WO2022153877A1 - Workpiece handling sheet, method for handling small workpiece item, device manufacturing method, and use of workpiece handling sheet - Google Patents
Workpiece handling sheet, method for handling small workpiece item, device manufacturing method, and use of workpiece handling sheet Download PDFInfo
- Publication number
- WO2022153877A1 WO2022153877A1 PCT/JP2021/048936 JP2021048936W WO2022153877A1 WO 2022153877 A1 WO2022153877 A1 WO 2022153877A1 JP 2021048936 W JP2021048936 W JP 2021048936W WO 2022153877 A1 WO2022153877 A1 WO 2022153877A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- work
- interfacial
- ablation
- ablation layer
- interface
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 13
- 238000002679 ablation Methods 0.000 claims abstract description 199
- 239000000463 material Substances 0.000 claims abstract description 56
- 238000006243 chemical reaction Methods 0.000 claims abstract description 44
- 239000010410 layer Substances 0.000 claims description 180
- 239000004820 Pressure-sensitive adhesive Substances 0.000 claims description 37
- 239000006097 ultraviolet radiation absorber Substances 0.000 claims description 27
- 238000000926 separation method Methods 0.000 claims description 24
- 239000003999 initiator Substances 0.000 claims description 20
- 230000001678 irradiating effect Effects 0.000 claims description 16
- 239000000654 additive Substances 0.000 claims description 11
- 230000000996 additive effect Effects 0.000 claims description 9
- -1 2-hydroxypropyl Chemical group 0.000 description 46
- 239000000853 adhesive Substances 0.000 description 39
- 230000001070 adhesive effect Effects 0.000 description 39
- 239000000178 monomer Substances 0.000 description 38
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 37
- 229920000642 polymer Polymers 0.000 description 35
- 125000000524 functional group Chemical group 0.000 description 27
- 238000005259 measurement Methods 0.000 description 23
- 239000006096 absorbing agent Substances 0.000 description 22
- 229920006243 acrylic copolymer Polymers 0.000 description 22
- 239000000203 mixture Substances 0.000 description 22
- 150000001875 compounds Chemical class 0.000 description 21
- 229920005989 resin Polymers 0.000 description 18
- 239000011347 resin Substances 0.000 description 18
- 238000009281 ultraviolet germicidal irradiation Methods 0.000 description 16
- 238000000576 coating method Methods 0.000 description 14
- 239000012790 adhesive layer Substances 0.000 description 13
- 239000011248 coating agent Substances 0.000 description 12
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 11
- 238000002156 mixing Methods 0.000 description 11
- 230000000052 comparative effect Effects 0.000 description 10
- 239000003431 cross linking reagent Substances 0.000 description 10
- 230000001681 protective effect Effects 0.000 description 9
- 238000002835 absorbance Methods 0.000 description 7
- 125000003277 amino group Chemical group 0.000 description 7
- 125000000623 heterocyclic group Chemical group 0.000 description 7
- 239000007788 liquid Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- VMRIVYANZGSGRV-UHFFFAOYSA-N 4-phenyl-2h-triazin-5-one Chemical compound OC1=CN=NN=C1C1=CC=CC=C1 VMRIVYANZGSGRV-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- CEQGYPPMTKWBIU-UHFFFAOYSA-N Octyl propanoate Chemical compound CCCCCCCCOC(=O)CC CEQGYPPMTKWBIU-UHFFFAOYSA-N 0.000 description 6
- 125000000217 alkyl group Chemical group 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 6
- 238000005227 gel permeation chromatography Methods 0.000 description 6
- 229920000058 polyacrylate Polymers 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- 239000007983 Tris buffer Substances 0.000 description 5
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 239000000758 substrate Substances 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 4
- 125000002723 alicyclic group Chemical group 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical compound C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 4
- 239000012965 benzophenone Substances 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 150000002894 organic compounds Chemical class 0.000 description 4
- 229920000728 polyester Polymers 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 229910052710 silicon Inorganic materials 0.000 description 4
- 239000010703 silicon Substances 0.000 description 4
- FIDRAVVQGKNYQK-UHFFFAOYSA-N 1,2,3,4-tetrahydrotriazine Chemical compound C1NNNC=C1 FIDRAVVQGKNYQK-UHFFFAOYSA-N 0.000 description 3
- MEZZCSHVIGVWFI-UHFFFAOYSA-N 2,2'-Dihydroxy-4-methoxybenzophenone Chemical compound OC1=CC(OC)=CC=C1C(=O)C1=CC=CC=C1O MEZZCSHVIGVWFI-UHFFFAOYSA-N 0.000 description 3
- KWVGIHKZDCUPEU-UHFFFAOYSA-N 2,2-dimethoxy-2-phenylacetophenone Chemical compound C=1C=CC=CC=1C(OC)(OC)C(=O)C1=CC=CC=C1 KWVGIHKZDCUPEU-UHFFFAOYSA-N 0.000 description 3
- PUBNJSZGANKUGX-UHFFFAOYSA-N 2-(dimethylamino)-2-[(4-methylphenyl)methyl]-1-(4-morpholin-4-ylphenyl)butan-1-one Chemical compound C=1C=C(N2CCOCC2)C=CC=1C(=O)C(CC)(N(C)C)CC1=CC=C(C)C=C1 PUBNJSZGANKUGX-UHFFFAOYSA-N 0.000 description 3
- OMIGHNLMNHATMP-UHFFFAOYSA-N 2-hydroxyethyl prop-2-enoate Chemical compound OCCOC(=O)C=C OMIGHNLMNHATMP-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- KWOLFJPFCHCOCG-UHFFFAOYSA-N Acetophenone Chemical compound CC(=O)C1=CC=CC=C1 KWOLFJPFCHCOCG-UHFFFAOYSA-N 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 125000005396 acrylic acid ester group Chemical group 0.000 description 3
- QRUDEWIWKLJBPS-UHFFFAOYSA-N benzotriazole Chemical compound C1=CC=C2N[N][N]C2=C1 QRUDEWIWKLJBPS-UHFFFAOYSA-N 0.000 description 3
- 239000012964 benzotriazole Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 125000003700 epoxy group Chemical group 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- RBQRWNWVPQDTJJ-UHFFFAOYSA-N methacryloyloxyethyl isocyanate Chemical compound CC(=C)C(=O)OCCN=C=O RBQRWNWVPQDTJJ-UHFFFAOYSA-N 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001296 polysiloxane Polymers 0.000 description 3
- 229920002635 polyurethane Polymers 0.000 description 3
- 239000004814 polyurethane Substances 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 2
- 229920003067 (meth)acrylic acid ester copolymer Polymers 0.000 description 2
- JYEUMXHLPRZUAT-UHFFFAOYSA-N 1,2,3-triazine Chemical compound C1=CN=NN=C1 JYEUMXHLPRZUAT-UHFFFAOYSA-N 0.000 description 2
- 239000012956 1-hydroxycyclohexylphenyl-ketone Substances 0.000 description 2
- ONTODYXHFBKCDK-UHFFFAOYSA-N 2-(2,4-dimethylphenyl)-1,3,5-triazine Chemical compound CC1=CC(C)=CC=C1C1=NC=NC=N1 ONTODYXHFBKCDK-UHFFFAOYSA-N 0.000 description 2
- GOXQRTZXKQZDDN-UHFFFAOYSA-N 2-Ethylhexyl acrylate Chemical compound CCCCC(CC)COC(=O)C=C GOXQRTZXKQZDDN-UHFFFAOYSA-N 0.000 description 2
- NJWGQARXZDRHCD-UHFFFAOYSA-N 2-methylanthraquinone Chemical compound C1=CC=C2C(=O)C3=CC(C)=CC=C3C(=O)C2=C1 NJWGQARXZDRHCD-UHFFFAOYSA-N 0.000 description 2
- GAWIXWVDTYZWAW-UHFFFAOYSA-N C[CH]O Chemical group C[CH]O GAWIXWVDTYZWAW-UHFFFAOYSA-N 0.000 description 2
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- QIGBRXMKCJKVMJ-UHFFFAOYSA-N Hydroquinone Chemical compound OC1=CC=C(O)C=C1 QIGBRXMKCJKVMJ-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- KYQCOXFCLRTKLS-UHFFFAOYSA-N Pyrazine Chemical compound C1=CN=CC=N1 KYQCOXFCLRTKLS-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KAESVJOAVNADME-UHFFFAOYSA-N Pyrrole Chemical compound C=1C=CNC=1 KAESVJOAVNADME-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 239000003522 acrylic cement Substances 0.000 description 2
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- MQDJYUACMFCOFT-UHFFFAOYSA-N bis[2-(1-hydroxycyclohexyl)phenyl]methanone Chemical compound C=1C=CC=C(C(=O)C=2C(=CC=CC=2)C2(O)CCCCC2)C=1C1(O)CCCCC1 MQDJYUACMFCOFT-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 2
- VFHVQBAGLAREND-UHFFFAOYSA-N diphenylphosphoryl-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 VFHVQBAGLAREND-UHFFFAOYSA-N 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- 150000002148 esters Chemical class 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 238000010030 laminating Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 2
- ZQBAKBUEJOMQEX-UHFFFAOYSA-N phenyl salicylate Chemical compound OC1=CC=CC=C1C(=O)OC1=CC=CC=C1 ZQBAKBUEJOMQEX-UHFFFAOYSA-N 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000002985 plastic film Substances 0.000 description 2
- 229920006255 plastic film Polymers 0.000 description 2
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 2
- 229920001707 polybutylene terephthalate Polymers 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 239000011112 polyethylene naphthalate Substances 0.000 description 2
- 229920001228 polyisocyanate Polymers 0.000 description 2
- 239000005056 polyisocyanate Substances 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 229920001289 polyvinyl ether Polymers 0.000 description 2
- 239000005060 rubber Substances 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000005488 sandblasting Methods 0.000 description 2
- 239000013464 silicone adhesive Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical class CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 2
- RLUFBDIRFJGKLY-UHFFFAOYSA-N (2,3-dichlorophenyl)-phenylmethanone Chemical compound ClC1=CC=CC(C(=O)C=2C=CC=CC=2)=C1Cl RLUFBDIRFJGKLY-UHFFFAOYSA-N 0.000 description 1
- CVBWTNHDKVVFMI-LBPRGKRZSA-N (2s)-1-[4-[2-[6-amino-8-[(6-bromo-1,3-benzodioxol-5-yl)sulfanyl]purin-9-yl]ethyl]piperidin-1-yl]-2-hydroxypropan-1-one Chemical compound C1CN(C(=O)[C@@H](O)C)CCC1CCN1C2=NC=NC(N)=C2N=C1SC(C(=C1)Br)=CC2=C1OCO2 CVBWTNHDKVVFMI-LBPRGKRZSA-N 0.000 description 1
- MSAHTMIQULFMRG-UHFFFAOYSA-N 1,2-diphenyl-2-propan-2-yloxyethanone Chemical compound C=1C=CC=CC=1C(OC(C)C)C(=O)C1=CC=CC=C1 MSAHTMIQULFMRG-UHFFFAOYSA-N 0.000 description 1
- YJTKZCDBKVTVBY-UHFFFAOYSA-N 1,3-Diphenylbenzene Chemical group C1=CC=CC=C1C1=CC=CC(C=2C=CC=CC=2)=C1 YJTKZCDBKVTVBY-UHFFFAOYSA-N 0.000 description 1
- DKEGCUDAFWNSSO-UHFFFAOYSA-N 1,8-dibromooctane Chemical compound BrCCCCCCCCBr DKEGCUDAFWNSSO-UHFFFAOYSA-N 0.000 description 1
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- GIMQKKFOOYOQGB-UHFFFAOYSA-N 2,2-diethoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCC)(OCC)C(=O)C1=CC=CC=C1 GIMQKKFOOYOQGB-UHFFFAOYSA-N 0.000 description 1
- BTJPUDCSZVCXFQ-UHFFFAOYSA-N 2,4-diethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(CC)=CC(CC)=C3SC2=C1 BTJPUDCSZVCXFQ-UHFFFAOYSA-N 0.000 description 1
- LCHAFMWSFCONOO-UHFFFAOYSA-N 2,4-dimethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C)=CC(C)=C3SC2=C1 LCHAFMWSFCONOO-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- KIPGIZCKZDHTJB-UHFFFAOYSA-N 2-(4-phenylphenyl)-1,3,5-triazine Chemical compound C1=CC=CC=C1C1=CC=C(C=2N=CN=CN=2)C=C1 KIPGIZCKZDHTJB-UHFFFAOYSA-N 0.000 description 1
- UMLWXYJZDNNBTD-UHFFFAOYSA-N 2-(dimethylamino)-1-phenylethanone Chemical compound CN(C)CC(=O)C1=CC=CC=C1 UMLWXYJZDNNBTD-UHFFFAOYSA-N 0.000 description 1
- XOGPDSATLSAZEK-UHFFFAOYSA-N 2-Aminoanthraquinone Chemical compound C1=CC=C2C(=O)C3=CC(N)=CC=C3C(=O)C2=C1 XOGPDSATLSAZEK-UHFFFAOYSA-N 0.000 description 1
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 1
- 125000000022 2-aminoethyl group Chemical group [H]C([*])([H])C([H])([H])N([H])[H] 0.000 description 1
- DZZAHLOABNWIFA-UHFFFAOYSA-N 2-butoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCCCC)C(=O)C1=CC=CC=C1 DZZAHLOABNWIFA-UHFFFAOYSA-N 0.000 description 1
- ZCDADJXRUCOCJE-UHFFFAOYSA-N 2-chlorothioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(Cl)=CC=C3SC2=C1 ZCDADJXRUCOCJE-UHFFFAOYSA-N 0.000 description 1
- BQBSIHIZDSHADD-UHFFFAOYSA-N 2-ethenyl-4,5-dihydro-1,3-oxazole Chemical compound C=CC1=NCCO1 BQBSIHIZDSHADD-UHFFFAOYSA-N 0.000 description 1
- KMNCBSZOIQAUFX-UHFFFAOYSA-N 2-ethoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OCC)C(=O)C1=CC=CC=C1 KMNCBSZOIQAUFX-UHFFFAOYSA-N 0.000 description 1
- SJEBAWHUJDUKQK-UHFFFAOYSA-N 2-ethylanthraquinone Chemical compound C1=CC=C2C(=O)C3=CC(CC)=CC=C3C(=O)C2=C1 SJEBAWHUJDUKQK-UHFFFAOYSA-N 0.000 description 1
- YJQMXVDKXSQCDI-UHFFFAOYSA-N 2-ethylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(CC)=CC=C3SC2=C1 YJQMXVDKXSQCDI-UHFFFAOYSA-N 0.000 description 1
- XMLYCEVDHLAQEL-UHFFFAOYSA-N 2-hydroxy-2-methyl-1-phenylpropan-1-one Chemical compound CC(C)(O)C(=O)C1=CC=CC=C1 XMLYCEVDHLAQEL-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- BQZJOQXSCSZQPS-UHFFFAOYSA-N 2-methoxy-1,2-diphenylethanone Chemical compound C=1C=CC=CC=1C(OC)C(=O)C1=CC=CC=C1 BQZJOQXSCSZQPS-UHFFFAOYSA-N 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- LWRBVKNFOYUCNP-UHFFFAOYSA-N 2-methyl-1-(4-methylsulfanylphenyl)-2-morpholin-4-ylpropan-1-one Chemical compound C1=CC(SC)=CC=C1C(=O)C(C)(C)N1CCOCC1 LWRBVKNFOYUCNP-UHFFFAOYSA-N 0.000 description 1
- JEHFRMABGJJCPF-UHFFFAOYSA-N 2-methylprop-2-enoyl isocyanate Chemical compound CC(=C)C(=O)N=C=O JEHFRMABGJJCPF-UHFFFAOYSA-N 0.000 description 1
- MYISVPVWAQRUTL-UHFFFAOYSA-N 2-methylthioxanthen-9-one Chemical compound C1=CC=C2C(=O)C3=CC(C)=CC=C3SC2=C1 MYISVPVWAQRUTL-UHFFFAOYSA-N 0.000 description 1
- LPIQIQPLUVLISR-UHFFFAOYSA-N 2-prop-1-en-2-yl-4,5-dihydro-1,3-oxazole Chemical compound CC(=C)C1=NCCO1 LPIQIQPLUVLISR-UHFFFAOYSA-N 0.000 description 1
- QOXOZONBQWIKDA-UHFFFAOYSA-N 3-hydroxypropyl Chemical group [CH2]CCO QOXOZONBQWIKDA-UHFFFAOYSA-N 0.000 description 1
- WHNPOQXWAMXPTA-UHFFFAOYSA-N 3-methylbut-2-enamide Chemical compound CC(C)=CC(N)=O WHNPOQXWAMXPTA-UHFFFAOYSA-N 0.000 description 1
- YKZUNWLMLRCVCW-UHFFFAOYSA-N 4-[2-(4-bicyclo[2.2.1]hept-2-enyl)ethyl]bicyclo[2.2.1]hept-2-ene Chemical compound C1CC(C2)C=CC21CCC1(C=C2)CC2CC1 YKZUNWLMLRCVCW-UHFFFAOYSA-N 0.000 description 1
- FROCQMFXPIROOK-UHFFFAOYSA-N 4-[4,6-bis(2,4-dimethylphenyl)-1,3,5-triazin-2-yl]benzene-1,3-diol Chemical compound CC1=CC(C)=CC=C1C1=NC(C=2C(=CC(C)=CC=2)C)=NC(C=2C(=CC(O)=CC=2)O)=N1 FROCQMFXPIROOK-UHFFFAOYSA-N 0.000 description 1
- SXIFAEWFOJETOA-UHFFFAOYSA-N 4-hydroxy-butyl Chemical group [CH2]CCCO SXIFAEWFOJETOA-UHFFFAOYSA-N 0.000 description 1
- 229920002126 Acrylic acid copolymer Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 241001050985 Disco Species 0.000 description 1
- 239000004593 Epoxy Chemical class 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- MWCLLHOVUTZFKS-UHFFFAOYSA-N Methyl cyanoacrylate Chemical compound COC(=O)C(=C)C#N MWCLLHOVUTZFKS-UHFFFAOYSA-N 0.000 description 1
- QHLLUGUDRWOLRN-UHFFFAOYSA-N OCCOC1=CC=C(C=C1)C(C(C)O)(O)C Chemical compound OCCOC1=CC=C(C=C1)C(C(C)O)(O)C QHLLUGUDRWOLRN-UHFFFAOYSA-N 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- PCNDJXKNXGMECE-UHFFFAOYSA-N Phenazine Natural products C1=CC=CC2=NC3=CC=CC=C3N=C21 PCNDJXKNXGMECE-UHFFFAOYSA-N 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 description 1
- 229920002125 Sokalan® Polymers 0.000 description 1
- 244000028419 Styrax benzoin Species 0.000 description 1
- 235000000126 Styrax benzoin Nutrition 0.000 description 1
- 235000008411 Sumatra benzointree Nutrition 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- GUCYFKSBFREPBC-UHFFFAOYSA-N [phenyl-(2,4,6-trimethylbenzoyl)phosphoryl]-(2,4,6-trimethylphenyl)methanone Chemical compound CC1=CC(C)=CC(C)=C1C(=O)P(=O)(C=1C=CC=CC=1)C(=O)C1=C(C)C=C(C)C=C1C GUCYFKSBFREPBC-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- BAPJBEWLBFYGME-UHFFFAOYSA-N acrylic acid methyl ester Natural products COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- HXBPYFMVGFDZFT-UHFFFAOYSA-N allyl isocyanate Chemical compound C=CCN=C=O HXBPYFMVGFDZFT-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 150000001541 aziridines Chemical class 0.000 description 1
- 125000004069 aziridinyl group Chemical group 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 229960002130 benzoin Drugs 0.000 description 1
- 235000010290 biphenyl Nutrition 0.000 description 1
- 239000004305 biphenyl Substances 0.000 description 1
- QDVNNDYBCWZVTI-UHFFFAOYSA-N bis[4-(ethylamino)phenyl]methanone Chemical compound C1=CC(NCC)=CC=C1C(=O)C1=CC=C(NCC)C=C1 QDVNNDYBCWZVTI-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 229940018557 citraconic acid Drugs 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000013329 compounding Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 125000002147 dimethylamino group Chemical group [H]C([H])([H])N(*)C([H])([H])[H] 0.000 description 1
- 208000028659 discharge Diseases 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- GFJVXXWOPWLRNU-UHFFFAOYSA-N ethenyl formate Chemical compound C=COC=O GFJVXXWOPWLRNU-UHFFFAOYSA-N 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- WUDNUHPRLBTKOJ-UHFFFAOYSA-N ethyl isocyanate Chemical compound CCN=C=O WUDNUHPRLBTKOJ-UHFFFAOYSA-N 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 235000019382 gum benzoic Nutrition 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 125000003707 hexyloxy group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])O* 0.000 description 1
- 150000002429 hydrazines Chemical class 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 125000004464 hydroxyphenyl group Chemical group 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 229920000554 ionomer Polymers 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 150000007974 melamines Chemical class 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 125000005397 methacrylic acid ester group Chemical group 0.000 description 1
- 125000006178 methyl benzyl group Chemical group 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 125000002950 monocyclic group Chemical group 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- TWCBCCIODCKPGX-UHFFFAOYSA-N octyl 2-[4-[4,6-bis(4-phenylphenyl)-1,3,5-triazin-2-yl]-3-hydroxyphenoxy]propanoate Chemical compound OC1=CC(OC(C)C(=O)OCCCCCCCC)=CC=C1C1=NC(C=2C=CC(=CC=2)C=2C=CC=CC=2)=NC(C=2C=CC(=CC=2)C=2C=CC=CC=2)=N1 TWCBCCIODCKPGX-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002918 oxazolines Chemical class 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229920001568 phenolic resin Polymers 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 229960000969 phenyl salicylate Drugs 0.000 description 1
- LYXOWKPVTCPORE-UHFFFAOYSA-N phenyl-(4-phenylphenyl)methanone Chemical compound C=1C=C(C=2C=CC=CC=2)C=CC=1C(=O)C1=CC=CC=C1 LYXOWKPVTCPORE-UHFFFAOYSA-N 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 239000004584 polyacrylic acid Substances 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920001083 polybutene Polymers 0.000 description 1
- 229920006267 polyester film Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920005678 polyethylene based resin Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000003505 polymerization initiator Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- RSVDRWTUCMTKBV-UHFFFAOYSA-N sbb057044 Chemical compound C12CC=CC2C2CC(OCCOC(=O)C=C)C1C2 RSVDRWTUCMTKBV-UHFFFAOYSA-N 0.000 description 1
- 229910052711 selenium Inorganic materials 0.000 description 1
- 239000011669 selenium Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 150000005846 sugar alcohols Polymers 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/30—Adhesives in the form of films or foils characterised by the adhesive composition
- C09J7/38—Pressure-sensitive adhesives [PSA]
- C09J7/381—Pressure-sensitive adhesives [PSA] based on macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
- C09J7/385—Acrylic polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/50—Working by transmitting the laser beam through or within the workpiece
- B23K26/57—Working by transmitting the laser beam through or within the workpiece the laser beam entering a face of the workpiece from which it is transmitted through the workpiece material to work on a different workpiece face, e.g. for effecting removal, fusion splicing, modifying or reforming
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/16—Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/023—Optical properties
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3477—Six-membered rings
- C08K5/3492—Triazines
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/02—Non-macromolecular additives
- C09J11/06—Non-macromolecular additives organic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J133/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J133/00—Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
- C09J133/04—Homopolymers or copolymers of esters
- C09J133/14—Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J201/00—Adhesives based on unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J5/00—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J7/00—Adhesives in the form of films or foils
- C09J7/30—Adhesives in the form of films or foils characterised by the adhesive composition
- C09J7/38—Pressure-sensitive adhesives [PSA]
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F21—LIGHTING
- F21S—NON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
- F21S2/00—Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09F—DISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
- G09F9/00—Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L33/00—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L33/48—Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
Definitions
- the present invention relates to a work handling sheet that can be used for handling workpiece small pieces such as semiconductor parts and semiconductor devices, a method for handling small workpiece pieces and a device manufacturing method using the work handling sheet, and the use of the work handling sheet.
- a work handling sheet that can be used to handle small pieces of work such as micro light emitting diodes, power devices, and MEMS (Micro Electro Mechanical Systems).
- each pixel is composed of micro light emitting diodes, and the light emission of each micro light emitting diode is controlled independently.
- a micro light emitting diode arranged on a supply substrate such as sapphire or glass on a wiring board provided with wiring.
- the use of laser light irradiation is being considered.
- the layer is irradiated with laser light to cause ablation of the layer at the irradiated position, thereby supporting the layer.
- a method of mounting a micro light emitting diode separated from the body (laser lift-off) on a wiring substrate has been studied (Patent Document 1). Since the laser beam is excellent in directivity and convergence, it is easy to control the irradiation position, and selective placement can be performed satisfactorily.
- the present invention has been made in view of such an actual situation, and an object of the present invention is to provide a work handling sheet capable of satisfactorily handling even fine work pieces.
- the present invention comprises a base material and an interfacial ablation layer laminated on one side of the base material, capable of holding small workpieces, and interfacially ablated by irradiation with laser light.
- a work handling sheet comprising the above, which is subjected to the first ultraviolet irradiation by irradiating ultraviolet rays having a wavelength of 365 nm with a light amount of 190 mJ / cm 2 , and further irradiating the work handling sheet with ultraviolet rays having a wavelength of 365 nm with a light amount of 950 mJ / cm 2 .
- the conversion efficiency when the interfacial ablation layer converts the light energy of the ultraviolet rays in the second ultraviolet irradiation into heat energy is 60% or more. (Invention 1).
- the interfacial ablation layer exhibits the above-mentioned conversion efficiency, so that the interfacial ablation is effectively performed when irradiated with laser light, whereby the work pieces are directed toward the object. It can be separated well.
- the interface ablation layer is preferably a pressure-sensitive adhesive layer composed of an active energy ray-curable pressure-sensitive adhesive or a non-active energy ray-curable pressure-sensitive adhesive (Invention 2).
- the interface ablation layer preferably contains at least one additive of an ultraviolet absorber and a photopolymerization initiator (Invention 3).
- the laser light has a wavelength in the ultraviolet region (Invention 4).
- the interfacial ablation layer is cured entirely or locally by irradiation with active energy rays, and interfacial ablation is locally generated in the interfacial ablation layer by irradiation with the laser beam.
- the present invention comprises a preparatory step of preparing a laminate in which a plurality of work pieces are held on the surface of the work handling sheet (inventions 1 to 6) on the interface ablation layer side, and the work pieces.
- the work piece existing at the position where the interfacial ablation occurs is made into the work.
- a method for handling small work pieces which comprises a separation step of separating the small pieces of work from the handling sheet and placing the small pieces of work on the object (Invention 7).
- the present invention comprises a preparatory step of preparing a laminate in which a plurality of work pieces are held on the surface of the work handling sheet (inventions 1 to 6) on the interface ablation layer side, and the work pieces.
- the work piece existing at the position where the interfacial ablation occurs is made into the work.
- the present invention provides a device manufacturing method comprising a separation step of separating from a handling sheet and placing the work piece on the object (Invention 8).
- the present invention provides the use of the work handling sheet (Invention 1 to 6) for handling small pieces of work (Invention 9).
- the work handling sheet according to the present invention can handle even fine work pieces satisfactorily.
- FIG. 1 shows a cross-sectional view of a work handling sheet according to an embodiment.
- the work handling sheet 1 shown in FIG. 1 includes a base material 12 and an interface ablation layer 11 laminated on one side of the base material 12.
- the interface ablation layer 11 can hold a small piece of work. That is, the work handling sheet 1 according to the present embodiment can hold the work pieces laminated on the surface of the interface ablation layer 11 opposite to the base material 12 in that state.
- the interface ablation layer 11 holds the work piece by exhibiting adhesiveness to the work piece.
- the interface ablation layer 11 preferably contains a pressure-sensitive adhesive as one of the components constituting the interface ablation layer 11, that is, a pressure-sensitive adhesive layer.
- the interfacial ablation layer 11 in the present embodiment is interfacial ablated by irradiation with laser light. That is, the interface ablation layer 11 locally ablates the interface in the region irradiated with the laser beam.
- the laser light is not particularly limited as long as it can cause interfacial ablation, and may be a laser light having any wavelength in the ultraviolet region, the visible light region, and the infrared region, and among them, the ultraviolet region. A laser beam having a wavelength of is preferable.
- the interfacial ablation means that a part of the components constituting the interfacial ablation layer 11 is evaporated or volatilized by the energy of the laser beam, and the gas generated thereby is the interface between the interfacial ablation layer 11 and the base material 12. It means that a gap (blister) is generated by accumulating in. In this case, the shape of the interface ablation layer 11 is changed by the blister, the work pieces are peeled off from the interface ablation layer 11, and the work pieces are separated.
- the ultraviolet rays having a wavelength of 365 nm are further emitted to 950 mJ / cm / cm with respect to the work handling sheet 1 to which the first ultraviolet rays are irradiated to irradiate the ultraviolet rays having a wavelength of 365 nm at a light amount of 190 mJ / cm 2 .
- the conversion efficiency when the interfacial ablation layer 11 converts the ultraviolet light energy in the second ultraviolet irradiation into heat energy is 60% or more. be.
- the work handling sheet 1 by satisfying the above conversion efficiency, interfacial ablation is efficiently generated, and the held work pieces can be satisfactorily separated from the interfacial ablation layer 11.
- the amount of laser light irradiation required to cause sufficient separation of the work pieces can be reduced, the operating cost of the laser light irradiation device can be reduced, and only the target work pieces can be easily separated satisfactorily.
- the accuracy is improved, and it is possible to prevent damage to the device, work pieces, etc. due to excessive laser light irradiation.
- Interface ablation layer The specific configuration and composition of the interface ablation layer 11 in the present embodiment are not particularly limited as long as they can hold small pieces of work and satisfy the above-mentioned conversion efficiency.
- the interface ablation layer 11 is preferably an adhesive layer, and in particular, the interface ablation layer 11 is an adhesive having active energy ray curability (active energy ray curable adhesive) or active energy ray curable. It is preferable that the pressure-sensitive adhesive layer is composed of a pressure-sensitive adhesive (non-active energy ray-curable pressure-sensitive adhesive).
- the interface ablation 11 preferably contains at least one additive of an ultraviolet absorber and a photopolymerization initiator from the viewpoint of easily satisfying the above-mentioned conversion efficiency.
- the interface ablation layer 11 is an adhesive layer composed of an active energy ray curable adhesive
- the work handling sheet 1 according to the present embodiment can be subjected to irradiation with active energy rays. Adhesion with small pieces of work can be reduced. Therefore, before the above-mentioned interface ablation is generated, or at the same time as the above-mentioned interface ablation, the adhesion is lowered by irradiation with active energy rays to separate the work pieces from the work handling sheet 1 according to the present embodiment. It will be possible to do it reliably. Further, it is possible to further reduce the irradiation amount of the laser beam required to cause sufficient separation of the work pieces.
- the adhesion to the work pieces is lowered by the irradiation with the active energy rays, it is possible to set the adhesion before the irradiation with the active energy rays to be higher.
- the work piece is transferred from another sheet or the like to the work handling sheet 1 according to the present embodiment, it is possible to prevent the work piece from remaining on the other sheet or the like and perform good transfer. It will be possible.
- the active energy ray-curable adhesive may be any of acrylic adhesive, rubber adhesive, silicone adhesive, urethane adhesive, polyester adhesive, polyvinyl ether adhesive and the like. Although it is good, it is preferably an acrylic pressure-sensitive adhesive from the viewpoint that it easily exerts a desired adhesive strength.
- the active energy ray-curable pressure-sensitive adhesive may be mainly composed of a polymer having active energy ray curability, or an active energy ray non-curable polymer (a polymer having no active energy ray curable property).
- the main component may be a mixture of a monomer having at least one active energy ray-curable group and / or an oligomer. Further, it may be a mixture of an active energy ray-curable polymer and an active energy ray-non-curable polymer, or has an active energy ray-curable polymer and at least one active energy ray-curable group. It may be a mixture of a monomer and / or an oligomer, or a mixture of three of them.
- the active energy ray-curable adhesive contains a polymer having active energy ray curability as a main component will be described below.
- the polymer having active energy ray curability is a (meth) acrylic acid ester (co) polymer (A) in which a functional group having energy ray curability (active energy ray curable group) is introduced into a side chain (hereinafter, "" It may be referred to as “active energy ray-curable polymer (A)").
- This active energy ray-curable polymer (A) is composed of an acrylic copolymer (a1) having a functional group-containing monomer unit and an unsaturated group-containing compound (a2) having a functional group bonded to the functional group. It is preferably obtained by reaction.
- (meth) acrylic acid ester means both acrylic acid ester and methacrylic acid ester. The same applies to other similar terms.
- the acrylic copolymer (a1) preferably contains a structural unit derived from a functional group-containing monomer and a structural unit derived from a (meth) acrylic acid ester monomer or a derivative thereof.
