ is the bias magnetic flux of the B/phase stator N pole magnetic pole 16 tooth.
  • ⁇ biasc is the tooth bias magnetic flux of the C-phase stator S pole magnetic pole 15 .
  • ⁇ biasc/ is the tooth bias magnetic flux of the C/phase stator N pole magnetic pole 12 .
  • equations (31), (32), and (33) are hypothetical values It can be simplified as Vak, Vbk, and Vck, resulting in the following equation.
  • Vak Nw x d ⁇ a/dt (34)
  • Vbk Nw x d ⁇ b/dt (35)
  • Vck Nw x d ⁇ c/dt (36)
  • the interlinking magnetic flux of the A-phase concentrated winding 1A is ( ⁇ a- ⁇ biasa)
  • the interlinking magnetic flux of the B-phase concentrated winding 1C is ( ⁇ c- ⁇ biasc)
  • the C-phase concentrated winding is
  • expressions (34), (35), and (36) such as the relationship with the voltage of the full-pitch winding described later, are used. use. 23 for the concentrated winding and FIGS. 26 and 27 for the full-pitch winding.
  • equations (34), (35) and (36) hold. .
  • the A-phase magnetic flux ⁇ a [Wb] in FIG. 23 rotates CCW from 0° to 30° at the rotor rotation angle ⁇ r, and the current flowing through the A-phase winding 1A and the A/phase winding 1D is a constant value Io,
  • the magnetic flux density of the air gap portion is a constant value Bo
  • ⁇ a Bo ⁇ r ⁇ Rr ⁇ Lr (37)
  • the angular width in the circumferential direction of rotor magnetic poles such as 1H in FIG. 23 is 30°
  • the circumferential width of permanent magnets such as 231 is 6°.
  • Nw be the total number of turns of both windings 1A and 1D, and the voltage across both ends Vak [V] when both windings are connected in series is given by the following equation from equation (34).
  • is the rotational angular velocity [rad/sec].
  • the A-phase voltage Vak in equation (40) is proportional to the magnetic flux density Bo [T] and the rotational angular velocity ⁇ [rad/sec].
  • FIG. 24 shows examples of currents and voltages when the currents Ia, Ib, and Ic of each phase are set to the values indicated by the dashed lines in (a), (b), and (c) of FIG. 13 and explained.
  • the magnetic flux density Bo in equation (40) is a value of 2.0 [T] or less, and the soft magnetic material has the characteristics shown in FIG. 6 and is not magnetically saturated.
  • FIG. 24(a) shows the A-phase current Ia, which is a current that flows in synchronization with the rotation of the CCW from the state of FIG. 23, and the current amplitude is normalized to 1.0.
  • the A-phase current Ia increases when the rotor rotation angle ⁇ r is between 0° and 6°, is a constant value of 1.0 between 6° and 24°, and decreases to 0 between 24° and 30°. It is a constant value of 0 from 36° to 72° and repeats these values at a cycle of 72°.
  • the B-phase current Ib in (b) of FIG. 24 has the same current waveform with a phase delay of 48° with respect to the A-phase current.
  • the C-phase current Ic in (c) of FIG. 24 has the same current waveform with a phase delay of 24° with respect to the A-phase current.
  • (d) of FIG. 24 is the A-phase voltage Vak, which corresponds to the values of formulas (34) and (40).
  • the A-phase voltage Vak rotates from the state of FIG. 23 to CCW at a constant number of rotations, and the voltage waveform is synchronized with the rotation.
  • the rotor rotation angle .theta.r is between 0.degree. and 6.degree. Since it increases linearly, the A-phase magnetic flux ⁇ a interlinking with the A-phase concentrated winding 1A and the A/phase concentrated winding 1D in FIG. 23 increases with a square function.
  • the A-phase voltage Vak becomes a linear function from the equation (34) and increases linearly. When .theta.r is between 6.degree.
  • the B-phase voltage Vbk in (e) of FIG. 24 has the same voltage waveform with a phase delay of 48° with respect to the A-phase voltage Vak.
  • the C-phase voltage Vck in (f) of FIG. 24 has the same voltage waveform with a phase delay of 24° with respect to the A-phase voltage Vak.
  • the A-phase torque Ta [Nm] in the equation (42) is proportional to the magnetic flux density Bo [T].
  • the motor of the present invention uses a large magnetic flux density such as 4.0 [T] near the maximum torque of the motor.
  • the magnetic flux density Bo in equation (42) is also related to the current Io, that is, the A-phase current Ia. It will be proportional to the square. As the magnetic flux density approaches 2.0 [T] and increases, the magnetic flux density near the air gap increases and the magnetic resistance changes greatly, resulting in nonlinear torque characteristics with respect to the current Io. That is, since the relationship between the phase currents Ia, Ib, and Ic and the magnetic flux density of each phase is nonlinear, it cannot be expressed by a simple formula. In any case, the torque T follows the value of formula (19) for the air gap.
  • equations (1), (4), and (42) are hypothetical equations that ignore not only iron loss and copper loss, but also magnetic energy within the motor. Although it is hypothetical, the problem can be solved by clarifying the qualitative relationship of the outline. As described above, especially in the motor of the present invention, there is a problem of how to transfer the magnetic energy in the motor between the inverter side and the motor side.
  • the B-phase magnetic flux ⁇ b and the B-phase torque Tb have the same relationship as in FIG.
  • the C-phase magnetic flux ⁇ c and the C-phase torque Tc have the same relationship as in FIG.
  • FIG. 25 shows an example of a drive circuit that supplies each current to each winding in FIG. 23 and will be described.
  • 25A is a motor control circuit.
  • 25B is a DC power supply that outputs a positive voltage Vp and a negative voltage Vn.
  • Reference numeral 257 denotes a winding obtained by connecting the A-phase concentrated winding 1A and the A/phase concentrated winding 1D in series.
  • a transistor 251 has a collector connected to a positive voltage Vp and an emitter connected to one end of a winding 257 .
  • a diode for regeneration is connected between the emitter of the transistor 251 and the negative voltage Vn.
  • a transistor 252 has a collector connected to the other end of the winding 257 and an emitter connected to the negative voltage Vn.
  • a diode for regeneration is connected between the collector of the transistor 252 and the positive voltage Vp.
  • Reference numeral 258 denotes a winding obtained by connecting the B-phase concentrated winding 1C and the B/phase concentrated winding 1F in series.
  • 253 is a transistor whose collector is connected to the positive voltage Vp and whose emitter is connected to one end of winding 258 .
  • a diode for regeneration is connected between the emitter of the transistor 253 and the negative voltage Vn.
  • a transistor 254 has a collector connected to the other end of the winding 258 and an emitter connected to the negative voltage Vn.
  • a diode for regeneration is connected between the collector of the transistor 254 and the positive voltage Vp.
  • Reference numeral 259 denotes a winding obtained by connecting the C-phase concentrated winding 1E and the C/phase concentrated winding 1B in series.
  • a transistor 255 has a collector connected to a positive voltage Vp and an emitter connected to one end of a winding 259 .
  • a diode for regeneration is connected between the emitter of the transistor 255 and the negative voltage Vn.
  • a transistor 256 has a collector connected to the other end of the winding 259 and an emitter connected to the negative voltage Vn.
  • a diode for regeneration is connected between the collector of transistor 256 and the positive voltage Vp.
  • the trapezoidal A-phase current Ia shown in FIG. 24(a) is energized by controlling the transistors 251 and 252 by PWM control or the like.
  • the trapezoidal B-phase current Ib shown in (b) of FIG. 24 controls the transistors 253 and 254 by PWM control or the like to energize them.
  • the trapezoidal C-phase current Ic shown in FIG. 24(c) is energized by controlling the transistors 255 and 256 by PWM control or the like.
  • torque command Tc is obtained from the speed error obtained by speed control
  • current amplitude Io is obtained according to torque command Tc, and the example shown in FIG.
  • Each phase current Ia, Ib, Ic as shown is energized and controlled.
  • the density of magnetic energy Em in space [J/m 3 ] is given by the following formula, where magnetic flux density B [T] and magnetic field strength H [A/m] are used.
  • Em B H/2 (43)
  • the relative magnetic permeability of the soft magnetic material is high, the required magnetic field strength H [A/m] is small, and the magnetic energy Em at that portion is small. Since the air gap portion has a low relative magnetic permeability of 1, the magnetic energy Em in that portion is large.
  • the air gap portion and its vicinity have a large magnetic flux density, albeit partially, so that a large amount of magnetic energy Em is accumulated, and transfer is repeated between the motor and the inverter.
  • Em magnetic energy
  • the utilization rate of the concentrated windings shown in FIGS. 1, 14, 23, etc. will be described.
  • the A-phase concentrated winding 1A and the A/phase concentrated winding 1D are driven by energizing the A-phase current Ia, and then the B-phase and C-phase are energized in the same manner. to rotate the rotor.
  • the period during which each winding is energized is about 1/3 of the total period, and it can be said that the utilization rate of the concentrated winding is about 1/3. Since the winding space of the motor is limited, the thickness of the winding and the number of turns are limited.
  • the utilization rate of the driving transistor will also decrease. Since the current value increases as described above, it is necessary to increase the current capacity of the transistor. An example of this solution is described later. These include the motor configuration of the number of stator magnetic poles and the number of rotor magnetic poles, the configuration of the drive circuit, the current supply method, and the like.
  • FIG. 26 an embodiment of claim 4 is shown in FIG. 26 and explained.
  • the concentrated windings for each phase of FIG. 14 are replaced with full-pitch windings.
  • Other motor configurations are the same.
  • 261 and 262 are AB-phase windings, which are full-pitch windings with a winding pitch of 180° electrical angle, which is half the electrical angle of 360° of one magnetic pole pair of the stator, and the coil ends are indicated by thick dashed lines. 267.
  • An AB-phase current Iab is applied to the AB-phase winding.
  • a positive winding portion 261 of the full-pitch winding of the AB-phase winding of 26 integrates both windings.
  • the negative winding portion of the concentrated winding of the A/phase winding 1D in FIG. 14 and the negative winding portion of the concentrated winding of the B phase winding 1C are arranged in the same slot.
  • a negative winding portion 262 of the full pitch winding of the AB phase winding of 26 integrates both windings.
  • AB-phase windings 261 and 262 in FIG. 26 each occupy one slot and the winding cross-sectional area can be doubled, so compared to the winding resistance of the concentrated winding in FIG.
  • the winding resistance in the slot can be reduced to 1/2.
  • the AB-phase windings 261, 267, and 262 will be described later. It is called the AB phase winding because it is related to both the operation of the / phase stator N pole magnetic pole 16, that is, the electromagnetic operation of both the A phase and the B phase.
  • 263 and 264 are BC phase windings, full-pitch windings with a winding pitch of 180° electrical angle, which is half the electrical angle of 360° of the stator 1 magnetic pole pair, and the coil ends are thick. 268 indicated by a dashed line.
  • a BC-phase current Ibc is applied to the BC-phase winding.
  • the positive side winding portion of the concentrated winding of the B-phase winding 1C in FIG. 14 and the positive side winding portion of the concentrated winding of the C/phase winding 1B are arranged in the same slot.
  • a positive winding portion 263 of the full-pitch winding of the AB-phase winding of 26 integrates both windings.
  • the negative winding portion of the concentrated winding of the B/phase winding 1F in FIG. 14 and the negative winding portion of the concentrated winding of the C phase winding 1E are arranged in the same slot.
  • a positive winding portion 264 of the full-pitch winding of the phase BC winding of 26 integrates both windings.
  • the BC-phase windings 263 and 264 in FIG. 26 can reduce the winding resistance to 1/2 compared to the winding resistance of the concentrated winding winding in FIG. Since the BC-phase windings 263, 268, and 264 are involved in the electromagnetic operation of both the B-phase and the C-phase, these full-pitch windings are called BC-phase windings.
  • 265 and 266 are CA-phase windings, full-pitch windings with a winding pitch of 180° electrical angle, which is half the electrical angle of 360° of the stator 1 magnetic pole pair, and the coil ends are thick. 269 indicated by a dashed line.
  • a CA-phase current Ica is applied to the CA-phase winding.
  • the positive side winding portion of the concentrated winding of the C-phase winding 1E and the positive side winding portion of the concentrated winding of the A/phase winding 1D in FIG. 14 are arranged in the same slot.
  • a positive winding portion 265 of the full pitch winding of the 26 CA phase windings integrates both windings.
  • CA-phase windings 265 and 266 in FIG. 26 can reduce the winding resistance to 1/2 compared to the winding resistance of the concentrated winding winding in FIG. Since the BC-phase windings 265, 269, and 266 are involved in the electromagnetic operations of both the C-phase and the A-phase, these full-pitch windings are called CA-phase windings.
  • the orbital path and place where the magnetomotive force acts can be identified for each current based on Ampere's law of round-trip integration. That is, the magnetomotive force of the current acts on a portion of the circuit path of each current having a large magnetic resistance, and a force is generated in the direction of decreasing the magnetic resistance.
  • the number of turns of the full-pitch winding such as 261 is Nw/2 [turns], which is the same as the A-phase concentrated winding 1A of FIG. 23, and the number of turns is the same.
  • Nw/2 [turns] which is the same as the A-phase concentrated winding 1A of FIG. 23, and the number of turns is the same.
  • FIG. 26 there is a permanent magnet magnetic flux component, and each full-pitch winding is interlinked with the magnetic fluxes ⁇ a, ⁇ b, and ⁇ c of each phase, so the voltage becomes complicated.
  • the voltage Vab of the AB-phase windings 261, 267, and 262 is given by the following equation from Faraday's law of electromagnetic induction.
  • Vab Nw/2 ⁇ d( ⁇ a- ⁇ biasab- ⁇ biasab/+ ⁇ b- ⁇ c)/dt (47)
  • ⁇ biasab is the magnetic flux component 14B that interlinks with the winding 261 portion of FIG.
  • ⁇ biasab/ is the magnetic flux component 26A that interlinks with the portion of the winding 262 in FIG.
  • Vbck Nw/2 ⁇ d(- ⁇ a+ ⁇ b+ ⁇ c)/dt (49)
  • Vcak Nw/2 ⁇ d( ⁇ a- ⁇ b+ ⁇ c)/dt (50)
  • the voltages of these full-pitch windings are complex voltages including the phase voltages Vak, Vbk, Vck in the case of concentrated windings.
  • Vabk (Vak + Vbk - Vck)/2 (51)
  • Vbck (-Vak + Vbk + Vck)/2
  • Vcak (Vak - Vbk + Vck)/2 (53)
  • FIG. 28 shows examples of currents and voltages for driving Iab of formula (44), Ibc of formula (45), and Ica of formula (46) by the drive circuit shown in FIG. 25, and their problems will be explained.
  • the winding 258 is a B-phase full-pitch winding 263 and the winding 259 is a C-phase full-pitch winding 265 .
  • the same currents Ia, Ib, and Ic of the concentrated winding shown in FIG. Energize as Ibc and Ica.
  • the same current [A ⁇ turn] is supplied to each slot of the concentrated winding motor in FIG. 23 and the full pitch winding motor in FIG. 26 . Therefore, the torque at stop is the same when the rotor is not rotated.
  • FIG. 28 shows respective currents Iab, Ibc, and Ica of the full-pitch winding in FIG. 26 in relation to equations (44), (45), and (46).
  • This is a specific example of energization, and can be drawn from (a), (b), and (c) of FIG.
  • the voltages Vabk, Vbck, and Vcak of the full-pitch winding in FIG. ) and (f) to produce (d), (e) and (f) of FIG.
  • each full-pitch winding is interlinked with magnetic fluxes of all phases, and voltages associated with magnetic fluxes of other phases are also generated.
  • the C-phase current Ic is decreasing, and this is the timing for regenerating the magnetic energy accumulated in the C-phase magnetic circuit to the power supply side.
  • the C-phase voltage component is superimposed on the AB-phase voltage Vabk in (d) of FIG. It is the third term on the right side of the equation (51).
  • the voltages of other phases in FIG. 28 are similar.
  • the voltage of the full-pitch winding has the relationship of the equations (51), (52), and (53) including the magnetic flux changes of other phases.
  • the second factor is that the motors shown in FIGS. 23 and 26 use the attractive force of reluctance torque, so that the supply and regeneration of magnetic energy are repeated on the power supply side and the motor side.
  • the third factor is that the timing at which the torque generation of the C-phase current ends in the motor shown in FIG. 26 coincides with the timing at which the other phases start generating torque.
  • the motors shown in FIGS. 23 and 26 are three-phase motors and have the characteristics shown in FIG. becomes even more complicated.
  • the current component that flows in series to the AB-phase winding 261 and the CA-phase winding 265 is the A-phase current component Ia from equations (44) and (46).
  • this A-phase current component Ia is applied in series to the AB-phase winding 261 and the CA-phase winding 265, it does not affect the B-phase magnetic flux ⁇ b and the C-phase magnetic flux ⁇ c. That is, to the B-phase S magnetic pole 13 and the B/phase N-pole magnetic pole 16, and to the C-phase S-pole magnetic pole 15 and the C/phase N-pole magnetic pole 12, A It can be seen in FIG. 26 that the magnetomotive force of the phase current component Ia does not act.
  • the series connection of the two full-pitch windings is not affected by the magnetic flux of other phases, and the series current component does not generate magnetomotive forces in other phases.
  • the relationship is the same for multiple phases such as five phases, seven phases, nine phases, and eleven phases, which will be described later, and this is an effective method.
  • the voltage of the full-pitch winding becomes complicated, so this is an effective method for accurately controlling the magnetic flux components of each phase.
  • FIG. 29 shows an example of a drive circuit that is not affected by changes in the magnetic flux of other phases and will be described.
  • the drive circuit of FIG. 29 can be controlled while maintaining the relationships of formulas (44), (45), (46) and formulas (54), (55), (56), and has high drive efficiency and utilization rate. It is the drive circuit.
  • the drive circuit of FIG. 29 is a drive circuit configured by arranging two full-pitch windings of the same phase due to the symmetry of the circuit configuration.
  • FIG. 27 shows an example in which the motor of FIG. 26 is configured with two stator magnetic pole pairs so as to obtain two same-phase full-pitch windings.
  • 271 and 274 are AB phase windings
  • 272 and 275 are BC phase windings
  • 273 and 276 are CA phase windings.
  • a thick dashed line indicates the coil end of each winding, and indicates the connection relationship and the winding destination.
  • 277 and 27D are A-phase stator S magnetic poles
  • 278 and 27E are A/phase stator N-pole magnetic poles
  • 279 and 27F are B-phase stator S magnetic poles
  • 27A and 27G are B/phase stator N-pole magnetic poles
  • 27B and 27H are C-phase stator S-pole magnetic poles
  • 27C and 27J are C/phase stator N-pole magnetic poles.
  • Permanent magnets are arranged between the stator poles to face the respective polarities.
  • the name of the phase and the name of the energized current are shown in parentheses.
  • 29R in FIG. 29 is a DC voltage source.
  • 291 is a transistor for driving the AB-phase current Iab1 to the AB-phase winding of 297;
  • a transistor 294 drives an AB-phase current Iab2 to the AB-phase winding of 29A.
  • AB-phase windings 297 and 29A are AB-phase windings 271 or 274 in FIG. 292 is a transistor that drives the BC phase current Ibc1 to the 298 BC phase winding.
  • a transistor 295 drives a BC-phase current Ibc2 to the BC-phase winding of 29B.
  • the BC phase windings 298, 29B are the BC phase windings 272 or 275 of FIG.
  • CA phase windings 299 and 29C are CA phase windings 273 or 276 in FIG. 29D, 29E, 29F, 29G, 29H, and 29J are diodes that regenerate the energy of each winding to the DC voltage source 29R.
  • 29K, 29L, 29M, 29N, 29P, and 29Q are diodes for reducing the interference of voltages and currents in the horizontal direction on the page of FIG. In order to make the circuit operation of FIG. 29 easier to understand, an arrow indicating the direction of the flowing current and the name of the current are added.
  • the BC-phase current Ibc1 passing through the BC-phase winding 298 is the sum of the B-phase current Ib and the C-phase current Ic, as shown in equation (45). Of these, the C-phase current Ic flows from the CA-phase winding 299 through the diode 29L.
  • the BC-phase current Ibc2 passing through the BC-phase winding 29B is the sum of the B-phase current Ib and the C-phase current Ic as shown in equation (45). Of these, the C-phase current Ic flows through the diode 29P to the CA-phase winding 29C.
  • the CA-phase current Ica1 passing through the CA-phase winding 299 is the sum of the C-phase current Ic and the A-phase current Ia as shown in equation (46).
  • the A-phase current Ia flows through the diode 29M to the AB-phase winding 29A.
  • the CA-phase current Ica2 passing through the CA-phase winding 29C is the sum of the C-phase current Ic and the A-phase current Ia as shown in equation (46).
  • the A-phase current Ia flows from the AB-phase winding 297 through the diode 29Q.
  • the voltages of the full-pitch windings in FIG. 29 become voltages (d), (e), and (f) in FIG. (51), (52), and (53) are followed, and the voltages of (d), (e), and (f) in FIG. 24 are included, which are large and complicated voltages.
  • the voltage from the upper end of the AB-phase winding 297 to the lower end of the BC-phase winding 298 is the B-phase voltage Vbk in (e) of FIG. 24, which is a relatively simple voltage.
  • the voltages across the other two series-connected windings are the A-phase voltage Vak and the C-phase voltage Vck.
  • the B-phase voltage Vbk when the rotor rotation angle ⁇ r is between 48° and 54° which is the timing when the B-phase current Ib increases, is only Vbk in equation (35) due to the increase in the B-phase magnetic flux ⁇ b. Therefore, when the B-phase current Ib between the transistors 291 and 292 increases, for example, if the transistor 291 is turned on and the transistor 292 is also turned on, the B-phase current Ib is can be increased.
  • the rotor rotation angle ⁇ r is between 72° and 78°
  • the B-phase current Ib decreases from 1 to 0 and the A-phase current Ia decreases to 0 as shown in FIGS. to 1.
  • the transistor 292 is turned off so that the B-phase current Ib is regenerated to the DC voltage source 29R through the diode 29E, and at the same time the transistor 296 is turned on.
  • the transistor 291 is PWM-controlled by repeatedly turning it on and off, when the transistor 291 is on, the A-phase current Ia passing through the diode 29Q increases, and the B-phase current Ib is regenerated to the power supply and decreases.
  • the transistor 291 is off, the B-phase current Ib is regenerated through the diodes 29D and 29E and decreases, while the A-phase current Ia also increases.
  • each of the transistor 291, the transistor 292, and the transistor 296 can perform PWM control, so if the corresponding current is smaller than the command value, the ON state is increased, and if it is greater than the command value, the OFF state is increased. PWM control for precise control. Since the voltages across the two full-pitch windings arranged in series in FIG. 29 have the relationships of equations (54), (55), and (56), each phase current component of Ia, Ib, and Ic can be controlled. Since each current in FIG. 29 is a direct current, it has the ability to PWM-control one direct current passed by one transistor. PWM control of DC current is easier than PWM control of AC current because it can be performed with a simpler circuit configuration.
  • the diodes 29K, 29L, 29M, 29N, 29P, and 29Q reduce the voltage and current interference between the left and right sides of FIG. control is possible, but not necessary.
  • the value of the corresponding current can be controlled relatively easily by PWM control of each transistor, etc., and the direction in which the current flows can also be controlled by the drive circuit. It can be easily selected or divided depending on the ingenuity.
  • the transistor 293, the CA-phase full-pitch winding 299, the AB-phase full-pitch winding 29A, and the transistor 294 in FIG. 29 are energized.
  • four windings are energized to generate torque.
  • the utilization of these full-pitch windings is 2/3.
  • the winding utilization factor is 1/3 when the concentrated winding motor shown in FIG. 23 and the driving circuit shown in FIG. 27, 29, and 28, the winding utilization rate was doubled. It should be noted that doubling the utilization factor of the winding and reducing the resistance value in the slot of the full-pitch winding to 1/2 are two sides of the same coin. As a result, the copper loss of the motor can be reduced to 1/2.
  • each transistor such as 291, 292
  • the utilization factor of each transistor is the same as each winding, which is 2/3.
  • the utilization rate of each transistor is doubled. If the utilization rate of each transistor is doubled, the current capacity of the transistor can be reduced by half, so the size and cost of the drive circuit can be reduced.
  • the conventional surface magnet type synchronous motor SPMSM and magnet built-in type synchronous motor IPMSM are driven by 3-phase sinusoidal AC. The utilization rate of these transistors is 1/3 of the utilization rate according to the utilization rate calculation method described above.
  • FIG. 26 and FIG. 27 are examples of 3-phase 6S10R and 12S20R with two stator magnetic pole pairs. Examples of 5-phase 10S18R, 7-phase 14S26R, etc. will be described later.
  • the motors with full-pitch windings shown in FIGS. 26 and 27 have the problem that the coil ends of the windings are long, so that the wire material increases, resulting in an increase in copper loss and cost.
  • problems such as poor manufacturability of the windings, which tends to reduce the space factor of the windings, and the problem that the length of the coil ends in the axial direction of the rotor tends to increase, which tends to increase the size of the motor. can be improved.
  • One method of shortening the coil end length of the winding is to increase the number of pole pairs. In FIG. 27, the coil end length is shortened to half by making the stator two magnetic pole pairs as compared to FIG. Furthermore, it is possible to shorten by making 3-pole pairs and 4-pole pairs.
  • a composite motor is configured by incorporating two motors on the inner diameter side and the outer diameter side, and the full-pitch windings of each phase are wound in a toroidal shape as annular windings, so that the length of the coil end portion can be minimized.
  • the motor in FIG. 30 is a compound motor in which one more motor is arranged on the outer diameter side in addition to the 1/4 portion of the first quadrant portion in FIG.
  • Reference numeral 301 denotes a first rotor on the inner diameter side
  • 302 denotes a first stator on the inner diameter side, which have the same configuration as in FIG. 30C is the rotor shaft of the first rotor 301 .
  • 303 is a second stator on the outer diameter side
  • 304 is a second rotor on the outer diameter side, which constitutes a so-called outer rotor motor.
  • the first rotor 301 and the second rotor 304 are mechanically connected.
  • Reference numeral 305 denotes an A-phase stator S magnetic pole
  • 306 denotes a B/phase stator N-pole magnetic pole
  • 307 denotes a C-phase stator S magnetic pole
  • 308 denotes an A/phase stator N-pole magnetic pole.
  • Reference numeral 309 denotes an AB-phase annular winding wound in a toroidal shape.
  • the coil end length is the shortest, and the winding of this winding can be wound in alignment while applying tension, so that the winding space factor can be increased and the productivity is good.
  • 30A is a BC-phase toroidal winding, which is a similar toroidal winding.
  • 30B is a CA-phase toroidal winding, which is a similar toroidal winding.
  • the motor in FIG. 30 is a diagram showing the annular windings 309, 30A, and 30B, and it is necessary to optimize the shape of each part, including the number of pole pairs.
  • a combination including two motors can be a so-called axial gap type motor configuration in which the motors shown in FIG. 30 are arranged in the rotor axial direction. Even in this case, a loop winding can be formed, and the length of the coil end portion can be shortened. Further, if the rotor axial direction is combined, unlike the motor shown in FIG. 30, the length in the circumferential direction does not change. In the motor configuration of FIG.
  • each stator magnetic pole in the full-pitch winding motor of FIGS. 26 and 27 concentrates on two of the six stator magnetic poles. Since the current flowing through two-thirds of the windings concentrates the magnetomotive force on one-third of the stator poles, a large magnetomotive force can be applied to specific portions. In order to obtain a magnetic flux of 2.0 [T] or more, the relative magnetic permeability of the specific portion decreases to nearly 1, so the motor configuration is convenient for concentrating the magnetomotive force. At this time, as explained in FIGS. 16, 17, 18 and 19, six teeth of the six stator poles are used to pass the magnetic flux, and two stator poles are used in the air gap. Concentrate magnetic flux to generate torque. Therefore, it can be said that most of the motor is used to generate torque.
  • the drive circuit of FIG. 29 can be used even if the number of pole pairs is changed. Conversely, the drive circuit of FIG. 29 can also be modified according to the number of pole pairs. 26 and 27, which are different from FIG. 29, and drive circuits for multi-phase motors such as 5-phase and 7-phase motors will be described later.
  • a multi-phase motor such as a 5-phase or 7-phase motor in which the stator poles are evenly arranged in the circumferential direction and a motor in which the stator poles are not evenly arranged in the circumferential direction will be described later.
  • the method of regenerating magnetic energy a method of reducing the winding voltage by constantly supplying the field current component, especially at high speed rotation, will be described later.
  • the cross section of the permanent magnet of the stator becomes shorter in the circumferential direction and approaches a parallelogram, which is closer to a practical shape. Permanent magnets are easier to design, manufacture and fixedly mount.
  • a motor in which a plurality of rotor magnetic poles are arranged at equal intervals in the circumferential direction, and the stator magnetic poles are also arranged at equal intervals in the circumferential direction.
  • Ns and Nr are integers of 1 or more
  • the number Nps of stator magnetic poles Ps and the number Npr of rotor magnetic poles Pr are related by the following equation.
  • Nps 2 + 4 x Ns (57)
  • Npr 2 + 4 x Nr (58)
  • 6S10R motor a three-phase motor, shown in FIGS.
  • Other excellent configurations such as 14S26R and 10S18R will be described later. It should be noted that these can also increase the number of stator pole pairs to 2, 3, and 4. Both of them are magnetically symmetrical with respect to the rotor center point.
  • the windings of the stator can be used as full-pitch windings, so that the utilization of each winding, the utilization of transistors in the driving circuit, the maximum torque, etc. can be conveniently used. Concentrated windings can also be constructed.
  • stator pole pairs in order to cancel out part of the harmonic components of the torque, that is, the torque ripple, some of the stator poles are shifted from the equally spaced arrangement of the stator poles to the circumference of the circle. You can also shift it in any direction. Also, in the case of a motor configuration with concentrated windings, spaces can be provided in the circumferential direction of the stator magnetic poles. If the total width of the space in the circumferential direction is twice the pitch ⁇ ppr of the rotor magnetic poles Pr or an integer multiple thereof, the space can be secured in the stator without significantly changing the basic characteristics of the motor. For example, rotor position detection, rotor state observation, and manipulation can be performed.
  • Examples of claim 5 include a 6S10R full-pitch winding motor and a three-phase motor shown in FIGS.
  • the conditions of expressions (57) and (58) are satisfied. It has been described in detail as an example of a relatively simple motor of the invention.
  • the drive circuit in FIG. 29 is energized and driven as shown in FIGS. It was shown that the utilization rate of each transistor can be reduced to about 2/3 and the maximum torque can be increased.
  • FIG. 31 shows a linear development diagram showing the operation of the 6S14R motor.
  • the stator is the same as in FIG. Since there are 14 rotor magnetic poles, the rotor magnetic pole pitch is 25.7°, and the operating period is doubled to 51.4°, as shown in FIGS. 31(a) to 31(h).
  • the shape of the stator magnetic poles facing the air gap surface and the shape of the rotor magnetic poles are shown in the same display method as the developed view of FIG. 12, and mutual passing magnetic flux and electromagnetic action can be analyzed.
  • FIG. 31 is a linear development diagram for the purpose of plotting a CCW torque generation section.
  • the horizontal axis of FIG. 31 represents the rotor rotation angle ⁇ r, and the rightward direction is the CCW direction.
  • FIG. 31 displays the rotor rotation angle from -30° to 360°.
  • the section where CCW torque can be generated is indicated by a thick line above the rotor magnetic pole shape.
  • the position and width of the thick line correspond to the position and width of the corresponding stator pole.
  • the left side position of the A-phase stator S pole magnetic pole 11 matches the right side position of the N pole magnetic pole 311 of the rotor.
  • the A-phase stator S-pole magnetic pole 11, the A/phase stator N-pole magnetic pole 14, the C/phase stator N-pole magnetic pole 12, and the C-phase stator S-pole magnetic pole 15 can generate an attraction force in the CCW direction. It is indicated by a thick line in the upper part of (b) of 31 .
  • the 6S14R motor in FIG. 31 can generate torque at two or more stator poles at the same time, similar to the 6S10R motor of FIG.
  • the 6S14R motor in FIG. 31 is a motor with two stator magnetic pole pairs, and can be driven by the drive circuit in FIG. 29 in the same manner as the motor in FIG.
  • FIG. 32 shows a cross-sectional view of a motor configuration with a 14S26R full-pitch winding.
  • Ns is 3 in formula (57) and Nr is 6 in formula (58).
  • Claim 5 can be expanded to multiphase motors such as 3-phase, 5-phase, 7-phase, 9-phase and 11-phase motors.
  • FIG. 32 shows an example of a 7-phase motor with 14 stator poles and 26 rotor poles. Multi-phase such as 7 phases has the potential to improve utilization rate, increase efficiency, reduce size, and improve quality, which will be explained in turn.
  • FIG. 32 is the A-phase stator S magnetic pole
  • 32A is the A/phase stator N-pole magnetic pole
  • the illustrated A-phase magnetic flux ⁇ a passes from the A/phase stator N-pole magnetic pole 32A through the rotor to the A-phase stator S It passes to pole pole 328 .
  • the stator poles of each phase are arranged in the CCW direction. It shows the magnetic flux component.
  • Phase B and B/phase and B phase magnetic flux ⁇ b Phase B and B/phase and B phase magnetic flux ⁇ b, C phase and C/phase and B phase magnetic flux ⁇ b, D phase and D/phase and D phase magnetic flux ⁇ d, E phase and E/phase and E phase magnetic flux ⁇ e, F phase and F/phase and F-phase magnetic flux ⁇ f, and G-phase and G/phase and G-phase magnetic flux ⁇ g.
  • 321 in Fig. 32 is an AD phase winding that winds a full-pitch winding to a slot that is 180° apart and energizes the AD phase current Iad. Both slots are connected at coil end portions, and the connection relationship is indicated by broken lines in FIG. Similarly, 322 conducts the BE phase current Ibe in the BE phase winding, 323 conducts the CF phase current Icf in the CF phase winding, 324 conducts the DG phase current Idg in the DG phase winding, and 325 conducts the DG phase current Idg in the DG phase winding.
  • the EA-phase winding conducts the EA-phase current Iea, 326 conducts the FB-phase current Ifb through the FB-phase winding, and 327 conducts the GC-phase current Igc through the GC-phase winding.
  • the currents Iad, Iea, Ibe, Ifb, Icf, Igc, and Idg in the 7-phase full-pitch winding are defined by the A-phase current Ia, B-phase current Ib, C-phase current Ic, D-phase current Id, E-phase current Ie, The F-phase current If and the G-phase current Ig are expressed by the following equation.
  • Iad Ia + Id (59)
  • Ibe Ib + Ie (60)
  • Iea Ie + Ia (63)
  • Ifb If + Ib (64)
  • Igc Ig + Ic (65) Both currents are positive and DC currents.
  • the current of the full-pitch winding can be calculated from the phase current. Conversely, phase currents can also be calculated from currents in full-pitch windings. The values on both sides can be converted to each other.
  • the component of the A-phase current Ia is energized as the AD-phase current Iab in the equation (59) of the AD-phase winding 321, which is the full-pitch winding in FIG.
  • the component of the A-phase current Ia is supplied as the EA-phase current Iea of
  • the A-phase magnetic flux ⁇ a of FIG. 32 is excited.
  • 32 is changed to a concentrated winding motor by winding concentrated windings on the A-phase stator pole 328 and the A/phase stator pole 32A. It is the same as the case where the A-phase current Ia is applied.
  • the same magnetic flux as the A-phase magnetic flux ⁇ a of the full-pitch winding in FIG. 32 is excited. The same applies to other phases.
  • the magnetomotive force is applied to all the stator magnetic poles and all the stator magnetic poles in FIG.
  • the magnetomotive force of Iab is applied to the rotor.
  • Each phase current mutually affects the entire motor.
  • the magnetomotive force for the magnetic flux components of the other phases is Since it is canceled, it does not affect the magnetic flux components of other phases other than the A-phase magnetic flux ⁇ a. Therefore, in order to control the magnetic flux of each phase shown in FIG. 32, it is necessary to supply the currents of equations (59) to (65) to each full-pitch winding.
  • Equation (73) is a two-sided relationship with this, and according to Faraday's law of electromagnetic induction, the sum of the AD phase voltage Vadk and the EA phase voltage Veak is related only to the A phase magnetic flux ⁇ a and the A phase voltage Vak, and the other phases is not affected by the magnetic flux of Equations (74) to (79) have the same relationship.
  • Fig. 33 shows a linear development diagram showing the operation of the 14S26R motor in Fig. 32 to generate CCW direction torque. 12 and 31, showing the shape of the stator poles facing the air gap and the shape of the rotor poles, allowing analysis of mutual passing magnetic flux and electromagnetic effects.
  • the CCW direction of the motor is the right direction in FIG.
  • a section where CCW torque can be generated is indicated by a thick line above the rotor magnetic pole shape. At this time, the position and width of the thick line correspond to the position and width of the corresponding stator pole.
  • the stator magnetic pole width .theta.sg and the rotor magnetic pole width .theta.rg can be increased or decreased, and they can be optimized according to the required motor specifications, and the magnetic pole shape can also be changed.
  • FIG. 33 shows the shape of each stator pole facing the air gap surface.
  • 331 corresponds to the A-phase stator S pole magnetic pole 328 in FIG.
  • the CCW direction stator poles in FIG. 32 are arranged in order in the right direction in FIG. 33(a).
  • the horizontal axis .theta.r in FIG. 33 is a little confusing, but .theta.r on the horizontal axis indicates the electrical angle position of 360 degrees in the electrical angle of one magnetic pole pair of the stator, and is also the electrical angle position of each portion of the stator in the rotating direction. Rotational positions of the rotor are indicated on the left side of each row in FIG. In FIG.
  • Reference numeral 332 in FIG. 33(b) denotes a rotor N magnetic pole, which corresponds to the rotor N magnetic pole 329 in FIG.
  • the left side position of the A-phase stator S pole magnetic pole 328 matches the right side position of the N pole magnetic pole 329 of the rotor.
  • the A-phase stator S-pole magnetic pole 328, the A/phase stator N-pole magnetic pole 32A, the B-phase stator S-pole magnetic pole, the B/phase stator N-pole magnetic pole, the C-phase stator S-pole magnetic pole, and the C/ A total of 6 stator pole magnetic poles of phase stator N pole magnetic poles can generate an attraction force in the CCW direction, which are indicated by thick lines at 6 positions in the upper part of FIG. 33(b).
  • a torque in the CCW direction is generated using the A-phase magnetic flux ⁇ a, B-phase magnetic flux ⁇ b, and C-phase magnetic flux ⁇ c shown in FIG. In FIG.
  • the rotor rotational position ⁇ r 4.0°, and the C-phase stator S magnetic pole and the C/phase stator N magnetic pole cannot generate an attraction force in the CCW direction.
  • the G-phase stator S-pole magnetic pole and the G/phase stator N-pole magnetic pole begin to generate an attraction force in the CCW direction.
  • ⁇ r 7.9°, and the B-phase stator S magnetic pole and the B/phase stator N magnetic pole cannot generate an attraction force in the CCW direction.
  • the F-phase stator S-pole magnetic pole and the F/phase stator N-pole magnetic pole begin to generate an attraction force in the CCW direction.
  • the 14S26R motor can simultaneously generate torque with six stator poles while changing the stator poles that operate with the rotation of the rotor.
  • the C-phase stator S-pole magnetic pole and the C/phase stator N-pole magnetic pole can still generate CCW torque for the remaining approximately 1° in calculation, but it is slight.
  • the thick line marks above the rotor magnetic pole shapes are omitted.
  • Each line after (d) in FIG. 33 is the same.
  • the torque characteristics can be improved by correcting the circumferential width ⁇ sg of the stator magnetic poles and the circumferential width ⁇ rg of the rotor magnetic poles.
  • the shape of the air gap surface of the stator magnetic poles and the rotor magnetic poles can be changed into a convex shape, an arc shape, or the like.
  • one or both of the stator magnetic poles and the rotor magnetic poles can be skewed or skewed in stages.
  • Skew has the effect of widening the torque generation width.
  • the skew has the effect of smoothing changes in attraction force in the circumferential and radial directions that occur during rotation, and also has the effect of reducing vibration and noise.
  • Fig. 34 shows a cross-sectional view of the motor configuration in which the number of stator magnetic pole pairs is 2 for the 14S26R motor in Fig. 32 .
  • This motor is a 7-phase motor, and the phase of each stator pole is shown in brackets outside the stator 34F.
  • Fig. 3 shows the configuration of the stator poles of the phases; Since FIG. 34 shows 14S26R with two stator pole pairs, it has 28 stator poles and 14 full-pitch windings.
  • the stator magnetic pole pitch ⁇ pps is 12.9°, and the circumferential width ⁇ sg of the stator magnetic poles Ps is 6.4° in this example.
  • the polarities of each stator pole Ps are N-pole stator pole Psn and S-pole stator pole Pss, which are alternately arranged in the circumferential direction.
  • a stator permanent magnet PMsbi is arranged between each stator pole in a direction that matches the polarity of the stator pole. Direct current is applied to each full-pitch winding in the direction indicated by the current symbol.
  • 34G is the rotor shaft. In FIG.
  • stator magnetic pole pairs are 2, so 52 rotor magnetic poles Pr are arranged, and N-pole rotor magnetic poles Prn and S-pole rotor magnetic poles Prs are arranged alternately in the circumferential direction.
  • a rotor permanent magnet PMrbi is arranged between the rotor magnetic poles in a direction that matches the polarity of the rotor magnetic pole Pr.
  • Each winding of the stator is a full-pitch winding, carrying direct current in the direction indicated by the current symbol.
  • the winding pitch is 180° in electrical angle, which is half the 360° electrical angle of one magnetic pole pair of the stator, and 90° in mechanical angle, and the coil end portions are indicated by thick dashed lines.
  • 341 and 342 in FIG. 34 are the AD phase windings, which pass the AD phase current Iad.
  • the slots to which they are connected at an electrical angle of 180° are indicated by dashed coil ends.
  • 343 and 344 are BE phase windings, which pass BE phase current Ibe.
  • Reference numerals 345 and 346 are CF-phase windings, which carry a CF-phase current Icf.
  • 347 and 348 are DG-phase windings, which carry a DG-phase current Idg.
  • 349 and 34A are EA-phase windings, which pass the EA-phase current Iea.
  • 34B and 34C are FB-phase windings, which pass the FB-phase current Ifb.
  • 34D and 34E are GC phase windings, which pass GC phase current Igc.
  • FIG. 34 has a configuration in which the number of stator magnetic pole pairs is two, there are two sets of windings of the same phase. There are two slots for positive current and two slots for negative current of the same phase, and from which slot to which slot the full-pitch winding can be wired can be selected in two ways. Two other phases can be selected, so there are a total of 2 to the power of 7, 128 connection methods and winding methods.
  • the electromagnetic action at this time is basically the same except for the leakage magnetic flux in the space near the coil ends on the premise that the current in each winding is accurately controlled.
  • FIG. 34 shows one example of the connection method. Therefore, it is not specified how the coil ends should be connected in FIG. 34 for each winding in the drive circuit of FIG. 35 below. In the electromagnetic field analysis by the finite element method analysis FEM, the leakage magnetic flux at the coil end is usually ignored and is relatively small magnetic flux compared to the iron core magnetic flux. There are also other winding methods, such as a toroidal loop winding method.
  • FIG. 35 shows an example of a drive circuit that supplies voltage and current to each of the 7-phase full-pitch windings shown in FIG. 34 and will be described.
  • the drive circuit in FIG. 35 energizes in the section indicated by the thick line in FIG. to generate CCW direction torque.
  • Each full-pitch winding has a current represented by equations (59) to (65), and the relationship between the magnetic flux and voltage of each phase represented by equations (66) to (72).
  • Each full-pitch winding on the drive circuit in FIG. 35 has two windings so that the full-pitch winding in FIG. are connected in series to drive the drive circuit.
  • 35F and 35N in FIG. 35 are AD phase windings that pass the AD phase currents Iad1 and Iad2 of the equation (59). Note that Iad1 and Iad2 are theoretically the same value. Similarly, 35G and 35P conduct EA-phase currents Iea1 and Iea2 of the equation (63) in the EA-phase windings. 35H and 35Q are the BE phase windings and pass the BE phase currents Ibe1 and Ibe2 of the equation (60). 35J and 35R are FB-phase windings that pass FB-phase currents Ifb1 and Ifb2 of equation (64).
  • 35K and 35S are CF-phase windings and apply CF-phase currents Icf1 and Icf2 of equation (61).
  • 35L and 35T are GC phase windings, and pass GC phase currents Igc1 and Igc2 of equation (65).
  • 35M and 35U are DG-phase windings, and pass DG-phase currents Idg1 and Idg2 of equation (62).
  • 29R in Fig. 35 is a DC power supply.
  • 351, 352, 353, 354, 355, 356, 357, 358, 359, 35A, 35B, 35C, 35D, and 35E are driving transistors for passing the phase currents to the phase windings.
  • 35V, 35W, 35X, 35Y, 35Z, 281, 282, 283, 284, 285, 286, 287, 288, 289 indicate the energization state of each transistor connected in series with the magnetic energy of each phase winding.
  • the diodes 28A, 28B, 28C, 28D, 28E, 28F, 28G, 28H, 28J, 28K, 28L, 28M, and 28N have the effect of suppressing and blocking the influence and interference of other phase voltages and currents. There is Since each transistor has the ability to control the current that passes through it, these diodes are not always necessary, and some or all of them can be eliminated.
  • the currents Iad, Ibe, Icf, Idg, Iea, Ifb, and Igc can be energized.
  • the voltage of each full-pitch winding is a complicated voltage as shown in equations (66) to (72).
  • energization is realized in a simple voltage relationship shown in formulas (73) to (79).
  • the voltage Vsour is generated in the other windings as an induced voltage. It is necessary to drive by canceling the induced voltage components of the other phases as in the above.
  • the arrangement order of the windings in the drive circuit of FIG. 35 is one of the values on the right sides of equations (73) to (79). Also, the arrangement order of the windings in the drive circuit of FIG. 35 is the same as the arrangement order of the motor in FIG. However, coil end connections are excluded. 34, if the left half winding from the AD phase winding 341 is connected to the right half winding with the coil end, the arrangement order of the windings is as shown in FIG. It is not preferable to concentrate on the top and bottom of the page. In the case of toroidal annular windings, the arrangement order of the windings on the motor and the arrangement order of the windings in the drive circuit of FIG. 35 can be matched without any inconvenience.
  • phase currents Ia, Ib, Ic, Id, Ie, If, and Ig shown on the right side of the equations (59) to (65) are connected between the two windings and the diodes. is the current through the placed position.
  • the A-phase current Ia is a current passing through the diodes 28B and 28J, and the two A-phase current Ia components excite the A-phase magnetic flux ⁇ a.
  • the E-phase current Ie is a current passing through the diodes 28C and 28K, and the two E-phase current Ie components excite the E-phase magnetic flux ⁇ e.
  • the B-phase current Ib is a current passing through the diodes 28D and 28L, and the two B-phase current Ib components excite the B-phase magnetic flux ⁇ b.
  • the F-phase current If is a current passing through the diodes 28E and 28M, and two components of the F-phase current If excite the F-phase magnetic flux ⁇ f.
  • the C-phase current Ic is a current passing through the diodes 28F and 28N, and the two components of the C-phase current Ic excite the C-phase magnetic flux ⁇ c.
  • the G-phase current Ig is a current passing through the diodes 28G and 28P, and the two components of the G-phase current Ig excite the G-phase magnetic flux ⁇ g.
  • the D-phase current Id is a current passing through the diodes 28H and 28A, and the two components of the D-phase current Id excite the D-phase magnetic flux ⁇ d.
  • the magnetic fluxes ⁇ a, ⁇ e, ⁇ b, ⁇ f, ⁇ c, ⁇ g, and ⁇ d of each phase can be individually controlled. It should be noted that there is also a method in which the number of stator magnetic pole pairs shown in FIG. There is also a method of reducing the number of transistors in the drive circuit. In that case, it can be driven with seven windings. I will explain later.
  • FIG. 36 shows an example of the waveform of each phase current applied to each of the 7-phase full-pitch windings of FIG. 34 by the driving circuit of FIG. This is an example of generating CCW torque.
  • (h) to (n) of FIG. 36 are the full-pitch winding currents Iad, Ibe, Icf, Idg, Iea, Ifb, and Igc that flow through the full-pitch windings.
  • the current components Ia, Ib, Ic, Id, Ie, If, and Ig on the right side are shown in (a) to (g) of FIG.
  • the horizontal axis is the rotor rotation angle .theta.r, but if the rotor rotates at a constant speed, the shape of the current waveform is also shown with the horizontal axis as time.
  • the motors shown in FIGS. 32 and 34 pass the current in each phase with a cycle of 27.692 degrees in electrical angle, so FIG. It should be noted that this electrical angle also assumes that one magnetic pole pair of the stator is an electrical angle of 360°.
  • the current amplitude from (f) to (j) in FIG. 36 is increased or decreased for control. In the case of negative torque, that is, torque in the CW direction, the energized phase changes.
  • Each current in FIG. 36 exhibits good characteristics.
  • Each full-pitch winding current energized in each full-pitch winding is energized in 6/7 sections, each contributing to torque generation, and the winding utilization factor is as high as 6/7.
  • the copper loss does not increase squarely. These are indicators of reduced copper loss and high efficiency of the motor.
  • the utilization factor of the drive transistor is 6/7, and two current components are not energized simultaneously, so the current capacity of the drive circuit can be reduced.
  • FIG. 36 shows the current waveform in the section where ⁇ r is from 0° to 4°. At this time, in the motor of FIG.
  • the EA-phase current Iea Ie + Ia
  • the two A-phase current Ia components apply magnetomotive force to excite the A-phase magnetic flux ⁇ a component, which acts on the rotor magnetic poles to generate a magnetic attraction force in the CCW direction. generate torque.
  • This torque generation section depends on the circumferential width ⁇ sg of the stator magnetic poles and the circumferential width ⁇ rg of the rotor magnetic poles on the air gap surface.
  • the torque generation width can be changed by modifying the width ⁇ rg of the rotor magnetic poles in the circumferential direction. Also, there is a method of skewing the stator and rotor, and a method of changing the shape of the magnetic poles on the air gap surface from a parallelogram to an uneven shape. You can also change the torque generation width.
  • the B-phase stator magnetic poles and the B/phase stator magnetic poles of the BE-phase windings 322 located in front and behind in the circumferential direction, as in the case of the A-phase.
  • the C-phase stator poles and the C/phase stator poles are located in front and rear of the CF-phase winding 323 in the circumferential direction.
  • a magnetomotive force is applied by two C-phase current Ic components to excite the C-phase magnetic flux ⁇ c component, and a magnetic attraction force acts on the rotor magnetic poles to generate torque in the CCW direction.
  • the B-phase current Ib component is applied to the winding 322 and the FB-phase winding 326, and the C-phase current Ic component is applied to the CF-phase winding 323 and the GC-phase winding 327 to generate CCW torque.
  • 3 of the 7 magnetic fluxes, ⁇ a, ⁇ b, and ⁇ c, are used. is generating
  • the utilization rate of the windings is as large as 6/7, and it can be said that most of the windings are used to generate effective torque.
  • each current of each winding is applied so that two components of the currents of equations (59) to (65) do not overlap, so the copper loss of the motor can be reduced.
  • two or more stator magnetic poles used for torque generation are spaced apart in the circumferential direction as a condition that the two current components of formulas (59) to (65) do not overlap.
  • the teeth circumferentially adjacent to the torque-producing stator pole can be used to pass the magnetic flux of that stator pole. This has the effect of reducing the reluctance of the magnetic circuit in the stator to effectively generate more torque.
  • stator poles used for torque generation are separated by one or more in the circumferential direction, and two full-pitch windings are utilized to generate a large magnetomotive force near the air gap.
  • the magnetomotive force can be concentrated in the vicinity of the air gap of three of the seven magnetic flux components by using six of the seven full-pitch windings. Similar to the above, this is an effective method for obtaining a large magnetic flux density of 2.0 [T] or more in the vicinity of the air gap portion of the stator magnetic poles that generate torque and for generating large torque.
  • the effect of reducing the excitation load of the magnetic flux can be expected even in the operation region where the magnetic flux density is relatively low at the time of light load.
  • the rotor magnetic poles directly involved in torque generation generate torque at four or more rotor magnetic poles separated in the circumferential direction, as shown in the sectional view of the motor in FIG. 32 and the linear development view in FIG. As shown in FIGS. 8, 9, 10, 11, 16, 17, 18 and 19, both circumferentially adjacent Simultaneous use of rotor poles is not preferred. If necessary, it may be necessary to limit the current control of each phase. Similar to the magnetic flux of the stator, the magnetic flux of the rotor magnetic poles is passed by utilizing the magnetic paths of the soft magnetic materials on both sides in the circumferential direction of the rotor magnetic poles that generate torque. In this sense as well, as shown in FIG.
  • the stator magnetic poles used for torque generation are separated in the circumferential direction by two or more.
  • the circumferential width ⁇ sg of the stator poles of the motor of the present invention can be reduced or expanded, and the circumferential width ⁇ rg of the rotor magnetic poles can also be reduced or expanded. Since the increase/decrease of the passing magnetic flux is made smoother, ⁇ sg and ⁇ rg can be reduced or expanded, and the skew and magnetic pole shape can be devised. However, even in such a case, if the two rotor magnetic poles used for generating torque are close to each other in the circumferential direction, magnetic influence and interference may occur. Circumferentially adjacent rotor poles must be constructed or controlled so that they are not used simultaneously.
  • stator 1 magnetic pole pair motor shown in FIG. 32 and the stator 2 magnetic pole pair motor shown in FIG. I explained the state in which the A phase, B phase, and C phase are generating torque.
  • stator poles of three phases generate torque in parallel
  • the stator poles of the two phases are circumferentially separated by two or more.
  • the A, B, and G phases operate between 4° and 7.9° of ⁇ r
  • the A, F, and G phases operate between 7.9° and ⁇ r
  • FIG. 33(d) the A, F, and G phases operate between 7.9° and ⁇ r
  • E, F, and G phases operate between 11.9° and 15.8° of ⁇ r, and in FIG. 33(f), E, F, and The D phase operates between 15.8° and 19.8° of ⁇ r, and in Fig. 33 (g), the E, C and D phases operate between 19.8° and 23.7° of ⁇ r, and ), the B, C and D phases operate between 23.7° and 27.7° of ⁇ r.
  • this electrical angle also assumes that one magnetic pole pair of the stator is an electrical angle of 360°.
  • the torque-producing stator poles are more than one circumferentially apart.
  • the stator poles adjacent in the circumferential direction will operate at the same time, but there is no such condition in each operation shown in FIG.
  • the 14S26R stator poles and rotor poles shown in FIGS. 32 and 34 are an excellent combination.
  • a three-phase AC surface magnet synchronous motor SPMSM or a built-in magnet type synchronous motor IPMSM is often used, but the usage rate of the drive circuit and transistors is 1/3. On average, 2 out of 6 transistors are used to power the motor, so the utilization factor is 1/3.
  • IGBTs and the like are often used in parallel, and it can be considered that the actual number of power elements does not increase so much.
  • the full-pitch windings of FIGS. 32 and 34 have a serious problem that voltage components of other phases, such as the equations (66) to (66), are superimposed.
  • the drive circuit of 35 can be configured such that voltage components of other phases are not induced in the voltages across the two windings due to the cancellation effect, as shown in formulas (73) to (79).
  • the drive current is a direct current. In the case of direct current, it is relatively easy to combine two or more current components and branch them. An alternating current drive circuit is complicated because it supplies positive and negative currents.
  • FIG. 14 is a linear development diagram showing the operation of a 14S18R full-pitch winding motor; This is an example in which Ns in equation (57) is 3 and Nr in equation (58) is 4, which is a kind of 7-phase motor.
  • Ns in equation (57) is 3
  • Nr in equation (58) is 4, which is a kind of 7-phase motor.
  • the distance between the rotor magnetic poles is 7.143°, which is relatively large.
  • these motors have point-symmetrical structures including full-pitch windings with respect to the center point of the rotor.
  • the A-phase stator magnetic poles and the A/phase stator operate in the same manner. However, since it is driven by a direct current, the direction of the current and the direction of the magnetic flux are not symmetrical, but opposite.
  • stator magnetic poles that generate CCW torque change with the rotor rotation angle ⁇ r, and the torque generation pattern becomes one cycle at 40°, and the rotor rotates once at 360° in nine cycles.
  • CCW torque can be generated with six stator poles at any rotor rotation angle ⁇ r.
  • CCW torque is generated by three stator poles that are continuously arranged in the circumferential direction, and an undesirable state also occurs.
  • One of the problems is that the two current components on the right-hand side of equations (59) to (65) are simultaneously energized to the full-pitch windings arranged between the three stator magnetic poles. Since losses are proportional to the square of the current value, the copper losses increase by a factor of two.
  • the stator magnetic pole width ⁇ sg and the rotor magnetic pole width ⁇ rg are made larger, timing occurs when two stator magnetic poles adjacent to each other in the circumferential direction excite the same rotor magnetic pole. Magnetically connected through the part, the magnetic flux passes.
  • FIG. 14 is a linear development diagram showing the operation of a 14S22R full-pitch winding motor; This is an example in which Ns in equation (57) is 3 and Nr in equation (58) is 5, which is a kind of 7-phase motor.
  • Ns in equation (57) is 3
  • Nr in equation (58) is 5, which is a kind of 7-phase motor.
  • the rotor magnetic pole width ⁇ rg is 12.857°, which is the same as the stator magnetic pole width ⁇ sg.
  • stator magnetic poles that generate CCW torque change with the rotor rotation angle ⁇ r, and the torque generation pattern becomes one cycle at 32.7°, and the rotor rotates once at 360° in 11 cycles. As the rotor rotates, nearly four stator poles can generate CCW torque. Compared to the 14S26R motor shown in FIG. 32, the torque generated is 2/3. Winding utilization and transistor utilization are reduced to 2/3 of 14S26R.
  • FIG. 14 is a linear development diagram showing the operation of a 14S30R full-pitch winding motor; This is an example in which Ns in equation (57) is 3 and Nr in equation (58) is 7, which is a kind of 7-phase motor.
  • Ns in equation (57) is 3
  • Nr in equation (58) is 7, which is a kind of 7-phase motor.
  • the rotor magnetic pole width ⁇ rg is 12.0°.
  • the stator magnetic poles that generate CCW torque change with the rotor rotation angle ⁇ r, and the torque generation pattern becomes one cycle at 24°, and the rotor rotates once at 360° at 15 cycles.
  • the 6 stator poles can generate CCW torque.
  • the same six stator poles as in the 14S26R motor of FIG. 32 above act and are equivalent in this respect.
  • the utilization ratio of windings and the utilization ratio of transistors are also the same.
  • the number of rotor magnetic poles is as large as 30, it is necessary to devise the arrangement of the rotor bypass permanent magnets PMrbi and the soft magnetic magnetic path of the rotor magnetic poles.
  • the space for the rotor magnetic poles becomes wider, so the degree of freedom in design increases.
  • FIG. 38 is an example of a cross-sectional view of a 10S18R full-pitch winding motor.
  • Ns in equation (57) is 2 and Nr in equation (58) is 4, which is a kind of 5-phase motor.
  • 387 is an A-phase stator S pole magnetic pole
  • 388 is an A/phase stator N-pole magnetic pole, through which the illustrated A-phase magnetic flux ⁇ a component passes.
  • the configuration is symmetrical with respect to the rotor center.
  • 389 and 38A are B-phase stator south pole magnetic poles and B/phase stator north pole magnetic poles, and pass through the illustrated B-phase magnetic flux ⁇ b component.
  • 38B and 38C are the C-phase stator S-pole magnetic poles and the C/phase stator N-pole magnetic poles, and pass the illustrated C-phase magnetic flux ⁇ c component.
  • 38D and 38E are the D-phase stator S-pole magnetic poles and the D/phase stator N-pole magnetic poles, and pass the illustrated D-phase magnetic flux ⁇ d component.
  • 38F and 38G are E-phase stator S pole magnetic poles and E/phase stator N-pole magnetic poles, and pass the illustrated E-phase magnetic flux ⁇ e component. The phase of each stator pole is shown in parentheses around the outer periphery of the stator.
  • Reference numeral 381 denotes an AC phase full-pitch winding, which is connected to slots 180° apart at an electrical angle of 1/2 of the 360° electrical angle of one magnetic pole pair of the stator at the coil ends indicated by broken lines. Energize the current Iac.
  • 382 is a BD-phase full-pitch winding that supplies a BD-phase current Ibd.
  • Reference numeral 383 denotes a CE-phase full-pitch winding that supplies a CEBD-phase current Ice.
  • Reference numeral 384 denotes a DA-phase full-pitch winding that supplies a DA-phase current Ida.
  • Reference numeral 385 denotes an EB-phase full-pitch winding that supplies an EB-phase current Ieb.
  • the magnetic flux components ⁇ a, ⁇ b, ⁇ c, ⁇ d, and ⁇ e of all five phases shown in FIG. Therefore, it is induced in each voltage of each full-pitch winding, and the relationship of the following equation is obtained.
  • the number of turns of the full-pitch winding is Nw/2.
  • the absolute value of the interlinkage magnetic flux of each winding includes the magnet flux component, but assuming that the magnet flux is constant and does not appear in the rate of change over time, the above (48) and (49) in the case of three phases ) and (50), the following 5-phase expression is used.
  • the component of the A-phase current Ia is energized as the AC-phase current Iac in the equation (80) of the AC-phase winding 381 in FIG. , and the A-phase current Ia of the equation (83) in the DA-phase winding 384, the A-phase magnetic flux ⁇ a in FIG. component does not affect the flux components of other phases.
  • Equation (90) is a two-sided relationship with this, and according to Faraday's law of electromagnetic induction, the sum of the AC phase voltage Vack and the DA phase voltage Vdak is related only to the A phase magnetic flux ⁇ a and the A phase voltage Vak, and the other phases is not affected by the magnetic flux of Equations (91) to (94) have the same relationship. These relationships are also related to the point-symmetrical motor configuration with respect to the rotor center. There is also a control method that applies these voltage simplification methods and is less susceptible to the voltages of many other phases, which will be described later.
  • FIG. 39 shows a linear development diagram showing the operation of the 10S18R motor in Fig. 38 to generate CCW direction torque.
  • FIG. 34 is a developed view similar to FIGS. 12 and 33.
  • the CCW direction of the motor is the right direction in FIG.
  • a section where CCW torque can be generated is indicated by a thick line above the rotor magnetic pole shape.
  • the stator magnetic pole width .theta.sg and the rotor magnetic pole width .theta.rg can be increased or decreased, and they can be optimized according to the required motor specifications, and the magnetic pole shape can also be changed.
  • FIG. 39 shows the shape of each stator pole facing the air gap surface.
  • 391 corresponds to the A-phase stator S pole magnetic pole 387 in FIG.
  • 392, 393, 394 and 395 in FIG. 39 correspond to 389, 38B, 38D and 38F in FIG.
  • the horizontal axis .theta.r in FIG. 39 is a little confusing, but .theta.r on the horizontal axis indicates the electrical angle position of one stator magnetic pole pair at an electrical angle of 360 degrees, and is also the electrical angle position of each part of the stator in the rotating direction.
  • the rotational position of the rotor is shown on the left side of each row in FIG. In FIG.
  • Reference numeral 396 in FIG. 39(b) denotes a rotor N magnetic pole, which corresponds to the rotor N magnetic pole 386 in FIG.
  • the left side position of the A-phase stator S pole magnetic pole 391 coincides with the right side position of the N pole magnetic pole 396 of the rotor.
  • A-phase stator S-pole magnetic pole 391, A/phase stator N-pole magnetic pole, B-phase stator S-pole magnetic pole 392, and B/phase stator N-pole magnetic pole move in the CCW direction. It is possible to generate a suction force, which is indicated by thick lines at four locations in the upper portion of FIG. 39(b).
  • a torque in the CCW direction is generated using the A-phase magnetic flux ⁇ a and the B-phase magnetic flux ⁇ b shown in FIG.
  • the rotor rotational position ⁇ r 8°, and the B-phase stator S magnetic pole and the B/phase stator N magnetic pole cannot generate an attraction force in the CCW direction.
  • the E-phase stator S pole magnetic pole 395 and the E/phase stator N pole magnetic pole begin to generate an attraction force in the CCW direction.
  • the D-phase stator S-pole magnetic pole 394 and the D/phase stator N-pole magnetic pole begin to generate an attraction force in the CCW direction.
  • the C-phase stator S-pole magnetic pole 393 and the C/phase stator N-pole magnetic pole begin to generate an attraction force in the CCW direction.
  • ⁇ r 32°
  • the D-phase stator S-pole magnetic pole and the D/phase stator N-pole magnetic pole cannot generate an attraction force in the CCW direction.
  • the B-phase stator S pole magnetic pole 392 and the B/phase stator N pole magnetic pole begin to generate an attraction force in the CCW direction.
  • .theta.r 40 degrees, and this state returns to the same state as in (b) of FIG.
  • the motors shown in FIGS. 38 and 39 repeat the same operation 9 times at a cycle of 40° to make one rotation of the rotor.
  • a 5-phase 10S18R motor can be driven in the same manner as the 7-phase motor shown in FIG. 34, which has a 7-phase stator and 2 magnetic pole pairs, is energized and driven by the drive circuit shown in FIG.
  • the motor shown in FIG. 38 can be transformed into a stator with two magnetic pole pairs to form a motor with ten full-pitch windings.
  • the driving circuit can be made into a five-phase driving circuit by removing two-phase driving circuits such as transistors 35B, 35C, 35D, and 35F from the seven-phase driving circuit of FIG.
  • AD phase, EA phase, BE phase, FB phase, and CF phase of the 7 phases are replaced by the AC phase, BD phase, CE phase, DA phase, and EB phase in the 5 phases, respectively.
  • 84) is controlled as the current of the equation.
  • the currents in equations (80) to (84) can be more easily controlled.
  • each phase magnetic flux component of ⁇ a, ⁇ b, ⁇ c, ⁇ d, and ⁇ e in FIG. , (e) are excited by each current component of Ie. 38 are Iac, Ibd, Ice, Ida, and Ieb in (f) to (j) of FIG. It can be calculated from current components Ia, Ib, Ic, Id, and Ie in (a) to (e) of FIG. 40 in relation to the current.
  • the operation in FIG. 39 has a cycle of 40°, and FIG. 40 shows the range of 80° for two cycles.
  • the currents of the full-pitch windings Iac, Ibd, Ice, Ida, and Ieb in (f) to (j) of FIG. 40 show good characteristics. Each current is energized in 4/5 sections, and each contributes to torque generation.
  • the two current components on the right side of the equations (80) to (84) of each full-pitch winding current are not energized at the same time, the copper loss does not increase squarely. These are indicators of reduced copper loss and high efficiency of the motor.
  • each current waveform in FIG. 40 shows an example of a rectangular shape, it is needless to say that various increasing and decreasing waveforms such as a trapezoidal waveform having a slope when the current increases and decreases can be used. As will be explained later, it is also possible to constantly supply a current that excites the magnetic flux.
  • a field winding may be provided on the rotor for energization.
  • the 10S18R 5-phase full-pitch winding motor utilizes stator poles spaced apart by one or more in the circumferential direction to generate CCW torque. . Therefore, as shown in FIG. 17, the teeth on both sides in the circumferential direction of the stator pole that generates the torque can be used to pass the magnetic flux of that stator pole. This has the effect of reducing the reluctance of the magnetic circuit in the stator to effectively generate more torque. In particular, it is effective to use both adjacent teeth to obtain a large magnetic flux density of 2.0 [T] or more near the air gap portion of the stator magnetic pole that generates torque and generate large torque. In order to use the teeth on both sides in the circumferential direction, it is necessary to use the bypass permanent magnets PMsbi.
  • the rotor magnetic poles that generate torque are also separated in the circumferential direction, and there is little magnetic interference between the rotor magnetic poles.
  • the utilization factor of each transistor in the motor drive circuit in which the configuration of FIG. The advantage of simplified DC current drive is also obtained. Since the total current capacity of the drive circuit can be reduced, miniaturization and cost reduction are possible.
  • the 10S18R five-phase full-pitch winding motor shown in FIG. 38 is excellent in torque continuity in terms of torque ripple.
  • the circumferential width .theta.sg of the stator magnetic poles and the circumferential width .theta.rg of the rotor magnetic poles can be increased or decreased for optimization.
  • the distance between the rotor magnetic poles is 7.714°, which is relatively large.
  • these motors have point-symmetrical structures including full-pitch windings with respect to the center point of the rotor.
  • the A-phase stator magnetic poles and the A/phase stator operate in the same manner.
  • the direction of the current and the direction of the magnetic flux of the A-phase and A/phase are not symmetrical because they are driven by direct current, but are opposite to the rotor center point.
  • torque in the CCW direction can be generated by the four stator poles of the A-phase and C-phase, as indicated by the thick line in Fig. 41(b).
  • CCW torque can be generated in the A phase.
  • CCW torque can be generated in the A phase and the D phase.
  • CCW torque can be generated in the D phase.
  • Such an operation is repeated, and the torque generation pattern becomes one cycle at 51.43°, and the rotor rotates once at 360° in seven cycles. With these characteristics, only two stator poles can continuously generate torque.
  • the rotor magnetic pole width ⁇ rg of 10S14R can be expanded from 18° in FIG. 41 to a maximum of 25.714°, and the stator magnetic pole width ⁇ sg can also be expanded, so torque can be generated with four stator poles.
  • the copper loss increases in one of the three full-pitch windings to be energized.
  • the current capacity of the transistor used is also doubled. However, there is no problem with the current capacity of the transistor as long as it does not exceed its maximum current value. When the motor outputs maximum torque, there is a problem with the current capacity of the transistors.
  • FIG. 10 is a linear development diagram showing the operation of a 10S22R full-pitch winding motor; This is an example in which Ns in equation (57) is 2 and Nr in equation (58) is 5, which is a kind of 5-phase motor.
  • the stator is the same as the 10S18R stator in FIG. 38, and has 22 rotor magnetic poles.
  • torque can be generated by four stator poles in succession.
  • stator magnetic poles that generate torque are separated in the circumferential direction by two or more pieces, so copper loss can be reduced and current can flow.
  • the current capacity of each transistor can also be reduced. It can also be said that the winding utilization is 4/5 and the transistor utilization is 4/5.
  • FIG. 42 shows a cross-sectional view of the motor of the sixth embodiment. It has a 2-phase 4S10R motor configuration, with only 4 stator poles and 10 rotor poles.
  • claim 5 shown by formulas (57) and (58), the structure of the stator and rotor is equally divided in the circumferential direction.
  • the circumferential arrangement of the stator poles in FIG. 42 is not even. Uneven placement.
  • it is not easy to obtain continuous rotating torque with the stator poles of two-phase DC current excitation. It is a motor that can be obtained. It is an asymmetrical motor to CCW and CW.
  • FIG. 43 shows the positional relationship between the stator magnetic poles and the rotor magnetic poles in the circumferential direction, and is a linear development showing the operation of generating torque. 42 and 43, the same components are denoted by the same reference numerals.
  • FIG. 43(a) shows the air gap surface shape of the stator magnetic pole
  • 431 is the A-phase stator S pole magnetic pole
  • 421 is the A-phase winding
  • 432 is the A/phase stator N-pole magnetic pole
  • 422 is the A/phase winding.
  • 433 is a B-phase stator S pole magnetic pole
  • 423 is a B-phase winding
  • 434 is a B/phase stator N-pole magnetic pole
  • 424 is a B/phase winding.
  • Each winding is a concentrated winding.
  • Each stator magnetic pole has S poles and N poles alternately arranged in the circumferential direction. Between each stator pole is a permanent magnet, such as 425, whose polarity is indicated by arrows in the direction of those poles.
  • FIG. 42 shows an example in which the number of stator magnetic pole pairs is 1 in order to show the basic shape, and the shape of permanent magnets such as 425 is strangely long in an arc shape. Assuming four pole pairs or more pole pairs, the permanent magnet shape of the stator can also be designed into a flat plate shape short in the circumferential direction. In addition, when the number of pole pairs is 2 or more, the imbalance between the attractive forces toward the center of the A phase and the B phase can be eliminated.
  • the number of magnetic poles of the rotor in FIG. 42 is 10, which is the same rotor example as in FIGS. 1, 14, etc.
  • a permanent magnet such as 427 whose polarity is indicated by an arrow in the direction of those poles. 426 shows the permanent magnet bias flux when the stator current is not energized.
  • FIG. 43 shows the shape of the air gap surface of the stator poles of FIG. (a) to (h) of FIG. 43 show the air gap surface shape of each rotor magnetic pole at each rotor rotation position.
  • FIG. 44 shows partially enlarged views of (a) and (c) of FIG. 43 to show the shape and operation of each part of the motor of FIG. 44, reference numeral 431 denotes the A-phase stator S magnetic pole, 435 and 437 the N magnetic pole of the rotor, and 436 the S magnetic pole of the rotor.
  • the rotor axial length of the leading portion of the stator magnetic pole 431 in the CW direction is Lr1, which is small, and the length in the CCW direction of the rotor axial direction is Lr2.
  • Lr1 is half of Lr2.
  • the circumferential length of the Lr1 portion is ⁇ sb, and the circumferential length of the Lr2 portion is ⁇ sc.
  • the rotor magnetic pole pitch ⁇ ppr is 36°, and in order to obtain continuous torque by alternately driving the two phases A and B, the circumferential length ⁇ sa of the stator magnetic poles must be equal to the rotor magnetic pole pitch ⁇ ppr Greater than, the following formula is a necessary condition. ⁇ sa > ⁇ ppr (95) The rotor rotates in the CCW direction, and the axial length ⁇ ra of the rotor is greater than ⁇ sb in order to continue torque generation at Lr1.
  • stator pole 431 has two stages. Other shapes may be used as long as is large.
  • the average value of a plurality of A-phase stator S-pole magnetic poles is a magnetic resistance distribution like the stator magnetic pole 431, and the magnetic resistance is smaller on the right side of the paper, , CCW direction torque can be generated.
  • these magnetic resistance distributions may be similar magnetic resistance distributions not only in the stator magnetic pole air gap surface shape, but also inside the stator magnetic poles.
  • FIG. 43 which is a developed view of the operation of the motor in FIG. 42, will be described.
  • the A/phase stator N magnetic pole 432 is also enabled to generate CCW torque with the rotor S magnetic pole.
  • the B-phase stator S pole magnetic pole 433 and the B/phase stator N pole magnetic pole 434 can also generate CCW torque.
  • the A/phase stator N magnetic pole 432 is also enabled to generate CCW torque with the rotor S magnetic pole.
  • FIG. 45 shows examples of current waveforms for driving the motors shown in FIGS.
  • the horizontal axis of FIG. 45 is the rotor rotation angle ⁇ r.
  • the waveform on the time axis is the same as that shown in FIG.
  • FIG. 45(b) shows the B-phase current Ib, which is 36° out of phase with respect to the A-phase current Ia, and has the same current waveform. With two currents, A-phase current Ia and B-phase current Ib, it is possible to generate torque continuously, although only in one direction.
  • the driving circuits for the A-phase current Ia and the B-phase current Ib can be energized using two of the circuits in FIG.
  • 257 is a winding obtained by connecting the A-phase winding 421 and the A/phase winding 422 in series.
  • 258 is a winding in which the B-phase winding 423 and the B/phase winding 424 are connected in series. It can be easily driven with four transistors.
  • the drive circuit of FIG. 46 can be used to supply power. It is a simpler drive circuit because it can be driven with two transistors.
  • 462 and 463 are capacitors and point 461 is the neutral point of the circuit.
  • the capacitors 462 and 463 may be replaced with two positive and negative DC power supplies. In this manner, one-way rotation can be realized with a simple configuration such as that shown in FIGS. There are many applications for unidirectional rotation, and there are many applications that require a simpler configuration and that have strict cost requirements.
  • the full-pitch windings can be equally divided.
  • the electromagnetic characteristics of the motor of the present invention are generated by the relative relationship between the plurality of stator magnetic poles and the plurality of rotor magnetic poles facing each other across the air gap. A different number of rotor poles may also be effective.
  • the ratio of the rotor magnetic pole width to the stator magnetic pole width is related to the shape and characteristics of the permanent magnets PMrbi arranged on the rotor.
  • FIG. Figure 47 is an enlarged view of the portion of the stator of Figure 34 shown at 471 to increase the circumferential width of the teeth.
  • the left and right portions of FIG. 47 are omitted as indicated by broken lines, and windings, rotors, etc. are also omitted.
  • the three stator pole teeth of FIG. Lsg is the circumferential width of the air gap surface of the stator pole.
  • 474 denotes a shape in which the circumferential width of the teeth on the outer diameter side of the stator magnetic pole Ps is enlarged.
  • the circumferential width of the tooth is expanded from Lsg to Lsge.
  • various shapes such as a tapered tooth shape are possible.
  • the stator magnetic poles In the case of a motor configuration in which no permanent magnet is arranged in the stator, such as those shown in FIGS.
  • the stator magnetic poles have a narrow face width in the circumferential direction, which poses a problem of low magnetic flux permeability.
  • the circumferential width of the teeth of the stator magnetic poles Ps is a value that is 20% or more larger than Lsg.
  • the face width can be increased by 20% and the magnetic flux density in the air gap of the stator pole can be increased by 20%, it is possible to increase the torque by 1.44 times, or 44%, as the force is the square of the magnetic flux density, according to equation (19). have a nature.
  • FIG. 48 shows an enlarged view of the upper right portion of the 14S26R motor shown in FIG. 34, which corresponds to the first quadrant.
  • Examples of various shapes are shown including permanent magnets to the tip of each tooth. 1, 14, 34, etc., the stator magnetic poles and the rotor magnetic poles are made of soft magnetic material, so basically it is necessary to excite the magnetic flux when generating torque.
  • the drive circuit must provide magnetic energy to the motor when generating torque, and then recover and regenerate the magnetic energy.
  • permanent magnets such as 483 and 484 can be attached to the stator 481 in FIG. 48 near the air gap surface of the stator magnetic poles.
  • the orientation of the permanent magnets 483, 484 is the orientation of the polarity of each stator pole and is indicated by arrows. Since the permanent magnets 483 and 484 can reduce the excitation load on the motor and drive circuit, miniaturization is possible. In addition, since the reduction of the excitation load leads to a reduction in the time involved in excitation, the control performance of the motor can also be improved.
  • the thickness of the permanent magnets 483, 484 and the like can be made thin and limited to the extent that it assists the excitation of each stator magnetic pole.
  • the region 494 with a high magnetic flux density can be used even if the relative magnetic permeability is a small value close to 1, if the motor is excited by applying a large excitation current.
  • the motor of the present invention assumes a large magnetic flux density exceeding 2.0 [T] in the vicinity of the air gap of each stator magnetic pole.
  • the permanent magnet even if the permanent magnet is demagnetized due to operation at the coercive force point of 492 or the area of 493 depending on the control conditions of the motor, it can be re-magnetized by the current of the motor and easily revived and can be used continuously.
  • the shape of the permanent magnets 483, 484 can be reduced, such as 487, as part of the stator pole tip. It can also be shaped like 486 to increase the magnetic flux.
  • the permanent magnets 482 and 485 between the stator magnetic poles and the permanent magnets 483, 484, 486 and 487 can be combined and manufactured as an integral unit. Also, the configuration and action of the permanent magnets 483, 484, 486, 487 can be applied to each rotor magnetic pole on the rotor side.
  • a ninth aspect of the present invention relates to a drive circuit for driving a motor with full-pitch windings.
  • Specific examples of the drive circuit have already been described with the three-phase drive circuit shown in FIG. 29 and the seven-phase drive circuit shown in FIG.
  • the voltage of the full-pitch winding of the phase during regeneration becomes a negative value of the power supply voltage, and the same value as the power supply voltage is induced in the full-pitch winding to be driven, resulting in an excessive voltage that prevents the current from increasing. there is a problem.
  • equations (54), (55), and (56) are used to connect two windings in series to solve the problem of overvoltage, and FIG. shows a method of applying current to each full-pitch winding of each phase of the three-phase motor shown in Fig.
  • the 7-phase drive circuit in FIG. 35 shows an example of driving the 28S52R motor in FIG. 34 with 2 stator magnetic pole pairs in the 14S26R in FIG.
  • the 28S52R motor shown in FIG. 34 also has a large number of rotor magnetic poles for high-speed rotation.
  • the number of transistors and the number of currents to be controlled are large in the 7-phase drive circuit of FIG.
  • the reason for the large number of transistors is that the number of full-pitch windings for phases 3, 5, and 7 is an odd number of 3, 5, and 7 when the number of stator pole pairs is 1. is due to That is, if two windings are arranged in series at the top and bottom of the paper as shown in FIG.
  • both the left and right windings are on the upper side, and as shown in 28Q in FIG. 35, This is due to the inability to connect the left and right ends. Assuming that the number of stator magnetic pole pairs is 2, 6, 10, and 14 are even numbers. As in the 3-phase drive circuit of FIG. 29 and the 7-phase drive circuit of FIG. 35, the entire circuit can be constructed in a symmetrical structure. Although the number of elements in the drive circuit increases, each phase can be controlled in a well-balanced manner.
  • FIG. 50 shows a method of reducing the number of elements in the 7-phase drive circuit of FIG. 35 and the drive circuit. It can drive a 7-phase motor such as FIG. 32 with a stator 1 pole pair. Alternatively, a motor having two or more stator magnetic pole pairs can be driven by connecting windings of the same phase in series.
  • the 7-phase drive circuit of FIG. 50 the right half of the drive circuit in FIG. 35 is deleted. Others are indicated by the same reference numerals. And the cathode of diode 28H is connected to 504, ie, to the location of 504 by the connection of 503.
  • FIG. 50 shows a method of reducing the number of elements in the 7-phase drive circuit of FIG. 35 and the drive circuit. It can drive a 7-phase motor such as FIG. 32 with a stator 1 pole pair. Alternatively, a motor having two or more stator magnetic pole pairs can be driven by connecting windings of the same phase in series.
  • the cathode of diode 28H is connected to
  • the above problem of 7-phase odd numbers is solved by passing two D-phase current components Id through the transistor 501 in this way.
  • the voltage of the AD-phase winding 35F and the voltage of the DG-phase winding 35M related to this D-phase current component Id is the value of equation (66), and the voltage of the DG-phase winding 35M is the value of equation (69). Since it is directly driven by the transistor 501, there is double the voltage margin, and the D-phase current component Id can be conducted. Note that only the D-phase current component Id differs from the current components of the other phases, so care must be taken in terms of control. Some or all of the diodes 28A, 28B, 28C, 28D, 28E, 28F, 28G and 28H in FIGS. 35 and 50 can be removed depending on circuit conditions.
  • the 7 transistors 351 to 357 in FIG. It is necessary to pass twice as much current. When both are considered in terms of total current capacity, they have the same current capacity. However, in the drive circuit of FIG. 50, since the transistor 501 and the diode 502 are added, the drive circuit is increased in that respect. That is, although the number of elements in the drive circuit of FIG. 50 is reduced, the total current capacity of the transistors is larger in FIG. 50 than in FIG. Both have their own characteristics and can be used.
  • FIG. 51 shows an example of a drive circuit in which the number of elements is reduced by using the same method as the drive circuit in FIG. 50 for the three-phase drive circuit in FIG.
  • the drive circuit on the right half of the page of FIG. 29 is deleted. Others are indicated by the same reference numerals.
  • the cathode of diode 29M is connected to 294, that is, to 514 by connection 513.
  • A-phase current component Ia of (Ia+Ib) energizing the AB-phase winding 297 and the A-phase current component Ia of (Ia+Ic) energizing the CA-phase winding 299 are added.
  • a current of (Ia ⁇ 2) with Ia is applied.
  • the three transistors 291 to 293 in FIG. 51 for the six transistors 291 to 296 in FIG. It is necessary to pass twice as much current.
  • the total current capacity of the six transistors in FIG. 29 and the three transistors in FIG. 51 are the same. However, since the transistor 511 and the diode 512 are added to the drive circuit of FIG. 51, the total current capacity of the drive circuit of FIG. 51 is increased. That is, although the number of elements in the drive circuit of FIG. 51 is reduced, the total current capacity of the transistors is larger in FIG. 51 than in FIG. Both have their own characteristics and can be used. It should be noted that 5-phase, 9-phase, 11-phase, etc. drive circuits can also have the same configuration.
  • Claim 10 is a motor in which a component of current Ifk that excites magnetic flux is always applied to each stator winding, and a component of current It corresponding to torque is superimposed on each phase current and applied.
  • FIG. 28 shows an example in which phase currents Iab, Ibc, and Ica are applied according to the rotor rotational position ⁇ r.
  • Iab in (a) of FIG. 52 Ibc in (b) of FIG. 52
  • Ica in (c) of FIG.
  • the magnetomotive force Ifk [A] acts on the path of the A-phase magnetic flux ⁇ a between the A-phase stator S-pole magnetic pole 11 and the A/phase stator N-pole magnetic pole 14 as the total of each phase current. do.
  • the magnetic characteristics of the rotor can be easily generated by exciting magnetic flux in the magnetic forward direction of the rotor magnetic poles, but the magnetic reverse direction can be generated.
  • the rotor flux generated in the direction is small.
  • we simplify the motor model by assuming that no rotor flux is generated in the magnetically opposite direction.
  • the A-phase magnetic flux ⁇ a passes through the position where the A-phase stator S-pole magnetic pole 11 faces the rotor N-pole magnetic pole via an air gap.
  • the circumferential width .theta.sg of the stator magnetic poles and the circumferential width .theta.rg of the rotor magnetic poles in FIG. 26 are set at 30 degrees.
  • the value of the A-phase voltage Vak component becomes (d) in FIG. 52, and the equation (34) can be transformed into the following equation.
  • Vbk Nw x d ⁇ b/d ⁇ r x d ⁇ r/dt (100)
  • Vck Nw ⁇ d ⁇ c/d ⁇ r ⁇ d ⁇ r/dt (101)
  • the increase/decrease in the A-phase magnetic flux ⁇ a accompanies the rotation of the rotor, and is not due to a sudden decrease in the A-phase current Ia.
  • the value of the A-phase voltage Vak at this time is generated in proportion to the rotation speed d ⁇ r/dt of the rotor, like the induced voltage of the surface permanent magnet type synchronous motor SPMSM.
  • a magnetomotive force with a constant value Ifk [A] shown by a dashed line acts on the path of the B-phase magnetic flux ⁇ b between the B-phase stator S pole magnetic pole 13 and the B/phase stator N pole magnetic pole 16 .
  • the value of the B-phase voltage Vbk calculated by the equation (100) becomes (e) in FIG.
  • a magnetomotive force having a constant value Ifk [A] shown by a chain line acts on the path of the C-phase magnetic flux ⁇ c between the C-phase stator S-pole magnetic pole 15 and the C/phase stator N-pole magnetic pole 12 .
  • the value of the C-phase voltage Vck calculated by the equation (101) becomes (f) in FIG.
  • the phase voltages Vab, Vbc, and Vca of the full-pitch winding are related by equations (51), (52), and (53), and equations (54), (55), and (56). 52 (d), (e), and (f).
  • the technology to excite each stator pole by continuously applying a DC excitation current component to each phase winding has fixed polarities of the N and S poles of each stator pole, and the current applied to each winding is This is a method that can be realized because it is a unidirectional DC current. This is difficult with AC-driven motors.
  • the magnitude of the continuously energized current component is variable, and for example, the magnitude of the continuously energized excitation current component can be reduced in order to reduce the induced voltage during high-speed rotation.
  • a field winding may be additionally arranged to pass the field current component to the stator magnetic poles, and the field current component may be passed through.
  • a field winding may be added to the rotor to supply the field current component.
  • a third connection terminal is provided in the intermediate portion in addition to the first terminal on the low voltage side and the second terminal on the high voltage side of each winding, Power supply can be performed at the third connection terminal and regeneration can be performed at the second terminal. Also, if it is desired to shorten the regeneration time, the above connection relationship should be reversed.
  • An object of claim 11 is to reduce the number of transistors in a drive circuit for driving motor current.
  • the 6S10R concentrated winding motor shown in FIGS. 1 and 23 uses the drive circuit shown in FIG. In this case, two transistors are used to drive a single DC current.
  • a drive circuit comprising a positive power supply 462 and a negative power supply 463 around a neutral point 461, one direct current is driven by one transistor. can. Two power supplies, positive and negative, are required, but driving the individual currents is simple.
  • FIG. 53 in addition to the drive circuit of FIG.
  • FIG. 535, 536, 537 and 538 are diodes for regeneration. Additional windings and drive circuits can be added in parallel. Since a single transistor can drive the direct current flowing through one winding, the motor drive circuit, including peripheral circuits for driving that transistor, can be simplified.
  • the withstand voltage required for each transistor in FIG. 53 is twice the voltage of one of the power supplies in FIG. Compared to the driving circuit of FIG. 25, the number of transistors is half, but the voltage is double, and it can be considered equivalent in terms of the product of current and voltage.
  • the withstand voltage is doubled, there are many areas where the cost does not increase so much, and the size of the power device often depends on the current value.
  • the imbalance between the voltage of the capacitor 462 and the voltage of the capacitor 463 can be balanced by various methods such as a method of adjusting the respective energizing currents and a method of moving charges using windings. Even in the case of windings with an odd number of phases, there are methods such as dividing the windings of one phase.
  • FIG. 54 shows an example of a drive circuit that requires this flywheel operation.
  • Transistors 466, 467, etc. are the same as in FIG. 53, and flywheel transistors 541, 543 are added.
  • the flywheel operation can be performed by turning on the transistor 541 or 543 during the flywheel operation.
  • Diodes 542 and 544 block reverse voltage and current.
  • FIG. 54 shows an example of DC power sources 545 and 546 instead of the capacitors 462 and 463 of FIG. 53 and 54, a DC power source such as a battery can also be used.
  • stator configuration in this case is not fitted with the permanent magnets PMsbi arranged between the stator poles. Alternatively, it is necessary to weaken the magnetic properties of the permanent magnets PMsbi.
  • Fig. 57 shows a cross-sectional view of a 10S18R motor as an example of a motor that can pass negative current in addition to positive current.
  • the motor shown in FIG. 57 has the stator magnet PMsbi in 10S18R shown in FIG. 38 and is changed from a motor driven by a unidirectional current to a motor driven by a positive and negative bidirectional current.
  • the current flows from the front side to the back side of the paper when the current value is positive.
  • current flows from the back side to the front side of the paper when the current value is positive.
  • the connections of the coil ends of each full-pitch winding are indicated by dashed lines.
  • FIG. 58 shows a linear expansion diagram of the operation of an example in which the above-mentioned problem of low torque is improved by changing the phase current of the 10S14R motor in FIG. 41 so that positive and negative values can be energized.
  • the outline and shape of the motor shown in FIG. 58 are such that the full-pitch winding shown in FIG. Also, as in FIG. 57, the permanent magnet PMsbi of the stator is not provided.
  • FIG. 58(a) shows the shape of the air gap surface in which the stator poles of a 10S14R five-phase motor are developed linearly. The polarities of the N and S poles of the magnetic poles are listed together with the phase names of A, B, C, D, and E for recognition and reference.
  • the region where CCW torque can be generated when the excitation current of the stator magnetic pole is reversed to a negative current is written with double bold lines such as B phase and B/phase.
  • CCW torque can be generated by six stator poles. Strictly speaking, the D-phase and D/phase can also generate CCW torque in terms of the motor model, but the remaining small rotation angle is confusing, so the double thick line is not drawn.
  • the B-phase and B/phase and E-phase and E/phase regions where CCW torque can be generated are drawn with double thick lines.
  • CCW torque can be generated by six stator poles by combining the thick line and the double thick line.
  • each of the six stator poles can generate CCW torque.
  • the 10S14R shown in FIG. 58 applies positive and negative currents to the concentrated windings, so there are twice as many chances of applying current as compared to the unidirectional current 10S14R shown in FIG.
  • each stator pole in FIG. 58 can produce torque most of the time.
  • the windings of the motor in FIG. 58 can be full-pitch windings. However, it is necessary to pay attention to the relationship with the excitation of the adjacent stator poles and the induced voltage in the full-pitch winding that is generated in relation to the magnetic flux components of other phases.
  • FIG. 55 shows an example of supplying a reverse current by adding a reverse driving circuit Drhv to the unidirectional driving circuit Dhv composed of the transistors 251 and 252 and the diodes 25C and 25D in FIG.
  • the transistors 551 and 552 and the diodes 553 and 554 surrounded by dashed circles are the reverse driving circuit Drhv, which is added to the unidirectional driving circuit of FIG.
  • FIG. 55 is a resulting drive circuit that conducts both positive and negative current.
  • Transistors 251, 551, 552, and 252 can be controlled to energize winding 555 with a positive current and a negative current Ixyz.
  • Reverse conducting diodes 553, 25D, 25C and 554 are connected in parallel to these transistors.
  • a positive current and a negative current Ixyz can be applied to the winding 555 by the transistors 547 and 548 in FIG. 549 and 54A are reverse conducting diodes.
  • the unidirectional driving circuit Dhv corresponds to the transistor 547 and the reverse conducting diode 54A
  • the reverse driving circuit Drhv corresponds to the transistor 548 and the reverse conducting diode 549.
  • FIG. 55 and 54 only one phase drive circuit is shown in FIGS. 55 and 54, the same drive circuit is added in parallel according to the number of phases to realize the entire motor drive circuit.
  • FIG. 56D Another example of a drive circuit for a 5-phase motor such as that shown in FIG. 58 is shown in FIG. 56D is a winding in which the A-phase winding and the A/phase winding are connected in series, and transistors 561 and 562 conduct the A-phase current Ia.
  • 56E is a winding in which a B-phase winding and a B/phase winding are connected in series, and transistors 563 and 564 conduct a B-phase current Ib.
  • 56F is a winding in which a C-phase winding and a C-phase winding are connected in series, and transistors 565 and 566 conduct a C-phase current Ic.
  • 56G is a winding in which a D-phase winding and a D/phase winding are connected in series, and transistors 567 and 568 conduct a D-phase current Id.
  • 56H is a winding in which the E-phase winding and the E/phase winding are connected in series, and the E-phase current Ie is passed through transistors 569 and 56A.
  • Transistors 56B and 56C are connected to the interconnections of the windings and conduct current Izz. When performing control so that the sum of the currents Ia, Ib, Ic, Id, and Ie of each phase is 0, the current Izz is 0, and the transistors 56B and 56C can be removed.
  • the drive circuit of FIG. 56 can also drive the current of a full-pitch winding. As for the number of phases, the drive circuit can be changed for the number of phases such as three phases and seven phases.
  • stator magnetic poles when positive and negative currents are passed through each winding, the polarity of the stator magnetic poles changes, so the polarity of the stator magnetic poles cannot be fixed as shown in FIG. 38, for example. Since the permanent magnets PMsbi between the stator poles shown in FIG. 38 are not attached, the stator poles are constructed as shown in FIG. In that case, if a certain stator magnetic pole is to be driven, the teeth next to it in the circumferential direction cannot be used as a magnetic path, and the motor configuration has a maximum magnetic flux density in the air gap portion compared to the motor configuration shown in FIG. As it decreases, the maximum torque is reduced. The same applies to 3-phase, 7-phase, and 9-phase motors.
  • stator configuration as shown in FIG. 57 without stator permanent magnets the maximum magnetic flux density near the air gap of the stator poles is increased by increasing the width of the stator teeth as shown in FIG. can also
  • a grain-oriented magnetic steel sheet, a super core, a permendur steel sheet, or the like can be used as the material of the tooth portion to increase the passing magnetic flux.
  • the 10S18R motor in FIG. 57 has full-pitch windings and can also operate as a vernier motor when current is applied in both positive and negative directions.
  • the 10S18R motor in FIG. 57 has a stator magnetic pole number Nps of 10 and is one of the motor configurations according to the equation (102).
  • Fig. 59 shows a linear development diagram showing the operation of the 10S18R motor in Fig. 57.
  • the linear development of FIG. 39 is supplemented with a double thick line for the range of stator poles that can be used for vernier drive by exciting the stator poles in the opposite direction to obtain CCW torque.
  • the linear development diagram of FIG. 59 is a diagram showing the possibility of each stator magnetic pole generating torque in the CCW direction, and does not show the type of winding and the current value.
  • (a) of FIG. 59 shows the shape of the stator poles facing the air gap portion in linear development.
  • the A-phase and A/phase stator poles are 387 and 388 in FIG.
  • the polarities of N and S are shown for reference, and the polarities are the polarities of the stator magnetic poles when a positive current is applied to each winding marked with a double circle in Fig. 57 for reference. ing.
  • the B-phase and B/phase stator poles are 389 and 38A in FIG.
  • the stator poles of phase C and phase C/ are 38B and 38C in FIG.
  • D-phase and D/phase stator poles are 38D and 38E in FIG.
  • the E-phase and E/phase stator poles are 38F and 38G in FIG.
  • FIG. 59 shows the shapes of the rotor magnetic poles of the N and S poles facing the air gap portion in linear development.
  • the positions indicated by the thick lines indicate the stator poles that can be excited in the positive direction (forward direction) to generate CCW torque.
  • the positions indicated by double thick lines indicate stator poles that can be excited in the negative direction (reverse direction) to generate CCW torque.
  • CCW torque can be obtained by exciting the four stator poles of the A phase, D/phase, B phase, and E/phase to the S pole.
  • CCW torque can be obtained by exciting the four stator poles of A/phase, D phase, B/phase, and E phase to the N pole.
  • the excitation current if a positive current Iac is applied to the AC phase winding 571 and a negative current Ice is applied to the CE phase winding 573, it can be excited to the state shown in FIG. 59(b).
  • Four magnetic flux components of positive A-phase magnetic flux ⁇ a, negative D-phase magnetic flux ⁇ d, positive B-phase magnetic flux ⁇ b, and negative E-phase magnetic flux ⁇ e act on eight stator poles to generate CCW torque.
  • CCW torque can be generated by either the positive current of the AC-phase winding 571 or the negative current of the CE-phase winding 573.
  • a negative current is added as the DA-phase current Ida and a positive current is added as the EB-phase current Ieb with the same magnitude, the D-phase magnetic fluxes ⁇ d and ⁇ b increase, and the CCW torque increases.
  • the BD phase current Idb affects the magnetic fluxes of each phase, they cancel each other out at this rotor rotation position, so in principle there is little effect on the torque.
  • CCW torque can be obtained by exciting the four stator poles of the E phase, C/phase, A phase, and D/phase to the S pole.
  • CCW torque can be obtained by exciting the four stator poles of the E/phase, C phase, A/phase, and D phase to the N pole.
  • the excitation current supplies a positive current Ibd to the BD phase winding 572 and a negative current Ida to the DA phase winding 574 .
  • CCW torque can be obtained by exciting the four stator poles of the D phase, B/phase, E phase, and C/phase to the S pole.
  • CCW torque can be obtained by exciting the four stator poles of the D/phase, B-phase, E/phase, and C-phase to the N pole.
  • a positive current Ice is applied to the CE phase winding 573 and a negative current Ieb is applied to the EB phase winding 575 .
  • Ieb negative current
  • CCW torque can be obtained by exciting the four stator poles of the C-phase, A/phase, D-phase, and B/phase to the S pole.
  • CCW torque can be obtained by exciting the four stator poles of C/phase, A phase, D/phase, and B phase to the N pole.
  • a positive current Ida is supplied to the DA phase winding 574 and a negative current Iac is supplied to the AC phase winding 571 .
  • CCW torque can be obtained by exciting the four stator magnetic poles of the B-phase, E/phase, C-phase, and A/phase to the S pole.
  • CCW torque can be obtained by exciting the four stator poles of B/phase, E-phase, C/phase, and A-phase to the N pole.
  • a positive current Ieb is applied to the EB phase winding 575 and a negative current Ibd is applied to the BD phase winding 572 .
  • the motor can be rotationally driven by energizing. It should be noted that there is not only one way to apply current, and as described above, it is also possible to modify and correct each applied current.
  • the magnetomotive force of each current is applied to four sets of eight stator poles, so four times the torque is generated with the same current compared to the method in which the excitation current is applied to each stator pole. It will be.
  • the induced voltage in the winding is also 4 times higher in the drawing of FIG. 59, but in principle it is 5 times higher.
  • the copper loss can be reduced to about 1/4 to 1/10 compared to when the stator poles are driven individually.
  • the waveform shape of each current it is necessary for each current to change with the rotation of the rotor. For example, as shown in FIG. There are no particular restrictions, and various waveforms can be formed. Further, when the number of revolutions increases, it becomes difficult to drive with a rectangular wave current due to restrictions such as winding inductance, and the current waveform becomes smoother, and even a sine wave alternating current may be used.
  • each current changes rapidly as the rotor rotates.
  • the current to be energized moves at a high speed from the right side to the left side in FIG. 59 as the rotor rotates CCW.
  • the rotor rotation angle ⁇ r rotates by 8°
  • the vernier current rotates by 72°.
  • the moving speed is 9 times the rotational speed of the rotor.
  • each phase current is 8° with respect to the rotor rotation angle ⁇ r.
  • each winding is interlinked with four magnetic flux components, and the winding inductance is large.
  • time constraints There are also time constraints. Therefore, when the motor of FIG. 57 is rotationally driven as a vernier motor, there are restrictions on high-speed rotation, and it is suitable for high-efficiency driving at low-speed rotation. High-speed rotation has limitations and problems related to the speed of current increase/decrease.
  • the winding inductance is reduced, the current controllability is improved, and the motor can be controlled up to a higher rotational speed.
  • it is desired to reduce the number of magnetic flux components to be excited to two, ⁇ a and ⁇ d it is possible to apply a positive current Iac to the AC phase winding 571 and a negative current Ibd to the BD phase winding 572 . Since the number of interlinking magnetic fluxes is reduced to two, the winding inductance is further reduced, improving current controllability and enabling control up to higher rotational speeds. In this manner, the excitation range can be changed by the applied current. There is also a method of changing the current value of two or more windings. It should be noted that the energized current can be similarly set for other rotor rotation angles .theta.r in FIG.
  • the magnitude of the magnetic flux generated by the rotor magnetic poles that are basically not excited is small.
  • the magnetic flux components of the rotor magnetic poles that are not excited cause little adverse effects.
  • the phases of the sine wave currents of the five phases should be set so that the phases of the magnetomotive forces of the respective phase currents substantially coincide with those in the description of FIG. 57 and 59 show an example of driving a 5-phase motor as a vernier motor, but motors of 3-phase, 7-phase, 9-phase, etc. can also be driven in the same way.
  • the effect of increasing the efficiency of vernier motors is great for multi-phase motors such as 7-phase and 9-phase motors.
  • the 10S18R motor shown in FIG. 57 is driven with high efficiency as described in FIG. It is a motor that drives As described above, the 10S18R motor in FIG. 57 can be driven as described in FIG. 59 with high efficiency. However, it is necessary to increase and decrease the current of each phase at high speed, and the winding inductance also increases. On the other hand, in the motor configuration of FIG. 38 and the linear development of FIG. A method of driving by excitation with nodal windings was presented. Although the number of stator magnetic poles that generate torque is as small as four, this method utilizes most of the windings and most of the stator magnetic paths for driving, and the magnetic flux density in the air gap can be increased.
  • the drive circuit in FIG. 60 can drive the 10S18R motor in FIG. 57 as a vernier motor as described in FIG. be able to.
  • the vernier motor in the positive/negative current drive mode of FIG. 59, the vernier motor can be driven with high efficiency in the low speed rotation region, and in the unidirectional current drive mode of FIG. 39, the high speed rotation region can also be driven.
  • the drive mode of FIG. 39 can also drive in the low speed rotation region.
  • the drive circuit of FIG. 60 is a 7-phase drive circuit for the motor of FIG. 34, but the drive circuit of FIG. It is a circuit with added transistors so that it can drive current.
  • the drive circuit in FIG. 60 is a drive circuit in which the number of stator magnetic pole pairs of 10S18R in FIG. is. 60A supplies the AC phase current Iac with the AC phase full-pitch winding of FIG. 60B supplies DA-phase current Ida with the DA-phase full-pitch winding shown in FIG.
  • the drive mode of positive and negative bidirectional currents will be described.
  • the transistor at 609 is turned off.
  • the AC phase winding 60A can freely pass positive or negative current through transistors 601, 602, 603 and 604.
  • FIG. The DA-phase winding 60B can also freely pass positive or negative current through transistors 605, 606, 607, and 608.
  • 60F indicated by the dashed-dotted line in FIG. 60 is a drive circuit similar to 60E surrounded by the dashed-dotted line, and includes the BD phase winding and the EB phase winding of FIG. , a positive or negative current can be applied freely to the BD-phase winding and the EB-phase winding.
  • 60G indicated by a dashed line includes the CE phase winding and the second AC phase winding of FIG. Either positive or negative current can be passed through the phase windings at will.
  • 60H indicated by a dashed line includes the second DA-phase winding and the second BD-phase winding in FIG. A positive or negative current can be applied freely to the winding and the BD phase winding.
  • 60J indicated by a dashed line includes the second EB-phase winding and the second CE-phase winding in FIG. Positive or negative current can be applied freely to the winding and the CE phase winding.
  • each stator magnetic pole is individually driven with a unidirectional DC current.
  • two full-pitch windings that excite the stator poles are connected in series as in the drive shown in FIG. ) to cancel the induced voltage due to the change in the magnetic flux of the other phases, thereby making the phases less susceptible to the influence of the other phases.
  • a specific method for the individual drive mode of the stator poles by this unidirectional current is to turn on the transistor 609 in FIG. 60 and turn off the transistors 602, 603, 604, 605, 606, and 607. Then, the AC phase current Iac, which is the unidirectional current of equation (80), is applied to the AC phase winding 60A by the transistor 601, and the DA phase current Ida, which is the unidirectional current of the equation (83), is applied to the DA phase winding by the transistor 608.
  • Energize line 60B. 60F indicated by a dashed line in FIG. 60 is a drive circuit similar to 60E surrounded by a dashed line, includes the BD phase winding and the EB phase winding in FIG.
  • Transistors corresponding to 603, 604, 605, 606 and 607 are turned off. Then, as individual drive modes using unidirectional currents, the BD-phase current Ibd of equation (81) is applied to the BD-phase winding, and the EB-phase current Ieb of equation (84) is applied to the EB-phase winding.
  • 60G indicated by a dashed line includes the CE phase winding and the second AC phase winding in FIG. 80) Apply the AC phase current Iac of the formula to the AC phase winding.
  • 60H indicated by the dashed-dotted line includes the second DA-phase winding and the second BD-phase winding in FIG.
  • the BD phase current Ibd of the equation (81) is supplied to the BD phase winding.
  • 60J indicated by the dashed-dotted line includes the second EB-phase winding and the second CE-phase winding in FIG.
  • the CE phase current Ice of the equation (82) is supplied to the CE phase winding.
  • the transistor 601 in FIG. 60 corresponds to the transistor 351 in FIG. 35
  • the transistor 608 corresponds to the transistor 352 in FIG.
  • transistors and diodes indicated by dashed circles in FIG. 60 are added in comparison with the drive circuit of FIG. 35 in order to allow both positive and negative currents to flow.
  • circuit elements not marked with dashed circles are shared by the two drive modes.
  • the drive circuit of FIG. 60 is not limited to the 10S18R shown in FIG. It is also possible to transform it so as to reduce it by nearly half. Further, the drive circuit of FIG. 60 can also use the transistors 604 and 605 together in the individual drive modes using the one-way current. Other variations are also possible.
  • both positive and negative currents are applied to each full-pitch winding of the motor of FIG. High efficiency drive with little loss is possible.
  • the individual drive mode of the stator poles by one-way current it is possible to drive at high speed rotation and output large torque for a short period of time.
  • the motor shown in FIG. 57 using the drive circuit shown in FIG. 60 can be driven from large torque at low speed to high speed rotation by making full use of two drive modes.
  • the typical needs for the main engine motor of an electric vehicle are that high torque is required at low rotation speed when climbing a steep slope, and high-efficiency drive at relatively low rotation speed is required when driving in urban areas. Rapid acceleration/deceleration and high-speed rotation are also required for normal driving and expressways.
  • transmissions for electric vehicles are desired to have a simple configuration in terms of weight, space, and cost.
  • FIG. 61 shows an example of a configuration using a member with a large maximum magnetic flux density as the soft magnetic material near the air gap. This is a method of increasing the maximum magnetic flux density in the air gap and its vicinity to increase the maximum torque of the motor. At the same time, it is also a method of reducing motor iron loss and preventing an increase in motor cost.
  • FIG. 61 shows an enlarged view of the upper right portion of the 14S26R motor shown in FIG. 34, which corresponds to the first quadrant. 611 is a stator and 612 is a rotor shaft. 613 is the N magnetic pole of the stator, and 615 is a permendur steel plate used near the air gap at the tip of the magnetic pole.
  • 614 is the S magnetic pole of the stator
  • 616 is a permendur steel plate used near the air gap at the tip of the magnetic pole.
  • 617 is the S magnetic pole of the rotor
  • 617 is a permendur steel plate used near the air gap at the tip of the magnetic pole.
  • 614 is the N magnetic pole of the rotor
  • 618 is a permendur steel plate used near the air gap at the tip of the magnetic pole.
  • 619, 61A, 61B and 61C are permanent magnets similar to those in FIG.
  • 61D is an electromagnetic steel plate that constitutes main parts such as the back yoke of the stator.
  • 61E is an electromagnetic steel plate that constitutes the main parts such as the back yoke of the rotor.
  • These magnetic steel sheets are laminated to form a core, which is used as a motor component, and is subjected to additional machining and assembly.
  • the effect of increasing the magnetic flux of the rotor magnetic poles by utilizing the adjacent magnetic paths in the circumferential direction of the acting rotor magnetic poles is utilized.
  • the magnetic flux concentrates in a limited area near the air gap of the rotor magnetic poles, but when excited by a large current, the magnetic flux is concentrated and exceeds the saturation magnetic flux density of the soft magnetic material.
  • a large magnetomotive force [A ⁇ turn] is required to excite the magnetic saturation part, and the magnetomotive force necessary for the permanent magnets around it, that is, the magnet characteristics and thickness [A/m ⁇ m] are required.
  • FIG. 61 shows a method of mitigating such high magnetic flux density problems.
  • Permendur steel plates 615, 616, 617 and 618 are used at the tips of the magnetic poles near the air gap between the rotor and stator. Since permendur has a high saturation magnetic flux density, the above-mentioned excitation load can be reduced. Permendur has a saturation magnetic flux density of about 2.4 [T], and can pass a large magnetic flux as a currently available soft magnetic material. . Also, for applications with severe cost constraints, the size can be further reduced from FIG.
  • the motors of the present invention such as those shown in FIGS. 34 and 61 are also required to reduce iron loss when the rotor speed increases. Especially when the number of magnetic poles of the rotor is large, there is a problem of increased iron loss.
  • the iron loss of amorphous steel sheets or laminated cores is known to be as small as 1/5 or 1/10 of that of conventional electromagnetic steel sheets.
  • 61D and 61E in FIG. 61 can be used as a low core loss soft magnetic material. With the configuration of FIG. 61, iron loss is small even at high speed rotation, high efficiency, and large torque can be realized.
  • High-speed power devices such as power MOSFETs, SiC, and GaN can be expected as power devices.
  • various materials can be used as the soft magnetic material.
  • Amorphous steel sheets have low iron loss, but their saturation magnetic flux density is a little low at about 1.5 [T], and their plate thickness is as thin as 25 [ ⁇ m], so strength measures are necessary.
  • the permendur steel plate has a high maximum magnetic flux density of about 2.4 [T], but its thickness is as thin as 0.1 [mm], so strength measures are required.
  • 6.5% silicon electromagnetic steel sheets known as supercores are also available on the market. mm], so strength measures are necessary.
  • Grain-oriented electrical steel sheets can also be used in the teeth of the stator to increase magnetic flux density and reduce core losses.
  • FIG. 62 is an example of a vertical cross-sectional view of AA-BB indicated by a two-dot chain line in FIG. 621 is a rotor shaft, 622 is a rotor, and 623 is a stator. 625 and 627 are composed of a plurality of layers of soft magnetic material that can obtain a relatively high strength. is doing.
  • 624 and 626 are, for example, laminates of amorphous steel plates with small iron loss.
  • 628 and 629 are, for example, laminates of permendur steel plates with a large saturation magnetic flux density.
  • the soft magnetic member 627 may be thinner or may be a different member.
  • the number of phases of the motor can be multiphased to 5 phases, 7 phases, 9 phases, 11 phases, etc., and can be transformed.
  • the number of rotor poles can also be selected.
  • the stator winding may be configured as distributed winding, short-pitch winding, toroidal winding (annular winding), or the like.
  • superconducting windings can be used for the windings in applications that require large torque or in applications that require minimization of loss.
  • the form of the motor it is possible to select a motor form such as an outer rotor type motor, an axial gap type motor, or a linear motor.
  • a motor form such as an outer rotor type motor, an axial gap type motor, or a linear motor.
  • toroidal winding annular winding
  • the coil end length in the rotor axial direction can be expected to have the effect of shortening
  • the Toroidal winding annular winding
  • it can also be wound electromagnetically equivalent to the full-pitch winding.
  • various permanent magnets can be used, and it is possible to change the magnetic properties of the magnet during use. It is also possible to change the magnet with a motor current or use a dedicated device. Also, the permanent magnet can be replaced by applying an excitation current as a soft magnetic material and an excitation winding. It is also possible to utilize sensorless position detection technology that utilizes the fact that the induced voltage and magnetic characteristics of each winding change with the rotation of the rotor. In addition, in order to reduce motor torque ripple, vibration, and noise, deformation that moves some of the rotor magnetic poles in the circumferential direction, i.e., moving the electrical angle position of the permanent magnets near the outer circumference of the rotor in the circumferential direction. It is also possible to make such a transformation.
  • the motor structure may be such that priority is given to one-way torque.
  • the power control element has been described as an example of a transistor, various power control elements such as IGBTs, power MOSFETs, GaN semiconductors, and SiO semiconductors can be used. Techniques obtained by applying or modifying these are also included in the present invention.
  • the motor can be driven with a larger magnetic flux, and the magnetic flux density in the air gap can be increased, so the torque can be increased.
  • it is possible to reduce copper loss, improve efficiency, reduce size, and reduce costs. Therefore, it can be used for motors for main machines of electric vehicles, industrial motors, home appliance motors, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)
  • Control Of Ac Motors In General (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Magnet Type Synchronous Machine (AREA)
  • Synchronous Machinery (AREA)

