WO2022201766A1 - Workpiece handling sheet and device manufacturing method - Google Patents

Workpiece handling sheet and device manufacturing method Download PDF

Info

Publication number
WO2022201766A1
WO2022201766A1 PCT/JP2022/000964 JP2022000964W WO2022201766A1 WO 2022201766 A1 WO2022201766 A1 WO 2022201766A1 JP 2022000964 W JP2022000964 W JP 2022000964W WO 2022201766 A1 WO2022201766 A1 WO 2022201766A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
interfacial
ablation
layer
handling sheet
Prior art date
Application number
PCT/JP2022/000964
Other languages
French (fr)
Japanese (ja)
Inventor
健太 古野
彰朗 福元
洋司 若山
喜章 古川
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to KR1020237005270A priority Critical patent/KR20230161411A/en
Priority to JP2022530951A priority patent/JP7325634B2/en
Priority to CN202280007251.5A priority patent/CN116368003A/en
Publication of WO2022201766A1 publication Critical patent/WO2022201766A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • C09J7/381Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C09J7/385Acrylic polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/062Copolymers with monomers not covered by C09J133/06
    • C09J133/066Copolymers with monomers not covered by C09J133/06 containing -OH groups
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Definitions

  • the present invention relates to a work handling sheet that can be used to handle small work pieces such as semiconductor components and semiconductor devices, and a device manufacturing method using the work handling sheet. (Micro Electro Mechanical Systems), etc., and a device manufacturing method using the work handling sheet.
  • micro-light-emitting diodes In recent years, the development of displays using micro-light-emitting diodes has progressed. In such displays, individual pixels are composed of micro-light-emitting diodes, and the light emission of each micro-light-emitting diode is independently controlled. In the manufacture of such displays, it is generally necessary to mount micro-light-emitting diodes, which are arranged on a supply substrate such as sapphire, glass, etc., onto a wiring substrate provided with wiring.
  • the use of laser light irradiation is being considered. For example, after holding a plurality of micro light-emitting diodes on a support via a predetermined layer, by irradiating the layer with laser light, the layer is ablated at the irradiated position, thereby supporting the layer.
  • a method of mounting a micro light-emitting diode separated from a body (laser lift-off) on a wiring board is being studied (Patent Document 1). Since the laser beam has excellent directivity and convergence, it is easy to control the irradiation position, and selective placement can be performed satisfactorily.
  • the present invention has been made in view of such circumstances, and provides a work handling sheet capable of handling even fine work piece pieces well, and a device manufacturing method using the work handling sheet. for the purpose.
  • the present invention provides a base material, and an interface ablation layer laminated on one side of the base material, capable of holding a small work piece, and ablating the interface by laser light irradiation.
  • the interfacial ablation layer contains a photopolymerization initiator
  • the work handling sheet has an absorbance of 1.5 or more for light with a wavelength of 355 nm (Invention 1).
  • the interfacial abrasion layer contains a photopolymerization initiator, and the absorbance of light with a wavelength of 355 nm is in the above range, so that it is effective when irradiated with laser light. can be interfacially ablated so that the work pieces can be directed toward the object and have good separation.
  • the photopolymerization initiator preferably has an absorption peak in a wavelength range of 200 nm or more and 400 nm or less (Invention 2).
  • the interface abrasion layer is preferably an adhesive layer (invention 3).
  • the adhesive constituting the adhesive layer is preferably an active energy ray-curable adhesive (invention 4).
  • the adhesive constituting the adhesive layer is preferably an acrylic adhesive (invention 5).
  • the laser light preferably has a wavelength in the ultraviolet region (Invention 6).
  • inventions 1 to 7 among the plurality of work pieces held on the surface of the interface ablation layer opposite to the base material by the interface ablation locally generated in the interface ablation layer (Invention 8).
  • the work pieces are obtained by singulating a work held on a surface of the interfacial ablation layer opposite to the base material into pieces on the surface. is preferred (invention 9).
  • the work pieces are preferably at least one selected from semiconductor components and semiconductor devices (invention 10).
  • the work pieces are preferably light emitting diodes selected from mini light emitting diodes and micro light emitting diodes (invention 11).
  • a second aspect of the present invention is a workpiece comprising a base material and an interfacial ablation layer containing a photopolymerization initiator laminated on one side of the base material, and having an absorbance of 1.5 or more for light with a wavelength of 355 nm.
  • invention 12 in the preparation step, the workpiece held on the surface of the interfacial ablation layer opposite to the substrate is singulated on the surface to obtain the workpiece pieces. (Invention 13).
  • the work pieces are preferably at least one selected from semiconductor components and semiconductor devices (invention 14).
  • inventions 12 to 14 it is preferable to manufacture a light emitting device having a plurality of the light emitting diodes by using light emitting diodes selected from mini light emitting diodes and micro light emitting diodes as the work pieces (invention 15).
  • the light-emitting device is preferably a display (invention 16).
  • the work handling sheet according to the present invention can handle even fine work pieces well, and according to the device manufacturing method according to the present invention, devices with excellent performance can be manufactured.
  • FIG. 1 is a cross-sectional view of a work handling sheet according to one embodiment of the present invention
  • FIG. 4 is a cross-sectional view illustrating a device manufacturing method using a work handling sheet according to one embodiment of the present invention
  • FIG. 4 is a cross-sectional view illustrating the state of blisters and reaction regions generated by laser light irradiation.
  • FIG. 1 shows a cross-sectional view of a work handling sheet according to one embodiment.
  • the work handling sheet 1 shown in FIG. 1 comprises a substrate 12 and an interfacial ablation layer 11 laminated on one side of the substrate 12 .
  • the interface ablation layer 11 can hold small work pieces. That is, the work handling sheet 1 according to the present embodiment can hold the small work piece laminated on the surface of the interface ablation layer 11 opposite to the substrate 12 as it is.
  • the specific mode of holding is not limited, a preferable example is holding by the interface abrasion layer 11 demonstrating adhesiveness to the small piece of work.
  • the interfacial ablation layer 11 preferably contains an adhesive as one of its constituent components, that is, is an adhesive layer, as will be described later.
  • the interface ablation layer 11 in this embodiment is subjected to interface ablation by laser light irradiation. That is, the interface ablation layer 11 causes local interface ablation in the region irradiated with the laser beam.
  • the laser light is not particularly limited as long as it can cause interfacial ablation, and may be a laser light having any wavelength in the ultraviolet region, the visible light region, and the infrared region. is preferred.
  • interfacial ablation means that part of the components constituting the interfacial ablation layer 11 evaporates or volatilizes due to the energy of the laser beam, and the resulting gas is the interface between the interfacial ablation layer 11 and the substrate 12. It refers to the formation of air gaps (blister). In this case, the shape of the interfacial ablation layer 11 is changed by the blister, and the small work piece is peeled off from the interfacial ablation layer 11, resulting in separation of the work piece.
  • the interface ablation layer 11 in this embodiment contains a photopolymerization initiator, and the work handling sheet 1 in this embodiment has an absorbance of 1.5 or more for light with a wavelength of 355 nm.
  • the presence of the photopolymerization initiator in the interfacial ablation layer 11 and the work handling sheet 1 exhibiting the absorbance described above improve the efficiency with which the interfacial ablation layer 11 receives energy from the laser beam.
  • interface ablation occurs effectively, and the retained piece of work can be separated satisfactorily from the interface ablation layer 11 .
  • the amount of laser light irradiation required to cause sufficient separation of the work pieces is reduced, the operating cost of the laser light irradiation device can be reduced, and only the target work pieces are easily separated. As a result, the accuracy is improved, and damage to the device or the like due to excessive laser beam irradiation can be prevented.
  • the absorbance is preferably 2.0 or more, more preferably 2.2 or more, and particularly preferably 2.5 or more. , and more preferably 3.0 or more.
  • the upper limit of the absorbance is not particularly limited, and may be 6.0 or less, for example. Further, the details of the method for measuring the absorbance are as described in the test examples described later.
  • Interfacial Ablation Layer 11 The specific configuration and composition of the interfacial ablation layer 11 in the present embodiment is such that it can hold a small work piece, has the property of interfacial ablation by laser light irradiation, and contains a photopolymerization initiator. In addition, there is no particular limitation as long as the work handling sheet 1 can achieve the above-described absorbance.
  • the interface abrasion layer 11 preferably contains an adhesive as one of its constituent components, as described above.
  • the interfacial abrasion layer 11 preferably comprises an adhesive composition containing a photopolymerization initiator.
  • photopolymerization initiator in the present embodiment is not particularly limited.
  • preferred photoinitiators include 2-dimethylamino-2-(4-methylbenzyl)-1-(4-morpholino-phenyl)butan-1-one, ethanone, 1-[9-ethyl-6- (2-methylbenzoyl)-9H-carbazol-3-yl]-, 1-(0-acetyloxime), 1,2-octanedione, 1-[4-(phenylthio)phenyl]-, 2-(O- benzoyloxime), 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one It is preferred to use at least one.
  • photopolymerization initiators can be used together with the above photopolymerization initiators.
  • photoinitiators that can be used together include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether, acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-1,2 -diphenylethan-1-one, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexylphenyl ketone, 4-(2-hydroxyethoxy ) phenyl-2-(hydroxy-2-propyl)ketone, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-methylpropanone, benzophenone, p-phenylbenzophenone, 4,4′-diethylamino Benzophen
  • the photopolymerization initiator in the present embodiment preferably has an absorption peak in the wavelength range of 200 nm or more and 400 nm or less.
  • the interface ablation layer 11 efficiently absorbs the laser light, thereby favorably facilitating interface ablation.
  • the lower limit of the above range is preferably 300 nm or more, and more preferably 330 nm or more.
  • the upper limit of the above range is preferably 380 nm or less, more preferably 370 nm or less.
  • the above absorption peak can be specified based on the following method. First, a photopolymerization initiator is dissolved in methanol or acetonitrile as a solvent to prepare a measurement solution having a concentration of 0.01% by mass. Subsequently, the absorbance of the measurement solution is measured with a spectrophotometer (eg, “UV-3600” manufactured by Shimadzu Corporation) to obtain an absorption spectrum. Then, the wavelength range of the absorption peak (nm) can be specified from the obtained absorption spectrum.
  • a spectrophotometer eg, “UV-3600” manufactured by Shimadzu Corporation
  • the photopolymerization initiator in the present embodiment preferably has an absorbance of 0.5 or more, particularly preferably 0.75 or more, at a wavelength of 355 nm in a solution having a concentration of 0.01% by mass. is preferably 1.0 or more.
  • the absorbance is 0.5 or more, the interface ablation layer 11 efficiently absorbs the laser light, thereby making it easier to perform interface ablation.
  • the upper limit of the absorbance is not particularly limited, and may be, for example, 4.0 or less.
  • the above absorbance is obtained by preparing a methanol solution with a photopolymerization initiator concentration of 0.01% by mass (acetonitrile solution if the photopolymerization initiator is insoluble in methanol), and the wavelength range of 200 to 500 nm in the solution. was measured using an ultraviolet-visible-near-infrared (UV-Vis-NIR) spectrophotometer (manufactured by Shimadzu Corporation, product name "UV-3600", optical path length 10 mm).
  • UV-Vis-NIR ultraviolet-visible-near-infrared
  • the content of the photopolymerization initiator in the interface ablation layer 11 in the present embodiment is preferably 1.8% by mass or more, particularly preferably 3.0% by mass or more, and further preferably 5.0% by mass. % or more.
  • the interface ablation layer 11 efficiently absorbs the laser light, thereby favorably facilitating interface ablation.
  • the content of the photopolymerization initiator in the interface ablation layer 11 in the present embodiment is preferably 40.0% by mass or less, particularly preferably 30.0% by mass or less, and further preferably 25.0% by mass or less. It is preferably 0% by mass or less.
  • the viscosity of the material for forming the interfacial ablation layer 11 becomes appropriate, and it becomes easy to ensure good film formability.
  • the photopolymerization initiator may be blended into this adhesive composition.
  • the amount of the photopolymerization initiator in the adhesive composition is the active energy described later. It is preferably 1.8 parts by mass or more, particularly preferably 3.0 parts by mass or more, further preferably 5.0 parts by mass or more, relative to 100 parts by mass of the linear curable polymer (A). is preferred.
  • the interface ablation layer 11 efficiently absorbs the laser light, thereby making the interface ablation easier.
  • the amount of the photopolymerization initiator in the adhesive composition is preferably 40.0 parts by mass or less, particularly 30.0 parts by mass, per 100 parts by mass of the active energy ray-curable polymer (A). It is preferably 0 parts by mass or less, more preferably 25.0 parts by mass or less.
  • the pressure-sensitive adhesive to be obtained easily exhibits desired pressure-sensitive adhesive strength.
  • the interface abrasion layer 11 in this embodiment may contain an adhesive in addition to the photopolymerization initiator.
  • the interfacial abrasion layer 11 is preferably formed from an adhesive composition containing a photopolymerization initiator.
  • the adhesive is not particularly limited as long as it can exhibit sufficient holding power (adhesive power) to adherends such as small pieces of work.
  • the adhesives include acrylic adhesives, rubber adhesives, silicone adhesives, urethane adhesives, polyester adhesives, polyvinyl ether adhesives, and the like. Among these, it is preferable to use an acrylic pressure-sensitive adhesive from the viewpoint that it is easy to exhibit the desired adhesive strength.
  • the adhesive may be an adhesive that does not have active energy ray-curability
  • an adhesive that has active energy ray-curability (hereinafter, may be referred to as an “active energy ray-curable adhesive”. ) is preferred.
  • the interfacial ablation layer 11 is composed of an active energy ray-curable adhesive, the interfacial ablation layer 11 is cured by irradiation with an active energy ray to easily reduce the adhesion of the work handling sheet 1 to the adherend. be able to.
  • the work pieces can be easily separated from the work handling sheet 1 by combining the decrease in adhesive strength due to the irradiation of the active energy ray with the interface abrasion described above. That is, before the interfacial abrasion described above occurs, or at the same time as the interfacial abrasion described above, the work pieces are separated from the work handling sheet 1 according to the present embodiment by reducing the adhesion by irradiating the active energy ray. This can be done more reliably. In addition, it is possible to further reduce the amount of laser light irradiation required to sufficiently separate the small work pieces.
  • the active energy ray-curable pressure-sensitive adhesive may be composed mainly of an active energy ray-curable polymer, or an active energy ray non-curable polymer (polymer not having active energy ray-curable). and a monomer and/or oligomer having at least one active energy ray-curable group.
  • the active energy ray-curable pressure-sensitive adhesive may be a mixture of an active energy ray-curable polymer and a monomer and/or oligomer having at least one or more active energy ray-curable groups.
  • the active energy ray-curable polymer is a (meth)acrylic acid ester (co)polymer (A) (hereinafter referred to as It may be referred to as "active energy ray-curable polymer (A)").
  • This active energy ray-curable polymer (A) comprises an acrylic copolymer (a1) having a functional group-containing monomer unit and an unsaturated group-containing compound (a2) having a functional group that binds to the functional group. It is preferably obtained by reacting.
  • (meth)acrylic acid ester means both acrylic acid ester and methacrylic acid ester. The same applies to other similar terms.
  • the term "polymer” shall also include the concept of "copolymer”.
  • the acrylic copolymer (a1) preferably contains structural units derived from functional group-containing monomers and structural units derived from (meth)acrylate monomers or derivatives thereof.
  • the functional group-containing monomer as a structural unit of the acrylic copolymer (a1) has a polymerizable double bond and a functional group such as a hydroxy group, a carboxyl group, an amino group, a substituted amino group, an epoxy group, etc. in the molecule. is preferably a monomer having
  • hydroxy group-containing monomers examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl ( meth)acrylate, 4-hydroxybutyl (meth)acrylate and the like, and these may be used alone or in combination of two or more.
  • carboxy group-containing monomers examples include ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, and citraconic acid. These may be used alone or in combination of two or more.
  • amino group-containing monomers or substituted amino group-containing monomers include aminoethyl (meth)acrylate and n-butylaminoethyl (meth)acrylate. These may be used alone or in combination of two or more.
  • Examples of (meth)acrylic acid ester monomers constituting the acrylic copolymer (a1) include alkyl (meth)acrylates in which the alkyl group has 1 to 20 carbon atoms, and, for example, an alicyclic structure in the molecule. (alicyclic structure-containing monomer) is preferably used.
  • alkyl (meth)acrylates examples include alkyl (meth)acrylates in which the alkyl group has 1 to 18 carbon atoms, such as methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl ( Meth)acrylate, 2-ethylhexyl (meth)acrylate and the like are preferably used. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • alicyclic structure-containing monomers examples include cyclohexyl (meth)acrylate, dicyclopentanyl (meth)acrylate, adamantyl (meth)acrylate, isobornyl (meth)acrylate, and dicyclopentenyl (meth)acrylate. , dicyclopentenyloxyethyl (meth)acrylate and the like are preferably used. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • the acrylic copolymer (a1) preferably contains 1% by mass or more, particularly preferably 5% by mass or more, and still more preferably 10% by mass or more of the structural units derived from the functional group-containing monomer.
  • the acrylic copolymer (a1) preferably contains 35% by mass or less, particularly preferably 30% by mass or less, and more preferably 25% by mass or less of structural units derived from the functional group-containing monomer. do.
  • the acrylic copolymer (a1) preferably contains 50% by mass or more, particularly preferably 60% by mass or more, more preferably 70% by mass of structural units derived from a (meth)acrylic acid ester monomer or derivative thereof. It is contained in the above ratio.
  • the acrylic copolymer (a1) preferably contains 99% by mass or less, particularly preferably 95% by mass or less, and more preferably 90% by mass of structural units derived from a (meth)acrylic acid ester monomer or derivative thereof. Contained in the following proportions.
  • the acrylic copolymer (a1) can be obtained by conventionally copolymerizing a functional group-containing monomer as described above and a (meth)acrylic acid ester monomer or derivative thereof. Dimethylacrylamide, vinyl formate, vinyl acetate, styrene, and the like may be copolymerized.
  • the acrylic copolymer (a1) having a functional group-containing monomer unit is reacted with an unsaturated group-containing compound (a2) having a functional group that binds to the functional group to obtain an active energy ray-curable polymer ( A) is obtained.
  • the functional group of the unsaturated group-containing compound (a2) can be appropriately selected according to the type of functional group of the functional group-containing monomer unit of the acrylic copolymer (a1).
  • the functional group possessed by the acrylic copolymer (a1) is a hydroxy group, an amino group or a substituted amino group
  • the functional group possessed by the unsaturated group-containing compound (a2) is preferably an isocyanate group or an epoxy group.
  • the functional group possessed by the system copolymer (a1) is an epoxy group
  • the functional group possessed by the unsaturated group-containing compound (a2) is preferably an amino group, a carboxyl group or an aziridinyl group.
  • the unsaturated group-containing compound (a2) contains at least 1, preferably 1 to 6, more preferably 1 to 4 energy ray-polymerizable carbon-carbon double bonds per molecule. ing.
  • Specific examples of such unsaturated group-containing compounds (a2) include, for example, 2-methacryloyloxyethyl isocyanate, meta-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, 1,1-( Bisacryloyloxymethyl)ethyl isocyanate; acryloyl monoisocyanate compound obtained by reacting a diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth)acrylate; a diisocyanate compound or polyisocyanate compound, a polyol compound, and hydroxyethyl (meth) Acryloyl monoisocyanate compound obtained by reaction with acrylate; glycidyl (me
  • the unsaturated group-containing compound (a2) is preferably 50 mol% or more, particularly preferably 60 mol% or more, and still more preferably 70 mol%, based on the number of moles of functional group-containing monomers in the acrylic copolymer (a1). % or more.
  • the unsaturated group-containing compound (a2) is preferably 95 mol% or less, particularly preferably 93 mol% or less, and more preferably It is used in a proportion of 90 mol % or less.
  • the functional group of the acrylic copolymer (a1) and the functional group of the unsaturated group-containing compound (a2) Depending on the combination, reaction temperature, pressure, solvent, time, the presence or absence of a catalyst, and the type of catalyst can be appropriately selected.
  • the functional groups present in the acrylic copolymer (a1) react with the functional groups in the unsaturated group-containing compound (a2), and the unsaturated groups in the acrylic copolymer (a1) It is introduced into the side chain to obtain an active energy ray-curable polymer (A).
  • the weight average molecular weight (Mw) of the active energy ray-curable polymer (A) thus obtained is preferably 10,000 or more, particularly preferably 50,000 or more, further preferably 100,000 or more. It is preferable to have Also, the weight average molecular weight (Mw) is preferably 3,000,000 or less, particularly preferably 2,000,000 or less, further preferably 1,500,000 or less. In addition, the weight average molecular weight (Mw) in this specification is the value of standard polystyrene conversion measured by the gel permeation chromatography method (GPC method).
  • the active energy ray-curable pressure-sensitive adhesive contains a polymer having active energy ray-curable properties such as the active energy ray-curable polymer (A) as a main component
  • the active energy ray-curable pressure-sensitive adhesive is It may further contain curable monomers and/or oligomers (B).
  • active energy ray-curable monomer and/or oligomer (B) for example, an ester of polyhydric alcohol and (meth)acrylic acid can be used.
  • Examples of such active energy ray-curable monomers and/or oligomers (B) include monofunctional acrylic acid esters such as cyclohexyl (meth)acrylate and isobornyl (meth)acrylate, trimethylolpropane tri(meth)acrylate, Pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, polyethylene polyfunctional acrylates such as glycol di(meth)acrylate and dimethyloltricyclodecane di(meth)acrylate; polyester oligo(meth)acrylate; polyurethane oligo(meth)acrylate;
  • the active energy ray-curable monomer and/or oligomer (B) When blending the active energy ray-curable monomer and/or oligomer (B) with the active energy ray-curable polymer (A), the active energy ray-curable monomer and/or in the active energy ray-curable pressure-sensitive adhesive
  • the content of the oligomer (B) is preferably more than 0 parts by mass, particularly preferably 60 parts by mass or more, relative to 100 parts by mass of the active energy ray-curable polymer (A).
  • the content is preferably 250 parts by mass or less, particularly preferably 200 parts by mass or less, relative to 100 parts by mass of the active energy ray-curable polymer (A).
  • the active energy ray-curable pressure-sensitive adhesive is mainly composed of a mixture of a non-active energy ray-curable polymer component and a monomer and/or oligomer having at least one active energy ray-curable group, It is explained below.
  • the active energy ray non-curable polymer component for example, the same component as the acrylic copolymer (a1) described above can be used.
  • the same ones as those for the component (B) described above can be selected.
  • the blending ratio of the active energy ray non-curable polymer component and the monomer and/or oligomer having at least one active energy ray curable group is at least 1 per 100 parts by mass of the active energy ray non-curable polymer component.
  • the monomer and/or oligomer having one or more active energy ray-curable groups is preferably 1 part by mass or more, particularly preferably 60 parts by mass or more.
  • the compounding ratio is preferably 200 parts by mass or less of monomers and/or oligomers having at least one active energy ray-curable group per 100 parts by mass of the active energy ray non-curable polymer component, In particular, it is preferably 160 parts by mass or less.
  • the adhesive composition described above may optionally contain other components.
  • Other components include, for example, an active energy ray non-curable polymer component or oligomer component (D), a cross-linking agent (E), and the like.
  • Examples of the active energy ray non-curable polymer component or oligomer component (D) include polyacrylates, polyesters, polyurethanes, polycarbonates, polyolefins, etc., and polymers or polymers having a weight average molecular weight (Mw) of 3000 to 2.5 million. Oligomers are preferred.
  • Mw weight average molecular weight
  • Oligomers are preferred.
  • the blending amount of the component (D) is not particularly limited, and is appropriately determined in the range of more than 0 parts by mass and 50 parts by mass or less with respect to 100 parts by mass of the energy ray-curable copolymer (A).
  • cross-linking agent (E) is preferable from the viewpoint of facilitating adjustment of the storage elastic modulus of the interfacial ablation layer 11 to a desired range.
  • a polyfunctional compound having reactivity with the functional groups of the active energy ray-curable copolymer (A) or the like can be used.
  • polyfunctional compounds include isocyanate compounds, epoxy compounds, amine compounds, melamine compounds, aziridine compounds, hydrazine compounds, aldehyde compounds, oxazoline compounds, metal alkoxide compounds, metal chelate compounds, metal salts, ammonium salts, Reactive phenol resin etc. can be mentioned.
  • the amount of the cross-linking agent (E) is preferably 0.001 parts by mass or more, particularly 0.1 parts by mass or more, relative to 100 parts by mass of the active energy ray-curable copolymer (A). is preferred, and 0.2 parts by mass or more is preferred.
  • the amount of the cross-linking agent (E) is preferably 20 parts by mass or less, particularly preferably 10 parts by mass or less, relative to 100 parts by mass of the active energy ray-curable copolymer (A). , and more preferably 5 parts by mass or less.
  • the adhesive composition preferably does not contain a gas generating agent from the viewpoint that the work pieces are easily separated.
  • a gas generating agent may generate gas across the interfacial ablation layer 11 . In that case, it may be difficult to cause interface abrasion only at an intended position to separate only the small work pieces located there, and it may be difficult to separate the small work pieces satisfactorily.
  • the thickness of the interface ablation layer 11 in the present embodiment is preferably 3 ⁇ m or more, particularly preferably 20 ⁇ m or more, further preferably 25 ⁇ m or more. Further, the thickness of the interfacial ablation layer 11 is preferably 100 ⁇ m or less, particularly preferably 50 ⁇ m or less, further preferably 40 ⁇ m or less. When the thickness of the interfacial ablation layer 11 is within the above range, both holding of the work piece on the interfacial ablation layer 11 and separation of the work piece by interfacial abrasion can be easily achieved.
  • the base material 12 is preferably made of resin.
  • the resin include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyethylene, polypropylene, polybutene, polybutadiene, polymethylpentene, and ethylene-norbornene.
  • polyolefin resin such as norbornene resin; ethylene-vinyl acetate copolymer; ethylene-(meth)acrylic acid copolymer, ethylene-(meth)methyl acrylate copolymer, other ethylene-(meth)acryl Ethylene-based copolymer resins such as acid ester copolymers; polyvinyl chloride-based resins such as polyvinyl chloride and vinyl chloride copolymers; (meth)acrylic acid ester copolymers; polyurethanes; polyimides; etc.
  • the resin constituting the base material 12 may be a crosslinked resin or a modified ionomer of the above resin.
  • the substrate 12 may be a single-layer film made of the resin described above, or may be a laminated film formed by laminating a plurality of such films.
  • the materials constituting each layer may be of the same type or of different types.
  • the surface of the substrate 12 in this embodiment may be subjected to a surface treatment such as an oxidation method or a roughening method, or a primer treatment for the purpose of improving adhesion to the interface ablation layer 11 .
  • a surface treatment such as an oxidation method or a roughening method, or a primer treatment for the purpose of improving adhesion to the interface ablation layer 11 .
  • the oxidation method include corona discharge treatment, plasma discharge treatment, chromium oxidation treatment (wet), flame treatment, hot air treatment, ozone, and ultraviolet irradiation treatment.
  • a thermal spraying method and the like can be mentioned.
  • the base material 12 in this embodiment may contain various additives such as colorants, flame retardants, plasticizers, antistatic agents, lubricants, and fillers.
  • the substrate 12 when the interfacial ablation layer 11 contains a material that is cured by active energy rays, the substrate 12 preferably has transparency to active energy rays.
  • the manufacturing method of the base material 12 in this embodiment is not particularly limited as long as the base material 12 is manufactured from resin.
  • it can be produced by forming a resin into a sheet by a melt extrusion method such as a T-die method or a round die method; a calendering method; or a solution method such as a dry method or a wet method.
  • the thickness of the base material 12 in this embodiment is preferably 10 ⁇ m or more, particularly preferably 30 ⁇ m or more, further preferably 50 ⁇ m or more.
  • the thickness of the base material 12 is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, particularly preferably 200 ⁇ m or less, further preferably 150 ⁇ m or less, and 100 ⁇ m or less. is most preferred.
  • the work handling sheet 1 has rigidity and flexibility in a predetermined balance, and the small work piece can be easily handled well.
  • release sheet In the present embodiment, when the interfacial abrasion layer 11 contains an adhesive as one of its constituent components, the surface of the interfacial abrasion layer 11 opposite to the substrate 12 is adhered to the work piece. For the purpose of protecting the surface, a release sheet may be laminated on the surface.
  • the configuration of the release sheet is arbitrary, and examples thereof include plastic films that have undergone a release treatment using a release agent or the like.
  • specific examples of the plastic film include polyester films such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, and polyolefin films such as polypropylene and polyethylene.
  • the release agent a silicone-based release agent, a fluorine-based release agent, a long-chain alkyl-based release agent, or the like can be used.
  • the thickness of the release sheet is not particularly limited, and may be, for example, 20 ⁇ m or more and 250 ⁇ m or less.
  • an adhesive layer may be laminated on the surface of the interface abrasion layer 11 opposite to the substrate 12 .
  • a workpiece is attached to the surface of the adhesive layer opposite to the surface ablation layer 11, and the adhesive layer is diced together with the workpiece to form workpiece pieces in which the individualized adhesive layers are laminated. can be obtained.
  • the chip can be easily fixed to the object on which the work piece is mounted by the individualized adhesive layer.
  • the material constituting the adhesive layer include those containing a thermoplastic resin and a low-molecular-weight thermosetting adhesive component, those containing a B-stage (semi-cured) thermosetting adhesive component, and the like. It is preferable to use
  • a protective film-forming layer may be laminated on the surface of the interface abrasion layer 11 opposite to the substrate 12 .
  • a work is attached to the surface of the protective film-forming layer opposite to the surface of the protective film-forming layer 11, and the protective film-forming layer is diced together with the work.
  • a laminated work piece can be obtained.
  • the work one having a circuit formed on one side is preferably used.
  • a protective film-forming layer is usually laminated on the side opposite to the side on which the circuit is formed. By curing the individualized protective film-forming layer at a predetermined timing, a protective film having sufficient durability can be formed on the work pieces.
  • the protective film-forming layer is preferably made of an uncured curable adhesive.
  • the adhesive force to the mirror surface of the silicon wafer is preferably 10 mN/25 mm or more, particularly preferably 100 mN/25 mm or more, and further preferably 200 mN. /25 mm or more.
  • the adhesive strength is 10 mN/25 mm or more, an adherend such as a small piece of work can be easily fixed to the work handling sheet 1, resulting in excellent handling properties.
  • the adhesive strength is preferably 30000 mN/25 mm or less, particularly preferably 15000 mN/25 mm or less, and more preferably 10000 mN/25 mm or less.
  • the adhesive strength is 30,000 mN/25 mm or less, it becomes easier to separate the work pieces by laser light irradiation.
  • the interfacial abrasion layer 11 in the present embodiment is an adhesive layer composed of the active energy ray-curable adhesive described above, it is preferable that the adhesive strength after ultraviolet irradiation satisfies the following conditions. That is, the surface of the interfacial ablation layer 11 opposite to the base material 12 is attached to the mirror surface of a silicon wafer, and the interfacial ablation layer 11 is cured by irradiating the interfacial ablation layer 11 with ultraviolet rays using a high-pressure mercury lamp.
  • the adhesive force to the mirror surface of the silicon wafer after the application is preferably 2000 mN/25 mm or less, particularly preferably 1000 mN/25 mm or less, further preferably 200 mN/25 mm or less.
  • the lower limit of the adhesive strength is not particularly limited, and may be, for example, 5 mN/25 mm or more, particularly 10 mN/25 mm or more, and further 20 mN/25 mm or more.
  • Method for Manufacturing Work Handling Sheet A method for manufacturing the work handling sheet 1 according to the present embodiment is not particularly limited.
  • the interfacial ablation layer 11 may be directly formed on the base material 12, or the interfacial ablation layer 11 may be formed on the process sheet and then transferred onto the base material 12. .
  • the interfacial ablation layer 11 contains an adhesive as one of its constituent components
  • the interfacial ablation layer 11 can be formed by a known method. For example, a coating liquid containing an adhesive composition for forming the interfacial ablation layer 11 and optionally a solvent or dispersion medium is prepared. Then, the above coating liquid is applied to one side of the base material or the releasable side of the release sheet (hereinafter sometimes referred to as "release side"). Subsequently, by drying the obtained coating film, the interfacial abrasion layer 11 can be formed.
  • the application of the coating liquid described above can be performed by a known method, for example, bar coating, knife coating, roll coating, blade coating, die coating, gravure coating, or the like.
  • the properties of the coating liquid are not particularly limited as long as it is possible to apply the coating liquid. be.
  • the release sheet may be peeled off as a process material, or may protect the interface abrasion layer 11 until it is attached to the adherend. .
  • the adhesive composition for forming the interfacial ablation layer 11 contains the above-described cross-linking agent, by changing the drying conditions (temperature, time, etc.) or by separately providing heat treatment, It is preferable to promote a cross-linking reaction between the polymer component in the coating film and the cross-linking agent to form a cross-linked structure with a desired existence density in the interfacial ablation layer 11 . Furthermore, in order to allow the cross-linking reaction to proceed sufficiently, after the work handling sheet 1 is completed, it may be cured by leaving it in an environment of, for example, 23° C. and a relative humidity of 50% for several days.
  • the work handling sheet 1 according to this embodiment can be suitably used for handling small pieces of work.
  • the interface ablation layer 11 is efficiently ablated by laser light irradiation. It can be separated towards a predetermined position with precision.
  • the surface of the interface ablation layer 11 is held on the surface opposite to the substrate 12 by the interface ablation locally caused in the interface ablation layer 11.
  • a method of use is to selectively separate an arbitrary work piece out of a plurality of work pieces from the interfacial ablation layer 11 .
  • the plurality of work pieces held on the interfacial ablation layer 11 are the works (materials of the work pieces) held on the surface of the interfacial ablation layer 11 opposite to the substrate 12 . It may be obtained by singulating on the surface. That is, the work piece may be obtained by dicing the work on the interface ablation layer 11 . Alternatively, the small work piece may be formed independently of the work handling sheet 1 according to the present embodiment and placed on the interfacial ablation layer 11 .
  • the work handling sheet 1 according to the present embodiment includes the adhesive layer and the protective film forming layer described above, it is preferable to dice these layers and the work on the interface ablation layer 11 . As a result, it is possible to obtain workpiece pieces in which these layers are separated into individual pieces and laminated.
  • the work piece preferably has an area of 10 ⁇ m 2 or more, particularly 100 ⁇ m 2 or more, when viewed from above.
  • the work piece preferably has an area of 1 mm 2 or less, particularly preferably 0.25 mm 2 or less when viewed from above.
  • the minimum side of the work piece is preferably 2 ⁇ m or more, particularly preferably 5 ⁇ m or more, and further preferably 10 ⁇ m or more. preferable.
  • the minimum side is preferably 1 mm or less, and particularly preferably 0.5 mm or less.
  • the dimensions of the rectangular work piece include 2 ⁇ m ⁇ 5 ⁇ m, 10 ⁇ m ⁇ 10 ⁇ m, 0.5 mm ⁇ 0.5 mm, 1 mm ⁇ 1 mm, and the like.
  • the work handling sheet 1 according to the present embodiment can satisfactorily handle such fine work pieces, especially fine work pieces that are difficult to separate from the sheet by pushing up a needle.
  • the work handling sheet 1 according to the present embodiment has a relatively large area, such as one having an area exceeding 1 mm 2 (for example, 1 mm 2 to 2,000 mm 2 ) or having a thickness of 1 to 10,000 ⁇ m (for example, 10 to 1,000 ⁇ m). Work piece pieces of any size can also be handled well.
  • small work pieces include semiconductor parts and semiconductor devices, and more specifically, micro light-emitting diodes, power devices, MEMS (Micro Electro Mechanical Systems), and the like.
  • the work pieces are preferably light emitting diodes, and particularly preferably light emitting diodes selected from mini light emitting diodes and micro light emitting diodes.
  • mini light emitting diodes and micro light emitting diodes are densely arranged.
  • the device manufacturing method includes at least three steps: a preparation step (FIG. 2(a)), an arrangement step (FIG. 2(b)), and a separation step (FIGS. 2(c) and (d)).
  • a laminate is prepared in which a plurality of small work pieces 2 are held on the surface of the work handling sheet 1 according to the present embodiment on the side of the interface ablation layer 11. .
  • the laminate may be prepared by placing a separately prepared work piece 2 on the work handling sheet 1, or a work held on the surface of the interfacial ablation layer 11 side may be individually placed on the surface. It may be prepared by dicing (ie, dicing). The dicing can be performed by a known method.
  • the shape and size of the work piece 2 are not particularly limited as described above, and the preferred size is also as described above.
  • Specific examples of the workpiece 2 also include, as described above, semiconductor components and semiconductor devices, and particularly light-emitting diodes such as mini light-emitting diodes and micro light-emitting diodes.
  • the laminate is arranged so that the surface of the laminate on the side of the small work piece 2 faces the object 3 that can receive the small work piece 2.
  • Examples of the object 3 are appropriately determined according to the device to be manufactured.
  • a wiring substrate provided with wiring is preferably used.
  • a laser beam is irradiated to the position where at least one work piece 2 is attached in the interface ablation layer 11 in the laminate.
  • the irradiation may be performed simultaneously on a plurality of positions where the work pieces 2 are attached, or may be performed sequentially on those positions.
  • the irradiation conditions of the laser light are not limited as long as it is possible to cause interfacial ablation.
  • a device for irradiation a known device can be used.
  • the irradiation can cause interfacial ablation at the irradiated position in the interfacial ablation layer 11, as shown in FIG. 2(d).
  • the irradiation of the laser light evaporates or volatilizes the components forming the region in the interface ablation layer 11 in the vicinity of the base material 12 to form the reaction region 13 .
  • the gas generated by the evaporation or volatilization accumulates between the substrate 11 and the reaction area 13 to form a blister 5 .
  • the interfacial ablation layer 11 is locally deformed at the position of the work piece 2 ′, and the work piece 2 ′ separates so as to be peeled off from the interfacial ablation layer 11 .
  • the work piece 2 ′ existing at the position where the interface abrasion has occurred can be placed on the object 3 .
  • FIG. 3 shows how the work pieces 2 are separated by sequentially irradiating laser light. The previous states (right two) are shown. As shown, the blister 5 after detachment is typically in a slightly more deflated state than the blister 5 during detachment.
  • the device manufacturing method described above may further include the following curing step. . That is, for the entire interfacial ablation layer 11 in a laminate in which a plurality of work pieces 2 are held on the surface on the interfacial ablation layer 11 side, or at least one work piece in the interfacial ablation layer 11 in the laminate
  • a curing step may be provided for curing the interfacial ablation layer 11 entirely or locally by irradiating the position where 2 is attached with an active energy ray. This curing step may be performed prior to the separation step described above, or may be performed simultaneously with the separation step described above.
  • Irradiation of active energy rays in the curing step may be performed using a known technique, for example, an ultraviolet irradiation device equipped with a high-pressure mercury lamp or an ultraviolet LED as a light source, or a laser light irradiation device used in the separation step. may When the curing process and the separation process are performed simultaneously, it is preferable to perform the irradiation with the laser light 4 using the laser light irradiation device in combination with the irradiation with the active energy ray.
  • the device manufacturing method described above may include processes other than the preparation process, placement process, curing process, and separation process. For example, grinding, die bonding, wire bonding, molding, inspection, transfer process, etc. may be performed at any timing between the preparation process and the separation process.
  • various devices can be manufactured by appropriately selecting the work piece 2 and the target object 3 to be used.
  • a light emitting diode selected from mini light emitting diodes and micro light emitting diodes is used as the work piece 2
  • a light emitting device comprising a plurality of such light emitting diodes can be manufactured, more specifically a display can be manufactured.
  • the work handling sheet 1 can also be used for a method of selectively removing a predetermined small work piece 2 out of a plurality of small work pieces 2 provided on the sheet.
  • the light-emitting diodes are inspected on the sheet. Therefore, only the light emitting diodes confirmed to be defective can be detached and removed from the work handling sheet 1 by causing interface abrasion.
  • the interfacial ablation layer 11 is composed of the active energy ray-curable adhesive described above, by irradiating the interfacial ablation layer 11 with an active energy ray, the light emitting diodes of the work handling sheet 1 Adhesion can be reduced to allow good transfer of a set of good products to a shipping sheet. After that, by rearranging a separately manufactured non-defective product in the position where the defective product has been removed, it is possible to obtain the work handling sheet 1 on which only the non-defective product is provided.
  • another layer is laminated between the interfacial ablation layer 11 and the base material 12 in the work handling sheet 1 according to the present embodiment, or on the surface of the base material 12 opposite to the interfacial ablation layer 11. good too.
  • a specific example of the other layer is an adhesive layer.
  • the above-described separation step and the like can be performed in a state in which the adhesive layer side surface is adhered to a support base (a transparent substrate such as a glass plate).
  • the adhesive that constitutes the adhesive layer is not particularly limited, but one that is difficult to absorb active energy rays and difficult to block active energy rays is preferable. In this case, when a laser beam is irradiated through the pressure-sensitive adhesive layer, the laser beam can easily reach the interface abrasion layer 11, and good interface abrasion can easily occur.
  • the adhesive constituting the adhesive layer it is preferable to use an adhesive that does not have active energy ray-curable properties, and in particular, an adhesive that does not contain an active energy ray-curable component is preferably used. preferable.
  • the adhesive layer does not harden even when irradiated with the laser beam, thereby making the work handling sheet 1 from a transparent substrate. It is also possible to prevent peeling that does not occur.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, it is preferably 5 to 50 ⁇ m, for example.
  • Example 1 Preparation of Adhesive Composition 70 parts by mass of 2-ethylhexyl acrylate and 30 parts by mass of 2-hydroxyethyl acrylate were polymerized by a solution polymerization method to obtain a (meth)acrylate polymer. .
  • This (meth)acrylic acid ester polymer is reacted with 90 mol % of methacryloyloxyethyl isocyanate (MOI) with respect to 2-hydroxyethyl acrylate to introduce an active energy ray-curable group into the side chain.
  • a (meth)acrylic acid ester copolymer (active energy ray-curable polymer (A)) was thus obtained.
  • Mw weight average molecular weight
  • a release sheet manufactured by Lintec Corporation, product name "SP- PET381031”
  • SP- PET381031 a release sheet
  • a work handling sheet was obtained in which the release sheet, the interfacial abrasion layer and the substrate were laminated in this order.
  • the weight average molecular weight (Mw) described above is a weight average molecular weight in terms of standard polystyrene measured using gel permeation chromatography (GPC) under the following conditions (GPC measurement).
  • GPC gel permeation chromatography
  • ⁇ Measurement conditions> ⁇ Measuring device: HLC-8320 manufactured by Tosoh Corporation ⁇ GPC column (passed in the following order): TSK gel superH-H manufactured by Tosoh Corporation TSK gel super HM-H TSK gel super H2000 ⁇ Measurement solvent: tetrahydrofuran ⁇ Measurement temperature: 40°C
  • Examples 2-3 and Comparative Examples 1-3 A work handling sheet was produced in the same manner as in Example 1, except that the type and content of the photopolymerization initiator were changed as shown in Table 1. Comparative Example 1 is an example in which no photopolymerization initiator was used.
  • an ultraviolet irradiation device equipped with a high-pressure mercury lamp as a light source (manufactured by Lintec Co., Ltd., product name "RAD-2000") was applied to the interface ablation layer in the sample for adhesion measurement obtained in the same manner as above, through the substrate. was used to irradiate ultraviolet rays (illuminance: 230 mW/cm 2 , light intensity: 190 mJ/cm 2 ) to cure the interface abrasion layer.
  • Adhesive force (mN/25 mm) to the mirror surface of the silicon wafer was measured in the same manner as described above for this sample for adhesive force measurement after UV irradiation. The results are shown in Table 1 as adhesive strength after UV irradiation.
  • Chip preparation on work handling sheet (preparation process) An adhesive surface of a dicing sheet (manufactured by Lintec, product name “D-485H”) was attached to one side of a silicon wafer (#2000, thickness: 350 ⁇ m). Subsequently, a ring frame for dicing was adhered to the periphery of the adhesive surface of the dicing sheet (the position not overlapping the silicon wafer). Furthermore, the dicing sheet was cut according to the outer diameter of the ring frame.
  • the silicon wafer was diced into chips having a size of 300 ⁇ m ⁇ 300 ⁇ m using a dicing machine (manufactured by Disco, product name “DFD6362”). After that, the dicing sheet was irradiated with ultraviolet light (illuminance: 230 mW/cm 2 , light amount: 190 mJ/cm 2 ). As a result, a laminate having a plurality of chips provided on the dicing sheet was obtained.
  • a dicing machine manufactured by Disco, product name “DFD6362”.
  • the release sheet was peeled off from the work handling sheets produced in Examples and Comparative Examples, and the exposed surface thus exposed was bonded to the surface on which the plurality of chips of the laminate obtained as described above existed. .
  • the dicing sheet was peeled off from the plurality of chips. As a result, a plurality of chips were transferred from the dicing sheet to the work handling sheet to obtain a laminate having a plurality of chips provided on the work handling sheet.
  • the chip was irradiated with a laser beam with a wavelength of 355 nm through the work handling sheet using a laser beam irradiation device (manufactured by Keyence Corporation, product name "MD-U1000C").
  • the irradiation was performed by sequentially irradiating the center of the chip with a laser light spot so as to draw a circle.
  • the diameter of the laser beam spot was set to 25 ⁇ m
  • the inner diameter of the ring formed as the locus of irradiation was set to 65 ⁇ m.
  • Other irradiation conditions were frequency: 40 kHz, scan speed: 500 mm/s, and irradiation amount: 50 ⁇ J/shot.
  • 100 chips (a group of 10 chips in the vertical direction ⁇ 10 chips in the horizontal direction) were selected from a plurality of chips and irradiated.
  • IrugacureOXE02 Ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-, 1-(0-acetyloxime) (manufactured by BASF, product name “IrugacureOXE02")
  • Omnirad379 2-dimethylamino-2-(4-methylbenzyl)-1-(4-morpholino-phenyl)butan-1-one (manufactured by IGM Resins, product name “Omnirad379”)
  • Omnirad651 2,2-dimethoxy-1,2-diphenylethan-1-one (manufactured by IGM Resins, product name “Omnirad651”)
  • the work handling sheet of the present invention can be suitably used for manufacturing a display or the like having micro light-emitting diodes as pixels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Theoretical Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Engineering & Computer Science (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Laser Beam Processing (AREA)
  • Laminated Bodies (AREA)
  • Treatments Of Macromolecular Shaped Articles (AREA)