- the functional group-containing monomer as a constituent unit of the acrylic copolymer (a1) has a polymerizable double bond and a functional group such as a hydroxy group, a carboxy group, an amino group, a substituted amino group, and an epoxy group in the molecule. It is preferable that the monomer is contained in.
- hydroxy group-containing monomer examples include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxybutyl ( Examples thereof include meta) acrylate and 4-hydroxybutyl (meth) acrylate, which are used alone or in combination of two or more.
- carboxy group-containing monomer examples include ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, and citraconic acid. These may be used alone or in combination of two or more.
- carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, and citraconic acid. These may be used alone or in combination of two or more.
- amino group-containing monomer or the substituted amino group-containing monomer examples include aminoethyl (meth) acrylate and n-butylaminoethyl (meth) acrylate. These may be used alone or in combination of two or more.
- the (meth) acrylic acid ester monomer constituting the acrylic copolymer (a1) includes an alkyl (meth) acrylate having an alkyl group having 1 to 20 carbon atoms, for example, an alicyclic structure in the molecule.
- a monomer having an alicyclic structure (monomer containing an alicyclic structure) is preferably used.
- an alkyl (meth) acrylate having an alkyl group having 1 to 18 carbon atoms for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl ( Meta) acrylate, 2-ethylhexyl (meth) acrylate and the like are preferably used. These may be used individually by 1 type, and may be used in combination of 2 or more type.
- Examples of the alicyclic structure-containing monomer include cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, adamantyl (meth) acrylate, isobornyl (meth) acrylate, and dicyclopentenyl (meth) acrylate.
- (Meta) dicyclopentenyloxyethyl acrylate and the like are preferably used. These may be used individually by 1 type, and may be used in combination of 2 or more type.
- the acrylic copolymer (a1) contains the structural unit derived from the functional group-containing monomer in a proportion of preferably 1% by mass or more, particularly preferably 5% by mass or more, and further preferably 10% by mass or more. Further, the acrylic copolymer (a1) contains a structural unit derived from the functional group-containing monomer in a proportion of preferably 35% by mass or less, particularly preferably 30% by mass or less, still more preferably 25% by mass or less. do.
- the acrylic copolymer (a1) contains a constituent unit derived from the (meth) acrylic acid ester monomer or a derivative thereof, preferably 50% by mass or more, particularly preferably 60% by mass or more, still more preferably 70% by mass. It is contained in the above ratio. Further, the acrylic copolymer (a1) contains a structural unit derived from the (meth) acrylic acid ester monomer or a derivative thereof, preferably 99% by mass or less, particularly preferably 95% by mass or less, and further preferably 90% by mass. It is contained in the following proportions.
- the acrylic copolymer (a1) can be obtained by copolymerizing a functional group-containing monomer as described above with a (meth) acrylic acid ester monomer or a derivative thereof by a conventional method, but in addition to these monomers, Dimethylacrylamide, vinyl formate, vinyl acetate, styrene and the like may be copolymerized.
- an active energy ray-curable polymer (a2) is obtained.
- the functional group of the unsaturated group-containing compound (a2) can be appropriately selected depending on the type of functional group of the functional group-containing monomer unit of the acrylic copolymer (a1).
- the functional group of the acrylic copolymer (a1) is a hydroxy group, an amino group or a substituted amino group
- the functional group of the unsaturated group-containing compound (a2) is preferably an isocyanate group or an epoxy group, and acrylic.
- the functional group of the system copolymer (a1) is an epoxy group
- the functional group of the unsaturated group-containing compound (a2) is preferably an amino group, a carboxy group or an aziridinyl group.
- the unsaturated group-containing compound (a2) contains at least one, preferably 1 to 6, and more preferably 1 to 4 energy ray-polymerizable carbon-carbon double bonds in one molecule. ing.
- Specific examples of such an unsaturated group-containing compound (a2) include 2-methacryloyloxyethyl isocyanate, meta-isopropenyl- ⁇ , ⁇ -dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, and 1,1-(.
- Bisacryloyloxymethyl) ethyl isocyanate Acryloyl monoisocyanate compound obtained by reacting a diisocyanate compound or a polyisocyanate compound with a hydroxyethyl (meth) acrylate; a diisocyanate compound or a polyisocyanate compound, a polyol compound, and a hydroxyethyl (meth) Acryloyl monoisocyanate compound obtained by reaction with acrylate; glycidyl (meth) acrylate; (meth) acrylic acid, 2- (1-aziridinyl) ethyl (meth) acrylate, 2-vinyl-2-oxazoline, 2-isopropenyl- 2-Oxazoline and the like can be mentioned.
- the unsaturated group-containing compound (a2) is preferably 50 mol% or more, particularly preferably 60 mol% or more, still more preferably 70 mol% or more, based on the number of moles of the functional group-containing monomer of the acrylic copolymer (a1). Used at a rate of% or more.
- the unsaturated group-containing compound (a2) is preferably 95 mol% or less, particularly preferably 93 mol% or less, still more preferably 93 mol% or less, based on the number of moles of the functional group-containing monomer of the acrylic copolymer (a1). It is used in a proportion of 90 mol% or less.
- the functional group of the acrylic copolymer (a1) and the functional group of the unsaturated group-containing compound (a2) are used.
- the reaction temperature, pressure, solvent, time, presence / absence of catalyst, and type of catalyst can be appropriately selected.
- the functional group present in the acrylic copolymer (a1) reacts with the functional group in the unsaturated group-containing compound (a2), and the unsaturated group is contained in the acrylic copolymer (a1). It is introduced into the side chain to obtain an active energy ray-curable polymer (A).
- the weight average molecular weight (Mw) of the active energy ray-curable polymer (A) thus obtained is preferably 10,000 or more, particularly preferably 100,000 or more, and further preferably 150,000 or more. It is preferable to have it.
- the weight average molecular weight (Mw) is preferably 1.5 million or less, particularly preferably 1.25 million or less, and further preferably 1 million or less.
- the weight average molecular weight (Mw) in the present specification is a standard polystyrene-equivalent value measured by a gel permeation chromatography method (GPC method).
- the active energy ray-curable pressure-sensitive adhesive contains a polymer having active energy ray-curable property such as the active energy ray-curable polymer (A) as a main component
- the active energy ray-curable pressure-sensitive adhesive is an energy ray. It may further contain a curable monomer and / or oligomer (B).
- active energy ray-curable monomer and / or oligomer (B) for example, an ester of a polyhydric alcohol and (meth) acrylic acid can be used.
- Examples of the active energy ray-curable monomer and / or oligomer (B) include monofunctional acrylic acid esters such as cyclohexyl (meth) acrylate and isobornyl (meth) acrylate, trimethyl propantri (meth) acrylate, and the like.
- the active energy ray-curable monomer and / or the oligomer (B) When the active energy ray-curable monomer and / or the oligomer (B) is blended with the active energy ray-curable polymer (A), the active energy ray-curable monomer and / or the active energy ray-curable monomer in the active energy ray-curable pressure-sensitive adhesive.
- the content of the oligomer (B) is preferably more than 0 parts by mass, particularly preferably 60 parts by mass or more, with respect to 100 parts by mass of the active energy ray-curable polymer (A).
- the content is preferably 250 parts by mass or less, and particularly preferably 200 parts by mass or less, with respect to 100 parts by mass of the active energy ray-curable polymer (A).
- the active energy ray-curable pressure-sensitive adhesive contains a mixture of an active energy ray-curable polymer component and a monomer and / or an oligomer having at least one active energy ray-curable group as a main component. This will be described below.
- the active energy ray non-curable polymer component for example, the same component as the acrylic copolymer (a1) described above can be used.
- the same one as the above-mentioned component (B) can be selected.
- the blending ratio of the active energy ray non-curable polymer component to the monomer and / or oligomer having at least one active energy ray curable group is at least 1 with respect to 100 parts by mass of the active energy ray non-curable polymer component. It is preferably 1 part by mass or more of the monomer and / or oligomer having two or more active energy ray-curable groups, and particularly preferably 60 parts by mass or more.
- the compounding ratio is preferably 200 parts by mass or less of a monomer and / or an oligomer having at least one active energy ray-curable group with respect to 100 parts by mass of the active energy ray non-curable polymer component. In particular, it is preferably 160 parts by mass or less.
- the pressure-sensitive adhesive is also an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, Any adhesive such as a silicone adhesive, a urethane adhesive, a polyester adhesive, or a polyvinyl ether adhesive may be used, but from the viewpoint of easily exhibiting the desired adhesive force, an acrylic adhesive. Is preferable.
- an acrylic pressure-sensitive adhesive as a non-active energy ray-curable pressure-sensitive adhesive is a pressure-sensitive adhesive containing the above-mentioned active energy ray-non-curable polymer component.
- the active energy ray non-curable polymer component the same component as the acrylic copolymer (a1) described above can be used.
- the non-active energy ray-curable pressure-sensitive adhesive does not contain the above-mentioned polymer having active energy ray-curable property and the above-mentioned monomer and / or oligomer having at least one active energy ray-curable group. be.
- the interface ablation 11 in the present embodiment preferably contains at least one additive of an ultraviolet absorber and a photopolymerization initiator from the viewpoint of easily satisfying the above-mentioned conversion efficiency. ..
- UV absorber in the present embodiment is not particularly limited.
- the ultraviolet absorber in the present embodiment may be an organic compound or an inorganic compound, but is preferably an organic compound from the viewpoint of easily causing good interfacial ablation.
- UV absorber When the UV absorber is an organic compound, preferred examples of the UV absorber are hydroxyphenyltriazine-based UV absorbers, benzophenone-based UV absorbers, benzotriazole-based UV absorbers, benzoate-based UV absorbers, and benzooxadinone.
- hydroxyphenyltriazine-based UV absorbers and benzophenone-based UV absorbers have good absorbency at the third harmonic of YAG (355 nm) and are likely to cause good interfacial ablation. It is preferable to use at least one of an ultraviolet absorber and a benzotriazole-based ultraviolet absorber, and it is particularly preferable to use a hydroxyphenyltriazine-based ultraviolet absorber.
- hydroxyphenyltriazine-based ultraviolet absorber examples include 2- [4- (octyl-2-methylethanoate) oxy-2-hydroxyphenyl] -4,6- [bis (2,4-dimethylphenyl)] -1.
- the ultraviolet absorber is an organic compound
- the ultraviolet absorber is preferably a compound having one or more heterocycles as a characteristic of its chemical structure.
- the number of heterocycles is preferably 4 or less, and particularly preferably 1.
- the ultraviolet absorber in the present embodiment has at least one carbon ring and a heterocycle, and all the carbon rings and the heterocycle contained in the ultraviolet absorber are monocyclic rings, respectively. Is also preferable.
- the ultraviolet absorber in the present embodiment is a compound having a plurality of aromatic rings.
- the number of aromatic rings is preferably two or more.
- the number of aromatic rings is preferably 6 or less, and particularly preferably 3 or less.
- each heterocycle preferably has at least one selected from nitrogen, oxygen, phosphorus, sulfur, silicon and selenium as an element other than carbon constituting them, particularly. , Nitrogen, oxygen, phosphorus and sulfur, preferably having at least one selected from.
- the number of atoms constituting the ring structure of the heterocycle is not particularly limited, and is, for example, 3 or more and 9 or less, and particularly preferably 5 or more and 6 or less.
- Specific examples of the preferred heterocycle include triazine, benzotriazole, thiophene, pyrrole, imidazole, pyridine, pyrazine and the like.
- aromatic ring examples include benzene, naphthalene, anthracene, biphenyl, triphenyl and the like.
- UV absorbers having the above-mentioned chemical structural characteristics include tris [2,4,6- [2- ⁇ 4- (octyl-2-methylethanoate) oxy-2-hydroxyphenyl ⁇ ]] -1. , 3,5-Triazine).
- the content of the ultraviolet absorber in the interface ablation layer 11 is preferably 1% by mass or more, and particularly preferably 3% by mass or more. It is preferable, and more preferably 5% by mass or more.
- the content of the ultraviolet absorber is 1% by mass or more, the interfacial ablation layer 11 efficiently absorbs the laser beam, thereby facilitating good interfacial ablation.
- the content of the ultraviolet absorber in the interface ablation layer 11 is preferably 75% by mass or less, particularly preferably 40% by mass or less, and further preferably 25% by mass or less. When the content of the ultraviolet absorber is 75% by mass or less, the viscosity of the material for forming the interface ablation layer 11 becomes appropriate, and it becomes easy to secure good film-forming property.
- the ultraviolet absorber may be blended in this adhesive composition.
- the blending amount of the ultraviolet absorber in the adhesive composition is preferably 1% by mass or more, particularly preferably 3% by mass or more, and further preferably 5% by mass or more. ..
- the interfacial ablation layer 11 efficiently absorbs the laser light, thereby facilitating good interfacial ablation.
- the blending amount of the ultraviolet absorber in the adhesive composition is preferably 75% by mass or less, particularly preferably 40% by mass or less, and further preferably 20% by mass or less. When the blending amount of the ultraviolet absorber is 75% by mass or less, the obtained adhesive can easily exhibit the desired adhesive force.
- the photopolymerization initiator in the present embodiment is not particularly limited.
- the interface ablation layer 11 is a pressure-sensitive adhesive layer composed of an active energy ray-curable pressure-sensitive adhesive
- the interface ablation layer 11 preferably contains a photopolymerization initiator. In this case, efficient interfacial ablation is likely to occur, and the interfacial ablation layer 11 is efficiently cured.
- photopolymerization initiator examples include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether, acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-1, 2-Diphenylethane-1-one, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexylphenylketone, 2-methyl-1- [4- (Methylthio) Phenyl] -2-morpholino-propan-1-one, 4- (2-hydroxyethoxy) phenyl-2- (hydroxy-2-propyl) ketone, 2-dimethylamino-2- (4-) Methylbenzyl) -1- (4-morpholino-phenyl) butane-1-one, 1- [4- (2-hydroxyhydroxy)
- the content of the photopolymerization initiator in the interface ablation layer 11 is preferably 1% by mass or more, particularly 3% by mass or more. It is preferable, and more preferably 5% by mass or more.
- the content of the photopolymerization initiator is 1% by mass or more, the interfacial ablation layer 11 efficiently absorbs the laser light, thereby facilitating good interfacial ablation.
- the content of the photopolymerization initiator in the interface ablation layer 11 is preferably 75% by mass or less, particularly preferably 40% by mass or less, and further preferably 25% by mass or less. When the content of the photopolymerization initiator is 75% by mass or less, the viscosity of the material for forming the interface ablation layer 11 becomes appropriate, and it becomes easy to secure good film-forming property.
- the photopolymerization initiator may be blended in this adhesive composition.
- the blending amount of the photopolymerization initiator in the adhesive composition is preferably 1% by mass or more, particularly preferably 3% by mass or more, and further preferably 5% by mass or more. preferable.
- the blending amount of the photopolymerization initiator is 1% by mass or more, the interfacial ablation layer 11 efficiently absorbs the laser light, thereby facilitating good interfacial ablation.
- the blending amount of the photopolymerization initiator in the adhesive composition is preferably 75% by mass or less, particularly preferably 40% by mass or less, and further preferably 25% by mass or less. .. When the blending amount of the photopolymerization initiator is 75% by mass or less, the obtained pressure-sensitive adhesive can easily exert a desired pressure-sensitive adhesive force.
- Other components may be appropriately added to the pressure-sensitive adhesive constituting the interface ablation layer 11 according to the present embodiment.
- examples of other components include a cross-linking agent, an active energy ray non-curable polymer component, an oligomer component, and the like.
- a cross-linking agent is preferable from the viewpoint that the storage elastic modulus of the interface ablation layer 11 can be easily adjusted to a desired range.
- a polyfunctional compound having reactivity with the functional group of the active energy ray-curable polymer (A) or the acrylic copolymer (a1) can be used.
- examples of such polyfunctional compounds include isocyanate compounds, epoxy compounds, amine compounds, melamine compounds, aziridine compounds, hydrazine compounds, aldehyde compounds, oxazoline compounds, metal alkoxide compounds, metal chelate compounds, metal salts, ammonium salts, etc. Reactive phenolic resin and the like can be mentioned.
- the blending amount of the cross-linking agent is preferably 0.001 part by mass or more, particularly preferably 0.1 part by mass or more, and further 0.2 part by mass or more with respect to 100 parts by mass of the main agent. Is preferable.
- the amount of the cross-linking agent to be blended is preferably 20 parts by mass or less, particularly preferably 10 parts by mass or less, and further preferably 5 parts by mass or less with respect to 100 parts by mass of the main agent.
- the "main agent” refers to the above-mentioned active energy ray-curable polymer (A) when the interface ablation layer 11 is composed of an active energy ray-curable pressure-sensitive adhesive, and the interface ablation layer 11 has non-active energy. When composed of a linear curable pressure-sensitive adhesive, it refers to the acrylic copolymer (a1) described above.
- Examples of the above-mentioned active energy ray non-curable polymer component or oligomer component include polyacrylic acid esters, polyesters, polyurethanes, polycarbonates, polyolefins and the like, and polymers or oligomers having a weight average molecular weight (Mw) of 30 to 2.5 million. Is preferable. By blending the component, adhesiveness, peelability, adhesiveness with other layers, storage stability and the like can be improved.
- the thickness of the interface ablation layer 11 in the present embodiment is preferably 3 ⁇ m or more, particularly preferably 20 ⁇ m or more, and further preferably 25 ⁇ m or more.
- the thickness of the interface ablation layer 11 is preferably 100 ⁇ m or less, particularly preferably 50 ⁇ m or less, and further preferably 40 ⁇ m or less. When the thickness of the interface ablation layer 11 is within the above range, it becomes easy to achieve both the holding of the work pieces on the interface ablation layer 11 and the separation of the work pieces by the interface ablation.
- Base material 12 in the present embodiment is not particularly limited in composition and physical properties. From the viewpoint that the work handling sheet 1 easily exerts a desired function, the base material 12 is preferably made of a resin.
- the base material 12 is composed of a resin
- examples of the resin include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; both polyethylene, polypropylene, polybutene, polybutadiene, polymethylpentene, and ethylene-norbornene.
- Polyethylene-based resins such as polymers and norbornene resins; ethylene-vinyl acetate copolymers; ethylene- (meth) acrylic acid copolymers, ethylene- (meth) methyl acrylate copolymers, and other ethylene- (meth) acrylics.
- Ethylene copolymer resin such as acid ester copolymer; polyvinyl chloride resin such as polyvinyl chloride and vinyl chloride copolymer; (meth) acrylic acid ester copolymer; polyurethane; polyimide; polystyrene; polycarbonate; fluororesin And so on.
- the resin constituting the base material 12 may be a crosslinked resin of the above-mentioned resin or a modified resin such as the ionomer of the above-mentioned resin.
- the base material 12 may be a single-layer film made of the above-mentioned resin, or may be a laminated film in which a plurality of the films are laminated. In this laminated film, the materials constituting each layer may be the same type or different types.
- the surface of the base material 12 in the present embodiment may be surface-treated by an oxidation method, an unevenness method, or a primer treatment for the purpose of improving the adhesion to the interface ablation layer 11.
- an oxidation method include corona discharge treatment, plasma discharge treatment, chromium oxidation treatment (wet), flame treatment, hot air treatment, ozone, and ultraviolet irradiation treatment
- examples of the unevenness method include sandblasting and sandblasting. Examples include a thermal spraying method.
- the base material 12 in the present embodiment may contain various additives such as a colorant, a flame retardant, a plasticizer, an antistatic agent, a lubricant, and a filler. Further, when the interface ablation layer 11 contains a material that is cured by the active energy rays, it is preferable that the base material 12 has transparency to the active energy rays.
- the method for producing the base material 12 in the present embodiment is not particularly limited as long as the base material 12 is produced from the resin.
- it can be produced by molding a resin into a sheet by a melt extrusion method such as a T-die method or a round die method; a calendar method; a solution method such as a dry method or a wet method.
- the thickness of the base material 12 in the present embodiment is preferably 10 ⁇ m or more, particularly preferably 30 ⁇ m or more, and further preferably 50 ⁇ m or more.
- the thickness of the base material 12 is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, particularly preferably 200 ⁇ m or less, further preferably 150 ⁇ m or less, and preferably 100 ⁇ m or less. Is most preferable.
- the work handling sheet 1 has rigidity and flexibility in a predetermined balance, and it becomes easy to perform good handling of the work small pieces.
- the configuration of the release sheet is arbitrary, and an example is one in which a plastic film is peeled off with a release agent or the like.
- the plastic film include polyester films such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, and polyolefin films such as polypropylene and polyethylene.
- the release agent a silicone type, a fluorine type, a long chain alkyl type or the like can be used, and among these, a silicone type which can obtain stable performance at a low cost is preferable.
- the thickness of the release sheet is not particularly limited, and may be, for example, 20 ⁇ m or more and 250 ⁇ m or less.
- the adhesive layer may be laminated on the surface of the interface ablation layer 11 opposite to the base material 12.
- a work piece is attached to the surface of the adhesive layer opposite to the interface ablation layer 11, and the adhesive layer is diced together with the work piece to laminate a piece of work in which individualized adhesive layers are laminated. Can be obtained.
- the chip is easily fixed to the object on which the work piece is mounted by the individualized adhesive layer.
- a material containing a thermoplastic resin and a low molecular weight thermosetting adhesive component, a material containing a B stage (semi-curable) thermosetting adhesive component, and the like are used. It is preferable to use it.
- the protective film forming layer may be laminated on the surface of the interface ablation layer 11 opposite to the base material 12.
- a work is attached to the surface of the protective film forming layer opposite to the interface ablation layer 11, and the protective film forming layer is diced together with the work to obtain an individualized protective film forming layer. Stacked work pieces can be obtained.
- a protective film forming layer is usually laminated on a surface opposite to the surface on which the circuit is formed.
- the work handling sheet 1 is subjected to the first ultraviolet irradiation in which ultraviolet rays having a wavelength of 365 nm are irradiated with a light amount of 190 mJ / cm 2 .
- the second ultraviolet irradiation is further performed by irradiating the ultraviolet rays having a wavelength of 365 nm with a light amount of 950 mJ / cm 2
- the interfacial ablation layer 11 uses the optical energy of the ultraviolet rays in the second ultraviolet irradiation as thermal energy.
- the conversion efficiency at the time of conversion (hereinafter, may be referred to as "conversion efficiency after ultraviolet irradiation") is 60% or more.
- conversion efficiency after ultraviolet irradiation is 60% or more.
- the conversion efficiency is preferably 65% or more, and particularly preferably 75% or more.
- the upper limit of the conversion efficiency is not particularly limited, and may be, for example, 99% or less, particularly 97% or less, and further 95% or less.
- the interface ablation layer 11 is exposed to the ultraviolet rays.
- the conversion efficiency when converting the light energy of the above into heat energy (hereinafter, may be referred to as "conversion efficiency before ultraviolet irradiation") is preferably 70% or more, and particularly preferably 75% or more. Further, it is preferably 80% or more. This makes it easier to adjust the conversion efficiency after UV irradiation within the above-mentioned range.
- the upper limit of the conversion efficiency before irradiation with ultraviolet rays is not particularly limited, and may be, for example, 100% or less, particularly 97% or less, and further 95% or less.
- the work handling sheet 1 when the work handling sheet 1 is irradiated with ultraviolet rays having a wavelength of 365 nm (without performing the above-mentioned first ultraviolet irradiation) at a light amount of 950 mJ / cm 2 , the work handling sheet 1 is subjected to the above ultraviolet rays.
- the conversion efficiency when converting the light energy of the above into thermal energy (hereinafter, may be referred to as "conversion efficiency of the work handling sheet 1”) is preferably 70% or more, and particularly 80% or more. It is preferable, and more preferably 85% or more. This makes it easier for the conversion efficiency after ultraviolet irradiation to satisfy the above-mentioned range.
- the upper limit of the conversion efficiency of the work handling sheet 1 is not particularly limited, and may be, for example, 99% or less, particularly 97% or less, and further 95% or less.
- ultraviolet rays having a wavelength of 365 nm are further applied to the work handling sheet 1 which has been subjected to the first ultraviolet irradiation in which ultraviolet rays having a wavelength of 365 nm are irradiated at a light intensity of 190 mJ / cm 2 .
- the calorific value of the work handling sheet 1 is preferably 500 mJ / cm 2 or more, particularly 600 mJ / cm 2 or more when the second ultraviolet irradiation is performed with a light amount of 950 mJ / cm 2 . Is preferable, and more preferably 700 mJ / cm 2 or more.
- the upper limit of the calorific value is not particularly limited, and may be, for example, 2000 mJ / cm 2 or less, particularly 1500 mJ / cm 2 or less, and further 1000 mJ / cm 2 or less.
- it is preferably 600 mJ / cm 2 or more, particularly 700 mJ / cm 2 or more, and further preferably 800 mJ / cm 2 or more.
- the upper limit of the calorific value is not particularly limited, and may be, for example, 2000 mJ / cm 2 or less, particularly 1500 mJ / cm 2 or less, and further 1000 mJ / cm 2 or less.
- the base material 12 when the base material 12 alone is irradiated with ultraviolet rays having a wavelength of 365 nm (without performing the above-mentioned first ultraviolet irradiation) at a light intensity of 950 mJ / cm 2 .
- the calorific value of the base material 12 is preferably 1 mJ / cm 2 or more, particularly preferably 5 mJ / cm 2 or more, and further preferably 10 mJ / cm 2 or more. It is also preferable that the base material 12 exhibits such a calorific value from the viewpoint of contributing to efficient interfacial ablation.
- the upper limit of the calorific value is not particularly limited, and may be, for example, 100 mJ / cm 2 or less, particularly 90 mJ / cm 2 or less, and further 80 mJ / cm 2 or less.
- the absorbance of light rays having a wavelength of 355 nm is preferably 0.5 or more, more preferably 2.0 or more, and particularly 2.5 or more. It is preferably present, and more preferably 3.0 or more.
- the absorbance of light rays having a wavelength of 355 nm is 0.5 or more, it is possible to reduce the amount of ultraviolet rays reaching the work pieces when irradiated with laser light, effectively damaging the surface of the work pieces. It is possible to separate the work pieces while suppressing them.
- the upper limit of the absorbance is not particularly limited, and may be, for example, 6.0 or less. The details of the method for measuring the absorbance are as described in Test Examples described later.
- the manufacturing method of the work handling sheet 1 according to the present embodiment is not particularly limited.
- the interface ablation layer 11 may be directly formed on the base material 12, or the interface ablation layer 11 may be transferred onto the base material 12 after the interface ablation layer 11 is formed on the process sheet. ..
- the interface ablation layer 11 contains an adhesive as one of the constituents thereof
- the interface ablation layer 11 can be formed by a known method. For example, a tacky composition for forming the interfacial ablation layer 11 and, if desired, a coating solution further containing a solvent or dispersion medium are prepared. Then, the coating liquid is applied to one side of the base material or the peelable surface of the release sheet (hereinafter, may be referred to as "peeling surface"). Subsequently, the interface ablation layer 11 can be formed by drying the obtained coating film.
- the above-mentioned coating liquid can be applied by a known method, for example, a bar coating method, a knife coating method, a roll coating method, a blade coating method, a die coating method, a gravure coating method, or the like.
- the properties of the coating liquid are not particularly limited as long as it can be coated, and the coating liquid may contain a component for forming the interface ablation layer 11 as a solute or a dispersoid. be.
- the release sheet may be peeled off as a process material, or the interface ablation layer 11 may be protected until it is attached to the adherend. ..
- the adhesive composition for forming the interface ablation layer 11 contains the above-mentioned cross-linking agent, by changing the above-mentioned drying conditions (temperature, time, etc.) or by separately providing a heat treatment. It is preferable to proceed the cross-linking reaction between the polymer component in the coating film and the cross-linking agent to form a cross-linked structure in the interface ablation layer 11 at a desired abundance density. Further, in order to allow the above-mentioned cross-linking reaction to proceed sufficiently, after the work handling sheet 1 is completed, it may be cured by allowing it to stand in an environment of, for example, 23 ° C. and a relative humidity of 50% for several days.
- the work handling sheet 1 according to the present embodiment can be suitably used for handling small pieces of work. As described above, in the work handling sheet 1 according to the present embodiment, since the interfacial ablation layer 11 efficiently ablates the interface by irradiation with laser light, the small pieces of work held on the interfacial ablation layer 11 are high. It can be separated toward a predetermined position with accuracy.
- the work handling sheet 1 is held on the surface of the interface ablation layer 11 opposite to the base material 12 by the interface ablation locally generated in the interface ablation layer 11.
- a method of selectively separating any work piece from the plurality of work pieces from the interfacial ablation layer 11 can be mentioned.
- the plurality of work pieces held on the interface ablation layer 11 are the work (material of the work pieces) held on the surface of the interface ablation layer 11 opposite to the base material 12. It may be obtained by individualizing on the surface. That is, the work piece may be obtained by dicing the work on the interface ablation layer 11. Alternatively, the work piece may be one formed independently of the work handling sheet 1 according to the present embodiment and placed on the interface ablation layer 11.
- the work handling sheet 1 includes the above-mentioned adhesive layer and protective film forming layer, it is preferable to dice these layers and the work on the interface ablation layer 11. As a result, it is possible to obtain a work piece in which these layers are individualized and laminated.
- the area of the work pieces in a plan view is preferably 10 ⁇ m 2 or more, and particularly preferably 100 ⁇ m 2 or more.
- the work piece preferably has an area of 1 mm 2 or less when viewed in a plan view, and particularly preferably 0.25 mm 2 or less.
- the minimum side of the work pieces is preferably 2 ⁇ m or more, particularly preferably 5 ⁇ m or more, and further preferably 10 ⁇ m or more. preferable. The minimum side is preferably 1 mm or less, and particularly preferably 0.5 mm or less.
- the dimensions of the rectangular workpiece pieces include 2 ⁇ m ⁇ 5 ⁇ m, 10 ⁇ m ⁇ 10 ⁇ m, 0.5 mm ⁇ 0.5 mm, 1 mm ⁇ 1 mm, and the like.
- the work handling sheet 1 according to the present embodiment can satisfactorily handle such fine work pieces, particularly even fine work pieces that are difficult to separate from the sheet by pushing up the needle.
- the work handling sheet 1 according to the present embodiment is relatively large, such as one having an area of more than 1 mm 2 (for example, 1 mm 2 to 2000 mm 2 ) and one having a thickness of 1 to 10000 ⁇ m (for example, 10 to 1000 ⁇ m). It can handle small pieces of work of a size well.
- small workpieces include semiconductor parts and semiconductor devices, and more specifically, micro light emitting diodes, power devices, MEMS (Micro Electro Mechanical Systems), and the like.
- the work piece is preferably a light emitting diode, and particularly preferably a light emitting diode selected from a mini light emitting diode and a micro light emitting diode.
- mini light emitting diodes and micro light emitting diodes are arranged at a high density has been studied, and in the manufacture of such a device, the present embodiment capable of handling these light emitting diodes with high accuracy.
- the work handling sheet 1 according to the above is very suitable.
- a preparation step (FIG. 2 (a)
- a placement step (FIG. 2 (b)
- a curing step (FIG. 2 (c)
- a separation step (FIGS. 2 (d) and (e)). It includes at least four steps.
- a laminated body in which a plurality of work pieces 2 are held on the surface of the work handling sheet 1 according to the present embodiment on the interface ablation layer 11 side is prepared. ..
- the laminated body may be prepared by placing a separately prepared work piece 2 on the work handling sheet 1, or a work held on the surface on the interface ablation layer 11 side is individually formed on the surface. It may be prepared by ablation (ie, dicing). The dicing can be performed by a known method.
- the shape and size of the work piece 2 are not particularly limited as described above, and the preferred size is also as described above.
- semiconductor parts, semiconductor devices, and the like can be mentioned, and in particular, light emitting diodes such as mini light emitting diodes and micro light emitting diodes can be mentioned.
- the laminate is arranged so that the surfaces of the laminate 2 on the work fragment 2 side face each other with respect to the object 3 that can accept the workpiece 2. ..
- An example of the object 3 is appropriately determined according to the device to be manufactured, but when the work piece 2 is a light emitting diode, specific examples of the object 3 include a substrate, a sheet, a reel, and the like. In particular, a wiring board provided with wiring is preferably used.
- the interface ablation layer 11 as a whole is cured by irradiating the entire interface ablation layer 11 in the laminated body with the active energy rays 4.
- the interface ablation layer 11 becomes a cured interface ablation layer 11'.
- FIG. 2C depicts a state in which the active energy ray 4 is irradiated to the entire interface ablation layer 11, the irradiation is performed by at least one work piece 2 in the interface ablation layer 11.
- the interface ablation layer 11 may be locally cured by performing the treatment only on the position where the above is affixed.
- the above-mentioned irradiation of the active energy ray 4 may be performed by using a known method.
