WO2022201767A1 - Workpiece handling sheet and device manufacturing method - Google Patents

Workpiece handling sheet and device manufacturing method Download PDF

Info

Publication number
WO2022201767A1
WO2022201767A1 PCT/JP2022/000965 JP2022000965W WO2022201767A1 WO 2022201767 A1 WO2022201767 A1 WO 2022201767A1 JP 2022000965 W JP2022000965 W JP 2022000965W WO 2022201767 A1 WO2022201767 A1 WO 2022201767A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
work
handling sheet
laser light
work handling
Prior art date
Application number
PCT/JP2022/000965
Other languages
French (fr)
Japanese (ja)
Inventor
健太 古野
彰朗 福元
洋司 若山
喜章 古川
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to JP2023508665A priority Critical patent/JPWO2022201767A1/ja
Publication of WO2022201767A1 publication Critical patent/WO2022201767A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/16Layered products comprising a layer of synthetic resin specially treated, e.g. irradiated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26

Definitions

  • the present invention relates to a work handling sheet that can be used to handle small work pieces such as semiconductor components and semiconductor devices, and a device manufacturing method using the work handling sheet. (Micro Electro Mechanical Systems), etc., and a device manufacturing method using the work handling sheet.
  • micro-light-emitting diodes In recent years, the development of displays using micro-light-emitting diodes has progressed. In such displays, individual pixels are composed of micro-light-emitting diodes, and the light emission of each micro-light-emitting diode is independently controlled. In the manufacture of such displays, it is generally necessary to mount micro-light-emitting diodes, which are arranged on a supply substrate such as sapphire, glass, etc., onto a wiring substrate provided with wiring.
  • the use of laser light irradiation is being considered. For example, after holding a plurality of micro light-emitting diodes on a support via a predetermined layer, by irradiating the layer with laser light, the layer is ablated at the irradiated position, thereby supporting the layer.
  • a method of mounting a micro light-emitting diode separated from a body (laser lift-off) on a wiring board is being studied (Patent Document 1). Since the laser beam has excellent directivity and convergence, it is easy to control the irradiation position, and selective placement can be performed satisfactorily.
  • the present invention has been made in view of such circumstances, and provides a work handling sheet capable of handling even fine work piece pieces well, and a device manufacturing method using the work handling sheet. for the purpose.
  • the present invention provides a work handling sheet comprising a base material and a resin layer laminated on one side of the base material and capable of holding a small work piece, wherein the resin A work handling sheet, wherein the layer contains 10% by mass or more of a laser light-absorbing component that absorbs the wavelength of the laser light, and the resin layer is fully ablated by the irradiation of the laser light.
  • a work handling sheet comprising a base material and a resin layer laminated on one side of the base material and capable of holding a small work piece, wherein the resin A work handling sheet, wherein the layer contains 10% by mass or more of a laser light-absorbing component that absorbs the wavelength of the laser light, and the resin layer is fully ablated by the irradiation of the laser light.
  • the resin layer contains the above-mentioned amount of a laser light absorbing component that has an absorptivity to the wavelength of the laser light, so that it is effective when irradiated with a laser light. Full ablation can be achieved in a targeted manner, thereby providing good separation of the work piece towards the object.
  • a second aspect of the present invention is a work handling sheet comprising a base material and a resin layer laminated on one side of the base material and capable of holding a small work piece, wherein the resin layer is adapted to the wavelength of laser light.
  • the content of the laser light absorbing component in the resin layer is X mass % and the thickness of the resin layer is Y ⁇ m, X is Y
  • a work handling sheet characterized in that the divided value (X/Y) is 2.0 or more (Invention 2).
  • the resin layer contains a laser light absorbing component having an absorptivity to the wavelength of the laser light, satisfying the above-described conditions regarding the thickness of the resin layer. , effective full ablation when irradiated with a laser beam, so that the work piece can be directed to the object and separated well.
  • the laser light absorbing component is preferably at least one of an ultraviolet absorber and a photopolymerization initiator (Invention 3).
  • the ultraviolet absorber is preferably an organic compound (invention 4).
  • the ultraviolet absorber is preferably a compound having one or more heterocycles (invention 5).
  • the ultraviolet absorber has at least one of a carbocyclic ring and a heterocyclic ring, and all the carbocyclic rings and heterocyclic rings of the ultraviolet absorbent are monocyclic. It is preferable that there is (Invention 6).
  • the ultraviolet absorber is preferably a compound having a plurality of aromatic rings (invention 7).
  • the resin layer is preferably an adhesive layer (Invention 8).
  • the adhesive constituting the adhesive layer is preferably an acrylic adhesive (invention 9).
  • the laser light preferably has a wavelength in the ultraviolet region (invention 10).
  • any of a plurality of work pieces held on the surface of the resin layer opposite to the substrate by full abrasion locally generated in the resin layer (Invention 11).
  • the work pieces are obtained by singulating a work held on a surface of the resin layer opposite to the base material on the surface.
  • Preferred Invention 12
  • the work pieces are preferably at least one selected from semiconductor components and semiconductor devices (invention 13).
  • the work pieces are preferably light emitting diodes selected from mini light emitting diodes and micro light emitting diodes (invention 14).
  • the third aspect of the present invention is the work handling sheet (inventions 1 to 14), wherein a preparation step of preparing a laminate in which a plurality of small work pieces are held on the surface on the resin layer side; an arrangement step of arranging the laminate so that the surface of the laminate on the side of the small work piece faces a possible object; By irradiating a laser beam to the position where the resin layer is exposed to cause full ablation at the irradiated position, the work piece present at the position where the full ablation has occurred is removed from the work handling sheet and a separation step of separating and placing the work pieces on the object (Invention 15).
  • invention 15 in the preparation step, the workpiece held on the surface of the resin layer opposite to the base material is singulated on the surface to obtain the workpiece pieces. is preferred (Invention 16).
  • the work pieces are preferably at least one selected from semiconductor components and semiconductor devices (invention 17).
  • a light emitting device comprising a plurality of the light emitting diodes by using a light emitting diode selected from mini light emitting diodes and micro light emitting diodes as the work piece (Invention 18). .
  • the light-emitting device is preferably a display (invention 19).
  • the work handling sheet according to the present invention can handle even fine work pieces well, and according to the device manufacturing method according to the present invention, devices with excellent performance can be manufactured.
  • FIG. 1 is a cross-sectional view of a work handling sheet according to one embodiment of the present invention
  • FIG. 4 is a cross-sectional view illustrating a device manufacturing method using a work handling sheet according to one embodiment of the present invention
  • FIG. 1 shows a cross-sectional view of a work handling sheet according to one embodiment.
  • a work handling sheet 1 shown in FIG. 1 includes a substrate 12 and a resin layer 11 laminated on one side of the substrate 12 .
  • the resin layer 11 can hold small work pieces. That is, the work handling sheet 1 according to the present embodiment can hold the small work piece laminated on the surface of the resin layer 11 opposite to the base material 12 as it is.
  • the resin layer 11 exhibits adhesiveness to the small piece of work to hold it.
  • the resin layer 11 preferably contains an adhesive as one of its constituent components, that is, it is an adhesive layer.
  • the resin layer 11 contains 10% by mass or more of a laser light-absorbing component having an absorptivity to the wavelength of the laser light, and is fully absorbed by the irradiation of the laser light. Ablation is preferred (these conditions may be hereinafter referred to as "Condition 1").
  • the resin layer 11 contains a laser light-absorbing component that absorbs the wavelength of the laser light, and the laser light-absorbing component in the resin layer 11
  • the value obtained by dividing X by Y (X/Y) is preferably 2.0 or more (hereinafter, these conditions is sometimes referred to as "condition 2").
  • the work handling sheet 1 satisfies at least one of the conditions 1 and 2 described above, so that it can be satisfactorily fully ablated when irradiated with a laser beam.
  • full ablation means that the components constituting the resin layer 11 evaporate or volatilize due to the energy of the laser light, and as a result, the portion of the resin layer 11 irradiated with the laser light disappears. At the time of disappearance, decomposition of the components constituting the resin layer 11 may or may not occur. Then, the small work pieces that existed at the disappeared position lose their existence to hold them and are separated from the work handling sheet 1 according to the present embodiment.
  • a conventional work handling sheet there is a sheet that separates small work pieces by creating a gap at the interface between the base material and the resin layer by irradiating a laser beam, thereby expanding the resin layer.
  • the work handling sheet 1 according to the present embodiment it is possible to separate the small work pieces without causing such swelling of the resin layer. It is possible to bring the distance to the receiving target closer. Therefore, the positional accuracy is extremely high when separating the small work piece from the object.
  • the work handling sheet 1 contains a laser light absorbing component while satisfying Condition 1 or Condition 2, thereby improving the efficiency with which the resin layer 11 receives energy from the laser light.
  • Condition 1 or Condition 2 thereby improving the efficiency with which the resin layer 11 receives energy from the laser light.
  • full ablation is effectively generated, and the retained work pieces can be separated satisfactorily from the resin layer 11 .
  • the amount of laser light irradiation required to cause sufficient separation of the work pieces is reduced, the operating cost of the laser light irradiation device can be reduced, and only the target work pieces are easily separated.
  • the laser light is not particularly limited as long as it can cause full ablation, and may be a laser light having any wavelength in the ultraviolet region, the visible light region, and the infrared region. is preferred.
  • Resin Layer 11 The specific configuration and composition of the resin layer 11 in the present embodiment are not particularly limited as long as they can hold the work pieces and satisfy at least one of the conditions 1 and 2.
  • the resin layer 11 preferably contains an adhesive as one of its constituent components, as described above.
  • the resin layer 11 is preferably made of an adhesive composition containing a laser light absorbing component.
  • the laser light-absorbing component is not particularly limited as long as it is a component that absorbs the wavelength of the laser light, but it is preferably at least one of an ultraviolet absorber and a photopolymerization initiator. .
  • the type of ultraviolet absorber is not particularly limited.
  • the ultraviolet absorber in this embodiment may be an organic compound or an inorganic compound, but an organic compound is preferable from the viewpoint of facilitating good full ablation.
  • the ultraviolet absorber is an organic compound
  • preferred examples of the ultraviolet absorber include hydroxyphenyltriazine-based ultraviolet absorbers, benzophenone-based ultraviolet absorbers, benzotriazole-based ultraviolet absorbers, benzoate-based ultraviolet absorbers, and benzoxazinone.
  • Compounds such as absorbents can be mentioned. These may be used individually by 1 type, and may be used in combination of 2 or more type.
  • UV absorbers from the viewpoint of having good absorption in the third harmonic (355 nm) of YAG and easily causing good full ablation, hydroxyphenyltriazine-based UV absorbers, benzophenone-based UV absorbers, It is preferable to use at least one of ultraviolet absorbers and benzotriazole-based ultraviolet absorbers, and it is particularly preferable to use hydroxyphenyltriazine-based ultraviolet absorbers.
  • hydroxyphenyltriazine-based UV absorber 2-[4-(octyl-2-methylethanoate)oxy-2-hydroxyphenyl]-4,6-[bis(2,4-dimethylphenyl)]-1 , 3,5-triazine, 2-[4-(2-hydroxy-3-dodecyloxy-propyl)oxy-2-hydroxyphenyl]-4,6-[bis(2,4-dimethylphenyl)-1,3, 5-triazine, 2-[4-(2-hydroxy-3-tridecyloxy-propyl)oxy-2-hydroxyphenyl]-4,6-[bis(2,4-dimethylphenyl)-1,3,5-triazine , 2-(2,4-dihydroxyphenyl)-4,6-bis-(2,4-dimethylphenyl)-1,3,5-triazine, 2-[4-(2-hydroxy-3-(2′ -ethyl)hexyloxy]-2-hydroxyphenyl]-4,
  • the ultraviolet absorber is an organic compound
  • the ultraviolet absorber is preferably a compound having one or more heterocyclic rings as a characteristic of its chemical structure.
  • the number of heterocycles is preferably 4 or less, particularly preferably 1.