Abstract

Provided is a workpiece handling sheet 1 comprising: a substrate 11; and an boundary surface ablation layer 12 which is laminated on one surface of the substrate 11 and which can hold small workpieces and perform boundary surface ablation by irradiation with a laser beam, wherein the boundary surface ablation layer 12 contains a photoinitiator, and the workpiece handling sheet has a 355 nm wavelength light ray absorbance of 1.5 or more. This workpiece handling sheet allows for proper handling even of very small workpieces.

Description

ワークハンドリングシートおよびデバイス製造方法Work handling sheet and device manufacturing method
 本発明は、半導体部品や半導体装置等のワーク小片を取り扱うために使用可能なワークハンドリングシート、および当該ワークハンドリングシートを用いたデバイス製造方法に関するものであり、特に、マイクロ発光ダイオード、パワーデバイス、MEMS(Micro Electro Mechanical Systems)等のワーク小片を取り扱うために使用可能なワークハンドリングシート、および当該ワークハンドリングシートを用いたデバイス製造方法に関するものである。 The present invention relates to a work handling sheet that can be used to handle small work pieces such as semiconductor components and semiconductor devices, and a device manufacturing method using the work handling sheet. (Micro Electro Mechanical Systems), etc., and a device manufacturing method using the work handling sheet.
 近年、マイクロ発光ダイオードを用いたディスプレイの開発が進められている。当該ディスプレイでは、個々の画素がマイクロ発光ダイオードで構成され、各マイクロ発光ダイオードの発光が独立に制御されている。当該ディスプレイの製造においては、一般的に、サファイア、ガラス等の供給基板上に配置されたマイクロ発光ダイオードを、配線が設けられた配線基板上に実装する必要がある。 In recent years, the development of displays using micro-light-emitting diodes has progressed. In such displays, individual pixels are composed of micro-light-emitting diodes, and the light emission of each micro-light-emitting diode is independently controlled. In the manufacture of such displays, it is generally necessary to mount micro-light-emitting diodes, which are arranged on a supply substrate such as sapphire, glass, etc., onto a wiring substrate provided with wiring.
 上記実装の際には、供給基板上に配置された複数のマイクロ発光ダイオードを、配線基板の所定の位置に正確に載置する必要がある。このとき、複数のマイクロ発光ダイオードの中から所定のものを選択的に配線基板に載置させる必要があったり、複数のマイクロ発光ダイオードを同時に載置させる必要もある。 During the mounting, it is necessary to accurately place the plurality of micro light-emitting diodes arranged on the supply board at predetermined positions on the wiring board. At this time, it is necessary to selectively mount a predetermined one of the plurality of micro light emitting diodes on the wiring board, or to mount a plurality of micro light emitting diodes at the same time.
 このような実装を良好に行う観点から、レーザー光の照射を利用することが検討されている。例えば、複数のマイクロ発光ダイオードを所定の層を介して支持体に保持した後、当該層に対してレーザー光を照射することで、その照射した位置において当該層のアブレーションを生じさせ、それによって支持体から分離(レーザーリフトオフ)したマイクロ発光ダイオードを配線基板に載置する方法が検討されている(特許文献1)。レーザー光は、指向性および収束性に優れているため、照射する位置を制御しやすく、選択的な載置を良好に行うことができる。 From the viewpoint of performing such mounting well, the use of laser light irradiation is being considered. For example, after holding a plurality of micro light-emitting diodes on a support via a predetermined layer, by irradiating the layer with laser light, the layer is ablated at the irradiated position, thereby supporting the layer. A method of mounting a micro light-emitting diode separated from a body (laser lift-off) on a wiring board is being studied (Patent Document 1). Since the laser beam has excellent directivity and convergence, it is easy to control the irradiation position, and selective placement can be performed satisfactorily.
特許第6546278号Patent No. 6546278
 しかしながら、マイクロ発光ダイオードの更なる微細化や、マイクロ発光ダイオードのより高密度な実装も進められており、これらにも対応する上では、特許文献1のような従来の手法よりも効率良く多数のマイクロ発光ダイオードといった微細なワーク小片を取り扱うことができる手段が求められている。 However, further miniaturization of micro light-emitting diodes and higher density mounting of micro light-emitting diodes are being promoted. There is a need for means that can handle fine work pieces such as micro light emitting diodes.
 本発明は、このような実状に鑑みてなされたものであり、微細なワーク小片であっても良好に取り扱うことが可能なワークハンドリングシート、および当該ワークハンドリングシートを用いたデバイス製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and provides a work handling sheet capable of handling even fine work piece pieces well, and a device manufacturing method using the work handling sheet. for the purpose.
 上記目的を達成するために、第1に本発明は、基材と、前記基材における片面側に積層され、ワーク小片を保持可能であるとともに、レーザー光の照射によって界面アブレーションする界面アブレーション層とを備えるワークハンドリングシートであって、前記界面アブレーション層が、光重合開始剤を含有し、前記ワークハンドリングシートは、波長355nmの光線の吸光度が1.5以上であることを特徴とするワークハンドリングシートを提供する(発明1)。 In order to achieve the above object, firstly, the present invention provides a base material, and an interface ablation layer laminated on one side of the base material, capable of holding a small work piece, and ablating the interface by laser light irradiation. wherein the interfacial ablation layer contains a photopolymerization initiator, and the work handling sheet has an absorbance of 1.5 or more for light with a wavelength of 355 nm (Invention 1).
 上記発明(発明1)に係るワークハンドリングシートは、界面アブレーション層が光重合開始剤を含有し、波長355nmの光線の吸光度が上記範囲となっていることで、レーザー光を照射した場合に効果的に界面アブレーションし、それによりワーク小片を対象物に向けて良好に分離することができる。 In the work handling sheet according to the above invention (invention 1), the interfacial abrasion layer contains a photopolymerization initiator, and the absorbance of light with a wavelength of 355 nm is in the above range, so that it is effective when irradiated with laser light. can be interfacially ablated so that the work pieces can be directed toward the object and have good separation.
 上記発明(発明1)において、前記光重合開始剤は、200nm以上、400nm以下の波長の範囲に吸収ピークを有することが好ましい(発明2)。 In the above invention (Invention 1), the photopolymerization initiator preferably has an absorption peak in a wavelength range of 200 nm or more and 400 nm or less (Invention 2).
 上記発明(発明1,2)において、前記界面アブレーション層は、粘着剤層であることが好ましい(発明3)。 In the above inventions (inventions 1 and 2), the interface abrasion layer is preferably an adhesive layer (invention 3).
 上記発明(発明3)において、前記粘着剤層を構成する粘着剤は、活性エネルギー線硬化性粘着剤であることが好ましい(発明4)。 In the above invention (invention 3), the adhesive constituting the adhesive layer is preferably an active energy ray-curable adhesive (invention 4).
 上記発明(発明3,4)において、前記粘着剤層を構成する粘着剤は、アクリル系粘着剤であることが好ましい(発明5)。 In the above inventions (inventions 3 and 4), the adhesive constituting the adhesive layer is preferably an acrylic adhesive (invention 5).
 上記発明(発明1~5)において、前記レーザー光は、紫外域の波長を有するものであることが好ましい(発明6)。 In the above inventions (Inventions 1 to 5), the laser light preferably has a wavelength in the ultraviolet region (Invention 6).
 上記発明(発明1~6)においては、前記界面アブレーション層に界面アブレーションを生じさせたときに、当該界面アブレーションが生じた位置においてブリスターが形成されることが好ましい(発明7)。 In the above inventions (inventions 1 to 6), when the interface ablation is caused in the interface ablation layer, blisters are preferably formed at the positions where the interface ablation occurs (invention 7).
 上記発明(発明1~7)においては、前記界面アブレーション層において局所的に生じさせた界面アブレーションによって、前記界面アブレーション層における前記基材とは反対の面上に保持された複数のワーク小片のうちの任意のワーク小片を、前記界面アブレーション層から選択的に分離するために使用されるものであることが好ましい(発明8)。 In the above inventions (inventions 1 to 7), among the plurality of work pieces held on the surface of the interface ablation layer opposite to the base material by the interface ablation locally generated in the interface ablation layer (Invention 8).
 上記発明(発明8)において、前記ワーク小片は、前記界面アブレーション層における前記基材とは反対の面上に保持されたワークを当該面上において個片化することで得られたものであることが好ましい(発明9)。 In the above invention (Invention 8), the work pieces are obtained by singulating a work held on a surface of the interfacial ablation layer opposite to the base material into pieces on the surface. is preferred (invention 9).
 上記発明(発明8,9)において、前記ワーク小片は、半導体部品および半導体装置から選択される少なくとも1種であることが好ましい(発明10)。 In the above inventions (inventions 8 and 9), the work pieces are preferably at least one selected from semiconductor components and semiconductor devices (invention 10).
 上記発明(発明8~10)において、前記ワーク小片は、ミニ発光ダイオードおよびマイクロ発光ダイオードから選択される発光ダイオードであることが好ましい(発明11)。 In the above inventions (inventions 8 to 10), the work pieces are preferably light emitting diodes selected from mini light emitting diodes and micro light emitting diodes (invention 11).
 第2に本発明は、基材と、前記基材における片面側に積層された、光重合開始剤を含有する界面アブレーション層とを備え、波長355nmの光線の吸光度が1.5以上であるワークハンドリングシートにおける、前記界面アブレーション層側の面上に複数のワーク小片が保持されてなる積層体を準備する準備工程と、前記ワーク小片を受容可能な対象物に対して、前記積層体における前記ワーク小片側の面が向かい合うように前記積層体を配置する配置工程と、前記積層体における前記界面アブレーション層における、少なくとも1つの前記ワーク小片が貼付されている位置に対し、レーザー光を照射して、前記界面アブレーション層における前記照射された位置において界面アブレーションを生じさせることで、当該界面アブレーションが生じた位置に存在する前記ワーク小片を前記ワークハンドリングシートから分離し、前記ワーク小片を前記対象物上に載置する分離工程とを備えることを特徴とするデバイス製造方法を提供する(発明12)。 A second aspect of the present invention is a workpiece comprising a base material and an interfacial ablation layer containing a photopolymerization initiator laminated on one side of the base material, and having an absorbance of 1.5 or more for light with a wavelength of 355 nm. a preparation step of preparing a stack in which a plurality of work pieces are held on the surface of the handling sheet on the interface ablation layer side; an arranging step of arranging the laminate so that the surfaces of the small pieces face each other; and irradiating a laser beam to a position where at least one of the work pieces is attached in the interface ablation layer of the laminate, causing interfacial ablation at the irradiated location on the interfacial ablation layer to separate the work piece present at the location where the interfacial ablation occurred from the work handling sheet and place the work piece on the object; (Invention 12).
 上記発明(発明12)において、前記準備工程においては、前記界面アブレーション層における前記基材とは反対の面上に保持されたワークを当該面上において個片化することで、前記ワーク小片を得ることが好ましい(発明13)。 In the above invention (invention 12), in the preparation step, the workpiece held on the surface of the interfacial ablation layer opposite to the substrate is singulated on the surface to obtain the workpiece pieces. (Invention 13).
 上記発明(発明12,13)において、前記ワーク小片は、半導体部品および半導体装置から選択される少なくとも1種であることが好ましい(発明14)。 In the above inventions (inventions 12 and 13), the work pieces are preferably at least one selected from semiconductor components and semiconductor devices (invention 14).
 上記発明(発明12~14)において、ミニ発光ダイオードおよびマイクロ発光ダイオードから選択される発光ダイオードを前記ワーク小片として用いて、前記発光ダイオードを複数備える発光装置を製造することが好ましい(発明15)。 In the above inventions (inventions 12 to 14), it is preferable to manufacture a light emitting device having a plurality of the light emitting diodes by using light emitting diodes selected from mini light emitting diodes and micro light emitting diodes as the work pieces (invention 15).
 上記発明(発明15)において、前記発光装置は、ディスプレイであることが好ましい(発明16)。 In the above invention (invention 15), the light-emitting device is preferably a display (invention 16).
 本発明に係るワークハンドリングシートは、微細なワーク小片であっても良好に取り扱うことができ、また、本発明に係るデバイス製造方法によれば、優れた性能を有するデバイスを製造することができる。 The work handling sheet according to the present invention can handle even fine work pieces well, and according to the device manufacturing method according to the present invention, devices with excellent performance can be manufactured.
本発明の一実施形態に係るワークハンドリングシートの断面図である。1 is a cross-sectional view of a work handling sheet according to one embodiment of the present invention; FIG. 本発明の一実施形態に係るワークハンドリングシートを使用したデバイス製造方法を説明する断面図である。FIG. 4 is a cross-sectional view illustrating a device manufacturing method using a work handling sheet according to one embodiment of the present invention; レーザー光の照射により生じたブリスターおよび反応領域の状態を説明する断面図である。FIG. 4 is a cross-sectional view illustrating the state of blisters and reaction regions generated by laser light irradiation.
 以下、本発明の実施形態について説明する。
 図1には、一実施形態に係るワークハンドリングシートの断面図が示される。図1に示されるワークハンドリングシート1は、基材12と、基材12における片面側に積層された界面アブレーション層11とを備える。
Embodiments of the present invention will be described below.
FIG. 1 shows a cross-sectional view of a work handling sheet according to one embodiment. The work handling sheet 1 shown in FIG. 1 comprises a substrate 12 and an interfacial ablation layer 11 laminated on one side of the substrate 12 .
 本実施形態に係るワークハンドリングシート1においては、界面アブレーション層11が、ワーク小片を保持可能である。すなわち、本実施形態に係るワークハンドリングシート1は、界面アブレーション層11における基材12とは反対の面上に積層されたワーク小片を、その状態のまま保持することができる。 In the work handling sheet 1 according to this embodiment, the interface ablation layer 11 can hold small work pieces. That is, the work handling sheet 1 according to the present embodiment can hold the small work piece laminated on the surface of the interface ablation layer 11 opposite to the substrate 12 as it is.
 上記保持の具体的な態様は限定されないものの、好ましい例としては、界面アブレーション層11がワーク小片に対する粘着性を発揮することで保持することが挙げられる。この場合、界面アブレーション層11は、後述する通り、それを構成する成分の1つとして粘着剤を含むこと、すなわち粘着剤層であることが好ましい。 Although the specific mode of holding is not limited, a preferable example is holding by the interface abrasion layer 11 demonstrating adhesiveness to the small piece of work. In this case, the interfacial ablation layer 11 preferably contains an adhesive as one of its constituent components, that is, is an adhesive layer, as will be described later.
 また、本実施形態における界面アブレーション層11は、レーザー光の照射によって界面アブレーションするものである。すなわち、界面アブレーション層11は、上記レーザー光の照射を受けた領域において、局所的な界面アブレーションするものである。なお、上記レーザー光としては、界面アブレーションを生じさせることが可能であれば特に限定されず、紫外域、可視光域および赤外域のいずれの波長を有するレーザー光であってよく、中でも、紫外域の波長を有するレーザー光が好ましい。 Further, the interface ablation layer 11 in this embodiment is subjected to interface ablation by laser light irradiation. That is, the interface ablation layer 11 causes local interface ablation in the region irradiated with the laser beam. The laser light is not particularly limited as long as it can cause interfacial ablation, and may be a laser light having any wavelength in the ultraviolet region, the visible light region, and the infrared region. is preferred.
 本明細書において、界面アブレーションとは、上記レーザー光のエネルギーによって界面アブレーション層11を構成する成分の一部が蒸発または揮発し、それによって生じたガスが界面アブレーション層11と基材12との界面に溜まって空隙(ブリスター)が生じることを指す。この場合、ブリスターによって界面アブレーション層11の形状が変化し、ワーク小片が界面アブレーション層11から剥がれ落ちて、ワーク小片が分離することとなる。 In this specification, interfacial ablation means that part of the components constituting the interfacial ablation layer 11 evaporates or volatilizes due to the energy of the laser beam, and the resulting gas is the interface between the interfacial ablation layer 11 and the substrate 12. It refers to the formation of air gaps (blister). In this case, the shape of the interfacial ablation layer 11 is changed by the blister, and the small work piece is peeled off from the interfacial ablation layer 11, resulting in separation of the work piece.
 そして、本実施形態における界面アブレーション層11は、光重合開始剤を含有し、本実施形態に係るワークハンドリングシート1は、波長355nmの光線の吸光度が1.5以上である。このように、界面アブレーション層11中に光重合開始剤が存在し、且つ、ワークハンドリングシート1が上記吸光度を示すことで、界面アブレーション層11が、レーザー光からエネルギーを受け取る効率が向上する。これにより、効果的に界面アブレーションが生じ、保持したワーク小片を界面アブレーション層11から良好に分離することが可能となる。特に、ワーク小片の十分な分離を生じさせるために必要となるレーザー光の照射量が低減し、レーザー光の照射装置の稼働コストを低減できるとともに、ターゲットとするワーク小片のみを良好に分離し易くなって精度が向上し、さらには、過度なレーザー光照射による装置等の損傷を防ぐこともできる。 The interface ablation layer 11 in this embodiment contains a photopolymerization initiator, and the work handling sheet 1 in this embodiment has an absorbance of 1.5 or more for light with a wavelength of 355 nm. Thus, the presence of the photopolymerization initiator in the interfacial ablation layer 11 and the work handling sheet 1 exhibiting the absorbance described above improve the efficiency with which the interfacial ablation layer 11 receives energy from the laser beam. As a result, interface ablation occurs effectively, and the retained piece of work can be separated satisfactorily from the interface ablation layer 11 . In particular, the amount of laser light irradiation required to cause sufficient separation of the work pieces is reduced, the operating cost of the laser light irradiation device can be reduced, and only the target work pieces are easily separated. As a result, the accuracy is improved, and damage to the device or the like due to excessive laser beam irradiation can be prevented.
 レーザー光からエネルギーを受け取る効率をより向上させる観点からは、上記吸光度は、2.0以上であることが好ましく、2.2以上であることがより好ましく、特に2.5以上であることが好ましく、さらには3.0以上であることが好ましい。なお、上記吸光度の上限値については特に限定されず、例えば6.0以下であってよい。また、上記吸光度の測定方法の詳細は、後述する試験例に記載の通りである。 From the viewpoint of further improving the efficiency of receiving energy from laser light, the absorbance is preferably 2.0 or more, more preferably 2.2 or more, and particularly preferably 2.5 or more. , and more preferably 3.0 or more. The upper limit of the absorbance is not particularly limited, and may be 6.0 or less, for example. Further, the details of the method for measuring the absorbance are as described in the test examples described later.
1.界面アブレーション層
 本実施形態における界面アブレーション層11の具体的な構成や組成は、ワーク小片を保持可能であるとともに、レーザー光の照射によって界面アブレーションするという性質を有する他、光重合開始剤を含有するとともに、ワークハンドリングシート1としての上述した吸光度を可能とするものである限り、特に限定されない。
1. Interfacial Ablation Layer The specific configuration and composition of the interfacial ablation layer 11 in the present embodiment is such that it can hold a small work piece, has the property of interfacial ablation by laser light irradiation, and contains a photopolymerization initiator. In addition, there is no particular limitation as long as the work handling sheet 1 can achieve the above-described absorbance.
 ワーク小片を保持可能であるという性質を良好に発揮しやすいという観点からは、界面アブレーション層11は、前述した通り、それを構成する成分の1つとして粘着剤を含むことが好ましい。界面アブレーション層11が粘着剤を含む場合、界面アブレーション層11は、光重合開始剤を含有する粘着性組成物からなるものであることが好ましい。 From the point of view of easily exhibiting the property of being able to hold a small work piece, the interface abrasion layer 11 preferably contains an adhesive as one of its constituent components, as described above. When the interfacial abrasion layer 11 contains an adhesive, the interfacial abrasion layer 11 preferably comprises an adhesive composition containing a photopolymerization initiator.
(1)光重合開始剤
 本実施形態における光重合開始剤の種類は特に限定されない。好ましい光重合開始剤の例としては、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリノ-フェニル)ブタン-1-オン、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)、1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル]-,2-(O-ベンゾイルオキシム)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オンの少なくとも1種を使用することが好ましい。
(1) Photopolymerization Initiator The type of photopolymerization initiator in the present embodiment is not particularly limited. Examples of preferred photoinitiators include 2-dimethylamino-2-(4-methylbenzyl)-1-(4-morpholino-phenyl)butan-1-one, ethanone, 1-[9-ethyl-6- (2-methylbenzoyl)-9H-carbazol-3-yl]-, 1-(0-acetyloxime), 1,2-octanedione, 1-[4-(phenylthio)phenyl]-, 2-(O- benzoyloxime), 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one It is preferred to use at least one.
 上記光重合開始剤とともに、その他の光重合開始剤を併用することもできる。併用できる光重合開始剤の例としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインイソブチルエーテル、アセトフェノン、ジメチルアミノアセトフェノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2,2-ジエトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、4-(2-ヒドロキシエトキシ)フェニル-2-(ヒドロキシ-2-プロピル)ケトン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-メチルプロパノン、ベンゾフェノン、p-フェニルベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン、ジクロロベンゾフェノン、2-メチルアントラキノン、2-エチルアントラキノン、2-ターシャリ-ブチルアントラキノン、2-アミノアントラキノン、2-メチルチオキサントン、2-エチルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、ベンジルジメチルケタール、アセトフェノンジメチルケタール、p-ジメチルアミノ安息香酸エステル、オリゴ[2-ヒドロキシ-2-メチル-1[4-(1-メチルビニル)フェニル]プロパノン]、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド等が挙げられる。 Other photopolymerization initiators can be used together with the above photopolymerization initiators. Examples of photoinitiators that can be used together include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether, acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-1,2 -diphenylethan-1-one, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexylphenyl ketone, 4-(2-hydroxyethoxy ) phenyl-2-(hydroxy-2-propyl)ketone, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-methylpropanone, benzophenone, p-phenylbenzophenone, 4,4′-diethylamino Benzophenone, dichlorobenzophenone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tertiary-butylanthraquinone, 2-aminoanthraquinone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2 , 4-diethylthioxanthone, benzyl dimethyl ketal, acetophenone dimethyl ketal, p-dimethylaminobenzoate, oligo[2-hydroxy-2-methyl-1[4-(1-methylvinyl)phenyl]propanone], 2,4 , 6-trimethylbenzoyl-diphenyl-phosphine oxide and the like.