- an ultraviolet irradiation device provided with a high-pressure mercury lamp or an ultraviolet LED as a light source, or a laser light irradiation device used in a separation step described later may be used. You may use it.
- the laser beam 5 is applied to the position of the interfacial ablation layer 11'after the curing of the laminated body to which at least one work piece 2 is attached. Irradiate.
- the irradiation may be performed simultaneously on a plurality of positions to which the work pieces 2 are attached, or may be sequentially performed on those positions.
- the irradiation conditions of the laser beam 5 are not limited as long as interfacial ablation can be generated.
- the laser light irradiation device for irradiation a known one can be used.
- the curing step and the separation step may be performed at the same time. That is, the irradiation of the laser beam 5 in the separation step may be performed as the irradiation of the active energy rays 4 in the curing step, and the local curing of the interface ablation layer 11 and the interface ablation may be performed at the same time.
- the peak wavelength of the laser beam 5 to be irradiated is preferably 300 nm or more, particularly preferably 310 nm or more, and further preferably 350 nm or more.
- the peak wavelength is preferably 400 nm or less, particularly preferably 390 nm or less, and further preferably 380 nm or less.
- an ultraviolet irradiation device used in the curing step (particularly, a device provided with an ultraviolet LED as a light source and laser light irradiation).
- the peak wavelength of the active energy ray 4 irradiated from the apparatus is preferably 300 nm or more, particularly preferably 310 nm or more, and further preferably 320 nm or more.
- the peak wavelength is preferably 400 nm or less, particularly preferably 390 nm or less, and further preferably 380 nm or less.
- the laser light 5 emitted from the laser light irradiating device used in the separation step preferably has a peak wavelength of 300 nm or more, particularly preferably 310 nm or more, and further preferably 320 nm or more. preferable.
- the peak wavelength is preferably 400 nm or less, particularly preferably 390 nm or less, and further preferably 380 nm or less.
- interfacial ablation can be generated at the irradiated position in the interfacial ablation layer 11'after curing.
- the components constituting the region evaporate or volatilize to become the reaction region 13. ..
- the gas generated by the evaporation or volatilization accumulates between the base material 12 and the reaction region 13, and the blister 6 is formed.
- the hardened interface ablation layer 11' is locally deformed at the position of the work piece 2', and the work piece 2'is separated so as to be peeled off from the hardened interface ablation layer 11. As described above, the work piece 2'existing at the position where the interface ablation has occurred can be placed on the object 3.
- FIG. 3 shows how the work pieces 2 are separated by sequentially irradiating the laser beam, and in particular, the state after separation (two on the left), the state during separation (center), and the separation. The previous state (two on the right) is shown.
- the separated blister 6 is usually in a slightly deflated state as compared to the separated blister 6.
- various devices can be manufactured by appropriately selecting the work piece 2 and the object 3 to be used.
- a light emitting diode selected from a mini light emitting diode and a micro light emitting diode is used as the work piece 2
- a light emitting device including a plurality of such light emitting diodes can be manufactured, and more specifically, a display.
- another layer is laminated between the interface ablation layer 11 and the base material 12 in the work handling sheet 1 according to the present embodiment, or on the surface of the base material 12 opposite to the interface ablation layer 11. May be good.
- Specific examples of the other layer include an adhesive layer.
- the above-mentioned separation step or the like can be performed with the surface on the pressure-sensitive adhesive layer side attached to a support base (transparent substrate such as a glass plate).
- Example 1 (1) Preparation of Adhesive Composition 80 parts by mass of 2-ethylhexyl acrylate and 20 parts by mass of 2-hydroxyethyl acrylate were polymerized by a solution polymerization method to obtain a (meth) acrylic acid ester polymer. .. The weight average molecular weight (Mw) of this acrylic polymer was measured by the above-mentioned method and found to be 600,000.
- a release sheet manufactured by Lintec Corporation, product name "SP-PET38131" in which a silicone-based release agent layer is formed on one side of a 38 ⁇ m-thick polyethylene terephthalate film.
- the coating liquid of the adhesive composition obtained in the above step (1) was applied to the peeled surface, and the obtained coating film was dried by heating.
- a laminate obtained by laminating an interface ablation layer having a thickness of 5 ⁇ m and a release sheet formed by drying the coating film was obtained.
- the above-mentioned weight average molecular weight (Mw) is a standard polystyrene-equivalent weight average molecular weight measured under the following conditions (GPC measurement) using gel permeation chromatography (GPC).
- GPC measurement gel permeation chromatography
- Examples 2 to 4 A work handling sheet was produced in the same manner as in Example 1 except that the type and content of the additive and the thickness of the interface ablation layer (adhesive layer) were changed as shown in Table 1.
- Example 5 80 parts by mass of 2-ethylhexyl acrylate and 20 parts by mass of 2-hydroxyethyl acrylate were polymerized by a solution polymerization method to obtain a (meth) acrylate polymer. 80 mol% of methacryloyloxyethyl isocyanate (MOI) is reacted with this (meth) acrylic acid ester polymer with 2-hydroxyethyl acrylate to introduce an active energy ray-curable group into the side chain. Acrylic polymer (active energy ray-curable component) was obtained. The weight average molecular weight (Mw) of this acrylic polymer was measured by the above-mentioned method and found to be 1 million.
- MOI methacryloyloxyethyl isocyanate
- Mw weight average molecular weight
- a work handling sheet was produced in the same manner as in Example 1 except that the above adhesive composition was used and the thickness of the interface ablation layer was changed as shown in Table 1.
- Example 6 to 7 and Comparative Example 1 A work handling sheet was produced in the same manner as in Example 5, except that the content of the cross-linking agent and the type and content of the additive were changed as shown in Table 1.
- Example 2 A work handling sheet was produced in the same manner as in Example 1 except that no additive was used and the thickness of the interface ablation layer was changed as shown in Table 1.
- UV irradiation 230 mW / cm 2 , light intensity: 190 mJ / cm 2 )
- first ultraviolet irradiation a work handling sheet “after UV irradiation” was obtained.
- the interface ablation layer is a pressure-sensitive adhesive layer composed of an active energy ray-curable pressure-sensitive adhesive
- the interface ablation layer is cured by the first ultraviolet irradiation. did.
- Step 1 Hold at set atmosphere temperature 30 ° C for 1 minute
- Step 2 Irradiate ultraviolet rays at set atmosphere temperature 30 ° C for 0.3 minutes at illuminance: 380 mW / cm 2 and light intensity: 950 mJ / cm 2 (hereinafter, this ultraviolet irradiation is performed.
- Second UV irradiation Hold for 0.7 minutes at the set atmosphere temperature of 30 ° C.
- the measurement was performed in the same manner as above in an empty state without installing a measurement sample in the measurement section.
- the measurement data acquired from the reference is subtracted from the measurement data acquired from the measurement sample, and the calorie data of only the measurement sample (horizontal axis: time, vertical axis).
- Axis DSC curve, which is the calorific value per unit time) was obtained.
- the calorific value (mJ / cm 2 ) of the entire work handling sheet after UV irradiation was acquired as an integral value of the calorific value per unit time from the start of measurement to the end of measurement in the DSC curve. The results are shown in Table 2.
- the work handling sheet after UV irradiation is replaced with the work handling sheet before UV irradiation (that is, the work handling sheet not subjected to the first ultraviolet irradiation), and the work handling before UV irradiation is performed in the same manner as described above.
- the calorific value (mJ / cm 2 ) of the entire sheet was acquired. The results are also shown in Table 2.
- the calorific value of the base material alone was reduced from the calorific value of the entire work handling sheet before UV irradiation, and the calorific value due to the interface ablation layer was calculated. Then, based on the calorific value caused by this interfacial ablation layer, the conversion efficiency (%) of the light energy by the second ultraviolet irradiation into heat energy was calculated in the same manner as described above. The results are shown in Table 2 as the conversion efficiency (%) of the interface ablation layer before UV irradiation.
- the calorific value of the base material alone was reduced from the calorific value of the entire work handling sheet after UV irradiation, and the calorific value due to the interface ablation layer was calculated. Then, based on the calorific value caused by this interfacial ablation layer, the conversion efficiency (%) of the light energy by the second ultraviolet irradiation into heat energy was calculated in the same manner as described above. The results are shown in Table 2 as the conversion efficiency (%) of the interface ablation layer after UV irradiation.
- a silicon wafer was diced into a chip having a size of 300 ⁇ m ⁇ 300 ⁇ m using a dicing apparatus (manufactured by Disco Corporation, product name “DFD6362”).
- the dicing sheet is irradiated with ultraviolet rays (illuminance 230 mW / cm 2 , light intensity 190 mJ / cm 2 ) using an ultraviolet irradiation device (manufactured by Lintec Corporation, product name "RAD2000”) to form an adhesive layer of the dicing sheet. It was cured.
- a laminated body in which a plurality of chips were provided on the dicing sheet was obtained.
- the release sheet was peeled off from the work handling sheets produced in Examples and Comparative Examples, and the exposed exposed surface was bonded to the surface of the laminate obtained as described above in which a plurality of chips exist. ..
- the dicing sheet was peeled off from the plurality of chips.
- a plurality of chips were transferred from the dicing sheet to the work handling sheet, and a laminated body in which the plurality of chips were provided on the work handling sheet was obtained.
- (2-1) Condition 1 A laser beam irradiator (YAG third harmonic (wavelength 355 nm), pulse width 20 ns, light intensity 700 mJ / cm 2 ) was used to irradiate the chip with laser light through the work handling sheet. The irradiation was performed on a region of 270 ⁇ m ⁇ 270 ⁇ m in the center of the chip. Other irradiation conditions were frequency: 30 kHz and irradiation amount: 50 ⁇ J / shot. In addition, irradiation was performed by selecting 100 chips (a group of 10 vertical ⁇ 10 horizontal chips) from a plurality of chips.
- the chip was irradiated with laser light through the work handling sheet using a laser light irradiation device (manufactured by KEYENCE, product name "MD-U1000C").
- the irradiation was performed by sequentially irradiating the center of the chip with laser light spots in a circular motion. At this time, the diameter of the laser beam spot was set to 25 ⁇ m, and the inner diameter of the ring generated as the irradiation locus was set to 65 ⁇ m.
- Other irradiation conditions were frequency: 40 kHz, scan speed: 500 mm / s, and irradiation amount: 50 ⁇ J / shot. Further, the irradiation was performed by selecting 100 chips (a group of 10 vertical ⁇ 10 horizontal chips) from a plurality of chips and performing the irradiation on them.
- condition 2 is a condition in which laser lift-off is more likely to occur than condition 1.
- the work handling sheet manufactured in the examples was excellent in laser lift-off suitability.
- the work handling according to Comparative Example 2 was inferior in the evaluation of the laser lift-off even under the condition 2 in which the laser lift-off was more likely to occur.
- the work handling sheet of the present invention can be suitably used for manufacturing a display or the like provided with a micro light emitting diode as a pixel.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Plasma & Fusion (AREA)
- Mechanical Engineering (AREA)
- Power Engineering (AREA)
- Medicinal Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Polymers & Plastics (AREA)
- General Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Laser Beam Processing (AREA)
- Adhesive Tapes (AREA)
- Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)
Abstract
[Problem] To provide a workpiece handling sheet with which it is possible to favorably handle even a very small workpiece item. [Solution] A workpiece handling sheet 1 is provided with a base material 11 and an interface ablation layer 12 that is laminated on one surface side of the base material 11, able to hold a small workpiece item, and undergoes interface ablation through irradiation with laser light. When the workpiece handling sheet 1 that has been subjected to first ultraviolet irradiation to perform irradiation with ultraviolet rays having a wavelength of 365 nm with a light amount of 190 mJ/cm2 is further subjected to second ultraviolet irradiation to perform irradiation with ultraviolet rays having a wavelength of 365 nm with a light amount of 950 mJ/cm2, the conversion efficiency with which the interface ablation layer 12 converts the light energy of the ultraviolet rays during the second ultraviolet irradiation into thermal energy is 60% or more.
Description
本発明は、半導体部品や半導体装置等のワーク小片を取り扱うために使用可能なワークハンドリングシート、当該ワークハンドリングシートを用いたワーク小片の取り扱い方法およびデバイス製造方法、並びにワークハンドリングシートの使用に関するものであり、特に、マイクロ発光ダイオード、パワーデバイス、MEMS(Micro Electro Mechanical Systems)等のワーク小片を取り扱うために使用可能なワークハンドリングシートに関するものである。
The present invention relates to a work handling sheet that can be used for handling workpiece small pieces such as semiconductor parts and semiconductor devices, a method for handling small workpiece pieces and a device manufacturing method using the work handling sheet, and the use of the work handling sheet. Yes, in particular, it relates to a work handling sheet that can be used to handle small pieces of work such as micro light emitting diodes, power devices, and MEMS (Micro Electro Mechanical Systems).
近年、マイクロ発光ダイオードを用いたディスプレイの開発が進められている。当該ディスプレイでは、個々の画素がマイクロ発光ダイオードで構成され、各マイクロ発光ダイオードの発光が独立に制御されている。当該ディスプレイの製造においては、一般的に、サファイア、ガラス等の供給基板上に配置されたマイクロ発光ダイオードを、配線が設けられた配線基板上に実装する必要がある。
In recent years, the development of displays using micro light emitting diodes has been promoted. In the display, each pixel is composed of micro light emitting diodes, and the light emission of each micro light emitting diode is controlled independently. In the manufacture of the display, it is generally necessary to mount a micro light emitting diode arranged on a supply substrate such as sapphire or glass on a wiring board provided with wiring.
上記実装の際には、供給基板上に配置された複数のマイクロ発光ダイオードを、配線基板の所定の位置に正確に載置する必要がある。このとき、複数のマイクロ発光ダイオードの中から所定のものを選択的に配線基板に載置させる必要があったり、複数のマイクロ発光ダイオードを同時に載置させる必要もある。
At the time of the above mounting, it is necessary to accurately mount a plurality of micro light emitting diodes arranged on the supply board at a predetermined position on the wiring board. At this time, it is necessary to selectively mount a predetermined one from a plurality of micro light emitting diodes on the wiring board, or it is also necessary to mount a plurality of micro light emitting diodes at the same time.
このような実装を良好に行う観点から、レーザー光の照射を利用することが検討されている。例えば、複数のマイクロ発光ダイオードを所定の層を介して支持体に保持した後、当該層に対してレーザー光を照射することで、その照射した位置において当該層のアブレーションを生じさせ、それによって支持体から分離(レーザーリフトオフ)したマイクロ発光ダイオードを配線基板に載置する方法が検討されている(特許文献1)。レーザー光は、指向性および収束性に優れているため、照射する位置を制御しやすく、選択的な載置を良好に行うことができる。
From the viewpoint of performing such mounting well, the use of laser light irradiation is being considered. For example, after holding a plurality of micro light emitting diodes on a support via a predetermined layer, the layer is irradiated with laser light to cause ablation of the layer at the irradiated position, thereby supporting the layer. A method of mounting a micro light emitting diode separated from the body (laser lift-off) on a wiring substrate has been studied (Patent Document 1). Since the laser beam is excellent in directivity and convergence, it is easy to control the irradiation position, and selective placement can be performed satisfactorily.
しかしながら、マイクロ発光ダイオードの更なる微細化や、マイクロ発光ダイオードのより高密度な実装も進められており、これらにも対応する上では、特許文献1のような従来の手法よりも効率良く多数のマイクロ発光ダイオードといった微細なワーク小片を取り扱うことができる手段が求められている。
However, further miniaturization of micro light emitting diodes and higher density mounting of micro light emitting diodes are being promoted, and in dealing with these, a large number of micro light emitting diodes are more efficiently used than conventional methods such as Patent Document 1. There is a need for a means capable of handling fine workpiece pieces such as micro light emitting diodes.
本発明は、このような実状に鑑みてなされたものであり、微細なワーク小片であっても良好に取り扱うことが可能なワークハンドリングシートを提供することを目的とする。
The present invention has been made in view of such an actual situation, and an object of the present invention is to provide a work handling sheet capable of satisfactorily handling even fine work pieces.
上記目的を達成するために、第1に本発明は、基材と、前記基材における片面側に積層され、ワーク小片を保持可能であるとともに、レーザー光の照射によって界面アブレーションする界面アブレーション層とを備えるワークハンドリングシートであって、波長365nmの紫外線を光量190mJ/cm2で照射する第1の紫外線照射を行った前記ワークハンドリングシートに対して、さらに波長365nmの紫外線を950mJ/cm2の光量で照射する第2の紫外線照射を行った場合に、前記界面アブレーション層が前記第2の紫外線照射における紫外線の光エネルギーを熱エネルギーに変換する際の変換効率が、60%以上であることを特徴とするワークハンドリングシートを提供する(発明1)。
In order to achieve the above object, firstly, the present invention comprises a base material and an interfacial ablation layer laminated on one side of the base material, capable of holding small workpieces, and interfacially ablated by irradiation with laser light. A work handling sheet comprising the above, which is subjected to the first ultraviolet irradiation by irradiating ultraviolet rays having a wavelength of 365 nm with a light amount of 190 mJ / cm 2 , and further irradiating the work handling sheet with ultraviolet rays having a wavelength of 365 nm with a light amount of 950 mJ / cm 2 . When the second ultraviolet irradiation is performed, the conversion efficiency when the interfacial ablation layer converts the light energy of the ultraviolet rays in the second ultraviolet irradiation into heat energy is 60% or more. (Invention 1).
上記発明(発明1)に係るワークハンドリングシートは、界面アブレーション層が上述した変換効率を示すことで、レーザー光を照射した場合に効果的に界面アブレーションし、それによりワーク小片を対象物に向けて良好に分離することができる。
In the work handling sheet according to the above invention (Invention 1), the interfacial ablation layer exhibits the above-mentioned conversion efficiency, so that the interfacial ablation is effectively performed when irradiated with laser light, whereby the work pieces are directed toward the object. It can be separated well.
上記発明(発明1)において、前記界面アブレーション層は、活性エネルギー線硬化性粘着剤または非活性エネルギー線硬化性粘着剤から構成される粘着剤層であることが好ましい(発明2)。
In the above invention (Invention 1), the interface ablation layer is preferably a pressure-sensitive adhesive layer composed of an active energy ray-curable pressure-sensitive adhesive or a non-active energy ray-curable pressure-sensitive adhesive (Invention 2).
上記発明(発明1,2)において、前記界面アブレーション層は、紫外線吸収剤および光重合開始剤の少なくとも1種の添加剤を含有することが好ましい(発明3)。
In the above inventions (Inventions 1 and 2), the interface ablation layer preferably contains at least one additive of an ultraviolet absorber and a photopolymerization initiator (Invention 3).
上記発明(発明1~3)において、前記レーザー光は、紫外域の波長を有するものであることが好ましい(発明4)。
In the above inventions (Inventions 1 to 3), it is preferable that the laser light has a wavelength in the ultraviolet region (Invention 4).
上記発明(発明1~4)においては、前記界面アブレーション層に界面アブレーションを生じさせたときに、当該界面アブレーションが生じた位置においてブリスターが形成されることが好ましい(発明5)。
In the above inventions (Inventions 1 to 4), when interfacial ablation is generated in the interfacial ablation layer, it is preferable that a blister is formed at the position where the interfacial ablation occurs (Invention 5).
上記発明(発明1~5)においては、活性エネルギー線の照射により前記界面アブレーション層を全体的または局所的に硬化させるとともに、前記レーザー光の照射により前記界面アブレーション層において局所的に界面アブレーションを生じさせることによって、前記界面アブレーション層における前記基材とは反対の面上に保持された複数のワーク小片のうちの任意のワーク小片を、前記界面アブレーション層から選択的に分離するために使用されるものであることが好ましい(発明6)。
In the above inventions (Inventions 1 to 5), the interfacial ablation layer is cured entirely or locally by irradiation with active energy rays, and interfacial ablation is locally generated in the interfacial ablation layer by irradiation with the laser beam. Is used to selectively separate any work piece of the plurality of work pieces held on the surface of the interfacial ablation layer opposite to the substrate from the interfacial ablation layer. It is preferable that it is (Invention 6).
第2に本発明は、前記ワークハンドリングシート(発明1~6)における、前記界面アブレーション層側の面上に複数のワーク小片が保持されてなる積層体を準備する準備工程と、前記ワーク小片を受容可能な対象物に対して、前記積層体における前記ワーク小片側の面が向かい合うように前記積層体を配置する配置工程と、前記積層体における前記界面アブレーション層における、少なくとも1つの前記ワーク小片が貼付されている位置に対し、レーザー光を照射して、前記界面アブレーション層における前記照射された位置において界面アブレーションを生じさせることで、当該界面アブレーションが生じた位置に存在する前記ワーク小片を前記ワークハンドリングシートから分離し、前記ワーク小片を前記対象物上に載置する分離工程とを備えることを特徴とするワーク小片の取り扱い方法を提供する(発明7)。
Secondly, the present invention comprises a preparatory step of preparing a laminate in which a plurality of work pieces are held on the surface of the work handling sheet (inventions 1 to 6) on the interface ablation layer side, and the work pieces. The arrangement step of arranging the laminate so that the surfaces of the work pieces in the laminate face each other with respect to the acceptable object, and at least one work piece in the interface ablation layer of the laminate. By irradiating the affixed position with a laser beam to cause interfacial ablation at the irradiated position in the interfacial ablation layer, the work piece existing at the position where the interfacial ablation occurs is made into the work. Provided is a method for handling small work pieces, which comprises a separation step of separating the small pieces of work from the handling sheet and placing the small pieces of work on the object (Invention 7).
第3に本発明は、前記ワークハンドリングシート(発明1~6)における、前記界面アブレーション層側の面上に複数のワーク小片が保持されてなる積層体を準備する準備工程と、前記ワーク小片を受容可能な対象物に対して、前記積層体における前記ワーク小片側の面が向かい合うように前記積層体を配置する配置工程と、前記積層体における前記界面アブレーション層における、少なくとも1つの前記ワーク小片が貼付されている位置に対し、レーザー光を照射して、前記界面アブレーション層における前記照射された位置において界面アブレーションを生じさせることで、当該界面アブレーションが生じた位置に存在する前記ワーク小片を前記ワークハンドリングシートから分離し、前記ワーク小片を前記対象物上に載置する分離工程とを備えることを特徴とするデバイス製造方法を提供する(発明8)。
Thirdly, the present invention comprises a preparatory step of preparing a laminate in which a plurality of work pieces are held on the surface of the work handling sheet (inventions 1 to 6) on the interface ablation layer side, and the work pieces. The arrangement step of arranging the laminate so that the surfaces of the work pieces in the laminate face each other with respect to the acceptable object, and at least one work piece in the interface ablation layer of the laminate. By irradiating the affixed position with a laser beam to cause interfacial ablation at the irradiated position in the interfacial ablation layer, the work piece existing at the position where the interfacial ablation occurs is made into the work. The present invention provides a device manufacturing method comprising a separation step of separating from a handling sheet and placing the work piece on the object (Invention 8).
第4に本発明は、前記ワークハンドリングシート(発明1~6)の、ワーク小片を取り扱うための使用を提供する(発明9)。
Fourth, the present invention provides the use of the work handling sheet (Invention 1 to 6) for handling small pieces of work (Invention 9).
本発明に係るワークハンドリングシートは、微細なワーク小片であっても良好に取り扱うことができる。
The work handling sheet according to the present invention can handle even fine work pieces satisfactorily.
以下、本発明の実施形態について説明する。
図1には、一実施形態に係るワークハンドリングシートの断面図が示される。図1に示されるワークハンドリングシート1は、基材12と、基材12における片面側に積層された界面アブレーション層11とを備える。 Hereinafter, embodiments of the present invention will be described.
FIG. 1 shows a cross-sectional view of a work handling sheet according to an embodiment. Thework handling sheet 1 shown in FIG. 1 includes a base material 12 and an interface ablation layer 11 laminated on one side of the base material 12.
図1には、一実施形態に係るワークハンドリングシートの断面図が示される。図1に示されるワークハンドリングシート1は、基材12と、基材12における片面側に積層された界面アブレーション層11とを備える。 Hereinafter, embodiments of the present invention will be described.
FIG. 1 shows a cross-sectional view of a work handling sheet according to an embodiment. The
本実施形態に係るワークハンドリングシート1においては、界面アブレーション層11が、ワーク小片を保持可能である。すなわち、本実施形態に係るワークハンドリングシート1は、界面アブレーション層11における基材12とは反対の面上に積層されたワーク小片を、その状態のまま保持することができる。
In the work handling sheet 1 according to the present embodiment, the interface ablation layer 11 can hold a small piece of work. That is, the work handling sheet 1 according to the present embodiment can hold the work pieces laminated on the surface of the interface ablation layer 11 opposite to the base material 12 in that state.
上記保持の具体的な態様は限定されないものの、好ましい例としては、界面アブレーション層11がワーク小片に対する粘着性を発揮することで保持することが挙げられる。この場合、界面アブレーション層11は、後述する通り、それを構成する成分の1つとして粘着剤を含むこと、すなわち粘着剤層であることが好ましい。
Although the specific mode of the above holding is not limited, a preferable example is that the interface ablation layer 11 holds the work piece by exhibiting adhesiveness to the work piece. In this case, as will be described later, the interface ablation layer 11 preferably contains a pressure-sensitive adhesive as one of the components constituting the interface ablation layer 11, that is, a pressure-sensitive adhesive layer.
また、本実施形態における界面アブレーション層11は、レーザー光の照射によって界面アブレーションするものである。すなわち、界面アブレーション層11は、上記レーザー光の照射を受けた領域において、局所的な界面アブレーションするものである。なお、上記レーザー光としては、界面アブレーションを生じさせることが可能であれば特に限定されず、紫外域、可視光域および赤外域のいずれの波長を有するレーザー光であってよく、中でも、紫外域の波長を有するレーザー光が好ましい。
Further, the interfacial ablation layer 11 in the present embodiment is interfacial ablated by irradiation with laser light. That is, the interface ablation layer 11 locally ablates the interface in the region irradiated with the laser beam. The laser light is not particularly limited as long as it can cause interfacial ablation, and may be a laser light having any wavelength in the ultraviolet region, the visible light region, and the infrared region, and among them, the ultraviolet region. A laser beam having a wavelength of is preferable.
本明細書において、界面アブレーションとは、上記レーザー光のエネルギーによって界面アブレーション層11を構成する成分の一部が蒸発または揮発し、それによって生じたガスが界面アブレーション層11と基材12との界面に溜まって空隙(ブリスター)が生じることを指す。この場合、ブリスターによって界面アブレーション層11の形状が変化し、ワーク小片が界面アブレーション層11から剥がれ落ちて、ワーク小片が分離することとなる。
In the present specification, the interfacial ablation means that a part of the components constituting the interfacial ablation layer 11 is evaporated or volatilized by the energy of the laser beam, and the gas generated thereby is the interface between the interfacial ablation layer 11 and the base material 12. It means that a gap (blister) is generated by accumulating in. In this case, the shape of the interface ablation layer 11 is changed by the blister, the work pieces are peeled off from the interface ablation layer 11, and the work pieces are separated.
そして、本実施形態に係るワークハンドリングシート1では、波長365nmの紫外線を光量190mJ/cm2で照射する第1の紫外線照射を行ったワークハンドリングシート1に対して、さらに波長365nmの紫外線を950mJ/cm2の光量で照射する第2の紫外線照射を行った場合に、界面アブレーション層11が上記第2の紫外線照射における紫外線の光エネルギーを熱エネルギーに変換する際の変換効率が、60%以上である。
Then, in the work handling sheet 1 according to the present embodiment, the ultraviolet rays having a wavelength of 365 nm are further emitted to 950 mJ / cm / cm with respect to the work handling sheet 1 to which the first ultraviolet rays are irradiated to irradiate the ultraviolet rays having a wavelength of 365 nm at a light amount of 190 mJ / cm 2 . When the second ultraviolet irradiation is performed with a light amount of cm 2 , the conversion efficiency when the interfacial ablation layer 11 converts the ultraviolet light energy in the second ultraviolet irradiation into heat energy is 60% or more. be.
本実施形態に係るワークハンドリングシート1では、上記変換効率を満たすことにより、効率的に界面アブレーションが生じ、保持したワーク小片を界面アブレーション層11から良好に分離することが可能となる。特に、ワーク小片の十分な分離を生じさせるために必要となるレーザー光の照射量が低減し、レーザー光の照射装置の稼働コストを低減できるとともに、ターゲットとするワーク小片のみを良好に分離し易くなって精度が向上し、さらには、過度なレーザー光照射による装置およびワーク小片等の損傷を防ぐこともできる。
In the work handling sheet 1 according to the present embodiment, by satisfying the above conversion efficiency, interfacial ablation is efficiently generated, and the held work pieces can be satisfactorily separated from the interfacial ablation layer 11. In particular, the amount of laser light irradiation required to cause sufficient separation of the work pieces can be reduced, the operating cost of the laser light irradiation device can be reduced, and only the target work pieces can be easily separated satisfactorily. As a result, the accuracy is improved, and it is possible to prevent damage to the device, work pieces, etc. due to excessive laser light irradiation.
1.界面アブレーション層
本実施形態における界面アブレーション層11の具体的な構成や組成は、ワーク小片を保持可能であるとともに、上述した変換効率を満たすものとなる限り、特に限定されない。 1. 1. Interface ablation layer The specific configuration and composition of theinterface ablation layer 11 in the present embodiment are not particularly limited as long as they can hold small pieces of work and satisfy the above-mentioned conversion efficiency.
本実施形態における界面アブレーション層11の具体的な構成や組成は、ワーク小片を保持可能であるとともに、上述した変換効率を満たすものとなる限り、特に限定されない。 1. 1. Interface ablation layer The specific configuration and composition of the
上述の通り、界面アブレーション層11は粘着剤層であることが好ましく、特に、界面アブレーション層11は、活性エネルギー線硬化性を有する粘着剤(活性エネルギー線硬化性粘着剤)または活性エネルギー線硬化性を有しない粘着剤(非活性エネルギー線硬化性粘着剤)から構成される粘着剤層であることが好ましい。
As described above, the interface ablation layer 11 is preferably an adhesive layer, and in particular, the interface ablation layer 11 is an adhesive having active energy ray curability (active energy ray curable adhesive) or active energy ray curable. It is preferable that the pressure-sensitive adhesive layer is composed of a pressure-sensitive adhesive (non-active energy ray-curable pressure-sensitive adhesive).
また、界面アブレーション11は、上述した変換効率を満たし易いという観点から、紫外線吸収剤および光重合開始剤の少なくとも1種の添加剤を含有することが好ましい。
Further, the interface ablation 11 preferably contains at least one additive of an ultraviolet absorber and a photopolymerization initiator from the viewpoint of easily satisfying the above-mentioned conversion efficiency.
(1)活性エネルギー線硬化性粘着剤
界面アブレーション層11が活性エネルギー線硬化性粘着剤から構成される粘着剤層である場合、活性エネルギー線の照射によって、本実施形態に係るワークハンドリングシート1とワーク小片との密着性を低下させることができる。そのため、上述した界面アブレーションを生じさせる前に、または上述した界面アブレーションと同時に、活性エネルギー線の照射によって密着性を低下させることにより、本実施形態に係るワークハンドリングシート1からのワーク小片の分離を確実に行うことが可能となる。また、ワーク小片の十分な分離を生じさせるために必要となるレーザー光の照射量をさらに低減することが可能となる。さらに、本実施形態に係るワークハンドリングシート1では、活性エネルギー線の照射によってワーク小片に対する密着性が低下するため、活性エネルギー線の照射前における密着性を高めに設定することも可能となる。それにより、本実施形態に係るワークハンドリングシート1に対して、他のシート等からワーク小片を転写する際に、当該他のシート等におけるワーク小片の残留を防いで、良好な転写を行うことが可能となる。 (1) Active Energy Ray Curable Adhesive When theinterface ablation layer 11 is an adhesive layer composed of an active energy ray curable adhesive, the work handling sheet 1 according to the present embodiment can be subjected to irradiation with active energy rays. Adhesion with small pieces of work can be reduced. Therefore, before the above-mentioned interface ablation is generated, or at the same time as the above-mentioned interface ablation, the adhesion is lowered by irradiation with active energy rays to separate the work pieces from the work handling sheet 1 according to the present embodiment. It will be possible to do it reliably. Further, it is possible to further reduce the irradiation amount of the laser beam required to cause sufficient separation of the work pieces. Further, in the work handling sheet 1 according to the present embodiment, since the adhesion to the work pieces is lowered by the irradiation with the active energy rays, it is possible to set the adhesion before the irradiation with the active energy rays to be higher. As a result, when the work piece is transferred from another sheet or the like to the work handling sheet 1 according to the present embodiment, it is possible to prevent the work piece from remaining on the other sheet or the like and perform good transfer. It will be possible.