  • the ultraviolet absorber in the present embodiment has at least one of a carbocyclic ring and a heterocyclic ring, and all the carbocyclic rings and heterocyclic rings possessed by the ultraviolet absorbent are monocyclic It is also preferable that
  • the ultraviolet absorber in this embodiment is preferably a compound having a plurality of aromatic rings.
  • the number of aromatic rings is preferably two or more.
  • the number of aromatic rings is preferably 6 or less, particularly preferably 3 or less.
  • each heterocyclic ring preferably has at least one element selected from nitrogen, oxygen, phosphorus, sulfur, silicon and selenium as an element other than carbon, particularly , nitrogen, oxygen, phosphorus and sulfur.
  • the number of atoms constituting the ring structure of the heterocyclic ring is not particularly limited, and is, for example, 3 or more and 9 or less, and particularly preferably 5 or more and 6 or less.
  • Specific examples of preferred heterocycles include triazine, benzotriazole, thiophene, pyrrole, imidazole, pyridine, pyrazine and the like.
  • aromatic rings include benzene, naphthalene, anthracene, biphenyl, and triphenyl.
  • UV absorbers having the above-described chemical structural features include UV absorbers having the structure of the following formula (1) (tris[2,4,6-[2- ⁇ 4-(octyl-2- methyl ethanoate)oxy-2-hydroxyphenyl ⁇ ]-1,3,5-triazine).
  • the ultraviolet absorber in this embodiment preferably has an absorption peak in the wavelength range of 250 nm or more and 400 nm or less. This makes it easier to produce good full ablation.
  • the ultraviolet absorber in the present embodiment preferably has an absorbance of light having a wavelength of 355 nm of 0.5 or more, particularly preferably 1.0 or more, and further preferably 1.2 or more. preferable. This makes it easier to produce good full ablation.
  • the upper limit of the absorbance is not particularly limited, and may be 6.0 or less, for example.
  • the absorption peak and the absorbance of the ultraviolet absorber were obtained by preparing an acetonitrile solution with a concentration of 0.01% by mass, and attaching a large sample chamber (for example, manufactured by Shimadzu Corporation, product name "MPC-3100"). It can be measured using a spectrophotometer (eg, “UV-3600” manufactured by Shimadzu Corporation).
  • photopolymerization initiator The type of photopolymerization initiator is not particularly limited.
  • preferred photoinitiators include 2-dimethylamino-2-(4-methylbenzyl)-1-(4-morpholino-phenyl)butan-1-one, ethanone, 1-[9-ethyl-6- (2-methylbenzoyl)-9H-carbazol-3-yl]-, 1-(0-acetyloxime), 1,2-octanedione, 1-[4-(phenylthio)phenyl]-, 2-(O- benzoyloxime), 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one It is preferred to use at least one.
  • photopolymerization initiators can be used together with the above photopolymerization initiators.
  • photoinitiators that can be used together include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether, acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-1,2 -diphenylethan-1-one, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexylphenyl ketone, 4-(2-hydroxyethoxy ) phenyl-2-(hydroxy-2-propyl)ketone, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-methylpropanone, benzophenone, p-phenylbenzophenone, 4,4′-diethylamino Benzophen
  • the photopolymerization initiator in the present embodiment preferably has an absorption peak in the wavelength range of 200 nm or more and 400 nm or less.
  • the resin layer 11 efficiently absorbs the laser beam, thereby facilitating full ablation.
  • the lower limit of the above range is preferably 300 nm or more, and more preferably 330 nm or more.
  • the upper limit of the above range is preferably 380 nm or less, more preferably 370 nm or less.
  • the above absorption peak can be specified based on the following method. First, a photopolymerization initiator is dissolved in methanol or acetonitrile as a solvent to prepare a measurement solution having a concentration of 0.01% by mass. Subsequently, the absorbance of the measurement solution is measured with a spectrophotometer (eg, “UV-3600” manufactured by Shimadzu Corporation) to obtain an absorption spectrum. Then, the wavelength range of the absorption peak (nm) can be specified from the obtained absorption spectrum.
  • a spectrophotometer eg, “UV-3600” manufactured by Shimadzu Corporation
  • the photopolymerization initiator in the present embodiment preferably has an absorbance of 0.5 or more, particularly preferably 0.75 or more, at a wavelength of 355 nm in a solution having a concentration of 0.01% by mass. is preferably 1.0 or more.
  • the absorbance is 0.5 or more, the resin layer 11 efficiently absorbs the laser light, thereby making it easier to perform full ablation.
  • the upper limit of the absorbance is not particularly limited, and may be, for example, 4.0 or less.
  • the above absorbance is obtained by preparing a methanol solution with a photopolymerization initiator concentration of 0.01% by mass (acetonitrile solution if the photopolymerization initiator is insoluble in methanol), and the wavelength range of 200 to 500 nm in the solution. was measured using an ultraviolet-visible-near-infrared (UV-Vis-NIR) spectrophotometer (manufactured by Shimadzu Corporation, product name "UV-3600", optical path length 10 mm).
  • UV-Vis-NIR ultraviolet-visible-near-infrared
  • the work handling sheet 1 preferably satisfies at least one of Condition 1 and Condition 2 regarding the blending amount of the laser light absorbing component.
  • the content of the laser light absorbing component in the resin layer 11 is 10% by mass or more, preferably 13% by mass or more, and further preferably 16% by mass or more. is preferred.
  • the resin layer 11 efficiently absorbs the laser light, thereby favorably facilitating full ablation.
  • the content of the laser light absorbing component is preferably 60% by mass or less, particularly preferably 50% by mass or less, and further preferably 40% by mass or less. As a result, it becomes easier to secure the amount of components other than the laser light absorbing component (for example, an adhesive to be described later), and it becomes easier to obtain the work handling sheet 1 having desired performance.
  • the content of the laser light absorbing component in the adhesive composition is the acrylic polymer (A) 100 described later. It is preferably 12 parts by mass or more, particularly preferably 16 parts by mass or more, further preferably 20 parts by mass or more. When the content of the laser light absorbing component is in such a range, the resin layer 11 efficiently absorbs the laser light, thereby favorably facilitating full ablation.
  • the content of the laser light absorbing component in the adhesive composition is preferably 72 parts by mass or less, particularly 60 parts by mass or less, relative to 100 parts by mass of the acrylic polymer (A) described later. is preferred, and more preferably 48 parts by mass or less. As a result, it becomes easier to secure the amount of components other than the laser light absorbing component (for example, an adhesive to be described later), and it becomes easier to obtain the work handling sheet 1 having desired performance.
  • the value obtained by dividing X by Y is 2.0 or more, preferably 2.2 or more, and more preferably 2.3 or more.
  • the resin layer 11 efficiently absorbs the laser light, thereby making it easier to favorably perform full ablation.
  • the value (X/Y) is preferably 60 or less, more preferably 40 or less, particularly preferably 10 or less, and further preferably 5 or less. As a result, it becomes easier to secure the amount of components other than the laser light absorbing component (for example, an adhesive to be described later), and it becomes easier to obtain the work handling sheet 1 having desired performance.
  • the resin layer 11 in this embodiment may contain an adhesive in addition to the laser light absorbing component.
  • the resin layer 11 is preferably formed from an adhesive composition containing a laser light absorbing component.
  • the adhesive is not particularly limited as long as it can exhibit sufficient holding power (adhesive power) to adherends such as small pieces of work.
  • the adhesives include acrylic adhesives, rubber adhesives, silicone adhesives, urethane adhesives, polyester adhesives, polyvinyl ether adhesives, and the like. Among these, it is preferable to use an acrylic pressure-sensitive adhesive from the viewpoint that it is easy to exhibit the desired adhesive strength.
  • the acrylic pressure-sensitive adhesive examples include acrylic pressure-sensitive adhesives having an acrylic polymer (A) as a base polymer.
  • the weight average molecular weight (Mw) of the acrylic polymer (A) is preferably 10,000 or more, particularly preferably 100,000 or more. Also, the weight average molecular weight (Mw) is preferably 2,000,000 or less, and more preferably 1,500,000 or less.
  • the weight-average molecular weight of the acrylic polymer (A) is 10,000 or more, it becomes easy to increase the cohesive force of the adhesive force to be obtained, and it becomes easy to suppress the adhesive residue on the separated work pieces. Further, when the weight average molecular weight is 2,000,000 or less, it becomes easier to obtain a stable coating film of the resin layer 11 .
  • the weight average molecular weight (Mw) in this specification is the value of standard polystyrene conversion measured by the gel permeation chromatography method (GPC method).
  • the glass transition temperature (Tg) of the acrylic polymer (A) is preferably -70°C or higher, and particularly preferably -60°C or higher. Also, the glass transition temperature (Tg) is preferably 20° C. or lower, particularly preferably 10° C. or lower. When the glass transition temperature (Tg) of the acrylic polymer (A) is within the above range, it becomes easy to achieve desired cohesive strength and desired adhesive strength.
  • the acrylic polymer (A) preferably contains at least a (meth)acrylic acid ester monomer as a constituent monomer, and has a functional group (hereinafter referred to as , also referred to as a “reactive functional group”).
  • the (meth)acrylate monomers include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, 2-ethylhexyl ( Number of carbon atoms in alkyl groups such as meth)acrylate, isooctyl (meth)acrylate, n-octyl (meth)acrylate, n-nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, lauryl (meth)acrylate, etc.
  • monomers other than (meth)acrylic acid ester monomers such as acrylic acid, methacrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, and N-methylolacrylamide may be copolymerized. These may be used individually by 1 type, and may use 2 or more types together.
  • the acrylic polymer (A) contains a reactive functional group, it reacts with the functional group of the cross-linking agent (B) described later to form a three-dimensional network structure, thereby making it easier to increase the cohesion of the resin layer 11.
  • the reactive functional group of the acrylic polymer (A) include carboxyl group, amino group, epoxy group, and hydroxyl group. Since it is easy to react with , it preferably contains a hydroxyl group.
  • the reactive functional group is obtained by forming the acrylic polymer (A) using a monomer having a reactive functional group such as the hydroxyl group-containing (meth)acrylate or acrylic acid described above. ).
  • the proportion of the monomer having a reactive functional group (hereinafter also referred to as a reactive group-containing monomer) in the total monomers constituting the acrylic polymer (A) is preferably 0.3% by mass or more, particularly 0.3% by mass or more. It is preferably 5% by mass or more. Moreover, the above ratio is preferably 40% by mass or less, and particularly preferably 20% by mass or less. By containing the reactive group-containing monomer within this range, it becomes easier to achieve the desired adhesive strength while achieving the desired cohesive strength.
  • the acrylic polymer (A) preferably contains the above alkyl (meth)acrylate as a constituent monomer, more preferably an alkyl (meth)acrylate having an alkyl group having 1 to 10 carbon atoms, and particularly preferably an alkyl (meth)acrylate. preferably contains an alkyl (meth)acrylate having 4 to 8 carbon atoms in the alkyl group.
  • the proportion of the alkyl (meth)acrylate in the total constituent monomers of the acrylic polymer (A) is 30% by mass or more. It is preferably 35% by mass or more, and particularly preferably 35% by mass or more.
  • the above ratio is preferably 99% by mass or less, and particularly preferably 95% by mass or less.
  • cross-linking agent (B) is preferable from the viewpoint of facilitating adjustment of the storage elastic modulus of the resin layer 11 within a desired range.
  • a polyfunctional compound having reactivity with the reactive functional groups of the acrylic polymer (A) or the like can be used.
  • polyfunctional compounds include isocyanate compounds, epoxy compounds, amine compounds, melamine compounds, aziridine compounds, hydrazine compounds, aldehyde compounds, oxazoline compounds, metal alkoxide compounds, metal chelate compounds, metal salts, ammonium salts, Reactive phenol resin etc. can be mentioned.
  • the amount of the cross-linking agent (B) is preferably 0.001 parts by mass or more, particularly preferably 0.1 parts by mass or more, relative to 100 parts by mass of the acrylic polymer (A). is preferably 0.2 parts by mass or more.