 本実施形態における光重合開始剤は、200nm以上、400nm以下の波長の範囲に吸収ピークを有するものであることが好ましい。これにより、界面アブレーション層11がレーザー光を効率的に吸収し、それによって良好に界面アブレーションし易いものとなる。このような観点から、上記範囲の下限値は、特に300nm以上であることが好ましく、さらには330nm以上であることが好ましい。また、上記範囲の上限値は、特に380nm以下であることが好ましく、さらには370nm以下であることが好ましい。 The photopolymerization initiator in the present embodiment preferably has an absorption peak in the wavelength range of 200 nm or more and 400 nm or less. As a result, the interface ablation layer 11 efficiently absorbs the laser light, thereby favorably facilitating interface ablation. From such a viewpoint, the lower limit of the above range is preferably 300 nm or more, and more preferably 330 nm or more. The upper limit of the above range is preferably 380 nm or less, more preferably 370 nm or less.
 なお、上記吸収ピークは、以下の方法に基づいて特定することができる。まず、光重合開始剤を、溶媒としてのメタノールまたはアセトニトリルに溶解し、濃度0.01質量%の測定溶液を調製する。続いて、当該測定溶液について、分光光度計(例えば、島津製作所社製,「UV-3600」)により吸光度を測定し、吸収スペクトルを得る。そして、得られた吸収スペクトルから、吸収ピーク(nm)の波長の範囲を特定することができる。 The above absorption peak can be specified based on the following method. First, a photopolymerization initiator is dissolved in methanol or acetonitrile as a solvent to prepare a measurement solution having a concentration of 0.01% by mass. Subsequently, the absorbance of the measurement solution is measured with a spectrophotometer (eg, “UV-3600” manufactured by Shimadzu Corporation) to obtain an absorption spectrum. Then, the wavelength range of the absorption peak (nm) can be specified from the obtained absorption spectrum.
 また、本実施形態における光重合開始剤は、濃度0.01質量%の溶液中における波長355nmの吸光度が、0.5以上であることが好ましく、特に0.75以上であることが好ましく、さらには1.0以上であることが好ましい。上記吸光度が0.5以上であることにより、界面アブレーション層11がレーザー光を効率的に吸収し、それによって良好に界面アブレーションし易いものとなる。なお、上記吸光度の上限値は特に限定されず、例えば4.0以下であってよい。 Further, the photopolymerization initiator in the present embodiment preferably has an absorbance of 0.5 or more, particularly preferably 0.75 or more, at a wavelength of 355 nm in a solution having a concentration of 0.01% by mass. is preferably 1.0 or more. When the absorbance is 0.5 or more, the interface ablation layer 11 efficiently absorbs the laser light, thereby making it easier to perform interface ablation. The upper limit of the absorbance is not particularly limited, and may be, for example, 4.0 or less.
 なお、上記吸光度は、光重合開始剤の濃度0.01質量%のメタノール溶液(光重合開始剤がメタノールに不溶である場合は、アセトニトリル溶液)を調製し、その溶液における波長200~500nmの範囲の吸光度を、紫外可視近赤外(UV-Vis-NIR)分光光度計(島津製作所社製,製品名「UV-3600」,光路長10mm)を使用して測定したものである。 Incidentally, the above absorbance is obtained by preparing a methanol solution with a photopolymerization initiator concentration of 0.01% by mass (acetonitrile solution if the photopolymerization initiator is insoluble in methanol), and the wavelength range of 200 to 500 nm in the solution. was measured using an ultraviolet-visible-near-infrared (UV-Vis-NIR) spectrophotometer (manufactured by Shimadzu Corporation, product name "UV-3600", optical path length 10 mm).
 本実施形態における界面アブレーション層11中における光重合開始剤の含有量は、1.8質量%以上であることが好ましく、特に3.0質量%以上であることが好ましく、さらには5.0質量%以上であることが好ましい。光重合開始剤の含有量が1.8質量%以上であることで、界面アブレーション層11がレーザー光を効率的に吸収し、それによって良好に界面アブレーションし易いものとなる。また、本実施形態における界面アブレーション層11中における光重合開始剤の含有量は、40.0質量%以下であることが好ましく、特に30.0質量%以下であることが好ましく、さらには25.0質量%以下であることが好ましい。光重合開始剤の含有量が40.0質量%以下であることで、界面アブレーション層11形成のための材料の粘度が適度なものとなり、良好な造膜性を確保し易くなる。 The content of the photopolymerization initiator in the interface ablation layer 11 in the present embodiment is preferably 1.8% by mass or more, particularly preferably 3.0% by mass or more, and further preferably 5.0% by mass. % or more. When the content of the photopolymerization initiator is 1.8% by mass or more, the interface ablation layer 11 efficiently absorbs the laser light, thereby favorably facilitating interface ablation. Further, the content of the photopolymerization initiator in the interface ablation layer 11 in the present embodiment is preferably 40.0% by mass or less, particularly preferably 30.0% by mass or less, and further preferably 25.0% by mass or less. It is preferably 0% by mass or less. When the content of the photopolymerization initiator is 40.0% by mass or less, the viscosity of the material for forming the interfacial ablation layer 11 becomes appropriate, and it becomes easy to ensure good film formability.
 また、本実施形態における界面アブレーション層11が後述する粘着性組成物から形成される場合、光重合開始剤はこの粘着性組成物中に配合されてもよい。特に、光重合開始剤が、後述する活性エネルギー線硬化型重合体(A)とともに粘着性組成物に配合される場合、粘着性組成物中における光重合開始剤の配合量は、後述する活性エネルギー線硬化型重合体(A)100質量部に対して、1.8質量部以上であることが好ましく、特に3.0質量部以上であることが好ましく、さらには5.0質量部以上であることが好ましい。光重合開始剤の配合量が1.8質量部以上であることで、界面アブレーション層11がレーザー光を効率的に吸収し、それによって良好に界面アブレーションし易いものとなる。また、上記粘着性組成物中における光重合開始剤の配合量は、活性エネルギー線硬化型重合体(A)100質量部に対して、40.0質量部以下であることが好ましく、特に30.0質量部以下であることが好ましく、さらには25.0質量部以下であることが好ましい。光重合開始剤の配合量が40.0質量部以下であることで、得られる粘着剤が所望の粘着力を発揮し易いものとなる。 Further, when the interfacial ablation layer 11 in the present embodiment is formed from an adhesive composition which will be described later, the photopolymerization initiator may be blended into this adhesive composition. In particular, when the photopolymerization initiator is blended in the adhesive composition together with the active energy ray-curable polymer (A) described later, the amount of the photopolymerization initiator in the adhesive composition is the active energy described later. It is preferably 1.8 parts by mass or more, particularly preferably 3.0 parts by mass or more, further preferably 5.0 parts by mass or more, relative to 100 parts by mass of the linear curable polymer (A). is preferred. When the blending amount of the photopolymerization initiator is 1.8 parts by mass or more, the interface ablation layer 11 efficiently absorbs the laser light, thereby making the interface ablation easier. The amount of the photopolymerization initiator in the adhesive composition is preferably 40.0 parts by mass or less, particularly 30.0 parts by mass, per 100 parts by mass of the active energy ray-curable polymer (A). It is preferably 0 parts by mass or less, more preferably 25.0 parts by mass or less. When the blending amount of the photopolymerization initiator is 40.0 parts by mass or less, the pressure-sensitive adhesive to be obtained easily exhibits desired pressure-sensitive adhesive strength.
(2)粘着剤
 前述した通り、本実施形態における界面アブレーション層11は、光重合開始剤に加えて、粘着剤を含むものであってもよい。この場合、界面アブレーション層11は、光重合開始剤を含有する粘着性組成物から形成されるものであることが好ましい。
(2) Adhesive As described above, the interface abrasion layer 11 in this embodiment may contain an adhesive in addition to the photopolymerization initiator. In this case, the interfacial abrasion layer 11 is preferably formed from an adhesive composition containing a photopolymerization initiator.
 上記粘着剤としては、ワーク小片等の被着体に対する十分な保持力(粘着力)を発揮することができる限り、特に限定されない。上記粘着剤の例としては、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ポリエステル系粘着剤、ポリビニルエーテル系粘着剤等が挙げられる。これらの中でも、所望の粘着力を発揮し易いという観点から、アクリル系粘着剤を使用することが好ましい。 The adhesive is not particularly limited as long as it can exhibit sufficient holding power (adhesive power) to adherends such as small pieces of work. Examples of the adhesives include acrylic adhesives, rubber adhesives, silicone adhesives, urethane adhesives, polyester adhesives, polyvinyl ether adhesives, and the like. Among these, it is preferable to use an acrylic pressure-sensitive adhesive from the viewpoint that it is easy to exhibit the desired adhesive strength.
 また、上記粘着剤は、活性エネルギー線硬化性を有しない粘着剤であってもよいものの、活性エネルギー線硬化性を有する粘着剤(以下、「活性エネルギー線硬化性粘着剤」という場合がある。)であることが好ましい。界面アブレーション層11が活性エネルギー線硬化性粘着剤から構成されている場合、活性エネルギー線の照射により界面アブレーション層11を硬化させて、ワークハンドリングシート1の被着体に対する粘着力を容易に低下させることができる。 In addition, although the adhesive may be an adhesive that does not have active energy ray-curability, an adhesive that has active energy ray-curability (hereinafter, may be referred to as an “active energy ray-curable adhesive”. ) is preferred. When the interfacial ablation layer 11 is composed of an active energy ray-curable adhesive, the interfacial ablation layer 11 is cured by irradiation with an active energy ray to easily reduce the adhesion of the work handling sheet 1 to the adherend. be able to.
 特に、活性エネルギー線の照射による粘着力の低下を、上述した界面アブレーションと組み合わせて行うことにより、ワークハンドリングシート1からのワーク小片の分離が容易となる。すなわち、上述した界面アブレーションを生じさせる前に、または上述した界面アブレーションと同時に、活性エネルギー線の照射によって密着性を低下させることにより、本実施形態に係るワークハンドリングシート1からのワーク小片の分離をより確実に行うことが可能となる。また、ワーク小片の十分な分離を生じさせるために必要となるレーザー光の照射量をさらに低減することが可能となる。 In particular, the work pieces can be easily separated from the work handling sheet 1 by combining the decrease in adhesive strength due to the irradiation of the active energy ray with the interface abrasion described above. That is, before the interfacial abrasion described above occurs, or at the same time as the interfacial abrasion described above, the work pieces are separated from the work handling sheet 1 according to the present embodiment by reducing the adhesion by irradiating the active energy ray. This can be done more reliably. In addition, it is possible to further reduce the amount of laser light irradiation required to sufficiently separate the small work pieces.
 上記活性エネルギー線硬化性粘着剤としては、活性エネルギー線硬化性を有するポリマーを主成分とするものであってもよいし、活性エネルギー線非硬化性ポリマー(活性エネルギー線硬化性を有しないポリマー)と少なくとも1つ以上の活性エネルギー線硬化性基を有するモノマーおよび/またはオリゴマーとの混合物を主成分とするものであってもよい。また、活性エネルギー線硬化性粘着剤は、活性エネルギー線硬化性を有するポリマーと、少なくとも1つ以上の活性エネルギー線硬化性基を有するモノマーおよび/またはオリゴマーとの混合物であってもよい。 The active energy ray-curable pressure-sensitive adhesive may be composed mainly of an active energy ray-curable polymer, or an active energy ray non-curable polymer (polymer not having active energy ray-curable). and a monomer and/or oligomer having at least one active energy ray-curable group. In addition, the active energy ray-curable pressure-sensitive adhesive may be a mixture of an active energy ray-curable polymer and a monomer and/or oligomer having at least one or more active energy ray-curable groups.
 上記活性エネルギー線硬化性を有するポリマーは、側鎖にエネルギー線硬化性を有する官能基(活性エネルギー線硬化性基)が導入された(メタ)アクリル酸エステル(共)重合体(A)(以下「活性エネルギー線硬化型重合体(A)」という場合がある。)であることが好ましい。この活性エネルギー線硬化型重合体(A)は、官能基含有モノマー単位を有するアクリル系共重合体(a1)と、その官能基に結合する官能基を有する不飽和基含有化合物(a2)とを反応させて得られるものであることが好ましい。なお、本明細書において、(メタ)アクリル酸エステルとは、アクリル酸エステル及びメタクリル酸エステルの両方を意味する。他の類似用語も同様である。さらに、「重合体」には「共重合体」の概念も含まれるものとする。 The active energy ray-curable polymer is a (meth)acrylic acid ester (co)polymer (A) (hereinafter referred to as It may be referred to as "active energy ray-curable polymer (A)"). This active energy ray-curable polymer (A) comprises an acrylic copolymer (a1) having a functional group-containing monomer unit and an unsaturated group-containing compound (a2) having a functional group that binds to the functional group. It is preferably obtained by reacting. In addition, in this specification, (meth)acrylic acid ester means both acrylic acid ester and methacrylic acid ester. The same applies to other similar terms. Furthermore, the term "polymer" shall also include the concept of "copolymer".
 アクリル系共重合体(a1)は、官能基含有モノマーから導かれる構成単位と、(メタ)アクリル酸エステルモノマーまたはその誘導体から導かれる構成単位とを含むことが好ましい。 The acrylic copolymer (a1) preferably contains structural units derived from functional group-containing monomers and structural units derived from (meth)acrylate monomers or derivatives thereof.
 アクリル系共重合体(a1)の構成単位としての官能基含有モノマーは、重合性の二重結合と、ヒドロキシ基、カルボキシ基、アミノ基、置換アミノ基、エポキシ基等の官能基とを分子内に有するモノマーであることが好ましい。 The functional group-containing monomer as a structural unit of the acrylic copolymer (a1) has a polymerizable double bond and a functional group such as a hydroxy group, a carboxyl group, an amino group, a substituted amino group, an epoxy group, etc. in the molecule. is preferably a monomer having
 ヒドロキシ基含有モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられ、これらは単独でまたは2種以上を組み合わせて用いられる。 Examples of hydroxy group-containing monomers include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, 3-hydroxybutyl ( meth)acrylate, 4-hydroxybutyl (meth)acrylate and the like, and these may be used alone or in combination of two or more.
 カルボキシ基含有モノマーとしては、例えば、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸、シトラコン酸等のエチレン性不飽和カルボン酸が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of carboxy group-containing monomers include ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, and citraconic acid. These may be used alone or in combination of two or more.
 アミノ基含有モノマーまたは置換アミノ基含有モノマーとしては、例えば、アミノエチル(メタ)アクリレート、n-ブチルアミノエチル(メタ)アクリレート等が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of amino group-containing monomers or substituted amino group-containing monomers include aminoethyl (meth)acrylate and n-butylaminoethyl (meth)acrylate. These may be used alone or in combination of two or more.
 アクリル系共重合体(a1)を構成する(メタ)アクリル酸エステルモノマーとしては、アルキル基の炭素数が1~20であるアルキル(メタ)アクリレートの他、例えば、分子内に脂環式構造を有するモノマー(脂環式構造含有モノマー)が好ましく用いられる。 Examples of (meth)acrylic acid ester monomers constituting the acrylic copolymer (a1) include alkyl (meth)acrylates in which the alkyl group has 1 to 20 carbon atoms, and, for example, an alicyclic structure in the molecule. (alicyclic structure-containing monomer) is preferably used.
 アルキル(メタ)アクリレートとしては、特にアルキル基の炭素数が1~18であるアルキル(メタ)アクリレート、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等が好ましく用いられる。これらは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of alkyl (meth)acrylates include alkyl (meth)acrylates in which the alkyl group has 1 to 18 carbon atoms, such as methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, n-butyl ( Meth)acrylate, 2-ethylhexyl (meth)acrylate and the like are preferably used. These may be used individually by 1 type, and may be used in combination of 2 or more type.
 脂環式構造含有モノマーとしては、例えば、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル等が好ましく用いられる。これらは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 Examples of alicyclic structure-containing monomers include cyclohexyl (meth)acrylate, dicyclopentanyl (meth)acrylate, adamantyl (meth)acrylate, isobornyl (meth)acrylate, and dicyclopentenyl (meth)acrylate. , dicyclopentenyloxyethyl (meth)acrylate and the like are preferably used. These may be used individually by 1 type, and may be used in combination of 2 or more type.
 アクリル系共重合体(a1)は、上記官能基含有モノマーから導かれる構成単位を、好ましくは1質量%以上、特に好ましくは5質量%以上、さらに好ましくは10質量%以上の割合で含有する。また、アクリル系共重合体(a1)は、上記官能基含有モノマーから導かれる構成単位を、好ましくは35質量%以下、特に好ましくは30質量%以下、さらに好ましくは25質量%以下の割合で含有する。 The acrylic copolymer (a1) preferably contains 1% by mass or more, particularly preferably 5% by mass or more, and still more preferably 10% by mass or more of the structural units derived from the functional group-containing monomer. In addition, the acrylic copolymer (a1) preferably contains 35% by mass or less, particularly preferably 30% by mass or less, and more preferably 25% by mass or less of structural units derived from the functional group-containing monomer. do.
 さらに、アクリル系共重合体(a1)は、(メタ)アクリル酸エステルモノマーまたはその誘導体から導かれる構成単位を、好ましくは50質量%以上、特に好ましくは60質量%以上、さらに好ましくは70質量%以上の割合で含有する。また、アクリル系共重合体(a1)は、(メタ)アクリル酸エステルモノマーまたはその誘導体から導かれる構成単位を、好ましくは99質量%以下、特に好ましくは95質量%以下、さらに好ましくは90質量%以下の割合で含有する。 Furthermore, the acrylic copolymer (a1) preferably contains 50% by mass or more, particularly preferably 60% by mass or more, more preferably 70% by mass of structural units derived from a (meth)acrylic acid ester monomer or derivative thereof. It is contained in the above ratio. In addition, the acrylic copolymer (a1) preferably contains 99% by mass or less, particularly preferably 95% by mass or less, and more preferably 90% by mass of structural units derived from a (meth)acrylic acid ester monomer or derivative thereof. Contained in the following proportions.
 アクリル系共重合体(a1)は、上記のような官能基含有モノマーと、(メタ)アクリル酸エステルモノマーまたはその誘導体とを常法で共重合することにより得られるが、これらモノマーの他にもジメチルアクリルアミド、蟻酸ビニル、酢酸ビニル、スチレン等が共重合されてもよい。 The acrylic copolymer (a1) can be obtained by conventionally copolymerizing a functional group-containing monomer as described above and a (meth)acrylic acid ester monomer or derivative thereof. Dimethylacrylamide, vinyl formate, vinyl acetate, styrene, and the like may be copolymerized.
 上記官能基含有モノマー単位を有するアクリル系共重合体(a1)を、その官能基に結合する官能基を有する不飽和基含有化合物(a2)と反応させることにより、活性エネルギー線硬化型重合体(A)が得られる。 The acrylic copolymer (a1) having a functional group-containing monomer unit is reacted with an unsaturated group-containing compound (a2) having a functional group that binds to the functional group to obtain an active energy ray-curable polymer ( A) is obtained.
 不飽和基含有化合物(a2)が有する官能基は、アクリル系共重合体(a1)が有する官能基含有モノマー単位の官能基の種類に応じて、適宜選択することができる。例えば、アクリル系共重合体(a1)が有する官能基がヒドロキシ基、アミノ基または置換アミノ基の場合、不飽和基含有化合物(a2)が有する官能基としてはイソシアネート基またはエポキシ基が好ましく、アクリル系共重合体(a1)が有する官能基がエポキシ基の場合、不飽和基含有化合物(a2)が有する官能基としてはアミノ基、カルボキシ基またはアジリジニル基が好ましい。 The functional group of the unsaturated group-containing compound (a2) can be appropriately selected according to the type of functional group of the functional group-containing monomer unit of the acrylic copolymer (a1). For example, when the functional group possessed by the acrylic copolymer (a1) is a hydroxy group, an amino group or a substituted amino group, the functional group possessed by the unsaturated group-containing compound (a2) is preferably an isocyanate group or an epoxy group. When the functional group possessed by the system copolymer (a1) is an epoxy group, the functional group possessed by the unsaturated group-containing compound (a2) is preferably an amino group, a carboxyl group or an aziridinyl group.
 また上記不飽和基含有化合物(a2)には、エネルギー線重合性の炭素-炭素二重結合が、1分子中に少なくとも1個、好ましくは1~6個、さらに好ましくは1~4個含まれている。このような不飽和基含有化合物(a2)の具体例としては、例えば、2-メタクリロイルオキシエチルイソシアネート、メタ-イソプロペニル-α,α-ジメチルベンジルイソシアネート、メタクリロイルイソシアネート、アリルイソシアネート、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート;ジイソシアネート化合物またはポリイソシアネート化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;ジイソシアネート化合物またはポリイソシアネート化合物と、ポリオール化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;グリシジル(メタ)アクリレート;(メタ)アクリル酸、2-(1-アジリジニル)エチル(メタ)アクリレート、2-ビニル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン等が挙げられる。 The unsaturated group-containing compound (a2) contains at least 1, preferably 1 to 6, more preferably 1 to 4 energy ray-polymerizable carbon-carbon double bonds per molecule. ing. Specific examples of such unsaturated group-containing compounds (a2) include, for example, 2-methacryloyloxyethyl isocyanate, meta-isopropenyl-α,α-dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, 1,1-( Bisacryloyloxymethyl)ethyl isocyanate; acryloyl monoisocyanate compound obtained by reacting a diisocyanate compound or polyisocyanate compound with hydroxyethyl (meth)acrylate; a diisocyanate compound or polyisocyanate compound, a polyol compound, and hydroxyethyl (meth) Acryloyl monoisocyanate compound obtained by reaction with acrylate; glycidyl (meth) acrylate; (meth) acrylic acid, 2-(1-aziridinyl) ethyl (meth) acrylate, 2-vinyl-2-oxazoline, 2-isopropenyl- 2-oxazoline and the like.
 上記不飽和基含有化合物(a2)は、上記アクリル系共重合体(a1)の官能基含有モノマーモル数に対して、好ましくは50モル%以上、特に好ましくは60モル%以上、さらに好ましくは70モル%以上の割合で用いられる。また、上記不飽和基含有化合物(a2)は、上記アクリル系共重合体(a1)の官能基含有モノマーモル数に対して、好ましくは95モル%以下、特に好ましくは93モル%以下、さらに好ましくは90モル%以下の割合で用いられる。 The unsaturated group-containing compound (a2) is preferably 50 mol% or more, particularly preferably 60 mol% or more, and still more preferably 70 mol%, based on the number of moles of functional group-containing monomers in the acrylic copolymer (a1). % or more. In addition, the unsaturated group-containing compound (a2) is preferably 95 mol% or less, particularly preferably 93 mol% or less, and more preferably It is used in a proportion of 90 mol % or less.