Abstract

【課題】モータトルクの向上 【解決手段】N極とS極のロータ磁極を円周方向に交互に配置し、N極のロータ磁極とS極のロータ磁極の間にそれらの極性方向に向いた永久磁石を配置し、前記各ロータ磁極は円周方向隣のロータ磁極を通る磁束を活用してより多くの磁束を供給できる構成として、片方向電流で励磁するN極ステータ磁極とS極ステータ磁極を円周方向に交互に配置し、所望方向のトルク発生が可能なステータ磁極を駆動してロータを回転駆動するモータ。 

Description

モータ
 地球環境の問題などから、化石燃料などを自然エネルギーへ置き換える動きがある。そして、ガソリンエンジン駆動などがモータ駆動に置き換えられる傾向にあり、モータとその駆動装置の重要性が増している。本発明は、電気自動車EVの主機用モータ、家電用モータ、産業機械用モータ、および、その駆動技術などに関わるものである。モータ高トルク化、高効率化、小型化、軽量化、低コスト化等に関わる。
 なお、従来のモータと駆動装置は3相交流、正弦波電圧と電流など、従来のモータ技術、従来の電力素子および制御技術を引き継いでいて共通であることが多いので、モータと駆動装置はそれぞれに分けて議論されることもあった。しかしながら、新たな可能性を追求する場合、新たなモータと新たな駆動回路と新たな制御技術との密接な組み合わせで実現できることがある。本発明のモータは市販の3相インバータで駆動できるものではなく、モータと駆動回路と制御が組み合わされて、高トルク化、高効率化、小型化、軽量化、低コスト化を実現する。
 図63に従来の3相のスイッチトリラクタンスモータの横断面図の例を示す。639はステータであり、3相のステータで、6個の突極状のステータ磁極を備えている。63Bはロータ軸である。63A、63Fなどはロータの突極磁極で、円周方向幅は30°で、全周の4か所に等間隔に配置している。631はA相のステータ磁極で、A相の集中巻巻線637をコイルエンド部の2重線で示すように巻回している。このモータの各巻線の電流は片方向電流で、各巻線を電流シンボルで示し、電流の流れる方向を示している。X文字形状を丸で囲ったマークは紙面の表側から裏側へ流れるA相電流Ia、黒丸を丸で囲ったマークは紙面の裏側から表側へ流れるA相電流Iaを通電する。従って、電流を通電する時は、A相のステータ磁極631はS極となる。632はA相とは逆相の関係となるA/相のステータ磁極で、A/相の集中巻巻線638をコイルエンド部の2重線で示すように巻回している。A/相の巻線へもA相電流Iaを通電し、A/相のステータ磁極632はN極となる。631と632を同時を励磁してロータに矢印63Eで示すA相の磁束成分φaを、紙面の下側から上側へ、ステータ磁極632、ロータ磁極63F、ロータ磁極63A、ステータ磁極631へ通過させ、φaはステータのバックヨークを通って一巡する。図63の状態では、ロータに反時計回転方向CCWのトルクが発生する。
 同様に、633はB相のステータ磁極で、集中巻き巻線63Cを巻回し、B相電流Ibを通電する。634はB/相のステータ磁極で、集中巻き巻線63Dを巻回し、B相電流Ibを通電する。ステータ磁極634から633へ通過するB相の磁束はφbである。635はC相のステータ磁極で、集中巻き巻線63Gを巻回し、C相電流Icを通電する。636はC/相のステータ磁極で、集中巻き巻線63Gを巻回し、C相電流Icを通電する。ステータ磁極636から635へ通過するC相の磁束はφcである。各ステータ磁極の円周方向幅は30°で、全周の6か所に等間隔に配置している。なお、各ステータ磁極のA相などの名称を、分かり易くするため、ステータ639の外側に括弧付きで(A)のように示している。
 次に、図63のスイッチトリラクタンスモータの動作について説明する。ロータの回転位置について、A相のステータ磁極631の時計回転方向端の回転位置をロータの始点と定義する。ロータ回転角θrは、図示するように、この始点からロータ磁極63AのCCW方向端部までの回転角とする。
 次に、図63のスイッチトリラクタンスモータをCCWへ回転する動作について説明する。ロータ回転角θrが0°から30°の間は、A相とA/相の電流Iaを通電してCCWのトルクを発生する。θrが30°から60°の間は、B相とB/相の電流Ibを通電してCCWのトルクを発生する。θrが60°から90°の間は、C相とC/相の電流Icを通電してCCWのトルクを発生する。これらのA相、B相、C相の動作を4回繰り返して、ロータが1回転する。
 次に、図63のスイッチトリラクタンスモータのA相とA/相へ一定のA相電流Iaを通電した状態の発生トルクの例について、図64に示し説明する。横軸はロータ回転角θrであり、-5°から30°まで示している。縦軸はトルクTの相対値である。例えば、図63において、A相電流Iaが連続定格電流の場合には、ロータ磁極63AがA相ステータ磁極631にまだ対向する前のθr=-5°の辺りから図64の実線のようにトルクが発生し、θr=0°の近傍では大きなトルクが発生し、θr=15°を過ぎると次第にトルクが低下する。A相電流Iaが連続定格電流の2倍の値では図64の破線のように、3倍の値では一点鎖線のように、トルクのピーク値は増加するが、トルクを発生する角度幅が相対的に低下する。このトルク幅の低下の原因は、ステータ磁極とロータ磁極のエアギャップ部とその前後周辺の漏れ磁束の分布、および、ステータの歯の磁気飽和、ロータの歯の磁気飽和が関わっている。
 図63の従来スイッチトリラクタンスモータの優れている点として、ロータが単純構造で堅牢であるため、高速回転が容易であることが挙げられる。また、永久磁石を使用せずに駆動することができる。リラクタンス力である吸引力によりトルクを発生し、駆動アルゴリズムが比較的単純である。ステータ巻線も突極への集中巻き構成で、簡素であり製作が容易である。そして、高価な希土類永久磁石が不要なので、低コストにモータシステムを構成できる。
 次に、図63の従来スイッチトリラクタンスモータの問題点について説明する。第1の問題点は、大きなトルクを生成する場合に、ステータの歯およびロータの歯で磁気飽和が発生してトルク定数が低下することである。第2の問題点は、全巻線を1/3を利用して順次トルクを発生するので、巻線の利用率が33%と低く、相対的に巻線抵抗が大きくなり、銅損が大きいことである。各相の磁束を励磁する励磁負担も大きい。他の永久磁石型のモータ等に比較して、モータが大型化し易い。第3の問題点は、大きなトルクを生成する場合に、部分的にトルク飽和が発生して、結果的にインバータが大型化することである。第4の問題点は、他の永久磁石型のモータ等に比較して、トルクリップルが大きくなり易く、また、ステータとロータ間の吸引力の変動に伴う振動や騒音が大きいことである。
特許第3157162号 特開2020-025377
平成28年電気学会産業応用部門大会論文誌、3_36(式1)
 本発明では、ロータに永久磁石を使用して、順方向へ通過可能な磁束を大幅に増加するロータ磁極を実現しできるロータ磁極を実現し、同時に、逆方向への磁束の通過が少ないロータ磁極で構成するモータを提案する。その結果、トルクを増加し、モータの効率向上、小型化を実現する。また、ステータへも永久磁石を使用して、順方向へ通過可能な磁束を大幅に増加するステータ磁極を実現し、同時に、逆方向への磁束の通過が少ないステータ磁極を実現する。そして、ロータ側とステータ側の両方で、通過磁束を増加することにより、エアギャップ部の磁束密度が2[T]を超える大きな値も実現可能とし、トルクの増大、ステータ巻線の銅損の低減を実現する。その結果、モータの小型化、軽量化、低コスト化を実現できる。また、モータの構成方法として、ステータ磁極数とロータ磁極数の組み合わせについて、適正化を行い、巻線と駆動トランジスタの利用率を向上し、モータとインバータの小型化、低コスト化を実現する。その他、各部形状の適正化技術、磁性材料の組み合わせ技術についても提案する。
 