  • the amount of the cross-linking agent (B) is preferably 20 parts by mass or less, particularly preferably 10 parts by mass or less, and further preferably 5 parts by mass with respect to 100 parts by mass of the acrylic polymer (A). It is preferably no more than parts by mass.
  • the adhesive constituting the resin layer 11 may be an adhesive having active energy ray curability.
  • an active energy ray-curable pressure-sensitive adhesive a known one can be used, for example, the one disclosed in International Publication No. 2018/084021 can be used.
  • additives may be added to the adhesive composition for forming the resin layer 11 .
  • additives include tackifiers, coloring materials such as dyes and pigments, flame retardants, fillers, antistatic agents, and the like.
  • the adhesive composition preferably does not contain a gas generating agent from the viewpoint that the work pieces are easily separated. When a gas generating agent is used, gas may be generated over the entire resin layer 11 . In that case, it may be difficult to cause full ablation only at the intended position and separate only the small work pieces located there, and it may be difficult to separate the small work pieces satisfactorily.
  • the thickness of the resin layer 11 in the present embodiment is preferably 1 ⁇ m or more, particularly preferably 2 ⁇ m or more, further preferably 3 ⁇ m or more. When the thickness of the resin layer 11 is 1 ⁇ m or more, it becomes easy to cause good full abrasion. Also, the thickness of the resin layer 11 is preferably 60 ⁇ m or less, particularly preferably 40 ⁇ m or less, further preferably 20 ⁇ m or less. When the thickness of the resin layer 11 is 60 ⁇ m or less, the condition 2 described above can be easily satisfied.
  • the base material 12 is preferably made of resin.
  • the resin include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyethylene, polypropylene, polybutene, polybutadiene, polymethylpentene, and ethylene-norbornene.
  • polyolefin resin such as norbornene resin; ethylene-vinyl acetate copolymer; ethylene-(meth)acrylic acid copolymer, ethylene-(meth)methyl acrylate copolymer, other ethylene-(meth)acryl Ethylene-based copolymer resins such as acid ester copolymers; polyvinyl chloride-based resins such as polyvinyl chloride and vinyl chloride copolymers; (meth)acrylic acid ester copolymers; polyurethanes; polyimides; etc.
  • the resin constituting the base material 12 may be a crosslinked resin or a modified ionomer of the above resin.
  • the substrate 12 may be a single-layer film made of the resin described above, or may be a laminated film formed by laminating a plurality of such films.
  • the materials constituting each layer may be of the same type or of different types.
  • the surface of the base material 12 in this embodiment may be subjected to surface treatment such as an oxidation method or roughening method, or a primer treatment.
  • oxidation method include corona discharge treatment, plasma discharge treatment, chromium oxidation treatment (wet), flame treatment, hot air treatment, ozone, and ultraviolet irradiation treatment.
  • a thermal spraying method and the like can be mentioned.
  • the base material 12 in this embodiment may contain various additives such as colorants, flame retardants, plasticizers, antistatic agents, lubricants, and fillers.
  • the substrate 12 when the resin layer 11 contains a material that is cured by active energy rays, the substrate 12 preferably has transparency to the active energy rays.
  • the manufacturing method of the base material 12 in this embodiment is not particularly limited as long as the base material 12 is manufactured from resin.
  • it can be produced by forming a resin into a sheet by a melt extrusion method such as a T-die method or a round die method; a calendering method; or a solution method such as a dry method or a wet method.
  • the thickness of the base material 12 in this embodiment is preferably 10 ⁇ m or more, particularly preferably 30 ⁇ m or more, further preferably 50 ⁇ m or more.
  • the thickness of the base material 12 is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, particularly preferably 200 ⁇ m or less, further preferably 150 ⁇ m or less, and 100 ⁇ m or less. is most preferred.
  • the work handling sheet 1 has rigidity and flexibility in a predetermined balance, and the small work piece can be easily handled well.
  • release sheet In the present embodiment, when the resin layer 11 contains an adhesive as one of its constituent components, the surface of the resin layer 11 opposite to the base material 12 is adhered to the work piece. A release sheet may be laminated on the surface for the purpose of protecting the surface.
  • the configuration of the release sheet is arbitrary, and examples thereof include plastic films that have undergone a release treatment using a release agent or the like.
  • specific examples of the plastic film include polyester films such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, and polyolefin films such as polypropylene and polyethylene.
  • the release agent a silicone-based release agent, a fluorine-based release agent, a long-chain alkyl-based release agent, or the like can be used.
  • the thickness of the release sheet is not particularly limited, and may be, for example, 20 ⁇ m or more and 250 ⁇ m or less.
  • an adhesive layer may be laminated on the surface of the resin layer 11 opposite to the substrate 12 .
  • a workpiece is attached to the surface of the adhesive layer opposite to the resin layer 11, and the adhesive layer is diced together with the workpiece to obtain small workpieces laminated with the individualized adhesive layers. Obtainable.
  • the chip can be easily fixed to the object on which the work piece is mounted by the individualized adhesive layer.
  • the material constituting the adhesive layer include those containing a thermoplastic resin and a low-molecular-weight thermosetting adhesive component, those containing a B-stage (semi-cured) thermosetting adhesive component, and the like. It is preferable to use
  • a protective film-forming layer may be laminated on the surface of the resin layer 11 opposite to the substrate 12 .
  • a work is attached to the surface of the protective film-forming layer opposite to the resin layer 11, and the protective film-forming layer is diced together with the work, so that the individualized protective film-forming layers are laminated.
  • a hardened work piece can be obtained.
  • the work one having a circuit formed on one side is preferably used.
  • a protective film-forming layer is usually laminated on the side opposite to the side on which the circuit is formed. By curing the individualized protective film-forming layer at a predetermined timing, a protective film having sufficient durability can be formed on the work pieces.
  • the protective film-forming layer is preferably made of an uncured curable adhesive.
  • Method for Manufacturing Work Handling Sheet A method for manufacturing the work handling sheet 1 according to the present embodiment is not particularly limited.
  • the resin layer 11 may be directly formed on the substrate 12, or the resin layer 11 may be formed on a process sheet and then transferred onto the substrate 12.
  • the resin layer 11 contains an adhesive as one of its constituent components
  • the resin layer 11 can be formed by a known method. For example, a coating liquid containing an adhesive composition for forming the resin layer 11 and optionally a solvent or a dispersion medium is prepared. Then, the above coating liquid is applied to one side of the base material or the releasable side of the release sheet (hereinafter sometimes referred to as "release side"). Subsequently, the resin layer 11 can be formed by drying the obtained coating film.
  • the application of the coating liquid described above can be performed by a known method, for example, bar coating, knife coating, roll coating, blade coating, die coating, gravure coating, or the like.
  • the properties of the coating liquid are not particularly limited as long as it can be applied, and the coating liquid may contain components for forming the resin layer 11 as solutes or dispersoids in some cases. .
  • the release sheet may be released as a process material, or may protect the resin layer 11 until it is attached to an adherend.
  • the drying conditions (temperature, time, etc.) described above may be changed, or heat treatment may be performed separately. It is preferable to promote a cross-linking reaction between the polymer component in the film and the cross-linking agent to form a cross-linked structure with a desired existence density in the resin layer 11 . Furthermore, in order to allow the cross-linking reaction to proceed sufficiently, after the work handling sheet 1 is completed, it may be cured by leaving it in an environment of, for example, 23° C. and a relative humidity of 50% for several days.
  • the work handling sheet 1 according to this embodiment can be suitably used for handling small pieces of work.
  • the resin layer 11 is efficiently fully ablated by laser light irradiation, so that the small work piece held on the resin layer 11 can be removed with high precision. It can be separated towards a predetermined position.
  • a plurality of ablation held on the surface of the resin layer 11 opposite to the base material 12 by full abrasion locally generated in the resin layer 11 A method of use is to selectively separate any one of the small work pieces from the resin layer 11 .
  • the plurality of small work pieces held on the resin layer 11 are arranged so that the work (material of the small work pieces) held on the surface of the resin layer 11 opposite to the base material 12 is placed on the surface of the resin layer 11. It may be obtained by singulating in. That is, the work piece may be obtained by dicing the work on the resin layer 11 . Alternatively, the work piece may be formed independently of the work handling sheet 1 according to the present embodiment and placed on the resin layer 11 .
  • the work handling sheet 1 according to the present embodiment includes the adhesive layer and the protective film forming layer described above, it is preferable to dice these layers and the work on the resin layer 11 . As a result, it is possible to obtain workpiece pieces in which these layers are separated into individual pieces and laminated.
  • the work piece preferably has an area of 10 ⁇ m 2 or more, particularly 100 ⁇ m 2 or more, when viewed from above.
  • the work piece preferably has an area of 1 mm 2 or less, particularly preferably 0.25 mm 2 or less when viewed from above.
  • the minimum side of the work piece is preferably 2 ⁇ m or more, particularly preferably 5 ⁇ m or more, and further preferably 10 ⁇ m or more. preferable.
  • the minimum side is preferably 1 mm or less, and particularly preferably 0.5 mm or less.
  • the dimensions of the rectangular work piece include 2 ⁇ m ⁇ 5 ⁇ m, 10 ⁇ m ⁇ 10 ⁇ m, 0.5 mm ⁇ 0.5 mm, 1 mm ⁇ 1 mm, and the like.
  • the work handling sheet 1 according to the present embodiment can satisfactorily handle such fine work pieces, especially fine work pieces that are difficult to separate from the sheet by pushing up a needle.
  • the work handling sheet 1 according to the present embodiment has a relatively large area, such as one having an area exceeding 1 mm 2 (for example, 1 mm 2 to 2,000 mm 2 ) or having a thickness of 1 to 10,000 ⁇ m (for example, 10 to 1,000 ⁇ m). Work piece pieces of any size can also be handled well.
  • small work pieces include semiconductor parts and semiconductor devices, and more specifically, micro light-emitting diodes, power devices, MEMS (Micro Electro Mechanical Systems), and the like.
  • the work pieces are preferably light emitting diodes, and particularly preferably light emitting diodes selected from mini light emitting diodes and micro light emitting diodes.
  • mini light emitting diodes and micro light emitting diodes are densely arranged.
  • the device manufacturing method includes at least three steps: a preparation step (FIG. 2(a)), an arrangement step (FIG. 2(b)), and a separation step (FIGS. 2(c) and (d)).
  • a laminate is prepared in which a plurality of small work pieces 2 are held on the resin layer 11 side surface of the work handling sheet 1 according to the present embodiment.
  • the laminate may be prepared by placing a separately prepared work piece 2 on the work handling sheet 1, or a work held on the surface of the resin layer 11 side may be individually separated on the surface.
  • the shape and size of the work piece 2 are not particularly limited as described above, and the preferred size is also as described above.
  • Specific examples of the workpiece 2 also include, as described above, semiconductor components and semiconductor devices, and particularly light-emitting diodes such as mini light-emitting diodes and micro light-emitting diodes.
  • the laminate is arranged so that the surface of the laminate on the side of the small work piece 2 faces the object 3 that can receive the small work piece 2.
  • Examples of the object 3 are appropriately determined according to the device to be manufactured.
  • a wiring substrate provided with wiring is preferably used.
  • the position of the resin layer 11 of the laminate to which at least one work piece 2 is attached is irradiated with a laser beam.
  • the irradiation may be performed simultaneously on a plurality of positions where the work pieces 2 are attached, or may be performed sequentially on those positions.
  • the laser light irradiation conditions are not limited as long as full ablation can be caused.
  • a device for irradiation a known device can be used.
  • the above irradiation can cause full ablation at the irradiated position in the resin layer 11, as shown in FIG. 2(d). Specifically, the laser light irradiation evaporates or volatilizes the components constituting the resin layer 11, and the resin layer 11 at the irradiated position disappears. As a result, there is nothing to hold the small work piece 2 on the side of the work handling sheet 1 , and the small work piece 2 falls toward the object 3 . As a result, the work piece 2 ′ existing at the position where the full ablation has occurred can be placed on the object 3 .