 アクリル系共重合体(a1)と不飽和基含有化合物(a2)との反応においては、アクリル系共重合体(a1)が有する官能基と不飽和基含有化合物(a2)が有する官能基との組合せに応じて、反応の温度、圧力、溶媒、時間、触媒の有無、触媒の種類を適宜選択することができる。これにより、アクリル系共重合体(a1)中に存在する官能基と、不飽和基含有化合物(a2)中の官能基とが反応し、不飽和基がアクリル系共重合体(a1)中の側鎖に導入され、活性エネルギー線硬化型重合体(A)が得られる。 In the reaction between the acrylic copolymer (a1) and the unsaturated group-containing compound (a2), the functional group of the acrylic copolymer (a1) and the functional group of the unsaturated group-containing compound (a2) Depending on the combination, reaction temperature, pressure, solvent, time, the presence or absence of a catalyst, and the type of catalyst can be appropriately selected. As a result, the functional groups present in the acrylic copolymer (a1) react with the functional groups in the unsaturated group-containing compound (a2), and the unsaturated groups in the acrylic copolymer (a1) It is introduced into the side chain to obtain an active energy ray-curable polymer (A).
 このようにして得られる活性エネルギー線硬化型重合体(A)の重量平均分子量(Mw)は、1万以上であるのが好ましく、特に5万以上であるのが好ましく、さらには10万以上であるのが好ましい。また、当該重量平均分子量(Mw)は、300万以下であるのが好ましく、特に200万以下であるのが好ましく、さらには150万以下であるのが好ましい。なお、本明細書における重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー法(GPC法)により測定した標準ポリスチレン換算の値である。 The weight average molecular weight (Mw) of the active energy ray-curable polymer (A) thus obtained is preferably 10,000 or more, particularly preferably 50,000 or more, further preferably 100,000 or more. It is preferable to have Also, the weight average molecular weight (Mw) is preferably 3,000,000 or less, particularly preferably 2,000,000 or less, further preferably 1,500,000 or less. In addition, the weight average molecular weight (Mw) in this specification is the value of standard polystyrene conversion measured by the gel permeation chromatography method (GPC method).
 活性エネルギー線硬化性粘着剤が、活性エネルギー線硬化型重合体(A)といった活性エネルギー線硬化性を有するポリマーを主成分とする場合であっても、活性エネルギー線硬化性粘着剤は、エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)をさらに含有してもよい。 Even when the active energy ray-curable pressure-sensitive adhesive contains a polymer having active energy ray-curable properties such as the active energy ray-curable polymer (A) as a main component, the active energy ray-curable pressure-sensitive adhesive is It may further contain curable monomers and/or oligomers (B).
 活性エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)としては、例えば、多価アルコールと(メタ)アクリル酸とのエステル等を使用することができる。 As the active energy ray-curable monomer and/or oligomer (B), for example, an ester of polyhydric alcohol and (meth)acrylic acid can be used.
 かかる活性エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)としては、例えば、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の単官能性アクリル酸エステル類、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート等の多官能性アクリル酸エステル類、ポリエステルオリゴ(メタ)アクリレート、ポリウレタンオリゴ(メタ)アクリレート等が挙げられる。 Examples of such active energy ray-curable monomers and/or oligomers (B) include monofunctional acrylic acid esters such as cyclohexyl (meth)acrylate and isobornyl (meth)acrylate, trimethylolpropane tri(meth)acrylate, Pentaerythritol tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, dipentaerythritol hexa(meth)acrylate, 1,4-butanediol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, polyethylene polyfunctional acrylates such as glycol di(meth)acrylate and dimethyloltricyclodecane di(meth)acrylate; polyester oligo(meth)acrylate; polyurethane oligo(meth)acrylate;
 活性エネルギー線硬化型重合体(A)に対し、活性エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)を配合する場合、活性エネルギー線硬化性粘着剤中における活性エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)の含有量は、活性エネルギー線硬化型重合体(A)100質量部に対して、0質量部超であることが好ましく、特に60質量部以上であることが好ましい。また、当該含有量は、活性エネルギー線硬化型重合体(A)100質量部に対して、250質量部以下であることが好ましく、特に200質量部以下であることが好ましい。 When blending the active energy ray-curable monomer and/or oligomer (B) with the active energy ray-curable polymer (A), the active energy ray-curable monomer and/or in the active energy ray-curable pressure-sensitive adhesive Alternatively, the content of the oligomer (B) is preferably more than 0 parts by mass, particularly preferably 60 parts by mass or more, relative to 100 parts by mass of the active energy ray-curable polymer (A). The content is preferably 250 parts by mass or less, particularly preferably 200 parts by mass or less, relative to 100 parts by mass of the active energy ray-curable polymer (A).
 次に、活性エネルギー線硬化性粘着剤が、活性エネルギー線非硬化性ポリマー成分と少なくとも1つ以上の活性エネルギー線硬化性基を有するモノマーおよび/またはオリゴマーとの混合物を主成分とする場合について、以下説明する。 Next, when the active energy ray-curable pressure-sensitive adhesive is mainly composed of a mixture of a non-active energy ray-curable polymer component and a monomer and/or oligomer having at least one active energy ray-curable group, It is explained below.
 活性エネルギー線非硬化性ポリマー成分としては、例えば、前述したアクリル系共重合体(a1)と同様の成分が使用できる。 As the active energy ray non-curable polymer component, for example, the same component as the acrylic copolymer (a1) described above can be used.
 少なくとも1つ以上の活性エネルギー線硬化性基を有するモノマーおよび/またはオリゴマーとしては、前述の成分(B)と同じものが選択できる。活性エネルギー線非硬化性ポリマー成分と少なくとも1つ以上の活性エネルギー線硬化性基を有するモノマーおよび/またはオリゴマーとの配合比は、活性エネルギー線非硬化性ポリマー成分100質量部に対して、少なくとも1つ以上の活性エネルギー線硬化性基を有するモノマーおよび/またはオリゴマー1質量部以上であるのが好ましく、特に60質量部以上であるのが好ましい。また、当該配合比は、活性エネルギー線非硬化性ポリマー成分100質量部に対して、少なくとも1つ以上の活性エネルギー線硬化性基を有するモノマーおよび/またはオリゴマー200質量部以下であるのが好ましく、特に160質量部以下であるのが好ましい。 As the monomer and/or oligomer having at least one or more active energy ray-curable groups, the same ones as those for the component (B) described above can be selected. The blending ratio of the active energy ray non-curable polymer component and the monomer and/or oligomer having at least one active energy ray curable group is at least 1 per 100 parts by mass of the active energy ray non-curable polymer component. The monomer and/or oligomer having one or more active energy ray-curable groups is preferably 1 part by mass or more, particularly preferably 60 parts by mass or more. The compounding ratio is preferably 200 parts by mass or less of monomers and/or oligomers having at least one active energy ray-curable group per 100 parts by mass of the active energy ray non-curable polymer component, In particular, it is preferably 160 parts by mass or less.
(3)その他の成分
 上述した粘着性組成物には、適宜他の成分を配合してもよい。他の成分としては、例えば、活性エネルギー線非硬化性ポリマー成分またはオリゴマー成分(D)、架橋剤(E)等が挙げられる。
(3) Other Components The adhesive composition described above may optionally contain other components. Other components include, for example, an active energy ray non-curable polymer component or oligomer component (D), a cross-linking agent (E), and the like.
 活性エネルギー線非硬化性ポリマー成分またはオリゴマー成分(D)としては、例えば、ポリアクリル酸エステル、ポリエステル、ポリウレタン、ポリカーボネート、ポリオレフィン等が挙げられ、重量平均分子量(Mw)が3000~250万のポリマーまたはオリゴマーが好ましい。当該成分(D)をエネルギー線硬化性粘着剤に配合することにより、硬化前における粘着性および剥離性、硬化後の強度、他の層との接着性、保存安定性などを改善し得る。当該成分(D)の配合量は特に限定されず、エネルギー線硬化型共重合体(A)100質量部に対して0質量部超、50質量部以下の範囲で適宜決定される。 Examples of the active energy ray non-curable polymer component or oligomer component (D) include polyacrylates, polyesters, polyurethanes, polycarbonates, polyolefins, etc., and polymers or polymers having a weight average molecular weight (Mw) of 3000 to 2.5 million. Oligomers are preferred. By adding the component (D) to the energy ray-curable pressure-sensitive adhesive, it is possible to improve the adhesiveness and peelability before curing, the strength after curing, the adhesion to other layers, storage stability, and the like. The blending amount of the component (D) is not particularly limited, and is appropriately determined in the range of more than 0 parts by mass and 50 parts by mass or less with respect to 100 parts by mass of the energy ray-curable copolymer (A).
 架橋剤(E)の使用は、界面アブレーション層11の貯蔵弾性率を所望の範囲に調整し易いという観点から好ましい。架橋剤(E)としては、活性エネルギー線硬化型共重合体(A)等が有する官能基との反応性を有する多官能性化合物を用いることができる。このような多官能性化合物の例としては、イソシアネート化合物、エポキシ化合物、アミン化合物、メラミン化合物、アジリジン化合物、ヒドラジン化合物、アルデヒド化合物、オキサゾリン化合物、金属アルコキシド化合物、金属キレート化合物、金属塩、アンモニウム塩、反応性フェノール樹脂等を挙げることができる。 The use of the cross-linking agent (E) is preferable from the viewpoint of facilitating adjustment of the storage elastic modulus of the interfacial ablation layer 11 to a desired range. As the cross-linking agent (E), a polyfunctional compound having reactivity with the functional groups of the active energy ray-curable copolymer (A) or the like can be used. Examples of such polyfunctional compounds include isocyanate compounds, epoxy compounds, amine compounds, melamine compounds, aziridine compounds, hydrazine compounds, aldehyde compounds, oxazoline compounds, metal alkoxide compounds, metal chelate compounds, metal salts, ammonium salts, Reactive phenol resin etc. can be mentioned.
 架橋剤(E)の配合量は、活性エネルギー線硬化型共重合体(A)100質量部に対して、0.001質量部以上であることが好ましく、特に0.1質量部以上であることが好ましく、さらには0.2質量部以上であることが好ましい。また、架橋剤(E)の配合量は、活性エネルギー線硬化型共重合体(A)100質量部に対して、20質量部以下であることが好ましく、特に10質量部以下であることが好ましく、さらには5質量部以下であることが好ましい。 The amount of the cross-linking agent (E) is preferably 0.001 parts by mass or more, particularly 0.1 parts by mass or more, relative to 100 parts by mass of the active energy ray-curable copolymer (A). is preferred, and 0.2 parts by mass or more is preferred. In addition, the amount of the cross-linking agent (E) is preferably 20 parts by mass or less, particularly preferably 10 parts by mass or less, relative to 100 parts by mass of the active energy ray-curable copolymer (A). , and more preferably 5 parts by mass or less.
 また、上記粘着性組成物に配合可能なその他の成分としては、粘着付与剤、染料や顔料等の着色材料、難燃剤、フィラー、帯電防止剤等の添加剤も挙げられる。なお、上記粘着性組成物は、ワーク小片の分離を良好に生じさせ易いという観点からは、ガス発生剤を含有しないことが好ましい。ガス発生剤を使用すると、界面アブレーション層11全域でガスが発生することがある。その場合、意図した位置のみで界面アブレーションを生じさせて、そこに位置するワーク小片のみを分離させることが困難となり、ワーク小片の分離を良好に行うことが困難となる場合がある。 Other components that can be blended into the adhesive composition include tackifiers, coloring materials such as dyes and pigments, flame retardants, fillers, and additives such as antistatic agents. The adhesive composition preferably does not contain a gas generating agent from the viewpoint that the work pieces are easily separated. The use of a gas generating agent may generate gas across the interfacial ablation layer 11 . In that case, it may be difficult to cause interface abrasion only at an intended position to separate only the small work pieces located there, and it may be difficult to separate the small work pieces satisfactorily.
(4)界面アブレーション層の厚さ
 本実施形態における界面アブレーション層11の厚さは、3μm以上であることが好ましく、特に20μm以上であることが好ましく、さらには25μm以上が好ましい。また、界面アブレーション層11の厚さは、100μm以下であることが好ましく、特に50μm以下であることが好ましく、さらには40μm以下であることが好ましい。界面アブレーション層11の厚さが上記範囲であることで、界面アブレーション層11上におけるワーク小片の保持と、界面アブレーションによるワーク小片の分離とを両立し易いものとなる。
(4) Thickness of interface ablation layer The thickness of the interface ablation layer 11 in the present embodiment is preferably 3 μm or more, particularly preferably 20 μm or more, further preferably 25 μm or more. Further, the thickness of the interfacial ablation layer 11 is preferably 100 μm or less, particularly preferably 50 μm or less, further preferably 40 μm or less. When the thickness of the interfacial ablation layer 11 is within the above range, both holding of the work piece on the interfacial ablation layer 11 and separation of the work piece by interfacial abrasion can be easily achieved.
2.基材
 本実施形態における基材12は、その組成や物性について特に限定されない。ワークハンドリングシート1が所望の機能を発揮し易いという観点からは、基材12は、樹脂から構成されることが好ましい。基材12が樹脂から構成される場合、当該樹脂の例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリエチレン、ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテン、エチレン-ノルボルネン共重合体、ノルボルネン樹脂等のポリオレフィン系樹脂;エチレン-酢酸ビニル共重合体;エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸メチル共重合体、その他のエチレン-(メタ)アクリル酸エステル共重合体等のエチレン系共重合樹脂;ポリ塩化ビニル、塩化ビニル共重合体等のポリ塩化ビニル系樹脂;(メタ)アクリル酸エステル共重合体;ポリウレタン;ポリイミド;ポリスチレン;ポリカーボネート;フッ素樹脂などが挙げられる。また、基材12を構成する樹脂は、上述した樹脂を架橋したものや、上述した樹脂のアイオノマーといった変性したものであってもよい。また、基材12は、上述した樹脂からなる単層のフィルムであってもよく、あるいは、当該フィルムが複数積層されてなる積層フィルムであってもよい。この積層フィルムにおいて、各層を構成する材料は同種であってもよく、異種であってもよい。
2. Substrate The composition and physical properties of the substrate 12 in the present embodiment are not particularly limited. From the viewpoint that the work handling sheet 1 can easily exhibit the desired functions, the base material 12 is preferably made of resin. When the base material 12 is made of a resin, examples of the resin include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyethylene, polypropylene, polybutene, polybutadiene, polymethylpentene, and ethylene-norbornene. Polymer, polyolefin resin such as norbornene resin; ethylene-vinyl acetate copolymer; ethylene-(meth)acrylic acid copolymer, ethylene-(meth)methyl acrylate copolymer, other ethylene-(meth)acryl Ethylene-based copolymer resins such as acid ester copolymers; polyvinyl chloride-based resins such as polyvinyl chloride and vinyl chloride copolymers; (meth)acrylic acid ester copolymers; polyurethanes; polyimides; etc. Further, the resin constituting the base material 12 may be a crosslinked resin or a modified ionomer of the above resin. Further, the substrate 12 may be a single-layer film made of the resin described above, or may be a laminated film formed by laminating a plurality of such films. In this laminated film, the materials constituting each layer may be of the same type or of different types.
 本実施形態における基材12の表面には、界面アブレーション層11に対する密着性を向上させる目的で、酸化法や凹凸化法などによる表面処理、あるいはプライマー処理を施してもよい。上記酸化法としては、例えばコロナ放電処理、プラズマ放電処理、クロム酸化処理(湿式)、火炎処理、熱風処理、オゾン、紫外線照射処理などが挙げられ、また、凹凸化法としては、例えばサンドブラスト法、溶射処理法などが挙げられる。 The surface of the substrate 12 in this embodiment may be subjected to a surface treatment such as an oxidation method or a roughening method, or a primer treatment for the purpose of improving adhesion to the interface ablation layer 11 . Examples of the oxidation method include corona discharge treatment, plasma discharge treatment, chromium oxidation treatment (wet), flame treatment, hot air treatment, ozone, and ultraviolet irradiation treatment. A thermal spraying method and the like can be mentioned.
 本実施形態における基材12は、着色剤、難燃剤、可塑剤、帯電防止剤、滑剤、フィラー等の各種添加剤を含有してもよい。また、界面アブレーション層11が、活性エネルギー線により硬化する材料を含む場合、基材12は活性エネルギー線に対する透過性を有することが好ましい。 The base material 12 in this embodiment may contain various additives such as colorants, flame retardants, plasticizers, antistatic agents, lubricants, and fillers. Moreover, when the interfacial ablation layer 11 contains a material that is cured by active energy rays, the substrate 12 preferably has transparency to active energy rays.
 本実施形態における基材12の製造方法は、樹脂から基材12を製造するものである限り特に限定されない。例えば、Tダイ法、丸ダイ法等の溶融押出法;カレンダー法;乾式法、湿式法等の溶液法等によって、樹脂をシート状に成形することで製造することができる。 The manufacturing method of the base material 12 in this embodiment is not particularly limited as long as the base material 12 is manufactured from resin. For example, it can be produced by forming a resin into a sheet by a melt extrusion method such as a T-die method or a round die method; a calendering method; or a solution method such as a dry method or a wet method.
 本実施形態における基材12の厚さは、10μm以上であることが好ましく、特に30μm以上であることが好ましく、さらには50μm以上であることが好ましい。また、基材12厚さは、500μm以下であることが好ましく、300μm以下であることがより好ましく、特に200μm以下であることが好ましく、さらには150μm以下であることが好ましく、100μm以下であることが最も好ましい。基材12の厚さが上記範囲であることで、ワークハンドリングシート1が剛性と柔軟性とを所定のバランスで備えるものとなり、ワーク小片の良好なハンドリングを行い易いものとなる。 The thickness of the base material 12 in this embodiment is preferably 10 μm or more, particularly preferably 30 μm or more, further preferably 50 μm or more. The thickness of the base material 12 is preferably 500 μm or less, more preferably 300 μm or less, particularly preferably 200 μm or less, further preferably 150 μm or less, and 100 μm or less. is most preferred. When the thickness of the base material 12 is within the above range, the work handling sheet 1 has rigidity and flexibility in a predetermined balance, and the small work piece can be easily handled well.
3.剥離シート
 本実施形態に界面アブレーション層11が、それを構成する成分の1つとして粘着剤を含む場合、界面アブレーション層11における基材12とは反対側の面をワーク小片に貼付するまでの間、当該面を保護する目的で、当該面に剥離シートが積層されていてもよい。
3. Release sheet In the present embodiment, when the interfacial abrasion layer 11 contains an adhesive as one of its constituent components, the surface of the interfacial abrasion layer 11 opposite to the substrate 12 is adhered to the work piece. For the purpose of protecting the surface, a release sheet may be laminated on the surface.
 上記剥離シートの構成は任意であり、プラスチックフィルムを剥離剤等により剥離処理したものが例示される。当該プラスチックフィルムの具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、およびポリプロピレンやポリエチレン等のポリオレフィンフィルムが挙げられる。上記剥離剤としては、シリコーン系、フッ素系、長鎖アルキル系等を用いることができ、これらの中でも、安価で安定した性能が得られるシリコーン系が好ましい。 The configuration of the release sheet is arbitrary, and examples thereof include plastic films that have undergone a release treatment using a release agent or the like. Specific examples of the plastic film include polyester films such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, and polyolefin films such as polypropylene and polyethylene. As the release agent, a silicone-based release agent, a fluorine-based release agent, a long-chain alkyl-based release agent, or the like can be used.
 上記剥離シートの厚さについては特に制限はなく、例えば、20μm以上、250μm以下であってよい。 The thickness of the release sheet is not particularly limited, and may be, for example, 20 μm or more and 250 μm or less.
4.その他の構成
 本実施形態に係るワークハンドリングシート1では、界面アブレーション層11における基材12とは反対側の面に接着剤層が積層されていてもよい。当該シートでは、接着剤層における界面アブレーション層11とは反対側の面にワークを貼付し、当該ワークとともに接着剤層をダイシングすることで、個片化された接着剤層が積層されたワーク小片を得ることができる。当該チップは、この個片化された接着剤層によって、当該ワーク小片が搭載される対象に対して容易に固定することが可能となる。上述した接着剤層を構成する材料としては、熱可塑性樹脂と低分子量の熱硬化性接着成分とを含有するものや、Bステージ(半硬化状)の熱硬化型接着成分を含有するもの等を用いることが好ましい。
4. Other Configurations In the work handling sheet 1 according to the present embodiment, an adhesive layer may be laminated on the surface of the interface abrasion layer 11 opposite to the substrate 12 . In the sheet, a workpiece is attached to the surface of the adhesive layer opposite to the surface ablation layer 11, and the adhesive layer is diced together with the workpiece to form workpiece pieces in which the individualized adhesive layers are laminated. can be obtained. The chip can be easily fixed to the object on which the work piece is mounted by the individualized adhesive layer. Examples of the material constituting the adhesive layer include those containing a thermoplastic resin and a low-molecular-weight thermosetting adhesive component, those containing a B-stage (semi-cured) thermosetting adhesive component, and the like. It is preferable to use
 また、本実施形態に係るワークハンドリングシート1では、界面アブレーション層11における基材12とは反対側の面に保護膜形成層が積層されていてもよい。このようなシートでは、保護膜形成層における界面アブレーション層11とは反対側の面にワークを貼付し、当該ワークとともに保護膜形成層をダイシングすることで、個片化された保護膜形成層が積層されたワーク小片を得ることができる。当該ワークとしては、片面に回路が形成されたものが使用されることが好ましく、この場合、通常、当該回路が形成された面とは反対側の面に保護膜形成層が積層される。個片化された保護膜形成層は、所定のタイミングで硬化させることで、十分な耐久性を有する保護膜をワーク小片に形成することができる。保護膜形成層は、未硬化の硬化性接着剤からなることが好ましい。 In addition, in the work handling sheet 1 according to the present embodiment, a protective film-forming layer may be laminated on the surface of the interface abrasion layer 11 opposite to the substrate 12 . In such a sheet, a work is attached to the surface of the protective film-forming layer opposite to the surface of the protective film-forming layer 11, and the protective film-forming layer is diced together with the work. A laminated work piece can be obtained. As the work, one having a circuit formed on one side is preferably used. In this case, a protective film-forming layer is usually laminated on the side opposite to the side on which the circuit is formed. By curing the individualized protective film-forming layer at a predetermined timing, a protective film having sufficient durability can be formed on the work pieces. The protective film-forming layer is preferably made of an uncured curable adhesive.