界面アブレーション層11が活性エネルギー線硬化性粘着剤から構成される粘着剤層である場合、活性エネルギー線の照射によって、本実施形態に係るワークハンドリングシート1とワーク小片との密着性を低下させることができる。そのため、上述した界面アブレーションを生じさせる前に、または上述した界面アブレーションと同時に、活性エネルギー線の照射によって密着性を低下させることにより、本実施形態に係るワークハンドリングシート1からのワーク小片の分離を確実に行うことが可能となる。また、ワーク小片の十分な分離を生じさせるために必要となるレーザー光の照射量をさらに低減することが可能となる。さらに、本実施形態に係るワークハンドリングシート1では、活性エネルギー線の照射によってワーク小片に対する密着性が低下するため、活性エネルギー線の照射前における密着性を高めに設定することも可能となる。それにより、本実施形態に係るワークハンドリングシート1に対して、他のシート等からワーク小片を転写する際に、当該他のシート等におけるワーク小片の残留を防いで、良好な転写を行うことが可能となる。 (1) Active Energy Ray Curable Adhesive When the
上記活性エネルギー線硬化性粘着剤は、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ポリエステル系粘着剤、ポリビニルエーテル系粘着剤等のいずれの粘着剤であってもよいものの、所望の粘着力を発揮し易いという観点からは、アクリル系粘着剤であることが好ましい。
The active energy ray-curable adhesive may be any of acrylic adhesive, rubber adhesive, silicone adhesive, urethane adhesive, polyester adhesive, polyvinyl ether adhesive and the like. Although it is good, it is preferably an acrylic pressure-sensitive adhesive from the viewpoint that it easily exerts a desired adhesive strength.
また、活性エネルギー線硬化性粘着剤は、活性エネルギー線硬化性を有するポリマーを主成分とするものであってもよいし、活性エネルギー線非硬化性ポリマー(活性エネルギー線硬化性を有しないポリマー)と少なくとも1つ以上の活性エネルギー線硬化性基を有するモノマーおよび/またはオリゴマーとの混合物を主成分とするものであってもよい。また、活性エネルギー線硬化性を有するポリマーと活性エネルギー線非硬化性ポリマーとの混合物であってもよいし、活性エネルギー線硬化性を有するポリマーと少なくとも1つ以上の活性エネルギー線硬化性基を有するモノマーおよび/またはオリゴマーとの混合物であってもよいし、それら3種の混合物であってもよい。
Further, the active energy ray-curable pressure-sensitive adhesive may be mainly composed of a polymer having active energy ray curability, or an active energy ray non-curable polymer (a polymer having no active energy ray curable property). The main component may be a mixture of a monomer having at least one active energy ray-curable group and / or an oligomer. Further, it may be a mixture of an active energy ray-curable polymer and an active energy ray-non-curable polymer, or has an active energy ray-curable polymer and at least one active energy ray-curable group. It may be a mixture of a monomer and / or an oligomer, or a mixture of three of them.
最初に、活性エネルギー線硬化性粘着剤が、活性エネルギー線硬化性を有するポリマーを主成分とする場合について、以下説明する。
First, the case where the active energy ray-curable adhesive contains a polymer having active energy ray curability as a main component will be described below.
活性エネルギー線硬化性を有するポリマーは、側鎖にエネルギー線硬化性を有する官能基(活性エネルギー線硬化性基)が導入された(メタ)アクリル酸エステル(共)重合体(A)(以下「活性エネルギー線硬化型重合体(A)」という場合がある。)であることが好ましい。この活性エネルギー線硬化型重合体(A)は、官能基含有モノマー単位を有するアクリル系共重合体(a1)と、その官能基に結合する官能基を有する不飽和基含有化合物(a2)とを反応させて得られるものであることが好ましい。なお、本明細書において、(メタ)アクリル酸エステルとは、アクリル酸エステル及びメタクリル酸エステルの両方を意味する。他の類似用語も同様である。
The polymer having active energy ray curability is a (meth) acrylic acid ester (co) polymer (A) in which a functional group having energy ray curability (active energy ray curable group) is introduced into a side chain (hereinafter, "" It may be referred to as "active energy ray-curable polymer (A)"). This active energy ray-curable polymer (A) is composed of an acrylic copolymer (a1) having a functional group-containing monomer unit and an unsaturated group-containing compound (a2) having a functional group bonded to the functional group. It is preferably obtained by reaction. In addition, in this specification, (meth) acrylic acid ester means both acrylic acid ester and methacrylic acid ester. The same applies to other similar terms.
アクリル系共重合体(a1)は、官能基含有モノマーから導かれる構成単位と、(メタ)アクリル酸エステルモノマーまたはその誘導体から導かれる構成単位とを含むことが好ましい。
The acrylic copolymer (a1) preferably contains a structural unit derived from a functional group-containing monomer and a structural unit derived from a (meth) acrylic acid ester monomer or a derivative thereof.
アクリル系共重合体(a1)の構成単位としての官能基含有モノマーは、重合性の二重結合と、ヒドロキシ基、カルボキシ基、アミノ基、置換アミノ基、エポキシ基等の官能基とを分子内に有するモノマーであることが好ましい。
The functional group-containing monomer as a constituent unit of the acrylic copolymer (a1) has a polymerizable double bond and a functional group such as a hydroxy group, a carboxy group, an amino group, a substituted amino group, and an epoxy group in the molecule. It is preferable that the monomer is contained in.
ヒドロキシ基含有モノマーとしては、例えば、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート等が挙げられ、これらは単独でまたは2種以上を組み合わせて用いられる。
Examples of the hydroxy group-containing monomer include 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (meth) acrylate, 3-hydroxypropyl (meth) acrylate, 2-hydroxybutyl (meth) acrylate, and 3-hydroxybutyl ( Examples thereof include meta) acrylate and 4-hydroxybutyl (meth) acrylate, which are used alone or in combination of two or more.
カルボキシ基含有モノマーとしては、例えば、アクリル酸、メタクリル酸、クロトン酸、マレイン酸、イタコン酸、シトラコン酸等のエチレン性不飽和カルボン酸が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Examples of the carboxy group-containing monomer include ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, crotonic acid, maleic acid, itaconic acid, and citraconic acid. These may be used alone or in combination of two or more.
アミノ基含有モノマーまたは置換アミノ基含有モノマーとしては、例えば、アミノエチル(メタ)アクリレート、n-ブチルアミノエチル(メタ)アクリレート等が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Examples of the amino group-containing monomer or the substituted amino group-containing monomer include aminoethyl (meth) acrylate and n-butylaminoethyl (meth) acrylate. These may be used alone or in combination of two or more.
アクリル系共重合体(a1)を構成する(メタ)アクリル酸エステルモノマーとしては、アルキル基の炭素数が1~20であるアルキル(メタ)アクリレートの他、例えば、分子内に脂環式構造を有するモノマー(脂環式構造含有モノマー)が好ましく用いられる。
The (meth) acrylic acid ester monomer constituting the acrylic copolymer (a1) includes an alkyl (meth) acrylate having an alkyl group having 1 to 20 carbon atoms, for example, an alicyclic structure in the molecule. A monomer having an alicyclic structure (monomer containing an alicyclic structure) is preferably used.
アルキル(メタ)アクリレートとしては、特にアルキル基の炭素数が1~18であるアルキル(メタ)アクリレート、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等が好ましく用いられる。これらは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
As the alkyl (meth) acrylate, an alkyl (meth) acrylate having an alkyl group having 1 to 18 carbon atoms, for example, methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, n-butyl ( Meta) acrylate, 2-ethylhexyl (meth) acrylate and the like are preferably used. These may be used individually by 1 type, and may be used in combination of 2 or more type.
脂環式構造含有モノマーとしては、例えば、(メタ)アクリル酸シクロヘキシル、(メタ)アクリル酸ジシクロペンタニル、(メタ)アクリル酸アダマンチル、(メタ)アクリル酸イソボルニル、(メタ)アクリル酸ジシクロペンテニル、(メタ)アクリル酸ジシクロペンテニルオキシエチル等が好ましく用いられる。これらは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Examples of the alicyclic structure-containing monomer include cyclohexyl (meth) acrylate, dicyclopentanyl (meth) acrylate, adamantyl (meth) acrylate, isobornyl (meth) acrylate, and dicyclopentenyl (meth) acrylate. , (Meta) dicyclopentenyloxyethyl acrylate and the like are preferably used. These may be used individually by 1 type, and may be used in combination of 2 or more type.
アクリル系共重合体(a1)は、上記官能基含有モノマーから導かれる構成単位を、好ましくは1質量%以上、特に好ましくは5質量%以上、さらに好ましくは10質量%以上の割合で含有する。また、アクリル系共重合体(a1)は、上記官能基含有モノマーから導かれる構成単位を、好ましくは35質量%以下、特に好ましくは30質量%以下、さらに好ましくは25質量%以下の割合で含有する。
The acrylic copolymer (a1) contains the structural unit derived from the functional group-containing monomer in a proportion of preferably 1% by mass or more, particularly preferably 5% by mass or more, and further preferably 10% by mass or more. Further, the acrylic copolymer (a1) contains a structural unit derived from the functional group-containing monomer in a proportion of preferably 35% by mass or less, particularly preferably 30% by mass or less, still more preferably 25% by mass or less. do.
さらに、アクリル系共重合体(a1)は、(メタ)アクリル酸エステルモノマーまたはその誘導体から導かれる構成単位を、好ましくは50質量%以上、特に好ましくは60質量%以上、さらに好ましくは70質量%以上の割合で含有する。また、アクリル系共重合体(a1)は、(メタ)アクリル酸エステルモノマーまたはその誘導体から導かれる構成単位を、好ましくは99質量%以下、特に好ましくは95質量%以下、さらに好ましくは90質量%以下の割合で含有する。
Further, the acrylic copolymer (a1) contains a constituent unit derived from the (meth) acrylic acid ester monomer or a derivative thereof, preferably 50% by mass or more, particularly preferably 60% by mass or more, still more preferably 70% by mass. It is contained in the above ratio. Further, the acrylic copolymer (a1) contains a structural unit derived from the (meth) acrylic acid ester monomer or a derivative thereof, preferably 99% by mass or less, particularly preferably 95% by mass or less, and further preferably 90% by mass. It is contained in the following proportions.
アクリル系共重合体(a1)は、上記のような官能基含有モノマーと、(メタ)アクリル酸エステルモノマーまたはその誘導体とを常法で共重合することにより得られるが、これらモノマーの他にもジメチルアクリルアミド、蟻酸ビニル、酢酸ビニル、スチレン等が共重合されてもよい。
The acrylic copolymer (a1) can be obtained by copolymerizing a functional group-containing monomer as described above with a (meth) acrylic acid ester monomer or a derivative thereof by a conventional method, but in addition to these monomers, Dimethylacrylamide, vinyl formate, vinyl acetate, styrene and the like may be copolymerized.
上記官能基含有モノマー単位を有するアクリル系共重合体(a1)を、その官能基に結合する官能基を有する不飽和基含有化合物(a2)と反応させることにより、活性エネルギー線硬化型重合体(A)が得られる。
By reacting the acrylic copolymer (a1) having the above functional group-containing monomer unit with the unsaturated group-containing compound (a2) having a functional group bonded to the functional group, an active energy ray-curable polymer (a2). A) is obtained.
不飽和基含有化合物(a2)が有する官能基は、アクリル系共重合体(a1)が有する官能基含有モノマー単位の官能基の種類に応じて、適宜選択することができる。例えば、アクリル系共重合体(a1)が有する官能基がヒドロキシ基、アミノ基または置換アミノ基の場合、不飽和基含有化合物(a2)が有する官能基としてはイソシアネート基またはエポキシ基が好ましく、アクリル系共重合体(a1)が有する官能基がエポキシ基の場合、不飽和基含有化合物(a2)が有する官能基としてはアミノ基、カルボキシ基またはアジリジニル基が好ましい。
The functional group of the unsaturated group-containing compound (a2) can be appropriately selected depending on the type of functional group of the functional group-containing monomer unit of the acrylic copolymer (a1). For example, when the functional group of the acrylic copolymer (a1) is a hydroxy group, an amino group or a substituted amino group, the functional group of the unsaturated group-containing compound (a2) is preferably an isocyanate group or an epoxy group, and acrylic. When the functional group of the system copolymer (a1) is an epoxy group, the functional group of the unsaturated group-containing compound (a2) is preferably an amino group, a carboxy group or an aziridinyl group.
また上記不飽和基含有化合物(a2)には、エネルギー線重合性の炭素-炭素二重結合が、1分子中に少なくとも1個、好ましくは1~6個、さらに好ましくは1~4個含まれている。このような不飽和基含有化合物(a2)の具体例としては、例えば、2-メタクリロイルオキシエチルイソシアネート、メタ-イソプロペニル-α,α-ジメチルベンジルイソシアネート、メタクリロイルイソシアネート、アリルイソシアネート、1,1-(ビスアクリロイルオキシメチル)エチルイソシアネート;ジイソシアネート化合物またはポリイソシアネート化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;ジイソシアネート化合物またはポリイソシアネート化合物と、ポリオール化合物と、ヒドロキシエチル(メタ)アクリレートとの反応により得られるアクリロイルモノイソシアネート化合物;グリシジル(メタ)アクリレート;(メタ)アクリル酸、2-(1-アジリジニル)エチル(メタ)アクリレート、2-ビニル-2-オキサゾリン、2-イソプロペニル-2-オキサゾリン等が挙げられる。
The unsaturated group-containing compound (a2) contains at least one, preferably 1 to 6, and more preferably 1 to 4 energy ray-polymerizable carbon-carbon double bonds in one molecule. ing. Specific examples of such an unsaturated group-containing compound (a2) include 2-methacryloyloxyethyl isocyanate, meta-isopropenyl-α, α-dimethylbenzyl isocyanate, methacryloyl isocyanate, allyl isocyanate, and 1,1-(. Bisacryloyloxymethyl) ethyl isocyanate; Acryloyl monoisocyanate compound obtained by reacting a diisocyanate compound or a polyisocyanate compound with a hydroxyethyl (meth) acrylate; a diisocyanate compound or a polyisocyanate compound, a polyol compound, and a hydroxyethyl (meth) Acryloyl monoisocyanate compound obtained by reaction with acrylate; glycidyl (meth) acrylate; (meth) acrylic acid, 2- (1-aziridinyl) ethyl (meth) acrylate, 2-vinyl-2-oxazoline, 2-isopropenyl- 2-Oxazoline and the like can be mentioned.
上記不飽和基含有化合物(a2)は、上記アクリル系共重合体(a1)の官能基含有モノマーモル数に対して、好ましくは50モル%以上、特に好ましくは60モル%以上、さらに好ましくは70モル%以上の割合で用いられる。また、上記不飽和基含有化合物(a2)は、上記アクリル系共重合体(a1)の官能基含有モノマーモル数に対して、好ましくは95モル%以下、特に好ましくは93モル%以下、さらに好ましくは90モル%以下の割合で用いられる。
The unsaturated group-containing compound (a2) is preferably 50 mol% or more, particularly preferably 60 mol% or more, still more preferably 70 mol% or more, based on the number of moles of the functional group-containing monomer of the acrylic copolymer (a1). Used at a rate of% or more. The unsaturated group-containing compound (a2) is preferably 95 mol% or less, particularly preferably 93 mol% or less, still more preferably 93 mol% or less, based on the number of moles of the functional group-containing monomer of the acrylic copolymer (a1). It is used in a proportion of 90 mol% or less.
アクリル系共重合体(a1)と不飽和基含有化合物(a2)との反応においては、アクリル系共重合体(a1)が有する官能基と不飽和基含有化合物(a2)が有する官能基との組合せに応じて、反応の温度、圧力、溶媒、時間、触媒の有無、触媒の種類を適宜選択することができる。これにより、アクリル系共重合体(a1)中に存在する官能基と、不飽和基含有化合物(a2)中の官能基とが反応し、不飽和基がアクリル系共重合体(a1)中の側鎖に導入され、活性エネルギー線硬化型重合体(A)が得られる。
In the reaction between the acrylic copolymer (a1) and the unsaturated group-containing compound (a2), the functional group of the acrylic copolymer (a1) and the functional group of the unsaturated group-containing compound (a2) are used. Depending on the combination, the reaction temperature, pressure, solvent, time, presence / absence of catalyst, and type of catalyst can be appropriately selected. As a result, the functional group present in the acrylic copolymer (a1) reacts with the functional group in the unsaturated group-containing compound (a2), and the unsaturated group is contained in the acrylic copolymer (a1). It is introduced into the side chain to obtain an active energy ray-curable polymer (A).
このようにして得られる活性エネルギー線硬化型重合体(A)の重量平均分子量(Mw)は、1万以上であるのが好ましく、特に10万以上であるのが好ましく、さらには15万以上であるのが好ましい。また、当該重量平均分子量(Mw)は、150万以下であるのが好ましく、特に125万以下であるのが好ましく、さらには100万以下であるのが好ましい。なお、本明細書における重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー法(GPC法)により測定した標準ポリスチレン換算の値である。
The weight average molecular weight (Mw) of the active energy ray-curable polymer (A) thus obtained is preferably 10,000 or more, particularly preferably 100,000 or more, and further preferably 150,000 or more. It is preferable to have it. The weight average molecular weight (Mw) is preferably 1.5 million or less, particularly preferably 1.25 million or less, and further preferably 1 million or less. The weight average molecular weight (Mw) in the present specification is a standard polystyrene-equivalent value measured by a gel permeation chromatography method (GPC method).
活性エネルギー線硬化性粘着剤が、活性エネルギー線硬化型重合体(A)といった活性エネルギー線硬化性を有するポリマーを主成分とする場合であっても、活性エネルギー線硬化性粘着剤は、エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)をさらに含有してもよい。
Even when the active energy ray-curable pressure-sensitive adhesive contains a polymer having active energy ray-curable property such as the active energy ray-curable polymer (A) as a main component, the active energy ray-curable pressure-sensitive adhesive is an energy ray. It may further contain a curable monomer and / or oligomer (B).
活性エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)としては、例えば、多価アルコールと(メタ)アクリル酸とのエステル等を使用することができる。
As the active energy ray-curable monomer and / or oligomer (B), for example, an ester of a polyhydric alcohol and (meth) acrylic acid can be used.
かかる活性エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)としては、例えば、シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等の単官能性アクリル酸エステル類、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレート、1,4-ブタンジオールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ジメチロールトリシクロデカンジ(メタ)アクリレート等の多官能性アクリル酸エステル類、ポリエステルオリゴ(メタ)アクリレート、ポリウレタンオリゴ(メタ)アクリレート等が挙げられる。
Examples of the active energy ray-curable monomer and / or oligomer (B) include monofunctional acrylic acid esters such as cyclohexyl (meth) acrylate and isobornyl (meth) acrylate, trimethyl propantri (meth) acrylate, and the like. Pentaerythritol tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, 1,4-butanediol di (meth) acrylate, 1,6-hexanediol di (meth) acrylate, polyethylene Examples thereof include polyfunctional acrylic acid esters such as glycol di (meth) acrylate and dimethylol tricyclodecandi (meth) acrylate, polyester oligo (meth) acrylate, and polyurethane oligo (meth) acrylate.
活性エネルギー線硬化型重合体(A)に対し、活性エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)を配合する場合、活性エネルギー線硬化性粘着剤中における活性エネルギー線硬化性のモノマーおよび/またはオリゴマー(B)の含有量は、活性エネルギー線硬化型重合体(A)100質量部に対して、0質量部超であることが好ましく、特に60質量部以上であることが好ましい。また、当該含有量は、活性エネルギー線硬化型重合体(A)100質量部に対して、250質量部以下であることが好ましく、特に200質量部以下であることが好ましい。
When the active energy ray-curable monomer and / or the oligomer (B) is blended with the active energy ray-curable polymer (A), the active energy ray-curable monomer and / or the active energy ray-curable monomer in the active energy ray-curable pressure-sensitive adhesive. Alternatively, the content of the oligomer (B) is preferably more than 0 parts by mass, particularly preferably 60 parts by mass or more, with respect to 100 parts by mass of the active energy ray-curable polymer (A). The content is preferably 250 parts by mass or less, and particularly preferably 200 parts by mass or less, with respect to 100 parts by mass of the active energy ray-curable polymer (A).
次に、活性エネルギー線硬化性粘着剤が、活性エネルギー線非硬化性ポリマー成分と少なくとも1つ以上の活性エネルギー線硬化性基を有するモノマーおよび/またはオリゴマーとの混合物を主成分とする場合について、以下説明する。
Next, in the case where the active energy ray-curable pressure-sensitive adhesive contains a mixture of an active energy ray-curable polymer component and a monomer and / or an oligomer having at least one active energy ray-curable group as a main component. This will be described below.
活性エネルギー線非硬化性ポリマー成分としては、例えば、前述したアクリル系共重合体(a1)と同様の成分が使用できる。
As the active energy ray non-curable polymer component, for example, the same component as the acrylic copolymer (a1) described above can be used.
少なくとも1つ以上の活性エネルギー線硬化性基を有するモノマーおよび/またはオリゴマーとしては、前述の成分(B)と同じものが選択できる。活性エネルギー線非硬化性ポリマー成分と少なくとも1つ以上の活性エネルギー線硬化性基を有するモノマーおよび/またはオリゴマーとの配合比は、活性エネルギー線非硬化性ポリマー成分100質量部に対して、少なくとも1つ以上の活性エネルギー線硬化性基を有するモノマーおよび/またはオリゴマー1質量部以上であるのが好ましく、特に60質量部以上であるのが好ましい。また、当該配合比は、活性エネルギー線非硬化性ポリマー成分100質量部に対して、少なくとも1つ以上の活性エネルギー線硬化性基を有するモノマーおよび/またはオリゴマー200質量部以下であるのが好ましく、特に160質量部以下であるのが好ましい。
As the monomer and / or oligomer having at least one or more active energy ray-curable groups, the same one as the above-mentioned component (B) can be selected. The blending ratio of the active energy ray non-curable polymer component to the monomer and / or oligomer having at least one active energy ray curable group is at least 1 with respect to 100 parts by mass of the active energy ray non-curable polymer component. It is preferably 1 part by mass or more of the monomer and / or oligomer having two or more active energy ray-curable groups, and particularly preferably 60 parts by mass or more. Further, the compounding ratio is preferably 200 parts by mass or less of a monomer and / or an oligomer having at least one active energy ray-curable group with respect to 100 parts by mass of the active energy ray non-curable polymer component. In particular, it is preferably 160 parts by mass or less.
(2)非活性エネルギー線硬化性粘着剤
界面アブレーション層11が非活性エネルギー線硬化性粘着剤から構成される粘着剤層である場合、当該粘着剤も、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ポリエステル系粘着剤、ポリビニルエーテル系粘着剤等のいずれの粘着剤であってもよいものの、所望の粘着力を発揮し易いという観点からは、アクリル系粘着剤であることが好ましい。 (2) Non-active energy ray-curable pressure-sensitive adhesive When theinterface ablation layer 11 is a pressure-sensitive adhesive layer composed of a non-active energy ray-curable pressure-sensitive adhesive, the pressure-sensitive adhesive is also an acrylic pressure-sensitive adhesive, a rubber-based pressure-sensitive adhesive, Any adhesive such as a silicone adhesive, a urethane adhesive, a polyester adhesive, or a polyvinyl ether adhesive may be used, but from the viewpoint of easily exhibiting the desired adhesive force, an acrylic adhesive. Is preferable.
界面アブレーション層11が非活性エネルギー線硬化性粘着剤から構成される粘着剤層である場合、当該粘着剤も、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ポリエステル系粘着剤、ポリビニルエーテル系粘着剤等のいずれの粘着剤であってもよいものの、所望の粘着力を発揮し易いという観点からは、アクリル系粘着剤であることが好ましい。 (2) Non-active energy ray-curable pressure-sensitive adhesive When the
非活性エネルギー線硬化性粘着剤としてのアクリル系粘着剤の例としては、前述した活性エネルギー線非硬化性ポリマー成分を含有する粘着剤が挙げられる。当該活性エネルギー線非硬化性ポリマー成分としても、前述したアクリル系共重合体(a1)と同様の成分を使用することができる。なお、非活性エネルギー線硬化性粘着剤は、前述した活性エネルギー線硬化性を有するポリマー、および、前述した少なくとも1つ以上の活性エネルギー線硬化性基を有するモノマーおよび/またはオリゴマーを含有しないものである。
An example of an acrylic pressure-sensitive adhesive as a non-active energy ray-curable pressure-sensitive adhesive is a pressure-sensitive adhesive containing the above-mentioned active energy ray-non-curable polymer component. As the active energy ray non-curable polymer component, the same component as the acrylic copolymer (a1) described above can be used. The non-active energy ray-curable pressure-sensitive adhesive does not contain the above-mentioned polymer having active energy ray-curable property and the above-mentioned monomer and / or oligomer having at least one active energy ray-curable group. be.
(3)添加剤
前述の通り、本実施形態における界面アブレーション11は、前述した変換効率を満たし易いという観点から、紫外線吸収剤および光重合開始剤の少なくとも1種の添加剤を含有することが好ましい。 (3) Additives As described above, theinterface ablation 11 in the present embodiment preferably contains at least one additive of an ultraviolet absorber and a photopolymerization initiator from the viewpoint of easily satisfying the above-mentioned conversion efficiency. ..
前述の通り、本実施形態における界面アブレーション11は、前述した変換効率を満たし易いという観点から、紫外線吸収剤および光重合開始剤の少なくとも1種の添加剤を含有することが好ましい。 (3) Additives As described above, the
(3-1)紫外線吸収剤
本実施形態における紫外線吸収剤の種類は特に限定されない。本実施形態における紫外線吸収剤は、有機化合物であってもよく、無機化合物であってもよいが、良好な界面アブレーションを生じさせ易いという観点からは有機化合物であることが好ましい。 (3-1) Ultraviolet absorber The type of ultraviolet absorber in the present embodiment is not particularly limited. The ultraviolet absorber in the present embodiment may be an organic compound or an inorganic compound, but is preferably an organic compound from the viewpoint of easily causing good interfacial ablation.
本実施形態における紫外線吸収剤の種類は特に限定されない。本実施形態における紫外線吸収剤は、有機化合物であってもよく、無機化合物であってもよいが、良好な界面アブレーションを生じさせ易いという観点からは有機化合物であることが好ましい。 (3-1) Ultraviolet absorber The type of ultraviolet absorber in the present embodiment is not particularly limited. The ultraviolet absorber in the present embodiment may be an organic compound or an inorganic compound, but is preferably an organic compound from the viewpoint of easily causing good interfacial ablation.
紫外線吸収剤が有機化合物である場合、当該紫外線吸収剤の好ましい例としては、ヒドロキシフェニルトリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾエート系紫外線吸収剤、ベンゾオキサジノン系紫外線吸収剤、フェニルサリシレート系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、ニッケル錯塩系紫外線吸収剤、ハイドロキノン系紫外線吸収剤、サリチル酸系紫外線吸収剤、マロン酸エステル系紫外線吸収剤、シュウ酸系紫外線吸収剤等の化合物が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
When the UV absorber is an organic compound, preferred examples of the UV absorber are hydroxyphenyltriazine-based UV absorbers, benzophenone-based UV absorbers, benzotriazole-based UV absorbers, benzoate-based UV absorbers, and benzooxadinone. UV absorbers, phenylsalicylate UV absorbers, cyanoacrylate UV absorbers, nickel complex salt UV absorbers, hydroquinone UV absorbers, salicylic acid UV absorbers, malonic acid ester UV absorbers, oxalic UV absorbers Examples include compounds such as absorbers. These may be used individually by 1 type, and may be used in combination of 2 or more type.
上述した紫外線吸収剤の中でも、YAGの第三次高調波(355nm)において良好な吸収性を有し、且つ良好な界面アブレーションを生じさせ易いという観点から、ヒドロキシフェニルトリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤およびベンゾトリアゾール系紫外線吸収剤の少なくとも1種を使用することが好ましく、とりわけヒドロキシフェニルトリアジン系紫外線吸収剤を使用することが好ましい。
Among the above-mentioned UV absorbers, hydroxyphenyltriazine-based UV absorbers and benzophenone-based UV absorbers have good absorbency at the third harmonic of YAG (355 nm) and are likely to cause good interfacial ablation. It is preferable to use at least one of an ultraviolet absorber and a benzotriazole-based ultraviolet absorber, and it is particularly preferable to use a hydroxyphenyltriazine-based ultraviolet absorber.
上記ヒドロキシフェニルトリアジン系紫外線吸収剤としては、2-[4-(オクチル-2-メチルエタノエート)オキシ-2-ヒドロキシフェニル]-4,6-[ビス(2,4-ジメチルフェニル)]-1,3,5-トリアジン、2-[4-(2-ヒドロキシ-3-ドデシロキシ-プロピル)オキシ-2-ヒドロキシフェニル]-4,6-[ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-(2-ヒドロキシ-3-トリデシロキシ-プロピル)オキシ-2-ヒドロキシフェニル]-4,6-[ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-(2,4-ジヒドロキシフェニル)-4,6-ビス-(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-(2-ヒドロキシ-3-(2’-エチル)ヘキシルオキシ]-2-ヒドロキシフェニル]-4,6-[ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4-ビス[2-ヒドロキシ-4-ブトキシフェニル]-6-(2,4-ジブトキシフェニル)-1,3-5-トリアジン、2-(2-ヒドロキシ-4-[1-オクチルオキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン、トリス[2,4,6-[2-{4-(オクチル-2-メチルエタノエート)オキシ-2-ヒドロキシフェニル}]-1,3,5-トリアジンなどが挙げられる。これらは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Examples of the hydroxyphenyltriazine-based ultraviolet absorber include 2- [4- (octyl-2-methylethanoate) oxy-2-hydroxyphenyl] -4,6- [bis (2,4-dimethylphenyl)] -1. , 3,5-Triazine, 2- [4- (2-Hydroxy-3-dodecyloxy-propyl) oxy-2-hydroxyphenyl] -4,6- [bis (2,4-dimethylphenyl) -1,3 5-Triazine, 2- [4- (2-hydroxy-3-tridecyloxy-propyl) oxy-2-hydroxyphenyl] -4,6- [bis (2,4-dimethylphenyl) -1,3,5-triazine , 2- (2,4-dihydroxyphenyl) -4,6-bis- (2,4-dimethylphenyl) -1,3,5-triazine, 2- [4- (2-hydroxy-3- (2') -Ethyl) hexyloxy] -2-hydroxyphenyl] -4,6- [bis (2,4-dimethylphenyl) -1,3,5-triazine, 2,4-bis [2-hydroxy-4-butoxyphenyl] ] -6- (2,4-dibutoxyphenyl) -1,3-5-triazine, 2- (2-hydroxy-4- [1-octyloxycarbonylethoxy] phenyl) -4,6-bis (4- Phenylphenyl) -1,3,5-triazine, tris [2,4,6- [2- {4- (octyl-2-methylethanoate) oxy-2-hydroxyphenyl}]] -1,3,5- Examples thereof include triazine, which may be used alone or in combination of two or more.
これらの中でも、トリス[2,4,6-[2-{4-(オクチル-2-メチルエタノエート)オキシ-2-ヒドロキシフェニル}]-1,3,5-トリアジン、2-(2-ヒドロキシ-4-[1-オクチルオキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン2-[4-(2-ヒドロキシ-3-ドデシロキシ-プロピル)オキシ-2-ヒドロキシフェニル]-4,6-[ビス(2,4-ジメチルフェニル)-1,3,5-トリアジンおよび2-[4-(2-ヒドロキシ-3-トリデシロキシ-プロピル)オキシ-2-ヒドロキシフェニル]-4,6-[ビス(2,4-ジメチルフェニル)-1,3,5-トリアジンの少なくとも一種を使用することが好ましい。
Among these, Tris [2,4,6- [2- {4- (octyl-2-methylethanoate) oxy-2-hydroxyphenyl}]-1,3,5-triazine, 2- (2-hydroxy) -4- [1-octyloxycarbonylethoxy] phenyl) -4,6-bis (4-phenylphenyl) -1,3,5-triazine 2- [4- (2-hydroxy-3-dodecyloxy-propyl) oxy -2-Hydroxyphenyl] -4,6- [bis (2,4-dimethylphenyl) -1,3,5-triazine and 2- [4- (2-hydroxy-3-tridecyloxy-propyl) oxy-2- It is preferable to use at least one of hydroxyphenyl] -4,6- [bis (2,4-dimethylphenyl) -1,3,5-triazine.
また、紫外線吸収剤が有機化合物である場合、当該紫外線吸収剤は、その化学構造上の特徴として、1個以上の複素環を有する化合物であることが好ましい。この場合、複素環の数は、4個以下であることが好ましく、特に1個であることが好ましい。
When the ultraviolet absorber is an organic compound, the ultraviolet absorber is preferably a compound having one or more heterocycles as a characteristic of its chemical structure. In this case, the number of heterocycles is preferably 4 or less, and particularly preferably 1.