  • the device manufacturing method described above may further include the following curing step. That is, at least one work piece 2 is attached to the entire resin layer 11 in the laminate in which a plurality of work pieces 2 are held on the surface on the resin layer 11 side, or in the resin layer 11 in the laminate.
  • a curing step may be provided in which the resin layer 11 is wholly or locally cured by irradiating active energy rays to the positions where the resin layer 11 is formed. This curing step may be performed prior to the separation step described above, or may be performed simultaneously with the separation step described above.
  • Irradiation of active energy rays in the curing step may be performed using a known technique, for example, an ultraviolet irradiation device equipped with a high-pressure mercury lamp or an ultraviolet LED as a light source, or a laser light irradiation device used in the separation step.
  • an ultraviolet irradiation device equipped with a high-pressure mercury lamp or an ultraviolet LED as a light source or a laser light irradiation device used in the separation step.
  • the device manufacturing method described above may include processes other than the preparation process, placement process, curing process, and separation process. For example, grinding, die bonding, wire bonding, molding, inspection, transfer process, etc. may be performed at any timing between the preparation process and the separation process.
  • various devices can be manufactured by appropriately selecting the work piece 2 and the target object 3 to be used.
  • a light emitting diode selected from mini light emitting diodes and micro light emitting diodes is used as the work piece 2
  • a light emitting device comprising a plurality of such light emitting diodes can be manufactured, more specifically a display can be manufactured.
  • the work handling sheet 1 can also be used for a method of selectively removing a predetermined small work piece 2 out of a plurality of small work pieces 2 provided on the sheet.
  • the light-emitting diodes are inspected on the sheet. Therefore, only the light-emitting diodes confirmed to be defective can be detached and removed from the work handling sheet 1 by causing full abrasion.
  • the resin layer 11 is composed of the active energy ray-curable adhesive described above
  • the adhesive strength of the work handling sheet 1 to the light-emitting diode is increased. can be reduced to allow good collections to transfer well to shipping sheets.
  • another layer may be laminated between the resin layer 11 and the base material 12 in the work handling sheet 1 according to the present embodiment, or on the surface of the base material 12 opposite to the resin layer 11.
  • a specific example of the other layer is an adhesive layer.
  • the above-described separation step and the like can be performed in a state in which the adhesive layer side surface is adhered to a support base (a transparent substrate such as a glass plate).
  • the adhesive that constitutes the adhesive layer is not particularly limited, but one that is difficult to absorb active energy rays and difficult to block active energy rays is preferable. In this case, when laser light is irradiated through the pressure-sensitive adhesive layer, the laser light easily reaches the resin layer 11, and good full abrasion is likely to occur.
  • the adhesive constituting the adhesive layer it is preferable to use an adhesive that does not have active energy ray-curable properties, and in particular, an adhesive that does not contain an active energy ray-curable component is preferably used. preferable.
  • an adhesive that does not have active energy ray curability the adhesive layer does not harden even when irradiated with the laser beam, thereby making the work handling sheet 1 from a transparent substrate. It is also possible to prevent peeling that does not occur.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, it is preferably 5 to 50 ⁇ m, for example.
  • Example 1 Preparation of Adhesive Composition 70 parts by mass of 2-ethylhexyl acrylate and 30 parts by mass of 2-hydroxyethyl acrylate were polymerized by a solution polymerization method to obtain an acrylic polymer. When the weight average molecular weight (Mw) of this acrylic polymer was measured by the method described later, it was 800,000.
  • a release sheet manufactured by Lintec Co., Ltd., product name "SP-PET381031 ”.
  • SP-PET381031 a work handling sheet was obtained in which the release sheet, the resin layer and the substrate were laminated in order.
  • the calculated content of the laser light absorbing component in the formed resin layer was 4.69% by mass. Further, when the content of the laser light absorbing component in the resin layer is X mass % and the thickness of the resin layer is Y ⁇ m, the value obtained by dividing X by Y (X/Y) is calculated for this example. , 2.35.
  • the weight average molecular weight (Mw) described above is a weight average molecular weight in terms of standard polystyrene measured using gel permeation chromatography (GPC) under the following conditions (GPC measurement).
  • GPC gel permeation chromatography
  • ⁇ Measurement conditions> ⁇ Measuring device: HLC-8320 manufactured by Tosoh Corporation ⁇ GPC column (passed in the following order): TSK gel superH-H manufactured by Tosoh Corporation TSK gel super HM-H TSK gel super H2000 ⁇ Measurement solvent: tetrahydrofuran ⁇ Measurement temperature: 40°C
  • Examples 2-3 and Comparative Examples 1-2 A work handling sheet was produced in the same manner as in Example 1 except that the content of the cross-linking agent, the content of the laser light absorbing component, and the thickness of the resin layer were changed as shown in Table 1. Comparative Example 1 is an example in which no laser light absorbing component was used.
  • Table 1 shows the content (% by mass) of the laser light absorbing component in the resin layer and the content of the laser light absorbing component in the resin layer for Examples 2 and 3 and Comparative Examples 1 and 2.
  • a value obtained by dividing X by Y (X/Y) is also shown, where X mass % is defined as the thickness of the resin layer and Y ⁇ m is defined as the thickness of the resin layer.
  • Chip preparation on work handling sheet (preparation process) An adhesive surface of a dicing sheet (manufactured by Lintec, product name “D-485H”) was attached to one side of a silicon wafer (#2000, thickness: 350 ⁇ m). Subsequently, a ring frame for dicing was adhered to the periphery of the adhesive surface of the dicing sheet (the position not overlapping the silicon wafer). Furthermore, the dicing sheet was cut according to the outer diameter of the ring frame.
  • the silicon wafer was diced into chips having a size of 300 ⁇ m ⁇ 300 ⁇ m using a dicing machine (manufactured by Disco, product name “DFD6362”). After that, the dicing sheet was irradiated with ultraviolet light (illuminance: 230 mW/cm 2 , light amount: 190 mJ/cm 2 ). As a result, a laminate having a plurality of chips provided on the dicing sheet was obtained.
  • a dicing machine manufactured by Disco, product name “DFD6362”.
  • the release sheet was peeled off from the work handling sheets produced in Examples and Comparative Examples, and the exposed surface thus exposed was bonded to the surface on which the plurality of chips of the laminate obtained as described above existed. .
  • the dicing sheet was peeled off from the plurality of chips. As a result, a plurality of chips were transferred from the dicing sheet to the work handling sheet to obtain a laminate having a plurality of chips provided on the work handling sheet.
  • the chip was irradiated with a laser beam with a wavelength of 355 nm through the work handling sheet using a laser beam irradiation device (manufactured by Keyence Corporation, product name "MD-U1000C").
  • the irradiation was carried out by spirally scanning the laser light spot from the periphery of the chip toward the center so that the entire surface of the chip was irradiated.
  • the diameter of the laser light spot was 20 ⁇ m
  • the frequency was 40 kHz
  • the scanning speed was 500 mm/s
  • the irradiation amount was 50 ⁇ J/shot.
  • 100 chips (a group of 10 vertical chips by 10 horizontal chips) were selected from a plurality of chips and irradiated.
  • the work handling sheet of the present invention can be suitably used for manufacturing a display or the like having micro light-emitting diodes as pixels.

Landscapes

  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Adhesive Tapes (AREA)
  • Laser Beam Processing (AREA)

Abstract

Provided is a workpiece handling sheet 1 comprising: a substrate 12; and a resin layer 11 which is laminated on one surface of the substrate 12 and which can hold small workpieces, wherein the resin layer 11 contains 10 mass% or more of a laser beam absorbing component having absorbing properties relative to laser beam wavelengths, and the resin layer 11 performs full ablation by laser beam irradiation. This workpiece handling sheet allows for proper handling even of very small workpieces.

Description

ワークハンドリングシートおよびデバイス製造方法Work handling sheet and device manufacturing method
 本発明は、半導体部品や半導体装置等のワーク小片を取り扱うために使用可能なワークハンドリングシート、および当該ワークハンドリングシートを用いたデバイス製造方法に関するものであり、特に、マイクロ発光ダイオード、パワーデバイス、MEMS(Micro Electro Mechanical Systems)等のワーク小片を取り扱うために使用可能なワークハンドリングシート、および当該ワークハンドリングシートを用いたデバイス製造方法に関するものである。 The present invention relates to a work handling sheet that can be used to handle small work pieces such as semiconductor components and semiconductor devices, and a device manufacturing method using the work handling sheet. (Micro Electro Mechanical Systems), etc., and a device manufacturing method using the work handling sheet.
 近年、マイクロ発光ダイオードを用いたディスプレイの開発が進められている。当該ディスプレイでは、個々の画素がマイクロ発光ダイオードで構成され、各マイクロ発光ダイオードの発光が独立に制御されている。当該ディスプレイの製造においては、一般的に、サファイア、ガラス等の供給基板上に配置されたマイクロ発光ダイオードを、配線が設けられた配線基板上に実装する必要がある。 In recent years, the development of displays using micro-light-emitting diodes has progressed. In such displays, individual pixels are composed of micro-light-emitting diodes, and the light emission of each micro-light-emitting diode is independently controlled. In the manufacture of such displays, it is generally necessary to mount micro-light-emitting diodes, which are arranged on a supply substrate such as sapphire, glass, etc., onto a wiring substrate provided with wiring.
 上記実装の際には、供給基板上に配置された複数のマイクロ発光ダイオードを、配線基板の所定の位置に正確に載置する必要がある。このとき、複数のマイクロ発光ダイオードの中から所定のものを選択的に配線基板に載置させる必要があったり、複数のマイクロ発光ダイオードを同時に載置させる必要もある。 During the mounting, it is necessary to accurately place the plurality of micro light-emitting diodes arranged on the supply board at predetermined positions on the wiring board. At this time, it is necessary to selectively mount a predetermined one of the plurality of micro light emitting diodes on the wiring board, or to mount a plurality of micro light emitting diodes at the same time.
 このような実装を良好に行う観点から、レーザー光の照射を利用することが検討されている。例えば、複数のマイクロ発光ダイオードを所定の層を介して支持体に保持した後、当該層に対してレーザー光を照射することで、その照射した位置において当該層のアブレーションを生じさせ、それによって支持体から分離(レーザーリフトオフ)したマイクロ発光ダイオードを配線基板に載置する方法が検討されている(特許文献1)。レーザー光は、指向性および収束性に優れているため、照射する位置を制御しやすく、選択的な載置を良好に行うことができる。 From the viewpoint of performing such mounting well, the use of laser light irradiation is being considered. For example, after holding a plurality of micro light-emitting diodes on a support via a predetermined layer, by irradiating the layer with laser light, the layer is ablated at the irradiated position, thereby supporting the layer. A method of mounting a micro light-emitting diode separated from a body (laser lift-off) on a wiring board is being studied (Patent Document 1). Since the laser beam has excellent directivity and convergence, it is easy to control the irradiation position, and selective placement can be performed satisfactorily.
特許第6546278号Patent No. 6546278
 しかしながら、マイクロ発光ダイオードの更なる微細化や、マイクロ発光ダイオードのより高密度な実装も進められており、これらにも対応する上では、特許文献1のような従来の手法よりも効率良く多数のマイクロ発光ダイオードといった微細なワーク小片を取り扱うことができる手段が求められている。 However, further miniaturization of micro light-emitting diodes and higher density mounting of micro light-emitting diodes are being promoted. There is a need for means that can handle fine work pieces such as micro light emitting diodes.
 本発明は、このような実状に鑑みてなされたものであり、微細なワーク小片であっても良好に取り扱うことが可能なワークハンドリングシート、および当該ワークハンドリングシートを用いたデバイス製造方法を提供することを目的とする。 SUMMARY OF THE INVENTION The present invention has been made in view of such circumstances, and provides a work handling sheet capable of handling even fine work piece pieces well, and a device manufacturing method using the work handling sheet. for the purpose.