 請求項1に記載の発明は、ステータの円周方向に配置する複数のステータ磁極Psと、前記各ステータ磁極Psの間の各スロットSLsと、前記スロットSLsに配置し前記の各ステータ磁極Psを励磁するステータ巻線Wsと、前記各ステータ巻線Wsへ片方向の電流を駆動できるそれぞれの片方向駆動回路Dhvと、ロータの円周方向に配置した複数のN極ロータ磁極Prnと、ロータの円周方向に前記N極磁極Prnと交互に配置した複数のS極ロータ磁極Prsと、ロータ共通のバックヨークから前記各N極のロータ磁極Prnへ磁気的につながる軟磁性体の磁路MPrnと、ロータ共通のバックヨークから前記各S極のロータ磁極Prsへ磁気的につながる軟磁性体の磁路MPrsと、円周方向に並ぶ前記磁路MPrnと前記磁路MPrsの間に、両ロータ磁極PrnとPrsの極性と磁極の向きが一致するように配置する永久磁石PMrbiとを備えるモータの構成である。
 この構成によれば、励磁して作用するロータ磁極へ大きな磁束を作用できるので、大きなトルクを発生できる。
 請求項2に記載の発明は、請求項1において、前記ステータ磁極PsはN極とS極が円周方向に交互に配置して、N極として作用するN極ステータ磁極Psnと、前記N極ステータ磁極Psnと円周方向に交互に配置して、S極として作用するS極ステータ磁極Pssと、円周方向に並ぶ前記N極ステータ磁極Psnと前記S極ステータ磁極Pssの間に、両ステータ磁極PsnとPssの極性と磁極の向きが一致するように配置する永久磁石PMsbiとを備えるモータの構成である。
 この構成によれば、励磁して作用するステータ磁極とロータ磁極Prn、Prsへ大きな磁束を作用できるので、大きなトルクを発生できる。
 請求項3に記載の発明は、請求項1において、前記ステータ磁極巻線Wsは各ステータ磁極Psのそれぞれを励磁する集中巻きの巻線Wscpのモータ構成である。
 この構成によれば、各ステータ磁極巻線Wsを他のステータ磁極の制御状態に影響されることが少なく、自在に励磁してロータを駆動できる。
 請求項4に記載の発明は、請求項1において、前記ステータ磁極巻線Wsは巻線ピッチがステータの磁極対周期のほぼ1/2の全節巻きステータ巻線Wsfpのモータの構成である。
 この構成によれば、作用するステータ磁極の励磁電流成分と、円周方向隣のステータ磁極の励磁電流成分とが同一方向電流成分となって重ならないように制御すれば、スロット内の銅損を約1/2に低減できる。
 請求項5に記載の発明は、請求項1において、Nps=2+4×NsとなるNps個の前記ステータ磁極Psと、Npr=2+4×Nrとなり、合計Npr個の前記N極ロータ磁極Prnと前記S極ロータ磁極Prsを備えるモータの構成である。ここで、Ns、Nrは1以上の整数とする。
 この構成によれば、N極ステータ磁極Psn、S極ステータ磁極Pss、各ステータ巻線、N極ロータ磁極Prn、S極ロータ磁極Prsを円周方向に均等に配置できるので、トルク発生効率が高く、モータの製作性にも優れる。
 請求項6に記載の発明は、請求項1において、前記複数のステータ磁極Psの相数がNphで、ロータ円周方向に交互に配置する前記N極磁極PrnとS極磁極Prsのロータ磁極ピッチをθpprとして、ロータ磁極に対する位相が(2×θppr)/Nphずつ異なるNph個のステータ磁極をステータの円周方向に部分的に備えるモータの構成である。ここで、Nphは2以上の整数である。
 この構成によれば、2相、3相などのモータ構成を円周方向に均等な配置でなくても実現可能であり、意図する特定の特性が得られる。
 請求項7に記載の発明は、請求項1において、前記ステータ磁極Psのエアギャップ部に面する磁極の円周方向長さをLsgとし、前記ステータ磁極Psの歯の一部の円周方向幅がLsgより20%以上大きい値のモータ構成である。
 この構成によれば、ステータ磁極を通過する磁束の制約を低減できるので、モータトルクを増加できる。
 請求項8に記載の発明は、請求項1において、前記ステータ磁極PsのN極磁極PsnとS極磁極Pssのエアギャップ部近傍に、ステータ磁極の極性の向きが一致するように配置する永久磁石PMssurを備えるモータ構成である。
 この構成によれば、磁束を励磁する負担を低減でき、即ち、磁束を励磁する無効電流を低減でき、電源とモータとの間で行われる磁気エネルギーの出入りに起因する電圧の弊害を低減できる。
 請求項9に記載の発明は、請求項4において、前記ステータ磁極Psの数はNkb×N1で、それらの内、円周方向に並ぶステータ磁極Ps1、Ps2、Ps3、Ps4、Ps5と、前記ステータ磁極Ps1とPs2の間に位置するスロットSLs1と、前記ステータ磁極Ps2とPs3の間に位置するスロットSLs2と、前記ステータ磁極Ps3とPs4の間に位置するスロットSLs3と、前記ステータ磁極Ps4とPs5の間に位置するスロットSLs4と、ステータの磁極対周期のほぼ1/2離れた2つのスロット間に巻回する全節巻き巻線であって、前記スロットSLs1に配置する全節巻き巻線Wsfp1と、同様に、前記スロットSLs2に配置する全節巻き巻線Wsfp2と、同様に、前記スロットSLs3に配置する全節巻き巻線Wsfp3と、同様に、前記スロットSLs4に配置する全節巻き巻線Wsfp4と、円周上に交互に配置するN極とS極のロータ磁極をNkb×N2個以上備えるロータと、前記全節巻き巻線Wsfp1に直列に接続したトランジスタTR1と、前記全節巻き巻線Wsfp2に直列に接続したトランジスタTR2と、前記全節巻き巻線Wsfp3に直列に接続したトランジスタTR3と、前記全節巻き巻線Wsfp4に直列に接続したトランジスタTR4とを備え、前記トランジスタTR1は前記全節巻き巻線Wsfp1へ直流電流Isfp1を通電し、前記全節巻き巻線Wsfp1と前記全節巻き巻線Wsfp2と前記トランジスタTR2とを直列に接続し、前記トランジスタTR2は前記全節巻き巻線Wsfp2へ直流電流Isfp2を通電し、前記全節巻き巻線Wsfp2と前記全節巻き巻線Wsfp3と前記トランジスタTR3とを直列に接続し、前記トランジスタTR3は前記全節巻き巻線Wsfp3へ直流電流Isfp3を通電し、前記全節巻き巻線Wsfp3と前記全節巻き巻線Wsfp4と前記トランジスタTR4とを直列に接続し、前記トランジスタTR4は前記全節巻き巻線Wsfp4へ直流電流Isfp4を通電し、前記の直列に接続した各全節巻き巻線と各トランジスタTR1、TR2、TR3、TR4で各励磁電流を通電して各ステータ磁極Ps1、Ps2、Ps3、Ps4、Ps5を励磁し、モータの前記全節巻き巻線の数が3個の場合は全節巻き巻線Wsfp1と全節巻き巻線Wsfp4とは同一の巻線であって、前記全節巻き巻線Wsfp3と前記全節巻き巻線Wsfp1とを並列に配置して前記トランジスタTR4へ接続して直流電流を通電するモータである。ここで、Nkbはステータの磁極対の数であって1以上の整数で、N1は6以上の整数で、N2は6以上の整数である。
 この構成によれば、特定のステータ磁極をその励磁電流成分で正確に励磁することが可能で、その励磁電流成分が他相のステータ磁極を影響を与えることなく、また、他の相の鎖交磁束を直列接続する2個の巻線で相殺し、他の相の磁束の影響を最小限にして電流を通電、制御できる。
 請求項10に記載の発明は、請求項1において、前記ステータ巻線Wsの各相巻線へ、その運転状況に応じた磁束励磁電流の成分を連続的に通電する、あるいは、ステータの各スロットに磁束励磁巻線を巻回して直列接続し磁束励磁電流を通電するモータの構成である。
 この構成によれば、電源とモータとの間の磁気エネルギーの出入りが定電流を通電し続けることにより自動的に行われ、特に磁気エネルギーを回生するときの大きな磁束変化、即ち、過大電圧を低減できるので、他の相の電流制御に与える弊害を低減できる。
 請求項11に記載の発明は、請求項1において、直流電源POS2と、前記直流電源POS2と直列に配置した直流電源POS3と、前記直流電源POS2と前記直流電源POS3と間の中間電位部TYVと、前記直流電源POS2へ接続したトランジスタTR7と、前記トランジスタTR7と前記中間電位部TYVとの間に配置した巻線Ws2と、前記直流電源POS3へ接続したトランジスタTR8と、前記トランジスタTR8と前記中間電位部TYVとの間に配置した巻線Ws3とを備え、前記各ステータ巻線Wsへ前記直流電源POS2と前記直流電源POS3を使用して電流を通電するモータの構成である。
 この構成によれば、一つの直流電流を1個のトランジスタで駆動できるので、特に、制御する電流の数が多い場合は、スペース、コストの点で効果的である。
 請求項12に記載の発明は、請求項1において、逆方向駆動回路Drhvを備え、前記ステータ巻線Wsの正の電流成分へ、前記逆方向駆動回路Drhvにより負の電流成分を加えて通電するモータの構成である。
 この構成によれば、正と負の両方向電流を通電できるので、トルクを発生する機会が2倍になり、モータトルクを増加し、モータ効率を改善できる。
 請求項13に記載の発明は、請求項1において、一つのステータ磁極Psv1の隣のスロットSlsvへ配置する全節巻き巻線Wsfpv1へIsfpv1の電流成分を通電し、前記ステータ磁極Psv1の前記スロットSlsvとは反対方向に2個以上離れたスロットに配置される1個あるいは複数の全節巻き巻線WsfpvNへ(-Isfpv1)の電流成分の一部あるいは全部を通電するモータの構成である。
 この構成によれば、バーニアモータとして動作し、モータの銅損低減、高効率化できる。
 請求項14に記載の発明は、請求項13において、低速回転の時には、ステータ磁極PsvNをIsfpv1の電流成分と円周方向に2個以上離れたスロットに配置される1個あるいは複数の全節巻き巻線WsfpvNの電流成分(-Isfpv1)とで励磁し、高速回転の時には、前記ステータ磁極PsvNの円周方向両隣の全節巻き巻線WsfpvFとWsfpvRとを直列に接続して、前記ステータ磁極PsvNを励磁する電流成分IsvNを通電するモータの構成である。
 この構成によれば、低速回転ではバーニアモータとして高トルク、高効率な特性として回転、駆動し、高速回転では各ステータ磁極を個別に励磁して駆動し、この時、他の相の磁束の影響が少なく、大きなトルクも出力できる。
 請求項15に記載の発明は、請求項1において、ロータの主な磁気回路を軟磁性体MagAの部材で構成し、ロータの前記N極のロータ磁極Prnと前記S極のロータ磁極Prsのエアギャップ部近傍に、前記軟磁性体MagAより飽和磁束密度が大きい軟磁性体MagBの部材を使用するモータの構成である。
 この構成によれば、複数の種類の軟磁性体の特長を組み合わせてより効果的に活用してモータを構成する。例えば、軟磁性体MagAに低鉄損だが飽和磁束密度は低いアモルファス電磁鋼板とし、軟磁性体MagBの飽和磁束密度の大きいが高価で鉄損の大きいパーメンジュール電磁鋼板を使用して、高速回転まで高効率で運転でき、最大トルクの大きいモータを実現できる。
 本発明は、永久磁石を活用した新たなロータ磁極の提案、永久磁石を活用した新たなステータ磁極の提案を行うもので、エアギャップ部の磁束密度を高め、モータトルクの増大、ステータの銅損低減を実現することにより、モータの小型化、軽量化、低コスト化を実現できる。
本発明モータの断面図 磁束成分を示す断面図 磁束成分を示す断面図 磁束成分を示す断面図 磁束成分を示す断面図 軟磁性体の励磁電流と磁束密度 断面の直線展開図 断面の直線展開図 断面の直線展開図 断面の直線展開図 断面の直線展開図 動作を示す直線展開図 電流波形の例 本発明モータの断面図 断面の直線展開図 断面の直線展開図 断面の直線展開図 断面の直線展開図 断面の直線展開図 断面の部分拡大図 ロータ磁極が40個のロータ断面図 ロータ断面の部分拡大図の例 本発明モータの断面図 電流波形と電圧波形 片方向電流の駆動回路例 全節巻きのモータ断面図 全節巻きで2極対のモータ断面図 電流波形と電圧波形の例 3相の全節巻きモータの駆動回路例 内外径に2重構造の複合モータ 動作を示す直線展開図 本発明モータの断面図 7相の動作を示す直線展開図 2極対の本発明モータの断面図 7相の全節巻きモータの駆動回路例 7相の全節巻きモータの電流波形の例 動作を示す直線展開図 5相の本発明モータの断面図 動作を示す直線展開図 5相の全節巻きモータの電流波形の例 動作を示す直線展開図 2相の本発明モータの断面図 動作を示す直線展開図 エアギャップに面するステータ磁極とロータ磁極の形状拡大図 2相の集中巻きモータの電流波形 2相の集中巻きモータの駆動回路例 ステータの歯の形状の部分拡大図 ステータの歯の先端部形状の例 永久磁石の起磁力Hと磁束密度Bの特性例 7相の全節巻きモータの駆動回路例 3相の全節巻きモータの駆動回路例 3相の電流波形と電圧波形の例 2個の電源を備える片方向電流の駆動回路の例 フライホイール電流の駆動回路 逆方向駆動回路を追加した駆動回路の例 5相のモータの駆動回路例 5相の本発明モータの断面図 5相の動作を示す直線展開図 5相の動作を示す直線展開図 5相の全節巻きモータへ両方向電流と片方向電流を供給する駆動回路 ステータとロータの磁極先端部へ異なる特性の軟磁性体を配置する例 極薄の電磁鋼板を使用する場合のモータ構造を示す縦断面図例 従来のスイッチトリラクタンスモータの断面図 トルク特性の例
 本発明の請求項1の実施例を図1に示す。モータの横断面図である。17はステータであり、その外側の円形の外周部はステータのバックヨークである。11はA相のステータ磁極で、1AはA相巻線である。このA相巻線1Aは集中巻き巻線で、そのコイルエンド部を2重線でシンボル的に示している。このモータの各巻線の電流は片方向電流で、各巻線を電流シンボルで示し、電流の流れる方向を示している。X文字形状を丸で囲ったマークは、紙面の表側から裏側へ流れるA相電流Ia、黒丸を丸で囲ったマークは、紙面の裏側から表側へ流れるA相電流Iaを通電する。従って、A相のステータ磁極11は、A相電流Iaを通電する時にはS極となる。14はA/相のステータ磁極で、2重線でコイルエンド部を示す集中巻きA/相巻線の1Dを巻回している。このA/相巻線1Dには片方向電流である前記A相電流Iaを通電し、A/相のステータ磁極14はN極となる。通常、A相巻線1AとA/相巻線1Dには、同一のA相電流Iaを通電し、A相のステータ磁極11とA/相のステータ磁極14との間にA相磁束φaを生成する。このA相磁束φaはステータのバックヨークを通って一巡する。
 同様に、13はB相のステータ磁極で、集中巻き巻線1Cを巻回していて、片方向電流であるB相電流Ibを通電する。B相のステータ磁極13は、B相電流Ibを通電する時にはS極となる。16はB/相のステータ磁極で、集中巻きB相巻線1Fを巻回している。このB/相巻線1FにはB相電流Ibを通電し、B/相のステータ磁極16はN極となる。B相巻線1CとB/相巻線1Fには、同一のB相電流Ibを通電し、B相のステータ磁極13とB/相のステータ磁極16との間にB相磁束φbを生成する。このB相磁束φbはステータのバックヨークを通って一巡する。
 同様に、15はC相のステータ磁極で、集中巻きC相巻線1Eを巻回していて、片方向電流であるC相電流Icを通電する。C相のステータ磁極15は、C相電流Icを通電する時にはS極となる。12はC/相のステータ磁極で、集中巻きC/相巻線1Bを巻回している。このC/相巻線1BにはC相電流Icを通電し、C/相のステータ磁極12はN極となる。C相巻線1EとC/相巻線1Bには、同一のC相電流Icを通電し、C相のステータ磁極15とB/相のステータ磁極12との間にC相磁束φcを生成する。このC相磁束φcはステータのバックヨークを通って一巡する。なお、図1のモータ外周の近傍に、分かり易くするために、(A)、(A/)、(B)、(B/)、(C)、(C/)と付記し、各ステータ磁極の位置を示している。
 1Sはロータ軸である。1Hは、軟磁性体で構成するロータのN極磁極である。1Lは、前記ロータN極磁極1Hと180°離れて、反対側に位置するS極磁極である。1Jは、軟磁性体で構成するロータのS極磁極である。1Mは、前記ロータS極磁極1Jと180°離れて、反対側に位置するN極磁極である。180°離れた2個のロータ磁極は、それらの極性が逆になる。しかし、形状としては、ロータ中心に対して点対称の構成である。そして、円周方向にロータN極磁極とロータS極磁極が交互に配置して、合計10個のロータ磁極を配置する。また、エアギャップ面におけるステータ磁極とスロットの開口部の円周方向の幅は、30°の例である。ロータ磁極1G、1H、1Jなどの軟磁性体の円周方向の幅は、30°の例である。ロータ磁極間の永久磁石1N、1P等を配置する部分のエアギャップ面の円周方向の幅は6°の例である。
 前記ロータS極磁極1Gと前記ロータN極磁極1Hとの間に、極性がロータ磁極の方向に向いた永久磁石1Nを配置する。ステータ側からの起磁力が作用しないときには、前記永久磁石1Nの磁束は矢印付き破線のように発生する。前記ロータN極磁極1Hと前記ロータS極磁極1Jとの間に、極性がロータ磁極の方向に向いた永久磁石1Pを配置する。ステータ側からの起磁力が作用しないときには、前記永久磁石1Nの磁束は矢印付き破線のように発生する。四角の線1Tで囲う領域と近傍は、前記ロータN極磁極1Hの軟磁性体部であり、前記の様に、図1の状態では矢印付き破線で示す永久磁石の磁束が通過している。後に説明するが、ロータ回転位置θrとステータの各電流の値により、この軟磁性体部の磁束は様々に変化する。前記ロータN極磁極1Kと前記ロータS極磁極1Lとの間に、極性がロータ磁極の方向に向いた永久磁石1Qを配置する。ステータ側からの起磁力が作用しないときには、前記永久磁石1Qの磁束は矢印付き破線のように発生する。前記ロータS極磁極1Lと前記ロータN極磁極1Mとの間に、極性がロータ磁極の方向に向いた永久磁石1Rを配置する。ステータ側からの起磁力が作用しないときには、前記永久磁石1Rの磁束は矢印付き破線のように発生する。その他の6個の永久磁石も、ロータN極磁極とロータS極磁極の境界部を配置し、同様の特性である。なお、1N、1P、1Q、1Rの前記永久磁石の中央部に、各永久磁石の極性の向きを小さな矢印で示している。また、これらの各永久磁石の磁束が大きい場合は、各永久磁石の一部の磁束はロータの外側のエアギャップ側、ステータ側を通過するが、ここでは省略して示していない。
 ここで、本発明の明細書における記載ルールについて規定し、記述する。ステータ磁極Psの数Npsで、ロータN極磁極の数PrnとロータS極磁極の数Prsの合計数Nprの場合、そのモータモデルを(Nps)S(Npr)Rと呼ぶことにする。例えば、図1のモータは6S10Rである。また、モータの電気角の定義については、従来のIPMSM、SPMSMでは、N極とS極とのロータ磁極の円周方向幅を電気角360°としている。しかし、図63の従来スイッチトリラクタンスモータのように、円周方向に分離したステータ磁極の構成で、ロータ磁極も円周方向に分離した構成なので、従来の電気角では電磁気的な関係の説明として定義が不十分な場合が出てくる。図1などの本発明モータにおいても同様に定義が不十分名場合が出てくるので、本発明の明細書では「ステータの1磁極対の周期を電気角360°」と定義して、説明する。例えば、図1のモータは、ステータ磁極Psの数Nps=6で、ロータN極磁極の数PrnとロータS極磁極の数Prsの合計でロータ磁極数Npr=10の構成の場合では、全周を電気角360°、機械角360°とする。6個のステータ磁極をステータの1磁極対と呼び、ステータを基準にしてステータの電気角を定める。また、例えば、図1のモータ構成を円周方向に2組配置する場合は、ステータ磁極Psの数Nps=12で、ロータ磁極数Npr=20の構成の場合で、全周は電気角720°で機械角360°である。なお、後にステータ磁極ピッチθpps、ロータ磁極ピッチθpprなどをこの電気角の[°]で示し、説明する。
 また、モータの磁極対の定義については、従来のIPMSM、SPMSMでは、N極とS極とのロータ磁極が2個の円周方向幅を電気角360°とし、その幅の間を1磁極対としている。しかし、図1などの本発明モータでは、ロータのN極とS極とのロータ磁極が2個の円周方向幅に基本的なモータ構成が収まらないという問題がある。この対応として、全てのステータ磁極が含まれるように、「ステータの磁極対の数Nkb」でモータ構成を定義し、示す。例えば、図1のモータは、ステータ磁極Psの数Nps=6で、ロータ磁極数Npr=10の構成の場合では、ステータの磁極対の数Nkb=1である。また、例えば、図1のモータ構成を円周方向に2組配置する場合は、ステータ磁極Psの数Nps=12で、ロータ磁極数Npr=20の構成の場合で、ステータの磁極対の数Nkb=2となる。なお、他の特許、文献などではロータ磁極ピッチを基準とすることもあり、モータ構成の定義が混乱しないようにここで確認する。
 モータの相数については、図1の構成の様にロータ中心点に対して点対称の構成の場合、ある相のステータ磁極とその180°反対側のステータ磁極を合わせて一つの相と数えることにする。図1の6S10Rのモータ構成の場合、3相のモータとも呼ぶことにする。ただし、後に説明するように、図1のモータ等は片方向電流を通電するモータであり、従来の3相交流モータとは異なる。また、ステータ磁極数が奇数で、ロータ中心点に対して点対称とならない構成のモータもあり、その場合は前記の(Nps)R(Npr)Sのモータモデルで呼ぶことにする。また、ステータのスロットからバックヨークの外側を通して巻回する環状巻線(トロイダル巻線)は、電気角で180°離れた2個の環状巻線を直列接続すると、全節巻き線とほぼ等価になるので、全節巻き線の説明は環状巻線へも適用するものとする。
 また、本発明の説明で使用する文字は、全角文字と半角文字を同じ文字として扱い、区別しない。大文字と小文字は、異なる文字として扱う。また、モータの動作については、主に、モータのエアギャップ部に対向するステータ磁極形状とロータ磁極形状を、直線状に展開した展開図で説明する。また、ステータ巻線の抵抗値は、説明の簡素化のため、抵抗値が0[Ω]として無視して説明する。また、ステータ磁極とロータ磁極との間の磁束の通過は、ステータ磁極とロータ磁極とが対向している部分だけに通過するものと仮定して、磁束の大きさなどを説明する。軟磁性体の磁気特性を、後に示す図6の様に簡素化した特性として扱う。電磁鋼板が通常の珪素鋼板である場合、その最大磁束密度を2[T]と仮定し、単純化して計算し、示す。バックヨーク部などの軟磁性体の磁気抵抗を無視して、原理的なモデルを説明する。但し、エアギャップ部の磁束密度が2.0[T]を越える場合の、エアギャップ部の近傍の一部の状態は、特別に、図6の特性とは別に説明する。また、エアギャップ部の磁気抵抗[A/Wb]についても図6の特性に含むものとするが、本発明モータの重要課題の一つである磁気エネルギーの回生動作については個別に説明する。この様に、モータをモデル的に概略評価する場合には、単純化したモデルで問題点を確認し、問題点に対する対応策を提案し、定性的に評価、説明できる。しかし、勿論、正確なモータ評価、検討、設計を行う場合には、これらの単純化した事柄を無視できない。そして、モータ各部の正確な磁束密度、正確なトルク、正確な電圧などの評価には、パソコンを使用した有限要素法FEMの電磁界解析などが必要である。
 次に、図1のモータの巻線に電流を通電した場合の動作の例について、図2、図3に示し、説明する。図2は、前記A相のステータ磁極11に前記ロータN極磁極1Hが丁度対向し、前記A/相のステータ磁極14に前記ロータS極磁極1Lが丁度対向した状態で、前記A相巻線1Aと前記A/相巻線1Dへ前記A相電流Iaを通電した状態を示している。そして、前記A相電流Iaにより、A相磁束成分φaを示す21、22が励磁される。四角の線23、24で囲う領域では、前記A相磁束成分φaの21、22と前記永久磁石1N、1P、1Q、1Rの破線で示す磁束成分とを重ねて示している。なおこの時、前記A相磁束成分φaの磁束方向と前記永久磁石1N、1P、1Q、1Rの磁束方向とは逆方向であり、四角の線23、24で囲う領域では、両磁束が相殺することになる。従って、前記23、24の領域の軟磁性体では、紙面の下方から上方へ向かう磁束密度成分が小さい値となっている。
 図3は、図2において2つの磁束成分が重畳する様に示した磁束分布を、実際の磁束分布に書き換えた図である。従って、図2と図3は同じ磁束分布の状態を示している。具体的には、図3の四角の線35、36で囲う領域における2つの磁束成分の重なりを無くしている。図3の31、32、33、34で示す磁束成分が、前記A/相のステータN極磁極14から前記ロータS極磁極1Lを通り、前記ロータN極磁極1Hから前記A相のステータS極磁極11を通っている。これらの磁束はステータのバックヨークを通って一巡する。ロータの内部では、何れの場所に置いても無理なく磁束が通過できる。但し、前記ロータS極磁極1Lと前記ロータN極磁極1Hの先端近傍、即ち、エアギャップ近傍では、3方向からの磁束が集中するので磁束密度が大きくなる。
 ここで、図3のロータ内部の磁束の分布および磁束の通過方法について考察する。ロータN極磁極1Hを通過する前記磁束成分31、32、33、34の内、前記磁束成分31、32は前記ロータS極磁極1Lの軟磁性磁路と前記ロータN極磁極1Hの軟磁性磁路を通過している。しかし、前記磁束33は、永久磁石1Pの作用により、図3の状態では使用していないロータS極磁極1Jの軟磁性磁路を使用し、通って、前記ロータN極磁極1Hのエアギャップ面に導かれている。前記磁束34も同様で、永久磁石1Nの作用により、図3の状態では使用していないロータS極磁極1Gの軟磁性磁路を使用し、通って、前記ロータN極磁極1Hのエアギャップ面に導かれている。
 従って、図3のロータ構成では、励磁してトルクを発生するロータ磁極の磁束を、円周方向で隣のロータ磁極の軟磁性磁路も活用して通過するので、より大きな磁束が前記ロータN極磁極1Hを通過が可能であると言える。但し、エアギャップ近傍部が2[T]を越える場合は、軟磁性体部であっても比透磁率が低下するので、エアギャップとその近傍の軟磁性体部を励磁する負担は増加する。ロータ内部及びロータのバックヨーク部は大きな磁束が通過できるので励磁負担が過大になることはない。図63の従来モータに比較すると、ロータの磁気抵抗が小さいのでトルクを増大できる。なお、図1、2、3の11、14ステータ磁極を通過可能な磁束の大きさは、その形状、構成により制限されているので、後に説明するいくつかのさらなる改善も可能である。
 これらの結果、図3のロータ構成では、ロータ磁極表面の磁束密度を2[T]を越える大きな値とする可能性もある。(19)式などで後に説明するように、エアギャップ部の磁束密度を大きくすることによりモータの出力トルクを増大できる。エアギャップ部の磁束密度が2[T]を越える構成、方法について後に説明する。また、図3の前記ロータS極磁極1Lについても、前記ロータN極磁極1Hを通過する磁束の作用と同様である。なお、図1、2、3のロータ回転位置では、前記A相のステータ磁極11とA/相のステータ磁極14はトルクを発生できない。このロータ回転位置で、前記ステータ磁極11と14が最も大きな磁束を通過できる。後に説明するが、通過できる磁束の大きさが出力トルクの大きさにほぼ比例する。
 次に図4に、ステータ磁極Psとロータ磁極Prとが同じ極性で、エアギャップを介して対向している場合の特性について示し、説明する。この明細書で、ロータ回転角θr=0°は、A相のステータS極磁極11がロータのN極磁極1Hに電磁気的に作用してCCWトルクを発生する直前のロータ回転位置θrと定義する。具体的には、図4の紙面において、A相のステータS極磁極11の右下角部へロータのN極磁極1HのCCW方向の角部がさしかかるロータ回転位置を、θr=0°と定義する。図5にロータ回転位置θrが12°の例を図示する。図4のロータ回転位置はθr=-6°で、永久磁石1Pの部分の円周方向幅6°だけθr=0°の位置からずれている。図1、図2、図3のロータ回転角は、θr=0°のロータ回転位置からステータ磁極の円周方向幅30°だけCCWへ回転した位置であって、ロータ回転角θr=30°である。
図4において、前記A相巻線1Aと前記A/相巻線1Dへ前記A相電流Iaを通電すると、45の破線で示す磁束成分が発生する。しかし、四角の線46で囲う領域では、矢印付き破線で示す永久磁石の磁束成分が紙面の下方から上方へ向かっていて、永久磁石43と1Pの発生磁束が十分に大きければ、前記磁束成分45の方向が同じなので、通過する磁気抵抗が大きくなっている。四角の線47で囲う領域でも同様で、永久磁石1Rと44の作用により、前記磁束45が通過する磁気抵抗が大きくなっている。従って、図4の前記磁束成分45は比較的小さな値に抑制される。
 図4の紙面で下方から上方へ向かう磁束に対する磁気抵抗がどの程度大きくなるかは、前記永久磁石の特性と各部形状により変わる。また、図4における磁気抵抗増加の前記作用は、図2の四角の線23、24で囲う領域おいて磁気抵抗が減少する作用と比較し、逆の作用である。また図4は、A相ステータ磁極11およびA/相ステータ磁極14が発生できるトルクが丁度0[Nm]のロータ回転位置θrであり、図4の状態のロータ回転位置をθr=-6[°]として、以下を説明する。図1はロータ回転位置θr=30[°]である。
 次に図5に、反時計回転方向CCWのトルクTが発生する状態の例を示し、説明する。図5にロータ回転位置θrを矢印で図示している。θr=12[°]であり、図4のθr=-6[°]のロータを反時計回転方向CCWへ16°回転した位置である。図5において、前記A相巻線1Aと前記A/相巻線1Dへ前記A相電流Iaを通電すると、53の太い実線で示す磁束成分が発生する。前記磁束成分53は、図2、図3で示した磁束成分であり、ロータ内の磁気抵抗が小さいのでエアギャップ面で大きな磁束密度となる。この時、並行して、54の細い破線で示す磁束成分も発生する。前記磁束成分54は、図4で示した磁束成分であり、ロータ内の磁気抵抗が大きいので、エアギャップ面で相対的に小さな磁束密度となる。これらの結果、前記磁束成分53が作るエアギャップ面の磁束密度が優り、反時計回転方向CCWのトルクT[T]が発生する。
 ここで、ステータとロータの軟磁性体について、この明細書での扱い方について、軟磁性体の磁気特性の例を図6に示し、説明する。珪素鋼板などの電磁鋼板の磁気特性は図6の破線61のように、非線形な特性である。図6の横軸は励磁電流Iexe[A]で、縦軸は磁束密度B[T]である。磁気的に非線形だと、モータの概略特性の説明が煩雑になるので、基本的なモータモデル特性を説明するために、図6の太い実線62の特性と仮定して説明する。なお、大きなトルクを発生する状況では、図6の左もしくは右の大きな電流領域を使用することになる。
 特に、本発明モータは片方向の電流で駆動するが、磁気的には永久磁石の活用により、図6の正と負の磁束密度の両方の領域を活用する。例えば、図1のステータ電流が無い状態では、例えば、前記ロータN極磁極1Hの軟磁性体部である四角の線1Tで囲う領域とその近傍では、永久磁石1Pと1Nの紙面の上側から下側へ向かう磁束がある。その領域で磁束密度の一番大きい部分の磁気的動作点は、例えば、図6の63から64までの値になる。次に、図3の四角の線35で囲う領域を通過する磁束は紙面の下側から上側に向かっており、その磁束密度は、例えば、図6の67から66までの値になる。この様に、前記ロータN極磁極1Hの軟磁性体部の磁束密度Bは、図6の-2[T]から+2[T]まで変化する。
 図5に示した様に、このモータがトルクを発生する時は紙面の下側から上側へ磁束が通過してN極磁極として作用するので、図1における前記ロータN極磁極1Hに1Tで示す軟磁性体部は永久磁石1Pと1Nで磁束の逆バイアスした状態と見ることもできる。図6の負の磁束密度の領域まで使用することにより、従来の2倍の磁束密度を活用する可能性が生まれる。さらに詳細を後に説明する。なお、図63に示す従来のスイッチトリラクタンスモータの場合、駆動電流が片方向電流で、モータ各部の磁束密度もそれぞれに片方向磁気特性だけを使用して駆動する。
 次に、図7の直線展開図で図1、図2のモータを表現する例を示し、説明する。円形状のモータを直線状に展開した方が、モータ全体の動作を把握しやすい面がある。また、図1、図2ではステータの1磁極対の横断面で示しているので、各ロータ磁極の軟磁性体部の形状が扇状の形状となる。ステータの各スロット形状も扇型の形状になっている。図7に示す各ロータ磁極の軟磁性体部およびステータの各スロット形状は、直線状に変形したので長方形になり、形状が変わる。しかし例えば、モータの出力容量が3k[kW]から100[kW]と大きなモータは、モータ形状が大きくなり、多極化することが多い。その場合には、ロータ磁極の軟磁性体部、および、ステータの各スロット形状は扇型形状が長方形に近づく。また、図1、図2のモータは3相のモータであるが、後に説明する5相、7相、9相、11相のモータでは、ステータ磁極数、ロータ磁極数が増えるので、前記扇型形状が長方形に近づく。従って、図1のステータの1磁極対の断面形状と図7の直線展開図では、特に扇型の各部形状が異なるが、極数の多いモータモデルの概略評価では大きな問題とはならない。但し、モータをより正確に評価するときは、この形状差に注意を払う必要はある。
 図7の直線展開図は、図2のモータ構成を直線状に展開している。図2の場合と同様に、A相電流Iaを通電し、A相の磁束φaが79と7Aの様に発生している状態である。71はステータで、73はロータである。ステータ71の各ステータ磁極Psとロータ73のロータ磁極Prはエアギャップを介して対向している。エアギャップ長は7Fで、視覚的な解り易さのため、大幅に拡大して図示している。10[kW]程度のモータでは、通常、エアギャップ長は0.5[mm]から1[mm]程度であることが多い。72はステータのバックヨークで、74はロータのバックヨークである。7Dはステータバックヨークで、7Eはステータの歯の長さでありスロットの奥行きである。図7の図の左右両端は波線で表し、図7の左右両端が一周して接続されることを示している。ステータ1磁極対の電気角360°より少し広めに記載している。
 ここで、図7の直線展開図の方向は、紙面で右方向を、図1、図2のロータの反時計回転方向CCWとしており、視覚的に違和感を感じることもあり、注意を要する。図1、図2のような回転運動の場合、第1象限から第2象限に向かうCCW方向を基準としている。一方、直線的な運動の場合は、左側から右側への動きを基準としている。従って、図1、図2と図7では、ステータ磁極の並び方向を逆方向としている。また、図1、図2のA相のS極ステータ磁極11の周辺のロータの左方向への動きは、図7のA相のS極ステータ磁極7Lの周辺のロータの右方向への動きとなり、視覚的には逆方向になる。なお、図1、図2の紙面の裏側から見て、直線展開したと考えれば、視覚的な左右の動きは図7と一致する。
 図7の
7JはB/相のN極ステータ磁極で、図2の16に相当する。7LはA相のS極ステータ磁極で、図2の11に相当する。75はC/相のN極ステータ磁極で、図2の12に相当する。7MはA/相のN極ステータ磁極で、図2の14に相当する。7NはロータのロータN極磁極で、図2の1Hに相当する。7PはA相のS極ステータ磁極7Lを励磁する集中巻きのA相巻線で、図2の1Aに相当する。7QはA/相のN極ステータ磁極7Mを励磁する集中巻きのA/相巻線で、図2の14に相当する。
 図7のロータ73にはN極とS極の各ロータ磁極を円周方向に交互に並べて配置していて、例えば、7NはロータN極磁極、7KはロータS極磁極である。各ロータ磁極の境界部には、ロータ磁極の方向に合わせた76、77の様な永久磁石を配置している。各永久磁石が発生する磁束は、ステータ電流を通電していない状態では、主にロータ内の軟磁性体で循環し、閉路となっている。前記永久磁石76の破線78、7Rで示す磁束のように発生し、ほとんどの磁束が軟磁性体内で循環し、閉路している。なお、図7のロータ回転角はθr=30°である。
 なお、モータトルクを向上するため、前記永久磁石76、77などの磁石性能を上げると、前記破線78、7Rで示す磁束成分などは、ステータ電流を通電していない状態でも、エアギャップ側への漏れ磁束成分が増加する。図7では図示していないが、その漏れ磁束成分の一部はステータ磁極も通過して循環することになる。なお、エアギャップ側への漏れ磁束成分を、図10等に記載する。当然のことながら、ステータ電流を通電すると、前記磁束成分78、7Rなどは図8、図9、図10、図11に示す様に複雑な磁束経路をたどることになる。
 図7のA相巻線7PとA/相巻線7QへA相電流Iaを通電すると79と7AのA相磁束成分φaが発生し、ステータのバックヨーク72とロータのバックヨーク74を通ってA相の磁束成分φaが一巡する。四角の線7Bと7Cで囲う領域では、79と7AのA相磁束成分φaと矢印付き破線で示す永久磁石の磁束成分とが重畳した状態を示している。
なお、図7の紙面上部には、参考のため、各ステータ磁極のA相、B相、C相等の名称を括弧付きで示している。
 次に、磁束の分布をより詳しく示すために、図7の一部を拡大して図8に示す。図8の(a)は、図7のステータS極磁極7Lの周辺を拡大した図である。矢印付きの破線で示す81、82、83、84などは永久磁石の磁束成分である。79のA相磁束φaと破線で示す永久磁石の磁束成分は、四角の線7Bで囲う領域で重ねて記載している。
 図8の(b)は、図8の(a)の重複した磁束成分を現実の磁束分布に書き換えた図である。前記のA相巻線7PとA/相巻線7QへA相電流Iaを通電している状態である。例えば、前記A相電流Iaを通電していない状態では、四角の線89で囲う領域が図6の磁気的動作点64にあったと仮定して、68の磁束密度とする。その場合、図8の紙面で下側から上側の磁束密度を正の値と仮定すると、68の磁束密度の正負符号は負である。即ち、図8の(a)において、A相電流Iaが0[A]の場合、四角の線7Bで囲う領域は磁気的に逆バイアスした状態であり、図6の69あるいは6Aのような磁束密度の大きな変化を利用するための準備状態であり、逆バイアスは重要なことである。今、図8の(b)では、四角の線89で囲う領域の磁束密度が0[T]になる程度の前記A相電流Iaを通電した場合の状態を示している。前記のS極ステータ磁極7Lを通過する磁束85、86、87、88は、ロータの前記四角の領域89を通らず、N極のロータ磁極7Nの紙面で左右の位置する永久磁石を通過して前記のS極ステータ磁極7Lへ磁束を供給する。
 この図8の(b)の磁束分布の状態では、前記のS極ステータ磁極7Lを通過する磁束85、86、87、88は、前記ロータN極磁極7Nの紙面で両隣のロータ磁極7K、7Sの磁路を利用して、通過して前記S極ステータ磁極7Lへ供給している。従って、前記ロータN極磁極7Nの四角の線89で囲う領域の辺りでは、磁束密度が0[T]なので、ステータへの磁束供給余力がまだ十分に残っている状態である。即ち、この構造のロータは、「円周方向で隣に位置するロータ磁極の軟磁性体磁路を活用してロータ磁極のエアギャップ近傍へ、そして、ステータ磁極へ磁束を供給することができる」とも言える。また、図1等に示すステータの歯は、図示する様に歯間のスロットのスペースに余裕が有り、歯の円周方向幅を広げて、通過磁束を増加することも可能であり、詳細を後に説明する。また、ステータの歯間に永久磁石を追加して、ステータ磁極に作用する磁束を増加することも可能であり、詳細を後に説明する。
 次に、図9に、7Pの前記A相電流Iaを図8の(b)の状態より増加した場合の磁束分布を示す。図9では、図8の(b)の状態に比較し、磁束91と92が増加する。そして、四角の線89で囲う領域を通過する磁束が増加している。図6の磁気的動作点で表現すると、前記領域89では前記A相電流Iaが0[A]の時に動作点64にあるとすると、図9の状態で磁束密度が2[T]になったと仮定し、前記領域89の磁束密度が図6の69のように増加したと言える。即ち、前記A相電流Iaは片方向電流の励磁であるが、ロータの永久磁石を効果的に活用して、ロータ磁極の磁束密度を、図6に示す様に、負の値から正の値まで変化させて活用している。また、円周方向に隣接していて、使用していないロータ磁極の軟磁性体磁路を活用する技術でもある。
 次に、図10の(a)にステータのA相のS極ステータ磁極7LとロータのS極磁極7Sが対向し、A相巻線7PのA相電流Iaは通電していない状態の直線展開図を示す。図4のロータ回転位置と同じで、θr=0°である。図10では、ロータの永久磁石77、10A、10Bなどが少し高性能で、磁束密度が大きい場合の例を示す。例えば、ロータの永久磁石10A、10Bの磁束成分である破線の101、102、103、104はロータのバックヨーク側を通って循環するが、四角の領域105を通過する磁束密度が2[T]に近づくと磁気抵抗が大きくなるので、エアギャップ側の磁束成分107、108が無視できないほど大きくなる。他の磁束成分106、109も同様である。前記の図8、図9ではエアギャップ側の磁束成分を無視したが、図10では前記磁束成分106、107、108、109を書き加えている。
 図10の(b)では図10の(a)にA相巻線7PとA/相巻線7QへA相電流Iaを通電して、10Cの磁束成分を励磁している。ロータの各永久磁石の破線で示す磁束成分と前記磁束成分10Cを重ねて記載している。前記の様に、四角の領域105の磁束密度は既に大きいので磁気抵抗、四角の領域10Dを通過する磁束成分10Cは大きな値にはなれない。
 図11の(a)は、図10の(b)で重ねて書いた2種類の磁束成分を合わせた磁束分布として、定性的に書き換えた図である。例えば、図10の(b)の前記磁束成分107は図11の(a)の111の磁束成分の様になり、同様に、108は112の磁束成分の様になり、また、ロータのS極磁極7SからステータのS極磁極7Lへ直接通過する磁束成分113である。四角の領域118の磁束密度は既に大きいので、通過磁束がさらに増加するには磁気抵抗が大きくなっており、前記磁束成分111、112、113は小さな値である。
 図11の(b)はロータ回転角をθr=12°とし、トルクTを発生できる位置でA相巻線7PとA/相巻線7QへA相電流Iaを通電した場合の磁束分布の例である。なお、θr=12°のロータ回転角は、ステータS極磁極7Lに対し、ロータN極磁極7Nと右側隣のS極磁極7Sが同程度に対向するロータ位置である。114の磁束は、前記A相電流Iaで力を発生するロータN極磁極7Nの左側隣のS極磁極7Kの磁路を通って、永久磁石77を通ってステータのA相のステータS極磁極7Lを通る。115と116の磁束は、前記ロータN極磁極7Nの右側隣のS極磁極7Sの磁路を通って、永久磁石10Aを通ってステータのA相のステータS極磁極7Lを通る。117の磁束は、前記ロータS極磁極7Sを通って、直接、ステータのA相のステータS極磁極7Lを通る磁束であり、四角の領域119の磁束密度は既に大きいので磁気抵抗が大きく、磁束117は大きな値にはならない。なお、四角の領域11Aの磁束密度は、永久磁石77の磁束と磁束102が紙面の上側から下側へ通っており、紙面の下側から紙面の上側へ向かう磁束密度としては負の磁束密度である。従って、ロータのN極磁極7NがステータS極磁極7Lへ磁束を通過し、供給する余力は十分にある。
 図1から図11において、ステータとロータ間の磁束φ[Wb]の通過と遮断について説明した。また、図11の(b)に、磁束φ[Wb]の通過と遮断によるトルクT[Nm]の発生についても説明した。なお、これらの磁束φ[Wb]とトルクT[Nm]の関係については、(1)式から(7)式で次に示す。図1などのモータにおいて、より大きなトルクT[Nm]を得るためには、また、一つのロータ磁極で発生できるロータ回転角をロータ磁極の回転角幅に近い大きな値とするためには、図8の(a)の前記磁束成分79を大きな値とし、図10の(b)の前記磁束成分10Cを小さな値に抑制することが重要である。トルクT[Nm]の最大値は、これら79の最大値と10Cの最大値の差分に比例する。
 特に、図10の(b)と図11の(a)に示す磁束の遮断あるいは低減の手法は重要である。即ち、例えば、図11の(a)の様に、ステータ磁極と同極のロータ磁極が対向している状態で、四角の領域118の磁束密度Bがその軟磁性体の最大値2[T]に近い値となる構成とする方法である。前記領域118では磁束密度が大きくなるので、比透磁率が低下し、磁気抵抗が大きな値となり、113の磁束を小さな値に抑制できる。111、112の回り込んでくる磁束成分についても、前記領域118の磁気抵抗が大きくなる作用によって磁束の大きさが抑制される。
 前記磁束113を小さな値に抑制する方法がいくつかある。抑制する方法の一つは、図10の(b)にロータの永久磁石が発生する磁束の大きさを大きくする方法である。但しその場合には、図10の(b)に示す磁束106、107、108、109などが増加するので、トルクリップルの増加などの弊害には注意を要する。また、他の抑制の方法は、ロータのエアギャップに面した表面近傍にロータ磁極の方向に向けて永久磁石配置する方法がある。また、他の抑制の方法は、ロータ内に界磁巻線を付加して界磁電流を通電する方法がある。界磁電流の大きさを制御することも可能である。
 ここで、巻線の鎖交磁束φ[Wb]とトルクT[Nm]の関係について確認する。モータのトルクT[Nm]を観測、評価する方法の一つは、巻線に鎖交する磁束φ[Wb]を観測して行うことができる。即ち、ロータの回転に伴って巻線に鎖交する磁束φ[Wb]の変化である磁束変化量Δφ[Wb]の大きさで評価できる。今、電源側からモータ側へ供給する電力Pe[W]と電圧V[V]と電流I[A]は、機械出力Pm[W]とトルクT[Nm]と回転角周波数ω[rad/sec]となり、内部損失が無いものと仮定すると、ファラデーの電磁誘導の法則から次式の関係となる。A相とA/相の巻線の巻回数の和をNw[turn]、ロータ回転位置をθ[rad]とする。ω=dθ/dtである。
  Pe=V×I                             (1)
   =Nw×dφ/dt×I                        (2)
   =Nw×dφ/dθ×dθ/dt×I                   (3)
   =Nw×dφ/dθ×ω×I
  Pm=T×ω                            (4)
   =T×dθ/dt                          (5)
なお例えば、図1の場合、前記A相巻線1Aと前記A/相巻線1Dは直列に接続してA相電流Iaを通電する巻線であって、両巻線の巻回数の和を前記Nw[turn]とする。A相巻線1Aの巻回数はNw/2である。
 前記供給電力Pe[W]の(3)式とモータの機械出力Pm[W]の(5)式の値が等しければ、トルクT[Nm]は近似的に(7)式で表される。
  T=Nw×dφ/dθ×I                        (6)
   =Nw×I×Δφ/Δθ                       (7)
ここで、(7)式から言えることは、ロータの微少回転角がΔθ[rad]である場合における、巻線の鎖交磁束のその間の変化量Δφ[Wb]に比例したトルクが得られることである。
従って、図11の(a)の位置から6°移動したθr=0°から、図9のθr=30°の状態までに変化するA相巻線7Pの鎖交磁束の変化量Δφ[Wb]に、トルクT[Nm]がほぼ比例して得られる。その観点で、図9のθr=30°の状態ではトルクが0になるが、θr=30°において最大値となる鎖交磁束、磁束分布を示した。また、ロータ側のステータ側への磁束供給能力が十分大きいことを示した。
 また、(6)式、(7)式に示すように、トルクT[Nm]は鎖交磁束φ[Wb]の大きさでなく、鎖交磁束φ[Wb]の変化率dφ/dθあるいはΔφ/Δθに比例する。(2)式に示す様に電力Pe[W]が供給され、(4)式、(5)式のように電磁気的に機械力Pm[W]に変換される。即ち、図63に示す従来のスイッチトリラクタンスモータでは図6の6Bに示す片方向の磁束密度[T]の変化を利用するが、図1などの本発明モータのロータおよび後に示すステータでは図6の69、6Aに示す、両方向の磁束密度[T]の変化を利用してトルクT[Nm]を発生する。なお、ここでは、簡素化のため、モータ内部損失と磁気エネルギーを無視して説明している。
 次に図12に、図1の6S10Rのモータの動作を示す直線展開図を示す。図12の展開図は、エアギャップ面に面したステータ磁極の形状とロータ磁極の形状を示して、相互の通過磁束や電磁気的な作用を分析できる。具体的には、CCWトルクの発生区間を作図する目的の直線展開図である。図1のCCW方向を正回転方向とし、図12では右方向をCCW方向とする。前記の様に、視覚的には逆方向に感じることもあるので注意する必要がある。図12の横軸はロータ回転角θrで、図1において第1相であるA相のS極ステータ磁極11の右下角部へロータのN極磁極1Hの左上の角部がさしかかるロータ回転位置をθr=0°とする。図12は、ロータ回転角θrの-30°から360°までを示している。少し紛らわしいが、図12では、横軸のθrはロータ各部の位置を示していて、ステータ各部の回転方向の位置でもある。ロータの回転位置は図12の各行の左側に示している。なお、図1のロータの回転位置はθr=30°である。
 各ステータ磁極の円周方向幅は30°の例で、各スロットの円周方向幅は30°で、ステータ磁極ピッチθppsは60°である。各ロータ磁極のピッチθpprは36°で、全周に合計10個のロータN極磁極とロータS極磁極を交互に配置している。図12では各ロータ磁極の円周方向幅が30°の場合を図示している。図12の(a)はエアギャップ面に面する各ステータ磁極の形状である。θrが0°から30°の間にA相のS極ステータ磁極を示していて、図1の11に相当するので同一の符号で示している。A相の右側に、C/相、B相、A/相、C相、B/相と各相のステータ磁極を、同様に配置して示している。なお、ステータ磁極の円周方向幅とロータ磁極の円周方向幅は、モータ設計的には、スペースの許す範囲で縮小、あるいは、拡大して修正、設計することが可能である。
 図12の様な直線展開図では、図12の(a)のステータ磁極の位置を固定し、ロータ磁極位置を紙面で左右に移動させて、図12の(b)以降の様に記載し、CCWトルクを発生できる区間を調べる。各行の上部に、CCWトルク発生が可能な区間をロータ磁極形状の上側に太線で示す。この時、太線の位置と横幅は該当するステータ磁極の位置と横幅になる。
 繰り返しになるが、図12の(b)はエアギャップ面に面するロータ磁極の形状である。ロータのN極磁極とS極磁極を交互に、合計10個のロータ磁極を36°ピッチに配置している。図12の(a)の各ステータ磁極と図12の(b)の各ロータ磁極とがエアギャップを介して対向している。図12の(b)のロータ回転位置θr=0°の位置で、図4のロータ回転位置θrに相当する。また、図12の(b)の左端には、ロータ回転位置θrの値を記載している。
 次に、図12の(b)の発生トルクとトルク発生区間について説明する。図1でCCW方向のトルクは、図12の紙面では右方向のトルクである。121はロータのN極磁極であり、11のステータのA相ステータS極磁極に吸引されて、ロータ回転角θr=0°から30°までの間、紙面の右方向に吸引力を発生する。この吸引力の発生区間を、N極磁極121の右上に太い線で示している。同様に、122は前記N極磁極121とは、ステータ1磁極対の電気角360°の1/2である電気角で180°離れたロータのS極磁極であり、14のステータのA/相ステータN極磁極に吸引されて、ロータ回転角θr=0°から30°までの間、紙面の右方向に吸引力を発生する。この吸引力の発生区間を、S極磁極122の右上に太い線で示している。また、123はロータのN極磁極であり、13のステータのB相ステータS極磁極に吸引されて、ロータ回転角θr=-24°から6°までの間、紙面の右方向に吸引力を発生する。この吸引力の発生区間を、N極磁極123のほぼ上側に太い線で示している。同様に、124はロータのS極磁極であり、16のステータのB/相ステータN極磁極に吸引されて、ロータ回転角θr=-24°から6°までの間、紙面の右方向に吸引力を発生する。この吸引力の発生区間を、N極磁極124のほぼ上側に太い線で示している。以上の様に、図12の(b)のロータ回転角θr=0°の位置では4箇所でCCWトルクを生成できる。なお、ロータのN極磁極121は、位相差が360°の位置に破線で示すN極磁極125と同じものである。
 次に、図12の(c)は、各ロータ磁極が右側へ移動し、ロータ回転角θr=6°である。この位置で、13と16のステータ磁極は、紙面の右方向への吸引力を発生できなくなる。A相ステータS極磁極11とA/相ステータN極磁極は、右方向への吸引力を発生している。この様に、図12の(c)のロータ回転角θr=6°の位置では2箇所でCCWトルクを生成できる。逆に言うと、ステータとロータの両方の磁極がN極、S極の極性を固定しているので、他の4個のステータ磁極はCCWトルクを生成できない。
 次に、図12の(d)は、ロータ回転角θr=24°の位置で、図示するように、ステータ磁極11、12、14、15がトルクを発生できる。図12の(e)は、ロータ回転角θr=30°の位置で、図示するように、ステータ磁極12、15がトルクを発生できる。図12の(f)は、ロータ回転角θr=48°の位置で、図示するように、ステータ磁極12、13、15、16がトルクを発生できる。図12の(g)は、ロータ回転角θr=54°の位置で、図示するように、ステータ磁極13、16がトルクを発生できる。図12の(h)の状態は図12の(b)の状態と同じ状態に戻る。そして、図1のモータは72°周期で、同じ動作を5回繰り返してロータが1回転する。
 次に、図13に各相巻線に通電する電流の例を示し、いくつかの通電方法を説明する。図13の(a)、(b)、(c)は、図1のモータ、図12の動作時に通電するA相電流Ia、B相電流Ib、C相電流Icの例である。ステータ磁極の円周方向幅とロータ磁極の円周方向幅は共に30°で、CCW方向へ回転し、CCW方向のトルクを生成する例である。図13の(a)、(b)、(c)の矩形波状の太い実線の電流の場合、A相電流Iaは3°から27°まで通電し、C相電流Icは27°から51°まで通電し、B相電流Ibは51°から75°まで通電し、それぞれにこれら動作を72°周期で繰り返す。A相とC相とB相が24°づつ、順次トルクを生成し、モータモデル的には、ほぼ均一なトルクを継続して出力することができる。
 また、図13の(a)、(b)、(c)の破線で示す台形波状のA相電流Ia、B相電流Ib、C相電流Icを通電することもできる。A相電流Iaは、0°から6°まで電流を増加し、6°から24°までは一定電流で、24°から30°まで電流減少し0[A]として、台形状の電流を通電する。C相電流Icも同様に、24°から54°の間に台形状の電流を通電する。B相電流Ibも同様に、48°から78°の間に台形状の電流を通電する。そして、それぞれにこれら動作を72°周期で繰り返す。これらIa、Ib、Icを加算すると、常に一定値となるような通電方法で、論理的に単純には均一なトルクが期待できる。電流の増減がゆるやかなので、高速回転での駆動回路の電圧負担を軽減でき、トルクリップルの低減、振動、騒音の低減も期待できる。なお、前記Ia、Ib、Icの各電流波形を30°幅の矩形状波形として平均トルクを増加することも可能である。但しその場合には、トルク脈動の低減策も考慮する必要がある。必要に応じて、種々の電流波形とすることができる。
 次に、図13の(d)、(e)、(f)に、図1、図12のエアギャップに面するステータ磁極円周方向幅θsgとロータ磁極の円周方向幅θrgを、共に36°に大きくし、磁極幅を広くした場合のモータモデルの例について説明する。一つの方法は、図13の(d)、(e)、(f)に示す矩形波状の太い実線の矩形波状の電流で駆動することができる。図13の(d)のA相電流Iaは0°から36°まで通電し、(f)のC相電流Icは24°から60°まで通電し、(e)のB相電流Ibは48°から84°まで通電し、それぞれにこれら動作を72°周期で繰り返す。平均トルクは大きくなるが、トルク脈動が予想され、トルク脈動の低減策も考慮する必要がある。振幅補正など、種々の方法を適用できる。
 次に、図13の(d)、(e)、(f)の破線に示すように、Ia、Ib、Icを台形状の電流で駆動することもできる。図13の(d)のA相電流Iaは、0°から12°まで電流を増加し、12°から24°までは一定電流で、24°から36°まで電流減少し0[A]として、台形状の電流を通電する。C相電流Icも同様に、24°から60°の間に台形状の電流を通電する。B相電流Ibも同様に、48°から84°の間に台形状の電流を通電する。そして、それぞれにこれら動作を72°周期で繰り返す。これらIa、Ib、Icを加算すると、常に一定値となるような通電方法で、論理的に均一なトルクが期待できる。電流の増減が、図13の(a)、(b)、(c)に破線で示す台形状は形よりさらにゆるやかなので、高速回転での駆動回路の電圧負担を軽減でき、トルクリップルの低減、振動、騒音の低減も期待できる。例えば、具体的な駆動法として、低速から中速の回転では矩形波に近い台形波状の電流波形で駆動して大きなトルクを生成し、高速回転ではゆるやかな増減の台形状の電流波形として駆動する方法が考えられる。
 図12、図13の(a)、(b)、(c)はステータ磁極幅とロータ磁極幅を30°とした例である。この時の各相トルクは、トルク発生幅が24°であれば、順次各相トルクを生成して、モータは連続トルクを出力できる。図63に示した従来スイッチトリラクタンスモータの場合、モータの連続トルクを出力するためには、各相トルクが30°発生する必要がある。図1のモータ構成とは異なる特性である。図1のロータ磁極特性で6S10Rの構成では、各相トルク幅が24°で良いので、図13の(a)、(b)、(c)に破線で示す電流例のように、電流の増減時間を加えることもできる。この通電時間の自由度の点は、図1のモータの特長の一つである。
 また、図13でいくつかの例を示したように、図1のモータ構造、図12の動作の基本的な部分は同じでも、ステータ磁極の形状、ロータ磁極の形状、電流波形については種々の変形が可能である。より効果的にトルクを発生できる領域で駆動してトルクの向上を図る、トルクリップルの低減策、振動騒音の低減策などを適用できる。また、例えば、磁極形状は円周方向の幅だけでなく、スキュー、磁極の形状、ラジアル方向の凹凸、磁極内部の空隙部などにより磁気抵抗の調整、永久磁石の付加なども可能である。ステータ巻線に通電する電流波形についても、矩形波電流、台形状電流、正弦波状電流、2次関数的な電流の増減、あるいは、電流振幅の補正などが可能である。例えば、具体的な駆動法として、低速回転では矩形波に近い電流波形で駆動して平均トルクを大きくし、高速回転では台形状の電流波形で駆動して電流の増減をゆるやかにして電流駆動の負担を軽減し、同時に、トルクリップルの低減、振動騒音の低減を図った駆動を行える。なお、図1のモータの図13の電流の増減に関わり、各相の磁気エネルギーをインバータ側へ回生する時間の問題、高速回転でのトルク低下の問題、振動騒音の問題があり、各相電流に磁束を励磁する程度の電流成分を常時通電する方法等、より具体的な課題と解決方法を後に説明する。
 図1から図12までの実施例について、少しまとめる。片方向電流で駆動する図63等の従来リラクタンスモータは、ロータ磁極が軟磁性体で構成され、N極、S極などの極性はない。本発明の図1の構成では、ロータ磁極がN極、S極と極性を固定した構成である。即ち、ステータとロータの両方の磁極がN極とS極の極性を持ったモータ構成である。ステータ磁極をN極とS極に固定することにより片方向電流で駆動できるので、駆動回路を簡素化でき、低コスト化できる。但し、勿論、N極とS極の異極同士に吸引力は作用するが、同極同士に吸引力が作用しない。従って、ステータ磁極とロータ磁極の、特別で、都合の良い相対関係を見つけ出してモータを構成する必要がある。
 前記図1等のように、図63の従来リラクタンスモータのようなステータであるが、ロータ磁極をN極とS極に固定することによりロータに永久磁石を使用できる。そして、ロータに永久磁石を図1の様な独特の配置で活用することにより、円周方向で隣に位置していて、使用していないロータ磁極の軟磁性体磁路を、図8の(b)、図9の(a)の85、86、87、88の様に活用できる。その結果、ロータ側の磁束供給能力を大幅に高めて、トルクを増加できる。他方、逆方向に通過しようとする磁束成分に対しては、図11の101、102、103、104の様に、四角の領域118が磁気飽和して磁気抵抗が大きくなり、磁束通過を抑制し、制限するように作用する。また、図13の電流波形の例に示したように、電流波形の自由度が有り、台形状などの電流波形とすることにより電流の増加時間、減少時間を確保できるので、電流制御が容易になり、モータの振動騒音を低減できる。図63の従来リラクタンスモータとは大きく異なる。なお、前記のように、本発明明細書では、図1に示すようなステータとロータの組み合わせで扱い、この機械角360°をステータ1磁極対の電気角360°として扱う。図1のモータの場合、10個のロータ磁極の円周方向範囲を電気角360°として扱う。
 さらに、図1のステータの歯間に永久磁石を追加して、ステータ磁極に作用する磁束を増加することが可能であり、請求項2の実施例で説明する。また、図1のステータ巻線は、集中巻きの例で示したが、全節巻きとすることもできる。片方向電流の全節巻き線で、ロータ各部の場所を選択的に励磁し、励磁の方向も特定方向とする通電方法であり、請求項4の実施例で説明する。また、ステータ磁極とロータ磁極の組み合わせは図1の3相の例を説明したが、5相、7相、9相、11相等へ拡張することができ、モータ内部の利用率が高く、大変実用的で高効率化、小型化、軽量化などが可能な特定の組み合わせがある。請求項5の実施例と、その他の実施例を後に説明する。また、図1に示すステータの歯は、図示する様に歯間のスロットのスペースに余裕が有り、歯の円周方向幅を広げて変形し、通過磁束を増加することも可能であり、請求項7の実施例で説明する。なお、本発明明細書では、モータ巻線の使用割合として、巻線の利用率という言葉を使用する。また、電流駆動用のトランジスタTRの使用割合として、トランジスタTRの利用率という言葉を使用する。トルクを発生するための電流を巻線へ通電できる割合が、結果的に、モータの巻線抵抗に関わる。例えば、100%の時間、全巻線へ連続に通電してトルクを発生できるモータに比較し、50%の巻線がトルクを発生するモータは、1/2の巻線へ2倍の電流を通電することになり、銅損合計が2倍に増加する。トランジスタTRの利用率も、トランジスタTRの利用率100%に比較して、利用率50%の場合は、インバータの全トランジスタTRの総電流容量が単純計算で2倍に増加する。総じて、利用率が高いと小型化、軽量化、低コスト化が可能となる。
 次に、請求項2の実施例を説明する。図14は、図1、図2の構成に、永久磁石145、146、147、148、149、14Aを付加した構成である。各永久磁石の上の矢印のマークでその極性方向を示している。14B、14Cの破線は永久磁石の磁束成分を示している。ステータのA相巻線1AとA/相巻線1DにA相電流Iaを通電してA相磁束成分141と142を励磁している。四角の線で示す143は、ロータのN極磁極1Nの軟磁性体部の領域を示している。四角の線で示す144は、ロータのS極磁極1Rの軟磁性体部の領域を示している。前記A相磁束成分141と142は、ロータの各永久磁石の破線で示す磁束とステータの各永久磁石の破線で示す磁束に重ねて記載している。ステータのバックヨークを通って一巡する。図14のその他の構成要素の符号は、図1、図2と同じ符号を記している。
 なお図14では、永久磁石145、146、147、148、149、14Aの形状が円周方向に長い形状で示しているが、モータの構成をモデル的に示すために長くなっている。モータの設計時点では、ステータ磁極対の数が2の構成である図14のモータを、ステータ磁極対の数が8などへ多極化する場合、各永久磁石の円周方向長さは1/4程度に短縮すると、永久磁石の断面形状は平行四辺形に近づく。また、各永久磁石に接する部分の軟磁性体の形状も、永久磁石形状に合わせて自在な形状に変形できる。
 図15は、図14のモータ横断面図を直線展開した図である。151はステータで、152はステータのバックヨークである。15LはA相ステータS極磁極で図14の11に相当し、15MはA/相ステータN極磁極で図14の14に相当し、15JはB/相ステータN極磁極で図14の16に相当し、155はC/相ステータN極磁極で図14の12に相当する。15PはA相巻線、15QはA/相巻線であり、両巻線を直列に接続してA相電流Iaを通電することにより、バックヨークを通って一巡する磁束159と7Aを励磁している。各ステータ磁極の間には15H、15Sの様な永久磁石をステータ磁極の極性に向けて配置している。15Gの破線は前記永久磁石15Hの磁束成分で、15Tの破線は前記永久磁石15Sの磁束成分である。ステータの他の永久磁石と破線で示す磁束成分も同様である。
 また、図15の紙面で下方のロータ各部の符号は図7と同じ構成である。しかし、磁束密度の分布等、その作用はステータ側の磁束密度増大などで大きく変わるので後に説明する。また、エアギャップ長7Fは、見易さのため、拡大して示している。また、図15と図14のロータ回転角はθr=30°である。また、図14のCCW方向回転は図15のロータ73の右方向移動に相当する。
 次に、磁束の分布をより詳しく示すために、図15の一部を拡大して図16、図17、図18、図19に示す。図16の(a)は、図15のステータS極磁極15Lの周辺を拡大した図である。図16の(a)では、ステータ電流を通電しておらず、ステータの各永久磁石の磁束成分15G、15T、及び、ロータの各永久磁石の磁束成分78、7Rなどの分布状態を示している。A相ステータS極磁極15Lの歯には、紙面の上方から下方へ向かって磁束成分15G、15Tが通過していて、A相巻線15PとA/相巻線15Qが励磁する磁束方向とは逆方向であり、磁束密度が負にバイアスした状態である。ロータのロータN極磁極7Nの四角の線161で囲う領域の磁束は紙面の上方から下方に向かっていて、ロータN極磁極7Nがトルクを生成するためにステータと作用する磁束方向とは逆方向であり、磁束密度が負にバイアスした状態である。図6の軟磁性体の磁気特性では63あるいは64の相当する動作点であり、6Aあるいは69の磁束密度の変化が可能な状態である。そして、ロータ回転角はθr=30°では、A相ステータS極磁極15LとロータのロータN極磁極7Nがエアギャップを介して対向している。従って、S極とN極が対向しているので、A相巻線15PとA/相巻線15QへA相電流Iaを通電した場合、A相磁束φaを最も通過しやすいロータ回転位置θrである。そして、ステータとロータとの間で通過可能な最大磁束、最大磁束密度を分析、評価できる。なお、このθr=30°の回転位置では、A相ステータS極磁極15Lはトルクを発生できない。
 図16の(b)は図16の(a)の状態で、A相巻線15PとA/相巻線15QへA相電流Iaを通電し、159のA相磁束φaを励磁した状態を示している。ステータ及びロータの永久磁石が生成する各磁束成分とA相磁束φaの159を重ねて記載している。ロータN極磁極7Nの四角の線161で囲う領域では、ロータの永久磁石が作る磁束成分とA相磁束φaの159とが逆向きで、相殺している。ステータS極磁極15Lの歯では、ステータの永久磁石15Hが作る磁束成分15G及びステータの永久磁石15Sが作る磁束成分15TとA相磁束φaの159とが逆向きで、相殺している。