また、別の化学構造上の特徴として、本実施形態における紫外線吸収剤は、炭素環および複素環の少なくとも1種を有するとともに、当該紫外線吸収剤が有する全ての炭素環および複素環がそれぞれ単環であることも好ましい。
Further, as another chemical structural feature, the ultraviolet absorber in the present embodiment has at least one carbon ring and a heterocycle, and all the carbon rings and the heterocycle contained in the ultraviolet absorber are monocyclic rings, respectively. Is also preferable.
さらなる化学構造上の特徴として、本実施形態における紫外線吸収剤は、複数の芳香環を有する化合物であることも好ましい。この場合、芳香環の数は、2個以上であることが好ましい。また、芳香環の数は、6個以下であることが好ましく、特に3個以下であることが好ましい。
As a further chemical structural feature, it is also preferable that the ultraviolet absorber in the present embodiment is a compound having a plurality of aromatic rings. In this case, the number of aromatic rings is preferably two or more. The number of aromatic rings is preferably 6 or less, and particularly preferably 3 or less.
上述した化学構造上の特徴において、それぞれの複素環は、それらを構成する炭素以外の元素として、窒素、酸素、リン、硫黄、ケイ素およびセレンから選択される少なくとも1種を有することが好ましく、特に、窒素、酸素、リンおよび硫黄から選択される少なくとも1種を有することが好ましい。また、複素環の環構造を構成する原子の数は特に限定はなく、例えば3個以上、9個以下であり、特に5個以上、6個以下であることが好ましい。好ましい複素環の具体例としては、トリアジン、ベンゾトリアゾール、チオフェン、ピロール、イミダゾール、ピリジン、ピラジン等が挙げられる。
In the above-mentioned chemical structural characteristics, each heterocycle preferably has at least one selected from nitrogen, oxygen, phosphorus, sulfur, silicon and selenium as an element other than carbon constituting them, particularly. , Nitrogen, oxygen, phosphorus and sulfur, preferably having at least one selected from. The number of atoms constituting the ring structure of the heterocycle is not particularly limited, and is, for example, 3 or more and 9 or less, and particularly preferably 5 or more and 6 or less. Specific examples of the preferred heterocycle include triazine, benzotriazole, thiophene, pyrrole, imidazole, pyridine, pyrazine and the like.
また、上述した化学構造上の特徴において、芳香環の好ましい例としては、ベンゼン、ナフタレン、アントラセン、ビフェニル、トリフェニル等が挙げられる。
Further, in the above-mentioned chemical structural characteristics, preferable examples of the aromatic ring include benzene, naphthalene, anthracene, biphenyl, triphenyl and the like.
上述した化学構造上の特徴を有する紫外線吸収剤の例としては、トリス[2,4,6-[2-{4-(オクチル-2-メチルエタノエート)オキシ-2-ヒドロキシフェニル}]-1,3,5-トリアジン)が挙げられる。
Examples of UV absorbers having the above-mentioned chemical structural characteristics include tris [2,4,6- [2- {4- (octyl-2-methylethanoate) oxy-2-hydroxyphenyl}]] -1. , 3,5-Triazine).
本実施形態における界面アブレーション層11が紫外線吸収剤を含有する場合、界面アブレーション層11中における紫外線吸収剤の含有量は、1質量%以上であることが好ましく、特に3質量%以上であることが好ましく、さらには5質量%以上であることが好ましい。紫外線吸収剤の含有量が1質量%以上であることで、界面アブレーション層11がレーザー光を効率的に吸収し、それによって良好に界面アブレーションし易いものとなる。また、界面アブレーション層11中における紫外線吸収剤の含有量は、75質量%以下であることが好ましく、特に40質量%以下であることが好ましく、さらには25質量%以下であることが好ましい。紫外線吸収剤の含有量が75質量%以下であることで、界面アブレーション層11形成のための材料の粘度が適度なものとなり、良好な造膜性を確保し易くなる。
When the interface ablation layer 11 in the present embodiment contains an ultraviolet absorber, the content of the ultraviolet absorber in the interface ablation layer 11 is preferably 1% by mass or more, and particularly preferably 3% by mass or more. It is preferable, and more preferably 5% by mass or more. When the content of the ultraviolet absorber is 1% by mass or more, the interfacial ablation layer 11 efficiently absorbs the laser beam, thereby facilitating good interfacial ablation. The content of the ultraviolet absorber in the interface ablation layer 11 is preferably 75% by mass or less, particularly preferably 40% by mass or less, and further preferably 25% by mass or less. When the content of the ultraviolet absorber is 75% by mass or less, the viscosity of the material for forming the interface ablation layer 11 becomes appropriate, and it becomes easy to secure good film-forming property.
また、本実施形態における界面アブレーション層11が後述する粘着性組成物から形成される場合、紫外線吸収剤はこの粘着性組成物中に配合されてもよい。その場合、当該粘着性組成物中における紫外線吸収剤の配合量は、1質量%以上であることが好ましく、特に3質量%以上であることが好ましく、さらには5質量%以上であることが好ましい。紫外線吸収剤の配合量が1質量%以上であることで、界面アブレーション層11がレーザー光を効率的に吸収し、それによって良好に界面アブレーションし易いものとなる。また、上記粘着性組成物中における紫外線吸収剤の配合量は、75質量%以下であることが好ましく、特に40質量%以下であることが好ましく、さらには20質量%以下であることが好ましい。紫外線吸収剤の配合量が75質量%以下であることで、得られる粘着剤が所望の粘着力を発揮し易いものとなる。
Further, when the interface ablation layer 11 in the present embodiment is formed from the adhesive composition described later, the ultraviolet absorber may be blended in this adhesive composition. In that case, the blending amount of the ultraviolet absorber in the adhesive composition is preferably 1% by mass or more, particularly preferably 3% by mass or more, and further preferably 5% by mass or more. .. When the blending amount of the ultraviolet absorber is 1% by mass or more, the interfacial ablation layer 11 efficiently absorbs the laser light, thereby facilitating good interfacial ablation. Further, the blending amount of the ultraviolet absorber in the adhesive composition is preferably 75% by mass or less, particularly preferably 40% by mass or less, and further preferably 20% by mass or less. When the blending amount of the ultraviolet absorber is 75% by mass or less, the obtained adhesive can easily exhibit the desired adhesive force.
(3-2)光重合開始剤
本実施形態における光重合開始剤は特に限定されない。界面アブレーション層11が活性エネルギー線硬化性粘着剤から構成される粘着剤層である場合、当該界面アブレーション層11は光重合開始剤を含有することが好ましい。この場合、効率的な界面アブレーションを生じさせ易くなるとともに、界面アブレーション層11が効率的に硬化するものとなる。 (3-2) Photopolymerization Initiator The photopolymerization initiator in the present embodiment is not particularly limited. When theinterface ablation layer 11 is a pressure-sensitive adhesive layer composed of an active energy ray-curable pressure-sensitive adhesive, the interface ablation layer 11 preferably contains a photopolymerization initiator. In this case, efficient interfacial ablation is likely to occur, and the interfacial ablation layer 11 is efficiently cured.
本実施形態における光重合開始剤は特に限定されない。界面アブレーション層11が活性エネルギー線硬化性粘着剤から構成される粘着剤層である場合、当該界面アブレーション層11は光重合開始剤を含有することが好ましい。この場合、効率的な界面アブレーションを生じさせ易くなるとともに、界面アブレーション層11が効率的に硬化するものとなる。 (3-2) Photopolymerization Initiator The photopolymerization initiator in the present embodiment is not particularly limited. When the
光重合開始剤としては、具体的には、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインイソブチルエーテル、アセトフェノン、ジメチルアミノアセトフェノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2,2-ジエトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノ-プロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-2-(ヒドロキシ-2-プロピル)ケトン、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリノ-フェニル)ブタン-1-オン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-メチルプロパノン、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)、ベンゾフェノン、p-フェニルベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン、ジクロロベンゾフェノン、2-メチルアントラキノン、2-エチルアントラキノン、2-ターシャリ-ブチルアントラキノン、2-アミノアントラキノン、2-メチルチオキサントン、2-エチルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、ベンジルジメチルケタール、アセトフェノンジメチルケタール、p-ジメチルアミノ安息香酸エステル、オリゴ[2-ヒドロキシ-2-メチル-1[4-(1-メチルビニル)フェニル]プロパノン]、2-ベンジル-2-(ジメチルアミノ)-4’-モルホリノブチロフェノン、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド等が挙げられる。これらは単独で用いてもよいし、2種以上を組み合わせて用いてもよい。
Specific examples of the photopolymerization initiator include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether, acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-1, 2-Diphenylethane-1-one, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexylphenylketone, 2-methyl-1- [4- (Methylthio) Phenyl] -2-morpholino-propan-1-one, 4- (2-hydroxyethoxy) phenyl-2- (hydroxy-2-propyl) ketone, 2-dimethylamino-2- (4-) Methylbenzyl) -1- (4-morpholino-phenyl) butane-1-one, 1- [4- (2-hydroxyethoxy) -phenyl] -2-hydroxy-methylpropanol, etanone, 1- [9-ethyl -6- (2-methylbenzoyl) -9H-carbazole-3-yl]-, 1- (0-acetyloxime), benzophenone, p-phenylbenzophenone, 4,4'-diethylaminobenzophenone, dichlorobenzophenone, 2-methyl Anthraquinone, 2-Ethylanthraquinone, 2-Turrary-butyl anthraquinone, 2-Amino anthraquinone, 2-Methylthioxanthone, 2-Ethylthioxanthone, 2-Chlorothioxanthone, 2,4-Dimethylthioxanthone, 2,4-diethylthioxanthone, benzyldimethyl Ketal, acetphenone dimethyl ketal, p-dimethylaminobenzoic acid ester, oligo [2-hydroxy-2-methyl-1 [4- (1-methylvinyl) phenyl] propanone], 2-benzyl-2- (dimethylamino)- Examples thereof include 4'-morpholinobtyrophenone, bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide and the like. These may be used alone or in combination of two or more.
上述した光重合開始剤の中でも、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリノ-フェニル)ブタン-1-オン、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)、2-ベンジル-2-(ジメチルアミノ)-4’-モルホリノブチロフェノン、ビス(2,4,6-トリメチルベンゾイル)-フェニルフォスフィンオキサイド、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド、および2,2-ジメトキシ-1,2-ジフェニルエタン-1-オンの少なくとも1種を使用することが好ましい。
Among the above-mentioned photopolymerization initiators, 2-dimethylamino-2- (4-methylbenzyl) -1- (4-morpholino-phenyl) butane-1-one, etanone, 1- [9-ethyl-6- ( 2-Methylbenzoyl) -9H-carbazole-3-yl]-, 1- (0-acetyloxime), 2-benzyl-2- (dimethylamino) -4'-morpholinobtyrophenone, bis (2,4,6- At least one of trimethylbenzoyl) -phenylphosphine oxide, 2,4,6-trimethylbenzoyl-diphenyl-phosphine oxide, and 2,2-dimethoxy-1,2-diphenylethane-1-one can be used. preferable.
本実施形態における界面アブレーション層11が光重合開始剤を含有する場合、界面アブレーション層11中における光重合開始剤の含有量は、1質量%以上であることが好ましく、特に3質量%以上であることが好ましく、さらには5質量%以上であることが好ましい。光重合開始剤の含有量が1質量%以上であることで、界面アブレーション層11がレーザー光を効率的に吸収し、それによって良好に界面アブレーションし易いものとなる。また、界面アブレーション層11中における光重合開始剤の含有量は、75質量%以下であることが好ましく、特に40質量%以下であることが好ましく、さらには25質量%以下であることが好ましい。光重合開始剤の含有量が75質量%以下であることで、界面アブレーション層11形成のための材料の粘度が適度なものとなり、良好な造膜性を確保し易くなる。
When the interface ablation layer 11 in the present embodiment contains a photopolymerization initiator, the content of the photopolymerization initiator in the interface ablation layer 11 is preferably 1% by mass or more, particularly 3% by mass or more. It is preferable, and more preferably 5% by mass or more. When the content of the photopolymerization initiator is 1% by mass or more, the interfacial ablation layer 11 efficiently absorbs the laser light, thereby facilitating good interfacial ablation. The content of the photopolymerization initiator in the interface ablation layer 11 is preferably 75% by mass or less, particularly preferably 40% by mass or less, and further preferably 25% by mass or less. When the content of the photopolymerization initiator is 75% by mass or less, the viscosity of the material for forming the interface ablation layer 11 becomes appropriate, and it becomes easy to secure good film-forming property.
また、本実施形態における界面アブレーション層11が後述する粘着性組成物から形成される場合、光重合開始剤はこの粘着性組成物中に配合されてもよい。その場合、当該粘着性組成物中における光重合開始剤の配合量は、1質量%以上であることが好ましく、特に3質量%以上であることが好ましく、さらには5質量%以上であることが好ましい。光重合開始剤の配合量が1質量%以上であることで、界面アブレーション層11がレーザー光を効率的に吸収し、それによって良好に界面アブレーションし易いものとなる。また、上記粘着性組成物中における光重合開始剤の配合量は、75質量%以下であることが好ましく、特に40質量%以下であることが好ましく、さらには25質量%以下であることが好ましい。光重合開始剤の配合量が75質量%以下であることで、得られる粘着剤が所望の粘着力を発揮し易いものとなる。
Further, when the interface ablation layer 11 in the present embodiment is formed from the adhesive composition described later, the photopolymerization initiator may be blended in this adhesive composition. In that case, the blending amount of the photopolymerization initiator in the adhesive composition is preferably 1% by mass or more, particularly preferably 3% by mass or more, and further preferably 5% by mass or more. preferable. When the blending amount of the photopolymerization initiator is 1% by mass or more, the interfacial ablation layer 11 efficiently absorbs the laser light, thereby facilitating good interfacial ablation. The blending amount of the photopolymerization initiator in the adhesive composition is preferably 75% by mass or less, particularly preferably 40% by mass or less, and further preferably 25% by mass or less. .. When the blending amount of the photopolymerization initiator is 75% by mass or less, the obtained pressure-sensitive adhesive can easily exert a desired pressure-sensitive adhesive force.
(4)その他の成分
本実施形態に係る界面アブレーション層11を構成する粘着剤には、適宜他の成分を配合してもよい。他の成分としては、例えば、架橋剤、活性エネルギー線非硬化性ポリマー成分またはオリゴマー成分等が挙げられる。 (4) Other components Other components may be appropriately added to the pressure-sensitive adhesive constituting theinterface ablation layer 11 according to the present embodiment. Examples of other components include a cross-linking agent, an active energy ray non-curable polymer component, an oligomer component, and the like.
本実施形態に係る界面アブレーション層11を構成する粘着剤には、適宜他の成分を配合してもよい。他の成分としては、例えば、架橋剤、活性エネルギー線非硬化性ポリマー成分またはオリゴマー成分等が挙げられる。 (4) Other components Other components may be appropriately added to the pressure-sensitive adhesive constituting the
架橋剤の使用は、界面アブレーション層11の貯蔵弾性率を所望の範囲に調整し易いという観点から好ましい。架橋剤としては、活性エネルギー線硬化型重合体(A)やアクリル系共重合体(a1)が有する官能基との反応性を有する多官能性化合物を用いることができる。このような多官能性化合物の例としては、イソシアネート化合物、エポキシ化合物、アミン化合物、メラミン化合物、アジリジン化合物、ヒドラジン化合物、アルデヒド化合物、オキサゾリン化合物、金属アルコキシド化合物、金属キレート化合物、金属塩、アンモニウム塩、反応性フェノール樹脂等を挙げることができる。
The use of a cross-linking agent is preferable from the viewpoint that the storage elastic modulus of the interface ablation layer 11 can be easily adjusted to a desired range. As the cross-linking agent, a polyfunctional compound having reactivity with the functional group of the active energy ray-curable polymer (A) or the acrylic copolymer (a1) can be used. Examples of such polyfunctional compounds include isocyanate compounds, epoxy compounds, amine compounds, melamine compounds, aziridine compounds, hydrazine compounds, aldehyde compounds, oxazoline compounds, metal alkoxide compounds, metal chelate compounds, metal salts, ammonium salts, etc. Reactive phenolic resin and the like can be mentioned.
架橋剤の配合量は、主剤100質量部に対して、0.001質量部以上であることが好ましく、特に0.1質量部以上であることが好ましく、さらには0.2質量部以上であることが好ましい。また、架橋剤の配合量は、主剤100質量部に対して、20質量部以下であることが好ましく、特に10質量部以下であることが好ましく、さらには5質量部以下であることが好ましい。なお、上記「主剤」とは、界面アブレーション層11が活性エネルギー線硬化性粘着剤から構成される場合、上述した活性エネルギー線硬化型重合体(A)をいい、界面アブレーション層11が非活性エネルギー線硬化性粘着剤から構成される場合、上述したアクリル系共重合体(a1)をいうものとする。
The blending amount of the cross-linking agent is preferably 0.001 part by mass or more, particularly preferably 0.1 part by mass or more, and further 0.2 part by mass or more with respect to 100 parts by mass of the main agent. Is preferable. The amount of the cross-linking agent to be blended is preferably 20 parts by mass or less, particularly preferably 10 parts by mass or less, and further preferably 5 parts by mass or less with respect to 100 parts by mass of the main agent. The "main agent" refers to the above-mentioned active energy ray-curable polymer (A) when the interface ablation layer 11 is composed of an active energy ray-curable pressure-sensitive adhesive, and the interface ablation layer 11 has non-active energy. When composed of a linear curable pressure-sensitive adhesive, it refers to the acrylic copolymer (a1) described above.
上述した活性エネルギー線非硬化性ポリマー成分またはオリゴマー成分としては、例えば、ポリアクリル酸エステル、ポリエステル、ポリウレタン、ポリカーボネート、ポリオレフィン等が挙げられ、重量平均分子量(Mw)が3000~250万のポリマーまたはオリゴマーが好ましい。当該成分を配合することにより、粘着性、剥離性、他の層との接着性、保存安定性等を改善し得る。
Examples of the above-mentioned active energy ray non-curable polymer component or oligomer component include polyacrylic acid esters, polyesters, polyurethanes, polycarbonates, polyolefins and the like, and polymers or oligomers having a weight average molecular weight (Mw) of 30 to 2.5 million. Is preferable. By blending the component, adhesiveness, peelability, adhesiveness with other layers, storage stability and the like can be improved.
(5)界面アブレーション層の厚さ
本実施形態における界面アブレーション層11の厚さは、3μm以上であることが好ましく、特に20μm以上であることが好ましく、さらには25μm以上が好ましい。また、界面アブレーション層11の厚さは、100μm以下であることが好ましく、特に50μm以下であることが好ましく、さらには40μm以下であることが好ましい。界面アブレーション層11の厚さが上記範囲であることで、界面アブレーション層11上におけるワーク小片の保持と、界面アブレーションによるワーク小片の分離とを両立し易いものとなる。 (5) Thickness of Interface Ablation Layer The thickness of theinterface ablation layer 11 in the present embodiment is preferably 3 μm or more, particularly preferably 20 μm or more, and further preferably 25 μm or more. The thickness of the interface ablation layer 11 is preferably 100 μm or less, particularly preferably 50 μm or less, and further preferably 40 μm or less. When the thickness of the interface ablation layer 11 is within the above range, it becomes easy to achieve both the holding of the work pieces on the interface ablation layer 11 and the separation of the work pieces by the interface ablation.
本実施形態における界面アブレーション層11の厚さは、3μm以上であることが好ましく、特に20μm以上であることが好ましく、さらには25μm以上が好ましい。また、界面アブレーション層11の厚さは、100μm以下であることが好ましく、特に50μm以下であることが好ましく、さらには40μm以下であることが好ましい。界面アブレーション層11の厚さが上記範囲であることで、界面アブレーション層11上におけるワーク小片の保持と、界面アブレーションによるワーク小片の分離とを両立し易いものとなる。 (5) Thickness of Interface Ablation Layer The thickness of the
2.基材
本実施形態における基材12は、その組成や物性について特に限定されない。ワークハンドリングシート1が所望の機能を発揮し易いという観点からは、基材12は、樹脂から構成されることが好ましい。基材12が樹脂から構成される場合、当該樹脂の例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリエチレン、ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテン、エチレン-ノルボルネン共重合体、ノルボルネン樹脂等のポリオレフィン系樹脂;エチレン-酢酸ビニル共重合体;エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸メチル共重合体、その他のエチレン-(メタ)アクリル酸エステル共重合体等のエチレン系共重合樹脂;ポリ塩化ビニル、塩化ビニル共重合体等のポリ塩化ビニル系樹脂;(メタ)アクリル酸エステル共重合体;ポリウレタン;ポリイミド;ポリスチレン;ポリカーボネート;フッ素樹脂などが挙げられる。また、基材12を構成する樹脂は、上述した樹脂を架橋したものや、上述した樹脂のアイオノマーといった変性したものであってもよい。また、基材12は、上述した樹脂からなる単層のフィルムであってもよく、あるいは、当該フィルムが複数積層されてなる積層フィルムであってもよい。この積層フィルムにおいて、各層を構成する材料は同種であってもよく、異種であってもよい。 2. Base material Thebase material 12 in the present embodiment is not particularly limited in composition and physical properties. From the viewpoint that the work handling sheet 1 easily exerts a desired function, the base material 12 is preferably made of a resin. When the base material 12 is composed of a resin, examples of the resin include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; both polyethylene, polypropylene, polybutene, polybutadiene, polymethylpentene, and ethylene-norbornene. Polyethylene-based resins such as polymers and norbornene resins; ethylene-vinyl acetate copolymers; ethylene- (meth) acrylic acid copolymers, ethylene- (meth) methyl acrylate copolymers, and other ethylene- (meth) acrylics. Ethylene copolymer resin such as acid ester copolymer; polyvinyl chloride resin such as polyvinyl chloride and vinyl chloride copolymer; (meth) acrylic acid ester copolymer; polyurethane; polyimide; polystyrene; polycarbonate; fluororesin And so on. Further, the resin constituting the base material 12 may be a crosslinked resin of the above-mentioned resin or a modified resin such as the ionomer of the above-mentioned resin. Further, the base material 12 may be a single-layer film made of the above-mentioned resin, or may be a laminated film in which a plurality of the films are laminated. In this laminated film, the materials constituting each layer may be the same type or different types.
本実施形態における基材12は、その組成や物性について特に限定されない。ワークハンドリングシート1が所望の機能を発揮し易いという観点からは、基材12は、樹脂から構成されることが好ましい。基材12が樹脂から構成される場合、当該樹脂の例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリエチレン、ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテン、エチレン-ノルボルネン共重合体、ノルボルネン樹脂等のポリオレフィン系樹脂;エチレン-酢酸ビニル共重合体;エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸メチル共重合体、その他のエチレン-(メタ)アクリル酸エステル共重合体等のエチレン系共重合樹脂;ポリ塩化ビニル、塩化ビニル共重合体等のポリ塩化ビニル系樹脂;(メタ)アクリル酸エステル共重合体;ポリウレタン;ポリイミド;ポリスチレン;ポリカーボネート;フッ素樹脂などが挙げられる。また、基材12を構成する樹脂は、上述した樹脂を架橋したものや、上述した樹脂のアイオノマーといった変性したものであってもよい。また、基材12は、上述した樹脂からなる単層のフィルムであってもよく、あるいは、当該フィルムが複数積層されてなる積層フィルムであってもよい。この積層フィルムにおいて、各層を構成する材料は同種であってもよく、異種であってもよい。 2. Base material The
本実施形態における基材12の表面には、界面アブレーション層11に対する密着性を向上させる目的で、酸化法や凹凸化法などによる表面処理、あるいはプライマー処理を施してもよい。上記酸化法としては、例えばコロナ放電処理、プラズマ放電処理、クロム酸化処理(湿式)、火炎処理、熱風処理、オゾン、紫外線照射処理などが挙げられ、また、凹凸化法としては、例えばサンドブラスト法、溶射処理法などが挙げられる。
The surface of the base material 12 in the present embodiment may be surface-treated by an oxidation method, an unevenness method, or a primer treatment for the purpose of improving the adhesion to the interface ablation layer 11. Examples of the oxidation method include corona discharge treatment, plasma discharge treatment, chromium oxidation treatment (wet), flame treatment, hot air treatment, ozone, and ultraviolet irradiation treatment, and examples of the unevenness method include sandblasting and sandblasting. Examples include a thermal spraying method.
本実施形態における基材12は、着色剤、難燃剤、可塑剤、帯電防止剤、滑剤、フィラー等の各種添加剤を含有してもよい。また、界面アブレーション層11が、活性エネルギー線により硬化する材料を含む場合、基材12は活性エネルギー線に対する透過性を有することが好ましい。
The base material 12 in the present embodiment may contain various additives such as a colorant, a flame retardant, a plasticizer, an antistatic agent, a lubricant, and a filler. Further, when the interface ablation layer 11 contains a material that is cured by the active energy rays, it is preferable that the base material 12 has transparency to the active energy rays.
本実施形態における基材12の製造方法は、樹脂から基材12を製造するものである限り特に限定されない。例えば、Tダイ法、丸ダイ法等の溶融押出法;カレンダー法;乾式法、湿式法等の溶液法等によって、樹脂をシート状に成形することで製造することができる。
The method for producing the base material 12 in the present embodiment is not particularly limited as long as the base material 12 is produced from the resin. For example, it can be produced by molding a resin into a sheet by a melt extrusion method such as a T-die method or a round die method; a calendar method; a solution method such as a dry method or a wet method.
本実施形態における基材12の厚さは、10μm以上であることが好ましく、特に30μm以上であることが好ましく、さらには50μm以上であることが好ましい。また、基材12の厚さは、500μm以下であることが好ましく、300μm以下であることがより好ましく、特に200μm以下であることが好ましく、さらには150μm以下であることが好ましく、100μm以下であることが最も好ましい。基材12の厚さが上記範囲であることで、ワークハンドリングシート1が剛性と柔軟性とを所定のバランスで備えるものとなり、ワーク小片の良好なハンドリングを行い易いものとなる。
The thickness of the base material 12 in the present embodiment is preferably 10 μm or more, particularly preferably 30 μm or more, and further preferably 50 μm or more. The thickness of the base material 12 is preferably 500 μm or less, more preferably 300 μm or less, particularly preferably 200 μm or less, further preferably 150 μm or less, and preferably 100 μm or less. Is most preferable. When the thickness of the base material 12 is within the above range, the work handling sheet 1 has rigidity and flexibility in a predetermined balance, and it becomes easy to perform good handling of the work small pieces.
3.剥離シート
本実施形態に界面アブレーション層11が、それを構成する成分の1つとして粘着剤を含む場合、界面アブレーション層11における基材12とは反対側の面をワーク小片に貼付するまでの間、当該面を保護する目的で、当該面に剥離シートが積層されていてもよい。 3. 3. Peeling sheet When theinterface ablation layer 11 contains an adhesive as one of its constituent components in the present embodiment, until the surface of the interface ablation layer 11 opposite to the base material 12 is attached to the work piece. , A release sheet may be laminated on the surface for the purpose of protecting the surface.
本実施形態に界面アブレーション層11が、それを構成する成分の1つとして粘着剤を含む場合、界面アブレーション層11における基材12とは反対側の面をワーク小片に貼付するまでの間、当該面を保護する目的で、当該面に剥離シートが積層されていてもよい。 3. 3. Peeling sheet When the
上記剥離シートの構成は任意であり、プラスチックフィルムを剥離剤等により剥離処理したものが例示される。当該プラスチックフィルムの具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、およびポリプロピレンやポリエチレン等のポリオレフィンフィルムが挙げられる。上記剥離剤としては、シリコーン系、フッ素系、長鎖アルキル系等を用いることができ、これらの中でも、安価で安定した性能が得られるシリコーン系が好ましい。
The configuration of the release sheet is arbitrary, and an example is one in which a plastic film is peeled off with a release agent or the like. Specific examples of the plastic film include polyester films such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, and polyolefin films such as polypropylene and polyethylene. As the release agent, a silicone type, a fluorine type, a long chain alkyl type or the like can be used, and among these, a silicone type which can obtain stable performance at a low cost is preferable.
上記剥離シートの厚さについては特に制限はなく、例えば、20μm以上、250μm以下であってよい。
The thickness of the release sheet is not particularly limited, and may be, for example, 20 μm or more and 250 μm or less.
4.その他の構成
本実施形態に係るワークハンドリングシート1では、界面アブレーション層11における基材12とは反対側の面に接着剤層が積層されていてもよい。当該シートでは、接着剤層における界面アブレーション層11とは反対側の面にワークを貼付し、当該ワークとともに接着剤層をダイシングすることで、個片化された接着剤層が積層されたワーク小片を得ることができる。当該チップは、この個片化された接着剤層によって、当該ワーク小片が搭載される対象に対して容易に固定することが可能となる。上述した接着剤層を構成する材料としては、熱可塑性樹脂と低分子量の熱硬化性接着成分とを含有するものや、Bステージ(半硬化状)の熱硬化型接着成分を含有するもの等を用いることが好ましい。 4. Other Structures In thework handling sheet 1 according to the present embodiment, the adhesive layer may be laminated on the surface of the interface ablation layer 11 opposite to the base material 12. In the sheet, a work piece is attached to the surface of the adhesive layer opposite to the interface ablation layer 11, and the adhesive layer is diced together with the work piece to laminate a piece of work in which individualized adhesive layers are laminated. Can be obtained. The chip is easily fixed to the object on which the work piece is mounted by the individualized adhesive layer. As the material constituting the adhesive layer described above, a material containing a thermoplastic resin and a low molecular weight thermosetting adhesive component, a material containing a B stage (semi-curable) thermosetting adhesive component, and the like are used. It is preferable to use it.
本実施形態に係るワークハンドリングシート1では、界面アブレーション層11における基材12とは反対側の面に接着剤層が積層されていてもよい。当該シートでは、接着剤層における界面アブレーション層11とは反対側の面にワークを貼付し、当該ワークとともに接着剤層をダイシングすることで、個片化された接着剤層が積層されたワーク小片を得ることができる。当該チップは、この個片化された接着剤層によって、当該ワーク小片が搭載される対象に対して容易に固定することが可能となる。上述した接着剤層を構成する材料としては、熱可塑性樹脂と低分子量の熱硬化性接着成分とを含有するものや、Bステージ(半硬化状)の熱硬化型接着成分を含有するもの等を用いることが好ましい。 4. Other Structures In the
また、本実施形態に係るワークハンドリングシート1では、界面アブレーション層11における基材12とは反対側の面に保護膜形成層が積層されていてもよい。このようなシートでは、保護膜形成層における界面アブレーション層11とは反対側の面にワークを貼付し、当該ワークとともに保護膜形成層をダイシングすることで、個片化された保護膜形成層が積層されたワーク小片を得ることができる。当該ワークとしては、片面に回路が形成されたものが使用されることが好ましく、この場合、通常、当該回路が形成された面とは反対側の面に保護膜形成層が積層される。個片化された保護膜形成層は、所定のタイミングで硬化させることで、十分な耐久性を有する保護膜をワーク小片に形成することができる。保護膜形成層は、未硬化の硬化性接着剤からなることが好ましい。
Further, in the work handling sheet 1 according to the present embodiment, the protective film forming layer may be laminated on the surface of the interface ablation layer 11 opposite to the base material 12. In such a sheet, a work is attached to the surface of the protective film forming layer opposite to the interface ablation layer 11, and the protective film forming layer is diced together with the work to obtain an individualized protective film forming layer. Stacked work pieces can be obtained. As the work, it is preferable to use a work having a circuit formed on one surface, and in this case, a protective film forming layer is usually laminated on a surface opposite to the surface on which the circuit is formed. By curing the individualized protective film forming layer at a predetermined timing, a protective film having sufficient durability can be formed on the work piece. The protective film forming layer is preferably made of an uncured curable adhesive.
5.ワークハンドリングシートの物性
(1)変換効率
本実施形態に係るワークハンドリングシート1では、前述した通り、波長365nmの紫外線を光量190mJ/cm2で照射する第1の紫外線照射を行ったワークハンドリングシート1に対して、さらに波長365nmの紫外線を950mJ/cm2の光量で照射する第2の紫外線照射を行った場合に、界面アブレーション層11が上記第2の紫外線照射における紫外線の光エネルギーを熱エネルギーに変換する際の変換効率(以下、「紫外線照射後の変換効率」という場合がある。)が、60%以上である。これにより、効率的に界面アブレーションを生じさせることができ、保持したワーク小片を界面アブレーション層11から良好に分離することが可能となる。より良好な分離を可能とする観点からは、上記変換効率は、65%以上であることが好ましく、特に75%以上であることが好ましい。なお、上記変換効率の上限値については特に限定されず、例えば99%以下であってよく、特に97%以下であってよく、さらには95%以下であってよい。 5. Physical Properties of Work Handling Sheet (1) Conversion Efficiency In thework handling sheet 1 according to the present embodiment, as described above, the work handling sheet 1 is subjected to the first ultraviolet irradiation in which ultraviolet rays having a wavelength of 365 nm are irradiated with a light amount of 190 mJ / cm 2 . On the other hand, when the second ultraviolet irradiation is further performed by irradiating the ultraviolet rays having a wavelength of 365 nm with a light amount of 950 mJ / cm 2 , the interfacial ablation layer 11 uses the optical energy of the ultraviolet rays in the second ultraviolet irradiation as thermal energy. The conversion efficiency at the time of conversion (hereinafter, may be referred to as "conversion efficiency after ultraviolet irradiation") is 60% or more. As a result, interfacial ablation can be efficiently generated, and the held work pieces can be satisfactorily separated from the interfacial ablation layer 11. From the viewpoint of enabling better separation, the conversion efficiency is preferably 65% or more, and particularly preferably 75% or more. The upper limit of the conversion efficiency is not particularly limited, and may be, for example, 99% or less, particularly 97% or less, and further 95% or less.