 上記目的を達成するために、第1に本発明は、基材と、前記基材における片面側に積層され、ワーク小片を保持可能である樹脂層とを備えるワークハンドリングシートであって、前記樹脂層が、レーザー光の波長に対して吸収性を有するレーザー光吸収成分を10質量%以上で含有し、前記樹脂層が、前記レーザー光の照射によってフルアブレーションすることを特徴とするワークハンドリングシートを提供する(発明1)。 In order to achieve the above object, firstly, the present invention provides a work handling sheet comprising a base material and a resin layer laminated on one side of the base material and capable of holding a small work piece, wherein the resin A work handling sheet, wherein the layer contains 10% by mass or more of a laser light-absorbing component that absorbs the wavelength of the laser light, and the resin layer is fully ablated by the irradiation of the laser light. Provide (Invention 1).
 上記発明(発明1)に係るワークハンドリングシートは、樹脂層が、レーザー光の波長に対して吸収性を有するレーザー光吸収成分を上述した量で含有することで、レーザー光を照射した場合に効果的にフルアブレーションし、それによりワーク小片を対象物に向けて良好に分離することができる。 In the work handling sheet according to the above invention (invention 1), the resin layer contains the above-mentioned amount of a laser light absorbing component that has an absorptivity to the wavelength of the laser light, so that it is effective when irradiated with a laser light. Full ablation can be achieved in a targeted manner, thereby providing good separation of the work piece towards the object.
 第2に本発明は、基材と、前記基材における片面側に積層され、ワーク小片を保持可能である樹脂層とを備えるワークハンドリングシートであって、前記樹脂層が、レーザー光の波長に対して吸収性を有するレーザー光吸収成分を含有し、前記樹脂層中の前記レーザー光吸収成分の含有量をX質量%とし、前記樹脂層の厚さをYμmとした場合に、XをYで除した値(X/Y)が、2.0以上であることを特徴とするワークハンドリングシートを提供する(発明2)。 A second aspect of the present invention is a work handling sheet comprising a base material and a resin layer laminated on one side of the base material and capable of holding a small work piece, wherein the resin layer is adapted to the wavelength of laser light. When the content of the laser light absorbing component in the resin layer is X mass % and the thickness of the resin layer is Y μm, X is Y Provided is a work handling sheet characterized in that the divided value (X/Y) is 2.0 or more (Invention 2).
 上記発明(発明2)に係るワークハンドリングシートは、樹脂層が、レーザー光の波長に対して吸収性を有するレーザー光吸収成分を、樹脂層の厚さに関する上述した条件を満たして含有することで、レーザー光を照射した場合に効果的にフルアブレーションし、それによりワーク小片を対象物に向けて良好に分離することができる。 In the work handling sheet according to the above invention (invention 2), the resin layer contains a laser light absorbing component having an absorptivity to the wavelength of the laser light, satisfying the above-described conditions regarding the thickness of the resin layer. , effective full ablation when irradiated with a laser beam, so that the work piece can be directed to the object and separated well.
 上記発明(発明1,2)において、前記レーザー光吸収成分は、紫外線吸収剤および光重合開始剤の少なくとも一種であることが好ましい(発明3)。 In the above inventions (Inventions 1 and 2), the laser light absorbing component is preferably at least one of an ultraviolet absorber and a photopolymerization initiator (Invention 3).
 上記発明(発明3)において、前記紫外線吸収剤は、有機化合物であることが好ましい(発明4)。 In the above invention (invention 3), the ultraviolet absorber is preferably an organic compound (invention 4).
 上記発明(発明3,4)において、前記紫外線吸収剤は、1個以上の複素環を有する化合物であることが好ましい(発明5)。 In the above inventions (inventions 3 and 4), the ultraviolet absorber is preferably a compound having one or more heterocycles (invention 5).
 上記発明(発明3~5)において、前記紫外線吸収剤は、炭素環および複素環の少なくとも1種を有し、前記紫外線吸収剤が有する全ての前記炭素環および前記複素環は、それぞれ単環であることが好ましい(発明6)。 In the above inventions (inventions 3 to 5), the ultraviolet absorber has at least one of a carbocyclic ring and a heterocyclic ring, and all the carbocyclic rings and heterocyclic rings of the ultraviolet absorbent are monocyclic. It is preferable that there is (Invention 6).
 上記発明(発明3~6)において、前記紫外線吸収剤は、複数の芳香環を有する化合物であることが好ましい(発明7)。 In the above inventions (inventions 3 to 6), the ultraviolet absorber is preferably a compound having a plurality of aromatic rings (invention 7).
 上記発明(発明1~7)において、前記樹脂層は、粘着剤層であることが好ましい(発明8)。 In the above inventions (Inventions 1 to 7), the resin layer is preferably an adhesive layer (Invention 8).
 上記発明(発明8)において、前記粘着剤層を構成する粘着剤は、アクリル系粘着剤であることが好ましい(発明9)。 In the above invention (invention 8), the adhesive constituting the adhesive layer is preferably an acrylic adhesive (invention 9).
 上記発明(発明1~9)において、前記レーザー光は、紫外域の波長を有するものであることが好ましい(発明10)。 In the above inventions (inventions 1 to 9), the laser light preferably has a wavelength in the ultraviolet region (invention 10).
 上記発明(発明1~10)においては、前記樹脂層において局所的に生じさせたフルアブレーションによって、前記樹脂層における前記基材とは反対の面上に保持された複数のワーク小片のうちの任意のワーク小片を、前記樹脂層から選択的に分離するために使用されるものであることが好ましい(発明11)。 In the above inventions (inventions 1 to 10), any of a plurality of work pieces held on the surface of the resin layer opposite to the substrate by full abrasion locally generated in the resin layer (Invention 11).
 上記発明(発明11)において、前記ワーク小片は、前記樹脂層における前記基材とは反対の面上に保持されたワークを当該面上において個片化することで得られたものであることが好ましい(発明12)。 In the above invention (invention 11), the work pieces are obtained by singulating a work held on a surface of the resin layer opposite to the base material on the surface. Preferred (Invention 12).
 上記発明(発明11,12)において、前記ワーク小片は、半導体部品および半導体装置から選択される少なくとも1種であることが好ましい(発明13)。 In the above inventions (inventions 11 and 12), the work pieces are preferably at least one selected from semiconductor components and semiconductor devices (invention 13).
 上記発明(発明11~13)において、前記ワーク小片は、ミニ発光ダイオードおよびマイクロ発光ダイオードから選択される発光ダイオードであることが好ましい(発明14)。 In the above inventions (inventions 11 to 13), the work pieces are preferably light emitting diodes selected from mini light emitting diodes and micro light emitting diodes (invention 14).
 第3に本発明は、上記ワークハンドリングシート(発明1~14)における、前記樹脂層側の面上に複数のワーク小片が保持されてなる積層体を準備する準備工程と、前記ワーク小片を受容可能な対象物に対して、前記積層体における前記ワーク小片側の面が向かい合うように前記積層体を配置する配置工程と、前記積層体における前記樹脂層における、少なくとも1つの前記ワーク小片が貼付されている位置に対し、レーザー光を照射して、前記樹脂層における前記照射された位置においてフルアブレーションを生じさせることで、当該フルアブレーションが生じた位置に存在する前記ワーク小片を前記ワークハンドリングシートから分離し、前記ワーク小片を前記対象物上に載置する分離工程とを備えることを特徴とするデバイス製造方法を提供する(発明15)。 The third aspect of the present invention is the work handling sheet (inventions 1 to 14), wherein a preparation step of preparing a laminate in which a plurality of small work pieces are held on the surface on the resin layer side; an arrangement step of arranging the laminate so that the surface of the laminate on the side of the small work piece faces a possible object; By irradiating a laser beam to the position where the resin layer is exposed to cause full ablation at the irradiated position, the work piece present at the position where the full ablation has occurred is removed from the work handling sheet and a separation step of separating and placing the work pieces on the object (Invention 15).
 上記発明(発明15)において、前記準備工程においては、前記樹脂層における前記基材とは反対の面上に保持されたワークを当該面上において個片化することで、前記ワーク小片を得ることが好ましい(発明16)。 In the above invention (invention 15), in the preparation step, the workpiece held on the surface of the resin layer opposite to the base material is singulated on the surface to obtain the workpiece pieces. is preferred (Invention 16).
 上記発明(発明15,16)において、前記ワーク小片は、半導体部品および半導体装置から選択される少なくとも1種であることが好ましい(発明17)。 In the above inventions (inventions 15 and 16), the work pieces are preferably at least one selected from semiconductor components and semiconductor devices (invention 17).
 上記発明(発明15~17)においては、ミニ発光ダイオードおよびマイクロ発光ダイオードから選択される発光ダイオードを前記ワーク小片として用いて、前記発光ダイオードを複数備える発光装置を製造することが好ましい(発明18)。 In the above inventions (Inventions 15 to 17), it is preferable to manufacture a light emitting device comprising a plurality of the light emitting diodes by using a light emitting diode selected from mini light emitting diodes and micro light emitting diodes as the work piece (Invention 18). .
 上記発明(発明18)において、前記発光装置は、ディスプレイであることが好ましい(発明19)。 In the above invention (invention 18), the light-emitting device is preferably a display (invention 19).
 本発明に係るワークハンドリングシートは、微細なワーク小片であっても良好に取り扱うことができ、また、本発明に係るデバイス製造方法によれば、優れた性能を有するデバイスを製造することができる。 The work handling sheet according to the present invention can handle even fine work pieces well, and according to the device manufacturing method according to the present invention, devices with excellent performance can be manufactured.
本発明の一実施形態に係るワークハンドリングシートの断面図である。1 is a cross-sectional view of a work handling sheet according to one embodiment of the present invention; FIG. 本発明の一実施形態に係るワークハンドリングシートを使用したデバイス製造方法を説明する断面図である。FIG. 4 is a cross-sectional view illustrating a device manufacturing method using a work handling sheet according to one embodiment of the present invention;
 以下、本発明の実施形態について説明する。
 図1には、一実施形態に係るワークハンドリングシートの断面図が示される。図1に示されるワークハンドリングシート1は、基材12と、基材12における片面側に積層された樹脂層11とを備える。
Embodiments of the present invention will be described below.
FIG. 1 shows a cross-sectional view of a work handling sheet according to one embodiment. A work handling sheet 1 shown in FIG. 1 includes a substrate 12 and a resin layer 11 laminated on one side of the substrate 12 .
 本実施形態に係るワークハンドリングシート1においては、樹脂層11が、ワーク小片を保持可能である。すなわち、本実施形態に係るワークハンドリングシート1は、樹脂層11における基材12とは反対の面上に積層されたワーク小片を、その状態のまま保持することができる。 In the work handling sheet 1 according to this embodiment, the resin layer 11 can hold small work pieces. That is, the work handling sheet 1 according to the present embodiment can hold the small work piece laminated on the surface of the resin layer 11 opposite to the base material 12 as it is.
 上記保持の具体的な態様は限定されないものの、好ましい例としては、樹脂層11がワーク小片に対する粘着性を発揮することで保持することが挙げられる。この場合、樹脂層11は、後述する通り、それを構成する成分の1つとして粘着剤を含むこと、すなわち粘着剤層であることが好ましい。 Although the specific mode of holding is not limited, a preferable example is that the resin layer 11 exhibits adhesiveness to the small piece of work to hold it. In this case, as will be described later, the resin layer 11 preferably contains an adhesive as one of its constituent components, that is, it is an adhesive layer.
 そして、本実施形態に係るワークハンドリングシート1は、樹脂層11が、レーザー光の波長に対して吸収性を有するレーザー光吸収成分を10質量%以上で含有し、且つ、レーザー光の照射によってフルアブレーションするものであることが好ましい(以下、これらの条件を「条件1」という場合がある。)。 In the work handling sheet 1 according to the present embodiment, the resin layer 11 contains 10% by mass or more of a laser light-absorbing component having an absorptivity to the wavelength of the laser light, and is fully absorbed by the irradiation of the laser light. Ablation is preferred (these conditions may be hereinafter referred to as "Condition 1").