 図17の(a)と(b)は、図16の(b)の重畳した磁束をその分布状態へ換算し、置き換えている。図17の(a)は、A相巻線15PのA相電流Iaがさほど大きくない場合で、図17の(b)はA相電流Iaが大きい場合の磁束分布例である。図17の(a)の磁束171と172は、ロータS極磁極7Kの軟磁性体磁路を通り、永久磁石77を通り、ロータN極磁極7Nを通り、エアギャップを通り、ステータS極磁極15Lを通り、永久磁石15Hを通り、ステータN極磁極15Jの歯を通りステータバックヨークを通る。磁束173と174は、ロータS極磁極7Sの軟磁性体磁路を通り、永久磁石10Aを通り、ロータN極磁極7Nを通り、エアギャップを通り、ステータS極磁極15Lを通り、永久磁石15Sを通り、ステータN極磁極155の歯を通りステータバックヨークを通る。
 図17の(a)では、A相巻線15PとA/相巻線15QのA相電流Iaに励磁されて磁束171、172、173、174が、ロータN極磁極7Nからエアギャップを通ってステータS極磁極15Lへ通過する。しかし、これらの磁束は、ロータN極磁極7Nの軟磁性体部である四角の線161で囲う領域とステータS極磁極15Lの歯とを、まだ通っていない。従って、A相電流Iaを増加して、ロータN極磁極7NとステータS極磁極15Lとの通過磁束を増加することができる。また、楕円形の太い破線179で示すエアギャップ近傍を通過する磁束は、図16の(b)の磁束成分159の値である。前記の様に、ステータS極磁極15Lの歯及びロータN極磁極7Nの軟磁性体部である177の領域が永久磁石によりまだ負にバイアスされた状態であったとしても、それらの状態に関係なく、179近傍のエアギャップ部を通過する磁束は正の値であり、前記磁束成分159の値である。
 図17の(b)は、図17の(a)の前記A相電流Iaを増加した場合の磁束分布の例である。図示するように、磁束171、172、173、174、175、176が、ロータN極磁極7Nから楕円形の太い破線17Aで示す領域のエアギャップ近傍を通ってステータS極磁極15Lへ通過する。図17の(a)に比較して、前記磁束175、176が増加している。これらの磁束175、176は、ロータN極磁極7Nの軟磁性体部である四角の線161で囲う領域を通り、楕円形の太い破線17Aで示すエアギャップ近傍を通り、ステータS極磁極15Lの歯を通る。
 図17の(b)において前記A相電流Iaが十分に大きく、もし、前記磁束175、176により、ロータN極磁極7Nの軟磁性体部である四角の線161で囲う領域、及び、A相のステータS極磁極15Lの歯の磁束密度が2.0[T]の磁束φa1であって、前記磁束171、172、173、174の合計が同じ大きさの磁束φa2であるとする。この時、楕円形の太い破線17Aで示す領域のエアギャップの磁束密度Bagapは、前記磁束φa1とφa2が重なるので、単純な磁気モデルとして考えると、4.0[T]となる。楕円形の太い破線17Aで示す領域では、エアギャップ部だけでなく、エアギャップ近傍の軟磁性体部の磁気抵抗も大きく増加する。軟磁性体の磁気特性が図6であるとして、2.0[T]を越えた磁束成分に対する軟磁性体の比透磁率は1.0に近づく。
 しかし、楕円形の太い破線17Aで示す領域を除けば、磁束密度は2.0[T]を越えない構成としている。従って、前記A相電流Iaを増加すれば、多くの起磁力[A]が楕円形の太い破線17Aで示す領域へ印加することになり、大きな磁界の強さ[A/m]となり、磁束密度は4.0[T]までも増加する。この17Aの領域以外の軟磁性体は磁束密度が2.0[T]以下であり、比透磁率が100以上の値などと大きいので、必要な消費起磁力、即ち、励磁負担は比較的小さい。なお、ステータのバックヨーク部の太さは十分に大きくし、磁気抵抗を小さく保つように設計することができる。但し、前記A相電流Iaによりエアギャップ部を4.0[T]の磁束密度とするためには、隣のロータ磁極7Kと7Sの磁路と、隣のステータ磁極15Jと155の歯を使用するので、ステータS極磁極15Lの励磁と同時に、ステータ磁極15Jと155の励磁を行わない方が、電磁気的な動作が複雑にならない。なお、あるステータ磁極を励磁するときに、円周方向の両隣のステータ磁極を同時に使用しないような駆動法、あるいは、大きさを減少して限定して同時に使用する駆動法、あるいは、同時に使用する駆動法について後に説明する。
 次に、ステータS極磁極15Lと、ロータS極磁極7Sがエアギャップを介して対向する場合について、図18の(a)、(b)に示し、説明する。ロータ回転角はθr=-6°である。ステータのS極とロータののS極が丁度対向した状態であり、磁束が通過しにくいロータ回転位置θr=-6°である。図18の(a)では、A相巻線15PとA/相巻線15QへA相電流Iaを通電し、矢印付き太い破線で示す181のA相磁束φaを励磁する状態を示している。181のA相磁束φa、及び、ステータとロータの各永久磁石のやや細い破線で示す各磁束成分は重ねて記載している。181のA相磁束φaは、ステータ側のA相のステータS極磁極15Lの歯が磁束の逆バイアス状態なので、容易に通過できる。しかし、ロータS極磁極7Sの四角の線182で囲う領域は、永久磁石10A、10Bの磁束の方向が同じであるため磁束密度が高く磁気抵抗が大きくなっているので、181のA相磁束φaの通過が難しい状態となっている。結果として、181のA相磁束φaの値は小さくなる。
 図18の(b)は磁束分布を示していて、図18の(a)の重畳した磁束成分を分布状態に定性的に変換して作図している。図18の(b)では、184のA相磁束φaの成分は、ロータバックヨークからロータS極磁極7Sの軟磁性体部である四角の線183で囲う領域を通過し、ステータ側のA相のステータS極磁極15Lの先端部を通り、永久磁石15Hを通り、ステータN極磁極15Jの歯を通りステータバックヨークを通る。185のA相磁束φaの成分は、ロータバックヨークからロータS極磁極7Sの軟磁性体部である四角の線183で囲う領域を通過し、ステータ側のA相のステータS極磁極15Lの先端部を通り、永久磁石15Sを通り、ステータN極磁極155の歯を通りステータバックヨークを通る。前記磁束成分184と185は、四角の線183で囲う領域の磁束密度が既に高いため磁気抵抗が大きく、小さな値である。そのため、永久磁石15Hの磁束成分187と永久磁石15Sの磁束成分188は少し減少する程度で残っている。そして、A相のステータS極磁極15Lの歯は、磁束成分187と188により依然として磁気的に逆バイアスされた状態を示している。
 次に、図19の(a)、(b)に、CCW方向のトルクを発生する状態について図示し、説明する。ロータ回転角はθr=12°である。A相のステータS極磁極15Lに、エアギャップを介して、ロータN極磁極7NとロータS極磁極7Sとの半分づつが対向している。図19の(a)では、A相巻線15PとA/相巻線15QへA相電流Iaを通電し、矢印付き太い線で示しロータN極磁極7Nとを通過する191のA相磁束φa成分と、細い破線で示しロータS極磁極7Sを通過する192のA相磁束φa成分とが、A相のステータS極磁極15Lを通過している。これらの191と192の磁束成分は、破線で示す各永久磁石の磁束成分と重ねて記載している。太線の前記磁束成分191は、ロータN極磁極7Nの四角の線196で囲う領域で永久磁石の磁束成分が逆方向に生成され、逆方向バイアスなので、容易に通過できる。細い破線の全記磁束成分192は、ロータS極磁極7Sの四角の線197で囲う領域で永久磁石の磁束成分と同一方向の磁束なので磁気抵抗が大きく、通過する磁束は小さい。
 図19の(b)は磁束分布を示していて、図19の(a)の重畳した磁束成分を分布状態に定性的に変換して作図している。193の磁束成分は、ロータバックヨークからロータS極磁極7Kの四角の線198で囲う領域を通り、永久磁石77を通り、ロータN極磁極7Nを通り、エアギャップを通過し、ステータ側のA相のステータS極磁極15Lの先端部を通り、永久磁石15Hを通り、ステータN極磁極15Jの歯を通りステータバックヨークを通る。194の磁束成分は、ロータバックヨークからロータS極磁極7Sの四角の線19Aで囲う領域を通り、永久磁石7Aを通り、ロータN極磁極7Nを通り、エアギャップを通過し、ステータ側のA相のステータS極磁極15Lを通り、永久磁石15Sを通り、ステータN極磁極155の歯を通りステータバックヨークを通る。磁束成分195は、ロータバックヨークから四角の線19Aで囲う領域を通り、ロータS極磁極7Sからエアギャップを通り、ステータ側のA相のステータS極磁極15Lを通り、永久磁石15Sを通り、ステータN極磁極155の歯を通りステータバックヨークを通る。この分布状態では、A相のステータS極磁極15Lの歯を通る磁束は無く、永久磁石15Hと15Sの磁束で逆バイアスされた状態である。従って、前記A相電流Iaを増加して、ステータS極磁極15Lを通過する余力は十分に残っている。
 また、この時、193の磁束成分は既に大きな値であり、永久磁石15Hの磁束成分19Cは小さな値となっている。さらに、前記A相電流Iaが増加するかあるいはロータ回転角θrが大きくなると、磁束成分193は増加し、永久磁石15Hの初期の磁束成分19Cは無くなる。194の磁束成分も既に大きな値であり、永久磁石15Sの磁束成分19Dは小さな値となっている。さらに、前記A相電流Iaが増加するかあるいはロータ回転角θrが大きくなると、磁束成分194は増加し、永久磁石15Sの初期の磁束成分19Dは無くなる。そして、前記A相電流Iaが増加するかあるいはロータ回転角θrが大きくなると、A相のステータS極磁極15Lの歯を紙面の下側から上側へ通る磁束が生成され、増加する。この時、このステータS極磁極15Lの歯を通る磁束が負のバイアス状態の値から正の値になり増加することを意味する。また、四角の線19Aで囲う領域の磁束密度が既に高いため磁気抵抗が大きく、前記磁束成分195は小さな値となる。
 この時、前記A相電流Iaをさらに大きくすると、19Bの太い破線の円形で示す、ステータS極磁極15LとロータN極磁極7Nの軟磁性体とそれらの間のエアギャップ部分は、磁束が集中し大きな磁束密度となる。太い破線の円形領域19Bを除くと、他の磁路の磁束が通過する余力は十分に大きく磁気抵抗は小さい。従って、前記A相電流Iaの増加分の起磁力[A・turn]を、太い破線の円形領域19Bへ印加できるので、大きな磁界の強さ[A/m]を与え、励磁できる。ここで、太い破線の円形領域19Bとは、エアギャップ部と、磁束密度が2.0[T]以上となって透磁率が大幅に低下したステータ磁極の先端近傍の軟磁性体部とロータ磁極の先端近傍の軟磁性体部である。図6の磁気特性で、磁束密度が2.0[T]以上になると、軟磁性体の比透磁率が1に近い小さな値に低下する。しかし、ごく限られた狭い領域であれば、前記A相電流Ia[A・turn]を増加してその狭い領域へ大きな磁界の強さ[A/m]を与えることが可能であり、例えば、その部分の磁束密度を4.0[T]以上の大きな値にもできる。後に(19)式などで説明するが、磁束密度の二乗の力、トルクを得ることができる。例えば、比透磁率が1で長さ5[mm]の軟磁性体の部分を2[T]の状態から4[T]まで増加する励磁電流分の起磁力は、(4-2)/μo×0.005=7958[A・turn]となる。μoは真空透磁率である。10[kW]以上のモータがその最大トルクを出力する時の電流としては、巻線電流と巻回数を乗じた起磁力として現実的な値である。4.0[T]では2.0[T]に比較して4倍の力、トルクになる。勿論、2.0から4.0[T]の間の磁束密度も使え、例えば、3.0[T]では2.0[T]に比較して2.25倍の力、トルクと計算できる。
 次に、図14のモータをロータ回転角θr=0°から30°まで回転する場合の磁束の変化とトルクTについて説明する。前記A相巻線15PとA/相巻線15QへA相電流Ia=Ia1を通電した状態での回転を想定する。ステータ磁極とロータ磁極のエアギャップ面における円周方向幅は30°とする。ロータ磁極ピッチは36°である。図1と同様に、ロータ回転角θr=0°は、A相のステータS極磁極11がロータのN極磁極1Hに電磁気的に作用してCCWトルクを発生する直前のロータ回転位置と定義する。図5にロータ回転位置θrが12°の例を示した。従って、図18の(b)のロータ回転角は、θr=-6°である。CCWへ回転し、θr=12°の状態は、図19の(b)である。さらにCCWへ回転し、θr=30°の状態は、図17の(a)あるいは(b)であるが、前記電流Ia1が十分に磁束を励磁できる大きさの場合を考え、図17の(b)とする。このように、A相電流Ia=Ia1を通電した状態で、図18の(b)から図19の(b)そして図17の(b)へとロータが回転し、磁束の分布状態が変化する。
 次に、各状態における、ステータS極磁極15Lの歯の磁束密度Baと前記A相巻線15Pの鎖交磁束φaとを求める。ロータ位置θrは、図18の(b)の位置から6°進んだθr=0°と、図19の(b)の位置から3°進んだθr=15°と、図17の(b)のθr=30°について考え、比較する。図18の(b)の-6°から6°進んだθr=0°では、初期状態において、四角の線183で囲う領域の磁束密度Ba1は永久磁石により逆バイアスされていてBa1=-2.0[T]であると仮定し、磁気飽和状態なので磁気抵抗が大きく、概略説明の概略値として、前記磁束184、185は0[Wb]と仮定する。なお、ロータの半径はRrで、軸方向長さをLrとする。ステータ磁極とロータ磁極のエアギャップ面における円周方向角度は30°で、円周方向幅、即ち円周方向長さLpcir[m]は次式となる。
  Lpcir=30°×(2π/180)×Rr                   (8)
この時、ステータS極磁極15Lの歯は永久磁石15Hと15Sに逆バイアスされて負の磁束、負の磁束密度Ba2となっている。今、このBa1の負のバイアス値は、丁度、磁束密度Ba2=-2.0[T]であると仮定する。この時の前記A相巻線15Pの鎖交磁束φa1[Wb]は次式となる。また、この時のエアギャップ部の磁束密度Bgap1、磁束φgap1も0[Wb]である。
  Bgap1=0
  φgap1=0                            (9)
  Ba1=-2.0
  φa1=Ba1×30°×(2π/180)×Rr×Lr
    =-2.0×30°×(2π/180)×Rr×Lr             (10)
 そして、図19の(b)から3°進んだθr=15°では、前記電流Ia1が十分に大きく、ステータS極磁極15LとロータN極磁極7Nとが対向している15°の円周方向幅のエアギャップの磁束密度Bgap2=+4.0[T]であると、モデル的に仮定する。エアギャップでの通過磁束φgap2は次式となる。
  Bgap2=+4.0
  φgap2=Bgap2×15°×(2π/180)×Rr×Lr
     =4.0×15°×(2π/180)×Rr×Lr             (11)
ステータS極磁極15Lの歯の磁束φa2は、永久磁石15Hと15Sによる逆バイアス磁束成分19Cと19Dの和φa1と前記φgap2との和であり、丁度相殺して0[Wb]となる。この磁束密度Ba2も0[T]である
  Ba2=0
  φa2=φa1+φgap2
    =-2.0×30°×(2π/180)×Rr×Lr+4.0×15°×(2π/180)×Rr×Lr
    =0                             (12)
 そして、図17の(b)のθr=30°では、ステータS極磁極15LとロータN極磁極7Nとが対向している30°の円周方向幅のエアギャップの磁束密度Bgap3=+4.0[T]であると、モデル的に仮定する。エアギャップでの通過磁束φgap3は次式となる。
  Bgap3=+4.0
  φgap3=Bgap3×30°×(2π/180)×Rr×Lr
     =4.0×30°×(2π/180)×Rr×Lr             (13)
ステータS極磁極15Lの歯の磁束φa3は、前記逆バイアス磁束成分φa1と前記φgap3との和であり、次式となる。
  φa3=φa1+φgap3
    =-2.0×30°×(2π/180)×Rr×Lr+4.0×30°×(2π/180)×Rr×Lr
    =2.0×30°×(2π/180)×Rr×Lr              (14)
この時の歯の磁束密度Ba3は、対向するステータ磁極の面積Ss3で除して次式となる。
  Ss3=Lpcir×Lr=30°×(2π/180)×Rr×Lr
  Ba3=φa3/Ss3
    =2.0×30°×(2π/180)×Rr×Lr/(30°×(2π/180)×Rr×Lr)
    =2.0                            (15)
 以上、A相電流Ia=Ia1を通電した状態で、ロータ回転位置θrが0°、15°、30°とロータが回転する場合の、エアギャップ部の磁束密度と磁束、及び、ステータS極磁極15Lの歯の磁束密度と磁束即ち前記A相巻線15Pの鎖交磁束φを(9)式から(15)式に示した。前記A相巻線15Pの鎖交磁束φは、(10)式の負の値から、(12)式の0、(14)式の正の値と変化している。一方、図14のモータが一定回転数ωで回転する時のモータへの電力供給は(3)式で表すことを示した。(3)式では磁束φの大きさではなく、磁束φの回転変化率に比例することを示している。即ち、例えば、0、2、4と鎖交磁束が変化する場合と、-2、0、2と鎖交磁束が変化する場合は、(3)式の電力供給は同じであることを示している。従って、図16等に示すような、各永久磁石を使用してステータとロータの各磁路を負の磁束にバイアスして使用できることを示した。また、図6に示す軟磁性体の磁気特性では、片方向電流の駆動で、磁束密度の負の値から正の値までの変化を示す、69や6Aの磁束密度の変化を利用してトルクを発生できることを示した。
 また、図14などのモータのトルクT[Nm]の値は、(7)式で示される。Δφ/Δθは、巻線へ鎖交する磁束の角度変化率なので、ロータ回転角θrと共に増加する(10)、(12)、(14)式の値の角度変化率である。(12)式の磁束は0であるが、図11の(b)のロータ回転角θr=12°でトルクを発生しているように、トルクは巻線へ鎖交磁束の大きさではなく、鎖交磁束の角度変化率に比例した大きさのトルクを発生する。
なお、(7)式のトルク式は、(2)、(3)式に示す様に、モータへの供給電力から間接的にトルクを推測し計算する式である。モータ内の内部損失は無視している。
 なお、(10)、(12)、(14)式に示す前記A相巻線15Pの鎖交磁束φaと、(9)、(11)、(13)式に示すエアギャップ部の磁束φgapは連動している。図18の(a)、図16の(b)、図19の(a)に示す様に、前記A相巻線15Pの鎖交磁束φaは、エアギャップ部の磁束φgapからステータの永久磁石の逆バイアス磁束φbiasを差し引いた値である。
  φa=φgap-φbias                       (16)
この逆バイアス磁束φbiasを一定値と仮定すると、(7)式の磁束φを置き換えて次式となる。そして、トルクTはエアギャップ部の磁束φgapの変化率に比例する。
  T=Nw×I×Δ(φgap-φbias)/Δθ             (17)
   =Nw×I×Δφgap/Δθ                   (18)
 また、(7)、(17)式とは異なる方法で、電磁気的な力、トルクを、直接的に求める方法が知られている。それは、マクスウェルの応力を変形して求めるもので、モータのエアギャップ部で発生する円周方向の力Fmaxwell[N]は次式となる。
  Fmaxwell=Brad×Bcir/μo                   (19)
ここで、Brad[T]はラジアル方向の磁束密度成分、Bcir[T]は円周方向の磁束密度成分、μoは真空透磁率である。後に説明する図20に、BradとBcirの例を図示する。なお、(19)式の円周方向の力Fmaxwell[N]は、電流で励磁した結果のエアギャップ部の磁束分布、磁束密度を観測して求めるので、(19)式には電流値が含まれていない。磁束分布と磁束密度だけから力Fmaxwell[N]を考察、設計できる。また、この円周方向の力Fmaxwell[N]は力密度であり、エアギャップ部で発生する円周方向の力Fmaxwell[N]を一周に渡って積分して、ロータ半径Rr[m]とロータの軸方向長さLr[m]を乗じて、モータトルクT[Nm]が求められる。
 また、正対するN極とS極との間に発生する吸引力は、磁束密度の二乗に比例することが知られている。(19)式も、力Fmaxwell[N]が磁束密度の二乗に比例することを示している。例えば、磁束密度2.0[T]の状態から4.0[T]にできれば、力、トルクは4倍になる。原理的には、さらに、6.0[T]にできれば、力、トルクが9倍になる可能性を示している。従って、磁束密度を増大できるモータ構成を実現できれば、大幅なトルク増加が見込める。また、(1)、(2)式の供給電力、(7)式のトルク式、(20)式のローレンツ力においても、励磁電流を2倍に増加した結果として磁束密度を2倍にすることができれば、それぞれ、供給電力、トルク、力が4倍になることを示している。なお、従来モータは、部分的に2.0[T]を越えることはあるが、モータの磁路の全体が軟磁性体の磁気飽和を勘案した設計となっているため、大きな電流[A・turn]を通電してもその起磁力[A・turn]は磁路全体で消費されて、エアギャップ部の磁束密度はさほど上がらない。従って、モータの最大トルクは、全体のモータ磁路の磁気飽和で制約されることが多い。
 なお、磁束密度2.0[T]を越えると、磁気回路の構成上、励磁電流に比例して磁束密度を増加できないこともある。例えば、磁束密度2.0[T]の状態から励磁電流を2.5倍に増加してようやく磁束密度4.0[T]にできた場合も、(19)式に従って、トルクは4倍にしかならない。それは、例えば、0.5倍分の励磁電流の起磁力[A]が、磁束が通過する何らかの磁気抵抗部で消費された場合などである。図14の本発明モータにおいても、エアギャップ部近傍の軟磁性体磁路のごく一部が磁束密度2.0[T]を越えて磁気飽和することを想定している。なお、このような磁気エネルギー分は熱になるわけではなく、電気エネルギーに回生される。
 図14のモータのトルクを発生する部分の一部を抜き出し、簡素化した例を図20に示す。図20は、一部を拡大し、また、周辺の構成を省略している。図20の201は、図19の(b)のステータS極磁極15Lである。図20の202は、図19の(b)のロータN極磁極7Nである。特にエアギャップ部は、説明のため、極端に拡大して図示している。図20の203、204は、図19の(b)のA相巻線15Pである。永久磁石15H、15S、77、10A、及び、それらの外周部は記載を省略している。そして、エアギャップ部以外の磁束の分布を単純化して示し、原理的に示している。207、208、209は磁束を示していて、205は(19)式のラジアル方向の磁束密度成分Brad[T]、206は円周方向の磁束密度成Bcir[T]である。トルクTの方向を矢印で示している。(19)式、図20に示す様に、モータのトルクはエアギャップ部の磁束分布で示され、磁束密度の大きさに比例したトルクが得られることを確認できる。
 なお、(19)式の値は、パソコンを使用した有限要素法解析FEMでエアギャップの磁束密度分布を求めて計算できる。しかし、計算量が多く、机上の手計算で求めることは困難である。また、(7)式でモータ全周について求めたトルクTと(19)式を用いて求めたトルクTはほぼ一致する。また、前記(19)式からも、エアギャップ部の磁束密度を大きくできれば、トルクT[T]の増加を見込めることを推測できる。有効なトルク評価方法と言える。
 なお、ローレンツ力、あるいは、フレミングの左手、右手の法則として知られる次式の力F[N]は、均一な磁束密度B[T]に配置される長さLr[m]で巻回数Nwの巻線とその電流I[A]の次式として表される。トルクTはロータ半径Rrを乗じて得られる。
  F=B×(Nw×I)×Lr                     (20)
  T=F×Rr
   =B×(Nw×I)×Lr×Rr                   (21)
また、(7)式のΔφは(22)式で表され、(7)式に代入する。
  Δφ=B×Δθ×Rr×Lr                    (22)
  T=Nw×I×(Δφ/Δθ)
   =Nw×I×(B×Δθ×Rr×Lr)/Δθ             (23)
   =B×(Nw×I)×Lr×Rr                   (24)
ここで、(21)式と(7)式からの変形である(24)式は同じになる。即ち、均一な磁束密度B[T]の電流が作用するトルクと、図20のような突極同士の吸引力で発生するトルクの値が同じになる。鎖交磁束の変化率の観点では、両条件が共通していると言える。また、(19)式の力の密度であるFmaxwellから計算するトルクも、変形すると(21)式と同じになる。同一の物理現象を、それぞれ、異なった視点で観測する表現式なので、状態の把握、評価に使える。
 トルクTと磁束密度Bの観点で、図14の本発明モータと図63の従来スウィッチトリラクタンスモータを比較する。軟磁性体が図6の磁気特性と仮定すると、図14の本発明モータは(11)、(13)式に示したように、モータモデル的にエアギャップ部の磁束密度Bgapを4.0[T]まで増加できる。その場合、図14の本発明モータの最大トルクは、図63の従来スイッチトリラクタンスモータに比較して4倍のトルクが得られることになる。
 また、図16から図19までの説明では、軟磁性体磁路を永久磁石で逆バイアスする磁束の量を、図16の(a)のステータS極磁極15Lの歯とロータN極磁極7Nの四角の線で囲った領域の磁束密度の最大値とが-2.0[T]となる様に仮定し、設定した。それは、図6の仮定した軟磁性体磁気特性とも整合を取っている。その仮定で、(9)式から(15)式を説明した。
 また、図14のステータ、ロータの永久磁石の磁束量をさらに上げ、図10、図11の106、107、108、109の様にエアギャップ側へ磁束があふれるように構成することも可能である。その場合、図15、図17の(b)などから解るように、A相ステータS極磁極15Lの励磁巻線15PとA/相に励磁巻線15Qへ大きな電流を通電することにより、ステータS極磁極15Lの両隣のステータ磁極15J、155を活用できるので、それらの軟磁性体を通過する磁束は最大3倍となり、エアギャップ部磁束密度Bgap[T]を、原理的な単純計算で6.0[T]となる。その場合は、図14の本発明モータの最大トルクは(19)式より、図63の従来スイッチトリラクタンスモータに比較して、単純計算で、9倍のトルクが得られことになる。なお、モータの大きさ、コストは、軽負荷時のモータ効率ではなく、最も過酷な駆動条件で設計されることが多い。従って例えば、電気自動車の主機用モータの場合は急坂の登坂運転が過酷なので低速回転で大トルクの領域が必要である。この様な用途は多く、モータの小型化、軽量化、低コスト化には、最大トルクとその時の力率、トルク定数、銅損などの損失と効率が重要である。図14のモータは、前記の様に、最大トルクに強みを持っている。
 なおこの時、図14、図15、図17の(b)の構成から解るように、一つの相の2個のステータ磁極を励磁する時に、それぞれが両隣の2個の歯を使って、合計6個の歯を使って磁束を通過させ、トルクを発生することになる。図17の(b)は作用する磁束が最大となるロータ回転位置の磁束の分布を示していて、各磁路の磁束の大きさを分析する図である。またここで、モータの最大トルクは、図64の例のようにロータ回転角θrの部分的な特定角度の最大トルクではなく、ロータが1回転する時の平均トルクの最大値を指している。最大トルク、すなわち、1回転の平均トルクを大きくするためには、図17の(b)の様に、モータの磁気回路を効果的に活用することにより、エアギャップ部の周辺を除いたモータの磁気回路が磁気飽和しない構成とする必要がある。また、従来使用されることの多い磁石内蔵型同期モータIPMSMでは、その最大トルクの動作領域、あるいは、定出力制御のため弱め界磁制御を行う高速回転の動作領域では、電機子反作用の効果などにより、各巻線の電圧位相と電流位相に位相差が発生して力率が低下する問題がある。その結果、モータ銅損が増加し、駆動回路のトランジスタの電流容量が増加する問題があり、大型化、高コスト化の要因となっている。何れの従来モータも、最大トルクに制約と限界がある。
 また、必要なモータトルクが小さい場合は、当然電流値が小さく、エアギャップ近傍のステータ磁極先端部およびロータ磁極の先端部の磁束密度は、飽和磁束密度である2.0[T]を越えずに駆動する。大きなトルクが必要になると、電流を増加して、図19の(b)に破線の丸印で示す19Bの領域の磁束密度が増加する。前記の様に、逆バイアス用の永久磁石が十分な性能であれば、丸印19Bの領域の磁束密度は4.0[T]ないし6.0[T]まで大きな値とすることが可能である。即ち、丸印19Bの領域が6.0[T]になるまでは、丸印19Bの領域以外の他の軟磁性体の磁路は磁束密度が2.0[T]以下の値であって、図6に仮定した磁気特性では比透磁率が大きいことになり、無理なく磁束を通過することができる。
 以上、エアギャップ部の磁束密度を大きくし、大きなトルクを発生する可能性について示した。しかし、軟磁性体の飽和磁束密度を超える様な磁気回路は、漏れ磁束、永久磁石の減磁、磁束密度が大きい部分の磁気エネルギー(B・H/2)などの問題があり、課題もある。例えば、電気自動車の主機用モータの場合、前進方向のトルクを主に使用するので、正方向トルクを効果的に生成できる構造ととしても良い。種々永久磁石が使える。低鉄損のアモルファス鋼板も使え、高磁束密度のパーメンジュール鋼板を部分的に使うこともできる。パワーMOSFET、SiC、GaNなどの電力素子で高速化もできる。
 次に、ロータの永久磁石およびその近傍の形状例を図21、図22に示し、説明する。図14のモータはステータ磁極の数が6個でロータ磁極数が10個の6S10Rの構成で、モータの基本構成および作用が解り易いようにステータ1磁極対の構成を示している。しかし、モータ直径が200mmを越える大きさのモータ設計は、小型化のため、ステータ磁極対の数を大きくもできる。但し、ロータ磁極の数が大きくなると、鉄損増加と駆動回路の電流制御の周波数限界などで、高速回転の限界が発生する。ここでは、図14のモータを4極対として24S40Rのモータを想定し、ロータ磁極の数が40個のロータ形状の例を図21に示す。211はロータ軸、212は永久磁石、213はN極磁極、214はS極磁極である。なお、各永久磁石の磁極の向きは、各ロータ磁極の極性の方向に向いている。
 次に、ロータ磁極の各種の例を図22の(a)から(f)に示し、説明する。これらは図21の215に示す破線の円の部分を拡大し、部分的に示す図である。図22の(a)の221は永久磁石である。各永久磁石の磁束の向きを磁石上に書く矢印の方向で示している。222はS極磁極、22HはN極磁極である。図22の(b)の223のS極磁極の形状は、円周方向の前後が対称形状ではなく、CCWトルクとCWトルクの特性が異なる。主に片方向のトルクが重要な用途のモータでは、片方向のトルクを重視し、反対方向のトルク特性をある程度犠牲にすることも可能である。図22の(c)の224の永久磁石形状は、225の永久磁石より円周方向の厚みが大きい。図14のモータでは大きな電流を通電して大きなトルクを発生するので、特にエアギャップ近傍の永久磁石には大きな起磁力H[A/m]が作用することになる。永久磁石224の形状の様に、円周方向の厚みを大きくすることにより、耐減磁性能を向上することができる。図22の(d)の226の永久磁石形状は、エアギャップ側の円周方向厚みが大きく、内径側になるほど円周方向厚みを小さくした形状である。前記永久磁石224と同様に、永久磁石226のエアギャップ側が減磁し難い形状となっている。なお、永久磁石226の形状は、前記永久磁石224と225との中間の形状など、変形することができる。
 また、図22の(d)の227はS極磁極の形状を凸型形状とした例で、矩形形状や台形形状にできる。図22の(e)の229のS極磁極の形状は円弧状である。ロータの磁極形状を変形することができる。図22の(e)の228の永久磁石と22Aの永久磁石は円周方向の厚みが異なり、径方向に分離して配置している。22Bと22Cは空間であり、樹脂などの非磁性体でも良い。図22の(f)の22D、22E、22F、22Gは異なる種類、特性の磁石を示している。これらの磁石の一部が空間あるいは樹脂などの非磁性体であって良い。22KのS極磁極には、22Jの細長い空間であるスリットを配置している。22KのS極磁極の内部の磁束分布を変えて、トルク特性を変えることができる。スリット22Jの方向を変えて、斜めに配置して、CCWトルクとCWトルクの特性を変えることもできる。スリット22Jの数、形状を変えることもできる。スリット22Jを永久磁石に置き換えることもできる。
 なお、本発明モータでは、ロータ側のスペースが相対的に不足することがある。その観点では、ロータを外径側に配置し、ステータを内径側に配置する、いわゆるアウターロータ構造とすることにより、ロータの設計自由度を改善できる。この時、ステータのスロット断面積が比較的広いモータ構造なので、ステータを内径側に配置しても、スロット断面積即ち巻線スペースを確保できる。また、ステータとロータをロータ軸方向に対向して配置する、いわゆる、アキシャルギャップ型のモータ構成では、ステータ側とロータ側とを磁気的に同等に配置できる。
 なお、ここでは、図14の本発明モータについて、エアギャップ部の磁束密度を4.0[T]まで増加できること、大きなトルクを発生できることを示した。さらには、一巡する磁気回路の磁束限界からは、原理的な単純計算で6.0[T]の可能性を示した。なお、図14は集中巻き巻線の例だが、全節巻き巻線を使用して異なる特徴を発揮でき、その技術を後に説明する。相数は3相の例を示したが、5相、7相、9相、11相、13相等が可能であり、その場合のロータ磁極数は特定の数で特に優れた特性を示す。相数が素数で大きな数になると、発生する力の高調波成分が相殺する効果があり、騒音を低減し易い。
 次に、請求項3の実施例について説明する。請求項3は、図1、図14のステータ磁極11、12などの歯の周囲に巻回する、いわゆる集中巻き巻線の構成のモータである。図1、図14の特長の一つは、前記の様に、ロータ磁極の通過磁束を増大できるので、ロータ磁極の磁気抵抗の低減によりトルクを増大できることである。また、図13に示したように、台形状の電流波形にするなど、回転時の電流波形の自由度が、図63の従来モータより増える特長もある。また、集中巻きの巻線ピッチが複数のステータ磁極にまたがる全節巻き巻線に比較して、巻線製作が容易であり、巻線の占積率を向上し易く、モータの小型化が見込める。また、全節巻き巻線に比較して、コイルエンド部の軸方向の突き出し長さを小さくできる。モータ長さを縮小できるので小型化の点で優れている。逆に、問題点も有り、解決すべき課題など、順次説明する。
 次に、図14のモータの動作を説明するために、図23にロータの回転位置をθr=0°とし、A相磁束成分φa、B相磁束成分φb、C相磁束成分φcを、重ねて書き加えて示す。ロータの始点、回転位置θr=0°は、図23に示す様に、A相ステータS極磁極11の紙面で右下の角部がロータのN極磁極1Hの紙面で左上の角部に、エアギャップを介して、対向する位置としている。このロータ回転位置θrは、A相ステータN極磁極11がトルクの発生を開始する回転位置θrである。
 前記の様に、図23のA相の集中巻き巻線1Aの電圧とA/相の集中巻き巻線1Dとを直列に接続し、それらの電圧との和であるA相電圧Vaは次式となる。なお、例えば、A相の集中巻き巻線1Aの鎖交磁束は(φa-φbiasa)で、A/相の集中巻き巻線1Dの鎖交磁束は(φa-φbiasa/)である。また、ステータのS極磁極11がロータのS極磁極1Jと対向している部分の通過磁束は、図18で説明した様に、同じS極なので通過磁束が少なく、ここでは通過磁束が無いものと仮定し、単純化する。
  Va=Nw/2×d(φa-φbiasa)/dt+Nw/2×d(φa-φbiasa/)/dt (31)
同様に、B相電圧Vb、C相電圧Vcは次式となる。
  Vb=Nw/2×d(φb-φbiasb)/dt+Nw/2×d(φb-φbiasb/)/dt (32)
  Va=Nw/2×d(φc-φbiasc)/dt+Nw/2×d(φc-φbiasc/)/dt (33)
ここで、各集中巻き巻線の巻回数はNw/2[turn]である。φbiasaは、A相ステータS極磁極11の側面に配置する永久磁石145、146によるA相ステータS極磁極11の歯のバイアス磁束である。φbiasa/は、A/相ステータS極磁極14の側面に配置する永久磁石148、149によるA/相ステータN極磁極14の歯のバイアス磁束である。同様に、φbiasbは、B相ステータS極磁極13の歯のバイアス磁束である。φbiasb/はB/相ステータN極磁極16の歯のバイアス磁束である。同様に、φbiascは、C相ステータS極磁極15の歯のバイアス磁束である。φbiasc/はC/相ステータN極磁極12の歯のバイアス磁束である。
 今、前記バイアス磁束φbiasa、φbiasa/、φbiasb、φbiasb/、φbiasc、φbiasc/の値が変化せず、一定値であると仮定すると、(31)、(32)、(33)式は仮定の値Vak、Vbk、Vckとして簡略化でき、次式となる。
  Vak=Nw×dφa/dt                       (34)
  Vbk=Nw×dφb/dt                       (35)
  Vck=Nw×dφc/dt                       (36)
なお、前記の様に、A相の集中巻き巻線1Aの鎖交磁束は(φa-φbiasa)、B相の集中巻き巻線1Cの鎖交磁束は(φc-φbiasc)、C相の集中巻き巻線1Eの鎖交磁束は(φc-φbiasc)であるが、この明細書では、後に記述する全節巻巻き線の電圧との関係など、(34)、(35)、(36)式を用いる。集中巻き巻線の図23と全節巻き巻線の図26、図27との関係である。また、図1の集中巻き巻線のモータの場合には、ステータに逆バイアス用の永久磁石を備えていないので、前記バイアス磁束は無く、(34)、(35)、(36)式が成り立つ。
 図23のA相磁束φa[Wb]は、ロータ回転角θrが0°から30°へCCW回転し、A相巻線1AとA/相巻線1Dに流れる電流が一定値Ioであって、エアギャップ部の磁束密度が一定値のBoである場合、θrが0°から30°の範囲で次式となる。
  φa=Bo・θr・Rr・Lr                     (37)
図23の1Hなどのロータ磁極の円周方向の角度幅は30°とし、231等の永久磁石の円周方向幅を6°としている。1Aと1Dの両巻線の合計巻回数をNwとし、両巻線が直列に接続した両端電圧Vak[V]は(34)式から次式となる。ωは回転角速度[rad/sec]である。
  Vak=Nw×dφa/dt                       (38)
    =Nw×d(Bo・θr・Rr・Lr)/dt               (39)
    =Nw×d(Bo・θr・Rr・Lr)/dθr・dθr/dt
    =Nw×(Bo・Rr・Lr)・ω                 (40)
この様に、前記駆動条件では、(40)式のA相電圧Vakは、磁束密度Bo[T]と回転角速度ω[rad/sec]に比例した電圧となる。
 ここで、各相の電流Ia、Ib、Icを図13の(a)、(b)、(c)の破線で示す値に設定した場合の電流、電圧の例を図24に示し、説明する。(40)式の磁束密度Boは2.0[T]以下の値であって、軟磁性体は図6の特性で磁気飽和していないと仮定する。図24の(a)はA相電流Iaで、図23の状態からCCWの回転に同期して通電する電流で、電流振幅は1.0に正規化して示している。A相電流Iaは、ロータ回転角θrが0°から6°の間で増加し、6°から24°の間は1.0の一定値で、24°から30°の間減少して0になり、36°から72°までは0の一定値で、72°周期でこれらの値を繰り返す。図24の(b)のB相電流Ibは、A相電流に対して位相が48°遅れた同一の電流波形となる。図24の(c)のC相電流Icは、A相電流に対して位相が24°遅れた同一の電流波形となる。
 図24の(d)はA相電圧Vakで、(34)、(40)式の値に相当する。A相電圧Vakは、図23の状態からCCWへ一定回転数で回転し、電圧波形は回転に同期する。ロータ回転角θrが0°から6°の間では、ステータのS極磁極11とロータのN極磁極1Hとが対向する面積が増加し、同時に、図24の(a)のA相電流Iaも直線的に増加するので、図23のA相の集中巻き巻線1A、および、A/相の集中巻き巻線1Dに鎖交するA相磁束φaは二乗関数で増加する。A相電圧Vakは、(34)式から1次関数となり直線的に増加する。θrが6°から24°の間では、A相電流Iaは一定値なので、(40)式の電圧となる。θrが24°から30°の間では、ステータのS極磁極11とロータのN極磁極1Hとが対向する面積が増加し、同時に、図24の(a)のA相電流Iaは直線的に減少するので、図示する様な大きな負電圧、波形形状となる。トルク発生と磁気エネルギーの電源側への回生とが重なる現象である。36°から72°までは0の一定値で、72°周期でこれらの値を繰り返す。図24の(e)のB相電圧Vbkは、A相電圧Vakに対して位相が48°遅れた同一の電圧波形となる。図24の(f)のC相電圧Vckは、A相電圧Vakに対して位相が24°遅れた同一の電圧波形となる。
 図24の(d)、(e)、(f)の負の回生電圧が大きくなると、電流制御が制限される問題が発生する。この負の電圧が駆動回路の電源電圧を超える場合は、電源電圧に制約されるので、回生時間が長くなる。その場合には、負のトルクが発生することもあり、平均トルクが減少する。あるいは、電流減少のタイミングを早めると、正のトルク発生時間が短縮され、平均トルクが減少する。なお、各相の磁束が大きくなると回生電圧が大きくなる。図24の電流減少時間を短くすると回生電圧が大きくなる。ロータの回転数が大きくなると、回生電圧が大きくなる。この回生電圧の問題を低減する方法として、常時、前ステータ磁極を励磁する方法があり、詳しくは後に説明する。また、図24の負の回生電圧は、全節巻き線の場合、他の相の巻線へも発生するので、より大きな問題となる。その現象と解決策を後に説明する。
 また、図24のロータ回転角θrが0°から30°の間にA相とA/相が発生するA相トルクTa[Nm]は、(1)式と(4)式から次式となる。
  Ta=Vak・Io/ω
   =Nw×(Bo・Rr・Lr)・ω・Io/ω              (41)
   =Nw×(Bo・Rr・Lr)・Io                  (42)
この様に、前記駆動条件では、(42)式のA相トルクTa[Nm]は、磁束密度Bo[T]に比例することが確認できる。特に、本発明モータでは、モータの最大トルク近傍では、4.0[T]などの大きな磁束密度を使用する。
 また、(42)式の磁束密度Boは電流IoすなわちA相電流Iaにも関わっており、図6の磁気特性の磁束密度が電流に比例する領域では、(42)式のトルク値が電流の二乗に比例することになる。磁束密度が2.0[T]に近づき、大きくなると、エアギャップ近傍の磁束密度が大きくなり、磁気抵抗が大きく変化するので、電流Ioに対して非線形なトルク特性となる。即ち、各相電流Ia、Ib、Icと各相の磁束密度の関係が非線形なので、単純な数式で表現できない。いづれにしても、トルクTはエアギャップ部の(19)式の値に従う。
 なお、ここで、(1)、(4)、(42)式は、鉄損、銅損だけでなく、モータ内の磁気エネルギーも無視した仮定の式である。仮定ではあるが、概略の定性的関係を明確にすることにより、課題を解決できる。前記の様に、特に本発明モータでは、モータ内の磁気エネルギーを、インバータ側とモータ側でどのように授受するかという課題があり、後に、磁気エネルギーとその授受方法について説明する。なお、B相磁束φb、B相トルクTbは、図24と同様の関係となり、A相に対して位相が48°遅れた特性となる。C相磁束φc、C相トルクTcは、図24と同様の関係となり、A相に対して位相が24°遅れた特性となる。
 次に、図23の各巻線へ各電流を通電する駆動回路の例を図25に示し、説明する。25Aはモータの制御回路である。25Bは直流電源であり、正電圧Vpと負電圧Vnを出力する。257は前記A相集中巻き巻線1Aと前記A/相集中巻き巻線1Dを直列に接続した巻線である。251はトランジスタで、コレクターを正電圧Vpへ接続し、エミッターを巻線257の一端へ接続する。トランジスタ251のエミッターと負電圧Vnとの間に回生用のダイオードを接続する。252はトランジスタで、コレクターを前記巻線257の他端へ接続し、エミッターを負電圧Vnへ接続する。トランジスタ252のコレクターと正電圧Vpとの間に回生用のダイオードを接続する。258は前記B相集中巻き巻線1Cと前記B/相集中巻き巻線1Fを直列に接続した巻線である。253はトランジスタで、コレクターを正電圧Vpへ接続し、エミッターを巻線258の一端へ接続する。トランジスタ253のエミッターと負電圧Vnとの間に回生用のダイオードを接続する。254はトランジスタで、コレクターを前記巻線258の他端へ接続し、エミッターを負電圧Vnへ接続する。トランジスタ254のコレクターと正電圧Vpとの間に回生用のダイオードを接続する。259は前記C相集中巻き巻線1Eと前記C/相集中巻き巻線1Bを直列に接続した巻線である。255はトランジスタで、コレクターを正電圧Vpへ接続し、エミッターを巻線259の一端へ接続する。トランジスタ255のエミッターと負電圧Vnとの間に回生用のダイオードを接続する。256はトランジスタで、コレクターを前記巻線259の他端へ接続し、エミッターを負電圧Vnへ接続する。トランジスタ256のコレクターと正電圧Vpとの間に回生用のダイオードを接続する。
 例えば、図24の(a)に示す台形状のA相電流Iaは、前記トランジスタ251と252をPWM制御などで制御し、通電する。例えば、図24の(b)に示す台形状のB相電流Ibは、前記トランジスタ253と254をPWM制御などで制御し、通電する。例えば、図24の(c)に示す台形状のC相電流Icは、前記トランジスタ255と256をPWM制御などで制御し、通電する。なお、モータ制御の概略の手順としては、例えば、速度制御で求めた速度誤差からトルク指令Tcを求め、トルク指令Tcに応じた電流振幅Ioをもとめ、電流振幅Ioに応じた図13の例に示す様な各相電流Ia、Ib、Icを通電し、制御する。
 次に、図23のモータ内部の磁気エネルギーについて説明する。一般的に、空間の磁気エネルギーEmの密度[J/m3]は、磁束密度B[T]、磁界の強さH[A/m]として、次式となる。
  Em=B・H/2                           (43)
例えば、同じ磁束密度でも、軟磁性体の比透磁率が大きければ必要な磁界の強さH[A/m]は小さく、その部分の磁気エネルギーEmは小さい。エアギャップ部などは比透磁率が1と小さいので、その部分の磁気エネルギーEmは大きい。本発明のモータでは、エアギャップ部とその近くは部分的ではあるが、大きな磁束密度とするので、大きな磁気エネルギーEmが蓄積され、モータとインバータとの間で授受を繰り返す。前記の様に、回転数が大きくなると、磁気エネルギーの回生に関わる問題がある。また、ステータとロータ間の吸引力が急激に変化する場合は、振動、騒音の問題もある。解決方法の例などを後に説明する。
 次に、図1、図14、図23などの集中巻き巻線の利用率について説明する。図24に示す様に、前記A相の集中巻巻線1AとA/相の集中巻巻線1DへA相電流Ia通電して駆動し、続いて同様に、B相、C相と通電して駆動し、ロータを回転する。この時、各巻線のそれぞれへ通電する期間は全期間の約1/3であり、集中巻き巻線の利用率が約1/3と言える。モータの巻線スペースが限られているため、巻線の太さ、巻回数は限定される。そして、巻線利用率が低く例えば1/3の場合、巻線利用率が3/3の場合に比較して3倍の電流を通電する必要がある。銅損は、32/3=3となり、3倍の大きな値になる。このように、巻線の利用率向上は、銅損の低減、効率向上、モータの小型化、軽量化、低コスト化に重要である。巻線の利用率を向上する方法を後に説明する。
 巻線の利用率が低いと、駆動するトランジスターの利用率も低下する。そして、前記の様に電流値が大きくなるので、トランジスタの電流容量を大きくする必要があり、インバータが大型化する問題、コストの問題がある。この解決方法の例を後に説明する。ステータ磁極数とロータ磁極数のモータ構成、駆動回路の構成、電流通電方法などである。
 次に、請求項4の実施例を図26に示し、説明する。図26のモータは、図14の各相の集中巻き巻線を全節巻き巻線に置き換えている。その他のモータ構成は同じである。261と262はAB相巻線であり、巻線ピッチがステータ1磁極対の電気角360°の1/2である電気角180°の全節巻き巻線で、そのコイルエンドを太い破線で示す267で示している。AB相巻線にはAB相電流Iabを通電する。図14のA相巻線1Aの集中巻き巻線の正側巻線部分とB/相巻線1Fの集中巻き巻線の正側巻線部分は同一のスロット内に配置しているが、図26のAB相巻線の全節巻き巻線の正側巻線部分である261が前記両巻線を統合している。図14のA/相巻線1Dの集中巻き巻線の負側巻線部分とB相巻線1Cの集中巻き巻線の負側巻線部分は同一のスロット内に配置しているが、図26のAB相巻線の全節巻き巻線の負側巻線部分である262が前記両巻線を統合している。図26のAB相巻線の261と262は、それぞれに一つのスロットを占有し、巻線断面積を2倍に拡大できるので、図14の集中巻き巻線の巻線抵抗に比較して、スロット内の巻線抵抗を1/2に低減できる。なお、前記AB相巻線261、267、262の作用については後に説明するが、A相ステータS極磁極11とA/相ステータN極磁極14の動作と、B相ステータS極磁極13とB/相ステータN極磁極16の動作との両方に関わる、即ち、A相とB相の両方の電磁気的動作に関わるのでAB相巻線と呼称する。
同様に、263と264はBC相巻線であり、巻線ピッチがステータ1磁極対の電気角360°の1/2である電気角180°の全節巻き巻線で、そのコイルエンドは太い破線で示す268である。BC相巻線にはBC相電流Ibcを通電する。図14のB相巻線1Cの集中巻き巻線の正側巻線部分とC/相巻線1Bの集中巻き巻線の正側巻線部分は同一のスロット内に配置しているが、図26のAB相巻線の全節巻き巻線の正側巻線部分である263が前記両巻線を統合している。図14のB/相巻線1Fの集中巻き巻線の負側巻線部分とC相巻線1Eの集中巻き巻線の負側巻線部分は同一のスロット内に配置しているが、図26のBC相巻線の全節巻き巻線の正側巻線部分である264が前記両巻線を統合している。
図26のBC相巻線の263と264は、図14の集中巻き巻線の巻線抵抗に比較して巻線抵抗を1/2に低減できる。なお、前記BC相巻線263、268、264はB相とC相の両方の電磁気的動作に関わるので、この全節巻き巻線をBC相巻線と呼称する。
同様に、265と266はCA相巻線であり、巻線ピッチがステータ1磁極対の電気角360°の1/2である電気角180°の全節巻き巻線で、そのコイルエンドは太い破線で示す269である。CA相巻線にはCA相電流Icaを通電する。図14のC相巻線1Eの集中巻き巻線の正側巻線部分とA/相巻線1Dの集中巻き巻線の正側巻線部分は同一のスロット内に配置しているが、図26のCA相巻線の全節巻き巻線の正側巻線部分である265が前記両巻線を統合している。図14のC/相巻線1Bの集中巻き巻線の負側巻線部分とA相巻線1Aの集中巻き巻線の負側巻線部分は同一のスロット内に配置しているが、図26のBC相巻線の全節巻き巻線の正側巻線部分である266が前記両巻線を統合している。
図26のCA相巻線の265と266は、図14の集中巻き巻線の巻線抵抗に比較して巻線抵抗を1/2に低減できる。なお、前記BC相巻線265、269、266はC相とA相の両方の電磁気的動作に関わるので、この全節巻き巻線をCA相巻線と呼称する。
 次に、図26のモータの全節巻き巻線の電流Iab、Ibc、Icaと図14の集中巻き巻線の電流Ia、Ib、Icとの関係を示す。
  Iab=Ia+Ib                          (44)
  Ibc=Ib+Ic                          (45)
  Ica=Ic+Ia                          (46)
この関係で各相電流を通電すると、図26の全節巻き巻線のモータと図23の集中巻き巻線のモータにおいて、ステータとロータの各部へ同じ起磁力が作用しロータに同じトルクが発生する。起磁力の作用する周回経路、場所は、それぞれの電流について、アンペアの周回積分の法則に基づいて特定できる。即ち、それぞれの電流の周回経路の中で磁気抵抗の大きい部分へその電流の起磁力が作用し、磁気抵抗が小さくなる方向へ力が発生する。
 次に、図26の全節巻き巻線の電圧と磁束の関係について説明する。261などの全節巻き巻線の巻回数は、図23のA相集中巻き巻線1A等と同じNw/2[turn]とし、巻回数については同じ条件とする。図26に図示する様に、永久磁石の磁束成分があり、それぞれの全節巻き線には各相の磁束φa、φb、φcが鎖交するので、電圧が複雑になる。AB相巻線261、267、262の電圧Vabは、ファラデーの電磁誘導の法則から次式となる。
  Vab=Nw/2×d(φa-φbiasab-φbiasab/+φb-φc)/dt     (47)
φbiasabは、図26の巻線261の部分に鎖交する磁束成分14Bであり、永久磁石145の発生磁束成分である。φbiasab/は、図26の巻線262の部分に鎖交する磁束成分26Aであり、永久磁石148の発生磁束成分である。今、前記バイアス磁束φbiasabとφbiasab/の値が変化せず、一定値であると仮定すると、(34)式のVakと同様に、(47)式は仮定の値Vabkとして簡略化でき、次式となる。
  Vabk=Nw/2×d(φa+φb-φc)/dt               (48)
 同様に、BC相巻線263、268、264の簡略化した電圧Vbck、CA相巻線265、269、266の簡略化した仮定の電圧Vcakは次式となる。
  Vbck=Nw/2×d(-φa+φb+φc)/dt               (49)
  Vcak=Nw/2×d(φa-φb+φc)/dt                (50)
また、(34)式のVak、(35)のVbk、(36)のVckで表すと次式となる。これらの全節巻き線の電圧は、集中巻き巻線の場合の相電圧Vak、Vbk、Vckを含む複雑な電圧となる。
  Vabk=(Vak+Vbk-Vck)/2                    (51)
  Vbck=(-Vak+Vbk+Vck)/2                   (52)
  Vcak=(Vak-Vbk+Vck)/2                    (53)
 次に、(44)式のIab、(45)式のIbc、(46)式のIcaを駆動回路図25で駆動する電流、電圧の例を図28に示し、その問題点について説明する。駆動回路図25で図26のモータを駆動する場合は、巻線257は図26の261、267、262のA相全節巻き巻線とする。同様に、巻線258はB相全節巻き巻線263で、巻線259はC相全節巻き巻線265とする。今、図24に示した集中巻き巻線の電流Ia、Ib、Icと同じ電流を(44)、(45)、(46)式の関係で全節巻き巻線261、263、265のIab、Ibc、Icaとして通電する。この時、図23の集中巻きもモータと図26の全節巻きモータの各スロットには、同じ電流[A・turn]が通電されることになる。従って、ロータを回転させない時の停止時トルクは同じである。
 図28に、(44)、(45)、(46)式の関係の図26の全節巻き巻線の各電流Iab、Ibc、Icaを示す。具体的な通電の例であり、図24の(a)、(b)、(c)から作図できる。また、図26の全節巻き巻線の各電圧Vabk、Vbck、Vcakは、(51)、(52)、(53)式の関係なので、この例については、図24の(d)、(e)、(f)から作図して、図28の(d)、(e)、(f)となる。前記の様に、各全節巻き巻線には、全ての相の磁束が鎖交して、他の相の磁束に関わる電圧も発生する。逆に、各全節巻き巻線の電流は、全ての相のステータ磁極の磁気回路に起磁力[A]を印加する。
なお、従来の3相正弦波交流の全節巻き巻線のモータは、いわゆる、3相交流理論により線形理論で比較的簡単な式でモータ特性が示されることが多い。しかし、図23、図26の様なモータは、ステータ磁極が円周方向に離散的な配置で、各駆動ステップごとにシーケンシャルに駆動するので、個々の動作について、発生電圧や作用する起磁力を考える必要がある。
 ここで、図28の(a)のAB相電流Iabの電流増加部である、ロータ回転角θrが48°から54°の図28の(d)のAB相電圧Vabkについて考えてみる。この区間では、図28の(d)のAB相電圧Vabkに大きな電圧が発生していて、AB相電流Iabを増加することは困難である。この増加する電流成分は、図24の(b)から解る様に、AB相電流Iabの内のB相電流Ibの成分である。一方、図24の(f)から解る様に、C相電流Icの電流減少時であり、C相の磁気回路に蓄積した磁気エネルギーを電源側に回生するタイミングとなっている。そのC相電圧成分が図28の(d)のAB相電圧Vabkに重畳している。(51)式の右辺の第3項である。図28の他の相の電圧も同様である。
 ここで、大きな問題がある。それは、図26の全節巻き巻線のモータを駆動回路図25で図28の様に駆動する場合、ある程度の電流値と回転数を越えると、電流を増加することが困難になる問題がある。それは、電源電圧の大きさに関わる問題で、図28に示す様な電圧を発生、供給できない場合の問題である。例えば、図28の(c)のCA相電流Icaが(46)式の電流を通電していて、ロータ回転角θrが48°から54°の区間ではC相電流Icを減少させる。この時、もし回生電圧が電源電圧Vsourに達すると、(53)式のCA相電圧VcakのVckが(-Vsour)となり、同時に、(51)式のAB相電圧Vabkの(-Vck)がVsourとなる。その結果、AB相巻線には電源電圧と同じVsourが誘起電圧として発生しているので、θrが48°の時点から(44)式のAB相電流IabのB相電流Ibの成分を増加できなくなる。また、この時、(45)式のBC相電流Ibcは通電しているので、(44)、(45)(46)式の電流バランスが崩れることにもなる。そして、図26の全節巻き巻線を駆動回路図25で、図28の様に駆動することが困難な状態が発生する。
 なお、図28の大きな電圧、過電圧が発生する要因がいくつかある。一つの要因は、全節巻き巻線の電圧が他の相の磁束変化も含めた(51)、(52)、(53)式の関係となっていることである。二つ目の要因は、図23、図26の様なモータは、リラクタンストルクの吸引力を利用しているため、電源側とモータ側で磁気エネルギーの供給と回生を繰り返すことである。三つ目の要因は、図26のモータでC相電流のトルク発生を終えるタイミングで、他の相がトルクの発生を開始するタイミングとなり、タイミングが重なることである。なお、図23、図26のモータは3相のモータで図28の特性であるが、5相モータ、7相モータなどと多相になると、前記の磁束変化と電圧、磁気エネルギーの供給と回生がさらに複雑になる。
 次に、図26の全節巻き線の鎖交磁束と電圧について考察する。(51)、(52)、(53)式から次式を求められる。
  Vcak+Vabk=Vak                      (54)
  Vabk+Vbck=Vbk                      (55)
  Vbck+Vcak=Vck                      (56)
図26のAB相巻線261とBC相巻線265は、A相磁束φaに共に鎖交し、逆に、B相磁束φbとC相磁束φcに対しては互いに逆方向であって、AB相巻線261とCA相巻線265を直列に接続した場合、A相磁束φa成分だけが残る。B相磁束φbとC相磁束φcの磁束変化に伴う電圧は、AB相巻線261とCA相巻線265のそれぞれの巻線に誘起するが、それらの電圧が相殺される。(51)式と(53)式の和が(54)式となる理屈である。(48)式と(50)式の和でもある。また、他の相も同様である。図28で示した、複雑で大きな全節巻き巻線の電圧が、2個の巻線を直列接続することにより、図24に示す単相の電圧Vak、Vbk、Vckにできることは、大変重要な関係である。電圧が単純化することと、他の相の磁束の影響を受けない特性を示している。
 また、AB相巻線261とCA相巻線265へ直列に通電する電流成分は、(44)、(46)式から、A相電流成分Iaである。このA相電流成分IaをAB相巻線261とCA相巻線265へ直列に通電した場合、B相磁束φbとC相磁束φcへは影響しない。即ち、B相のS極磁極13とB/相のN極磁極16、及び、C相のS極磁極15とC/相のN極磁極12へは、アンペアの周回積分の法則からも、A相電流成分Iaの起磁力が作用しないことが図26で目視できる。この結果、2つの全節巻き巻線の直列接続は、他の相の磁束の影響を受けず、また、その直列電流成分は他の相へ起磁力を発生しない。図26では3相の場合について説明したが、後に示す5相、7相、9相、11相等の多相でも同様な関係であり、効果的な方法である。特に多相の場合は、全節巻き巻線の電圧が複雑になるので、各相の磁束成分を正確に制御するために効果的な方法である。
 次に、他の相の磁束変化の影響を受けない駆動回路の例を図29に示し、説明する。
図29の駆動回路は、(44)、(45)、(46)式と、(54)、(55)、(56)式の関係を保ちながら制御でき、また、駆動効率、利用率の大きい駆動回路である。
また、図29の駆動回路は、回路構成の対称性から同一相の全節巻き巻線を2個配置して構成する駆動回路である。2個の同一相の全節巻き巻線が得られるように、図26のモータをステータ2磁極対の構成とした例を図27に示す。271と274はAB相巻線で、272と275はBC相巻線で、273と276はCA相巻線である。太い破線で各巻線のコイルエンドを示し、接続関係と巻回先を示している。277と27DはA相ステータS極磁極で、278と27EはA/相ステータN極磁極で、279と27FはB相ステータS極磁極で、27Aと27GはB/相ステータN極磁極で、27Bと27HはC相ステータS極磁極で、27Cと27JはC/相ステータN極磁極である。各ステータ磁極の間には、それぞれの極性に向けた永久磁石を配置している。27KはロータのN極磁極で、図26と同様に、ロータ回転角の始点θr=0の位置を示している。解り易い様に、相の名称と通電電流の名称を括弧付きで示している。
 図29の29Rは直流電圧源である。291は297のAB相巻線へAB相電流Iab1を駆動するトランジスタである。294は29AのAB相巻線へAB相電流Iab2を駆動するトランジスタである。AB相巻線297、29Aは、図27のAB相巻線271あるいは274である。292は298のBC相巻線へBC相電流Ibc1を駆動するトランジスタである。295は29BのBC相巻線へBC相電流Ibc2を駆動するトランジスタである。BC相巻線298、29Bは、図27のBC相巻線272あるいは275である。293は299のCA相巻線へCA相電流Ica1を駆動するトランジスタである。296は29CのCA相巻線へCA相電流Ica2を駆動するトランジスタである。CA相巻線299、29Cは、図27のCA相巻線273あるいは276である。29D、29E、29F、29G、29H、29Jは各巻線のエネルギーを直流電圧源29Rへ回生するダイオードである。29K、29L、29M、29N、29P、29Qは、図29の紙面で左右方向の電圧、電流の干渉を低減するためのダイオードである。また、図29の回路動作を解り易くするための、通電する電流の方向も示す矢印と電流名称を付記する。
 図29の回路動作は、例えば、図28の(a)、(b)、(c)のように各相の電流を通電し、その内訳は(44)、(45)、(46)式の関係になっている。従って、図24の(a)、(b)、(c)に示すIa、Ib、Icの成分を通電する。AB相巻線297を通過するAB相電流Iab1は、(44)式の様に、A相電流IaとB相電流Ibの和である。この内、B相電流Ibはダイオード29Kを通ってBC相巻線298へ通電する。同様に、AB相巻線29Aを通過するAB相電流Iab2は、(44)式の様に、A相電流IaとB相電流Ibの和である。この内、B相電流Ibはダイオード29Nを通ってBC相巻線29Bから通電する。
また、BC相巻線298を通過するBC相電流Ibc1は、(45)式の様に、B相電流IbとC相電流Icとの和である。この内、C相電流Icはダイオード29Lを通ってCA相巻線299から通電する。同様に、BC相巻線29Bを通過するBC相電流Ibc2は、(45)式の様に、B相電流IbとC相電流Icとの和である。この内、C相電流Icはダイオード29Pを通ってCA相巻線29Cへ通電する。また、CA相巻線299を通過するCA相電流Ica1は、(46)式の様に、C相電流IcとA相電流Iaの和である。この内、A相電流Iaはダイオード29Mを通ってAB相巻線29Aへ通電する。同様に、CA相巻線29Cを通過するCA相電流Ica2は、(46)式の様に、C相電流IcとA相電流Iaの和である。この内、A相電流Iaはダイオード29Qを通ってAB相巻線297から通電する。
 この時、図29の各全節巻き巻線の各電圧は、図28の(d)、(e)、(f)の電圧となる。(51)、(52)、(53)式に従っており、図24の(d)、(e)、(f)の電圧のそれぞれが含まれ、大きくて複雑な電圧である。しかし、図29の紙面で、AB相巻線297の上側端からBC相巻線298の下側端までの電圧は図24の(e)のB相電圧Vbkとなり、比較的単純な電圧となる。他の直列に接続した2つの巻線の両端電圧は、同様に、A相電圧Vak、C相電圧Vckとなる。
 例えば、B相電流Ibが増加するタイミングである、ロータ回転角θrが48°から54°の間のB相電圧VbkはB相磁束φbが増加することによる(35)式のVbkだけである。従って、トランジスタ291とトランジスタ292の間のB相電流Ibが増加する場合、例えば、トランジスタ291をオン状態にして、トランジスタ292もオン状態にすれば、B相電流Ibを電源電圧が許容する範囲で増加することができる。また、ロータ回転角θrが72°から78°の間では、図24の(a)、(b)に示す様に、B相電流Ibを1から0へ減少すると共に、A相電流Iaを0から1へ増加する。この場合、例えば、トランジスタ292をオフ状態にして、B相電流Ibがダイオード29Eを通して直流電圧源29Rへ回生する状態とし、同時に、トランジスタ296をオン状態とする。そして、トランジスタ291をオンとオフを繰り返すPWM制御を行うと仮定すると、291がオンの状態ではダイオード29Qを通るA相電流Iaが増加し、B相電流Ibは電源へ回生され減少する。そして、トランジスタ291がオフの状態ではB相電流Ibはダイオード29Dとダイオード29Eを通って回生されて減少し、A相電流Iaはその間も増加する。