5.ワークハンドリングシートの物性
 本実施形態に係るワークハンドリングシート1では、シリコンウエハのミラー面に対する粘着力が、10mN/25mm以上であることが好ましく、特に100mN/25mm以上であることが好ましく、さらには200mN/25mm以上であることが好ましい。上記粘着力が10mN/25mm以上であることにより、ワークハンドリングシート1にワーク小片等の被着体を良好に固定し易くなり、ハンドリング性により優れたものとなる。また、上記粘着力は、30000mN/25mm以下であることが好ましく、特に15000mN/25mm以下であることが好ましく、さらには10000mN/25mm以下であることが好ましい。上記粘着力が30000mN/25mm以下であることにより、レーザー光照射によるワーク小片の分離をより良好に行い易くなる。
5. Physical properties of the work handling sheet In the work handling sheet 1 according to the present embodiment, the adhesive force to the mirror surface of the silicon wafer is preferably 10 mN/25 mm or more, particularly preferably 100 mN/25 mm or more, and further preferably 200 mN. /25 mm or more. When the adhesive strength is 10 mN/25 mm or more, an adherend such as a small piece of work can be easily fixed to the work handling sheet 1, resulting in excellent handling properties. The adhesive strength is preferably 30000 mN/25 mm or less, particularly preferably 15000 mN/25 mm or less, and more preferably 10000 mN/25 mm or less. When the adhesive strength is 30,000 mN/25 mm or less, it becomes easier to separate the work pieces by laser light irradiation.
 また、本実施形態における界面アブレーション層11が、前述した活性エネルギー線硬化性粘着剤から構成される粘着剤層である場合、紫外線照射後における粘着力について、以下の条件を満たすことが好ましい。すなわち、界面アブレーション層11における基材12とは反対側の面をシリコンウエハのミラー面に貼付し、界面アブレーション層11に対して高圧水銀ランプを用いて紫外線を照射して界面アブレーション層11を硬化させた後における、シリコンウエハのミラー面に対する粘着力が、2000mN/25mm以下であることが好ましく、特に1000mN/25mm以下であることが好ましく、さらには200mN/25mm以下であることが好ましい。上記粘着力が2000mN/25mm以下であることにより、その後の界面アブレーションによって、ワーク小片を良好に分離させ易くなる。なお、上記粘着力の下限値としては特に限定されず、例えば、5mN/25mm以上であってよく、特に10mN/25mm以上であってよく、さらには20mN/25mm以上であってよい。 Further, when the interfacial abrasion layer 11 in the present embodiment is an adhesive layer composed of the active energy ray-curable adhesive described above, it is preferable that the adhesive strength after ultraviolet irradiation satisfies the following conditions. That is, the surface of the interfacial ablation layer 11 opposite to the base material 12 is attached to the mirror surface of a silicon wafer, and the interfacial ablation layer 11 is cured by irradiating the interfacial ablation layer 11 with ultraviolet rays using a high-pressure mercury lamp. The adhesive force to the mirror surface of the silicon wafer after the application is preferably 2000 mN/25 mm or less, particularly preferably 1000 mN/25 mm or less, further preferably 200 mN/25 mm or less. When the adhesive force is 2000 mN/25 mm or less, it becomes easier to separate the small work pieces by subsequent interfacial abrasion. The lower limit of the adhesive strength is not particularly limited, and may be, for example, 5 mN/25 mm or more, particularly 10 mN/25 mm or more, and further 20 mN/25 mm or more.
 なお、これらの粘着力の測定方法の詳細は、後述する試験例に記載の通りである。 The details of the method for measuring these adhesive strengths are as described in the test examples described later.
6.ワークハンドリングシートの製造方法
 本実施形態に係るワークハンドリングシート1の製造方法は特に限定されない。例えば、基材12上に界面アブレーション層11を直接形成してもよく、あるいは、工程シート上で界面アブレーション層11を形成した後、当該界面アブレーション層11を基材12上に転写してもよい。
6. Method for Manufacturing Work Handling Sheet A method for manufacturing the work handling sheet 1 according to the present embodiment is not particularly limited. For example, the interfacial ablation layer 11 may be directly formed on the base material 12, or the interfacial ablation layer 11 may be formed on the process sheet and then transferred onto the base material 12. .
 界面アブレーション層11が、それを構成する成分の1つとして粘着剤を含む場合、当該界面アブレーション層11の形成は、公知の方法により行うことができる。例えば、界面アブレーション層11を形成するための粘着性組成物、および所望によりさらに溶媒または分散媒を含有する塗布液を調製する。そして、基材の片面または剥離シートの剥離性を有する面(以下、「剥離面」という場合がある。)に上記塗布液を塗布する。続いて、得られた塗膜を乾燥させることで、界面アブレーション層11を形成することができる。 When the interfacial ablation layer 11 contains an adhesive as one of its constituent components, the interfacial ablation layer 11 can be formed by a known method. For example, a coating liquid containing an adhesive composition for forming the interfacial ablation layer 11 and optionally a solvent or dispersion medium is prepared. Then, the above coating liquid is applied to one side of the base material or the releasable side of the release sheet (hereinafter sometimes referred to as "release side"). Subsequently, by drying the obtained coating film, the interfacial abrasion layer 11 can be formed.
 上述した塗布液の塗布は公知の方法により行うことができ、例えば、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等により行うことができる。なお、塗布液は、塗布を行うことが可能であればその性状は特に限定されず、界面アブレーション層11を形成するための成分を溶質として含有する場合もあれば、分散質として含有する場合もある。また、剥離シート上に界面アブレーション層11を形成した場合、当該剥離シートは工程材料として剥離してもよいし、被着体に貼付するまでの間、界面アブレーション層11を保護していてもよい。 The application of the coating liquid described above can be performed by a known method, for example, bar coating, knife coating, roll coating, blade coating, die coating, gravure coating, or the like. The properties of the coating liquid are not particularly limited as long as it is possible to apply the coating liquid. be. Further, when the interface abrasion layer 11 is formed on the release sheet, the release sheet may be peeled off as a process material, or may protect the interface abrasion layer 11 until it is attached to the adherend. .
 界面アブレーション層11を形成するための粘着性組成物が前述した架橋剤を含有する場合には、上記の乾燥の条件(温度、時間など)を変えることにより、または加熱処理を別途設けることにより、塗膜内のポリマー成分と架橋剤との架橋反応を進行させ、界面アブレーション層11内に所望の存在密度で架橋構造を形成することが好ましい。さらに、上述した架橋反応を十分に進行させるために、ワークハンドリングシート1の完成後、例えば23℃、相対湿度50%の環境に数日間静置するといった養生を行ってもよい。 When the adhesive composition for forming the interfacial ablation layer 11 contains the above-described cross-linking agent, by changing the drying conditions (temperature, time, etc.) or by separately providing heat treatment, It is preferable to promote a cross-linking reaction between the polymer component in the coating film and the cross-linking agent to form a cross-linked structure with a desired existence density in the interfacial ablation layer 11 . Furthermore, in order to allow the cross-linking reaction to proceed sufficiently, after the work handling sheet 1 is completed, it may be cured by leaving it in an environment of, for example, 23° C. and a relative humidity of 50% for several days.
7.ワークハンドリングシートの使用方法
 本実施形態に係るワークハンドリングシート1は、ワーク小片の取り扱いのために好適に使用することができる。前述した通り、本実施形態に係るワークハンドリングシート1では、界面アブレーション層11が、レーザー光の照射によって効率的に界面アブレーションするものであるため、界面アブレーション層11上に保持されたワーク小片を高い精度で所定の位置に向けて分離することができる。
7. Method of Using Work Handling Sheet The work handling sheet 1 according to this embodiment can be suitably used for handling small pieces of work. As described above, in the work handling sheet 1 according to the present embodiment, the interface ablation layer 11 is efficiently ablated by laser light irradiation. It can be separated towards a predetermined position with precision.
 本実施形態に係るワークハンドリングシート1の使用方法の一例としては、界面アブレーション層11において局所的に生じさせた界面アブレーションによって、界面アブレーション層11における基材12とは反対の面上に保持された複数のワーク小片のうちの任意のワーク小片を、界面アブレーション層11から選択的に分離するという使用方法が挙げられる。 As an example of the method of using the work handling sheet 1 according to the present embodiment, the surface of the interface ablation layer 11 is held on the surface opposite to the substrate 12 by the interface ablation locally caused in the interface ablation layer 11. A method of use is to selectively separate an arbitrary work piece out of a plurality of work pieces from the interfacial ablation layer 11 .
 上記使用方法において、界面アブレーション層11上に保持された複数のワーク小片は、界面アブレーション層11における基材12とは反対の面上に保持されたワーク(ワーク小片の材料となるもの)を当該面上において個片化することで得られたものであってもよい。すなわち、ワーク小片は、界面アブレーション層11上にてワークをダイシングすることで得られたものであってもよい。あるいは、ワーク小片は、本実施形態に係るワークハンドリングシート1とは独立して形成されたものを、界面アブレーション層11上に載置されたものであってもよい。 In the method of use described above, the plurality of work pieces held on the interfacial ablation layer 11 are the works (materials of the work pieces) held on the surface of the interfacial ablation layer 11 opposite to the substrate 12 . It may be obtained by singulating on the surface. That is, the work piece may be obtained by dicing the work on the interface ablation layer 11 . Alternatively, the small work piece may be formed independently of the work handling sheet 1 according to the present embodiment and placed on the interfacial ablation layer 11 .
 なお、本実施形態に係るワークハンドリングシート1が前述した接着剤層や保護膜形成層を備える場合には、これらの層とワークとを界面アブレーション層11上にてダイシングすることが好ましい。これにより、これらの層が個片化されてなるものが積層されたワーク小片を得ることができる。 In addition, when the work handling sheet 1 according to the present embodiment includes the adhesive layer and the protective film forming layer described above, it is preferable to dice these layers and the work on the interface ablation layer 11 . As a result, it is possible to obtain workpiece pieces in which these layers are separated into individual pieces and laminated.
 本実施形態におけるワーク小片の形状やサイズについては特に限定されないものの、サイズに関し、ワーク小片は、平面視したときにおける面積が10μm以上であることが好ましく、特に100μm以上であることが好ましい。また、ワーク小片は、平面視したときにおける面積が1mm以下であることが好ましく、特に0.25mm以下であることが好ましい。また、ワーク小片の寸法としては、ワーク小片が矩形である場合、ワーク小片の最小の一辺が、2μm以上であることが好ましく、特に5μm以上であることが好ましく、さらには10μm以上であることが好ましい。また、上記最小の一辺は、1mm以下であることが好ましく、特に0.5mm以下であることが好ましい。矩形のワーク小片の寸法の具体例としては、2μm×5μm、10μm×10μm、0.5mm×0.5mm、1mm×1mm等が挙げられる。本実施形態に係るワークハンドリングシート1は、このような微細なワーク小片、特に、ニードルの突き上げによるシートからの分離が困難な微細なワーク小片であっても良好に取り扱うことができる。その一方で、本実施形態に係るワークハンドリングシート1は、面積が1mmを超えるもの(例えば1mm~2000mm)や、厚さが1~10000μmのもの(例えば10~1000μm)といった比較的大きなサイズのワーク小片についても良好に取り扱うことができる。 Although the shape and size of the work piece in the present embodiment are not particularly limited, the work piece preferably has an area of 10 μm 2 or more, particularly 100 μm 2 or more, when viewed from above. In addition, the work piece preferably has an area of 1 mm 2 or less, particularly preferably 0.25 mm 2 or less when viewed from above. As for the size of the work piece, when the work piece is rectangular, the minimum side of the work piece is preferably 2 μm or more, particularly preferably 5 μm or more, and further preferably 10 μm or more. preferable. Moreover, the minimum side is preferably 1 mm or less, and particularly preferably 0.5 mm or less. Specific examples of the dimensions of the rectangular work piece include 2 μm×5 μm, 10 μm×10 μm, 0.5 mm×0.5 mm, 1 mm×1 mm, and the like. The work handling sheet 1 according to the present embodiment can satisfactorily handle such fine work pieces, especially fine work pieces that are difficult to separate from the sheet by pushing up a needle. On the other hand, the work handling sheet 1 according to the present embodiment has a relatively large area, such as one having an area exceeding 1 mm 2 (for example, 1 mm 2 to 2,000 mm 2 ) or having a thickness of 1 to 10,000 μm (for example, 10 to 1,000 μm). Work piece pieces of any size can also be handled well.
 ワーク小片としては、半導体部品や半導体装置等が挙げられ、より具体的には、マイクロ発光ダイオード、パワーデバイス、MEMS(Micro Electro Mechanical Systems)等が挙げられる。これらの中でも、ワーク小片は発光ダイオードであることが好適であり、特にミニ発光ダイオードおよびマイクロ発光ダイオードから選択される発光ダイオードであることが好ましい。近年、ミニ発光ダイオードやマイクロ発光ダイオードが高密度に配置された装置の開発が検討されており、そのような装置の製造においては、これらの発光ダイオードを高い精度で取り扱うことが可能な本実施形態に係るワークハンドリングシート1が非常に適している。 Examples of small work pieces include semiconductor parts and semiconductor devices, and more specifically, micro light-emitting diodes, power devices, MEMS (Micro Electro Mechanical Systems), and the like. Among these, the work pieces are preferably light emitting diodes, and particularly preferably light emitting diodes selected from mini light emitting diodes and micro light emitting diodes. In recent years, the development of devices in which mini light emitting diodes and micro light emitting diodes are densely arranged has been studied. is very suitable.
 以下に、ワークハンドリングシート1の具体的な使用例として、デバイス製造方法を図2に基づいて説明する。当該デバイス製造方法は、準備工程(図2(a))、配置工程(図2(b))および分離工程(図2(c)および(d))という3つの工程を少なくとも備える。 As a specific usage example of the work handling sheet 1, a device manufacturing method will be described below with reference to FIG. The device manufacturing method includes at least three steps: a preparation step (FIG. 2(a)), an arrangement step (FIG. 2(b)), and a separation step (FIGS. 2(c) and (d)).
 準備工程においては、図2(a)に示すように、本実施形態に係るワークハンドリングシート1における、界面アブレーション層11側の面上に複数のワーク小片2が保持されてなる積層体を準備する。当該積層体は、別途作製したワーク小片2をワークハンドリングシート1上に載置することで準備してもよく、あるいは、界面アブレーション層11側の面上に保持されたワークを当該面上において個片化すること(すなわちダイシングすること)で準備してもよい。当該ダイシングは、公知の方法で行うことができる。 In the preparation step, as shown in FIG. 2A, a laminate is prepared in which a plurality of small work pieces 2 are held on the surface of the work handling sheet 1 according to the present embodiment on the side of the interface ablation layer 11. . The laminate may be prepared by placing a separately prepared work piece 2 on the work handling sheet 1, or a work held on the surface of the interfacial ablation layer 11 side may be individually placed on the surface. It may be prepared by dicing (ie, dicing). The dicing can be performed by a known method.
 ワーク小片2の形状やサイズは、前述した通り、特に限定はなく、好ましいサイズも前述した通りである。ワーク小片2の具体例についても、前述した通り、半導体部品や半導体装置等が挙げられ、特に、ミニ発光ダイオードおよびマイクロ発光ダイオードといった発光ダイオードが挙げられる。 The shape and size of the work piece 2 are not particularly limited as described above, and the preferred size is also as described above. Specific examples of the workpiece 2 also include, as described above, semiconductor components and semiconductor devices, and particularly light-emitting diodes such as mini light-emitting diodes and micro light-emitting diodes.
 続く配置工程においては、図2(b)に示すように、ワーク小片2を受容可能な対象物3に対して、上記積層体におけるワーク小片2側の面が向かい合うように上記積層体を配置する。対象物3の例は、製造するデバイスに応じて適宜決定されるものの、ワーク小片2が発光ダイオードである場合には、対象物3の具体例としては、基板、シート、リール等が挙げられ、特に配線が設けられた配線基板が好適に使用される。 In the subsequent arranging step, as shown in FIG. 2B, the laminate is arranged so that the surface of the laminate on the side of the small work piece 2 faces the object 3 that can receive the small work piece 2. . Examples of the object 3 are appropriately determined according to the device to be manufactured. In particular, a wiring substrate provided with wiring is preferably used.
 その後、分離工程において、まず図2(c)に示すように、上記積層体における界面アブレーション層11における、少なくとも1つのワーク小片2が貼付されている位置に対し、レーザー光を照射する。当該照射は、ワーク小片2が貼付されている複数の位置に対して同時に行ってもよく、あるいはそれらの位置に対して順次行ってもよい。レーザー光の照射条件としては、界面アブレーションを生じさせることが可能である限り限定されない。照射のための装置としては、公知のものを使用することができる。 After that, in the separation step, first, as shown in FIG. 2(c), a laser beam is irradiated to the position where at least one work piece 2 is attached in the interface ablation layer 11 in the laminate. The irradiation may be performed simultaneously on a plurality of positions where the work pieces 2 are attached, or may be performed sequentially on those positions. The irradiation conditions of the laser light are not limited as long as it is possible to cause interfacial ablation. As a device for irradiation, a known device can be used.
 上記照射により、図2(d)に示されるように、界面アブレーション層11における照射された位置において界面アブレーションを生じさせることができる。具体的には、レーザー光の照射によって、界面アブレーション層11における基材12に近位な領域において、当該領域を構成していた成分が蒸発または揮発し、反応領域13となる。そして、上記蒸発または揮発によって生じたガスが基材11と反応領域13との間に溜まり、ブリスター5が形成される。当該ブリスター5の形成によって、ワーク小片2’の位置において局所的に界面アブレーション層11が変形し、界面アブレーション層11から剥がされるようにワーク小片2’が分離する。以上により、当該界面アブレーションが生じた位置に存在するワーク小片2’を、対象物3上に載置することができる。 The irradiation can cause interfacial ablation at the irradiated position in the interfacial ablation layer 11, as shown in FIG. 2(d). Specifically, the irradiation of the laser light evaporates or volatilizes the components forming the region in the interface ablation layer 11 in the vicinity of the base material 12 to form the reaction region 13 . Then, the gas generated by the evaporation or volatilization accumulates between the substrate 11 and the reaction area 13 to form a blister 5 . Due to the formation of the blisters 5 , the interfacial ablation layer 11 is locally deformed at the position of the work piece 2 ′, and the work piece 2 ′ separates so as to be peeled off from the interfacial ablation layer 11 . As described above, the work piece 2 ′ existing at the position where the interface abrasion has occurred can be placed on the object 3 .
 なお、レーザー光の照射によって生じた反応領域13およびブリスター5は、通常、ワーク小片2’の分離した後も残ったままとなる。図3には、順次レーザー光を照射してワーク小片2の分離を行っていく様子が示されており、特に、分離後の状態(左2つ)、分離中の状態(中央)、および分離前の状態(右2つ)が示されている。図示されるように、通常、分離後のブリスター5は、分離中のブリスター5に比べて、多少しぼんだ状態となる。 Note that the reaction region 13 and the blisters 5 generated by the irradiation of the laser light usually remain even after the work pieces 2' are separated. FIG. 3 shows how the work pieces 2 are separated by sequentially irradiating laser light. The previous states (right two) are shown. As shown, the blister 5 after detachment is typically in a slightly more deflated state than the blister 5 during detachment.
 なお、本実施形態における界面アブレーション層11が、前述した活性エネルギー線硬化性粘着剤から構成される粘着剤層である場合、上述したデバイス製造方法は、次の硬化工程をさらに備えていてもよい。すなわち、界面アブレーション層11側の面上に複数のワーク小片2が保持されてなる積層体における界面アブレーション層11の全体に対し、または、上記積層体における界面アブレーション層11における、少なくとも1つのワーク小片2が貼付されている位置に対し、活性エネルギー線を照射することによって、界面アブレーション層11を全体的または局所的に硬化させる硬化工程を備えていてもよい。この硬化工程は、上述した分離工程の前に行ってもよく、または、上述した分離工程と同時に行ってもよい。 When the interfacial abrasion layer 11 in the present embodiment is an adhesive layer composed of the active energy ray-curable adhesive described above, the device manufacturing method described above may further include the following curing step. . That is, for the entire interfacial ablation layer 11 in a laminate in which a plurality of work pieces 2 are held on the surface on the interfacial ablation layer 11 side, or at least one work piece in the interfacial ablation layer 11 in the laminate A curing step may be provided for curing the interfacial ablation layer 11 entirely or locally by irradiating the position where 2 is attached with an active energy ray. This curing step may be performed prior to the separation step described above, or may be performed simultaneously with the separation step described above.
 上述の通り、活性エネルギー線の照射により、界面アブレーション層11を全体的または局所的に硬化させることにより、ワークハンドリングシート1におけるワーク小片2に対する粘着力を低下させることができ、界面アブレーションを生じさせたときに、良好にワーク小片2を分離し易くなる。硬化工程における活性エネルギー線の照射は、公知の手法を用いて行ってよく、例えば、光源として高圧水銀ランプや紫外線LEDを備える紫外線照射装置や、分離工程でも使用されるレーザー光照射装置を使用してもよい。硬化工程と分離工程とを同時に行う場合には、レーザー光照射装置を用いたレーザー光4の照射を、活性エネルギー線の照射を兼ねたものとして行うことが好ましい。 As described above, by curing the interfacial ablation layer 11 wholly or locally by irradiation with active energy rays, the adhesion of the work handling sheet 1 to the work piece 2 can be reduced, and interfacial abrasion occurs. 2, it becomes easy to separate the small work piece 2 satisfactorily. Irradiation of active energy rays in the curing step may be performed using a known technique, for example, an ultraviolet irradiation device equipped with a high-pressure mercury lamp or an ultraviolet LED as a light source, or a laser light irradiation device used in the separation step. may When the curing process and the separation process are performed simultaneously, it is preferable to perform the irradiation with the laser light 4 using the laser light irradiation device in combination with the irradiation with the active energy ray.
 上述したデバイス製造方法は、準備工程、配置工程、硬化工程および分離工程以外の工程を備えていてもよい。例えば、準備工程と分離工程との間の任意のタイミングにおいて、グラインド、ダイボンディング、ワイヤーボンディング、モールディング、検査、転写工程等を行っても良い。 The device manufacturing method described above may include processes other than the preparation process, placement process, curing process, and separation process. For example, grinding, die bonding, wire bonding, molding, inspection, transfer process, etc. may be performed at any timing between the preparation process and the separation process.