 また、本実施形態に係るワークハンドリングシート1は、樹脂層11が、レーザー光の波長に対して吸収性を有するレーザー光吸収成分を含有し、且つ、樹脂層11中の当該レーザー光吸収成分の含有量をX質量%とし、樹脂層11の厚さをYμmとした場合に、XをYで除した値(X/Y)が、2.0以上であることも好ましい(以下、これらの条件を「条件2」という場合がある。)。 In addition, in the work handling sheet 1 according to the present embodiment, the resin layer 11 contains a laser light-absorbing component that absorbs the wavelength of the laser light, and the laser light-absorbing component in the resin layer 11 When the content is X mass % and the thickness of the resin layer 11 is Y μm, the value obtained by dividing X by Y (X/Y) is preferably 2.0 or more (hereinafter, these conditions is sometimes referred to as "condition 2").
 本実施形態に係るワークハンドリングシート1は、上述した条件1および条件2の少なくとも一方を満たすことで、レーザー光を照射した場合に良好にフルアブレーションすることができる。 The work handling sheet 1 according to the present embodiment satisfies at least one of the conditions 1 and 2 described above, so that it can be satisfactorily fully ablated when irradiated with a laser beam.
 本明細書において、フルアブレーションとは、レーザー光のエネルギーによって樹脂層11を構成する成分が蒸発または揮発し、それによって、樹脂層11におけるレーザー光が照射された部位が消失することを指す。なお、この消失の際、樹脂層11を構成する成分の分解が生じていてもよく、あるいは生じていなくてもよい。そして、上記消失した位置に存在していたワーク小片は、それを保持する存在を失い、本実施形態に係るワークハンドリングシート1から分離することとなる。 In this specification, full ablation means that the components constituting the resin layer 11 evaporate or volatilize due to the energy of the laser light, and as a result, the portion of the resin layer 11 irradiated with the laser light disappears. At the time of disappearance, decomposition of the components constituting the resin layer 11 may or may not occur. Then, the small work pieces that existed at the disappeared position lose their existence to hold them and are separated from the work handling sheet 1 according to the present embodiment.
 従来のワークハンドリングシートとしては、レーザー光の照射によって、基材と樹脂層との界面に空隙を生じさせ、それにより樹脂層を膨らませることでワーク小片を分離させるものが存在している。これに対し、本実施形態に係るワークハンドリングシート1では、そのような樹脂層の膨らみを生じさせることなくワーク小片を分離させることが可能であるため、分離の際に、ワーク小片と当該ワーク小片を受け取る対象との距離の近づけることが可能となる。そのため、当該対象にワーク小片を分離させる際の位置精度が非常に高いものとなる。 As a conventional work handling sheet, there is a sheet that separates small work pieces by creating a gap at the interface between the base material and the resin layer by irradiating a laser beam, thereby expanding the resin layer. On the other hand, in the work handling sheet 1 according to the present embodiment, it is possible to separate the small work pieces without causing such swelling of the resin layer. It is possible to bring the distance to the receiving target closer. Therefore, the positional accuracy is extremely high when separating the small work piece from the object.
 さらに、本実施形態に係るワークハンドリングシート1は、条件1または条件2を満たしながらレーザー光吸収成分を含有することで、樹脂層11が、レーザー光からエネルギーを受け取る効率が向上する。これにより、効果的にフルアブレーションが生じ、保持したワーク小片を樹脂層11から良好に分離することが可能となる。特に、ワーク小片の十分な分離を生じさせるために必要となるレーザー光の照射量が低減し、レーザー光の照射装置の稼働コストを低減できるとともに、ターゲットとするワーク小片のみを良好に分離し易くなって精度が向上し、さらには、過度なレーザー光照射による装置およびワーク小片等の損傷を防ぐこともできる。 Furthermore, the work handling sheet 1 according to the present embodiment contains a laser light absorbing component while satisfying Condition 1 or Condition 2, thereby improving the efficiency with which the resin layer 11 receives energy from the laser light. As a result, full ablation is effectively generated, and the retained work pieces can be separated satisfactorily from the resin layer 11 . In particular, the amount of laser light irradiation required to cause sufficient separation of the work pieces is reduced, the operating cost of the laser light irradiation device can be reduced, and only the target work pieces are easily separated. In addition, it is possible to prevent damage to the device and small pieces of work due to excessive laser light irradiation.
 なお、上記レーザー光としては、フルアブレーションを生じさせることが可能であれば特に限定されず、紫外域、可視光域および赤外域のいずれの波長を有するレーザー光であってよく、中でも、紫外域の波長を有するレーザー光が好ましい。 The laser light is not particularly limited as long as it can cause full ablation, and may be a laser light having any wavelength in the ultraviolet region, the visible light region, and the infrared region. is preferred.
1.樹脂層
 本実施形態における樹脂層11の具体的な構成や組成は、ワーク小片を保持可能であるとともに、条件1および条件2の少なくとも一方を満たす限り、特に限定されない。
1. Resin Layer The specific configuration and composition of the resin layer 11 in the present embodiment are not particularly limited as long as they can hold the work pieces and satisfy at least one of the conditions 1 and 2.
 ワーク小片を保持可能であるという性質を良好に発揮しやすいという観点からは、樹脂層11は、前述した通り、それを構成する成分の1つとして粘着剤を含むことが好ましい。樹脂層11が粘着剤を含む場合、樹脂層11は、レーザー光吸収成分を含有する粘着性組成物からなるものであることが好ましい。 From the standpoint of easily exhibiting the property of being able to hold a small work piece, the resin layer 11 preferably contains an adhesive as one of its constituent components, as described above. When the resin layer 11 contains an adhesive, the resin layer 11 is preferably made of an adhesive composition containing a laser light absorbing component.
(1)レーザー光吸収成分
 上記レーザー光吸収成分は、レーザー光の波長に対して吸収性を有する成分であれば特に限定されないものの、紫外線吸収剤および光重合開始剤の少なくとも一種であることが好ましい。
(1) Laser light-absorbing component The laser light-absorbing component is not particularly limited as long as it is a component that absorbs the wavelength of the laser light, but it is preferably at least one of an ultraviolet absorber and a photopolymerization initiator. .
(1-1)紫外線吸収剤
 上記紫外線吸収剤の種類は特に限定されない。本実施形態における紫外線吸収剤は、有機化合物であってもよく、無機化合物であってもよいが、良好なフルアブレーションを生じさせ易いという観点からは有機化合物であることが好ましい。
(1-1) Ultraviolet Absorber The type of ultraviolet absorber is not particularly limited. The ultraviolet absorber in this embodiment may be an organic compound or an inorganic compound, but an organic compound is preferable from the viewpoint of facilitating good full ablation.
 紫外線吸収剤が有機化合物である場合、当該紫外線吸収剤の好ましい例としては、ヒドロキシフェニルトリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾエート系紫外線吸収剤、ベンゾオキサジノン系紫外線吸収剤、フェニルサリシレート系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、ニッケル錯塩系紫外線吸収剤、ハイドロキノン系紫外線吸収剤、サリチル酸系紫外線吸収剤、マロン酸エステル系紫外線吸収剤、シュウ酸系紫外線吸収剤等の化合物が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 When the ultraviolet absorber is an organic compound, preferred examples of the ultraviolet absorber include hydroxyphenyltriazine-based ultraviolet absorbers, benzophenone-based ultraviolet absorbers, benzotriazole-based ultraviolet absorbers, benzoate-based ultraviolet absorbers, and benzoxazinone. UV absorber, phenyl salicylate UV absorber, cyanoacrylate UV absorber, nickel complex UV absorber, hydroquinone UV absorber, salicylic acid UV absorber, malonic acid ester UV absorber, oxalic acid UV absorber Compounds such as absorbents can be mentioned. These may be used individually by 1 type, and may be used in combination of 2 or more type.
 上述した紫外線吸収剤の中でも、YAGの第三次高調波(355nm)において良好な吸収性を有し、且つ良好なフルアブレーションを生じさせ易いという観点から、ヒドロキシフェニルトリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤およびベンゾトリアゾール系紫外線吸収剤の少なくとも1種を使用することが好ましく、とりわけヒドロキシフェニルトリアジン系紫外線吸収剤を使用することが好ましい。 Among the above-mentioned UV absorbers, from the viewpoint of having good absorption in the third harmonic (355 nm) of YAG and easily causing good full ablation, hydroxyphenyltriazine-based UV absorbers, benzophenone-based UV absorbers, It is preferable to use at least one of ultraviolet absorbers and benzotriazole-based ultraviolet absorbers, and it is particularly preferable to use hydroxyphenyltriazine-based ultraviolet absorbers.
 上記ヒドロキシフェニルトリアジン系紫外線吸収剤としては、2-[4-(オクチル-2-メチルエタノエート)オキシ-2-ヒドロキシフェニル]-4,6-[ビス(2,4-ジメチルフェニル)]-1,3,5-トリアジン、2-[4-(2-ヒドロキシ-3-ドデシロキシ-プロピル)オキシ-2-ヒドロキシフェニル]-4,6-[ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-(2-ヒドロキシ-3-トリデシロキシ-プロピル)オキシ-2-ヒドロキシフェニル]-4,6-[ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-(2,4-ジヒドロキシフェニル)-4,6-ビス-(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-(2-ヒドロキシ-3-(2’-エチル)ヘキシルオキシ]-2-ヒドロキシフェニル]-4,6-[ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4-ビス[2-ヒドロキシ-4-ブトキシフェニル]-6-(2,4-ジブトキシフェニル)-1,3-5-トリアジン、2-(2-ヒドロキシ-4-[1-オクチルオキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン、トリス[2,4,6-[2-{4-(オクチル-2-メチルエタノエート)オキシ-2-ヒドロキシフェニル}]-1,3,5-トリアジンなどが挙げられる。これらは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの中でも、トリス[2,4,6-[2-{4-(オクチル-2-メチルエタノエート)オキシ-2-ヒドロキシフェニル}]-1,3,5-トリアジンおよび2-(2-ヒドロキシ-4-[1-オクチルオキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジンの少なくとも一方を使用することが好ましい。 As the hydroxyphenyltriazine-based UV absorber, 2-[4-(octyl-2-methylethanoate)oxy-2-hydroxyphenyl]-4,6-[bis(2,4-dimethylphenyl)]-1 , 3,5-triazine, 2-[4-(2-hydroxy-3-dodecyloxy-propyl)oxy-2-hydroxyphenyl]-4,6-[bis(2,4-dimethylphenyl)-1,3, 5-triazine, 2-[4-(2-hydroxy-3-tridecyloxy-propyl)oxy-2-hydroxyphenyl]-4,6-[bis(2,4-dimethylphenyl)-1,3,5-triazine , 2-(2,4-dihydroxyphenyl)-4,6-bis-(2,4-dimethylphenyl)-1,3,5-triazine, 2-[4-(2-hydroxy-3-(2′ -ethyl)hexyloxy]-2-hydroxyphenyl]-4,6-[bis(2,4-dimethylphenyl)-1,3,5-triazine, 2,4-bis[2-hydroxy-4-butoxyphenyl ]-6-(2,4-dibutoxyphenyl)-1,3-5-triazine, 2-(2-hydroxy-4-[1-octyloxycarbonylethoxy]phenyl)-4,6-bis(4- phenylphenyl)-1,3,5-triazine, tris[2,4,6-[2-{4-(octyl-2-methylethanoate)oxy-2-hydroxyphenyl}]-1,3,5- and triazine, etc. These may be used singly or in combination of two or more. Octyl-2-methylethanoate)oxy-2-hydroxyphenyl}]-1,3,5-triazine and 2-(2-hydroxy-4-[1-octyloxycarbonylethoxy]phenyl)-4,6-bis It is preferred to use at least one of (4-phenylphenyl)-1,3,5-triazines.