 実際には、トランジスタ291とトランジスタ292とトランジスタ296とのそれぞれがPWM制御を行えるので、それぞれの該当する電流が指令値より小さければオン状態を多くし、指令値より大きければオフ状態を多くしてPWM制御して、精密に制御する。図29で直列に配置する2つの全節巻き線の両端電圧は、(54)、(55)、(56)式の関係なので、Ia、Ib、Icの各相電流成分を制御できる。なお、図29の各電流は直流なので、1つのトランジスターが通電する1つの直流電流をPWM制御する能力があり、通電している電流の値を検出できれば適正値に増減することが可能である。直流電流のPWM制御は、交流電流のPWM制御に較べて、簡単な回路構成で行え、容易である。
 また、前記の様に、ダイオード29K、29L、29M、29N、29P、29Qは、図29の紙面で左右のとの電圧と電流の干渉を低減しているが、各電流は該当するトランジスタによりPWM制御することが可能であり、必ずしも必要ではない。また、図29に示す様に、各全節巻き巻線の直流電流制御では、各トランジスタのPWM制御などで該当する電流の値を比較的簡単に制御できると共に、電流が通電する方向も駆動回路の工夫次第で簡単に選択する、あるいは、分流することも容易に行える。直流電流の駆動回路のこれらの作用は、交流電流の制御に比較して遙かに簡単で、大きな特徴である。
 次に、図27の6S10Rの全節巻き巻線のモータをステータ2磁極対とした図27のモータを、図29の駆動回路で駆動する場合の各全節巻き巻線の利用率について説明する。前記の様に、(54)、(55)、(56)式に従って、図24の(a)、(b)、(c)、及び、図28の(a)、(b)、(c)に示す各相の電流を通電する例を示した。例えば、A相電流Iaの成分は、図29のトランジスタ291、AB相全節巻き巻線297、CA相全節巻き巻線29C、トランジスタ296と通電する。もう一方、図29のトランジスタ293、CA相全節巻き巻線299、AB相全節巻き巻線29A、トランジスタ294と通電する。この時、図27のモータの6個の全節巻き巻線の内、4個の巻線に通電してトルクを発生している。これらの全節巻き巻線の利用率は2/3である。他のB相電流Ibの成分、C相電流Icの成分を通電する場合も同様である。図23の集中巻き巻線のモータで、図25の駆動回路で、図24の(a)、(b)、(c)の様に通電した場合の巻線利用率が1/3であることに比較し、図27、図29、図28の全節巻き巻線のモータでは巻線利用率を2倍に改善した。なお、巻線の利用率が2倍に改善することと、全節巻き巻線のスロット内の抵抗値が1/2になることは表裏の関係である。この結果、モータの銅損を1/2に低減できる。
 次に、図29の駆動回路の各トランジスタの利用率について説明する。図示する様に、291、292などの各トランジスタは各全節巻き巻線と接続し、その各電流をPWM制御する。従って、各トランジスタの利用率は、各巻線と同じで、2/3である。図23、図25、図24の集中巻き巻線の駆動に較べて、各トランジスタの利用率が2倍になる。各トランジスタの利用率が2倍になると、トランジスタの電流容量を1/2に低減できるので、駆動回路の小型化、低コスト化を実現できる。なお、従来の表面磁石型同期電動機SPMSMや磁石内臓型同期モータIPMSMでは3相正弦波交流の駆動を行っている。これらのトランジスタの利用率は、前記の利用率の計算方法では、1/3の利用率になる。従って、図27、図29、図28の全節巻き巻線のモータでは、各トランジスタの利用率を従来SPMSMやIPMSMの駆動回路に比較して2倍に改善できるので、これら従来比でも駆動回路の小型化、低コスト化を実現できる。なお、図26、図27は3相の6S10R、及び、ステータ2磁極対とした12S20Rの例であるが、多相化によりさらに巻線利用率、トランジスタ利用率を改善できる。5相の10S18R、7相の14S26R等の例を後に説明する。
 以上示した様に、図27、図29、図28の駆動の効果として、全節巻き巻線に発生する他相の過大な電圧による電流の通電が困難になる問題、図23の集中巻き巻線のモータの銅損が大きい問題、図25の駆動回路の利用率が低く駆動回路の電流容量が増加するため大型で高価になる問題を解決できる。具体的には、全節巻き巻線への電流の通電を可能にし、モータ銅損を1/2にし、駆動回路の電流容量を1/2にして小型化、低コスト化できる。
 逆に、図26、図27の全節巻き巻線のモータは、図示する様に、巻線のコイルエンド部が長くなるので電線材料が増加し銅損、コストが増加する問題がある。その他に、巻線の製作性に劣り、巻線の占積率が低下し易い問題、コイルエンド部のロータ軸方向長が大きくなり易くモータが大型化し易い問題もあるが、これらは生産技術で改良できる。巻線のコイルエンド長さの短縮方法の一つは、極対数を増やす方法で、図26に比較し図27では、ステータ2磁極対化によりコイルエンド長が半分に短縮している。さらに、3極対化、4極対化による短縮も可能である。
 また、2つのモータを内径側と外径側に組み込む複合モータの構成とし、各相の全節巻き巻線を環状巻線としてトロイダル状に巻回し、コイルエンド部の長さを最短化できる。図30のモータは、図27の第1象限の部分の1/4の部分に加え、外径側にもう1個のモータを配置した複合モータである。301は内径側の第1ロータで、302は内径側の第1ステータで図27と同じ構成である。30Cは第1ロータ301のロータ軸である。303は外径側の第2ステータで、304は外径側の第2ロータであり、いわゆる、アウターロータモータの構成である。第1ロータ301と第2ロータ304は機械的に連結している。305はA相のステータS極磁極、306はB/相のステータN極磁極、307はC相のステータS極磁極、308はA/相のステータN極磁極である。309は、トロイダル状に巻回したAB相の環状巻線である。コイルエンド長が最短であり、この巻線の巻回は張力をかけながら整列状に巻くことが可能であり巻線占積率を大きくでき、生産性も良い。30AはBC相の環状巻線で、同様の環状巻線である。30BはCA相の環状巻線で、同様の環状巻線である。
 なお、図30のモータは前記環状巻線309、30A、30Bを示すための図であり、極対数を含めて、各部形状の適正化が必要である。また、2つのモータを含む複合化は、図30のモータをロータ軸方向に配置した、いわゆる、アキシャルギャップ型のモータ構成とすることもできる。その場合にも環状巻線の構成とすることができ、コイルエンド部の長さを短く製作できる。また、ロータ軸方向の複合化であれば、図30のモータのように円周方向長さが変わることは無いので、形状バランスの取れたモータとし易い。また、図27のモータの形態で、ロータ軸方向のステータコアの積厚がコイルエンド長より小さい、偏平なモータコアの形状であれば、環状巻線構造とした方が合計の電線長が短くなる。逆に、モータが細長い形状の場合は、コイルエンド長の負担は相対的に小さい。なお、ステータ1磁極対の電気角360°の1/2である電気角180°の位置にある2つの環状巻線を直列に接続すると、鎖交磁束が全節巻き線と同じになり、電磁気的に等価な巻線を構成できる。
 また、図26、図27の全節巻き巻線のモータにおける各ステータ磁極の使用は、6個中の2個のステータ磁極に集中して使用している。2/3の巻線に流れる電流が1/3のステータ磁極へ集中的に起磁力を与える構成なので、大きな起磁力を特定部へ与えられる。2.0[T]以上の磁束を得るためには、その特定部の比透磁率が1に近く低下するので、起磁力を集中するために都合の良いモータ構成となっている。また、この時、図16、図17、図18、図19で説明した様に、6個のステータ磁極の6個の歯を使用して磁束を通過させ、エアギャップ部では2個のステータ磁極へ磁束を集中してトルクを発生する。従って、モータの大半を使用してトルクを発生していると言える。
 また、図29の駆動回路を種々のステータ磁極対のモータで使用する例を説明する。図26の1極対の全節巻き巻線のモータの場合、各相の巻線を2個ずつ得るために、各スロットへ各相巻線を2個ずつ配置して6個の巻線として、図29の駆動回路で駆動できる。3極対の全節巻き巻線のモータでは、その内の1極対の巻線を2個に分け、各相の巻線を1.5個ずつの巻線に接続して作成し、合計6個の各相巻線として、図29の駆動回路を使用できる。4極対の全節巻き巻線のモータでは、各相の4個の巻線があるので、2個ずつを直列接続として、合計6個の巻線として、図29の駆動回路を使用できる。同様に、極対数が変わっても、図29の駆動回路を使用できる。逆に、極対数に応じて、図29の駆動回路を変形することもできる。図29とは異なる、図26、図27の全節巻き巻線のモータの駆動回路の例、および、5相、7相等の多相のモータの駆動回路を、後に説明する。5相、7相等の多相のモータで、各ステータ磁極を円周方向に均等に配置するモータと、各ステータ磁極を円周方向に均等ではない配置のモータを、後に説明する。また、磁気エネルギーの回生方法に関わって、界磁電流成分を特に高速回転で常時通電して、巻線電圧を低減する方法を、後に説明する。また、極対数が大きくなると、ステータの永久磁石の断面が円周方向に短くなり、平行四辺形に近づいて実用形状に近くなる。永久磁石の設計、製作、固定取り付けが容易になる。
次に、請求項5の実施例を説明する。本発明は、ステータ磁極Psの数Npsとロータ磁極Prの数Nprなどを限定するものではないが、特定の関係の構成で良好な特性が得られる。請求項5は、複数のロータ磁極を円周方向に均等間隔に配置し、かつ、ステータ磁極も円周方向に均等間隔に配置するモータである。Ns、Nrを1以上の整数とすると、ステータ磁極Psの数Npsとロータ磁極Prの数Nprは次式の関係である。
  Nps=2+4×Ns                         (57)
  Npr=2+4×Nr                         (58)
その一つの例は、図1、図14、図26、図27等に示した6S10Rのモータ、3相のモータである。その他、14S26R、10S18R等の優れた構成を後に説明する。なお、これらはステータ磁極対の数を2、3、4と増加することもできる。いずれも、ロータ中心点に対して、磁気的に点対称な構成である。ステータの巻線は全節巻き巻線として、各巻線の利用率、駆動回路のトランジスタの利用率、最大トルクなど、都合良く使用できる。集中巻き巻線も構成できる。
 なお、ステータ磁極対の数が複数の場合は、トルクの高調波成分の一部、即ちトルクリップルを相殺するために、ステータ磁極の前記の均等間隔の配置から、一部のステータ磁極を円周方向へシフトして配置することもできる。また、集中巻き巻線のモータ構成の場合、ステータ磁極の円周方向に、スペースを設けることもできる。その円周方向スペースの幅の合計は、ロータ磁極Prのピッチθpprの2倍あるいはその整数倍とすると、モータの基本的な特性を大きく変えることなく、ステータ内にスペースを確保できる。例えば、ロータの位置検出、ロータ状態の観測、操作等を行うことができる。
 請求項5の実施例として、図26、図27等に示した6S10Rの全節巻き巻線のモータ、3相のモータがある。(57)、(58)式の条件を満たす。本発明の比較的簡素なモータの例として、詳しく説明した。既に説明したように、図29の駆動回路で図12、図13、図28の様に通電駆動し、巻線誘起電圧が過大となって通電できなくなる問題を解決し、巻線の利用率、各トランジスタの利用率を2/3程度にできること、最大トルクを増大できることを示した。
 他の実施例として、6S14Rのモータの動作を示す直線展開図を図31に示す。図1、図14、図26、図27の6S10Rのロータの磁極数を10個から14個へ増加した例である。ステータは図26と同じある。ロータ磁極が14個なのでロータ磁極ピッチが25.7°となり、動作周期は2倍の51.4°であり、図31の(a)から(h)に示す。前記の図12の展開図と同様な表示方法で、エアギャップ面に面したステータ磁極の形状とロータ磁極の形状を示して、相互の通過磁束や電磁気的な作用を分析できる。具体的には、CCWトルクの発生区間を作図する目的の直線展開図である。図31の横軸はロータ回転角θrで、右方向をCCW方向とする。図31は、ロータ回転角の-30°から360°までを表示している。各行の上部に、CCWトルク発生が可能な区間をロータ磁極形状の上側に太線で示す。この時、太線の位置と横幅は該当するステータ磁極の位置と横幅になる。
 図31の(a)はエアギャップ面に面する各ステータ磁極の形状である。図31の(b)はロータ回転位置θr=0°で、ロータ回転の始点である。図31の紙面で、A相ステータS極磁極11の左側位置が、ロータのN極磁極311の右側位置と一致している。この位置では、A相ステータS極磁極11とA/相ステータN極磁極14とC/相ステータN極磁極12とC相ステータS極磁極15がCCW方向へ吸引力を発生可能であり、図31の(b)の上部の太線で示している。図31の(c)はロータ回転位置θr=8.6°で、C/相ステータN極磁極12とC相ステータS極磁極15がCCW方向へ吸引力を発生できなくなる。図31の(d)はθr=17.1°で、B相ステータS極磁極13とB/相ステータN極磁極16がCCW方向へ吸引力を発生し始める。図31の(e)はθr=25.7°で、A相ステータS極磁極11とA/相ステータN極磁極14がCCW方向へ吸引力を発生できなくなる。図31の(f)はθr=34.3°で、C/相ステータN極磁極12とC相ステータS極磁極15がCCW方向へ吸引力を発生し始める。図31の(g)はθr=42.9°で、B相ステータS極磁極13とB/相ステータN極磁極16がCCW方向へ吸引力を発生できなくなる。図31の(h)はθr=51.4°で、この状態は図31の(b)の状態と同じ状態に戻る。そして、図31のモータは51.4°周期で、同じ動作を7回繰り返してロータが1回転する。このように、図31の6S14Rのモータは、図26の6S10Rのモータと同様に、同時に2個以上のステータ磁極でトルクを発生することができる。なお、駆動回路は、図31の6S14Rのモータをステータ2磁極対のモータとし、図27のモータと同様に、図29の駆動回路で駆動できる。
 他の実施例として、14S26Rの全節巻き巻線のモータ構成の断面図を図32に示す。(57)式のNsが3で、(58)式のNrが6の例である。ここまでの基本的な電磁気的動作などは、図1、図14、図26、図27などの3相のモータで説明してきたが、本発明モータは同様技術を多相モータへ拡張して、展開することが可能である。請求項5については、3相、5相、7相、9相、11相などの多相のモータへ展開できる。図32は7相のモータで、ステータ磁極数が14個、ロータ磁極数が26個の例である。7相等の多相化は、利用率を向上して高効率化、小型化、高品質化など可能性があり、順次説明する。
 図32の328はA相ステータS極磁極で、32AはA/相ステータN極磁極で、図示するA相磁束φaがA/相ステータN極磁極32Aから、ロータを通って、A相ステータS極磁極328へ通過する。A相とA/相とA相磁束φaの関係と同様に、CCW方向に各相のステータ磁極を配置していて、ステータの外周部に括弧付きで各ステータ磁極の相を示し、その相の磁束成分を示している。B相とB/相とB相磁束φb、C相とC/相とB相磁束φb、D相とD/相とD相磁束φd、E相とE/相とE相磁束φe、F相とF/相とF相磁束φf、G相とG/相とG相磁束φgを示している。
 図32の321はAD相巻線で180°離れたスロットへ全節巻き線を巻回し、AD相電流Iadを通電する。両スロット間はコイルエンド部で接続し、図32では接続関係を破線で示している。同様に、322はBE相巻線でBE相電流Ibeを通電し、323はCF相巻線でCF相電流Icfを通電し、324はDG相巻線でDG相電流Idgを通電し、325はEA相巻線でEA相電流Ieaを通電し、326はFB相巻線でFB相電流Ifbを通電し、327はGC相巻線でGC相電流Igcを通電する。
 7相の全節巻き巻線の電流Iad、Iea、Ibe、Ifb、Icf、Igc、Idgは、A相電流Ia、B相電流Ib、C相電流Ic、D相電流Id、E相電流Ie、F相電流If、G相電流Igで次式とする。
  Iad=Ia+Id                          (59)
  Ibe=Ib+Ie                          (60)
  Icf=Ic+If                          (61)
  Idg=Id+Ig                          (62)
  Iea=Ie+Ia                          (63)
  Ifb=If+Ib                          (64)
  Igc=Ig+Ic                          (65)
いずれの電流も正の値で直流電流である。相電流から全節巻き線の電流を計算できる。逆に、全節巻き線の電流から相電流も計算できる。両辺の値は相互に変換できる。
 例えば、図32の全節巻き巻線であるAD相巻線321の(59)式のAD相電流IabとしてA相電流Iaの成分を通電し、同時に、EA相巻線325の(63)式のEA相電流IeaとしてA相電流Iaの成分を通電すれば、図32のA相磁束φaが励磁される。それは、図32の全節巻き巻線のモータを、集中巻き巻線のモータとしてA相ステータ磁極328とA/相ステータ磁極32Aへ集中巻き巻線を巻回して変更し、これら集中巻き巻線へA相電流Iaを通電した場合と同じである。この場合も、図32の全節巻き巻線の前記A相磁束φaと同じ磁束が励磁される。その他の相についても同様である。
 また、話が少し重複するが、例えば、図32のAD相巻線321へAD相電流Iabを通電すると、アンペアの周回積分の法則に従って、その起磁力は図32の全てのステータ磁極と全てのロータへ前記Iabの起磁力が印加される。各相電流は、相互にモータ全体へ影響を与える。そして、前記の様に、AD相電流IabとしてA相電流Iaの成分を通電し、同時に、EA相電流IeaとしてA相電流Iaの成分を通電すれば、他の相の磁束成分に対する起磁力は相殺されるので、A相磁束φa以外の他の相の磁束成分に影響を与えない。従って、図32に図示する各相磁束を制御するためには、(59)式から(65)式の電流を各全節巻き巻線へ通電する必要がある。
 また、一方、図32に示す全ての各相の磁束成分φa、φb、φc、φd、φe、φf、φgは、それぞれ、全ての全節巻き巻線に鎖交し、ファラデイの電磁誘導の法則に従って、各全節巻き巻線の各電圧に誘起し、次式の関係となる。なお、全節巻き巻線の巻回数をNw/2とし、3相の前記(48)、(49)、(50)式と同様の表現とする。
  Vadk=Nw/2×d(φa+φb+φc+φd-φe-φf-φg)/dt
    =Vak+Vbk+Vck+Vdk-Vek-Vfk-Vgk             (66)
  Vbek=Nw/2×d(-φa+φb+φc+φd+φe-φf-φg)/dt
    =-Vak+Vbk+Vck+Vdk+Vek-Vfk-Vgk            (67)
  Vcfk=Nw/2×d(-φa-φb+φc+φd+φe+φf-φg)/dt
    =-Vak-Vbk+Vck+Vdk+Vek+Vfk-Vgk            (68)
  Vdgk=Nw/2×d(-φa-φb-φc+φd+φe+φf+φg)/dt
    =-Vak-Vbk-Vck+Vdk+Vek+Vfk+Vgk            (69)
  Veak=Nw/2×d(φa-φb-φc-φd+φe+φf+φg)/dt
    =Vak-Vbk-Vck-Vdk+Vek+Vfk+Vgk             (70)
  Vfbk=Nw/2×d(φa+φb-φc-φd-φe+φf+φg)/dt
    =Vak+Vbk-Vck-Vdk-Vek+Vfk+Vgk             (71)
  Vgck=Nw/2×d(φa+φb+φc-φd-φe-φf+φg)/dt
    =Vak+Vbk+Vck-Vdk-Vek-Vfk+Vgk             (72)
 各全節巻き線は、このように、多相の磁束の影響を受け複雑な電圧となる。しかし、全節巻き巻線の電圧には、次式のような関係があり、電圧関係を簡素化することもできる。
  Vadk+Veak=Nw/2×d(2×φa)=Vak               (73)
  Veak+Vbek=Nw/2×d(2×φe)=Vek               (74)
  Vbek+Vfbk=Nw/2×d(2×φb)=Vbk               (75)
  Vfbk+Vcfk=Nw/2×d(2×φf)=Vfk               (76)
  Vcfk+Vgck=Nw/2×d(2×φc)=Vck               (77)
  Vgck+Vdgk=Nw/2×d(2×φg)=Vgk               (78)
  Vdgk+Vadk=Nw/2×d(2×φd)=Vdk               (79)
 前記の様に、アンペアの周回積分の法則に従って、図32のAD相巻線321の(59)式のAD相電流IabとしてA相電流Iaの成分を通電し、同時に、EA相巻線325の(63)式のEA相電流IeaとしてA相電流Iaの成分を通電すれば、図32のA相磁束φaが励磁され、同時に、両巻線のA相電流Iaの成分は他の相の磁束成分に影響を与えないことを示した。(73)式はこれと表裏の関係であり、ファラデイの電磁誘導の法則に従って、AD相電圧VadkとEA相電圧Veakの和は、A相磁束φaとA相電圧Vakだけに関わり、他の相の磁束の影響を受けない。(74)式から(79)式も同様の関係である。なお、これらの関係はロータ中心に対して点対称なモータ構成とも関わる。また、これらの電圧の簡素化方法を応用し、他の多くの相の電圧の影響を受けにくい制御方法があり、図35などで後に説明する。
 次に、図32の14S26RのモータのCCW方向トルクを発生する動作を示す直線展開図を図33に示す。図12、図31と同様の展開図であり、エアギャップに面したステータ磁極の形状とロータ磁極の形状を示して、相互の通過磁束や電磁気的な作用を分析できる。図32のロータ回転角はθr=0°であり、モータのCCW方向は図33の右方向とする。図33の各行において、CCWトルク発生が可能な区間をロータ磁極形状の上側に太線で示す。この時、太線の位置と横幅は該当するステータ磁極の位置と横幅になる。図33ではステータ磁極幅はθsg=360°/28=12.857°としている。ロータ磁極幅θrgは、360°/26=13.846°以下の値が可能であるが、θrg=θsg=12.857°とする。なお、ステータ磁極幅θsgおよびロータ磁極幅θrgは増減可能で、モータ要求仕様により適切化でき、磁極形状も変えられる。
 図33の(a)はエアギャップ面に面する各ステータ磁極の形状である。331は図32のA相ステータS極磁極328に相当する。図32のCCW方向の各ステータ磁極は、図33の(a)の右方向に順に配置している。図33の横軸θrは、少し紛らわしいが、横軸のθrはステータ1磁極対の電気角360°である電気角位置を示していて、ステータ各部の回転方向の電気角位置でもある。ロータの回転位置は、図33の各行の左側に示している。図33の紙面で、(b)、(c)、(d)、(e)と、ロータ各部を右側へ移動させている。図33の(b)はロータ回転位置θr=0°で、ロータ回転の始点である。図33の(b)の332はロータN極磁極で、図32のロータN極磁極329に相当する。図33の紙面で、A相ステータS極磁極328の左側位置が、ロータのN極磁極329の右側位置と一致している。この位置では、A相ステータS極磁極328と、A/相ステータN極磁極32Aと、B相ステータS極磁極と、B/相ステータN極磁極と、C相ステータS極磁極と、C/相ステータN極磁極の合計6個のステータ極磁極がCCW方向へ吸引力を発生可能であり、図33の(b)の上部の6ヶ所に太線で示している。図32に示すA相磁束φaとB相磁束φbとC相磁束φcを使ってCCW方向のトルクを発生する。図33の(c)はロータ回転位置θr=4.0°で、C相ステータS極磁極とC/相ステータN極磁極がCCW方向へ吸引力を発生できなくなる。G相ステータS極磁極とG/相ステータN極磁極がCCW方向へ吸引力を発生し始める。図33の(d)はθr=7.9°で、B相ステータS極磁極とB/相ステータN極磁極がCCW方向へ吸引力を発生できなくなる。F相ステータS極磁極とF/相ステータN極磁極がCCW方向へ吸引力を発生し始める。図33の(e)はθr=11.9°で、A相ステータS極磁極328とA/相ステータN極磁極32AがCCW方向へ吸引力を発生できなくなる。E相ステータS極磁極とE/相ステータN極磁極がCCW方向へ吸引力を発生し始める。図33の(f)はθr=15.8°で、G相ステータS極磁極とG/相ステータN極磁極がCCW方向へ吸引力を発生できなくなる。D相ステータS極磁極とD/相ステータN極磁極がCCW方向へ吸引力を発生し始める。図33の(g)はθr=19.8°で、F相ステータS極磁極とF/相ステータN極磁極がCCW方向へ吸引力を発生できなくなる。C相ステータS極磁極とC/相ステータN極磁極がCCW方向へ吸引力を発生し始める。図33の(h)はθr=23.7°で、E相ステータS極磁極とE/相ステータN極磁極がCCW方向へ吸引力を発生できなくなる。B相ステータS極磁極とB/相ステータN極磁極がCCW方向へ吸引力を発生し始める。図33の(i)はθr=27.7°で、この状態は図33の(b)の状態と同じ状態に戻る。そして、図32、図33のモータは27.7°周期で、同じ動作を13回繰り返してロータが1回転する。
 図33に示す様に、14S26Rのモータはロータ回転と共に動作するステータ磁極を変えながら、同時に6個のステータ磁極でトルクを発生することができる。なお、図33の(c)において、C相ステータS極磁極、C/相ステータN極磁極は、計算上正確にはまだ残り約1°の間CCWトルクを生成可能であるが、わずかであり紛らわしいので、ロータ磁極形状の上側に記載する太線のマークを省略している。図33の(d)以降の各行も同様である。また、ステータ磁極の円周方向幅θsgとロータ磁極の円周方向幅θrgを修正して、トルクの特性を改善できる。また、ステータ磁極とロータ磁極のエアギャップ面形状を凸状、円弧状などに変形できる。また、ステータ磁極とロータ磁極の片方、あるいは、両方をスキューすること、段スキューとすることなどもできる。スキューはトルク発生幅を広くする効果がある。また、スキューは、回転時に発生する、円周方向及び径方向の吸引力の変化を滑らかにする効果があり、振動、騒音の低減効果もある。
 図32の14S26Rのモータについて、ステータ磁極対の数を2としたモータ構成の断面図を図34に示す。このモータは7相のモータで、ステータ34Fの外側に括弧付きで各ステータ磁極の相を図示する。A相、A/相、B相、B/相、C相、C/相、D相、D/相、E相、E/相、F相、F/相、G相、G/相の7相のステータ磁極の構成である。図34はステータ磁極対の数が2の14S26Rなので、28個のステータ磁極、14個の全節巻き巻線となる。ステータ磁極ピッチθppsは12.9°で、ステータ磁極Psの円周方向幅θsgをこの例では6.4°としている。図示するように、各ステータ磁極Psの極性はN極ステータ磁極PsnとS極ステータ磁極Pssであり、円周方向に交互に配置している。各ステータ磁極間にステータ永久磁石PMsbiをステータ磁極の極性に合わせた向きで配置している。各全節巻き巻線へは、電流のシンボルで示す向きの直流電流を通電する。34Gはロータ軸である。図34はステータ磁極対の数が2なので、52個のロータ磁極Prを配置し、N極ロータ磁極PrnとS極ロータ磁極Prsを円周方向に交互に配置している。各ロータ磁極間にロータ永久磁石PMrbiをロータ磁極Prの極性に合わせた向きで配置している。ステータの各巻線は全節巻き巻線で、電流のシンボルで示す向きの直流電流を通電する。巻線ピッチはステータ1磁極対の電気角360°の1/2である電気角で180°、機械角で90°であり、コイルエンド部を太い破線で示している。図34のモータの効果の一つは、全節巻き線の数を偶数の14個として、次に示す図35の駆動回路を無駄の少ない対称構造とすることである。また、ステータの磁極対数の増加は、バックヨークの厚みを小さくできるので、小型化の効果もある。
 図34の341と342はAD相巻線であり、AD相電流Iadを通電する。それらの電気角180°離れた接続先のスロットは、破線のコイルエンドでそれぞれを示している。同様に、343と344はBE相巻線であり、BE相電流Ibeを通電する。345と346はCF相巻線であり、CF相電流Icfを通電する。347と348はDG相巻線であり、DG相電流Idgを通電する。349と34AはEA相巻線であり、EA相電流Ieaを通電する。34Bと34CはFB相巻線であり、FB相電流Ifbを通電する。34Dと34EはGC相巻線であり、GC相電流Igcを通電する。
 なお、図34はステータ磁極対の数を2とした構成なので、同一相の巻線が2組ある。そして、同一相の正電流のスロットが2個、負電流のスロットが2個あり、全節巻き巻線をどのスロットからどのスロットへ配線するかは、2通り選択できる。他の相も2通り選択できるので、全部で2の7乗、128通りの接続方法、巻線方法がある。この時の電磁気的な作用は、各巻線の電流が正確に制御される前提では、コイルエンド近傍空間の漏れ磁束を除いて、基本的に同じである。図34はその接続方法の1例を示している。従って、次に示す図35の駆動回路の中の各巻線が、図34においてコイルエンドをどのように接続すべきかを特定しない。なお、有限要素法解析FEMでの電磁界解析においては、通常、コイルエンド部の漏れ磁束は無視され、鉄心部磁束に較べて相対的に小さな磁束である。また、トロイダル状の環状巻線とする方法など、他の巻線方法もある。
 次に、図34などの7相の各全節巻き巻線へ電圧、電流を供給する駆動回路の例を図35に示し、説明する。図35の駆動回路は、例えば、CCW方向の回転に同期してCCW方向トルクを発生する場合に、図33の太線に示す前記区間で通電し、図32の該当する相の磁束成分を励磁してCCW方向トルクを発生する。各全節巻き巻線は、(59)式から(65)式に示す電流で、(66)式から(72)式に示す各相磁束、電圧の関係である。そして、図35の駆動回路上の各全節巻き巻線は、図34の全節巻き線が(59)式から(65)式の条件を満たして通電できるように、それぞれ2個の巻線を直列にして駆動できる駆動回路構成としている。それは調度、(73)式から(79)式の順に配置した構成でもあり、直列接続した2個の巻線の両端電圧は(73)式から(79)式の右辺の様に単純化できる。そして、Ia成分、Ib成分などの各相電流の制御経路が明確で、図32に示すφa、φbなどの各相磁束を容易に個別に制御できる。
 図35の35Fと35NはAD相巻線で(59)式のAD相電流Iad1、Iad2を通電する。なお、Iad1とIad2は理論的に同じ値である。同様に、35Gと35PはEA相巻線で(63)式のEA相電流Iea1、Iea2を通電する。35Hと35QはBE相巻線で(60)式のBE相電流Ibe1、Ibe2を通電する。35Jと35RはFB相巻線で(64)式のFB相電流Ifb1、Ifb2を通電する。35Kと35SはCF相巻線で(61)式のCF相電流Icf1、Icf2を通電する。35Lと35TはGC相巻線で(65)式のGC相電流Igc1、Igc2を通電する。35Mと35UはDG相巻線で(62)式のDG相電流Idg1、Idg2を通電する。
 図35の29Rは直流電源である。351、352、353、354、355、356、357、358、359、35A、35B、35C、35D、35Eは、前記の各相の電流を前記の各相巻線へ通電する駆動用のトランジスタである。35V、35W、35X、35Y、35Z、281、282、283、284、285、286、287、288、289は、前記の各相巻線の磁気エネルギーを、直列に接続したそれぞれのトランジスタの通電状態をオン状態からオフの状態とすることにより、直流電源29Rへ回生するダイオードである。なお、28A、28B、28C、28D、28E、28F、28G、28H、28J、28K、28L、28M、28Nのダイオードは、相互に他の相の電圧、電流の影響、干渉を抑制、遮断する効果がある。なお、各トランジスタはそれぞれが通過する電流を制御する能力があるので、これらのダイオードは必ずしも必要ではなく、一部の削除、あるいは、全部の削除も可能である。
 これらの図35の構成、作用により、(73)式から(79)式に示す簡素な電圧関係で、(59)式から(65)式に示す各相の電流Iad、Ibe、Icf、Idg、Iea、Ifb、Igcを通電することができる。この時、各全節巻き巻線の電圧は(66)式から(72)式に示す様な複雑な電圧であるが、図35の紙面で上下に配置する2つの直列に接続した巻線へ給電することにより、(73)式から(79)式に示す簡素な電圧関係での通電を実現する。特に、何れかの相の巻線が磁気エネルギーを直流電源29Rの電圧Vsourへ回生する間は、他の巻線へその電圧Vsourが誘起電圧として発生するため、(59)式から(65)式の様に他相の誘起電圧成分を相殺して駆動する必要がある。また、図35の紙面で上下に直列に接続する2つの全節巻き巻線の両端の電圧は、(73)式から(79)式の右辺の何れかの値である。また、図35の駆動回路の紙面における巻線の配置順は、図34のモータの紙面における配置順と同じである。但し、コイルエンドの接続は除く。なお、図34の紙面で、AD相巻線341から左半分の巻線を右半分の巻線へコイルエンドで接続すれば、図35の巻線の配置順となるが、コイルエンドが図34の紙面の上下に集中して好ましくない。トロイダル状の環状巻線の場合は、不都合無く、モータ上の巻線の配置順と図35の駆動回路における巻線の配置順を一致させることができる。
 また、図35の駆動回路において、(59)式から(65)式の右辺に示す各相電流Ia、Ib、Ic、Id、Ie、If、Igは2つの巻線間の、調度、ダイオードを配置した位置を通る電流である。A相電流Iaはダイオード28Bと28Jを通る電流で、2つのA相電流Iaの成分でA相磁束φaを励磁する。E相電流Ieはダイオード28Cと28Kを通る電流で、2つのE相電流Ieの成分でE相磁束φeを励磁する。B相電流Ibはダイオード28Dと28Lを通る電流で、2つのB相電流Ibの成分でB相磁束φbを励磁する。F相電流Ifはダイオード28Eと28Mを通る電流で、2つのF相電流Ifの成分でF相磁束φfを励磁する。C相電流Icはダイオード28Fと28Nを通る電流で、2つのC相電流Icの成分でC相磁束φcを励磁する。G相電流Igはダイオード28Gと28Pを通る電流で、2つのG相電流Igの成分でG相磁束φgを励磁する。D相電流Idはダイオード28Hと28Aを通る電流で、2つのD相電流Idの成分でD相磁束φdを励磁する。この様に、各相の磁束φa、φe、φb、φf、φc、φg、φdを個別に制御することができる。なお、図32のステータ磁極対の数を1とした構成で、各巻線を並列巻線として巻線数を14個とする方法もある。また、駆動回路のトランジスタの数を少なくする方法もある。その場合は、巻線数が7個で駆動できる。後に説明する。
 次に、図34の7相の各全節巻き巻線へ、図33の動作を図35の駆動回路で通電する各相電流の波形の例を図36に示す。CCWトルクを発生する例である。図36の(h)から(n)までが各全節巻き線へ通電する各全節巻き電流Iad、Ibe、Icf、Idg、Iea、Ifb、Igcである。これらの電流は、(59)式から(65)式の関係で、右辺の電流成分Ia、Ib、Ic、Id、Ie、If、Igを図36の(a)から(g)に示す。横軸をロータ回転角θrで示しているが、一定速度で回転する場合は、横軸を時間とした電流波形の形状にもなる。
前記の様に、図32および図34のモータは、電気角で27.692°の周期で各相電流を通電しているので、図36は2周期分の55.4°の範囲の電流波形である。なお、この電気角も、ステータ1磁極対を電気角360°としている。また、当然、モータの負荷の大きさに応じて電流の大きさを変えて制御するので、図36の(f)から(j)の電流振幅を増減して制御する。負のトルク、即ち、CW方向トルクの場合は、通電する位相が変わる。
 図36の各電流は良好な特性を示している。各全節巻き線へ通電する各全節巻き電流は、6/7の区間で通電し、それぞれトルク発生に寄与していて、巻線の利用率は6/7と大きい。また、各全節巻き電流の(59)式から(65)式の右辺の2個の電流成分は、同時に通電されていないので、銅損が2乗で増加することもない。これらは、モータの銅損低減、高効率の指標となる。そして、その駆動トランジスタの利用率も6/7であって、かつ、2個の電流成分が同時に通電されないので駆動回路の電流容量を低減できている。これらの効果について、後でまとめて説明する。なお、図36の各電流波形は矩形形状で示しているが、図13の破線の様に、電流の増減に傾斜を付けて増減時間を設けても良い。
 次に、図32、図34の全節巻き巻線のモータで、良好な動作状態の例について説明する。図33の動作を示す直線展開図、図35の駆動回路、図36の各相電流の波形に示した内容である。そして、本発明が目的としてる、モータの低損失高効率化、及び、短時間の最大トルク増大との関わりについて説明する。また、駆動回路のトランジスタの電流容量の低減との関わりについて説明する。なお、それらは小型軽量化、低コスト化として反映される。
 図33、図36で説明したように、図32の全節巻き巻線のモータは、常時、6ヶ所のステータ磁極が作用してCCWトルクを生成する。図34のモータはステータ磁極対の数が2なのでステータ磁極の数が2倍になるが、基本的にはステータ1磁極対の構成の図32の動作と同じなので、図32で各巻線の各電流成分、各磁束成分の説明をする。図33の(b)に示したロータ回転角θr=0°では、図中に太線で示したA相とA/相、B相とB/相、C相とC/相の6個のステータ磁極がCCWトルクを生成できる。図36のθrが0°から4°の区間の電流波形である。この時、図32のモータでは、A相ステータ磁極328とA/相ステータ磁極32Aは、円周方向の前後に位置するAD相巻線321のAD相電流Iad=Ia+IdとEA相巻線325のEA相電流Iea=Ie+Iaの内の、2つのA相電流Iaの成分で起磁力を印加してA相磁束φaの成分を励磁して、ロータ磁極に磁気的吸引力を作用してCCW方向のトルクを生成する。
 このトルク発生区間は、エアギャップ面におけるステータ磁極の円周方向幅θsgとロータ磁極の円周方向幅θrgに依存する。図33ではステータ磁極幅はθsg=360°/28=12.857°としている。ロータ磁極幅θrgは、360°/26=13.846°以下の値が可能であるが、θrg=θsg=12.857°とする。従って、A相とA/相の磁極はθrが0°から12.857°までの間、理論的にCCWトルクを生成できる。他の相も同様に、幾何学的な構成からトルク発生可能な区間を求められる。なお、トルク発生幅はロータ磁極の円周方向幅θrgの修正で変えることができ、また、ステータとロータをスキューする方法、エアギャップ面の磁極形状を平行四辺形から凹凸の異形形状とする方法などでもトルク発生幅を変えられる。
 そして、図33の(b)のロータ回転角θr=0°では、A相と同様に、B相ステータ磁極とB/相ステータ磁極は、円周方向の前後に位置するBE相巻線322のBE相電流Ibe=Ib+IeとFB相巻線326のFB相電流Ifb=If+Ibの内の、2つのB相電流Ibの成分で起磁力を印加してB相磁束φbの成分を励磁して、ロータ磁極に磁気的吸引力を作用してCCW方向のトルクを生成する。C相ステータ磁極とC/相ステータ磁極は、円周方向の前後に位置するCF相巻線323のCF相電流Icf=Ic+IfとGC相巻線327のGC相電流Igc=Ig+Icの内の、2つのC相電流Icの成分で起磁力を印加してC相磁束φcの成分を励磁して、ロータ磁極に磁気的吸引力を作用してCCW方向のトルクを生成する。
 従って、図33の(b)のロータ回転角θr=0°からθr=4°までの間では、AD相巻線321とEA相巻線325にA相電流Iaの成分を通電し、BE相巻線322とFB相巻線326にB相電流Ibの成分を通電し、CF相巻線323とGC相巻線327にC相電流Icの成分を通電してCCWトルクを生成している。この時、活用する磁束は7個の磁束の内、φa、φb、φcの3個であるが、7個の全節巻き巻線の内6個の全節巻き巻線を活用してCCWトルクを生成している。巻線の利用率は6/7と大きく、ほとんどの巻線を利用して効果的のトルクを生成していると言える。しかも、各巻線の各電流は、(59)式から(65)式の電流において2つの成分が重ならないように通電するので、モータの銅損を小さくにできる。ここで、トルク発生に使用するステータ磁極が、円周方向に二つ以上離れていることが、(59)式から(65)式の2つの電流成分が重ならないことの条件となっている。なお、図63の従来の3相のスイッチトリラクタンスモータの巻線利用率が1/3であることに比較し、(6/7)/(1/3)=2.57倍の巻線利用率に改善できる。
 また、ステータ内の軟磁性体の磁気回路を活用する観点でも、円周方向に一つ以上離れたステータ磁極を活用してCCWトルクを発生することが好ましい。前記図17に示したように、トルクを生成するステータ磁極の円周方向両隣の歯を利用して、そのステータ磁極の磁束を通過させることができる。ステータ内の磁気回路の磁気抵抗を低減してより大きなトルクを効果的に生成するという効果がある。特に、トルクを発生するステータ磁極のエアギャップ部近傍で2.0[T]以上の大きな磁束密度を得て、大きなトルクを発生させるためには、両隣の歯を利用することは効果的である。なお、円周方向両隣の歯を利用するためには、前記のバイパス用の永久磁石PMsbiを使用する必要がある。
 また、トルク発生に使用するステータ磁極が円周方向に一つ以上離れていて、2個の全節巻き巻線を活用して、エアギャップ部近傍に大きな起磁力を生成する点も重要である。7個の磁束成分の内、3個の磁束成分のエアギャップ近傍へ、7個中6個の全節巻き線を利用して起磁力を集中できる。前記と同様に、トルクを発生するステータ磁極のエアギャップ部近傍で2.0[T]以上の大きな磁束密度を得て、大きなトルクを発生させるためには、効果的な方法である。また、軽負荷時で、磁束密度が比較的小さい動作領域においても、磁束の励磁負担が軽減する効果も期待できる。
 また、トルク発生に直接関わるロータ磁極は、図32のモータ断面図、図33の直線展開図に示す様に、円周方向に4個以上離れたロータ磁極でトルクを生成している。図8、図9、図10、図11、図16、図17、図18、図19に示した様に、本発明の独特の磁気的作用でトルクを生成するため、円周方向の両隣のロータ磁極を同時に使用することは好ましくない。必要に応じて、各相の電流制御に制限を加える必要も出てくる。ステータの磁束と同様に、トルクを発生するロータ磁極の円周方向の両隣の軟磁性体磁路を活用してロータ磁極の磁束を通過させる。その意味でも、図33に示す様に、トルク発生に使用するステータ磁極が円周方向に二つ以上離れた構成、作用が好ましい。また、本発明モータのステータ磁極の円周方向幅θsgは縮小、あるいは、拡大が可能であり、ロータ磁極の円周方向幅θrgもまた縮小、拡大が可能である。通過する磁束の増減の変化をより平滑に行うため、θsgとθrgの縮小、拡大が可能であり、スキュー、磁極形状の工夫もできる。但し、その様な場合でも、トルク発生に使用する二つのロータ磁極が円周方向に近いと磁気的な影響、干渉を発生する可能性がある。円周方向の隣のロータ磁極を同時に使わない様に構成、あるいは、制御する必要がある。
 前記の様に、例として、図32のステータ1磁極対のモータ、図34のステータ2磁極対のモータの動作として、図33の(b)のロータ回転角θrが0°から4°の間で、A相とB相とC相がトルクを発生している状態の説明をした。同様に、図33の(c)、(d)、(e)、(f)、(g)、(h)においても、3つの相のステータ磁極が並列してトルクを発生して、その3つの相のステータ磁極は円周方向に二つ以上離れている。
図33の(c)ではA相とB相とG相がθrの4°から7.9°の間に動作し、図33の(d)ではA相とF相とG相がθrの7.9°から11.9°の間に動作し、図33の(e)ではE相とF相とG相がθrの11.9°から15.8°の間に動作し、図33の(f)ではE相とF相とD相がθrの15.8°から19.8°の間に動作し、図33の(g)ではE相とC相とD相がθrの19.8°から23.7°の間に動作し、図33の(h)ではB相とC相とD相がθrの23.7°から27.7°の間に動作する。電気角で27.7°の周期で一巡し、図32のステータ1磁極対のモータの場合、この動作を13回繰り返して、ロータが1回転する。なお、この電気角も、ステータ1磁極対を電気角360°としている。これらの各状態において、トルクを発生するステータ磁極は円周方向に二つ以上離れている。例えば、A相とE相が同時にトルクを発生すれば、円周方向の隣のステータ磁極が同時に動作することになるが、図33に示す各動作においてその様な状態はない。図32、図34のステータ磁極とロータ磁極の14S26Rは、優れた組み合わせである。
 前記説明の動作、作用は、図36の各全節巻き巻線の電流波形に反映されている。6/7の大半の区間に電流を通電し、その全ての電流がトルクを生成するために起磁力を与え、効果的にトルクを発生する。(59)式から(65)式の右辺の2つの電流成分を同時に通電しないので、トランジスタの電流容量も少なくて良い。図36の電流波形と図35の駆動回路から解る様に、図35に示す14個のトランジスタの内、12個のトランジスタを使用して12個の全節巻き巻線の電流を通電して、電力を供給し、トルクを生成する。図35の駆動回路、即ち、各トランジスタの利用率は6/7と大きい値であり、駆動回路の全電流容量を低減できるので、駆動回路の小型化、低コスト化が可能である。なお、例えば、3相交流の表面磁石型同期モータSPMSM、あるいは、磁石内臓型同期モータIPMSMが多く使用されているが、その駆動回路、トランジスタの利用率は1/3である。平均して、6個のトランジスタの内、2個のトランジスタを利用して電力をモータへ供給するので、利用率は1/3である。図32、図34のモータを図35の駆動回路で駆動する場合の利用率は、SPMSMはIPMSMを従来の3相駆動回路で駆動するときの利用率に比較して、(6/7)/(1/3)=2.57倍の利用率となる。従って、図35の駆動回路の素子数は多いが、駆動回路の全電流容量は大幅に減少できて、小型化、低コスト化が可能である。なお、10[kW]を越える様なモータの駆動回路では、IGBTなどを並列に使用することが多く、実際の電力素子の素子数はさほど増加しないと考えることもできる。
 また、前記の様に、図32、図34の全節巻き巻線には、(66)式から(66)式の様な他の相の電圧成分が重畳する重大な問題があるが、図35の駆動回路として(73)式から(79)式の様に、相殺効果により、2つの巻線の両端電圧に他の相の電圧成分が誘起しない構成とできる。なお、各相の磁束密度が増加する範囲の電流、即ち、界磁電流に相当する様な電流成分を常時通電して、駆動回路の電圧負担を軽減する方法もあり、後に説明する。また、図35の駆動回路を実現できる要因の一つは、駆動する電流が直流電流であることである。直流電流の場合は、2つ以上の電流成分を合わせて通電し、かつ、分岐することも比較的簡単である。交流電流の駆動回路は、正負の電流を供給するために、駆動回路が複雑化する。
 次に、請求項5の他の実施例を図37の(a)、(b)、(c)、(d)、(e)に示し、説明する。14S18Rの全節巻き巻線のモータの動作を示す直線展開図である。(57)式のNsが3で、(58)式のNrが4の例で、7相のモータの一種である。14S18Rのモータの断面図は図示しないが、そのステータは図32の14S26Rのステータと同じであり、ロータも同様の構造であるがロータ磁極数は18個である。図37の(a)はエアギャップに面する各ステータ磁極の形状であり、円周方向のステータ磁極幅はθsg=360°/28=12.857°である。図37は、図33の14S26Rの直線展開図と同様の表現方法である。図37の(b)はロータ回転角θr=0°における、エアギャップに面する各ロータ磁極の形状を示している。ロータ磁極のピッチθppr=360/18=20°で、ロータ磁極幅θrgはステータ磁極幅θsgと同じ12.857°としている。なお、ロータ磁極間の距離が7.143°と比較的大きい構成である。また、前記の様にこれらのモータは、ロータ中心点に対して、全節巻き巻線を含め点対称の構造としており、例えば、A相ステータ磁極とA/相ステータは同じように動作する。但し、直流電流での駆動であり、電流の方向、磁束の方向は対称ではなく、逆向きになる。
 θr=0°では、図37の(b)の太い線で示す様に、A相、D相、G相のステータ磁極でCCW方向のトルクを発生することが可能である。同様に、図37の(c)のθr=5.7°では、A相、D相、E相でCCWトルクを発生可能である。図37の(d)のθr=11.4°では、A相、B相、E相でCCWトルクを発生可能である。図37の(e)のθr=17.1°では、B相、E相、F相でCCWトルクを発生可能である。この様な動作を繰り返し、CCWトルクを発生するステータ磁極がロータ回転角θrと共に移り変わり、40°でトルク発生パターンが1周期となり、9周期で360°となってロータが1回転する。いずれのロータ回転角θrにおいても、6個のステータ磁極でCCWトルクを生成可能である。
 しかし、図示する様に、何れの場合も、円周方向に連続して並ぶ3個のステータ磁極でCCWトルクを生成することになり、好ましくない状態も発生する。その一つの問題は、前記3個のステータ磁極の間に配置する全節巻き巻線へは、(59)式から(65)式の右辺の2つの電流成分を同時に通電することになり、銅損は電流値の二乗に比例するので、銅損が2倍に増加する。また、ステータ磁極幅θsgとロータ磁極幅θrgを大きめにする場合には、円周方向に隣り合う2つのステータ磁極が同一のロータ磁極を励磁するタイミングが発生し、ロータ磁極の先端の軟磁性体部を通して磁気的につながり、磁束が通過する。また、隣り合う2つのステータ磁極の間のバイパス用の永久磁石PMsbiには2倍の逆方向起磁力が作用する。また、両ステータ磁極間の漏れ磁束も増加する。これらのことから、14S18Rの全節巻き巻線のモータを使用する場合は、例えば、銅損増加に気を付けるなど、各相の電流制御などを工夫することにより、より効果的に制御できる。一方で、14S18Rの全節巻き巻線のモータは、図37の(b)などでロータ磁極幅θrg=12.857°の場合について示しているが、ロータ磁極幅θrgは最大20°まで拡大することが可能であり自由度が高い。さらに、トルク特性を改良できる。
 次に、請求項5の他の実施例を図37の(f)、(g)、(h)(i)に示し、説明する。14S22Rの全節巻き巻線のモータの動作を示す直線展開図である。(57)式のNsが3で、(58)式のNrが5の例で、7相のモータの一種である。14S22Rのモータの断面図は図示しないが、そのステータは図32の14S26Rのステータと同じであり、ロータも同様の構造であるがロータ磁極数は22個である。図37の(f)はロータ回転角θr=0°における、エアギャップに面する各ロータ磁極の形状を示している。ロータ磁極のピッチθppr=360/22=16.364°で、ロータ磁極幅θrgはステータ磁極幅θsgと同じ12.857°としている。
 θr=0°では、図37の(f)の太い線で示す様に、A相、D相、F相のステータ磁極でCCW方向のトルクを発生することが可能である。同様に、図37の(g)のθr=3.5°では、A相、F相でCCWトルクを発生可能である。図37の(h)のθr=4.7°では、A相、C相、F相でCCWトルクを発生可能である。図37の(i)のθr=8.2°では、A相、C相でCCWトルクを発生可能である。この様な動作を繰り返し、CCWトルクを発生するステータ磁極がロータ回転角θrと共に移り変わり、32.7°でトルク発生パターンが1周期となり、11周期で360°となってロータが1回転する。ロータの回転に伴って、ほぼ4個のステータ磁極でCCWトルクを生成可能である。前記の図32の14S26Rのモータに比較して、2/3のトルク発生となる。巻線の利用率、トランジスタの利用率が、14S26Rの2/3に低下する。
 次に、請求項5の他の実施例を図37の(j)、(k)、(l)(m)に示し、説明する。14S30Rの全節巻き巻線のモータの動作を示す直線展開図である。(57)式のNsが3で、(58)式のNrが7の例で、7相のモータの一種である。14S30Rのモータの断面図は図示しないが、そのステータは図32の14S26Rのステータと同じであり、ロータも同様の構造であるがロータ磁極数は30個である。図37の(j)はロータ回転角θr=0°における、エアギャップに面する各ロータ磁極の形状を示している。ロータ磁極のピッチθppr=360/30=12°で、ロータ磁極幅θrgは12.0°としている。
 θr=0°では、図37の(j)の太い線で示す様に、A相、G相、F相のステータ磁極でCCW方向のトルクを発生することが可能である。同様に、図37の(k)のθr=3.4°では、A相、B相、G相でCCWトルクを発生可能である。図37の(l)のθr=6.7°では、A相、B相、C相でCCWトルクを発生可能である。図37の(m)のθr=10.3°では、B相、C相、D相でCCWトルクを発生可能である。この様な動作を繰り返し、CCWトルクを発生するステータ磁極がロータ回転角θrと共に移り変わり、24°でトルク発生パターンが1周期となり、15周期で360°となってロータが1回転する。ロータの回転に伴って、6個のステータ磁極でCCWトルクを生成可能である。前記の図32の14S26Rのモータの場合と同じ6個のステータ磁極が作用し、この点では同等である。巻線の利用率、トランジスタの利用率も同等である。ただ、ロータ磁極数が30個と多いので、ロータのバイパス用永久磁石PMrbiの配置の工夫、ロータ磁極の軟磁性体磁路の工夫が必要である。例えば、アウターロータ構造として、ロータを外周側へ配置すれば、ロータ磁極のスペースが広くなるので設計自由度が上がる。
 次に、請求項5の他の実施例として、10S18Rのモータ構成の例を図38、図39、図40に示し、説明する。図38は、10S18Rの全節巻き巻線のモータの横断面図の例である。(57)式のNsが2で、(58)式のNrが4の例で、5相のモータの一種である。387はA相ステータS極磁極で、388はA/相ステータN極磁極であり、図示するA相磁束φaの成分を通過する。ロータ中心に対して点対称の構成である。同様に、389と38Aは、B相ステータS極磁極とB/相ステータN極磁極であり、図示するB相磁束φbの成分を通過するる。38Bと38Cは、C相ステータS極磁極とC/相ステータN極磁極であり、図示するC相磁束φcの成分を通過する。38Dと38Eは、D相ステータS極磁極とD/相ステータN極磁極であり、図示するD相磁束φdの成分を通過する。38Fと38Gは、E相ステータS極磁極とE/相ステータN極磁極であり、図示するE相磁束φeの成分を通過する。なお、ステータの外周に括弧付きで、各ステータ磁極の相を示している。
 381はAC相の全節巻き巻線で、ステータ1磁極対の電気角360°の1/2である電気角で180°離れたスロットへ破線で示すコイルエンドで接続して巻回し、AC相電流Iacを通電する。同様に、382はBD相の全節巻き巻線で、BD相電流Ibdを通電する。383はCE相の全節巻き巻線で、CEBD相電流Iceを通電する。384はDA相の全節巻き巻線で、DA相電流Idaを通電する。385はEB相の全節巻き巻線で、EB相電流Iebを通電する。これらの電流は、図32の7相のモータの(59)式から(65)式の電流と同様に、5相電流の次式の関係である。
  Iac=Ia+Ic                          (80)
  Ibd=Ib+Id                          (81)
  Ice=Ic+Ie                          (82)
  Ida=Id+Ia                          (83)
  Ieb=Ie+Ib                          (84)
 また、一方、図38に示す、5相の全ての各相の磁束成分φa、φb、φc、φd、φeは、それぞれ、全ての全節巻き巻線に鎖交し、ファラデイの電磁誘導の法則に従って、各全節巻き巻線の各電圧に誘起し、次式の関係となる。なお、全節巻き巻線の巻回数をNw/2とする。また、各巻線の鎖交磁束の絶対値には磁石磁束成分も含まれるが、磁石磁束は一定で時間変化率には表れないと仮定して、3相の場合の前記(48)、(49)、(50)式と同様に、次式の5相の表現とする。
  Vack=Nw/2×d(φa+φb+φc-φd-φe)/dt
    =Vak+Vbk+Vck-Vdk-Vek                  (85)
  Vbdk=Nw/2×d(-φa+φb+φc+φd-φe)/dt
    =-Vak+Vbk+Vck+Vdk+Vek                 (86)
  Vcek=Nw/2×d(-φa-φb+φc+φd+φe)/dt
    =-Vak-Vbk+Vck+Vdk+Vek                 (87)
  Vdak=Nw/2×d(φa-φb-φc+φd+φe)/dt
    =Vak-Vbk-Vck+Vdk+Vek                  (88)
  Vebk=Nw/2×d(φa+φb-φc-φd+φe)/dt
    =Vak+Vbk-Vck-Vdk+Vek                  (89)
 これらの5相の各全節巻き線の複雑な電圧は、7相の(73)式から(79)式と同様に簡素化できて、次式の5相の電圧関係となる。
  Vack+Vdak=Nw/2×d(2×φa)=Vak               (90)
  Vdak+Vbdk=Nw/2×d(2×φd)=Vdk               (91)
  Vbdk+Vebk=Nw/2×d(2×φb)=Vbk               (92)
  Vebk+Vcek=Nw/2×d(2×φe)=Vek               (93)
  Vcek+Vack=Nw/2×d(2×φc)=Vck               (94)
 前記の7相のモータの場合と同様に、アンペアの周回積分の法則に従って、図38のAC相巻線381の(80)式のAC相電流IacとしてA相電流Iaの成分を通電し、同時に、DA相巻線384の(83)式のDA相電流IdaとしてA相電流Iaの成分を通電すれば、図38のA相磁束φaが励磁され、同時に、両巻線のA相電流Iaの成分は他の相の磁束成分に影響を与えない。(90)式はこれと表裏の関係であり、ファラデイの電磁誘導の法則に従って、AC相電圧VackとDA相電圧Vdakの和は、A相磁束φaとA相電圧Vakだけに関わり、他の相の磁束の影響を受けない。(91)式から(94)式も同様の関係である。なお、これらの関係はロータ中心に対して点対称なモータ構成とも関わる。また、これらの電圧の簡素化方法を応用し、他の多くの相の電圧の影響を受けにくい制御方法があり、後に説明する。
 次に、図38の10S18RのモータのCCW方向トルクを発生する動作を示す直線展開図を図39に示す。図12、図33と同様の展開図である。図38のロータ回転角はθr=0°であり、モータのCCW方向は図39の右方向とする。図39の各行において、CCWトルク発生が可能な区間をロータ磁極形状の上側に太線で示す。図39ではステータ磁極幅はθsg=360°/20=18°としている。ロータ磁極幅θrgは、360°/18=20°以下の値が可能であるが、図33ではθrg=18°としている。なお、ステータ磁極幅θsgおよびロータ磁極幅θrgは増減可能で、モータ要求仕様により適切化でき、磁極形状も変えられる。
 図39の(a)はエアギャップ面に面する各ステータ磁極の形状である。391は図38のA相ステータS極磁極387に相当する。同様に、図39の392、393、394、395は、図38の389、38B、38D、38Fに相当する。図39の横軸θrは、少し紛らわしいが、横軸のθrはステータ1磁極対を電気角360°とした電気角位置を示していて、ステータ各部の回転方向の電気角位置でもある。ロータの回転位置は、図39の各行の左側に示している。図39の紙面で、(b)、(c)、(d)、(e)と、ロータ各部を右側へ移動させている。図39の(b)はロータ回転位置θr=0°で、ロータ回転の始点である。図39の(b)の396はロータN極磁極で、図38のロータN極磁極386に相当する。図39の紙面で、A相ステータS極磁極391の左側位置が、ロータのN極磁極396の右側位置と一致している。この位置では、A相ステータS極磁極391と、A/相ステータN極磁極と、B相ステータS極磁極392と、B/相ステータN極磁極の合計4個のステータ極磁極がCCW方向へ吸引力を発生可能であり、図39の(b)の上部の4ヶ所に太線で示している。図38に示すA相磁束φaとB相磁束φbを使ってCCW方向のトルクを発生する。図39の(c)はロータ回転位置θr=8°で、B相ステータS極磁極とB/相ステータN極磁極がCCW方向へ吸引力を発生できなくなる。E相ステータS極磁極395とE/相ステータN極磁極がCCW方向へ吸引力を発生し始める。図39の(d)はθr=16°で、A相ステータS極磁極とA/相ステータN極磁極がCCW方向へ吸引力を発生できなくなる。D相ステータS極磁極394とD/相ステータN極磁極がCCW方向へ吸引力を発生し始める。図39の(e)はθr=24°で、E相ステータS極磁極395とE/相ステータN極磁極がCCW方向へ吸引力を発生できなくなる。C相ステータS極磁極393とC/相ステータN極磁極がCCW方向へ吸引力を発生し始める。図39の(f)はθr=32°で、D相ステータS極磁極とD/相ステータN極磁極がCCW方向へ吸引力を発生できなくなる。B相ステータS極磁極392とB/相ステータN極磁極がCCW方向へ吸引力を発生し始める。図39の(g)はθr=40°で、この状態は図39の(b)の状態と同じ状態に戻る。そして、図38、図39のモータは40°周期で、同じ動作を9回繰り返してロータが1回転する。
 次に、10S18Rのモータを駆動する例について説明する。7相モータである図34の7相のステータ2磁極対のモータを図35の駆動回路で通電して駆動した様に、5相の10S18Rのモータを駆動できる。図示しないが、図38のモータをステータ2磁極対に変形し、10個の全節巻き巻線の構成のモータとできる。駆動回路は、図35の7相の駆動回路から、35B、35C、35D、35Fのトランジスタなどの2相分の駆動回路を取り除いて、5相の駆動回路とできる。ここで、7相のAD相、EA相、BE相、FB相、CF相は、それぞれ、5相ではAC相、BD相、CE相、DA相、EB相に置き換え、(80)式から(84)式の電流として制御する。この時、図35の駆動回路を変形した5相の駆動回路において、図35の紙面で上下に配置する2つの巻線の両端に相当する電圧は、(90)式から(94)式の電圧となるので、他の相の磁束の影響、他の相の電圧の影響を受けることがない。その結果、(80)式から(84)式の電流をより容易に制御できる。
 次に、図38の構成をステータ2磁極対化したモータを図39の動作順で通電してCCW方向のトルクを発生できる様に、前記の5相の駆動回路で制御した場合の電流波形の例を図40に示す。図39の動作順で図38のφa、φb、φc、φd、φeの各相磁束成分を図40の(a)のIa、(b)のIb、(c)のIc、(d)のId、(e)のIeの各電流成分で励磁する。図38の各全節巻き巻線へ通電する各電流は、図40の(f)から(j)のIac、Ibd、Ice、Ida、Iebであって、(80)式から(84)式の電流の関係で、図40の(a)から(e)のIa、Ib、Ic、Id、Ieの電流成分から計算できる。なお、図39の動作は40°の周期であり、図40はその2周期分の80°の範囲を示している。
 図40の(f)から(j)のIac、Ibd、Ice、Ida、Iebの全節巻き巻線の各電流は、良好な特性を示している。各電流は4/5の区間で通電し、それぞれがトルク発生に寄与している。巻線の利用率は4/5=0.8と大きく、図36に示した7相の巻線利用率6/7=0.857に少し劣るものの、差はわずかである。また、各全節巻き電流の(80)式から(84)式の右辺の2個の電流成分は、同時に通電されていないので、銅損が2乗で増加することもない。これらは、モータの銅損低減、高効率の指標となる。そして、その駆動トランジスタの利用率も4/5であって、かつ、2個の電流成分が同時に通電されないので駆動回路の電流容量を低減できている。なお、図40の各電流波形は矩形形状の例を示しているが、勿論、電流の増加、減少時に傾斜を持たせた台形状波形など、各種増加波形、減少波形とできる。後で説明する様に、磁束を励磁する程度の電流を常時通電することもできる。ロータに界磁巻線を設けて通電することもできる。
 また、図38、図39、図40に示したように、10S18Rの5相の全節巻き巻線のモータは、円周方向に一つ以上離れたステータ磁極を活用してCCWトルクを生成する。従って、前記図17に示したように、トルクを生成するステータ磁極の円周方向両隣の歯を利用して、そのステータ磁極の磁束を通過させることができる。ステータ内の磁気回路の磁気抵抗を低減してより大きなトルクを効果的に生成するという効果がある。特に、トルクを発生するステータ磁極のエアギャップ部近傍で2.0[T]以上の大きな磁束密度を得て、大きなトルクを発生させるためには、両隣の歯を利用することは効果的である。なお、円周方向両隣の歯を利用するためには、前記のバイパス用の永久磁石PMsbiを使用する必要がある。
 また、トルクを発生するステータ磁極が円周方向に一つ以上離れているので、トルクを生成するロータ磁極も円周方向に離れていて、ロータ磁極同士の磁気的な干渉が少ない。また、図38の構成をステータ2磁極対化したモータの駆動回路の各トランジスタの利用率は4/5=0.8と大きい値である。直流電流駆動の簡素化の利点も得られる。駆動回路の総電流容量を小さくできるので、小型化、低コスト化が可能である。また、図38の10S18Rの5相の全節巻き巻線のモータは、トルクリップルの点でもトルクの連続性に優れている。ステータ磁極の円周方向幅θsg、ロータ磁極の円周方向幅θrgを増減して適正化できる。
 次に、請求項5の他の実施例を図41の(a)、(b)、(c)、(d)、(e)に示し、説明する。10S14Rの全節巻き巻線のモータの動作を示す直線展開図である。(57)式のNsが2で、(58)式のNrが3の例で、5相のモータの一種である。10S14Rのモータの断面図は図示しないが、そのステータは図38の10S18Rのステータと同じであり、ロータも同様の構造であるがロータ磁極数は14個である。図41の(a)は図39と同じで、ステータ磁極幅はθsg=360°/20=18°である。図41の(b)の396はロータN極磁極で、ロータ回転角θr=0°における、エアギャップに面する各ロータ磁極の形状を示している。ロータ磁極のピッチθppr=360/14=25.714°で、ロータ磁極幅θrgはステータ磁極幅θsgと同じ18°としている。なお、ロータ磁極間の距離が7.714°と比較的大きい構成である。また、前記の様にこれらのモータは、ロータ中心点に対して、全節巻き巻線を含め点対称の構造としており、例えば、A相ステータ磁極とA/相ステータは同じように動作する。但し、A相とA/相の電流の方向と磁束の方向は、直流電流での駆動なので対称ではなく、ロータ中心点に対して逆向きになる。