 以上説明したデバイス製造方法によれば、使用するワーク小片2や対象物3を適宜選択することで様々なデバイスを製造することができる。例えば、ワーク小片2として、ミニ発光ダイオードおよびマイクロ発光ダイオードから選択される発光ダイオードを用いた場合には、そのような発光ダイオードを複数備える発光装置を製造することができ、より具体的にはディスプレイを製造することができる。特に、マイクロ発光ダイオードを画素として備えるディスプレイや、複数のミニ発光ダイオードをバックライトとして備えるディスプレイを製造することができる。 According to the device manufacturing method described above, various devices can be manufactured by appropriately selecting the work piece 2 and the target object 3 to be used. For example, when a light emitting diode selected from mini light emitting diodes and micro light emitting diodes is used as the work piece 2, a light emitting device comprising a plurality of such light emitting diodes can be manufactured, more specifically a display can be manufactured. In particular, it is possible to produce displays with micro LEDs as pixels and displays with a plurality of mini LEDs as backlight.
 また、本実施形態に係るワークハンドリングシート1は、当該シート上に設けられた複数のワーク小片2のうち、所定のワーク小片2を選択的に除去する方法にも使用することができる。 In addition, the work handling sheet 1 according to this embodiment can also be used for a method of selectively removing a predetermined small work piece 2 out of a plurality of small work pieces 2 provided on the sheet.
 例えば、本実施形態に係るワークハンドリングシート1上にて複数の発光ダイオード等を製造した後、当該シート上にて発光ダイオードの検査を行う。そこで不良品と確認された発光ダイオードのみについて、界面アブレーションを生じさせてワークハンドリングシート1から脱離させ、除去することができる。 For example, after manufacturing a plurality of light-emitting diodes on the work handling sheet 1 according to this embodiment, the light-emitting diodes are inspected on the sheet. Therefore, only the light emitting diodes confirmed to be defective can be detached and removed from the work handling sheet 1 by causing interface abrasion.
 さらに、それら良品の集合を、ワークハンドリングシート1から出荷用シートに転写することもできる。このとき、界面アブレーション層11が前述した活性エネルギー線硬化性粘着剤から構成される場合には、当該界面アブレーション層11に対して活性エネルギー線を照射することで、ワークハンドリングシート1の発光ダイオードに対する粘着力を低下させて、良品の集合を出荷用シートに良好に転写することができる。その後、不良品が除去された位置には、別途作製した良品を再配置することで、良品のみが設けられたワークハンドリングシート1を得ることもできる。 Furthermore, it is also possible to transfer the set of good products from the work handling sheet 1 to the shipping sheet. At this time, when the interfacial ablation layer 11 is composed of the active energy ray-curable adhesive described above, by irradiating the interfacial ablation layer 11 with an active energy ray, the light emitting diodes of the work handling sheet 1 Adhesion can be reduced to allow good transfer of a set of good products to a shipping sheet. After that, by rearranging a separately manufactured non-defective product in the position where the defective product has been removed, it is possible to obtain the work handling sheet 1 on which only the non-defective product is provided.
 上記のような、界面アブレーションによって不良品を除去する方法では、シートのエキスパンドおよび不良品のピックアップを行う必要がないため、発光ダイオードの間隔の変更や、位置のズレが生じ難くい。そのため、出荷用シートに対して良好に転写し易いものとなる。 With the above method of removing defective products by interfacial ablation, there is no need to expand the sheet or pick up defective products, so it is difficult to change the spacing of the light-emitting diodes or cause misalignment. As a result, it can be easily and satisfactorily transferred to the shipping sheet.
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiments described above are described to facilitate understanding of the present invention, and are not described to limit the present invention. Therefore, each element disclosed in the above embodiments is meant to include all design changes and equivalents that fall within the technical scope of the present invention.
 例えば、本実施形態に係るワークハンドリングシート1における界面アブレーション層11と基材12との間、または基材12における界面アブレーション層11とは反対側の面には、他の層が積層されていてもよい。当該他の層の具体例としては、粘着剤層が挙げられる。この場合、当該粘着剤層側の面を支持台(ガラス板等の透明基板)に貼付した状態で、上述した分離工程等を行うことができる。 For example, another layer is laminated between the interfacial ablation layer 11 and the base material 12 in the work handling sheet 1 according to the present embodiment, or on the surface of the base material 12 opposite to the interfacial ablation layer 11. good too. A specific example of the other layer is an adhesive layer. In this case, the above-described separation step and the like can be performed in a state in which the adhesive layer side surface is adhered to a support base (a transparent substrate such as a glass plate).
 上記粘着剤層を構成する粘着剤としては、特に限定されないものの、活性エネルギー線を吸収し難く且つ活性エネルギー線を遮断し難いものが好ましい。この場合、当該粘着剤層を介してレーザー光を照射する場合に、当該レーザー光が界面アブレーション層11に到達し易くなり、良好な界面アブレーションを生じさせ易くなる。具体的には、上記粘着剤層を構成する粘着剤として、活性エネルギー線硬化性を有しない粘着剤を使用することが好ましく、特に活性エネルギー線硬化性成分を含有しない粘着剤を使用することが好ましい。活性エネルギー線硬化性を有しない粘着剤を使用することにより、上記レーザー光を照射した場合であっても上記粘着剤層が硬化することがなく、それにより透明基板からのワークハンドリングシート1の意図しない剥離を防ぐことも可能となる。上記粘着剤層の厚さとしては、特に限定されないものの、例えば、5~50μmであることが好ましい。 The adhesive that constitutes the adhesive layer is not particularly limited, but one that is difficult to absorb active energy rays and difficult to block active energy rays is preferable. In this case, when a laser beam is irradiated through the pressure-sensitive adhesive layer, the laser beam can easily reach the interface abrasion layer 11, and good interface abrasion can easily occur. Specifically, as the adhesive constituting the adhesive layer, it is preferable to use an adhesive that does not have active energy ray-curable properties, and in particular, an adhesive that does not contain an active energy ray-curable component is preferably used. preferable. By using an adhesive that does not have active energy ray curability, the adhesive layer does not harden even when irradiated with the laser beam, thereby making the work handling sheet 1 from a transparent substrate. It is also possible to prevent peeling that does not occur. Although the thickness of the pressure-sensitive adhesive layer is not particularly limited, it is preferably 5 to 50 μm, for example.
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。 Although the present invention will be described in more detail with reference to examples and the like, the scope of the present invention is not limited to these examples and the like.
〔実施例1〕
(1)粘着性組成物の調製
 アクリル酸2-エチルヘキシル70質量部と、アクリル酸2-ヒドロキシエチル30質量部とを、溶液重合法により重合させて、(メタ)アクリル酸エステル重合体を得た。この(メタ)アクリル酸エステル重合体に対し、そのアクリル酸2-ヒドロキシエチルに対して90モル%のメタクリロイルオキシエチルイソシアネート(MOI)を反応させて、側鎖に活性エネルギー線硬化性基が導入された(メタ)アクリル酸エステル共重合体(活性エネルギー線硬化型重合体(A))を得た。この活性エネルギー線硬化型重合体(A)の重量平均分子量(Mw)を前述の方法によって測定したところ、80万であった。
[Example 1]
(1) Preparation of Adhesive Composition 70 parts by mass of 2-ethylhexyl acrylate and 30 parts by mass of 2-hydroxyethyl acrylate were polymerized by a solution polymerization method to obtain a (meth)acrylate polymer. . This (meth)acrylic acid ester polymer is reacted with 90 mol % of methacryloyloxyethyl isocyanate (MOI) with respect to 2-hydroxyethyl acrylate to introduce an active energy ray-curable group into the side chain. A (meth)acrylic acid ester copolymer (active energy ray-curable polymer (A)) was thus obtained. When the weight average molecular weight (Mw) of this active energy ray-curable polymer (A) was measured by the method described above, it was 800,000.
 上記で得られた、活性エネルギー線硬化型重合体(A)100質量部(固形分換算,以下同じ)と、架橋剤としてのトリメチロールプロパン変性トリレンジイソシアネート(東ソー社製,商品名「コロネートL」)2.5質量部と、光重合開始剤としてのエタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)(BASF社製,製品名「Irugacure OXE02」)4質量部とを溶媒中で混合し、固形分濃度が30質量%の粘着性組成物の塗布液を得た。 100 parts by mass of the active energy ray-curable polymer (A) obtained above (in terms of solid content, hereinafter the same), and trimethylolpropane-modified tolylene diisocyanate (manufactured by Tosoh Corporation, trade name “Coronate L”) as a cross-linking agent ”) 2.5 parts by mass and ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-,1-(0-acetyloxime as a photopolymerization initiator ) (manufactured by BASF, product name “Irugacure OXE02”) and 4 parts by mass were mixed in a solvent to obtain a coating liquid of an adhesive composition having a solid content concentration of 30% by mass.
(2)ワークハンドリングシートの作製
 基材としての、片面が易接着処理されたポリエチレンテレフタレートフィルム(東洋紡製,製品名「コスモシャイン A4100」,厚さ:50μm)における易接着処理面に対して、上記工程(1)で得られた粘着性組成物の塗布液を塗布し、得られた塗膜を加熱により乾燥させた。これにより、基材上に厚さ30μmの界面アブレーション層(粘着剤層)を形成した。
(2) Preparation of work handling sheet As a base material, the above-mentioned The coating liquid of the adhesive composition obtained in step (1) was applied, and the obtained coating film was dried by heating. As a result, an interfacial abrasion layer (adhesive layer) having a thickness of 30 μm was formed on the substrate.
 続いて、界面アブレーション層における基材とは反対の面側と、厚さ38μmのポリエチレンテレフタレートフィルムの片面にシリコーン系の剥離剤層が形成されてなる剥離シート(リンテック社製,製品名「SP-PET381031」)の剥離面と貼り合わせた。これにより、剥離シート、界面アブレーション層および基材が順に積層されてなるワークハンドリングシートを得た。 Subsequently, a release sheet (manufactured by Lintec Corporation, product name "SP- PET381031”) was bonded to the release surface. As a result, a work handling sheet was obtained in which the release sheet, the interfacial abrasion layer and the substrate were laminated in this order.
(3)重量平均分子量の測定方法
 前述した重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて以下の条件で測定(GPC測定)した標準ポリスチレン換算の重量平均分子量である。
<測定条件>
・測定装置:東ソー社製,HLC-8320
・GPCカラム(以下の順に通過):東ソー社製
 TSK gel superH-H
 TSK gel superHM-H
 TSK gel superH2000
・測定溶媒:テトラヒドロフラン
・測定温度:40℃
(3) Measurement method of weight average molecular weight The weight average molecular weight (Mw) described above is a weight average molecular weight in terms of standard polystyrene measured using gel permeation chromatography (GPC) under the following conditions (GPC measurement).
<Measurement conditions>
・ Measuring device: HLC-8320 manufactured by Tosoh Corporation
・ GPC column (passed in the following order): TSK gel superH-H manufactured by Tosoh Corporation
TSK gel super HM-H
TSK gel super H2000
・Measurement solvent: tetrahydrofuran ・Measurement temperature: 40°C
〔実施例2~3および比較例1~3〕
 光重合開始剤の種類および含有量を表1に示すように変更する以外、実施例1と同様にしてワークハンドリングシートを製造した。なお、比較例1は、光重合開始剤を使用しなかった例である。
[Examples 2-3 and Comparative Examples 1-3]
A work handling sheet was produced in the same manner as in Example 1, except that the type and content of the photopolymerization initiator were changed as shown in Table 1. Comparative Example 1 is an example in which no photopolymerization initiator was used.
〔試験例1〕(紫外線吸光度の測定)
 実施例および比較例で製造したワークハンドリングシートから剥離シートを剥離し、界面アブレーション層を露出させた。このワークハンドリングシートについて、紫外・可視・近赤外分光光度計(島津製作所社製,製品名「UV-3600」)および付属の大形試料室(島津製作所社製,製品名「MPC-3100」)を用いて、紫外線吸光度を測定した。当該測定は、上記大形試料室に内蔵の積分球を使用して、スリット幅20nmにて、波長355nmの光線を、界面アブレーション層側の面に向けて照射させることで行った。結果を表1に示す。
[Test Example 1] (Measurement of UV absorbance)
The release sheets were peeled off from the work handling sheets produced in Examples and Comparative Examples to expose the interfacial ablation layer. For this work handling sheet, an ultraviolet / visible / near-infrared spectrophotometer (manufactured by Shimadzu Corporation, product name "UV-3600") and an attached large sample chamber (manufactured by Shimadzu Corporation, product name "MPC-3100" ) was used to measure the UV absorbance. The measurement was performed by using an integrating sphere built into the large sample chamber and irradiating a light beam with a wavelength of 355 nm with a slit width of 20 nm toward the surface on the interface ablation layer side. Table 1 shows the results.
〔試験例2〕(粘着力の測定)
 実施例および比較例にて製造したワークハンドリングシートを、25mm幅の短冊状に裁断した。得られた短冊状のワークハンドリングシートから剥離シートを剥離し、露出した界面アブレーション層の露出面を、鏡面加工してなるシリコンウエハの当該鏡面(ミラー面)に対して、温度23℃、相対湿度50%の環境下で、2kgゴムローラーを用いて貼付し、20分静置し、粘着力測定用サンプルとした。
[Test Example 2] (Measurement of adhesive strength)
The work handling sheets produced in Examples and Comparative Examples were cut into strips with a width of 25 mm. The release sheet was peeled off from the obtained strip-shaped work handling sheet, and the exposed surface of the exposed interface abrasion layer was placed against the mirror surface (mirror surface) of the mirror-finished silicon wafer at a temperature of 23 ° C. and a relative humidity. It was applied using a 2 kg rubber roller under an environment of 50%, and allowed to stand for 20 minutes to obtain a sample for adhesive strength measurement.
 その後、万能引張試験機(オリエンテック社製,製品名「テンシロンUTM-4-100」)を用い、シリコンウエハから、剥離速度300mm/min、剥離角度180°にてワークハンドリングシートを剥離し、JIS Z0237:2009に準じた180°引き剥がし法により、シリコンウエハのミラー面に対する粘着力(mN/25mm)を測定した。その結果を、紫外線照射前の粘着力として表1に示す。 After that, using a universal tensile tester (manufactured by Orientec, product name "Tensilon UTM-4-100"), the work handling sheet was peeled from the silicon wafer at a peeling speed of 300 mm / min and a peeling angle of 180 °, and JIS Adhesion (mN/25 mm) to the mirror surface of the silicon wafer was measured by the 180° peeling method according to Z0237:2009. The results are shown in Table 1 as adhesive strength before ultraviolet irradiation.
 また、上記と同様に得た粘着力測定用サンプルにおける界面アブレーション層に対し、基材を介して、光源として高圧水銀ランプを備えた紫外線照射装置(リンテック社製,製品名「RAD-2000」)を用いて紫外線を照射し(照度:230mW/cm,光量:190mJ/cm)、界面アブレーション層を硬化させた。この紫外線照射後の粘着力測定用サンプルについても、上記と同様にシリコンウエハのミラー面に対する粘着力(mN/25mm)を測定した。その結果を、紫外線照射後の粘着力として表1に示す。 In addition, an ultraviolet irradiation device equipped with a high-pressure mercury lamp as a light source (manufactured by Lintec Co., Ltd., product name "RAD-2000") was applied to the interface ablation layer in the sample for adhesion measurement obtained in the same manner as above, through the substrate. was used to irradiate ultraviolet rays (illuminance: 230 mW/cm 2 , light intensity: 190 mJ/cm 2 ) to cure the interface abrasion layer. Adhesive force (mN/25 mm) to the mirror surface of the silicon wafer was measured in the same manner as described above for this sample for adhesive force measurement after UV irradiation. The results are shown in Table 1 as adhesive strength after UV irradiation.
〔試験例3〕(レーザーリフトオフ適性の評価)
(1)ワークハンドリングシート上におけるチップの準備(準備工程)
 シリコンウエハ(#2000,厚さ:350μm)の片面に、ダイシングシート(リンテック社製,製品名「D-485H」)の粘着面を貼付した。続いて、当該ダイシングシートにおける上記粘着面の周縁部(シリコンウエハとは重ならない位置)に、ダイシング用リングフレームを付着させた。さらに、リングフレームの外径に合わせてダイシングシートを裁断した。その後、ダイシング装置(ディスコ社製,製品名「DFD6362」)を用いて、シリコンウエハを、300μm×300μmのサイズを有するチップにダイシングした。その後、ダイシングシートに対して、紫外線(照度230mW/cm,光量190mJ/cm)を照射した。これにより、ダイシングシート上に複数のチップが設けられてなる積層体を得た。
[Test Example 3] (Evaluation of suitability for laser lift-off)
(1) Chip preparation on work handling sheet (preparation process)
An adhesive surface of a dicing sheet (manufactured by Lintec, product name “D-485H”) was attached to one side of a silicon wafer (#2000, thickness: 350 μm). Subsequently, a ring frame for dicing was adhered to the periphery of the adhesive surface of the dicing sheet (the position not overlapping the silicon wafer). Furthermore, the dicing sheet was cut according to the outer diameter of the ring frame. Thereafter, the silicon wafer was diced into chips having a size of 300 μm×300 μm using a dicing machine (manufactured by Disco, product name “DFD6362”). After that, the dicing sheet was irradiated with ultraviolet light (illuminance: 230 mW/cm 2 , light amount: 190 mJ/cm 2 ). As a result, a laminate having a plurality of chips provided on the dicing sheet was obtained.
 続いて、実施例および比較例で製造したワークハンドリングシートから剥離シートを剥離し、それにより露出した露出面と、上記の通り得られた積層体における複数のチップが存在する面とを貼り合わせた。その後、複数のチップからダイシングシートを剥離した。これにより、複数のチップをダイシングシートからワークハンドリングシートに転写し、ワークハンドリングシート上に複数のチップが設けられてなる積層体を得た。 Subsequently, the release sheet was peeled off from the work handling sheets produced in Examples and Comparative Examples, and the exposed surface thus exposed was bonded to the surface on which the plurality of chips of the laminate obtained as described above existed. . After that, the dicing sheet was peeled off from the plurality of chips. As a result, a plurality of chips were transferred from the dicing sheet to the work handling sheet to obtain a laminate having a plurality of chips provided on the work handling sheet.
(2)レーザー光照射によるチップの分離(分離工程)
 上記工程(1)にて得られた、ワークハンドリングシート上に複数のチップが設けられてなる積層体について、レーザー光照射装置を用いて、ワークハンドリングシート越しにチップに対してレーザー光を照射した。
(2) Separation of chips by laser light irradiation (separation process)
For the laminate obtained in the above step (1), in which a plurality of chips are provided on the work handling sheet, the chips were irradiated with laser light through the work handling sheet using a laser light irradiation device. .
 具体的には、レーザー光照射装置(キーエンス社製,製品名「MD-U1000C」)を用いてワークハンドリングシート越しにチップに対して、波長355nmのレーザー光を照射した。当該照射は、チップ中央に対し、レーザー光スポットを、円を描くように順次照射することで行った。このとき、レーザー光スポットの直径は25μmとし、照射の軌跡として生じるリングの内径が65μmとなるように行った。その他の照射条件としては周波数:40kHz、スキャン速度:500mm/s、照射量:50μJ/shotとした。また、照射は、複数のチップの中から100個のチップ(縦10個x横10個のチップのまとまり)を選択し、それらに対して行った。 Specifically, the chip was irradiated with a laser beam with a wavelength of 355 nm through the work handling sheet using a laser beam irradiation device (manufactured by Keyence Corporation, product name "MD-U1000C"). The irradiation was performed by sequentially irradiating the center of the chip with a laser light spot so as to draw a circle. At this time, the diameter of the laser beam spot was set to 25 μm, and the inner diameter of the ring formed as the locus of irradiation was set to 65 μm. Other irradiation conditions were frequency: 40 kHz, scan speed: 500 mm/s, and irradiation amount: 50 μJ/shot. Also, 100 chips (a group of 10 chips in the vertical direction×10 chips in the horizontal direction) were selected from a plurality of chips and irradiated.
(3)ブリスターおよびチップ分離の確認
 以上の照射を行ったワークハンドリングシートおよびチップについて、ワークハンドリングシートにおける基材と界面アブレーション層との界面におけるブリスターの発生の有無、およびワークハンドリングシートからのチップの脱離の有無を確認し、以下の基準に基づいて、レーザーリフトオフ適性を評価した。結果を表1に示す。
 ◎…100個全てのチップの位置においてブリスターが発生し、且つ、100個全てのチップが脱離した。
 ○…ブリスターの発生および脱離が生じたチップの数が、80個以上、100個未満であった。
 ×…ブリスターの発生および脱離が生じたチップの数が、80個未満であった。
(3) Confirmation of blisters and chip separation Regarding the work handling sheet and chips irradiated as described above, the presence or absence of blisters at the interface between the base material and the interface ablation layer in the work handling sheet, and the separation of chips from the work handling sheet. The presence or absence of detachment was confirmed, and suitability for laser lift-off was evaluated based on the following criteria. Table 1 shows the results.
A: Blisters occurred at all 100 tips, and all 100 tips were detached.
◯: The number of chips on which blister formation and detachment occurred was 80 or more and less than 100.
x: The number of chips with blistering and detachment was less than 80.
 なお、表1に記載の略号等の詳細は以下の通りである。
 IrugacureOXE02:エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)(BASF社製,製品名「IrugacureOXE02」)
 Omnirad379:2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリノ-フェニル)ブタン-1-オン(IGM Resins社製,製品名「Omnirad379」)
 Omnirad651:2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(IGM Resins社製,製品名「Omnirad651」)
Details of abbreviations and the like in Table 1 are as follows.
IrugacureOXE02: Ethanone, 1-[9-ethyl-6-(2-methylbenzoyl)-9H-carbazol-3-yl]-, 1-(0-acetyloxime) (manufactured by BASF, product name "IrugacureOXE02")
Omnirad379: 2-dimethylamino-2-(4-methylbenzyl)-1-(4-morpholino-phenyl)butan-1-one (manufactured by IGM Resins, product name “Omnirad379”)
Omnirad651: 2,2-dimethoxy-1,2-diphenylethan-1-one (manufactured by IGM Resins, product name “Omnirad651”)
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 表1から明らかなように、実施例で製造したワークハンドリングシートは、レーザーリフトオフ適性に優れていた。 As is clear from Table 1, the work handling sheets produced in Examples were excellent in suitability for laser lift-off.
 本発明のワークハンドリングシートは、マイクロ発光ダイオードを画素として備えるディスプレイ等の製造に好適に使用することができる。 The work handling sheet of the present invention can be suitably used for manufacturing a display or the like having micro light-emitting diodes as pixels.
1…ワークハンドリングシート
 11…界面アブレーション層
 12…基材
 13…反応領域
2,2’…ワーク小片
3…対象物
4…レーザー光
5…ブリスター
6…レーザー光照射点
REFERENCE SIGNS LIST 1 work handling sheet 11 interface ablation layer 12 substrate 13 reaction regions 2, 2' work piece 3 object 4 laser beam 5 blister 6 laser beam irradiation point