 また、紫外線吸収剤が有機化合物である場合、当該紫外線吸収剤は、その化学構造上の特徴として、1個以上の複素環を有する化合物であることが好ましい。この場合、複素環の数は、4個以下であることが好ましく、特に1個であることが好ましい。 Also, when the ultraviolet absorber is an organic compound, the ultraviolet absorber is preferably a compound having one or more heterocyclic rings as a characteristic of its chemical structure. In this case, the number of heterocycles is preferably 4 or less, particularly preferably 1.
 また、別の化学構造上の特徴として、本実施形態における紫外線吸収剤は、炭素環および複素環の少なくとも1種を有するとともに、当該紫外線吸収剤が有する全ての炭素環および複素環がそれぞれ単環であることも好ましい。 In addition, as another chemical structural feature, the ultraviolet absorber in the present embodiment has at least one of a carbocyclic ring and a heterocyclic ring, and all the carbocyclic rings and heterocyclic rings possessed by the ultraviolet absorbent are monocyclic It is also preferable that
 さらなる化学構造上の特徴として、本実施形態における紫外線吸収剤は、複数の芳香環を有する化合物であることも好ましい。この場合、芳香環の数は、2個以上であることが好ましい。また、芳香環の数は、6個以下であることが好ましく、特に3個以下であることが好ましい。 As a further chemical structural feature, the ultraviolet absorber in this embodiment is preferably a compound having a plurality of aromatic rings. In this case, the number of aromatic rings is preferably two or more. The number of aromatic rings is preferably 6 or less, particularly preferably 3 or less.
 上述した化学構造上の特徴において、それぞれの複素環は、それらを構成する炭素以外の元素として、窒素、酸素、リン、硫黄、ケイ素およびセレンから選択される少なくとも1種を有することが好ましく、特に、窒素、酸素、リンおよび硫黄から選択される少なくとも1種を有することが好ましい。また、複素環の環構造を構成する原子の数は特に限定はなく、例えば3個以上、9個以下であり、特に5個以上、6個以下であることが好ましい。好ましい複素環の具体例としては、トリアジン、ベンゾトリアゾール、チオフェン、ピロール、イミダゾール、ピリジン、ピラジン等が挙げられる。 In the chemical structural features described above, each heterocyclic ring preferably has at least one element selected from nitrogen, oxygen, phosphorus, sulfur, silicon and selenium as an element other than carbon, particularly , nitrogen, oxygen, phosphorus and sulfur. Moreover, the number of atoms constituting the ring structure of the heterocyclic ring is not particularly limited, and is, for example, 3 or more and 9 or less, and particularly preferably 5 or more and 6 or less. Specific examples of preferred heterocycles include triazine, benzotriazole, thiophene, pyrrole, imidazole, pyridine, pyrazine and the like.
 また、上述した化学構造上の特徴において、芳香環の好ましい例としては、ベンゼン、ナフタレン、アントラセン、ビフェニル、トリフェニル等が挙げられる。 In addition, in the chemical structural features described above, preferable examples of aromatic rings include benzene, naphthalene, anthracene, biphenyl, and triphenyl.
 上述した化学構造上の特徴を有する紫外線吸収剤の例としては、以下の式(1)の構造を有する紫外線吸収剤(トリス[2,4,6-[2-{4-(オクチル-2-メチルエタノエート)オキシ-2-ヒドロキシフェニル}]-1,3,5-トリアジン)が挙げられる。 Examples of UV absorbers having the above-described chemical structural features include UV absorbers having the structure of the following formula (1) (tris[2,4,6-[2-{4-(octyl-2- methyl ethanoate)oxy-2-hydroxyphenyl}]-1,3,5-triazine).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 本実施形態における紫外線吸収剤は、250nm以上、400nm以下の波長の範囲に吸収ピークを有するものであることが好ましい。これにより、良好なフルアブレーションを生じさせ易くなる。 The ultraviolet absorber in this embodiment preferably has an absorption peak in the wavelength range of 250 nm or more and 400 nm or less. This makes it easier to produce good full ablation.
 また、本実施形態における紫外線吸収剤は、波長355nmの光線の吸光度が、0.5以上であることが好ましく、特に1.0以上であることが好ましく、さらには1.2以上であることが好ましい。これにより、良好なフルアブレーションを生じさせ易くなる。なお、上記吸光度の上限値については特に限定されず、例えば6.0以下であってよい。 In addition, the ultraviolet absorber in the present embodiment preferably has an absorbance of light having a wavelength of 355 nm of 0.5 or more, particularly preferably 1.0 or more, and further preferably 1.2 or more. preferable. This makes it easier to produce good full ablation. The upper limit of the absorbance is not particularly limited, and may be 6.0 or less, for example.
 なお、紫外線吸収剤の上記吸収ピークおよび上記吸光度は、濃度0.01質量%のアセトニトリル溶液を調製し、大形試料室(例えば、島津製作所社製,製品名「MPC-3100」)が付属した分光光度計(例えば、島津製作所社製,「UV-3600」)を用いて測定することができる。 The absorption peak and the absorbance of the ultraviolet absorber were obtained by preparing an acetonitrile solution with a concentration of 0.01% by mass, and attaching a large sample chamber (for example, manufactured by Shimadzu Corporation, product name "MPC-3100"). It can be measured using a spectrophotometer (eg, “UV-3600” manufactured by Shimadzu Corporation).
(1-2)光重合開始剤
 上記光重合開始剤の種類は特に限定されない。好ましい光重合開始剤の例としては、2-ジメチルアミノ-2-(4-メチルベンジル)-1-(4-モルフォリノ-フェニル)ブタン-1-オン、エタノン,1-[9-エチル-6-(2-メチルベンゾイル)-9H-カルバゾール-3-イル]-,1-(0-アセチルオキシム)、1,2-オクタンジオン,1-[4-(フェニルチオ)フェニル]-,2-(O-ベンゾイルオキシム)、2-ベンジル-2-ジメチルアミノ-1-(4-モルフォリノフェニル)-ブタノン、2-メチル-1-[4-(メチルチオ)フェニル]-2-モルフォリノプロパン-1-オンの少なくとも1種を使用することが好ましい。
(1-2) Photopolymerization Initiator The type of photopolymerization initiator is not particularly limited. Examples of preferred photoinitiators include 2-dimethylamino-2-(4-methylbenzyl)-1-(4-morpholino-phenyl)butan-1-one, ethanone, 1-[9-ethyl-6- (2-methylbenzoyl)-9H-carbazol-3-yl]-, 1-(0-acetyloxime), 1,2-octanedione, 1-[4-(phenylthio)phenyl]-, 2-(O- benzoyloxime), 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-butanone, 2-methyl-1-[4-(methylthio)phenyl]-2-morpholinopropan-1-one It is preferred to use at least one.
 上記光重合開始剤とともに、その他の光重合開始剤を併用することもできる。併用できる光重合開始剤の例としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインイソブチルエーテル、アセトフェノン、ジメチルアミノアセトフェノン、2,2-ジメトキシ-1,2-ジフェニルエタン-1-オン、2,2-ジエトキシ-2-フェニルアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-ヒドロキシシクロヘキシルフェニルケトン、4-(2-ヒドロキシエトキシ)フェニル-2-(ヒドロキシ-2-プロピル)ケトン、1-[4-(2-ヒドロキシエトキシ)-フェニル]-2-ヒドロキシ-メチルプロパノン、ベンゾフェノン、p-フェニルベンゾフェノン、4,4’-ジエチルアミノベンゾフェノン、ジクロロベンゾフェノン、2-メチルアントラキノン、2-エチルアントラキノン、2-ターシャリ-ブチルアントラキノン、2-アミノアントラキノン、2-メチルチオキサントン、2-エチルチオキサントン、2-クロロチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、ベンジルジメチルケタール、アセトフェノンジメチルケタール、p-ジメチルアミノ安息香酸エステル、オリゴ[2-ヒドロキシ-2-メチル-1[4-(1-メチルビニル)フェニル]プロパノン]、2,4,6-トリメチルベンゾイル-ジフェニル-フォスフィンオキサイド等が挙げられる。 Other photopolymerization initiators can be used together with the above photopolymerization initiators. Examples of photoinitiators that can be used together include benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether, acetophenone, dimethylaminoacetophenone, 2,2-dimethoxy-1,2 -diphenylethan-1-one, 2,2-diethoxy-2-phenylacetophenone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-hydroxycyclohexylphenyl ketone, 4-(2-hydroxyethoxy ) phenyl-2-(hydroxy-2-propyl)ketone, 1-[4-(2-hydroxyethoxy)-phenyl]-2-hydroxy-methylpropanone, benzophenone, p-phenylbenzophenone, 4,4′-diethylamino Benzophenone, dichlorobenzophenone, 2-methylanthraquinone, 2-ethylanthraquinone, 2-tertiary-butylanthraquinone, 2-aminoanthraquinone, 2-methylthioxanthone, 2-ethylthioxanthone, 2-chlorothioxanthone, 2,4-dimethylthioxanthone, 2 , 4-diethylthioxanthone, benzyl dimethyl ketal, acetophenone dimethyl ketal, p-dimethylaminobenzoate, oligo[2-hydroxy-2-methyl-1[4-(1-methylvinyl)phenyl]propanone], 2,4 , 6-trimethylbenzoyl-diphenyl-phosphine oxide and the like.
 本実施形態における光重合開始剤は、200nm以上、400nm以下の波長の範囲に吸収ピークを有するものであることが好ましい。これにより、樹脂層11がレーザー光を効率的に吸収し、それによって良好にフルアブレーションし易いものとなる。このような観点から、上記範囲の下限値は、特に300nm以上であることが好ましく、さらには330nm以上であることが好ましい。また、上記範囲の上限値は、特に380nm以下であることが好ましく、さらには370nm以下であることが好ましい。 The photopolymerization initiator in the present embodiment preferably has an absorption peak in the wavelength range of 200 nm or more and 400 nm or less. As a result, the resin layer 11 efficiently absorbs the laser beam, thereby facilitating full ablation. From such a viewpoint, the lower limit of the above range is preferably 300 nm or more, and more preferably 330 nm or more. The upper limit of the above range is preferably 380 nm or less, more preferably 370 nm or less.
 なお、上記吸収ピークは、以下の方法に基づいて特定することができる。まず、光重合開始剤を、溶媒としてのメタノールまたはアセトニトリルに溶解し、濃度0.01質量%の測定溶液を調製する。続いて、当該測定溶液について、分光光度計(例えば、島津製作所社製,「UV-3600」)により吸光度を測定し、吸収スペクトルを得る。そして、得られた吸収スペクトルから、吸収ピーク(nm)の波長の範囲を特定することができる。 The above absorption peak can be specified based on the following method. First, a photopolymerization initiator is dissolved in methanol or acetonitrile as a solvent to prepare a measurement solution having a concentration of 0.01% by mass. Subsequently, the absorbance of the measurement solution is measured with a spectrophotometer (eg, “UV-3600” manufactured by Shimadzu Corporation) to obtain an absorption spectrum. Then, the wavelength range of the absorption peak (nm) can be specified from the obtained absorption spectrum.
 また、本実施形態における光重合開始剤は、濃度0.01質量%の溶液中における波長355nmの吸光度が、0.5以上であることが好ましく、特に0.75以上であることが好ましく、さらには1.0以上であることが好ましい。上記吸光度が0.5以上であることにより、樹脂層11がレーザー光を効率的に吸収し、それによって良好にフルアブレーションし易いものとなる。なお、上記吸光度の上限値は特に限定されず、例えば4.0以下であってよい。 Further, the photopolymerization initiator in the present embodiment preferably has an absorbance of 0.5 or more, particularly preferably 0.75 or more, at a wavelength of 355 nm in a solution having a concentration of 0.01% by mass. is preferably 1.0 or more. When the absorbance is 0.5 or more, the resin layer 11 efficiently absorbs the laser light, thereby making it easier to perform full ablation. The upper limit of the absorbance is not particularly limited, and may be, for example, 4.0 or less.