 θr=0°では、図41の(b)の太い線で示す様に、A相、C相の4個のステータ磁極でCCW方向のトルクを発生できる。同様に、図41の(c)のθr=7.7°では、A相でCCWトルクを発生できる。図41の(d)のθr=10.3°では、A相、D相でCCWトルクを発生できる。図41の(e)のθr=18.0°では、D相でCCWトルクを発生できる。この様な動作を繰り返し、51.43°でトルク発生パターンが1周期となり、7周期で360°となってロータが1回転する。これらの特性では、連続的には2個のステータ磁極でしかトルクを発生できない。しかし、10S14Rのロータ磁極幅θrgは図41の18°から最大25.714°まで拡大できて、ステータ磁極幅θsgも拡大できるので、4個のステータ磁極でトルク発生することもできる。但し、円周方向に2個並んだステータ磁極となるので、通電する3個の全節巻き線のうち1個は銅損が増加する。使用するトランジスタの電流容量も2倍の値となる。しかし、トランジスタの電流容量については、その最大電流値を超えない範囲では問題が無い。モータが最大トルクを出力する時には、トランジスタの電流容量の問題がある。
 次に、請求項5の他の実施例を図41の(f)、(g)、(h)、(i)に示し、説明する。10S22Rの全節巻き巻線のモータの動作を示す直線展開図である。(57)式のNsが2で、(58)式のNrが5の例で、5相のモータの一種である。ステータは図38の10S18Rのステータと同じで、ロータ磁極数は22個である。図41の(f)のロータ磁極のピッチθppr=360/22=16.364°とする。θr=0°では、図41の(f)の太い線で示す様に、A相、E相の4個のステータ磁極でCCW方向のトルクを発生できる。同様に、図41の(g)のθr=6.5°では、A相とB相でCCWトルクを発生できる。図41の(h)のθr=13.1°では、B相とC相でCCWトルクを発生できる。図41の(i)のθr=19.6°では、C相とD相でCCWトルクを発生できる。この様な動作を繰り返し、32.73°でトルク発生パターンが1周期となり、11周期で360°となってロータが1回転する。これらの特性では、連続的に4個のステータ磁極でトルクを発生できる。しかも、トルクを発生するステータ磁極が円周方向に2個以上離れているので、(80)式から(84)式の右辺に示す2つの電流が重ならないので、銅損を低減でき、通電する各トランジスタの電流容量も低減できる。また、巻線の利用率4/5、トランジスタの利用率4/5と言うこともできる。
 請求項5については、3相、7相、そして、5相の実施例を説明した。さらには、9相、11相、13相等の他相の構成を実現できる。相数が大きくなると、複雑になるが、原理的には、モータが大きくなることはなく、むしろ永久磁石等モータ各部の負担は軽減する。駆動回路も複雑になるが、原理的には、駆動回路の総電流容量が増加することはない。また、相数が大きくなると、制御が複雑になるが、近年のマイクロプロセッサーなどの高速化、高集積化、低コスト化などにより、制御装置の演算能力的な負担は小さくなった。また、請求項5のモータは部分的な削除、追加もできる。種々変形もできる。例えば、ステータ磁極対の数を4の構成とし、2磁極対分のステータ磁極を削除できる。前記削除したスペースへ、他種のモータのステータを追加することもできる。即ち、部分的なモータ構成の組み合わせができる。
 次に、請求項6の実施例のモータの横断面図を図42に示す。2相の4S10Rのモータ構成で、ステータ磁極の数は4個と少なく、ロータ磁極数は10個である。(57)式、(58)式で示す請求項5では、ステータとロータの構成を円周方向に等分に配置した構成である。これに対し、図42のステータ磁極の円周方向配置は、等分の配置ではない。不均一な配置である。また、2相の直流電流励磁のステータ磁極で連続回転トルクを得ることは簡単ではなく、片方向回転に限定して、かつ、ステータ磁極の磁気特性を不均一として、片方向トルクを連続的に得るモータである。CCWとCWへ非対称なモータである。
 図42のモータのエアギャップ面の形状を直線状に展開して図43に示す。図43はステータ磁極とロータ磁極の円周方向の位置関係を示していて、トルク発生の動作を示す直線展開図である。図42と図43で、同一のものは同一の符号で示している。図43の(a)はステータ磁極のエアギャップ面形状、図43の(b)はロータ回転角θr=-4°の各ロータ磁極のエアギャップ面形状である。図42と図43の(a)、(b)において、431はA相ステータS極磁極で421はA相巻線、432はA/相ステータN極磁極で422はA/相巻線である。433はB相ステータS極磁極で423はB相巻線、434はB/相ステータN極磁極で424はB/相巻線ある。各巻線は集中巻き巻線である。各ステータ磁極は円周方向にS極とN極を交互に配置している。各ステータ磁極の間には、それらの磁極の向きに、矢印で極性を示す425などの永久磁石を配置している。426は、ステータの電流を通電していない場合の、永久磁石のバイアス磁束を示している。なお、図42では基本形状を示すためステータ磁極対の数が1の例を示していて、425などの永久磁石の形状が円弧状に奇妙に長いが、実際のモータ設計では、3極対、4極対、あるいは、それ以上の極対数などを想定していて、ステータの永久磁石形状を円周方向に短い平板状の形状にも設計できる。また、極対数が2以上の場合、A相とB相の中心方向への吸引力のアンバランスも解消できる。
 図42のロータの磁極数は10個で、図1、図14等と同じロータの例である。図42のロータ回転位置はθr=0°で、図43の直線展開図では(c)の位置に相当する。435、437はロータのN極磁極で、436はロータのS極磁極である。427は各ロータ磁極の間には、それらの磁極の向きに、矢印で極性を示す427などの永久磁石を配置している。426は、ステータの電流を通電していない場合の、永久磁石のバイアス磁束を示している。
 前記の様に、図43の(a)は、図42のステータ磁極のエアギャップ面形状である。図43の(a)から(h)は、各ロータ回転位置における、各ロータ磁極のエアギャップ面形状である。図42のモータの各部の形状と動作を示すために、図43の(a)(c)の部分的な拡大図を図44に示す。図44の431はA相ステータS極磁極、435、437はロータのN極磁極、436はロータのS極磁極であり、これらの符号は図42および図43の符号と同じである。ステータ磁極431のCW方向の先頭部分のロータ軸方向長さはLr1と小さく、CCW方向のロータ軸方向長さはLr2で、ここでは、Lr1はLr2の1/2の例を示している。Lr1の部分の円周方向長さはθsbであLr2の部分の円周方向長さはθscである。
 ロータの磁極ピッチθpprは36°であり、A相とB相の2相で交互に駆動して連続的なトルクを得るためには、ステータ磁極の円周方向長さθsaがロータの磁極ピッチθpprより大きい、次式が必要条件となる。
  θsa > θppr                        (95)
ロータがCCW方向へ回転し、ロータ軸方向長さθraはLr1の部分でトルク発生を継続するために前記θsbより大きい、次式が必要条件となる。
  θra > θsb                         (96)
さらに、ロータがCCW方向へ回転して、合計でロータの磁極ピッチθpprより多く移動するためには、前記θraと前記θsbの和が前記θpprより大きい、次式が必要条件となる。
  θra+θsb> θppr                      (97)
ロータがCCWへ回転して、最初にトルクを発生する時、435と437のロータ磁極の発生するトルクが干渉しないためには、ロータ磁極の円周方向長さθraと前記θsaの和が前記θpprの2倍より小さい、次式が必要条件となる。
  θra+θsa < 2×θppr                    (98)
 図43と図44では、θppr=36°、θsa =40°、θsb =15°、θsc =25°、θra =27°の例を示している。なお、図44では、ステータ磁極431の形状を2段階となる形状を示しているが、例えば台形状など、図44の紙面で、ステータ磁極431の左側に較べて右側の方が軸方向長さが大きければ他の形状でも良い。また、ステータ磁極対の数が2以上のモータの場合、複数のA相ステータS極磁極の平均値がステータ磁極431の様な磁気抵抗の分布で、紙面で右側の方が磁気抵抗が小さければ、CCW方向トルクを発生することができる。また、これらの磁気抵抗分布は、ステータ磁極エアギャップ面形状だけでなく、ステータ磁極の内部で、同様の磁気抵抗分布となっていても良い。むしろ、ステータ磁極の内部で、電磁鋼板に穴、スリットなどを設けて、等価的に431の様な磁気抵抗分布を作成する方が、電磁鋼板の内部形状などを工夫するだけなので加工が容易であり、モータの生産性は優れている。
 次に、図42のモータの動作の展開図である図43について説明する。図43の(b)は、ロータ回転角θr=-4°の位置で、ロータがCCWへ回転する時に、ロータN極磁極435がA相のステータS極磁極431へさしかかり、CCWトルクの生成が可能となるロータ回転角θrである。同時に、A/相のステータN極磁極432もロータS極磁極とCCWトルクの生成が可能となる。また、この回転角では、B相のステータS極磁極433とB/相のステータN極磁極434もCCWトルクを生成可能である。図43の(c)は、ロータ回転角θr=0°の位置で、B相のステータS極磁極433とB/相のステータN極磁極434はCCWトルクを生成できなくなる。図43の(d)は、ロータ回転角θr=11°の位置で、ロータN極磁極435がステータS極磁極431の紙面で右側部のロータ軸方向長さがLr2の部分へさしかかる。
 図43の(e)は、ロータ回転角θr=-32°の位置で、ロータがCCWへ回転する時に、ロータN極磁極がB相のステータS極磁極433へさしかかり、CCWトルクの生成が可能となるロータ回転角θrである。この時は同時に、B/相のステータN極磁極434もロータS極磁極とCCWトルクの生成が可能である。なお、ロータは、図43の(b)のロータ回転角からロータ磁極ピッチθppr=36°だけ進んだロータ回転角θrで、図43の(b)に比較してロータN極磁極とロータS極磁極とが入れ替わった位置でもある。図43の(f)は、ロータ回転角θr=36°の位置で、A相のステータS極磁極431とA/相のステータN極磁極432はCCWトルクを生成できなくなる。図43の(g)は、ロータ回転角θr=47°の位置で、ロータN極磁極がステータS極磁極433の紙面で右側部のロータ軸方向長さがLr2の部分へさしかかる。図43の(h)は、ロータ回転角θr=68°の位置で、図43の(b)と同じ状態であり、ロータはCCWへロータ磁極ピッチθpprの2倍の72°回転した。これらの動作を5回繰り返してロータ回転角θrが360°となり、ロータが1回転する。
 次に、図42、図43、図44に示したモータを駆動する電流波形の例を図45に示す。図45の横軸はロータ回転角θrとしている。ロータが一定回転数で回転する場合は、時間軸で図45と同一の波形となる。図45の(a)はA相電流Iaで、ロータ回転角θr=-4°からθr=36°まで通電し、さらに、θr=68°からθr=108°まで通電する。図45の(b)はB相電流Ibで、A相電流Iaに対して36°位相遅れの電流で、同じ電流波形である。A相電流IaとB相電流Ibの2つの電流で、片方向だけであるが、連続的にトルクを発生することができる。
 A相電流IaとB相電流Ibの駆動回路は、図25の回路の2つを使用して通電できる。この場合、257はA相巻線421とA/相巻線422を直列に接続した巻線である。258はB相巻線423とB/相巻線424を直列に接続した巻線である。4個のトランジスタで簡素に駆動できる。また、図46の駆動回路で通電することもできる。2個のトランジスタで駆動できるので、より簡素な駆動回路である。462と463はコンデンサーであり、461の点は回路の中性点である。464はA相巻線421とA/相巻線422を直列に接続した巻線で、466のトランジスタでA相電流Iaを通電する。465はB相巻線423とB/相巻線424を直列に接続した巻線で、467のトランジスタでB相電流Ibを通電する。468、469は回線用のダイオードである。また、コンデンサー462と463を正と負の2つの直流電源に置き換えても良い。この様に、図42、図43、図44、図45、図46などの簡素な構成で、片方向回転を実現できる。片方向回転の用途は多く、より簡単な構成での実現が望まれ、コスト要求の厳しい用途は多い。
 図42の4S10Rの2相モータでは、ステータ磁極Psの相数がNphが2であり、2つのステータ磁極のロータ磁極に対する位相差を、N極ロータ磁極ピッチθpprとS極ロータ磁極ピッチθpprの和の1/2としている。即ち、(2×θppr)/Nph=θpprとして求めることができる。図42の4S10Rの2相モータのロータ磁極数が増加しても良く、ステータ磁極の円周上に他のモータ構成要素が有っても良い。3相のモータでは相数がNph=3であり、ロータ磁極に対する3相のステータ磁極の相対的な位相差を、(2×θppr)/Nph=2/3×θpprとなるように配置すれば良い。4相のモータでは相数がNph=4であり、ロータ磁極に対する4相のステータ磁極の相対的な位相差を、(2×θppr)/Nph=1/4×θpprとなるように配置すれば良い。即ち、ロータ磁極に対する相対的な位相差を、0、1/4×θppr、2/4×θppr、3/4×θpprとすれば良い。
 また、ステータ磁極の数Npsを(57)式のNps=2+4×Nsとし、ロータ磁極数Nprを(58)式のNpr=2+4×Nrとして、それぞれ円周方向に均一に配置した場合、図26、図32、図38等に示した様に、全節巻き巻線を等分に配置することができる。しかし、本発明モータの電磁気的な特性は、エアギャップを介して対向する複数のステータ磁極と複数のロータ磁極の相対的な関係で発生するので、複数のステータ磁極に対して(58)式とは異なるロータ磁極数が効果的な場合もある。例えば、(57)式のNsを3としたステータ磁極数Nps=14で、(58)式に従わないロータ磁極数Npr=24の場合がある。このモータは、図32の構成に較べて、ロータ磁極の数が2個少ない構成である。この場合、ロータの180°反対側のロータ磁極の極性が同一になるので、全節巻き巻線での駆動が不都合になる問題がある。この問題の解決策の例として、円周方向に並ぶ14個のステータ磁極を7個づつの2群に分け、2群の間の2ヶ所へロータ磁極1個分のスペースを設ける。そして、ロータ磁極数も2個追加して、Npr=24+2=26とする。この結果、1群の7個のステータ磁極にはエアギャップを介して12個のロータ磁極が対向し、他の1群の7個のステータ磁極にはエアギャップを介して12個のロータ磁極が対向する。そして、例えば、A相のステータ磁極に対向するロータ磁極の極性と、A/相のステータ磁極に対向するロータ磁極の極性とは逆の極性となる。他の相のステータ磁極も同様である。即ち、全節巻き巻線での駆動が可能となり、また、7個のステータ磁極にエアギャップを介して12個のロータ磁極が対向する構成の電磁気的な特性、トルク特性が得られる。また、ステータ磁極幅に対するロータ磁極幅の比率は、ロータに配置する永久磁石PMrbiの形状、特性にも関わる。
 次に、請求項7の実施例を図47に示す。図47は、471に示す図34のステータの一部を拡大し、歯の円周方向幅を拡大した図である。図47の左右の部分は波線で示す様に省略し、巻線、ロータなども省略ている。図34の3個のステータ磁極の歯を474の様に破線で示している。Lsgはステータ磁極のエアギャップ面の円周方向幅である。474は、ステータ磁極Psの外径側の歯の円周方向幅を拡大した形状を示している。歯の円周方向幅をLsgからLsgeへ拡大している。また、475の様に、歯の形状をテーパー状など、種々形状が可能である。
 本発明の図1、図9、図11の(b)などの、ステータに永久磁石を配置しないモータ構成の場合、ロータ側の磁束を通過させる磁路は十分に確保できる。それに対して、ステータ磁極の円周方向の歯幅は狭く、磁束の通過能力が低い問題がある。図47の473に示す様に、ステータ磁極Psのエアギャップ部に面する磁極の円周方向長さLsgに対して、ステータ磁極Psの歯の円周方向幅がLsgより20%以上大きい値としている。例えば、歯幅を20%拡大し、そのステータ磁極のエアギャップ部の磁束密度を20%増加できると、(19)式より力が磁束密度の二乗として、トルクを1.44倍に44%増加できる可能性がある。
 次に、請求項8の実施例を図48に示す。図48は、図34に示した14S26Rのモータの右上部、第1象限に相当する部分を拡大して示している。各歯の先端部へ、永久磁石を含む様々な形状の例を示している。図1、図14、図34などの本発明モータは、ステータ磁極とロータ磁極を軟磁性体で構成しているので、基本的に、トルクを生成するときには磁束を励磁する必要がある。駆動回路は、トルク生成時に磁気エネルギーをモータへ与え、その後、その磁気エネルギ-を回収、回生する必要があり、無視できない程度の大きさなのでその負担は問題である。この磁気エネルギーの負担を軽減する方法として、図48のステータ481へ、483、484などの永久磁石をステータ磁極のエアギャップ面近傍の取り付けることができる。永久磁石483、484の向きは、各ステータ磁極の極性の向きであり、矢印で示している。永久磁石483、484などにより、モータと駆動回路の励磁負担を軽減できるので、小型化が可能である。また、励磁負担の軽減は励磁に関わる時間の短縮にもつながるので、モータの制御性能も改善できる。
 永久磁石483、484などの厚みは薄い形状とし、各ステータ磁極の励磁を補助する程度に限定することもできる。例えば、図49に示す様な永久磁石の磁気特性の場合、横軸を磁界の強さH[A/M]、縦軸を磁束密度B[T]とし、491の残留磁束密度が1.5[T]である場合、494の磁束密度の大きい領域は比透磁率が1に近い小さな値であっても、モータに大きな励磁電流を通電して励磁すれば使用できる。特に、本発明モータでは、各ステータ磁極のエアギャップ近傍で2.0[T]を越える様な大きな磁束密度も想定している。また、モータの制御条件により、492の保磁力の点や493の領域で動作して永久磁石が減磁した場合においても、モータの電流で再着磁して容易に復活し、継続して使用することもできる。また、永久磁石483、484の形状は、487の様にステータ磁極端の一部として縮小することもできる。486の様に、磁束を増加する形状とすることもできる。また、ステータ磁極間の永久磁石482、485と前記永久磁石483、484、486、487などとを複合化して一体として製作することもできる。また、前記永久磁石483、484、486、487などの構成、作用は、ロータ側の各ロータ磁極へも適用できる。
 次に請求項9について説明する。請求項9は、全節巻き巻線のモータを駆動する駆動回路に関する技術である。その具体的な駆動回路の例を、既に、3相用駆動回路を図29に、7相用駆動回路を図35に示し、説明した。3相のモータの場合は、(48)、(49)、(50)式に示した様に、全節巻き巻線には全ての相の磁束が鎖交するので、電圧が複雑になる。特に、回生中の相の全節巻き巻線の電圧が電源電圧の負の値となり、駆動しようとする全節巻き巻線に電源電圧と同じ値が誘起して、電流を増加できなくなる過大電圧の問題がある。図29の3相用駆動回路では、(54)、(55)、(56)式を利用し、2つの巻線を直列に接続して、過大電圧の問題の問題を解決して、図27に示した3相のモータの各相の各全節巻き巻線の電流を通電する方法を示した。
 7相のモータの場合は、同様に、(66)式から(72)式に示した様に、全節巻き巻線に全ての相の磁束が鎖交し、電圧が複雑になる。図35の7相用駆動回路では、(73)式から(79)式を利用し、2つの巻線を直列に接続して、過大電圧の問題の問題を解決して、図36に示した7相のモータの各相の各全節巻き巻線の電流を通電する方法を示した。5相のモータの場合は、7相のモータの場合に比較して2相分を取り除いた関係であり、同様に、各相の各全節巻き巻線の電流を通電できる。
 図35の7相用駆動回路では、図32の14S26Rのステータ磁極対の数を2とした図34の28S52Rのモータを駆動する例を示した。ここで、図34の28S52Rのモータは、高速回転を行うにはロータ磁極数が多いという面もある。また、図35の7相用駆動回路のトランジスタ数および制御する電流の数が多いという面がある。トランジスタ数が大きくなる原因は、3相、5相、7相に関わる全節巻き巻線の巻線数が、ステータ磁極対の数が1の場合、3、5、7個と奇数になることに起因している。即ち、図35の様に紙面の上下に2つの巻線を直列に配置して、左側から右側へ並べると、その左端と右端の巻線の両方が上側となり、図35の28Qの様に、左端と右端を接続できないことに起因している。ステータ磁極対の数を2として、6、10、14個とすれば偶数になる。図29の3相用駆動回路、図35の7相用駆動回路のように、回路全体を対称構造に構成することができる。そして、駆動回路の素子数が増えるが、各相をバランス良く制御することができる。
 次に、図35の7相用駆動回路の素子数を少なくする方法、駆動回路を図50に示す。ステータ1磁極対の図32などの7相モータを駆動できる。あるいは、ステータ磁極対の数が2以上のモータでは同一相の巻線を直列接続して駆動できる。図50の7相用駆動回路は、図35の紙面で右半分の駆動回路を削除している。その他は同一の符号で示している。そして、ダイオード28Hのカソードを504へ、すなわち、503の接続により504の場所に接続している。図50では、トランジスタ501とダイオード502を追加し、前記AD相巻線35Fに通電する(Ia+Id)のD相電流成分Idと、前記DG相巻線35Mに通電する(Id+Ig)のD相電流成分Idとの(Id×2)の電流を通電する。
 図50では、このように、2つのD相電流成分Idをトランジスタ501で通電することにより、前記の7相の奇数の問題を解決している。このD相電流成分Idに関わるAD相巻線35Fの電圧は(66)式の値、DG相巻線35Mの電圧は(69)式の値であり大きな電圧が発生するが、直流電源29Rからトランジスタ501で直接駆動するので、2倍の電圧余裕が有り、D相電流成分Idを通電できる。なお、D相電流成分Idだけ他の相の電流成分とは異なる条件となるので、制御的には注意を要する。なお、図35、図50のダイオード28A、28B、28C、28D、28E、28F、28G、28Hは回路条件によって、一部あるいは全部を取り去ることもできる。
 また、図35と図50の駆動回路を比較すると、図35の351から35Eの14個のトランジスタに対し、図50の351から357の7個のトランジスタは、同一のモータパワーで考えると、2倍の電流を通電する必要がある。両者は総電流容量で考えると、同一の電流容量となる。しかし、図50の駆動回路では、トランジスタ501とダイオード502を追加しているので、その点で駆動回路が増加する。即ち、図50の駆動回路は素子数が少なくなるが、純粋にトランジスタの総電流容量で数えると、図35に比較して図50の方が大きくなる。どちらも特徴があり、使用できる。
 次に、図29の3相の駆動回路を、図50の駆動回路と同じ手法で素子数を少なくした駆動回路の例を図51に示す。図51の3相の駆動回路は、図29の紙面で右半分の駆動回路を削除している。その他は同一の符号で示している。そして、ダイオード29Mのカソードをへ294へ、すなわち、513の接続により514の場所に接続している。図51では、トランジスタ511とダイオード512を追加し、前記AB相巻線297に通電する(Ia+Ib)のA相電流成分Iaと、前記CA相巻線299に通電する(Ia+Ic)のA相電流成分Iaとの(Ia×2)の電流を通電する。なお、ダイオード29Q、29K、29M、29Lは回路条件によって、一部あるいは全部を取り去ることもできる。
 また、図29と図51の駆動回路を比較すると、図29の291から296の6個のトランジスタに対し、図51の291から293の3個のトランジスタは、同一のモータパワーで考えると、2倍の電流を通電する必要がある。図29の6個のトランジスタと図51の3個のトランジスタの総電流容量は同一の電流容量となる。しかし、図51の駆動回路では、トランジスタ511とダイオード512を追加しているので、総電流容量の点では図51の駆動回路の方が増加する。即ち、図51の駆動回路は素子数が少なくなるが、純粋にトランジスタの総電流容量で数えると、図29に比較して図51の方が大きくなる。どちらも特徴があり、使用できる。なお、5相、9相、11相などの駆動回路についても同様の構成とすることができる。
 次に、請求項10について説明する。請求項10は、各ステータ巻線へ磁束を励磁する程度の電流Ifkの成分を常時通電し、トルクに相当する電流Itの成分を各相電流に重畳して通電するモータであり、図52にその例を示す。先に、図26の6S10Rの全節巻き巻線のモータへ図28の各相電流を通電する例を説明した。図28は、ロータ回転位置θrに応じて各相電流Iab、Ibc、Icaを通電する例である。例えば、図52の(a)のIab、図52の(b)のIbc、図52の(c)のIcaとして、それぞれに、一点鎖線で示す一定値Ifk[A]の電流を各相巻線へ通電する例を説明する。図26の位置関係から解る様に、A相ステータS極磁極11とA/相ステータN極磁極14のA相磁束φaの経路へIfk[A]の起磁力が、各相電流の合計として作用する。一方、ロータの磁気特性は、図16、図17、図18、図19に示した様に、ロータ磁極の磁気的な順方向へは容易に磁束を励磁して生成できるが、磁気的な逆方向へ生成されるロータ磁束は小さい。ここでは、磁気的な逆方向へはロータ磁束が生成されないと仮定して、モータモデルを単純化する。
 この場合、A相ステータS極磁極11がロータN極磁極とエアギャップを介して対向する位置でA相磁束φaが通過することになる。前記の様に、図26のステータ磁極の円周方向幅θsgとロータ磁極の円周方向幅をθrgを30°としている。ロータ回転位置θr=0°で磁束φaが生成され始め、θr=30°で磁束φaが最大になり、次第に磁束が減少しθr=60°で磁束φaが0になる。この時、A相電圧Vak成分の値は、図52の(d)となり、(34)式から次式に変形できる。
  Vak=Nw×dφa/dt
    =Nw×dφa/dθr×dθr/dt                (99)
  Vbk=Nw×dφb/dθr×dθr/dt                (100)
  Vck=Nw×dφc/dθr×dθr/dt                (101)
A相磁束φaの増減はロータ回転に伴うものであり、A相電流Iaの急激な減少などによる磁束の急激な減少ではないため、回生時の電源電圧に達する大きな逆電圧ではない。この時のA相電圧Vakの値は、表面磁石型同期モータSPMSMの誘起電圧の様に、ロータの回転速度dθr/dtに比例して発生する。そして、ロータ回転位置θr=30°の時のA相磁束φaの磁束経路に蓄積した磁気エネルギーは、θr=30°から60°の間に、図52の(d)の負電圧と図52の(a)のIabの一点鎖線で示す一定値Ifk[A]との積で直流電源へ回生される。
 同様に、B相ステータS極磁極13とB/相ステータN極磁極16のB相磁束φbの経路へ、一点鎖線で示す一定値Ifk[A]の起磁力が作用する。(100)式で計算されるB相電圧Vbkの値は、図52の(e)となる。C相ステータS極磁極15とC/相ステータN極磁極12のC相磁束φcの経路へ、一点鎖線で示す一定値Ifk[A]の起磁力が作用する。(101)式で計算されるC相電圧Vckの値は、図52の(f)となる。なお、全節巻き巻線の各相電圧Vab、Vbc、Vcaは、(51)、(52)、(53)式、および、(54)、(55)、(56)式の関係なので、図52の(d)、(e)、(f)式で示される。
 図26のモータでトルクを発生する場合には、図28の(a)、(b)、(c)にIab、Ibc、Icaから磁束励磁分の電流成分を差し引いて、それぞれ、図52の一点鎖線の電流へ加えれば良く、図52の(a)、(b)、(c)の実線のような電流値となる。この時の各巻線の電圧は、図52の一点鎖線の電流値が十分に大きく、軟磁性体の磁気特性が図6の実線で示す理想的な特性であって、かつ、前記の様に、磁気的な逆方向へはロータ磁束が生成されないと仮定し、かつ永久磁石の磁束も変化しない仮定すれば、図52の(d)、(e)、(f)の電圧は変化しない。しかし、現実には、前記の磁気特性が何れも非線形で複雑な特性であって、仮定した特性ではないので、図52の(d)、(e)、(f)の電圧は、図24の(d)、(e)、(f)の電圧成分などが入り混じった電圧となる。いずれにしても、図52の(a)、(b)、(c)の一点鎖線で示す一定値Ifk[A]の電流を常時通電することにより、モータ内の磁気エネルギーを印加する電圧、および、電源へ回生する電圧の大きさを減少することができる。そして、磁気エネルギーの印加、回生に伴う電圧の弊害例として、トルク電流成分の通電が制約される問題があるが、この問題を軽減できる。なお、各相巻線へ連続的に直流の励磁電流成分を通電して各ステータ磁極を励磁する技術は、各ステータ磁極のN極、S極の極性が固定で、各巻線へ通電する電流が片方向の直流電流なので実現できる手法である。交流電流駆動のモータでは困難である。また、図26の全節巻き巻線ではなく、図23の集中巻き巻線の場合も同様である。また、連続通電する電流成分の大きさは可変であり、例えば、高速回転時に誘起電圧を減少するために連続通電する励磁電流成分の大きさを減少できる。
 また、ステータ磁極へ界磁電流成分を通電する界磁巻線を追加して配置し、界磁電流成分を通電しても良い。また、ロータへ界磁巻線を追加して配置し、界磁電流成分を通電しても良い。また、モータ磁束の減少の割合を低減して、回生電圧を減少して他の相の全節巻き巻線へ誘起する方法として、電源電圧より小さい第2の電源を設けて回生用のダイオードを接続する方法がある。また、モータ磁束の減少の割合を低減する他の方法として、各巻線の低電圧側の第1の端子と高電圧側の第2の端子以外に中間部の第3の接続端子を設けて、電力供給は第3の接続端子で行い、回生は第2の端子で行うことができる。また、回生時間を短縮したい場合には、前記の接続関係を逆にすれば良い。これらの変形についても、本発明に適用できる。
 次に、請求項11について説明する。請求項11の目的は、モータ電流を駆動する駆動回路のトランジスタ数の削減である。図1、図23の6S10Rの集中巻き巻線のモータは、前記の様に、図25の駆動回路を使用して各相の電流を通電する。この場合は、一つの直流電流を駆動するために2個のトランジスタを使用している。これに対し、図46の例で示した様に、中性点461を中心に、正の電源462と負の電源463とを構成する駆動回路では、一つの直流電流を1個のトランジスタで駆動できる。正と負の二つの電源が必要となるが、個々の電流の駆動は簡単になる。図53は、図46の駆動回路に追加して、531のトランジスタで539の巻線へIcの電流を通電し、532のトランジスタで53Aの巻線へIdの電流を通電し、533のトランジスタで53Bの巻線へIeの電流を通電し、534のトランジスタで53Cの巻線へIfの電流を通電する例を示している。535、536、537、538は回生用のダイオードである。さらに巻線と駆動回路を並列に追加できる。一つの巻線に通電する直流電流を1個のトランジスタで駆動できるので、そのトランジスタを駆動するための周辺回路も含め、モータの駆動回路を簡素にできる。
 なお、図53の各トランジスタに必要な耐電圧は、図53の片方の電源の電圧の2倍となる。図25の駆動回路に比較し、トランジスタの数が半分になるが電圧が2倍になり、電流と電圧の積で考えると同等と考えることもできる。しかし、周辺回路も含めたコスト、所要スペース、大きさの観点では、図53のトランジスタの数が少ない方が有利である。また、IGBT、パワーMOSFETなどの電力素子では、耐電圧が2倍になってもコストがさほど高くならない領域が少なくなく、また、電力素子サイズが電流値に依存することも多い。また、コンデンサー462の電圧と463の電圧のアンバランスは、それぞれの通電電流を調整する方法、巻線を利用して電荷を移動する方法など、各種の方法でバランスをとれる。奇数相の巻線の場合でも、1相の巻線を分割する方法などもある。
 また、図53の駆動回路では、無通電か、電源電圧の印加か、電源への回生を行うことはできるが、いわゆるフライホイール動作といわれる巻線電流の循環動作ができない。このフライホイール動作が必要な場合の駆動回路例を図54に示す。トランジスタ466、467等は図53と同じで、フライホイール用のトランジスタ541、543を追加している。フライホイール動作時に、トランジスタ541あるいは543をオンにすればフライホイール動作が行える。542、544は逆方向の電圧、電流を阻止するダイオードである。なお、図54では、図53のコンデンサー462、463の代わりに、直流電源545、546の例を示している。図53、図54では、バッテリーなどの直流電源を使うこともできる。
 次に、請求項12について説明する。前記の本発明例として示した各モータでは、各巻線へ片方向電流、即ち、直流電流を通電するモータ構成、駆動回路、および、駆動方法を示し説明した。この片方向駆動回路へ逆方向駆動回路Drhvを追加することにより、ステータの各巻線へ正の電流に加えて負の電流も通電することができる。各巻線の電流が片方向電流の場合は、図38等の各ステータ磁極へN、Sと記載している様に、各ステータ磁極のN極、S極の極性が固定される。他方、各巻線へ正と負の電流を通電できれば、当然だが、各ステータ磁極のN極、S極の極性を変えられる。ステータ磁極のN極、S極の極性を変えることができれば、トルクを発生できる機会を2倍に増やすことが可能である。但しこの場合のステータ構成は、ステータ磁極間に配置する前記永久磁石PMsbiを取り付けられない。あるいは、前記永久磁石PMsbiの磁石特性を弱める必要がある。
 図57に、正の電流に加えて負の電流も通電することができるモータの例として、10S18Rのモータの横断面図を示す。図57のモータは、図38の10S18Rでステータ磁石PMsbiを備えて片方向電流で駆動するモータを正負の両方向電流で駆動するモータへ変えている。図57の2重丸の巻線シンボルは、電流値が正の時に紙面の表側から裏側へ電流が流れる。図57の1重丸の巻線シンボルは、電流値が正の時に紙面の裏側から表側へ電流が流れる。各全節巻き巻線のコイルエンドの接続を破線で示している。各ステータ磁極に付記しているN極とS極の極性、および、各相の磁束成分φa、φb、φc、φd、φeは、(80)式から(84)式に示す各相ステータ磁極の励磁電流成分Ia、Ib、Ic、Id、Ieが正の値である時の極性、および、磁束の方向である。571はAC相巻線でAC相電流Iacを通電し、572はBD相巻線でBD相電流Ibdを通電し、573はCE相巻線でCE相電流Iceを通電し、574はDA相巻線でDA相電流Idaを通電し、575はEB相巻線でEB相電流Iebを通電する。その他は、図38の10S18Rのモータに準ずる。なお、図57のモータは、図示するように、ステータ磁石PMsbiを備えていない。また、図57のモータは、図47に示したように、ステータ磁極の形状を修正したり、材質を変えることにより通過磁束の最大値を増加することは可能である。
 図57のモータの様に、修正を加え、逆方向駆動回路Drhvを追加することにより、正と負の両方向の電流を通電することができる。他のモータも同様である。また、モータのトルク特性として、例えば、図41の(a)から(e)に示す10S14Rのモータの動作の直線展開図はトルクの発生機会が少ない例である。図38、図39の10S18Rモータの場合に較べて、出力トルクが小さくなる問題がある。
 次に図58に、図41の10S14Rのモータの各相電流を正と負の値を通電できる様に変更し、トルクが小さい前記問題を改善した例について、その動作の直線展開図を示す。この図58のモータの概略、形状は、図57の全節巻き巻線から集中巻き巻線へ変更し、ロータ磁極の数を14個とした構成である。また、図57と同様に、ステータの前記永久磁石PMsbiを備えていない。図58の(a)は、10S14Rの5相のモータのステータ磁極を直線状に展開したエアギャップ面の形状を示していて、各巻線電流が片方向電流の正の値であった場合のステータ磁極のN極、S極の極性を、認識および参考のため、A、B、C、D、Eの相名称に並記している。図58の(b)はロータ回転角θr=0°の位置で、各ステータ磁極がCCWトルクを生成可能な領域に太線を示し、A相とA/相、C相とC/相の領域へ太線を書いている。また、ステータ磁極の励磁電流を逆の負の電流とした場合にCCWトルクを生成可能な領域には2重線の太線で、B相とB/相の様に書いている。図58の(b)では、太線と2重線の太線とを合わせて、6ヶ所のステータ磁極でCCWトルクを生成可能である。なお、D相とD/相も、モータモデル的に厳密にはCCWトルクを生成可能であるが、残りわずかな回転角であり、紛らわしいので、2重線の太線を書いていない。
 同様に、図58の(c)は、ロータ回転角θr=7.7°の位置で、A相とA/相のステータ磁極がCCWトルクを生成可能なので太線を示し、ステータ磁極の極性を反転してCCWトルクを生成可能なB相とB/相、E相とE/相の領域へ2重線の太線を書いている。図58の(c)では、太線と2重線の太線とを合わせて、6ヶ所のステータ磁極でCCWトルクを生成可能である。以下同様に、図58の(d)はθr=10.3°で、図58の(e)はθr=18°で、図58の(f)はθr=20.6°で、図58の(g)はθr=28.3°で、図58の(h)はθr=30.9°で、図58の(i)はθr=38.6°で、図58の(j)はθr=41.1°で、図58の(k)はθr=48.9°で、それぞれ、6ヶ所のステータ磁極でCCWトルクを生成可能である。図58の(d)はロータ回転角θr=51.4°の位置で、図58の(b)と同じ状態である。このサイクルを7回繰り返してロータが1回転する。なお、図58の10S14Rは正と負の電流を各集中巻き巻線へ通電するので、図41の片方向電流の10S14Rに比較して2倍の通電機会がある。また、言い換えると、図58の各ステータ磁極は大半の時間でトルクを発生できる。また、図58のモータの巻線は、全節巻き巻線とすることもできる。但し、隣のステータ磁極の励磁との関わりと、他の相の磁束成分に関わって発生する全節巻き巻線の誘起電圧に注意が必要である。
 次に、図25のトランジスタ251、252とダイオード25C、25Dで構成する片方向駆動回路Dhvに、逆方向駆動回路Drhvを加えて、逆方向電流を通電する例を図55に示す。図55では、破線の丸印で囲うトランジスタ551と552、及び、ダイオード553と554が逆方向駆動回路Drhvであり、図25の片方向駆動回路に対して追加している。図55は、結果として、正と負の両方向電流を通電する駆動回路である。トランジスタ251、551、552、252を制御して巻線555へ正の電流と負の電流Ixyzを通電できる。これらトランジスタには逆導通ダイオード553、25D、25C、554を並列に接続している。また、他の駆動回路例として、図54のトランジスタ547とトランジスタ548とで巻線555へ正の電流と負の電流Ixyzを通電できる。549と54Aは逆導通ダイオードである。図54では、2つの直流電源545、546で駆動できるので、1個の正と負の電流を2個のトランジスタで駆動できる。この場合、片方向駆動回路Dhvはトランジスタ547と逆導通ダイオード54Aで、逆方向駆動回路Drhvはトランジスタ548と逆導通ダイオード549に相当する。また、図55、図54では1相分の駆動回路しか記載していないが、相数に応じて同じ駆動回路を並列に追加して、モータの駆動回路の全体を実現する。
 また、図58などの5相のモータの駆動回路の他の例を図56に示す。56DはA相巻線とA/相巻線を直列接続した巻線で、トランジスタ561と562でA相電流Iaを通電する。56EはB相巻線とB/相巻線を直列接続した巻線で、トランジスタ563と564でB相電流Ibを通電する。56FはC相巻線とC相巻線を直列接続した巻線で、トランジスタ565と566でC相電流Icを通電する。56GはD相巻線とD/相巻線を直列接続した巻線で、トランジスタ567と568でD相電流Idを通電する。56HはE相巻線とE/相巻線を直列接続した巻線で、トランジスタ569と56AでE相電流Ieを通電する。トランジスタ56Bと56Cは、前記各巻線の相互接続部へ接続していて、電流Izzを通電する。なお、各相の電流Ia、Ib、Ic、Id、Ieの総和が0となる制御を行う場合は、前記電流Izzは0であり、トランジスタ56Bと56Cを取り除ける。また、図56の駆動回路は、全節巻き巻線の電流を駆動することもできる。相数についても、3相、7相等の相数に対して駆動回路を変更できる。
 また、前記の様に、各巻線へ正と負の電流を通電する場合はステータ磁極の極性が変わるので、例えば、図38の様に、ステータ磁極の極性を固定できない。そして、図38のステータ磁極間の前記永久磁石PMsbiは取り付けられないので、図57の様なステータ磁極の構成となる。その場合は、あるステータ磁極を駆動するとして、その円周方向の隣の歯を磁路として活用できず、そのモータ構成は図38のモータ構成に比較して、エアギャップ部の最大磁束密度が低下するので、最大トルクが減少する。3相、7相、9相などのモータの場合も同様である。しかし、ステータの永久磁石を持たない図57の様なステータ構成でも、図47に示した様に、ステータの歯の幅を拡大することにより、ステータ磁極のエアギャップ近傍の最大磁束密度を増加することもできる。また、歯の部分の材料として、方向性電磁鋼板、スーパーコア、パーメンジュール鋼板等を使用して、通過磁束を増加できる。なお、これらの永久磁石の強さを中程度として、片方向電流で駆動する場合の利点と両方向電流で駆動する場合の利点とを発揮することも可能である。
 次に、請求項13について説明する。図57の10S18Rのモータは、全節巻き巻線で、正と負の両方向の電流を通電した場合、バーニアモータとして動作することもできる。バーニアモータは、ロータ磁極数Npr、ステータ磁極数Nps、バーニアモータとしての極数Npvernとすると次式の関係である。
  Npr=2×Nps±Npvern                     (102)
Nps=10、Npvern=2の場合、ロータ磁極数Nprは18か22である。図57の10S18Rのモータはステータ磁極数Npsが10で、(102)式に従うモータ構成の一つである。
 図57の10S18Rのモータの動作を示す直線展開図を図59に示す。図59は図39の直線展開図へ、ステータ磁極を逆方向へ励磁してCCWトルクが得られてバーニア駆動に活用できるステータ磁極の範囲を2重の太線で追記している。図59の直線展開図は各ステータ磁極がCCW方向トルクを生成する可能性を示す図であって、巻線の種類、電流値まで示していない。図59の(a)は、エアギャップ部に面するステータ磁極の形状を直線展開して示している。A相とA/相のステータ磁極は、図57の387と388である。NとSの極性を参考のため表示しているが、その極性は図57の2重丸の印の各巻線へ正の電流を通電した場合のステータ磁極の極性を、参考のために表示している。B相とB/相のステータ磁極は、図57の389と38Aである。C相とC/相のステータ磁極は、図57の38Bと38Cである。D相とD/相のステータ磁極は、図57の38Dと38Eである。E相とE/相のステータ磁極は、図57の38Fと38Gである。
 図59の(b)は、エアギャップ部に面するN極とS極のロータ磁極の形状を直線展開して示している。ロータ回転位置はθr=0°で、図57のロータ回転位置である。太線で示している位置は、ステータ磁極を正方向(順方向)に励磁してCCWトルクを生成できるステータ磁極を示している。2重の太線で示している位置は、ステータ磁極を負方向(逆方向)に励磁してCCWトルクを生成できるステータ磁極を示している。A相、D/相、B相、E/相の4つのステータ磁極をS極に励磁すればCCWトルクが得られる。同時に、ロータの中心点に対して点対称なので、A/相、D相、B/相、E相の4つのステータ磁極をN極に励磁すればCCWトルクが得られる。具体的な励磁電流の例は、AC相巻線571へ正の電流Iac、CE相巻線573へ負の電流Iceを通電すれば、図59の(b)の状態に励磁できる。正のA相磁束φa、負のD相磁束φd、正のB相磁束φb、負のE相磁束φeの4個の磁束成分が、8個のステータ磁極へ作用してCCWトルクを発生する。
 この時、異なる励磁方法も可能で有る。例えば、C相とC/相のステータ磁極はトルクを発生しないロータ回転位置θrなので、AC相巻線571の正電流、CE相巻線573の負電流のどちらかでも一方でもCCWトルクを生成できる。また、図57の紙面で解るように、DA相電流Idaとして負の電流、EB相電流Iebとして正の電流を同じ大きさで追加すれば、D相磁束φdとφbが増加し、CCWトルクが増加する。また、BD相電流Idbは各相の磁束へ影響するが、このロータ回転位置ではそれぞれが相殺するので、原理的にはトルクへの影響が少ない。
 同様に、図59の(c)は、ロータ回転位置はθr=8°で、ロータがCCWへ移動すると、CCWトルクを発生可能なステータ磁極の範囲が図59の紙面で左側へ72°移動する。E相、C/相、A相、D/相の4つのステータ磁極をS極に励磁すればCCWトルクが得られる。E/相、C相、A/相、D相の4つのステータ磁極をN極に励磁すればCCWトルクが得られる。励磁電流は、BD相巻線572へ正の電流Ibd、DA相巻線574へ負の電流Idaを通電する。図59の(d)は、ロータ回転位置はθr=16°で、D相、B/相、E相、C/相の4つのステータ磁極をS極に励磁すればCCWトルクが得られる。D/相、B相、E/相、C相の4つのステータ磁極をN極に励磁すればCCWトルクが得られる。励磁電流は、CE相巻線573へ正の電流Ice、EB相巻線575へ負の電流Iebを通電する。図59の(e)は、ロータ回転位置はθr=24°で、C相、A/相、D相、B/相の4つのステータ磁極をS極に励磁すればCCWトルクが得られる。C/相、A相、D/相、B相の4つのステータ磁極をN極に励磁すればCCWトルクが得られる。励磁電流は、DA相巻線574へ正の電流Ida、AC相巻線571へ負の電流Iacを通電する。図59の(f)は、ロータ回転位置はθr=32°で、B相、E/相、C相、A/相の4つのステータ磁極をS極に励磁すればCCWトルクが得られる。B/相、E相、C/相、A相の4つのステータ磁極をN極に励磁すればCCWトルクが得られる。励磁電流は、EB相巻線575へ正の電流Ieb、BD相巻線572へ負の電流Ibdを通電する。図59の(g)は、ロータ回転位置はθr=40°で、図59の(b)の状態に戻る。これらの動作を9回繰り返してロータは360°、1回転する。以上の様に通電してモータを回転駆動できる。なお、通電の方法は一通りではなく、前記の様に、各通電電流を修正、補正も可能である。
 前記の駆動法では、各電流の起磁力が4組、8個のステータ磁極へ印加されるので、各ステータ磁極ごとに励磁電流を通電する方法に較べ、同一電流で4倍のトルクが発生することになる。巻線の誘起電圧も、図59の作図では4倍だが、原理的には5倍にもなる。同一トルクでのモータ銅損を比較すると、通電方法にもよるが、ステータ磁極を個別に駆動する場合に比較し、1/4から1/10程度に銅損を低減できることになる。各電流の波形形状については、前記各電流はロータの回転に伴い変化していく必要があり、例えば図24の様に、ロータ回転位置θrに対して台形形状で正と負の値にできる。特に限定せず、種々波形形状にできる。また、回転数が大きくなると、巻線インダクタンスなどの制約により矩形波電流での駆動が困難になり、より滑らかな電流波形となり、さらには正弦波交流電流となっても良い。
 また、図57のモータを図59の説明のように駆動する場合の特性として、各電流のロータ回転に伴う変化が早いという顕著な特性がある。図59に添う通電、駆動において、ロータのCCW回転に伴い、通電すべき電流は図59の紙面で右側から左側へ高速で移動することになる。例えば、図59の(b)のθr=0°から図59の(c)のθr=8°の間に、前記の様に、AC相巻線571の電流IacがBD相巻線572の電流Ibdへ変化する必要がある。ロータ回転角θrが8°回転する間に、バーニア電流は72°回転移動することになる。ロータの回転速度の9倍の移動速度である。この時、ロータ回転に伴って、各相電流を高速に増加、減少する必要がある。各巻線電流の通電角度幅は、ロータ回転角θrに対して8°となる。また、前記の図59の説明のように、2個の全節巻き巻線で励磁する場合、各巻線は4個の磁束成分と鎖交しており、巻線インダクタンスが大きいので、電流の増減時間の制約もある。従って、図57のモータをバーニアモータとして回転駆動する場合、高速回転には制約があり、低速回転での高効率駆動に適している。高速回転には、電流の増減速度に関する制約、問題がある。
 また、図59の前記説明では、主に、2個の全節巻き巻線で、4個の磁束成分を励磁して駆動する方法を示した。しかし、ロータの回転数が大きくなると、モータトルク、モータ効率よりも電流の制御性を優先した制御へ変更して制御することもできる。具体的には、例えば、図59の(b)において、AC相巻線571へ正の電流IacとCE相巻線573へ負の電流Iceを通電していたが、AC相巻線571へ正の電流IacとEB相巻線575へ正の電流Iebを通電するように変更できる。その結果、図57の励磁される磁束成分はφa、φd、φb、φeからφa、φd、φbとなり、磁束成分を3個に減らすことができる。そして、巻線インダクタンスが減少し、電流の制御性を改善でき、より高速回転数まで制御できる。あるいは、励磁する磁束成分をφaとφdの2個に減らしたい場合は、AC相巻線571へ正の電流IacとBD相巻線572へ負の電流Ibdを通電することもできる。鎖交磁束が2個に減るので、さらに、巻線インダクタンスが減少し、電流の制御性を改善でき、より高速回転数まで制御できる。このように、励磁する範囲を通電電流により変更することができる。また、2個以上の巻線の電流値を変える方法も有る。なお、図59の他のロータ回転角θrにおいても、通電電流を同様に設定できる。
 なお、本発明モータは、基本的に励磁さていないロータ磁極が発生する磁束の大きさは小さい。そして、励磁していないロータ磁極の磁束成分による弊害は少ない。また、図57のモータを駆動する方法の一つとして、5相の正弦波電流を通電して駆動することもできる。この時の5相の正弦波電流の位相は、各相電流の起磁力の位相が図59の説明の場合とほぼ一致する位相にすれば良い。また、図57および図59は5相のモータをバーニアモータとして駆動する例であるが、3相、7相、9相などのモータも同様に駆動することができる。なお、バーニアモータの高効率化の効果は、7相、9相などと多相のモータで大きく、逆に、高速化の制約、問題も大きい。
 次に、請求項14について説明する。図57に示した10S18Rのモータを、低速回転時は図59で説明したように高効率で駆動し、高速回転時には前記の図38のモータ構成、図39の直線展開図に示したように通電し駆動するモータである。前記の様に、図57の10S18Rのモータを図59で説明したように駆動して、高効率で駆動できる。しかし、各相電流を高速で増減する必要があり、巻線インダクタンスも大きくなることから、モータの高速回転には制約、問題があることを示した。他方、図38のモータ構成、図39の直線展開図の動作説明等では、トルクを発生するステータ磁極を4個に限定し、1組2個のステータ磁極を円周方向両隣の2個の全節巻き線で励磁して駆動する方法を示した。トルクを発生するステータ磁極の数は4個と少ないが、大半の巻線、大半のステータ磁路を活用して駆動する方法であり、エアギャップ部の磁束密度を大きな値にできる。他相の磁束成分の鎖交が相殺するように、2つの全節巻き巻線を直列に接続して駆動し、その結果、各巻線に鎖交する磁束成分が平均で1個となるように構成している。従って、通電する時の実効的な巻線インダクタンスが小さく、高速の電流制御ができる。各巻線の通電角度幅は、ステータ磁極幅、ロータ磁極幅に依存し、例えば、18°との図59場合より通電角度幅が2倍以上大きい。従って、図38のモータ構成、図39の動作は、図57のモータを図59で動作より、より高速で回転、駆動できる。
 図60の駆動回路は、図57の10S18Rのモータを図59で説明したようにバーニアモータとして駆動でき、かつ、駆動モードの切り替えが可能で、図39の様に各ステータ磁極を個別に駆動することができる。前記の様に、図59の正負電流の駆動モードではバーニアモータとして低速回転領域で高効率に駆動し、図39の片方向電流の駆動モードでは高速の回転領域も駆動できる。なお、図39の駆動モードは低速回転領域も駆動できる。
 図60の駆動回路は、図34のモータの7相の駆動回路である図35を5相のモータ用に駆動回路を2相分削減し、また、駆動モードの切り替えと、正と負の両方向電流を駆動できるようにトランジスタを追加した回路である。また、図60の駆動回路は、図57の10S18Rのステータ磁極対の数を2とするか、あるいは、各巻線を2重巻き線として、全節巻き巻線の数を10個とした駆動回路である。60Aは図57のAC相全節巻き巻線でAC相電流Iacを通電する。60Bは図57のDA相全節巻き巻線でDA相電流Idaを通電する。
 最初に、図60の駆動回路において、正と負の両方向電流の駆動モードについて説明する。この正負電流モードでは、609のトランジスタをオフとする。AC相巻線60Aは、トランジスタ601、602、603、604により、正あるいは負の電流を自在に通電することができる。DA相巻線60Bも、トランジスタ605、606、607、608により、正あるいは負の電流を自在に通電することができる。
 図60の一点鎖線で示す60Fは、一点鎖線で囲う60Eと同様の駆動回路で、図57のBD相巻線とEB相巻線を含んでおり、609に相当するトランジスタをオフとして正負電流モードとし、BD相巻線とEB相巻線へ正あるいは負の電流を自在に通電することができる。同様に、一点鎖線で示す60Gは、図57のCE相巻線と2個目のAC相巻線を含んでおり、609に相当するトランジスタをオフとして正負電流モードとし、CE相巻線とAC相巻線へ正あるいは負の電流を自在に通電することができる。同様に、一点鎖線で示す60Hは、図57の2個目のDA相巻線と2個目のBD相巻線を含んでおり、609に相当するトランジスタをオフとして正負電流モードとし、DA相巻線とBD相巻線へ正あるいは負の電流を自在に通電することができる。同様に、一点鎖線で示す60Jは、図57の2個目のEB相巻線と2個目のCE相巻線を含んでおり、609に相当するトランジスタをオフとして正負電流モードとし、EB相巻線とCE相巻線へ正あるいは負の電流を自在に通電することができる。
 次に、図60の駆動回路において、片方向の直流電流で各ステータ磁極を個別に駆動する駆動モードについて説明する。なお、この片方向電流による個別の駆動モードでは、前記の図35での駆動の様に、ステータ磁極を励磁する2個の全節巻き巻線を直列に接続して(80)式から(84)式に示す電流成分を通電し、他の相の磁束の変化による誘起電圧を相殺することにより他の相の影響を受け難くしている。
 具体的なこの片方向電流によるステータ磁極の個別の駆動モードの方法は、図60のトランジスタ609をオンとし、トランジスタ602、603、604、605、606、607をオフとする。そして、トランジスタ601で(80)式の片方向電流であるAC相電流IacをAC相巻線60Aへ通電し、トランジスタ608で(83)式の片方向電流であるDA相電流IdaをDA相巻線60Bへ通電する。図60の一点鎖線で示す60Fは、一点鎖線で囲う60Eと同様の駆動回路で、図57のBD相巻線とEB相巻線を含んでおり、609に相当するトランジスタをオンとし、602、603、604、605、606、607に相当するトランジスタをオフとする。そして片方向電流による個別の駆動モードとして、(81)式のBD相電流IbdをBD相巻線へ通電し、(84)式のEB相電流IebをEB相巻線へ通電する。同様に、一点鎖線で示す60Gは、図57のCE相巻線と2個目のAC相巻線を含んでおり、(82)式のCE相電流IceをCE相巻線へ通電し、(80)式のAC相電流IacをAC相巻線へ通電する。同様に、一点鎖線で示す60Hは、図57の2個目のDA相巻線と2個目のBD相巻線を含んでおり、(83)式のDA相電流IdaをDA相巻線へ通電し、(81)式のBD相電流IbdをBD相巻線へ通電する。同様に、一点鎖線で示す60Jは、図57の2個目のEB相巻線と2個目のCE相巻線を含んでおり、(84)式のEB相電流IebをEB相巻線へ通電し、(82)式のCE相電流IceをCE相巻線へ通電する。
 なお、この運転モードでは、図60のトランジスタ601は図35のトランジスタ351に相当し、トランジスタ608は図35のトランジスタ352に相当する。また、図60の駆動回路では正負の両方向電流も通電できるようにするために、図35の駆動回路に比較して、図60の破線の丸印で示すトランジスタとダイオードを追加している。逆に考えると、破線の丸印がついていない回路素子は、2つの駆動モードで共用しているとも言える。また、図60の駆動回路は、図57の10S18Rのステータ磁極対の数が1に限らず、5組の全節巻き線として、図50、図51で行った様に、トランジスタの数を約半数近くを減らす様に変形することも可能である。また、図60の駆動回路は、前記の片方向電流による個別の駆動モードにおいて、トランジスタ604、605を併用することもできる。その他の変形も可能である。
 以上示した様に、図60の駆動回路の正負電流モードでは、図57のモータの各全節巻き巻線へ正と負の両方向電流を通電してバーニアモータとして駆動し、特に低速回転で銅損の少ない高効率な駆動が可能である。また、片方向電流によるステータ磁極の個別の駆動モードでは、高速回転での駆動が可能であり、短時間の大トルク出力も可能である。図60の駆動回路を使用する図57のモータは、2つの駆動モードを駆使して、低速大トルクから高速回転まで駆動できる。具体的な用途例、ニーズとして、電気自動車の主機用モータの代表的なニーズは、急坂道の登坂時には低速回転で大トルクが必要で、市街地走行では比較的低速回転での高効率駆動が求められ、通常走行および高速道路などでは急加減速と高速回転も求められる。同時に、電気自動車の変速機などは、重量、スペース、コストの観点で簡単な構成が望ましい。前記の2つの駆動モードでこれらの要求に応えることができる。
 次に、請求項15について説明する。図61は、エアギャップ近傍の軟磁性体として、最大磁束密度の大きい部材を使用する構成の例を示している。これは、エアギャップとその近傍の最大磁束密度を大きくし、モータの最大トルクを増加させる方法である。同時に、モータの鉄損を低減すること、モータコストの増大を防ぐ方法でもある。図61は、図34に示した14S26Rのモータの右上部、第1象限に相当する部分を拡大して示している。611はステータ、612はロータ軸である。613はステータのN極磁極で、615はその磁極先端部でエアギャップ近傍に使用するパーメンジュール鋼板である。614はステータのS極磁極で、616はその磁極先端部でエアギャップ近傍に使用するパーメンジュール鋼板である。617はロータのS極磁極で、617はその磁極先端部でエアギャップ近傍に使用するパーメンジュール鋼板である。614はロータのN極磁極で、618はその磁極先端部でエアギャップ近傍に使用するパーメンジュール鋼板である。619、61A、61B、61Cは、図34などと同様の永久磁石である。61Dはステータのバックヨークなどの主な部分を構成する電磁鋼板である。61Eはロータのバックヨークなどの主な部分を構成する電磁鋼板である。なお、これらの電磁鋼板は積層してコアに形成してモータ部品とし、追加工、組み立て等を行う。
 先に説明した様に、図1、図34などの本発明モータでは、作用するロータ磁極が円周方向の隣の磁路を活用して、前記ロータ磁極の磁束を大きくできる効果を利用する。
しかし、この場合、ロータ磁極のエアギャップ近傍の極限られた領域だけではあるが、大きな電流で励磁した場合に、磁束が集中するため軟磁性体の飽和磁束密度を越える状態となる。その結果、磁気飽和部の励磁に大きな起磁力[A・turn]が必要となる問題、その周辺の永久磁石に必要な起磁力、即ち、磁石特性と厚み[A/m・m]が必要となる問題がある。ステータ磁極についても、同様の問題がある。また、ステータに永久磁石619、61Aなどを使用しない図1などのモータにおいても、ステータの歯幅を広くする場合、より高い磁束密度の軟磁性体を歯に使用する場合などに、同様の問題が発生する。
 図61は、このような高磁束密度の問題を軽減する方法を示している。ロータとステータのエアギャップ近傍の各磁極先端部にパーメンジュール鋼板615、616、617、618を使用している。パーメンジュールの飽和磁束密度が大きいので、前記の励磁負担などを軽減できる。なお、パーメンジュールは飽和磁束密度が約2.4[T]と現在使用できる軟磁性体としては大きな磁束を通過できるが、コバルトCoが約50%含まれていて高価であり、部分的に使用する。また、コスト制約の厳しい用途では、図61より極部分的に必要最小限だけとしてさらに縮小できる。
 また、図34、図61などの本発明モータは、ロータ回転数が上がったときの鉄損の低減も求められる。特にロータの磁極数が大きい場合は、鉄損が増加する問題がある。アモルファス鋼板、あるいは、積層したコアの鉄損は、従来の電磁鋼板の鉄損に較べて1/5あるいは1/10と鉄損が小さいことで知られている。図61の61D、61Eへ、低鉄損の軟磁性体材料として使用できる。図61の構成により、高速回転でも鉄損が小さく、高効率で、大きなトルクを実現できる。なお、電力素子は、パワーMOSFET、SiC、GaNなどの高速な電力素子が期待できる。
 また、軟磁性体材料としては各種の材料が使用できる。アモルファス鋼板は鉄損が小さいが、飽和磁束密度は約1.5[T]とやや低く、板厚は25[μm]と薄いので強度対策が必要である。パーメンジュール鋼板は最大磁束密度が約2.4[T]と大きいが、板厚は0.1[mm]と薄いので強度対策が必要である。通常の珪素3.5%程度の電磁鋼板の他、スーパーコアと言われる珪素6.5%の電磁鋼板も市販され、等方性、高磁束密度、低鉄損と謳われているが、板厚は0.1[mm]程度と薄いので強度対策が必要である。ステータの歯に方向性電磁鋼板を使用して、磁束密度を高め、鉄損を低減することもできる。これらの軟磁性体を組み合わせて、図61のモータ構成を実現できる。またさらに、軟磁性体を3種類以上組み合わせることも可能である。
 また、前記の様に、鉄損を低減するために、各種の軟磁性体は薄板化されており、強度不足の問題、板加工の難しさの問題、積層、組み立ての問題などがある。また、ロータには、回転時の遠心力も加わる。これらの対策として、図62のモータ構成とすることもできる。図62は、図61の2点鎖線で示すAA-BBの縦断面図の例である。621はロータ軸、622はロータ、623はステータである。625と627は、比較的強度が得られる軟磁性体を複数枚積層した構成で、ロータ軸方向に間隔を開けて配置し、ロータの軟磁性体624およびステータの軟磁性体626を挟み込んで補強している。624と626は、例えば、鉄損の小さいアモルファス鋼板の積層体である。628と629は、例えば、飽和磁束密度の大きいパーメンジュール鋼板の積層体である。また、ロータには回転時の遠心力が加わるので特に強度が必要であり、逆に、ステータには遠心力が加わらないので、異なる構成であっても良い。なお、ステータには回転時の遠心力が加わらないので、軟磁性体の部材627はより薄型化したり、異なる部材としても良い。
 以上本発明について説明したが、種々の変形、応用、組み合わせが可能である。モータの相数を5相、7相、9相、11相などへ多相化し、変形できる。ロータの極数も選択できる。また、ステータ巻線は、分布巻き、短節巻き、トロイダル巻き(環状巻き)などの構成とすることもできる。また、大きなトルクを必要とする用途、損失を極小化したい用途などでは、巻線に超電導巻線を使用することもできる。
 モータの形態についても、アウターロータ型モータ、アキシャルギャップ型モータ、あるいは、リニアモータなどのモータ形状を選択できる。さらに、内外径方向に2個のモータ要素とした複合モータの構成とすることができ、内径側スペースの有効活用、トロイダル巻き(環状巻き)による巻線の簡素化、ロータ軸方向のコイルエンド長の短縮の効果を期待できる。トロイダル巻き(環状巻き)は集中巻きと電磁気的に等価に巻回することができる。また、全節巻きと電磁気的に等価に巻回することもできる。また、ロータ軸方向にロータ軸方向に2個のモータ要素とした複合モータの構成とすることができ、また、他の種類のモータ要素と組み合わせることも可能である。ロータの界磁巻線への給電方法は、ロータコアに巻回した巻線へステータ巻線側から非接触で給電する方法、別の回転トランスを付加して給電する方法、ブラシとスリップリングを付加して給電する方法などである。
 また、種々の永久磁石が使用でき、使用時に磁石の磁気特性を可変することも可能である。モータ用電流での磁石可変、あるいは、専用の装置での磁石可変も可能である。また、永久磁石は、軟磁性体と励磁巻線として励磁電流を通電して置き換えることができる。また、各巻線の誘起電圧、磁気特性がロータの回転と共に変化することを利用したセンサレス位置検出技術の活用も可能である。また、モータのトルクリップル、振動、騒音を低減するために、一部のロータ磁極を円周方向に移動するような変形、すなわち、ロータ外周に近い永久磁石の電気角位置を円周方向に移動するような変形を行うこともできる。自動車用の主機モータは前進が主なので、片方向トルクを優先するモータ構造であっても良い。電力制御素子はトランジスタの例で記載したが、IGBT、パワーMOSFET、GaN半導体、SiO半導体などの様々な電力制御素子を使用できる。これらを応用、変形した技術についても本発明に含むものである。
 本発明により、より大きな磁束でモータを駆動することができ、エアギャップ部の磁束密度を大きくできるので、トルクを増加することができる。そして、銅損の低減、高効率化、小型化、低コスト化を実現できる。従って、電気自動車の主機用モータ、産業用モータ、家電用モータなどへ使用できる。
11  A相のステータS極磁極
12  C/相のステータN極磁極
13  B相のステータS極磁極
14  A/相のステータN極磁極
15  C相のステータS極磁極
16  B/相のステータN極磁極
17  ステータ
1A  A相巻線
1B  C/相巻線
1C  B相巻線
1D  A/相巻線
1E  C相巻線
1F  B/相巻線
1G  ロータS極磁極
1J  ロータS極磁極
1H  ロータN極磁極
1S  ロータ軸
1N、1P、1Q、1R  ロータに内蔵する永久磁石