Claims (16)

  1.  基材と、
     前記基材における片面側に積層され、ワーク小片を保持可能であるとともに、レーザー光の照射によって界面アブレーションする界面アブレーション層と
    を備えるワークハンドリングシートであって、
     前記界面アブレーション層が、光重合開始剤を含有し、
     前記ワークハンドリングシートは、波長355nmの光線の吸光度が1.5以上である
    ことを特徴とするワークハンドリングシート。
    a substrate;
    A work handling sheet comprising an interfacial ablation layer laminated on one side of the base material, capable of holding a small work piece, and performing interfacial ablation by irradiation with a laser beam,
    the interfacial ablation layer contains a photopolymerization initiator,
    A work handling sheet, wherein the work handling sheet has an absorbance of 1.5 or more for light having a wavelength of 355 nm.
  2.  前記光重合開始剤は、200nm以上、400nm以下の波長の範囲に吸収ピークを有することを特徴とする請求項1に記載のワークハンドリングシート。 The work handling sheet according to claim 1, wherein the photopolymerization initiator has an absorption peak in a wavelength range of 200 nm or more and 400 nm or less.
  3.  前記界面アブレーション層は、粘着剤層であることを特徴とする請求項1または2に記載のワークハンドリングシート。 The work handling sheet according to claim 1 or 2, wherein the interfacial abrasion layer is an adhesive layer.
  4.  前記粘着剤層を構成する粘着剤は、活性エネルギー線硬化性粘着剤であることを特徴とする請求項3に記載のワークハンドリングシート。 The work handling sheet according to claim 3, wherein the adhesive constituting the adhesive layer is an active energy ray-curable adhesive.
  5.  前記粘着剤層を構成する粘着剤は、アクリル系粘着剤であることを特徴とする請求項3または4に記載のワークハンドリングシート。 The work handling sheet according to claim 3 or 4, wherein the adhesive constituting the adhesive layer is an acrylic adhesive.
  6.  前記レーザー光は、紫外域の波長を有するものであることを特徴とする請求項1~5のいずれか一項に記載のワークハンドリングシート。 The work handling sheet according to any one of claims 1 to 5, wherein the laser light has a wavelength in the ultraviolet region.
  7.  前記界面アブレーション層に界面アブレーションを生じさせたときに、当該界面アブレーションが生じた位置においてブリスターが形成されることを特徴とする請求項1~6のいずれか一項に記載のワークハンドリングシート。 The work handling sheet according to any one of claims 1 to 6, characterized in that when interfacial ablation is caused in the interfacial ablation layer, blisters are formed at positions where the interfacial ablation occurs.
  8.  前記界面アブレーション層において局所的に生じさせた界面アブレーションによって、前記界面アブレーション層における前記基材とは反対の面上に保持された複数のワーク小片のうちの任意のワーク小片を、前記界面アブレーション層から選択的に分離するために使用されるものであることを特徴とする請求項1~7のいずれか一項に記載のワークハンドリングシート。 Any of a plurality of work pieces held on the surface of the interface ablation layer opposite to the base material is removed from the interface ablation layer by the interface ablation locally generated in the interface ablation layer. The work handling sheet according to any one of claims 1 to 7, which is used for selectively separating from.
  9.  前記ワーク小片は、前記界面アブレーション層における前記基材とは反対の面上に保持されたワークを当該面上において個片化することで得られたものであることを特徴とする請求項8に記載のワークハンドリングシート。 9. The work piece according to claim 8, wherein the work pieces are obtained by singulating a work held on a surface of the interfacial ablation layer opposite to the base material, on the surface of the work piece. Described work handling sheet.
  10.  前記ワーク小片は、半導体部品および半導体装置から選択される少なくとも1種であることを特徴とする請求項8または9に記載のワークハンドリングシート。 The work handling sheet according to claim 8 or 9, wherein the small work piece is at least one selected from semiconductor parts and semiconductor devices.
  11.  前記ワーク小片は、ミニ発光ダイオードおよびマイクロ発光ダイオードから選択される発光ダイオードであることを特徴とする請求項8~10のいずれか一項に記載のワークハンドリングシート。 The work handling sheet according to any one of claims 8 to 10, wherein the work pieces are light emitting diodes selected from mini light emitting diodes and micro light emitting diodes.
  12.  基材と、前記基材における片面側に積層された、光重合開始剤を含有する界面アブレーション層とを備え、波長355nmの光線の吸光度が1.5以上であるワークハンドリングシートにおける、前記界面アブレーション層側の面上に複数のワーク小片が保持されてなる積層体を準備する準備工程と、
     前記ワーク小片を受容可能な対象物に対して、前記積層体における前記ワーク小片側の面が向かい合うように前記積層体を配置する配置工程と、
     前記積層体における前記界面アブレーション層における、少なくとも1つの前記ワーク小片が貼付されている位置に対し、レーザー光を照射して、前記界面アブレーション層における前記照射された位置において界面アブレーションを生じさせることで、当該界面アブレーションが生じた位置に存在する前記ワーク小片を前記ワークハンドリングシートから分離し、前記ワーク小片を前記対象物上に載置する分離工程と
    を備えることを特徴とするデバイス製造方法。
    A work handling sheet comprising a base material and an interface ablation layer containing a photopolymerization initiator laminated on one side of the base material, and having an absorbance of 1.5 or more for light with a wavelength of 355 nm. a preparation step of preparing a laminate in which a plurality of work pieces are held on the layer side surface;
    an arrangement step of arranging the laminate so that the surface of the laminate on the side of the small work piece faces an object capable of receiving the small work piece;
    By irradiating a laser beam to a position on the interface ablation layer of the laminate to which at least one of the work pieces is attached to cause interface ablation at the irradiated position on the interface ablation layer. and a separating step of separating the small work piece existing at the position where the interface abrasion has occurred from the work handling sheet and placing the small work piece on the object.
  13.  前記準備工程においては、前記界面アブレーション層における前記基材とは反対の面上に保持されたワークを当該面上において個片化することで、前記ワーク小片を得ることを特徴とする請求項12に記載のデバイス製造方法。 12. In the preparation step, the workpiece pieces are obtained by singulating a workpiece held on a surface of the interfacial ablation layer opposite to the base material on the surface of the interface abrasion layer. The device manufacturing method described in .
  14.  前記ワーク小片は、半導体部品および半導体装置から選択される少なくとも1種であることを特徴とする請求項12または13に記載のデバイス製造方法。 The device manufacturing method according to claim 12 or 13, wherein the work piece is at least one selected from a semiconductor component and a semiconductor device.
  15.  ミニ発光ダイオードおよびマイクロ発光ダイオードから選択される発光ダイオードを前記ワーク小片として用いて、前記発光ダイオードを複数備える発光装置を製造することを特徴とする請求項12~14のいずれか一項に記載のデバイス製造方法。 The light-emitting device according to any one of claims 12 to 14, wherein a light-emitting diode selected from mini-light-emitting diodes and micro-light-emitting diodes is used as the work piece to manufacture a light-emitting device comprising a plurality of the light-emitting diodes. Device manufacturing method.
  16.  前記発光装置は、ディスプレイであることを特徴とする請求項15に記載のデバイス製造方法。 The device manufacturing method according to claim 15, wherein the light emitting device is a display.
PCT/JP2022/000964 2021-03-26 2022-01-13 Workpiece handling sheet and device manufacturing method WO2022201766A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020237005270A KR20230161411A (en) 2021-03-26 2022-01-13 Work handling sheets and device manufacturing methods
JP2022530951A JP7325634B2 (en) 2021-03-26 2022-01-13 Work handling sheet and device manufacturing method
CN202280007251.5A CN116368003A (en) 2021-03-26 2022-01-13 Workpiece processing sheet and device manufacturing method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-053427 2021-03-26
JP2021053427 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022201766A1 true WO2022201766A1 (en) 2022-09-29