(1)変換効率
本実施形態に係るワークハンドリングシート1では、前述した通り、波長365nmの紫外線を光量190mJ/cm2で照射する第1の紫外線照射を行ったワークハンドリングシート1に対して、さらに波長365nmの紫外線を950mJ/cm2の光量で照射する第2の紫外線照射を行った場合に、界面アブレーション層11が上記第2の紫外線照射における紫外線の光エネルギーを熱エネルギーに変換する際の変換効率(以下、「紫外線照射後の変換効率」という場合がある。)が、60%以上である。これにより、効率的に界面アブレーションを生じさせることができ、保持したワーク小片を界面アブレーション層11から良好に分離することが可能となる。より良好な分離を可能とする観点からは、上記変換効率は、65%以上であることが好ましく、特に75%以上であることが好ましい。なお、上記変換効率の上限値については特に限定されず、例えば99%以下であってよく、特に97%以下であってよく、さらには95%以下であってよい。 5. Physical Properties of Work Handling Sheet (1) Conversion Efficiency In the
また、本実施形態に係るワークハンドリングシート1では、(上述した第1の紫外線照射を行うことなく)波長365nmの紫外線を950mJ/cm2の光量で照射した場合に、界面アブレーション層11が上記紫外線の光エネルギーを熱エネルギーに変換する際の変換効率(以下、「紫外線照射前の変換効率」という場合がある。)が、70%以上であることが好ましく、特に75%以上であることが好ましく、さらには80%以上であることが好ましい。これにより、紫外線照射後の変換効率を上述した範囲に調整し易くなる。なお、紫外線照射前の変換効率の上限値については特に限定されず、例えば100%以下であってよく、特に97%以下であってよく、さらには95%以下であってよい。
Further, in the work handling sheet 1 according to the present embodiment, when ultraviolet rays having a wavelength of 365 nm are irradiated with a light amount of 950 mJ / cm 2 (without performing the above-mentioned first ultraviolet irradiation), the interface ablation layer 11 is exposed to the ultraviolet rays. The conversion efficiency when converting the light energy of the above into heat energy (hereinafter, may be referred to as "conversion efficiency before ultraviolet irradiation") is preferably 70% or more, and particularly preferably 75% or more. Further, it is preferably 80% or more. This makes it easier to adjust the conversion efficiency after UV irradiation within the above-mentioned range. The upper limit of the conversion efficiency before irradiation with ultraviolet rays is not particularly limited, and may be, for example, 100% or less, particularly 97% or less, and further 95% or less.
また、本実施形態に係るワークハンドリングシート1では、(上述した第1の紫外線照射を行うことなく)波長365nmの紫外線を950mJ/cm2の光量で照射した場合に、ワークハンドリングシート1が上記紫外線の光エネルギーを熱エネルギーに変換する際の変換効率(以下、「ワークハンドリングシート1の変換効率」という場合がある。)が、70%以上であることが好ましく、特に80%以上であることが好ましく、さらには85%以上であることが好ましい。これにより、紫外線照射後の変換効率が上述した範囲を満たし易くなる。なお、ワークハンドリングシート1の変換効率の上限値については特に限定されず、例えば99%以下であってよく、特に97%以下であってよく、さらには95%以下であってよい。
Further, in the work handling sheet 1 according to the present embodiment, when the work handling sheet 1 is irradiated with ultraviolet rays having a wavelength of 365 nm (without performing the above-mentioned first ultraviolet irradiation) at a light amount of 950 mJ / cm 2 , the work handling sheet 1 is subjected to the above ultraviolet rays. The conversion efficiency when converting the light energy of the above into thermal energy (hereinafter, may be referred to as "conversion efficiency of the work handling sheet 1") is preferably 70% or more, and particularly 80% or more. It is preferable, and more preferably 85% or more. This makes it easier for the conversion efficiency after ultraviolet irradiation to satisfy the above-mentioned range. The upper limit of the conversion efficiency of the work handling sheet 1 is not particularly limited, and may be, for example, 99% or less, particularly 97% or less, and further 95% or less.
なお、以上の変換効率の測定方法の詳細は、後述する試験例に記載の通りである。
The details of the above conversion efficiency measurement method are as described in the test examples described later.
(2)発熱量
本実施形態に係るワークハンドリングシート1では、波長365nmの紫外線を光量190mJ/cm2で照射する第1の紫外線照射を行ったワークハンドリングシート1に対して、さらに波長365nmの紫外線を950mJ/cm2の光量で照射する第2の紫外線照射を行った場合における、ワークハンドリングシート1の発熱量が、500mJ/cm2以上であることが好ましく、特に600mJ/cm2以上であることが好ましく、さらには700mJ/cm2以上であることが好ましい。これにより、効率的に界面アブレーションを生じさせることができ、保持したワーク小片を界面アブレーション層11からより良好に分離することが可能となる。なお、上記発熱量の上限値については特に限定されず、例えば2000mJ/cm2以下であってよく、特に1500mJ/cm2以下であってよく、さらには1000mJ/cm2以下であってよい。 (2) Heat generation amount In thework handling sheet 1 according to the present embodiment, ultraviolet rays having a wavelength of 365 nm are further applied to the work handling sheet 1 which has been subjected to the first ultraviolet irradiation in which ultraviolet rays having a wavelength of 365 nm are irradiated at a light intensity of 190 mJ / cm 2 . The calorific value of the work handling sheet 1 is preferably 500 mJ / cm 2 or more, particularly 600 mJ / cm 2 or more when the second ultraviolet irradiation is performed with a light amount of 950 mJ / cm 2 . Is preferable, and more preferably 700 mJ / cm 2 or more. As a result, interfacial ablation can be efficiently generated, and the held work pieces can be better separated from the interfacial ablation layer 11. The upper limit of the calorific value is not particularly limited, and may be, for example, 2000 mJ / cm 2 or less, particularly 1500 mJ / cm 2 or less, and further 1000 mJ / cm 2 or less.
本実施形態に係るワークハンドリングシート1では、波長365nmの紫外線を光量190mJ/cm2で照射する第1の紫外線照射を行ったワークハンドリングシート1に対して、さらに波長365nmの紫外線を950mJ/cm2の光量で照射する第2の紫外線照射を行った場合における、ワークハンドリングシート1の発熱量が、500mJ/cm2以上であることが好ましく、特に600mJ/cm2以上であることが好ましく、さらには700mJ/cm2以上であることが好ましい。これにより、効率的に界面アブレーションを生じさせることができ、保持したワーク小片を界面アブレーション層11からより良好に分離することが可能となる。なお、上記発熱量の上限値については特に限定されず、例えば2000mJ/cm2以下であってよく、特に1500mJ/cm2以下であってよく、さらには1000mJ/cm2以下であってよい。 (2) Heat generation amount In the
また、本実施形態に係るワークハンドリングシート1では、(上述した第1の紫外線照射を行うことなく)波長365nmの紫外線を950mJ/cm2の光量で照射した場合における、ワークハンドリングシート1の発熱量が、600mJ/cm2以上であることが好ましく、特に700mJ/cm2以上であることが好ましく、さらには800mJ/cm2以上であることが好ましい。これにより、効率的に界面アブレーションを生じさせることができ、保持したワーク小片を界面アブレーション層11からより良好に分離することが可能となる。なお、上記発熱量の上限値については特に限定されず、例えば2000mJ/cm2以下であってよく、特に1500mJ/cm2以下であってよく、さらには1000mJ/cm2以下であってよい。
Further, in the work handling sheet 1 according to the present embodiment, the calorific value of the work handling sheet 1 when irradiated with ultraviolet rays having a wavelength of 365 nm (without performing the above-mentioned first ultraviolet irradiation) at a light amount of 950 mJ / cm 2 . However, it is preferably 600 mJ / cm 2 or more, particularly 700 mJ / cm 2 or more, and further preferably 800 mJ / cm 2 or more. As a result, interfacial ablation can be efficiently generated, and the held work pieces can be better separated from the interfacial ablation layer 11. The upper limit of the calorific value is not particularly limited, and may be, for example, 2000 mJ / cm 2 or less, particularly 1500 mJ / cm 2 or less, and further 1000 mJ / cm 2 or less.
さらに、本実施形態に係るワークハンドリングシート1では、基材12単体に対し、(上述した第1の紫外線照射を行うことなく)波長365nmの紫外線を950mJ/cm2の光量で照射した場合における、基材12の発熱量が、1mJ/cm2以上であることが好ましく、特に5mJ/cm2以上であることが好ましく、さらには10mJ/cm2以上であることが好ましい。基材12がこのような発熱量を示すことも、効率的な界面アブレーションに寄与する観点から好ましい。なお、上記発熱量の上限値については特に限定されず、例えば100mJ/cm2以下であってよく、特に90mJ/cm2以下であってよく、さらには80mJ/cm2以下であってよい。
Further, in the work handling sheet 1 according to the present embodiment, when the base material 12 alone is irradiated with ultraviolet rays having a wavelength of 365 nm (without performing the above-mentioned first ultraviolet irradiation) at a light intensity of 950 mJ / cm 2 . The calorific value of the base material 12 is preferably 1 mJ / cm 2 or more, particularly preferably 5 mJ / cm 2 or more, and further preferably 10 mJ / cm 2 or more. It is also preferable that the base material 12 exhibits such a calorific value from the viewpoint of contributing to efficient interfacial ablation. The upper limit of the calorific value is not particularly limited, and may be, for example, 100 mJ / cm 2 or less, particularly 90 mJ / cm 2 or less, and further 80 mJ / cm 2 or less.
なお、以上の発熱量の測定方法の詳細は、後述する試験例に記載の通りである。
The details of the above calorific value measurement method are as described in the test example described later.
(3)吸光度
本実施形態に係るワークハンドリングシート1は、波長355nmの光線の吸光度が、0.5以上であることが好ましく、2.0以上であることがより好ましく、特に2.5以上であることが好ましく、さらには3.0以上であることが好ましい。波長355nmの光線の吸光度が0.5以上であることで、レーザー光の照射時に、ワーク小片に到達する紫外域の光線の量を低減することができ、ワーク小片の表面の損傷を効果的に抑制しながら、ワーク小片の分離を行うことが可能となる。なお、上記吸光度の上限値については特に限定されず、例えば6.0以下であってよい。また、上記吸光度の測定方法の詳細は、後述する試験例に記載の通りである。 (3) Absorbance In thework handling sheet 1 according to the present embodiment, the absorbance of light rays having a wavelength of 355 nm is preferably 0.5 or more, more preferably 2.0 or more, and particularly 2.5 or more. It is preferably present, and more preferably 3.0 or more. When the absorbance of light rays having a wavelength of 355 nm is 0.5 or more, it is possible to reduce the amount of ultraviolet rays reaching the work pieces when irradiated with laser light, effectively damaging the surface of the work pieces. It is possible to separate the work pieces while suppressing them. The upper limit of the absorbance is not particularly limited, and may be, for example, 6.0 or less. The details of the method for measuring the absorbance are as described in Test Examples described later.
本実施形態に係るワークハンドリングシート1は、波長355nmの光線の吸光度が、0.5以上であることが好ましく、2.0以上であることがより好ましく、特に2.5以上であることが好ましく、さらには3.0以上であることが好ましい。波長355nmの光線の吸光度が0.5以上であることで、レーザー光の照射時に、ワーク小片に到達する紫外域の光線の量を低減することができ、ワーク小片の表面の損傷を効果的に抑制しながら、ワーク小片の分離を行うことが可能となる。なお、上記吸光度の上限値については特に限定されず、例えば6.0以下であってよい。また、上記吸光度の測定方法の詳細は、後述する試験例に記載の通りである。 (3) Absorbance In the
6.ワークハンドリングシートの製造方法
本実施形態に係るワークハンドリングシート1の製造方法は特に限定されない。例えば、基材12上に界面アブレーション層11を直接形成してもよく、あるいは、工程シート上で界面アブレーション層11を形成した後、当該界面アブレーション層11を基材12上に転写してもよい。 6. Manufacturing Method of Work Handling Sheet The manufacturing method of thework handling sheet 1 according to the present embodiment is not particularly limited. For example, the interface ablation layer 11 may be directly formed on the base material 12, or the interface ablation layer 11 may be transferred onto the base material 12 after the interface ablation layer 11 is formed on the process sheet. ..
本実施形態に係るワークハンドリングシート1の製造方法は特に限定されない。例えば、基材12上に界面アブレーション層11を直接形成してもよく、あるいは、工程シート上で界面アブレーション層11を形成した後、当該界面アブレーション層11を基材12上に転写してもよい。 6. Manufacturing Method of Work Handling Sheet The manufacturing method of the
界面アブレーション層11が、それを構成する成分の1つとして粘着剤を含む場合、当該界面アブレーション層11の形成は、公知の方法により行うことができる。例えば、界面アブレーション層11を形成するための粘着性組成物、および所望によりさらに溶媒または分散媒を含有する塗布液を調製する。そして、基材の片面または剥離シートの剥離性を有する面(以下、「剥離面」という場合がある。)に上記塗布液を塗布する。続いて、得られた塗膜を乾燥させることで、界面アブレーション層11を形成することができる。
When the interface ablation layer 11 contains an adhesive as one of the constituents thereof, the interface ablation layer 11 can be formed by a known method. For example, a tacky composition for forming the interfacial ablation layer 11 and, if desired, a coating solution further containing a solvent or dispersion medium are prepared. Then, the coating liquid is applied to one side of the base material or the peelable surface of the release sheet (hereinafter, may be referred to as "peeling surface"). Subsequently, the interface ablation layer 11 can be formed by drying the obtained coating film.
上述した塗布液の塗布は公知の方法により行うことができ、例えば、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等により行うことができる。なお、塗布液は、塗布を行うことが可能であればその性状は特に限定されず、界面アブレーション層11を形成するための成分を溶質として含有する場合もあれば、分散質として含有する場合もある。また、剥離シート上に界面アブレーション層11を形成した場合、当該剥離シートは工程材料として剥離してもよいし、被着体に貼付するまでの間、界面アブレーション層11を保護していてもよい。
The above-mentioned coating liquid can be applied by a known method, for example, a bar coating method, a knife coating method, a roll coating method, a blade coating method, a die coating method, a gravure coating method, or the like. The properties of the coating liquid are not particularly limited as long as it can be coated, and the coating liquid may contain a component for forming the interface ablation layer 11 as a solute or a dispersoid. be. Further, when the interface ablation layer 11 is formed on the release sheet, the release sheet may be peeled off as a process material, or the interface ablation layer 11 may be protected until it is attached to the adherend. ..
界面アブレーション層11を形成するための粘着性組成物が前述した架橋剤を含有する場合には、上記の乾燥の条件(温度、時間など)を変えることにより、または加熱処理を別途設けることにより、塗膜内のポリマー成分と架橋剤との架橋反応を進行させ、界面アブレーション層11内に所望の存在密度で架橋構造を形成することが好ましい。さらに、上述した架橋反応を十分に進行させるために、ワークハンドリングシート1の完成後、例えば23℃、相対湿度50%の環境に数日間静置するといった養生を行ってもよい。
When the adhesive composition for forming the interface ablation layer 11 contains the above-mentioned cross-linking agent, by changing the above-mentioned drying conditions (temperature, time, etc.) or by separately providing a heat treatment. It is preferable to proceed the cross-linking reaction between the polymer component in the coating film and the cross-linking agent to form a cross-linked structure in the interface ablation layer 11 at a desired abundance density. Further, in order to allow the above-mentioned cross-linking reaction to proceed sufficiently, after the work handling sheet 1 is completed, it may be cured by allowing it to stand in an environment of, for example, 23 ° C. and a relative humidity of 50% for several days.
7.ワークハンドリングシートの使用方法
本実施形態に係るワークハンドリングシート1は、ワーク小片の取り扱いのために好適に使用することができる。前述した通り、本実施形態に係るワークハンドリングシート1では、界面アブレーション層11が、レーザー光の照射によって効率的に界面アブレーションするものであるため、界面アブレーション層11上に保持されたワーク小片を高い精度で所定の位置に向けて分離することができる。 7. How to use the work handling sheet Thework handling sheet 1 according to the present embodiment can be suitably used for handling small pieces of work. As described above, in the work handling sheet 1 according to the present embodiment, since the interfacial ablation layer 11 efficiently ablates the interface by irradiation with laser light, the small pieces of work held on the interfacial ablation layer 11 are high. It can be separated toward a predetermined position with accuracy.
本実施形態に係るワークハンドリングシート1は、ワーク小片の取り扱いのために好適に使用することができる。前述した通り、本実施形態に係るワークハンドリングシート1では、界面アブレーション層11が、レーザー光の照射によって効率的に界面アブレーションするものであるため、界面アブレーション層11上に保持されたワーク小片を高い精度で所定の位置に向けて分離することができる。 7. How to use the work handling sheet The
本実施形態に係るワークハンドリングシート1の使用方法の一例としては、界面アブレーション層11において局所的に生じさせた界面アブレーションによって、界面アブレーション層11における基材12とは反対の面上に保持された複数のワーク小片のうちの任意のワーク小片を、界面アブレーション層11から選択的に分離するという使用方法が挙げられる。
As an example of the method of using the work handling sheet 1 according to the present embodiment, the work handling sheet 1 is held on the surface of the interface ablation layer 11 opposite to the base material 12 by the interface ablation locally generated in the interface ablation layer 11. A method of selectively separating any work piece from the plurality of work pieces from the interfacial ablation layer 11 can be mentioned.
上記使用方法において、界面アブレーション層11上に保持された複数のワーク小片は、界面アブレーション層11における基材12とは反対の面上に保持されたワーク(ワーク小片の材料となるもの)を当該面上において個片化することで得られたものであってもよい。すなわち、ワーク小片は、界面アブレーション層11上にてワークをダイシングすることで得られたものであってもよい。あるいは、ワーク小片は、本実施形態に係るワークハンドリングシート1とは独立して形成されたものを、界面アブレーション層11上に載置されたものであってもよい。
In the above method of use, the plurality of work pieces held on the interface ablation layer 11 are the work (material of the work pieces) held on the surface of the interface ablation layer 11 opposite to the base material 12. It may be obtained by individualizing on the surface. That is, the work piece may be obtained by dicing the work on the interface ablation layer 11. Alternatively, the work piece may be one formed independently of the work handling sheet 1 according to the present embodiment and placed on the interface ablation layer 11.
なお、本実施形態に係るワークハンドリングシート1が前述した接着剤層や保護膜形成層を備える場合には、これらの層とワークとを界面アブレーション層11上にてダイシングすることが好ましい。これにより、これらの層が個片化されてなるものが積層されたワーク小片を得ることができる。
When the work handling sheet 1 according to the present embodiment includes the above-mentioned adhesive layer and protective film forming layer, it is preferable to dice these layers and the work on the interface ablation layer 11. As a result, it is possible to obtain a work piece in which these layers are individualized and laminated.
本実施形態におけるワーク小片の形状やサイズについては特に限定されないものの、サイズに関し、ワーク小片は、平面視したときにおける面積が10μm2以上であることが好ましく、特に100μm2以上であることが好ましい。また、ワーク小片は、平面視したときにおける面積が1mm2以下であることが好ましく、特に0.25mm2以下であることが好ましい。また、ワーク小片の寸法としては、ワーク小片が矩形である場合、ワーク小片の最小の一辺が、2μm以上であることが好ましく、特に5μm以上であることが好ましく、さらには10μm以上であることが好ましい。また、上記最小の一辺は、1mm以下であることが好ましく、特に0.5mm以下であることが好ましい。矩形のワーク小片の寸法の具体例としては、2μm×5μm、10μm×10μm、0.5mm×0.5mm、1mm×1mm等が挙げられる。本実施形態に係るワークハンドリングシート1は、このような微細なワーク小片、特に、ニードルの突き上げによるシートからの分離が困難な微細なワーク小片であっても良好に取り扱うことができる。その一方で、本実施形態に係るワークハンドリングシート1は、面積が1mm2を超えるもの(例えば1mm2~2000mm2)や、厚さが1~10000μmのもの(例えば10~1000μm)といった比較的大きなサイズのワーク小片についても良好に取り扱うことができる。
Although the shape and size of the work pieces in the present embodiment are not particularly limited, the area of the work pieces in a plan view is preferably 10 μm 2 or more, and particularly preferably 100 μm 2 or more. Further, the work piece preferably has an area of 1 mm 2 or less when viewed in a plan view, and particularly preferably 0.25 mm 2 or less. Further, as for the dimensions of the work pieces, when the work pieces are rectangular, the minimum side of the work pieces is preferably 2 μm or more, particularly preferably 5 μm or more, and further preferably 10 μm or more. preferable. The minimum side is preferably 1 mm or less, and particularly preferably 0.5 mm or less. Specific examples of the dimensions of the rectangular workpiece pieces include 2 μm × 5 μm, 10 μm × 10 μm, 0.5 mm × 0.5 mm, 1 mm × 1 mm, and the like. The work handling sheet 1 according to the present embodiment can satisfactorily handle such fine work pieces, particularly even fine work pieces that are difficult to separate from the sheet by pushing up the needle. On the other hand, the work handling sheet 1 according to the present embodiment is relatively large, such as one having an area of more than 1 mm 2 (for example, 1 mm 2 to 2000 mm 2 ) and one having a thickness of 1 to 10000 μm (for example, 10 to 1000 μm). It can handle small pieces of work of a size well.
ワーク小片としては、半導体部品や半導体装置等が挙げられ、より具体的には、マイクロ発光ダイオード、パワーデバイス、MEMS(Micro Electro Mechanical Systems)等が挙げられる。これらの中でも、ワーク小片は発光ダイオードであることが好適であり、特にミニ発光ダイオードおよびマイクロ発光ダイオードから選択される発光ダイオードであることが好ましい。近年、ミニ発光ダイオードやマイクロ発光ダイオードが高密度に配置された装置の開発が検討されており、そのような装置の製造においては、これらの発光ダイオードを高い精度で取り扱うことが可能な本実施形態に係るワークハンドリングシート1が非常に適している。
Examples of small workpieces include semiconductor parts and semiconductor devices, and more specifically, micro light emitting diodes, power devices, MEMS (Micro Electro Mechanical Systems), and the like. Among these, the work piece is preferably a light emitting diode, and particularly preferably a light emitting diode selected from a mini light emitting diode and a micro light emitting diode. In recent years, the development of a device in which mini light emitting diodes and micro light emitting diodes are arranged at a high density has been studied, and in the manufacture of such a device, the present embodiment capable of handling these light emitting diodes with high accuracy. The work handling sheet 1 according to the above is very suitable.
以下に、ワークハンドリングシート1の具体的な使用例として、ワーク小片の取り扱い方法およびデバイス製造方法を図2に基づいて説明する。これらの方法は、準備工程(図2(a))、配置工程(図2(b))、硬化工程(図2(c))、および分離工程(図2(d)および(e))という4つの工程を少なくとも備える。
Below, as a specific use example of the work handling sheet 1, a method of handling small pieces of work and a method of manufacturing a device will be described with reference to FIG. These methods are referred to as a preparation step (FIG. 2 (a)), a placement step (FIG. 2 (b)), a curing step (FIG. 2 (c)), and a separation step (FIGS. 2 (d) and (e)). It includes at least four steps.
準備工程においては、図2(a)に示すように、本実施形態に係るワークハンドリングシート1における、界面アブレーション層11側の面上に複数のワーク小片2が保持されてなる積層体を準備する。当該積層体は、別途作製したワーク小片2をワークハンドリングシート1上に載置することで準備してもよく、あるいは、界面アブレーション層11側の面上に保持されたワークを当該面上において個片化すること(すなわちダイシングすること)で準備してもよい。当該ダイシングは、公知の方法で行うことができる。
In the preparatory step, as shown in FIG. 2A, a laminated body in which a plurality of work pieces 2 are held on the surface of the work handling sheet 1 according to the present embodiment on the interface ablation layer 11 side is prepared. .. The laminated body may be prepared by placing a separately prepared work piece 2 on the work handling sheet 1, or a work held on the surface on the interface ablation layer 11 side is individually formed on the surface. It may be prepared by ablation (ie, dicing). The dicing can be performed by a known method.
ワーク小片2の形状やサイズは、前述した通り、特に限定はなく、好ましいサイズも前述した通りである。ワーク小片2の具体例についても、前述した通り、半導体部品や半導体装置等が挙げられ、特に、ミニ発光ダイオードおよびマイクロ発光ダイオードといった発光ダイオードが挙げられる。
The shape and size of the work piece 2 are not particularly limited as described above, and the preferred size is also as described above. As a specific example of the work piece 2, as described above, semiconductor parts, semiconductor devices, and the like can be mentioned, and in particular, light emitting diodes such as mini light emitting diodes and micro light emitting diodes can be mentioned.
続く配置工程においては、図2(b)に示すように、ワーク小片2を受容可能な対象物3に対して、上記積層体におけるワーク小片2側の面が向かい合うように上記積層体を配置する。対象物3の例は、製造するデバイスに応じて適宜決定されるものの、ワーク小片2が発光ダイオードである場合には、対象物3の具体例としては、基板、シート、リール等が挙げられ、特に配線が設けられた配線基板が好適に使用される。
In the subsequent arrangement step, as shown in FIG. 2B, the laminate is arranged so that the surfaces of the laminate 2 on the work fragment 2 side face each other with respect to the object 3 that can accept the workpiece 2. .. An example of the object 3 is appropriately determined according to the device to be manufactured, but when the work piece 2 is a light emitting diode, specific examples of the object 3 include a substrate, a sheet, a reel, and the like. In particular, a wiring board provided with wiring is preferably used.
その後、硬化工程において、図2(c)に示すように、積層体における界面アブレーション層11の全体に対し、活性エネルギー線4を照射することによって界面アブレーション層11を全体的に硬化させる。これにより、界面アブレーション層11は、硬化した界面アブレーション層11’となる。なお、図2(c)では、界面アブレーション層11の全体的に対して活性エネルギー線4を照射する様子が描かれているものの、当該照射は、界面アブレーション層11における、少なくとも1つのワーク小片2が貼付されている位置のみに対して行い、それにより界面アブレーション層11を局所的に硬化させてもよい。
After that, in the curing step, as shown in FIG. 2C, the interface ablation layer 11 as a whole is cured by irradiating the entire interface ablation layer 11 in the laminated body with the active energy rays 4. As a result, the interface ablation layer 11 becomes a cured interface ablation layer 11'. In addition, although FIG. 2C depicts a state in which the active energy ray 4 is irradiated to the entire interface ablation layer 11, the irradiation is performed by at least one work piece 2 in the interface ablation layer 11. The interface ablation layer 11 may be locally cured by performing the treatment only on the position where the above is affixed.
上述した活性エネルギー線4の照射は、公知の手法を用いて行ってよく、例えば、光源として高圧水銀ランプや紫外線LEDを備える紫外線照射装置や、後述する分離工程でも使用されるレーザー光照射装置を使用してもよい。
The above-mentioned irradiation of the active energy ray 4 may be performed by using a known method. For example, an ultraviolet irradiation device provided with a high-pressure mercury lamp or an ultraviolet LED as a light source, or a laser light irradiation device used in a separation step described later may be used. You may use it.
その後、分離工程において、まず図2(d)に示すように、上記積層体の硬化後の界面アブレーション層11’における、少なくとも1つのワーク小片2が貼付されている位置に対し、レーザー光5を照射する。当該照射は、ワーク小片2が貼付されている複数の位置に対して同時に行ってもよく、あるいはそれらの位置に対して順次行ってもよい。レーザー光5の照射条件としては、界面アブレーションを生じさせることが可能である限り限定されない。照射のためのレーザー光照射装置としては、公知のものを使用することができる。
After that, in the separation step, first, as shown in FIG. 2D, the laser beam 5 is applied to the position of the interfacial ablation layer 11'after the curing of the laminated body to which at least one work piece 2 is attached. Irradiate. The irradiation may be performed simultaneously on a plurality of positions to which the work pieces 2 are attached, or may be sequentially performed on those positions. The irradiation conditions of the laser beam 5 are not limited as long as interfacial ablation can be generated. As the laser light irradiation device for irradiation, a known one can be used.
なお、硬化工程における活性エネルギー線4の照射および分離工程におけるレーザー光5の照射を、ともに上述したレーザー光照射装置を用いて行う場合、硬化工程および分離工程を同時に行ってもよい。すなわち、分離工程におけるレーザー光5の照射を、硬化工程における活性エネルギー線4の照射を兼ねるものとして行い、界面アブレーション層11の局所的な硬化と界面アブレーションとを同時に行ってもよい。この場合、照射するレーザー光5は、そのピーク波長が、300nm以上であることが好ましく、特に310nm以上であることが好ましく、さらには350nm以上であることが好ましい。また、上記ピーク波長は、400nm以下であることが好ましく、特に390nm以下であることが好ましく、さらには380nm以下であることが好ましい。このような波長を有するレーザー光5を照射することで、界面アブレーション層11の硬化と界面アブレーションとを良好に進行させ易いものとなる。
When both the irradiation of the active energy ray 4 in the curing step and the irradiation of the laser light 5 in the separation step are performed using the laser light irradiation device described above, the curing step and the separation step may be performed at the same time. That is, the irradiation of the laser beam 5 in the separation step may be performed as the irradiation of the active energy rays 4 in the curing step, and the local curing of the interface ablation layer 11 and the interface ablation may be performed at the same time. In this case, the peak wavelength of the laser beam 5 to be irradiated is preferably 300 nm or more, particularly preferably 310 nm or more, and further preferably 350 nm or more. The peak wavelength is preferably 400 nm or less, particularly preferably 390 nm or less, and further preferably 380 nm or less. By irradiating the laser light 5 having such a wavelength, the hardening of the interfacial ablation layer 11 and the interfacial ablation can be easily promoted satisfactorily.
一方、図2に示されるように、硬化工程と分離工程とをそれぞれ独立した工程として行う場合には、硬化工程において使用する紫外線照射装置(特に、紫外線LEDを光源として備える装置、およびレーザー光照射装置)から照射される活性エネルギー線4は、そのピーク波長が、300nm以上であることが好ましく、特に310nm以上であることが好ましく、さらには320nm以上であることが好ましい。また、上記ピーク波長は、400nm以下であることが好ましく、特に390nm以下であることが好ましく、さらには380nm以下であることが好ましい。そして、分離工程において使用するレーザー光照射装置から照射されるレーザー光5は、そのピーク波長が、300nm以上であることが好ましく、特に310nm以上であることが好ましく、さらには320nm以上であることが好ましい。また、上記ピーク波長は、400nm以下であることが好ましく、特に390nm以下であることが好ましく、さらには380nm以下であることが好ましい。硬化工程および分離工程において、それぞれ上述のようなピーク波長を有する活性エネルギー線4およびレーザー光5を照射することにより、界面アブレーション層11の硬化と界面アブレーションとを各工程において良好に進行させ易いものとなる。
On the other hand, as shown in FIG. 2, when the curing step and the separation step are performed as independent steps, an ultraviolet irradiation device used in the curing step (particularly, a device provided with an ultraviolet LED as a light source and laser light irradiation). The peak wavelength of the active energy ray 4 irradiated from the apparatus) is preferably 300 nm or more, particularly preferably 310 nm or more, and further preferably 320 nm or more. The peak wavelength is preferably 400 nm or less, particularly preferably 390 nm or less, and further preferably 380 nm or less. The laser light 5 emitted from the laser light irradiating device used in the separation step preferably has a peak wavelength of 300 nm or more, particularly preferably 310 nm or more, and further preferably 320 nm or more. preferable. The peak wavelength is preferably 400 nm or less, particularly preferably 390 nm or less, and further preferably 380 nm or less. By irradiating the active energy rays 4 and the laser beam 5 having the peak wavelengths as described above in the curing step and the separation step, respectively, it is easy to promote the curing and the interfacial ablation of the interfacial ablation layer 11 satisfactorily in each step. It becomes.