Claims (15)

  1.  ステータの円周方向に配置する複数のステータ磁極Psと、
     前記各ステータ磁極Psの間の各スロットSLsと、
     前記スロットSLsに配置し前記の各ステータ磁極Psを励磁するステータ巻線Wsと、
     前記各ステータ巻線Wsへ片方向の電流を駆動できるそれぞれの片方向駆動回路Dhvと、
     ロータの円周方向に配置した複数のN極ロータ磁極Prnと、
     ロータの円周方向に前記N極磁極Prnと交互に配置した複数のS極ロータ磁極Prsと、
     ロータ共通のバックヨークから前記各N極のロータ磁極Prnへ磁気的につながる軟磁性体の磁路MPrnと、
     ロータ共通のバックヨークから前記各S極のロータ磁極Prsへ磁気的につながる軟磁性体の磁路MPrsと、
     円周方向に並ぶ前記磁路MPrnと前記磁路MPrsの間に、両ロータ磁極PrnとPrsの極性と磁極の向きが一致するように配置する永久磁石PMrbiと
    を備えることを特徴とするモータ。
  2.  請求項1において、
     前記ステータ磁極PsはN極とS極が円周方向に交互に配置して、N極として作用するN極ステータ磁極Psnと、
     前記N極ステータ磁極Psnと円周方向に交互に配置して、S極として作用するS極ステータ磁極Pssと、
     円周方向に並ぶ前記N極ステータ磁極Psnと前記S極ステータ磁極Pssの間に、両ステータ磁極PsnとPssの極性と磁極の向きが一致するように配置する永久磁石PMsbiと
    を備える
    ことを特徴とするモータ。
  3.  請求項1において、
     前記ステータ磁極巻線Wsは各ステータ磁極Psのそれぞれを励磁する集中巻きの巻線Wscpである
    ことを特徴とするモータ。
  4.  請求項1において、
     前記ステータ磁極巻線Wsは巻線ピッチがステータの磁極対周期のほぼ1/2の全節巻きステータ巻線Wsfpである
    ことを特徴とするモータ。
  5.  請求項1において、
     Nps=2+4×NsとなるNps個の前記ステータ磁極Psと、
     Npr=2+4×Nrとなり、合計Npr個の前記N極ロータ磁極Prnと前記S極ロータ磁極Prsを備える
    ことを特徴とするモータ。
     ここで、Ns、Nrは1以上の整数とする。
  6.  請求項1において、
     前記複数のステータ磁極Psの相数がNphで、
     ロータ円周方向に交互に配置する前記N極磁極PrnとS極磁極Prsのロータ磁極ピッチをθpprとして、ロータ磁極に対する位相が(2×θppr)/Nphずつ異なるNph個のステータ磁極をステータの円周方向に部分的に備える
    ことを特徴とするモータ。
     ここで、Nphは2以上の整数である。
  7.  請求項1において、
    前記ステータ磁極Psのエアギャップ部に面する磁極の円周方向長さをLsgとし、前記ステータ磁極Psの歯の一部の円周方向幅がLsgより20%以上大きい値である
    ことを特徴とするモータ。
  8.  請求項1において、
     前記ステータ磁極PsのN極磁極PsnとS極磁極Pssのエアギャップ部近傍に、ステータ磁極の極性の向きが一致するように配置する永久磁石PMssurを備える
    ことを特徴とするモータ。
  9.  請求項4において、
     前記ステータ磁極Psの数はNkb×N1で、それらの内、円周方向に並ぶステータ磁極Ps1、Ps2、Ps3、Ps4、Ps5と、
     前記ステータ磁極Ps1とPs2の間に位置するスロットSLs1と、
     前記ステータ磁極Ps2とPs3の間に位置するスロットSLs2と、
     前記ステータ磁極Ps3とPs4の間に位置するスロットSLs3と、
     前記ステータ磁極Ps4とPs5の間に位置するスロットSLs4と、
     ステータの磁極対周期のほぼ1/2離れた2つのスロット間に巻回する全節巻き巻線であって、前記スロットSLs1に配置する全節巻き巻線Wsfp1と、
     同様に、前記スロットSLs2に配置する全節巻き巻線Wsfp2と、
     同様に、前記スロットSLs3に配置する全節巻き巻線Wsfp3と、
     同様に、前記スロットSLs4に配置する全節巻き巻線Wsfp4と、
     円周上に交互に配置するN極とS極のロータ磁極をNkb×N2個以上備えるロータと、
     前記全節巻き巻線Wsfp1に直列に接続したトランジスタTR1と、
     前記全節巻き巻線Wsfp2に直列に接続したトランジスタTR2と、
     前記全節巻き巻線Wsfp3に直列に接続したトランジスタTR3と、
     前記全節巻き巻線Wsfp4に直列に接続したトランジスタTR4とを備え、
     前記トランジスタTR1は前記全節巻き巻線Wsfp1へ直流電流Isfp1を通電し、前記全節巻き巻線Wsfp1と前記全節巻き巻線Wsfp2と前記トランジスタTR2とを直列に接続し、
     前記トランジスタTR2は前記全節巻き巻線Wsfp2へ直流電流Isfp2を通電し、前記全節巻き巻線Wsfp2と前記全節巻き巻線Wsfp3と前記トランジスタTR3とを直列に接続し、
     前記トランジスタTR3は前記全節巻き巻線Wsfp3へ直流電流Isfp3を通電し、前記全節巻き巻線Wsfp3と前記全節巻き巻線Wsfp4と前記トランジスタTR4とを直列に接続し、
     前記トランジスタTR4は前記全節巻き巻線Wsfp4へ直流電流Isfp4を通電し、
     前記の直列に接続した各全節巻き巻線と各トランジスタTR1、TR2、TR3、TR4で各励磁電流を通電して各ステータ磁極Ps1、Ps2、Ps3、Ps4、Ps5を励磁し、
     モータの前記全節巻き巻線の数が3個の場合は全節巻き巻線Wsfp1と全節巻き巻線Wsfp4とは同一の巻線であって、前記全節巻き巻線Wsfp3と前記全節巻き巻線Wsfp1とを並列に配置して前記トランジスタTR4へ接続して直流電流を通電する
    ことを特徴とするモータ。
    ここで、Nkbはステータの磁極対の数であって1以上の整数で、N1は6以上の整数で、N2は6以上の整数である。
  10.  請求項1において、
     前記ステータ巻線Wsの各相巻線へ、その運転状況に応じた磁束励磁電流の成分を連続的に通電する、あるいは、ステータの各スロットに磁束励磁巻線を巻回して直列接続し磁束励磁電流を通電する
    ことを特徴とするモータ。
  11.  請求項1において、
     直流電源POS2と、
     前記直流電源POS2と直列に配置した直流電源POS3と、
     前記直流電源POS2と前記直流電源POS3と間の中間電位部TYVと、
     前記直流電源POS2へ接続したトランジスタTR7と、
     前記トランジスタTR7と前記中間電位部TYVとの間に配置した巻線Ws2と、
     前記直流電源POS3へ接続したトランジスタTR8と、
     前記トランジスタTR8と前記中間電位部TYVとの間に配置した巻線Ws3とを備え、
     前記各ステータ巻線Wsへ前記直流電源POS2と前記直流電源POS3を使用して電流を通電する
    ことを特徴とするモータ。
  12.  請求項1において、
     逆方向駆動回路Drhvを備え、
     前記ステータ巻線Wsの正の電流成分へ、前記逆方向駆動回路Drhvにより負の電流成分を加えて通電する
    ことを特徴とするモータ。
  13.  請求項1において、
     一つのステータ磁極Psv1の隣のスロットSlsvへ配置する全節巻き巻線Wsfpv1へIsfpv1の電流成分を通電し、
     前記ステータ磁極Psv1の前記スロットSlsvとは反対方向に2個以上離れたスロットに配置される1個あるいは複数の全節巻き巻線WsfpvNへ(-Isfpv1)の電流成分の一部あるいは全部を通電する
    ことを特徴とするモータ。
  14.  請求項13において、
     低速回転の時には、ステータ磁極PsvNをIsfpv1の電流成分と円周方向に2個以上離れたスロットに配置される1個あるいは複数の全節巻き巻線WsfpvNの電流成分(-Isfpv1)とで励磁し、
     高速回転の時には、前記ステータ磁極PsvNの円周方向両隣の全節巻き巻線WsfpvFとWsfpvRとを直列に接続して、前記ステータ磁極PsvNを励磁する電流成分IsvNを通電する
    ことを特徴とするモータ。
  15.  請求項1において、
     ロータの主な磁気回路を軟磁性体MagAの部材で構成し、
     ロータの前記N極のロータ磁極Prnと前記S極のロータ磁極Prsのエアギャップ部近傍に、前記軟磁性体MagAより飽和磁束密度が大きい軟磁性体MagBの部材を使用する
    ことを特徴とするモータ。
     