Family

ID=83396741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000964 WO2022201766A1 (en) 2021-03-26 2022-01-13 Workpiece handling sheet and device manufacturing method

Country Status (5)

Country Link
JP (1) JP7325634B2 (en)
KR (1) KR20230161411A (en)
CN (1) CN116368003A (en)
TW (1) TW202239036A (en)
WO (1) WO2022201766A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251359A (en) * 2009-04-10 2010-11-04 Sony Corp Device transferring method
JP2014515883A (en) * 2011-04-11 2014-07-03 エヌディーエスユー リサーチ ファウンデーション Laser-assisted selective transfer of separated parts
WO2019207920A1 (en) * 2018-04-26 2019-10-31 Jsr株式会社 Mounting method and mounting device for semiconductor elements
JP2020188261A (en) * 2017-06-12 2020-11-19 ユニカルタ・インコーポレイテッド Method of parallelly assembling discrete components on substrate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10193012B2 (en) 2015-05-21 2019-01-29 Goertek, Inc. Transferring method, manufacturing method, device and electronic apparatus of micro-LED
JP2021024991A (en) 2019-08-08 2021-02-22 日東電工株式会社 Detachment method of adherend and adhesive composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251359A (en) * 2009-04-10 2010-11-04 Sony Corp Device transferring method
JP2014515883A (en) * 2011-04-11 2014-07-03 エヌディーエスユー リサーチ ファウンデーション Laser-assisted selective transfer of separated parts
JP2020188261A (en) * 2017-06-12 2020-11-19 ユニカルタ・インコーポレイテッド Method of parallelly assembling discrete components on substrate
WO2019207920A1 (en) * 2018-04-26 2019-10-31 Jsr株式会社 Mounting method and mounting device for semiconductor elements

Also Published As

Publication number Publication date
TW202239036A (en) 2022-10-01
CN116368003A (en) 2023-06-30
JP7325634B2 (en) 2023-08-14
JPWO2022201766A1 (en) 2022-09-29
KR20230161411A (en) 2023-11-27

Similar Documents

Publication Publication Date Title
KR101880644B1 (en) Surface protective sheet
JP6580219B2 (en) Adhesive sheet and method for producing processed device-related member
JP5901422B2 (en) Semiconductor wafer dicing method and semiconductor processing dicing tape used therefor
JP5379919B1 (en) Adhesive tape for semiconductor processing
WO2018181240A1 (en) Adhesive tape for semiconductor wafer surface protection, and semiconductor wafer processing method
KR20170016814A (en) Dicing sheet
JPWO2019181731A1 (en) Manufacturing method of adhesive tape and semiconductor device
KR102478993B1 (en) Method for manufacturing adhesive sheet for stealth dicing and semiconductor device
JP7325403B2 (en) Work processing sheet
JP7382690B2 (en) Workpiece processing sheet
JP7325634B2 (en) Work handling sheet and device manufacturing method
JP7393994B2 (en) Method for evaluating adhesive strength of tape for semiconductor processing, method for manufacturing tape for semiconductor processing, and tape for semiconductor processing
JP7146145B1 (en) Work handling sheet and device manufacturing method
KR102481244B1 (en) Method for manufacturing adhesive sheet for stealth dicing and semiconductor device
WO2022153877A1 (en) Workpiece handling sheet, method for handling small workpiece item, device manufacturing method, and use of workpiece handling sheet
WO2022201767A1 (en) Workpiece handling sheet and device manufacturing method
KR102560374B1 (en) Method for manufacturing adhesive sheet for stealth dicing and semiconductor device
WO2022153745A1 (en) Workpiece handling sheet and device manufacturing method
JP2023097043A (en) Work handling sheet and device manufacturing method
TW202101550A (en) Work processing sheet
KR20230129372A (en) Work handling sheets and device manufacturing methods

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022530951

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774571

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774571

Country of ref document: EP

Kind code of ref document: A1