上述したレーザー光5の照射により、図2(e)に示されるように、硬化後の界面アブレーション層11’における照射された位置において界面アブレーションを生じさせることができる。具体的には、レーザー光5の照射によって、硬化後の界面アブレーション層11’における基材12に近位な領域において、当該領域を構成していた成分が蒸発または揮発し、反応領域13となる。そして、上記蒸発または揮発によって生じたガスが基材12と反応領域13との間に溜まり、ブリスター6が形成される。当該ブリスター6の形成によって、ワーク小片2’の位置において局所的に硬化後の界面アブレーション層11’が変形し、硬化後の界面アブレーション層11から剥がされるようにワーク小片2’が分離する。以上により、当該界面アブレーションが生じた位置に存在するワーク小片2’を、対象物3上に載置することができる。
By irradiating the laser beam 5 described above, as shown in FIG. 2 (e), interfacial ablation can be generated at the irradiated position in the interfacial ablation layer 11'after curing. Specifically, by irradiation with the laser beam 5, in the region proximal to the base material 12 in the cured interface ablation layer 11', the components constituting the region evaporate or volatilize to become the reaction region 13. .. Then, the gas generated by the evaporation or volatilization accumulates between the base material 12 and the reaction region 13, and the blister 6 is formed. Due to the formation of the blister 6, the hardened interface ablation layer 11'is locally deformed at the position of the work piece 2', and the work piece 2'is separated so as to be peeled off from the hardened interface ablation layer 11. As described above, the work piece 2'existing at the position where the interface ablation has occurred can be placed on the object 3.
なお、レーザー光5の照射によって生じた反応領域13およびブリスター6は、通常、ワーク小片2’の分離した後も残ったままとなる。図3には、順次レーザー光を照射してワーク小片2の分離を行っていく様子が示されており、特に、分離後の状態(左2つ)、分離中の状態(中央)、および分離前の状態(右2つ)が示されている。図示されるように、通常、分離後のブリスター6は、分離中のブリスター6に比べて、多少しぼんだ状態となる。
The reaction region 13 and the blister 6 generated by the irradiation of the laser beam 5 usually remain even after the work piece 2'is separated. FIG. 3 shows how the work pieces 2 are separated by sequentially irradiating the laser beam, and in particular, the state after separation (two on the left), the state during separation (center), and the separation. The previous state (two on the right) is shown. As shown, the separated blister 6 is usually in a slightly deflated state as compared to the separated blister 6.
以上説明した方法によれば、使用するワーク小片2や対象物3を適宜選択することで様々なデバイスを製造することができる。例えば、ワーク小片2として、ミニ発光ダイオードおよびマイクロ発光ダイオードから選択される発光ダイオードを用いた場合には、そのような発光ダイオードを複数備える発光装置を製造することができ、より具体的にはディスプレイを製造することができる。特に、マイクロ発光ダイオードを画素として備えるディスプレイや、複数のミニ発光ダイオードをバックライトとして備えるディスプレイを製造することができる。
According to the method described above, various devices can be manufactured by appropriately selecting the work piece 2 and the object 3 to be used. For example, when a light emitting diode selected from a mini light emitting diode and a micro light emitting diode is used as the work piece 2, a light emitting device including a plurality of such light emitting diodes can be manufactured, and more specifically, a display. Can be manufactured. In particular, it is possible to manufacture a display having a micro light emitting diode as a pixel and a display having a plurality of mini light emitting diodes as a backlight.
以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。
The embodiments described above are described for facilitating the understanding of the present invention, not for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
例えば、本実施形態に係るワークハンドリングシート1における界面アブレーション層11と基材12との間、または基材12における界面アブレーション層11とは反対側の面には、他の層が積層されていてもよい。当該他の層の具体例としては、粘着剤層が挙げられる。この場合、当該粘着剤層側の面を支持台(ガラス板等の透明基板)に貼付した状態で、上述した分離工程等を行うことができる。
For example, another layer is laminated between the interface ablation layer 11 and the base material 12 in the work handling sheet 1 according to the present embodiment, or on the surface of the base material 12 opposite to the interface ablation layer 11. May be good. Specific examples of the other layer include an adhesive layer. In this case, the above-mentioned separation step or the like can be performed with the surface on the pressure-sensitive adhesive layer side attached to a support base (transparent substrate such as a glass plate).
以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。
Hereinafter, the present invention will be described in more detail with reference to Examples and the like, but the scope of the present invention is not limited to these Examples and the like.
〔実施例1〕
(1)粘着性組成物の調製
アクリル酸2-エチルヘキシル80質量部と、アクリル酸2-ヒドロキシエチル20質量部とを、溶液重合法により重合させて、(メタ)アクリル酸エステル重合体を得た。このアクリル系重合体の重量平均分子量(Mw)を前述の方法によって測定したところ、60万であった。 [Example 1]
(1) Preparation of Adhesive Composition 80 parts by mass of 2-ethylhexyl acrylate and 20 parts by mass of 2-hydroxyethyl acrylate were polymerized by a solution polymerization method to obtain a (meth) acrylic acid ester polymer. .. The weight average molecular weight (Mw) of this acrylic polymer was measured by the above-mentioned method and found to be 600,000.
(1)粘着性組成物の調製
アクリル酸2-エチルヘキシル80質量部と、アクリル酸2-ヒドロキシエチル20質量部とを、溶液重合法により重合させて、(メタ)アクリル酸エステル重合体を得た。このアクリル系重合体の重量平均分子量(Mw)を前述の方法によって測定したところ、60万であった。 [Example 1]
(1) Preparation of Adhesive Composition 80 parts by mass of 2-ethylhexyl acrylate and 20 parts by mass of 2-hydroxyethyl acrylate were polymerized by a solution polymerization method to obtain a (meth) acrylic acid ester polymer. .. The weight average molecular weight (Mw) of this acrylic polymer was measured by the above-mentioned method and found to be 600,000.
上記で得られたアクリル系重合体100質量部(固形分換算,以下同じ)と、架橋剤としてのトリメチロールプロパン変性トリレンジイソシアネート(東ソー社製,商品名「コロネートL」)0.94質量部と、添加剤としてのトリス[2,4,6-[2-{4-(オクチル-2-メチルエタノエート)オキシ-2-ヒドロキシフェニル}]-1,3,5-トリアジン(ヒドロキシフェニルトリアジン系紫外線吸収剤,BASF社製,製品名「Tinuvin477」)10質量部とを溶媒中で混合し、粘着性組成物の塗布液を得た。
100 parts by mass of the acrylic polymer obtained above (solid content equivalent, the same applies hereinafter) and 0.94 parts by mass of trimethylol propane-modified tolylene diisocyanate (manufactured by Toso Co., Ltd., trade name "Coronate L") as a cross-linking agent. And Tris as an additive [2,4,6- [2- {4- (octyl-2-methylethanoate) oxy-2-hydroxyphenyl}]-1,3,5-triazine (hydroxyphenyltriazine type) An ultraviolet absorber, manufactured by BASF, product name "Tinuvin 477") was mixed with 10 parts by mass in a solvent to obtain a coating liquid for an adhesive composition.
(2)界面アブレーション層(粘着剤層)の形成
厚さ38μmのポリエチレンテレフタレートフィルムの片面にシリコーン系の剥離剤層が形成されてなる剥離シート(リンテック社製,製品名「SP-PET381031」)の剥離面に対して、上記工程(1)で得られた粘着性組成物の塗布液を塗布し、得られた塗膜を加熱により乾燥させた。これにより、塗膜が乾燥してなる厚さ5μmの界面アブレーション層と、剥離シートとが積層されてなる積層体を得た。 (2) Formation of interfacial ablation layer (adhesive layer) A release sheet (manufactured by Lintec Corporation, product name "SP-PET38131") in which a silicone-based release agent layer is formed on one side of a 38 μm-thick polyethylene terephthalate film. The coating liquid of the adhesive composition obtained in the above step (1) was applied to the peeled surface, and the obtained coating film was dried by heating. As a result, a laminate obtained by laminating an interface ablation layer having a thickness of 5 μm and a release sheet formed by drying the coating film was obtained.
厚さ38μmのポリエチレンテレフタレートフィルムの片面にシリコーン系の剥離剤層が形成されてなる剥離シート(リンテック社製,製品名「SP-PET381031」)の剥離面に対して、上記工程(1)で得られた粘着性組成物の塗布液を塗布し、得られた塗膜を加熱により乾燥させた。これにより、塗膜が乾燥してなる厚さ5μmの界面アブレーション層と、剥離シートとが積層されてなる積層体を得た。 (2) Formation of interfacial ablation layer (adhesive layer) A release sheet (manufactured by Lintec Corporation, product name "SP-PET38131") in which a silicone-based release agent layer is formed on one side of a 38 μm-thick polyethylene terephthalate film. The coating liquid of the adhesive composition obtained in the above step (1) was applied to the peeled surface, and the obtained coating film was dried by heating. As a result, a laminate obtained by laminating an interface ablation layer having a thickness of 5 μm and a release sheet formed by drying the coating film was obtained.
(3)ワークハンドリングシートの作製
上記工程(2)で得られた積層体における界面アブレーション層側の面と、基材としてのポリエチレンテレフタレートフィルム(三菱ケミカル社製,製品名「T-910 WM19」,厚さ:50μm)の片面とを貼り合わせることで、剥離シートが貼付された状態のワークハンドリングシートを得た。 (3) Preparation of Work Handling Sheet The surface of the laminate obtained in the above step (2) on the interface ablation layer side and the polyethylene terephthalate film as the base material (manufactured by Mitsubishi Chemical Corporation, product name "T-910 WM19", By laminating one side with a thickness of 50 μm), a work handling sheet with a release sheet attached was obtained.
上記工程(2)で得られた積層体における界面アブレーション層側の面と、基材としてのポリエチレンテレフタレートフィルム(三菱ケミカル社製,製品名「T-910 WM19」,厚さ:50μm)の片面とを貼り合わせることで、剥離シートが貼付された状態のワークハンドリングシートを得た。 (3) Preparation of Work Handling Sheet The surface of the laminate obtained in the above step (2) on the interface ablation layer side and the polyethylene terephthalate film as the base material (manufactured by Mitsubishi Chemical Corporation, product name "T-910 WM19", By laminating one side with a thickness of 50 μm), a work handling sheet with a release sheet attached was obtained.
ここで、前述した重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて以下の条件で測定(GPC測定)した標準ポリスチレン換算の重量平均分子量である。
<測定条件>
・測定装置:東ソー社製,HLC-8320
・GPCカラム(以下の順に通過):東ソー社製
TSK gel superH-H
TSK gel superHM-H
TSK gel superH2000
・測定溶媒:テトラヒドロフラン
・測定温度:40℃ Here, the above-mentioned weight average molecular weight (Mw) is a standard polystyrene-equivalent weight average molecular weight measured under the following conditions (GPC measurement) using gel permeation chromatography (GPC).
<Measurement conditions>
-Measuring device: HLC-8320 manufactured by Tosoh Corporation
-GPC column (passed in the following order): TSK gel superH-H manufactured by Tosoh Corporation
TSK gel superHM-H
TSK gel superH2000
-Measurement solvent: tetrahydrofuran-Measurement temperature: 40 ° C
<測定条件>
・測定装置:東ソー社製,HLC-8320
・GPCカラム(以下の順に通過):東ソー社製
TSK gel superH-H
TSK gel superHM-H
TSK gel superH2000
・測定溶媒:テトラヒドロフラン
・測定温度:40℃ Here, the above-mentioned weight average molecular weight (Mw) is a standard polystyrene-equivalent weight average molecular weight measured under the following conditions (GPC measurement) using gel permeation chromatography (GPC).
<Measurement conditions>
-Measuring device: HLC-8320 manufactured by Tosoh Corporation
-GPC column (passed in the following order): TSK gel superH-H manufactured by Tosoh Corporation
TSK gel superHM-H
TSK gel superH2000
-Measurement solvent: tetrahydrofuran-Measurement temperature: 40 ° C
〔実施例2~4〕
添加剤の種類および含有量、並びに、界面アブレーション層(粘着剤層)の厚さを表1に示すように変更する以外、実施例1と同様にしてワークハンドリングシートを製造した。 [Examples 2 to 4]
A work handling sheet was produced in the same manner as in Example 1 except that the type and content of the additive and the thickness of the interface ablation layer (adhesive layer) were changed as shown in Table 1.
添加剤の種類および含有量、並びに、界面アブレーション層(粘着剤層)の厚さを表1に示すように変更する以外、実施例1と同様にしてワークハンドリングシートを製造した。 [Examples 2 to 4]
A work handling sheet was produced in the same manner as in Example 1 except that the type and content of the additive and the thickness of the interface ablation layer (adhesive layer) were changed as shown in Table 1.
〔実施例5〕
アクリル酸2-エチルヘキシル80質量部と、アクリル酸2-ヒドロキシエチル20質量部とを、溶液重合法により重合させて、(メタ)アクリル酸エステル重合体を得た。この(メタ)アクリル酸エステル重合体に対し、そのアクリル酸2-ヒドロキシエチルに対して80モル%のメタクリロイルオキシエチルイソシアネート(MOI)を反応させて、側鎖に活性エネルギー線硬化性基が導入されたアクリル系重合体(活性エネルギー線硬化性成分)を得た。このアクリル系重合体の重量平均分子量(Mw)を前述の方法によって測定したところ、100万であった。 [Example 5]
80 parts by mass of 2-ethylhexyl acrylate and 20 parts by mass of 2-hydroxyethyl acrylate were polymerized by a solution polymerization method to obtain a (meth) acrylate polymer. 80 mol% of methacryloyloxyethyl isocyanate (MOI) is reacted with this (meth) acrylic acid ester polymer with 2-hydroxyethyl acrylate to introduce an active energy ray-curable group into the side chain. Acrylic polymer (active energy ray-curable component) was obtained. The weight average molecular weight (Mw) of this acrylic polymer was measured by the above-mentioned method and found to be 1 million.
アクリル酸2-エチルヘキシル80質量部と、アクリル酸2-ヒドロキシエチル20質量部とを、溶液重合法により重合させて、(メタ)アクリル酸エステル重合体を得た。この(メタ)アクリル酸エステル重合体に対し、そのアクリル酸2-ヒドロキシエチルに対して80モル%のメタクリロイルオキシエチルイソシアネート(MOI)を反応させて、側鎖に活性エネルギー線硬化性基が導入されたアクリル系重合体(活性エネルギー線硬化性成分)を得た。このアクリル系重合体の重量平均分子量(Mw)を前述の方法によって測定したところ、100万であった。 [Example 5]
80 parts by mass of 2-ethylhexyl acrylate and 20 parts by mass of 2-hydroxyethyl acrylate were polymerized by a solution polymerization method to obtain a (meth) acrylate polymer. 80 mol% of methacryloyloxyethyl isocyanate (MOI) is reacted with this (meth) acrylic acid ester polymer with 2-hydroxyethyl acrylate to introduce an active energy ray-curable group into the side chain. Acrylic polymer (active energy ray-curable component) was obtained. The weight average molecular weight (Mw) of this acrylic polymer was measured by the above-mentioned method and found to be 1 million.
上記で得られた、側鎖に活性エネルギー線硬化性基が導入されたアクリル系重合体100質量部(固形分換算,以下同じ)と、架橋剤としてのトリメチロールプロパン変性トリレンジイソシアネート(東ソー社製,商品名「コロネートL」)2.5質量部と、添加剤としての2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリノ-フェニル)ブタン-1-オン(光重合開始剤,IGM Resins社製,製品名「Omnirad379」)20質量部とを溶媒中で混合し、粘着性組成物の塗布液を得た。
100 parts by mass of the acrylic polymer (solid content equivalent, the same applies hereinafter) obtained above, in which an active energy ray-curable group is introduced into the side chain, and trimethylol propane-modified tolylene diisocyanate as a cross-linking agent (Toso Co., Ltd.) Manufactured by, trade name "Coronate L") 2.5 parts by mass and 2-dimethylamino-2- (4-methylbenzyl) -1- (4-morpholino-phenyl) butane-1-one (light) as an additive 20 parts by mass of a polymerization initiator, manufactured by IGM Resins, product name "Omnirad 379") was mixed in a solvent to obtain a coating liquid for an adhesive composition.
上記粘着性組成物を使用するとともに、界面アブレーション層の厚さを表1に示すように変更した以外、実施例1と同様にしてワークハンドリングシートを製造した。
A work handling sheet was produced in the same manner as in Example 1 except that the above adhesive composition was used and the thickness of the interface ablation layer was changed as shown in Table 1.
〔実施例6~7および比較例1〕
架橋剤の含有量、並びに、添加剤の種類および含有量を表1に示すように変更した以外、実施例5と同様にしてワークハンドリングシートを製造した。 [Examples 6 to 7 and Comparative Example 1]
A work handling sheet was produced in the same manner as in Example 5, except that the content of the cross-linking agent and the type and content of the additive were changed as shown in Table 1.
架橋剤の含有量、並びに、添加剤の種類および含有量を表1に示すように変更した以外、実施例5と同様にしてワークハンドリングシートを製造した。 [Examples 6 to 7 and Comparative Example 1]
A work handling sheet was produced in the same manner as in Example 5, except that the content of the cross-linking agent and the type and content of the additive were changed as shown in Table 1.
〔比較例2〕
添加剤を使用しないとともに、界面アブレーション層の厚さを表1に示すように変更した以外、実施例1と同様にしてワークハンドリングシートを製造した。 [Comparative Example 2]
A work handling sheet was produced in the same manner as in Example 1 except that no additive was used and the thickness of the interface ablation layer was changed as shown in Table 1.
添加剤を使用しないとともに、界面アブレーション層の厚さを表1に示すように変更した以外、実施例1と同様にしてワークハンドリングシートを製造した。 [Comparative Example 2]
A work handling sheet was produced in the same manner as in Example 1 except that no additive was used and the thickness of the interface ablation layer was changed as shown in Table 1.
〔試験例1〕(変換効率の測定)
(1)第1の紫外線照射(界面アブレーション層の硬化)
実施例および比較例で製造したワークハンドリングシートから剥離シートを剥離し、界面アブレーション層を露出させた。そして、当該ワークハンドリングシートにおける界面アブレーション層の露出面に対し、光源として高圧水銀ランプを備えた紫外線照射装置(リンテック社製,製品名「RAD-2000」)を用い、紫外線(UV)を照射(照度:230mW/cm2,光量:190mJ/cm2)した(以降、当該紫外線照射を、「第1の紫外線照射」ということがある)。これにより、「UV照射後」のワークハンドリングシートを得た。 [Test Example 1] (Measurement of conversion efficiency)
(1) First ultraviolet irradiation (curing of interfacial ablation layer)
The release sheet was peeled off from the work handling sheets produced in Examples and Comparative Examples to expose the interfacial ablation layer. Then, the exposed surface of the interface ablation layer in the work handling sheet is irradiated with ultraviolet rays (UV) using an ultraviolet irradiation device (manufactured by Lintec, product name "RAD-2000") equipped with a high-pressure mercury lamp as a light source. Illuminance: 230 mW / cm 2 , light intensity: 190 mJ / cm 2 ) (hereinafter, the ultraviolet irradiation may be referred to as "first ultraviolet irradiation"). As a result, a work handling sheet "after UV irradiation" was obtained.
(1)第1の紫外線照射(界面アブレーション層の硬化)
実施例および比較例で製造したワークハンドリングシートから剥離シートを剥離し、界面アブレーション層を露出させた。そして、当該ワークハンドリングシートにおける界面アブレーション層の露出面に対し、光源として高圧水銀ランプを備えた紫外線照射装置(リンテック社製,製品名「RAD-2000」)を用い、紫外線(UV)を照射(照度:230mW/cm2,光量:190mJ/cm2)した(以降、当該紫外線照射を、「第1の紫外線照射」ということがある)。これにより、「UV照射後」のワークハンドリングシートを得た。 [Test Example 1] (Measurement of conversion efficiency)
(1) First ultraviolet irradiation (curing of interfacial ablation layer)
The release sheet was peeled off from the work handling sheets produced in Examples and Comparative Examples to expose the interfacial ablation layer. Then, the exposed surface of the interface ablation layer in the work handling sheet is irradiated with ultraviolet rays (UV) using an ultraviolet irradiation device (manufactured by Lintec, product name "RAD-2000") equipped with a high-pressure mercury lamp as a light source. Illuminance: 230 mW / cm 2 , light intensity: 190 mJ / cm 2 ) (hereinafter, the ultraviolet irradiation may be referred to as "first ultraviolet irradiation"). As a result, a work handling sheet "after UV irradiation" was obtained.
なお、界面アブレーション層が活性エネルギー線硬化性粘着剤から構成される粘着剤層である実施例5~7および比較例1のワークハンドリングシートでは、上記第1の紫外線照射により、界面アブレーション層が硬化した。
In the work handling sheets of Examples 5 to 7 and Comparative Example 1 in which the interface ablation layer is a pressure-sensitive adhesive layer composed of an active energy ray-curable pressure-sensitive adhesive, the interface ablation layer is cured by the first ultraviolet irradiation. did.
(2)第2の紫外線照射および熱量の測定
上記第1の紫外線照射を行ったワークハンドリングシートを、面積が0.126cm2となるように裁断した。これによって得られた測定用サンプルを、紫外線照射装置を備えた示差走査熱量計(DSC)の測定部に設置した。なお、使用した紫外線照射装置および示差走査熱量計の詳細は以下の通りである。 (2) Second UV Irradiation and Measurement of Calorie The work handling sheet subjected to the first UV irradiation was cut so as to have an area of 0.126 cm 2 . The measurement sample thus obtained was placed in the measurement section of a differential scanning calorimeter (DSC) equipped with an ultraviolet irradiation device. The details of the ultraviolet irradiation device and the differential scanning calorimeter used are as follows.
上記第1の紫外線照射を行ったワークハンドリングシートを、面積が0.126cm2となるように裁断した。これによって得られた測定用サンプルを、紫外線照射装置を備えた示差走査熱量計(DSC)の測定部に設置した。なお、使用した紫外線照射装置および示差走査熱量計の詳細は以下の通りである。 (2) Second UV Irradiation and Measurement of Calorie The work handling sheet subjected to the first UV irradiation was cut so as to have an area of 0.126 cm 2 . The measurement sample thus obtained was placed in the measurement section of a differential scanning calorimeter (DSC) equipped with an ultraviolet irradiation device. The details of the ultraviolet irradiation device and the differential scanning calorimeter used are as follows.
<紫外線照射装置>
朝日分光株式会社製 製品名「REX―250」
ランプ:高圧水銀ランプ 250W
干渉フィルター:バンドパスフィルター LX0365
出射波長:240nm~440nm <Ultraviolet irradiation device>
Asahi Spectroscopy Co., Ltd. Product name "REX-250"
Lamp: High pressure mercury lamp 250W
Interference filter: Bandpass filter LX0365
Emission wavelength: 240 nm to 440 nm
朝日分光株式会社製 製品名「REX―250」
ランプ:高圧水銀ランプ 250W
干渉フィルター:バンドパスフィルター LX0365
出射波長:240nm~440nm <Ultraviolet irradiation device>
Asahi Spectroscopy Co., Ltd. Product name "REX-250"
Lamp: High pressure mercury lamp 250W
Interference filter: Bandpass filter LX0365
Emission wavelength: 240 nm to 440 nm
<示差走査熱量計>
Perkinelmer社製 製品名「DSC8500」 <Differential scanning calorimeter>
Product name "DSC8500" manufactured by PerkinElmer
Perkinelmer社製 製品名「DSC8500」 <Differential scanning calorimeter>
Product name "DSC8500" manufactured by PerkinElmer
そして、示差走査熱量計の雰囲気温度が30℃となるよう調整し、温度および熱量が安定した後に、測定用サンプルの測定を開始した。測定は、以下の3つのステップにより行った。なお、測定は、測定部に窒素ガスを供給しながら窒素ガス雰囲気下で行った。また、紫外線が界面アブレーション層側面に垂直に当たるように紫外線を照射した。
ステップ1:設定雰囲気温度30℃で1分間保持
ステップ2:設定雰囲気温度30℃で、紫外線を照度:380mW/cm2、光量:950mJ/cm2で0.3分間照射(以降、この紫外線照射を「第2の紫外線照射」という場合がある)
ステップ3:設定雰囲気温度30℃で0.7分間保持 Then, the atmospheric temperature of the differential scanning calorimeter was adjusted to 30 ° C., and after the temperature and the amount of heat became stable, the measurement of the measurement sample was started. The measurement was performed in the following three steps. The measurement was performed in a nitrogen gas atmosphere while supplying nitrogen gas to the measuring unit. In addition, the ultraviolet rays were irradiated so that the ultraviolet rays hit the side surface of the interface ablation layer perpendicularly.
Step 1: Hold at set atmosphere temperature 30 ° C for 1 minute Step 2: Irradiate ultraviolet rays at set atmosphere temperature 30 ° C for 0.3 minutes at illuminance: 380 mW / cm 2 and light intensity: 950 mJ / cm 2 (hereinafter, this ultraviolet irradiation is performed. Sometimes called "second UV irradiation")
Step 3: Hold for 0.7 minutes at the set atmosphere temperature of 30 ° C.
ステップ1:設定雰囲気温度30℃で1分間保持
ステップ2:設定雰囲気温度30℃で、紫外線を照度:380mW/cm2、光量:950mJ/cm2で0.3分間照射(以降、この紫外線照射を「第2の紫外線照射」という場合がある)
ステップ3:設定雰囲気温度30℃で0.7分間保持 Then, the atmospheric temperature of the differential scanning calorimeter was adjusted to 30 ° C., and after the temperature and the amount of heat became stable, the measurement of the measurement sample was started. The measurement was performed in the following three steps. The measurement was performed in a nitrogen gas atmosphere while supplying nitrogen gas to the measuring unit. In addition, the ultraviolet rays were irradiated so that the ultraviolet rays hit the side surface of the interface ablation layer perpendicularly.
Step 1: Hold at set atmosphere temperature 30 ° C for 1 minute Step 2: Irradiate ultraviolet rays at set atmosphere temperature 30 ° C for 0.3 minutes at illuminance: 380 mW / cm 2 and light intensity: 950 mJ / cm 2 (hereinafter, this ultraviolet irradiation is performed. Sometimes called "second UV irradiation")
Step 3: Hold for 0.7 minutes at the set atmosphere temperature of 30 ° C.
また、レファレンスとして、測定部に測定用サンプルを設置せず、空の状態で上記と同様に測定を行った。
Also, as a reference, the measurement was performed in the same manner as above in an empty state without installing a measurement sample in the measurement section.
そして、示差走査熱量計付属のソフトウエアを用いて、測定用サンプルから取得された測定データから、レファレンスから取得された測定データを差し引いて、測定用サンプルのみの熱量データ(横軸:時間、縦軸:単位時間当たりの発熱量とするDSC曲線)を得た。次いで、当該DSC曲線における測定開始から測定終了までの単位時間当たりの発熱量の積分値として、UV照射後のワークハンドリングシート全体の発熱量(mJ/cm2)を取得した。その結果を表2に示す。
Then, using the software attached to the differential scanning calorimeter, the measurement data acquired from the reference is subtracted from the measurement data acquired from the measurement sample, and the calorie data of only the measurement sample (horizontal axis: time, vertical axis). Axis: DSC curve, which is the calorific value per unit time) was obtained. Next, the calorific value (mJ / cm 2 ) of the entire work handling sheet after UV irradiation was acquired as an integral value of the calorific value per unit time from the start of measurement to the end of measurement in the DSC curve. The results are shown in Table 2.
さらに、UV照射後のワークハンドリングシートを、UV照射前のワークハンドリングシート(すなわち、上記第1の紫外線照射を行っていないワークハンドリングシート)に置き換えて、上記と同様に、UV照射前のワークハンドリングシート全体の発熱量(mJ/cm2)を取得した。その結果も表2に示す。
Further, the work handling sheet after UV irradiation is replaced with the work handling sheet before UV irradiation (that is, the work handling sheet not subjected to the first ultraviolet irradiation), and the work handling before UV irradiation is performed in the same manner as described above. The calorific value (mJ / cm 2 ) of the entire sheet was acquired. The results are also shown in Table 2.
またさらに、UV照射後のワークハンドリングシートを、実施例および比較例で使用した基材のみに置き換えて、上記と同様に、基材の発熱量(mJ/cm2)を取得した。その結果も表2に示す。
Furthermore, the work handling sheet after UV irradiation was replaced with only the base material used in Examples and Comparative Examples, and the calorific value (mJ / cm 2 ) of the base material was obtained in the same manner as described above. The results are also shown in Table 2.
(3)変換効率の算出
続いて、解析ソフト(Perkinelmer社製,製品名「Pyris」)を使用し、UV照射前のワークハンドリングシート全体の発熱量に基づいて、第2の紫外線照射による光エネルギーの熱エネルギーへの変換効率(%)を算出した。その結果を、UV照射前のワークハンドリングシート全体の変換効率(%)として表2に示す。なお、当該変換効率は、単位面積当たりの発熱量(mJ/cm2)を単位面積に照射した紫外線の光量で除することで算出したものである。 (3) Calculation of conversion efficiency Next, using analysis software (manufactured by PerkinElmer, product name "Pyris"), the light energy due to the second ultraviolet irradiation is based on the calorific value of the entire work handling sheet before UV irradiation. Conversion efficiency (%) to heat energy was calculated. The results are shown in Table 2 as the conversion efficiency (%) of the entire work handling sheet before UV irradiation. The conversion efficiency is calculated by dividing the calorific value per unit area (mJ / cm 2 ) by the amount of ultraviolet rays irradiating the unit area.
続いて、解析ソフト(Perkinelmer社製,製品名「Pyris」)を使用し、UV照射前のワークハンドリングシート全体の発熱量に基づいて、第2の紫外線照射による光エネルギーの熱エネルギーへの変換効率(%)を算出した。その結果を、UV照射前のワークハンドリングシート全体の変換効率(%)として表2に示す。なお、当該変換効率は、単位面積当たりの発熱量(mJ/cm2)を単位面積に照射した紫外線の光量で除することで算出したものである。 (3) Calculation of conversion efficiency Next, using analysis software (manufactured by PerkinElmer, product name "Pyris"), the light energy due to the second ultraviolet irradiation is based on the calorific value of the entire work handling sheet before UV irradiation. Conversion efficiency (%) to heat energy was calculated. The results are shown in Table 2 as the conversion efficiency (%) of the entire work handling sheet before UV irradiation. The conversion efficiency is calculated by dividing the calorific value per unit area (mJ / cm 2 ) by the amount of ultraviolet rays irradiating the unit area.
さらに、UV照射前のワークハンドリングシート全体の発熱量から、基材のみの発熱量を減じ、界面アブレーション層に起因する発熱量を算出した。そして、この界面アブレーション層に起因する発熱量に基づいて、上記と同様に、第2の紫外線照射による光エネルギーの熱エネルギーへの変換効率(%)を算出した。その結果を、UV照射前の界面アブレーション層の変換効率(%)として表2に示す。
Furthermore, the calorific value of the base material alone was reduced from the calorific value of the entire work handling sheet before UV irradiation, and the calorific value due to the interface ablation layer was calculated. Then, based on the calorific value caused by this interfacial ablation layer, the conversion efficiency (%) of the light energy by the second ultraviolet irradiation into heat energy was calculated in the same manner as described above. The results are shown in Table 2 as the conversion efficiency (%) of the interface ablation layer before UV irradiation.
またさらに、UV照射後のワークハンドリングシート全体の発熱量から、基材のみの発熱量を減じ、界面アブレーション層に起因する発熱量を算出した。そして、この界面アブレーション層に起因する発熱量に基づいて、上記と同様に、第2の紫外線照射による光エネルギーの熱エネルギーへの変換効率(%)を算出した。その結果を、UV照射後の界面アブレーション層の変換効率(%)として表2に示す。
Furthermore, the calorific value of the base material alone was reduced from the calorific value of the entire work handling sheet after UV irradiation, and the calorific value due to the interface ablation layer was calculated. Then, based on the calorific value caused by this interfacial ablation layer, the conversion efficiency (%) of the light energy by the second ultraviolet irradiation into heat energy was calculated in the same manner as described above. The results are shown in Table 2 as the conversion efficiency (%) of the interface ablation layer after UV irradiation.
〔試験例2〕(紫外線吸光度の測定)
実施例および比較例で製造したワークハンドリングシートから剥離シートを剥離し、界面アブレーション層を露出させた。このワークハンドリングシートについて、紫外・可視・近赤外分光光度計(島津製作所製,製品名「UV-3600」)および付属の大形試料室(島津製作所製,製品名「MPC-3100」)を用いて、紫外線吸光度を測定した。当該測定は、上記分光光度計に内蔵の積分球を使用して、スリット幅20nmにて、波長355nmの光線を、界面アブレーション層側の面に向けて照射させることで行った。結果を表2に示す。 [Test Example 2] (Measurement of ultraviolet absorbance)
The release sheet was peeled off from the work handling sheets produced in Examples and Comparative Examples to expose the interfacial ablation layer. For this work handling sheet, use an ultraviolet / visible / near-infrared spectrophotometer (manufactured by Shimadzu Corporation, product name "UV-3600") and an attached large sample chamber (manufactured by Shimadzu Corporation, product name "MPC-3100"). The UV absorbance was measured using. The measurement was carried out by irradiating a light beam having a slit width of 20 nm and a wavelength of 355 nm toward the surface on the interface ablation layer side using an integrating sphere built in the spectrophotometer. The results are shown in Table 2.