     

     
PCT/JP2022/001004 2021-03-26 2022-01-13 モータ WO2022201768A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-054408 2021-03-26
JP2021054408A JP2022151370A (ja) 2021-03-26 2021-03-26 モータ

Publications (1)

Publication Number Publication Date
WO2022201768A1 true WO2022201768A1 (ja) 2022-09-29

Family

ID=83396759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001004 WO2022201768A1 (ja) 2021-03-26 2022-01-13 モータ

Country Status (2)

Country Link
JP (1) JP2022151370A (ja)
WO (1) WO2022201768A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7325164B1 (ja) 2022-12-21 2023-08-14 正一 田中 スイッチドリラクタンスモータ装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102198A (ja) * 1998-09-21 2000-04-07 Fujitsu General Ltd 永久磁石電動機
JP2004147425A (ja) * 2002-10-24 2004-05-20 Natsume Optical Corp 回転電機
JP2020025377A (ja) * 2018-08-06 2020-02-13 梨木 政行 モータとその制御装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000102198A (ja) * 1998-09-21 2000-04-07 Fujitsu General Ltd 永久磁石電動機
JP2004147425A (ja) * 2002-10-24 2004-05-20 Natsume Optical Corp 回転電機
JP2020025377A (ja) * 2018-08-06 2020-02-13 梨木 政行 モータとその制御装置

Also Published As

Publication number Publication date
JP2022151370A (ja) 2022-10-07

Similar Documents

Publication Publication Date Title
JP5477161B2 (ja) ダブルステータ型モータ
US7816822B2 (en) Motor and control unit thereof
JP5592848B2 (ja) 横方向磁束型回転電機及び車輌
US20090134734A1 (en) Ac motor and control unit thereof
JP4993389B2 (ja) 回生型スイッチドリラクタンスモータ駆動システム
JP4525830B2 (ja) 同期モータ
US11863018B2 (en) Reluctance motor
JP2013005487A (ja) 電磁石型回転電機
JP2008029141A (ja) クローティース型回転電機
CN106685165B (zh) 一种转子错极模块化外转子开关磁通电机
US20110241599A1 (en) System including a plurality of motors and a drive circuit therefor
JP6304478B2 (ja) リラクタンスモータ
JP5543186B2 (ja) スイッチドリラクタンスモータ駆動システム
US10063127B2 (en) Multiple-phase AC electric motor whose rotor is equipped with field winding and diode
WO2022201768A1 (ja) モータ
CN106849396A (zh) 一种单层集中绕组直流注入型游标磁阻电机
JP5760895B2 (ja) 回転電機制御システム
JP3327431B2 (ja) 電動機
US11923727B2 (en) Motor and control device therefor
US20130234554A1 (en) Transverse flux machine apparatus
JP6711082B2 (ja) 回転電機
JP5694062B2 (ja) 電磁石型回転電機
JP5494574B2 (ja) 電磁石型回転電機
JP7461018B2 (ja) 永久磁石型モータ
JP7406739B2 (ja) モータとその制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774573

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774573

Country of ref document: EP

Kind code of ref document: A1