実施例および比較例で製造したワークハンドリングシートから剥離シートを剥離し、界面アブレーション層を露出させた。このワークハンドリングシートについて、紫外・可視・近赤外分光光度計(島津製作所製,製品名「UV-3600」)および付属の大形試料室(島津製作所製,製品名「MPC-3100」)を用いて、紫外線吸光度を測定した。当該測定は、上記分光光度計に内蔵の積分球を使用して、スリット幅20nmにて、波長355nmの光線を、界面アブレーション層側の面に向けて照射させることで行った。結果を表2に示す。 [Test Example 2] (Measurement of ultraviolet absorbance)
The release sheet was peeled off from the work handling sheets produced in Examples and Comparative Examples to expose the interfacial ablation layer. For this work handling sheet, use an ultraviolet / visible / near-infrared spectrophotometer (manufactured by Shimadzu Corporation, product name "UV-3600") and an attached large sample chamber (manufactured by Shimadzu Corporation, product name "MPC-3100"). The UV absorbance was measured using. The measurement was carried out by irradiating a light beam having a slit width of 20 nm and a wavelength of 355 nm toward the surface on the interface ablation layer side using an integrating sphere built in the spectrophotometer. The results are shown in Table 2.
〔試験例3〕(レーザーリフトオフ適性の評価)
(1)ワークハンドリングシート上におけるチップの準備(準備工程)
8インチシリコンウエハ(#2000,厚さ:350μm)の片面に、ダイシングシート(リンテック社製,製品名「D-485H」)の粘着面を貼付した。続いて、当該ダイシングシートにおける上記粘着面の周縁部(シリコンウエハとは重ならない位置)に、ダイシング用リングフレームを付着させた。さらに、リングフレームの外径に合わせてダイシングシートを裁断した。その後、ダイシング装置(ディスコ社製,製品名「DFD6362」)を用いて、シリコンウエハを、300μm×300μmのサイズを有するチップにダイシングした。その後、ダイシングシートに対して、紫外線照射装置(リンテック社製,製品名「RAD2000」)を用いて紫外線(照度230mW/cm2,光量190mJ/cm2)を照射し、ダイシングシートの粘着剤層を硬化させた。これにより、ダイシングシート上に複数のチップが設けられてなる積層体を得た。 [Test Example 3] (Evaluation of laser lift-off suitability)
(1) Tip preparation on the work handling sheet (preparation process)
An adhesive surface of a dicing sheet (manufactured by Lintec Corporation, product name "D-485H") was attached to one side of an 8-inch silicon wafer (# 2000, thickness: 350 μm). Subsequently, a dicing ring frame was attached to the peripheral edge of the adhesive surface (position not overlapping the silicon wafer) of the dicing sheet. Further, the dicing sheet was cut according to the outer diameter of the ring frame. Then, a silicon wafer was diced into a chip having a size of 300 μm × 300 μm using a dicing apparatus (manufactured by Disco Corporation, product name “DFD6362”). After that, the dicing sheet is irradiated with ultraviolet rays (illuminance 230 mW / cm 2 , light intensity 190 mJ / cm 2 ) using an ultraviolet irradiation device (manufactured by Lintec Corporation, product name "RAD2000") to form an adhesive layer of the dicing sheet. It was cured. As a result, a laminated body in which a plurality of chips were provided on the dicing sheet was obtained.
(1)ワークハンドリングシート上におけるチップの準備(準備工程)
8インチシリコンウエハ(#2000,厚さ:350μm)の片面に、ダイシングシート(リンテック社製,製品名「D-485H」)の粘着面を貼付した。続いて、当該ダイシングシートにおける上記粘着面の周縁部(シリコンウエハとは重ならない位置)に、ダイシング用リングフレームを付着させた。さらに、リングフレームの外径に合わせてダイシングシートを裁断した。その後、ダイシング装置(ディスコ社製,製品名「DFD6362」)を用いて、シリコンウエハを、300μm×300μmのサイズを有するチップにダイシングした。その後、ダイシングシートに対して、紫外線照射装置(リンテック社製,製品名「RAD2000」)を用いて紫外線(照度230mW/cm2,光量190mJ/cm2)を照射し、ダイシングシートの粘着剤層を硬化させた。これにより、ダイシングシート上に複数のチップが設けられてなる積層体を得た。 [Test Example 3] (Evaluation of laser lift-off suitability)
(1) Tip preparation on the work handling sheet (preparation process)
An adhesive surface of a dicing sheet (manufactured by Lintec Corporation, product name "D-485H") was attached to one side of an 8-inch silicon wafer (# 2000, thickness: 350 μm). Subsequently, a dicing ring frame was attached to the peripheral edge of the adhesive surface (position not overlapping the silicon wafer) of the dicing sheet. Further, the dicing sheet was cut according to the outer diameter of the ring frame. Then, a silicon wafer was diced into a chip having a size of 300 μm × 300 μm using a dicing apparatus (manufactured by Disco Corporation, product name “DFD6362”). After that, the dicing sheet is irradiated with ultraviolet rays (illuminance 230 mW / cm 2 , light intensity 190 mJ / cm 2 ) using an ultraviolet irradiation device (manufactured by Lintec Corporation, product name "RAD2000") to form an adhesive layer of the dicing sheet. It was cured. As a result, a laminated body in which a plurality of chips were provided on the dicing sheet was obtained.
続いて、実施例および比較例で製造したワークハンドリングシートから剥離シートを剥離し、それにより露出した露出面と、上記の通り得られた積層体における複数のチップが存在する面とを貼り合わせた。その後、複数のチップからダイシングシートを剥離した。これにより、複数のチップをダイシングシートからワークハンドリングシートに転写し、ワークハンドリングシート上に複数のチップが設けられてなる積層体を得た。
Subsequently, the release sheet was peeled off from the work handling sheets produced in Examples and Comparative Examples, and the exposed exposed surface was bonded to the surface of the laminate obtained as described above in which a plurality of chips exist. .. Then, the dicing sheet was peeled off from the plurality of chips. As a result, a plurality of chips were transferred from the dicing sheet to the work handling sheet, and a laminated body in which the plurality of chips were provided on the work handling sheet was obtained.
(2)レーザー光照射によるチップの分離(分離工程)
上記工程(1)にて得られた、ワークハンドリングシート上に複数のチップが設けられてなる積層体について、レーザー光照射装置を用いて、ワークハンドリングシート越しにチップに対してレーザー光を照射した。 (2) Separation of chips by laser irradiation (separation step)
The laminate obtained in the above step (1), in which a plurality of chips are provided on the work handling sheet, was irradiated with laser light on the chips through the work handling sheet using a laser light irradiation device. ..
上記工程(1)にて得られた、ワークハンドリングシート上に複数のチップが設けられてなる積層体について、レーザー光照射装置を用いて、ワークハンドリングシート越しにチップに対してレーザー光を照射した。 (2) Separation of chips by laser irradiation (separation step)
The laminate obtained in the above step (1), in which a plurality of chips are provided on the work handling sheet, was irradiated with laser light on the chips through the work handling sheet using a laser light irradiation device. ..
ここで、製造した実施例1~7および比較例1~2の全てに対し、後述する条件1の下でレーザー光を照射した。また、比較例2のみについては、(条件1の試験を行ったシートとは別途用意したシートについて、)後述する条件2の下でもレーザー光を照射した。
Here, all of the manufactured Examples 1 to 7 and Comparative Examples 1 and 2 were irradiated with laser light under condition 1 described later. Further, only in Comparative Example 2, the laser beam was irradiated even under the condition 2 described later (for the sheet prepared separately from the sheet in which the test of the condition 1 was performed).
(2-1)条件1
レーザー光照射装置(YAG第三次高調波(波長355nm)かつパルス幅20nsで、光量700mJ/cm2)を用いて、ワークハンドリングシート越しにチップに対してレーザー光を照射した。当該照射は、チップ中央の270μm×270μmの領域に対して行った。その他の照射条件としては、周波数:30kHz、照射量:50μJ/shotとした。また、照射は、複数のチップの中から100個のチップ(縦10個×横10個のチップのまとまり)を選択し、それらに対して行った。 (2-1)Condition 1
A laser beam irradiator (YAG third harmonic (wavelength 355 nm), pulse width 20 ns, light intensity 700 mJ / cm 2 ) was used to irradiate the chip with laser light through the work handling sheet. The irradiation was performed on a region of 270 μm × 270 μm in the center of the chip. Other irradiation conditions were frequency: 30 kHz and irradiation amount: 50 μJ / shot. In addition, irradiation was performed by selecting 100 chips (a group of 10 vertical × 10 horizontal chips) from a plurality of chips.
レーザー光照射装置(YAG第三次高調波(波長355nm)かつパルス幅20nsで、光量700mJ/cm2)を用いて、ワークハンドリングシート越しにチップに対してレーザー光を照射した。当該照射は、チップ中央の270μm×270μmの領域に対して行った。その他の照射条件としては、周波数:30kHz、照射量:50μJ/shotとした。また、照射は、複数のチップの中から100個のチップ(縦10個×横10個のチップのまとまり)を選択し、それらに対して行った。 (2-1)
A laser beam irradiator (YAG third harmonic (wavelength 355 nm), pulse width 20 ns, light intensity 700 mJ / cm 2 ) was used to irradiate the chip with laser light through the work handling sheet. The irradiation was performed on a region of 270 μm × 270 μm in the center of the chip. Other irradiation conditions were frequency: 30 kHz and irradiation amount: 50 μJ / shot. In addition, irradiation was performed by selecting 100 chips (a group of 10 vertical × 10 horizontal chips) from a plurality of chips.
(2-2)条件2
レーザー光照射装置(キーエンス社製,製品名「MD-U1000C」)を用いてワークハンドリングシート越しにチップに対してレーザー光を照射した。当該照射は、チップ中央に対し、レーザー光スポットを、円を描くように順次照射することで行った。このとき、レーザー光スポットの直径は25μmとし、照射の軌跡として生じるリングの内径が65μmとなるように行った。その他の照射条件としては周波数:40kHz、スキャン速度:500mm/s、照射量:50μJ/shotとした。また、照射は、複数のチップの中から100個のチップ(縦10個x横10個のチップのまとまり)を選択し、それらに対して行った。 (2-2)Condition 2
The chip was irradiated with laser light through the work handling sheet using a laser light irradiation device (manufactured by KEYENCE, product name "MD-U1000C"). The irradiation was performed by sequentially irradiating the center of the chip with laser light spots in a circular motion. At this time, the diameter of the laser beam spot was set to 25 μm, and the inner diameter of the ring generated as the irradiation locus was set to 65 μm. Other irradiation conditions were frequency: 40 kHz, scan speed: 500 mm / s, and irradiation amount: 50 μJ / shot. Further, the irradiation was performed by selecting 100 chips (a group of 10 vertical × 10 horizontal chips) from a plurality of chips and performing the irradiation on them.
レーザー光照射装置(キーエンス社製,製品名「MD-U1000C」)を用いてワークハンドリングシート越しにチップに対してレーザー光を照射した。当該照射は、チップ中央に対し、レーザー光スポットを、円を描くように順次照射することで行った。このとき、レーザー光スポットの直径は25μmとし、照射の軌跡として生じるリングの内径が65μmとなるように行った。その他の照射条件としては周波数:40kHz、スキャン速度:500mm/s、照射量:50μJ/shotとした。また、照射は、複数のチップの中から100個のチップ(縦10個x横10個のチップのまとまり)を選択し、それらに対して行った。 (2-2)
The chip was irradiated with laser light through the work handling sheet using a laser light irradiation device (manufactured by KEYENCE, product name "MD-U1000C"). The irradiation was performed by sequentially irradiating the center of the chip with laser light spots in a circular motion. At this time, the diameter of the laser beam spot was set to 25 μm, and the inner diameter of the ring generated as the irradiation locus was set to 65 μm. Other irradiation conditions were frequency: 40 kHz, scan speed: 500 mm / s, and irradiation amount: 50 μJ / shot. Further, the irradiation was performed by selecting 100 chips (a group of 10 vertical × 10 horizontal chips) from a plurality of chips and performing the irradiation on them.
なお、条件2は、条件1に比べて、レーザーリフトオフがより生じ易い条件となっている。
Note that condition 2 is a condition in which laser lift-off is more likely to occur than condition 1.
(3)ブリスターおよびチップ分離の確認
以上の照射を行ったワークハンドリングシートおよびチップについて、条件ごとに、ワークハンドリングシートにおける基材と界面アブレーション層との界面におけるブリスターの発生の有無、およびワークハンドリングシートからのチップの脱離の有無を確認し、以下の基準に基づいて、レーザーリフトオフ適性を評価した。結果を表2に示す。
◎…100個全てのチップの位置においてブリスターが発生し、且つ、100個全てのチップが脱離した。
○…ブリスターの発生および脱離が生じたチップの数が、80個以上、100個未満であった。
×…ブリスターの発生および脱離が生じたチップの数が、80個未満であった。 (3) Confirmation of separation of blister and insert For the work handling sheet and insert that have been irradiated as described above, the presence or absence of blister at the interface between the base material and the interface ablation layer on the work handling sheet, and the work handling sheet The presence or absence of chip detachment from the surface was confirmed, and the laser lift-off suitability was evaluated based on the following criteria. The results are shown in Table 2.
⊚ ... Blister was generated at the positions of all 100 chips, and all 100 chips were detached.
◯ ... The number of chips in which blisters were generated and detached was 80 or more and less than 100.
X ... The number of chips in which blisters were generated and detached was less than 80.
以上の照射を行ったワークハンドリングシートおよびチップについて、条件ごとに、ワークハンドリングシートにおける基材と界面アブレーション層との界面におけるブリスターの発生の有無、およびワークハンドリングシートからのチップの脱離の有無を確認し、以下の基準に基づいて、レーザーリフトオフ適性を評価した。結果を表2に示す。
◎…100個全てのチップの位置においてブリスターが発生し、且つ、100個全てのチップが脱離した。
○…ブリスターの発生および脱離が生じたチップの数が、80個以上、100個未満であった。
×…ブリスターの発生および脱離が生じたチップの数が、80個未満であった。 (3) Confirmation of separation of blister and insert For the work handling sheet and insert that have been irradiated as described above, the presence or absence of blister at the interface between the base material and the interface ablation layer on the work handling sheet, and the work handling sheet The presence or absence of chip detachment from the surface was confirmed, and the laser lift-off suitability was evaluated based on the following criteria. The results are shown in Table 2.
⊚ ... Blister was generated at the positions of all 100 chips, and all 100 chips were detached.
◯ ... The number of chips in which blisters were generated and detached was 80 or more and less than 100.
X ... The number of chips in which blisters were generated and detached was less than 80.
なお、表1および表2に記載の略号等の詳細は以下の通りである。
〔紫外線吸収剤〕
Tinuvin477:トリス[2,4,6-[2-{4-(オクチル-2-メチルエタノエート)オキシ-2-ヒドロキシフェニル}]-1,3,5-トリアジン(ヒドロキシフェニルトリアジン系紫外線吸収剤,BASF社製,製品名「Tinuvin477」)
CYASORB UV-24:2,2’-ジヒドロキシ-4-メトキシベンゾフェノン(ベンゾフェノン系紫外線吸収剤,SOLVAY社製,製品名「CYASORB UV-24」)
〔光重合開始剤〕
Omnirad379:2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリノ-フェニル)ブタン-1-オン(IGM Resins社製,製品名「Omnirad379」)
IrugacureOXE02:エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)(BASF社製,製品名「IrugacureOXE02」)
Omnirad651:2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(IGM Resins社製,製品名「Omnirad651」)
Omnirad184:1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(IGM Resins社製,製品名「Omnirad184」) Details of the abbreviations and the like shown in Tables 1 and 2 are as follows.
[UV absorber]
Tinuvin477: Tris [2,4,6-[2- {4- (octyl-2-methylethanoate) oxy-2-hydroxyphenyl}]] -1,3,5-triazine (hydroxyphenyltriazine UV absorber, Made by BASF, product name "Tinuvin 477")
CYASORB UV-24: 2,2'-dihydroxy-4-methoxybenzophenone (benzophenone-based UV absorber, manufactured by SOLVAY, product name "CYASORB UV-24")
[Photopolymerization initiator]
Omnirad 379: 2-Dimethylamino-2- (4-methylbenzyl) -1- (4-morpholino-phenyl) butane-1-one (manufactured by IGM Resins, product name "Omnirad 379")
IrugacureOXE02: Etanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl]-, 1- (0-acetyloxime) (BASF, product name "IrugacureOXE02")
Omnirad 651: 2,2-dimethoxy-1,2-diphenylethane-1-one (manufactured by IGM Resins, product name "Omnirad 651")
Omnirad 184: 1-Hydroxy-cyclohexyl-phenyl-ketone (manufactured by IGM Resins, product name "Omnirad 184")
〔紫外線吸収剤〕
Tinuvin477:トリス[2,4,6-[2-{4-(オクチル-2-メチルエタノエート)オキシ-2-ヒドロキシフェニル}]-1,3,5-トリアジン(ヒドロキシフェニルトリアジン系紫外線吸収剤,BASF社製,製品名「Tinuvin477」)
CYASORB UV-24:2,2’-ジヒドロキシ-4-メトキシベンゾフェノン(ベンゾフェノン系紫外線吸収剤,SOLVAY社製,製品名「CYASORB UV-24」)
〔光重合開始剤〕
Omnirad379:2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリノ-フェニル)ブタン-1-オン(IGM Resins社製,製品名「Omnirad379」)
IrugacureOXE02:エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)(BASF社製,製品名「IrugacureOXE02」)
Omnirad651:2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン(IGM Resins社製,製品名「Omnirad651」)
Omnirad184:1-ヒドロキシ-シクロヘキシル-フェニル-ケトン(IGM Resins社製,製品名「Omnirad184」) Details of the abbreviations and the like shown in Tables 1 and 2 are as follows.
[UV absorber]
Tinuvin477: Tris [2,4,6-[2- {4- (octyl-2-methylethanoate) oxy-2-hydroxyphenyl}]] -1,3,5-triazine (hydroxyphenyltriazine UV absorber, Made by BASF, product name "Tinuvin 477")
CYASORB UV-24: 2,2'-dihydroxy-4-methoxybenzophenone (benzophenone-based UV absorber, manufactured by SOLVAY, product name "CYASORB UV-24")
[Photopolymerization initiator]
Omnirad 379: 2-Dimethylamino-2- (4-methylbenzyl) -1- (4-morpholino-phenyl) butane-1-one (manufactured by IGM Resins, product name "Omnirad 379")
IrugacureOXE02: Etanone, 1- [9-ethyl-6- (2-methylbenzoyl) -9H-carbazole-3-yl]-, 1- (0-acetyloxime) (BASF, product name "IrugacureOXE02")
Omnirad 651: 2,2-dimethoxy-1,2-diphenylethane-1-one (manufactured by IGM Resins, product name "Omnirad 651")
Omnirad 184: 1-Hydroxy-cyclohexyl-phenyl-ketone (manufactured by IGM Resins, product name "Omnirad 184")
表1から明らかなように、実施例で製造したワークハンドリングシートは、レーザーリフトオフ適性に優れていた。なお、比較例2にかかるワークハンドリングは、レーザーリフトオフがより生じ易い条件2であっても、レーザーリフトオフの評価に劣る結果となった。
As is clear from Table 1, the work handling sheet manufactured in the examples was excellent in laser lift-off suitability. The work handling according to Comparative Example 2 was inferior in the evaluation of the laser lift-off even under the condition 2 in which the laser lift-off was more likely to occur.
本発明のワークハンドリングシートは、マイクロ発光ダイオードを画素として備えるディスプレイ等の製造に好適に使用することができる。
The work handling sheet of the present invention can be suitably used for manufacturing a display or the like provided with a micro light emitting diode as a pixel.
1…ワークハンドリングシート
11,11’…界面アブレーション層
12…基材
13…反応領域
2,2’…ワーク小片
3…対象物
4…活性エネルギー線
5…レーザー光
6…ブリスター 1 ...Work handling sheet 11, 11'... Interface ablation layer 12 ... Base material 13 ... Reaction region 2, 2'... Work small pieces 3 ... Object 4 ... Active energy rays 5 ... Laser light 6 ... Blister
11,11’…界面アブレーション層
12…基材
13…反応領域
2,2’…ワーク小片
3…対象物
4…活性エネルギー線
5…レーザー光
6…ブリスター 1 ...
Claims (9)
- 基材と、
前記基材における片面側に積層され、ワーク小片を保持可能であるとともに、レーザー光の照射によって界面アブレーションする界面アブレーション層と
を備えるワークハンドリングシートであって、
波長365nmの紫外線を光量190mJ/cm2で照射する第1の紫外線照射を行った前記ワークハンドリングシートに対して、さらに波長365nmの紫外線を950mJ/cm2の光量で照射する第2の紫外線照射を行った場合に、前記界面アブレーション層が前記第2の紫外線照射における紫外線の光エネルギーを熱エネルギーに変換する際の変換効率が、60%以上である
ことを特徴とするワークハンドリングシート。 With the base material
A work handling sheet laminated on one side of the base material, capable of holding small pieces of work, and provided with an interfacial ablation layer that ablates the interface by irradiation with laser light.
The work handling sheet that has been subjected to the first ultraviolet irradiation that irradiates ultraviolet rays having a wavelength of 365 nm at a light intensity of 190 mJ / cm 2 is further irradiated with ultraviolet rays having a wavelength of 365 nm at a light intensity of 950 mJ / cm 2 . A work handling sheet characterized in that the conversion efficiency when the interfacial ablation layer converts the light energy of ultraviolet rays in the second ultraviolet irradiation into thermal energy is 60% or more. - 前記界面アブレーション層は、活性エネルギー線硬化性粘着剤または非活性エネルギー線硬化性粘着剤から構成される粘着剤層であることを特徴とする請求項1に記載のワークハンドリングシート。 The work handling sheet according to claim 1, wherein the interface ablation layer is a pressure-sensitive adhesive layer composed of an active energy ray-curable pressure-sensitive adhesive or a non-active energy ray-curable pressure-sensitive adhesive.
- 前記界面アブレーション層は、紫外線吸収剤および光重合開始剤の少なくとも1種の添加剤を含有することを特徴とする請求項1または2に記載のワークハンドリングシート。 The work handling sheet according to claim 1 or 2, wherein the interfacial ablation layer contains at least one additive of an ultraviolet absorber and a photopolymerization initiator.
- 前記レーザー光は、紫外域の波長を有するものであることを特徴とする請求項1~3のいずれか一項に記載のワークハンドリングシート。 The work handling sheet according to any one of claims 1 to 3, wherein the laser light has a wavelength in the ultraviolet region.
- 前記界面アブレーション層に界面アブレーションを生じさせたときに、当該界面アブレーションが生じた位置においてブリスターが形成されることを特徴とする請求項1~4のいずれか一項に記載のワークハンドリングシート。 The work handling sheet according to any one of claims 1 to 4, wherein a blister is formed at a position where the interfacial ablation occurs when the interfacial ablation is generated in the interfacial ablation layer.
- 活性エネルギー線の照射により前記界面アブレーション層を全体的または局所的に硬化させるとともに、前記レーザー光の照射により前記界面アブレーション層において局所的に界面アブレーションを生じさせることによって、前記界面アブレーション層における前記基材とは反対の面上に保持された複数のワーク小片のうちの任意のワーク小片を、前記界面アブレーション層から選択的に分離するために使用されるものであることを特徴とする請求項1~5のいずれか一項に記載のワークハンドリングシート。 The group in the interfacial ablation layer is formed by curing the interfacial ablation layer as a whole or locally by irradiation with active energy rays and locally causing interfacial ablation in the interfacial ablation layer by irradiation with the laser beam. Claim 1 characterized in that it is used to selectively separate any work piece out of a plurality of work pieces held on a surface opposite to the material from the interfacial ablation layer. The work handling sheet according to any one of 5 to 5.
- 請求項1~6のいずれか一項に記載のワークハンドリングシートにおける、前記界面アブレーション層側の面上に複数のワーク小片が保持されてなる積層体を準備する準備工程と、
前記ワーク小片を受容可能な対象物に対して、前記積層体における前記ワーク小片側の面が向かい合うように前記積層体を配置する配置工程と、
前記積層体における前記界面アブレーション層における、少なくとも1つの前記ワーク小片が貼付されている位置に対し、レーザー光を照射して、前記界面アブレーション層における前記照射された位置において界面アブレーションを生じさせることで、当該界面アブレーションが生じた位置に存在する前記ワーク小片を前記ワークハンドリングシートから分離し、前記ワーク小片を前記対象物上に載置する分離工程と
を備えることを特徴とするワーク小片の取り扱い方法。 A preparatory step for preparing a laminate in which a plurality of work pieces are held on a surface on the interface ablation layer side in the work handling sheet according to any one of claims 1 to 6.
An arrangement step of arranging the laminated body so that the surfaces on the work piece side of the laminated body face each other with respect to an object that can accept the work small pieces.
By irradiating a position in the interfacial ablation layer of the laminated body to which at least one piece of the work is attached with laser light to cause interfacial ablation at the irradiated position in the interfacial ablation layer. A method for handling a work piece, which comprises a separation step of separating the work piece existing at a position where the interface ablation occurs from the work handling sheet and placing the work piece on the object. .. - 請求項1~6のいずれか一項に記載のワークハンドリングシートにおける、前記界面アブレーション層側の面上に複数のワーク小片が保持されてなる積層体を準備する準備工程と、
前記ワーク小片を受容可能な対象物に対して、前記積層体における前記ワーク小片側の面が向かい合うように前記積層体を配置する配置工程と、
前記積層体における前記界面アブレーション層における、少なくとも1つの前記ワーク小片が貼付されている位置に対し、レーザー光を照射して、前記界面アブレーション層における前記照射された位置において界面アブレーションを生じさせることで、当該界面アブレーションが生じた位置に存在する前記ワーク小片を前記ワークハンドリングシートから分離し、前記ワーク小片を前記対象物上に載置する分離工程と
を備えることを特徴とするデバイス製造方法。 A preparatory step for preparing a laminate in which a plurality of work pieces are held on a surface on the interface ablation layer side in the work handling sheet according to any one of claims 1 to 6.
An arrangement step of arranging the laminated body so that the surfaces on the work piece side of the laminated body face each other with respect to an object that can accept the work small pieces.
By irradiating a position in the interfacial ablation layer of the laminated body to which at least one piece of the work is attached with laser light to cause interfacial ablation at the irradiated position in the interfacial ablation layer. A device manufacturing method comprising a separation step of separating the work piece existing at a position where the interface ablation occurs from the work handling sheet and placing the work piece on the object. - 請求項1~6のいずれか一項に記載のワークハンドリングシートの、ワーク小片を取り扱うための使用。 Use of the work handling sheet according to any one of claims 1 to 6 for handling small pieces of work.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022575524A JPWO2022153877A1 (en) | 2021-01-13 | 2021-12-28 | |
KR1020237005271A KR20230132433A (en) | 2021-01-13 | 2021-12-28 | Work handling sheet, method for handling small work pieces, device manufacturing method, and use of the work handling sheet |
CN202180063657.0A CN116234693A (en) | 2021-01-13 | 2021-12-28 | Workpiece processing sheet, processing method of workpiece small sheet, device manufacturing method and application of workpiece processing sheet |
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021003436 | 2021-01-13 | ||
JP2021-003436 | 2021-01-13 | ||
JP2021-053427 | 2021-03-26 | ||
JP2021053428 | 2021-03-26 | ||
JP2021-053428 | 2021-03-26 | ||
JP2021053426 | 2021-03-26 | ||
JP2021-053426 | 2021-03-26 | ||
JP2021053427 | 2021-03-26 | ||
JPPCT/JP2021/045507 | 2021-12-10 | ||
PCT/JP2021/045507 WO2022153745A1 (en) | 2021-01-13 | 2021-12-10 | Workpiece handling sheet and device manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022153877A1 true WO2022153877A1 (en) | 2022-07-21 |
Family
ID=82447580
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/048937 WO2022153878A1 (en) | 2021-01-13 | 2021-12-28 | Workpiece handling sheet, method for manufacturing semiconductor device, and use of workpiece handling sheet |
PCT/JP2021/048936 WO2022153877A1 (en) | 2021-01-13 | 2021-12-28 | Workpiece handling sheet, method for handling small workpiece item, device manufacturing method, and use of workpiece handling sheet |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/048937 WO2022153878A1 (en) | 2021-01-13 | 2021-12-28 | Workpiece handling sheet, method for manufacturing semiconductor device, and use of workpiece handling sheet |
Country Status (5)
Country | Link |
---|---|
JP (2) | JPWO2022153877A1 (en) |
KR (1) | KR20230132433A (en) |
CN (1) | CN116234693A (en) |
TW (2) | TW202235577A (en) |
WO (2) | WO2022153878A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010251359A (en) * | 2009-04-10 | 2010-11-04 | Sony Corp | Device transferring method |
JP2014515883A (en) * | 2011-04-11 | 2014-07-03 | エヌディーエスユー リサーチ ファウンデーション | Laser-assisted selective transfer of separated parts |
WO2019207920A1 (en) * | 2018-04-26 | 2019-10-31 | Jsr株式会社 | Mounting method and mounting device for semiconductor elements |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0246278A (en) | 1988-08-06 | 1990-02-15 | Marutaka Iryo Kk | Pipe equipped with anion-generating device |
JP2007250598A (en) * | 2006-03-14 | 2007-09-27 | Renesas Technology Corp | Process for manufacturing semiconductor device |
JP7287797B2 (en) * | 2019-03-11 | 2023-06-06 | 日東電工株式会社 | Dicing tape with adhesive film |
-
2021
- 2021-12-28 WO PCT/JP2021/048937 patent/WO2022153878A1/en active Application Filing
- 2021-12-28 JP JP2022575524A patent/JPWO2022153877A1/ja active Pending
- 2021-12-28 JP JP2022575525A patent/JPWO2022153878A1/ja active Pending
- 2021-12-28 CN CN202180063657.0A patent/CN116234693A/en active Pending
- 2021-12-28 KR KR1020237005271A patent/KR20230132433A/en active Search and Examination
- 2021-12-28 WO PCT/JP2021/048936 patent/WO2022153877A1/en active Application Filing
-
2022
- 2022-01-06 TW TW111100497A patent/TW202235577A/en unknown
- 2022-01-06 TW TW111100496A patent/TW202244239A/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010251359A (en) * | 2009-04-10 | 2010-11-04 | Sony Corp | Device transferring method |
JP2014515883A (en) * | 2011-04-11 | 2014-07-03 | エヌディーエスユー リサーチ ファウンデーション | Laser-assisted selective transfer of separated parts |
WO2019207920A1 (en) * | 2018-04-26 | 2019-10-31 | Jsr株式会社 | Mounting method and mounting device for semiconductor elements |
Also Published As
Publication number | Publication date |
---|---|
TW202235577A (en) | 2022-09-16 |
CN116234693A (en) | 2023-06-06 |
TW202244239A (en) | 2022-11-16 |
WO2022153878A1 (en) | 2022-07-21 |
JPWO2022153877A1 (en) | 2022-07-21 |
KR20230132433A (en) | 2023-09-15 |
JPWO2022153878A1 (en) | 2022-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110211912B (en) | Cutting sheet | |
JP7062654B2 (en) | Manufacturing method of adhesive sheet for stealth dicing and semiconductor device | |
CN111149191B (en) | Workpiece processing sheet and method for manufacturing processed workpiece | |
JP7325403B2 (en) | Work processing sheet | |
JP7382690B2 (en) | Workpiece processing sheet | |
WO2022153877A1 (en) | Workpiece handling sheet, method for handling small workpiece item, device manufacturing method, and use of workpiece handling sheet | |
JP2021050251A (en) | Workpiece processing sheet and method of producing semiconductor device | |
JP6818612B2 (en) | Manufacturing method for semiconductor processing sheets and semiconductor devices | |
JP7146145B1 (en) | Work handling sheet and device manufacturing method | |
JP7042271B2 (en) | Manufacturing method of adhesive sheet for stealth dicing and semiconductor device | |
JP7325634B2 (en) | Work handling sheet and device manufacturing method | |
WO2022201767A1 (en) | Workpiece handling sheet and device manufacturing method | |
JP7062653B2 (en) | Manufacturing method of adhesive sheet for stealth dicing and semiconductor device | |
JP6980680B2 (en) | Adhesive sheet for stealth dicing | |
WO2022153745A1 (en) | Workpiece handling sheet and device manufacturing method | |
JP7062655B2 (en) | Manufacturing method of adhesive sheet for stealth dicing and semiconductor device | |
KR20230129372A (en) | Work handling sheets and device manufacturing methods | |
JP2023097043A (en) | Work handling sheet and device manufacturing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21919761 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2022575524 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21919761 Country of ref document: EP Kind code of ref document: A1 |