 なお、上記吸光度は、光重合開始剤の濃度0.01質量%のメタノール溶液(光重合開始剤がメタノールに不溶である場合は、アセトニトリル溶液)を調製し、その溶液における波長200~500nmの範囲の吸光度を、紫外可視近赤外(UV-Vis-NIR)分光光度計(島津製作所社製,製品名「UV-3600」,光路長10mm)を使用して測定したものである。 Incidentally, the above absorbance is obtained by preparing a methanol solution with a photopolymerization initiator concentration of 0.01% by mass (acetonitrile solution if the photopolymerization initiator is insoluble in methanol), and the wavelength range of 200 to 500 nm in the solution. was measured using an ultraviolet-visible-near-infrared (UV-Vis-NIR) spectrophotometer (manufactured by Shimadzu Corporation, product name "UV-3600", optical path length 10 mm).
(1-3)レーザー光吸収成分の配合量
 本実施形態に係るワークハンドリングシート1は、前述の通り、レーザー光吸収成分の配合量に関する条件1および条件2の少なくとも一方を満たすことが好ましい。
(1-3) Blending amount of laser light absorbing component As described above, the work handling sheet 1 according to the present embodiment preferably satisfies at least one of Condition 1 and Condition 2 regarding the blending amount of the laser light absorbing component.
 すなわち、条件1を満たす場合には、樹脂層11中のレーザー光吸収成分の含有量が10質量%以上であり、特に13質量%以上であることが好ましく、さらには16質量%以上であることが好ましい。レーザー光吸収成分の含有量がこのような範囲であることにより、樹脂層11がレーザー光を効率的に吸収し、それによって良好にフルアブレーションし易いものとなる。また、レーザー光吸収成分の含有量は、60質量%以下であることが好ましく、特に50質量%以下であることが好ましく、さらには40質量%以下であることが好ましい。これにより、レーザー光吸収成分以外の成分(例えば、後述する粘着剤)の配合量を確保し易くなり、所望の性能を有するワークハンドリングシート1を得易いものとなる。 That is, when the condition 1 is satisfied, the content of the laser light absorbing component in the resin layer 11 is 10% by mass or more, preferably 13% by mass or more, and further preferably 16% by mass or more. is preferred. When the content of the laser light absorbing component is in such a range, the resin layer 11 efficiently absorbs the laser light, thereby favorably facilitating full ablation. Also, the content of the laser light absorbing component is preferably 60% by mass or less, particularly preferably 50% by mass or less, and further preferably 40% by mass or less. As a result, it becomes easier to secure the amount of components other than the laser light absorbing component (for example, an adhesive to be described later), and it becomes easier to obtain the work handling sheet 1 having desired performance.
 また、条件1に関し、レーザー光吸収成分を後述する粘着性組成物に配合する場合には、当該粘着性組成物中のレーザー光吸収成分の含有量は、後述するアクリル系重合体(A)100質量部に対して、12質量部以上であることが好ましく、特に16質量部以上であることが好ましく、さらには20質量部以上であることが好ましい。レーザー光吸収成分の含有量がこのような範囲であることにより、樹脂層11がレーザー光を効率的に吸収し、それによって良好にフルアブレーションし易いものとなる。また、粘着性組成物中のレーザー光吸収成分の含有量は、後述するアクリル系重合体(A)100質量部に対して、72質量部以下であることが好ましく、特に60質量部以下であることが好ましく、さらには48質量部以下であることが好ましい。これにより、レーザー光吸収成分以外の成分(例えば、後述する粘着剤)の配合量を確保し易くなり、所望の性能を有するワークハンドリングシート1を得易いものとなる。 Regarding condition 1, when the laser light absorbing component is blended in the adhesive composition described later, the content of the laser light absorbing component in the adhesive composition is the acrylic polymer (A) 100 described later. It is preferably 12 parts by mass or more, particularly preferably 16 parts by mass or more, further preferably 20 parts by mass or more. When the content of the laser light absorbing component is in such a range, the resin layer 11 efficiently absorbs the laser light, thereby favorably facilitating full ablation. In addition, the content of the laser light absorbing component in the adhesive composition is preferably 72 parts by mass or less, particularly 60 parts by mass or less, relative to 100 parts by mass of the acrylic polymer (A) described later. is preferred, and more preferably 48 parts by mass or less. As a result, it becomes easier to secure the amount of components other than the laser light absorbing component (for example, an adhesive to be described later), and it becomes easier to obtain the work handling sheet 1 having desired performance.
 また、条件2を満たす場合には、樹脂層11中のレーザー光吸収成分の含有量をX質量%とし、樹脂層11の厚さをYμmとした場合に、XをYで除した値(X/Y)が、2.0以上であり、特に2.2以上であることが好ましく、さらには2.3以上であることが好ましい。上記値(X/Y)がこれらの範囲であることにより、樹脂層11がレーザー光を効率的に吸収し、それによって良好にフルアブレーションし易いものとなる。また、上記値(X/Y)は、60以下であることが好ましく、40以下であることがより好ましく、特に10以下であることが好ましく、さらには5以下であることが好ましい。これにより、レーザー光吸収成分以外の成分(例えば、後述する粘着剤)の配合量を確保し易くなり、所望の性能を有するワークハンドリングシート1を得易いものとなる。 Further, when the condition 2 is satisfied, the value obtained by dividing X by Y (X /Y) is 2.0 or more, preferably 2.2 or more, and more preferably 2.3 or more. When the above value (X/Y) is within these ranges, the resin layer 11 efficiently absorbs the laser light, thereby making it easier to favorably perform full ablation. The value (X/Y) is preferably 60 or less, more preferably 40 or less, particularly preferably 10 or less, and further preferably 5 or less. As a result, it becomes easier to secure the amount of components other than the laser light absorbing component (for example, an adhesive to be described later), and it becomes easier to obtain the work handling sheet 1 having desired performance.
(2)粘着剤
 前述した通り、本実施形態における樹脂層11は、レーザー光吸収成分に加えて、粘着剤を含むものであってもよい。この場合、樹脂層11は、レーザー光吸収成分を含有する粘着性組成物から形成されるものであることが好ましい。
(2) Adhesive As described above, the resin layer 11 in this embodiment may contain an adhesive in addition to the laser light absorbing component. In this case, the resin layer 11 is preferably formed from an adhesive composition containing a laser light absorbing component.
 上記粘着剤としては、ワーク小片等の被着体に対する十分な保持力(粘着力)を発揮することができる限り、特に限定されない。上記粘着剤の例としては、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ポリエステル系粘着剤、ポリビニルエーテル系粘着剤等が挙げられる。これらの中でも、所望の粘着力を発揮し易いという観点から、アクリル系粘着剤を使用することが好ましい。 The adhesive is not particularly limited as long as it can exhibit sufficient holding power (adhesive power) to adherends such as small pieces of work. Examples of the adhesives include acrylic adhesives, rubber adhesives, silicone adhesives, urethane adhesives, polyester adhesives, polyvinyl ether adhesives, and the like. Among these, it is preferable to use an acrylic pressure-sensitive adhesive from the viewpoint that it is easy to exhibit the desired adhesive strength.
 上記アクリル系粘着剤としては、アクリル系重合体(A)をベースポリマーとするアクリル系粘着剤が挙げられる。アクリル系重合体(A)の重量平均分子量(Mw)は、1万以上であることが好ましく、特に10万以上であることが好ましい。また、当該重量平均分子量(Mw)は、200万以下であることが好ましく、特に150万以下であることがより好ましい。アクリル系重合体(A)の重量平均分子量が1万以上であることで、得られる粘着力の凝集力を高め易くなり、分離したワーク小片への粘着剤残りを抑制し易くなる。また、重量平均分子量が200万以下であることで、安定した樹脂層11の塗膜を得易くなる。なお、本明細書における重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー法(GPC法)により測定した標準ポリスチレン換算の値である。 Examples of the acrylic pressure-sensitive adhesive include acrylic pressure-sensitive adhesives having an acrylic polymer (A) as a base polymer. The weight average molecular weight (Mw) of the acrylic polymer (A) is preferably 10,000 or more, particularly preferably 100,000 or more. Also, the weight average molecular weight (Mw) is preferably 2,000,000 or less, and more preferably 1,500,000 or less. When the weight-average molecular weight of the acrylic polymer (A) is 10,000 or more, it becomes easy to increase the cohesive force of the adhesive force to be obtained, and it becomes easy to suppress the adhesive residue on the separated work pieces. Further, when the weight average molecular weight is 2,000,000 or less, it becomes easier to obtain a stable coating film of the resin layer 11 . In addition, the weight average molecular weight (Mw) in this specification is the value of standard polystyrene conversion measured by the gel permeation chromatography method (GPC method).
 また、アクリル系重合体(A)のガラス転移温度(Tg)は、-70℃以上であることが好ましく、特に-60℃以上であることが好ましい。また、当該ガラス転移温度(Tg)は、20℃以下であることが好ましく、特に10℃以下であることが好ましい。アクリル系重合体(A)のガラス転移温度(Tg)が、上記範囲であることで、所望の凝集力を達成しながらも、所望の粘着力を実現し易くなる。 Further, the glass transition temperature (Tg) of the acrylic polymer (A) is preferably -70°C or higher, and particularly preferably -60°C or higher. Also, the glass transition temperature (Tg) is preferably 20° C. or lower, particularly preferably 10° C. or lower. When the glass transition temperature (Tg) of the acrylic polymer (A) is within the above range, it becomes easy to achieve desired cohesive strength and desired adhesive strength.
 上記アクリル系重合体(A)は、構成モノマーとして、少なくとも、(メタ)アクリル酸エステルモノマーを含有することが好ましく、また、後述する架橋剤(B)の官能基と反応し得る官能基(以下、「反応性官能基」ともいう)を有することが好ましい。 The acrylic polymer (A) preferably contains at least a (meth)acrylic acid ester monomer as a constituent monomer, and has a functional group (hereinafter referred to as , also referred to as a “reactive functional group”).
 上記(メタ)アクリル酸エステルモノマーとしては、具体的には、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、n-ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート等のアルキル基の炭素数が1~18のアルキル(メタ)アクリレート;シクロアルキル基の炭素数が1~18程度のシクロアルキル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イミド(メタ)アクリレートなどの環状骨格を有する(メタ)アクリレート;ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートなどの水酸基含有(メタ)アクリレート;グリシジル(メタ)アクリレート、β-メチルグリシジル(メタ)アクリレート、(3,4-エポキシシクロヘキシル)メチル(メタ)アクリレート、3-エポキシシクロ-2-ヒドロキシプロピル(メタ)アクリレートなどのエポキシ基含有(メタ)アクリレートが挙げられる。 Specific examples of the (meth)acrylate monomers include methyl (meth)acrylate, ethyl (meth)acrylate, propyl (meth)acrylate, butyl (meth)acrylate, pentyl (meth)acrylate, 2-ethylhexyl ( Number of carbon atoms in alkyl groups such as meth)acrylate, isooctyl (meth)acrylate, n-octyl (meth)acrylate, n-nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, lauryl (meth)acrylate, etc. Alkyl (meth)acrylates having 1 to 18 carbon atoms; Cycloalkyl (meth)acrylates having 1 to 18 carbon atoms in the cycloalkyl group, benzyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate , dicyclopentenyl (meth)acrylate, dicyclopentenyloxyethyl (meth)acrylate, imide (meth)acrylate and other (meth)acrylates having a cyclic skeleton; hydroxymethyl (meth)acrylate, 2-hydroxyethyl (meth)acrylate , 2-hydroxypropyl (meth)acrylate and other hydroxyl group-containing (meth)acrylates; glycidyl (meth)acrylate, β-methylglycidyl (meth)acrylate, (3,4-epoxycyclohexyl)methyl (meth)acrylate, 3-epoxy Examples include epoxy group-containing (meth)acrylates such as cyclo-2-hydroxypropyl (meth)acrylate.
 また、アクリル酸、メタクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレン、N-メチロールアクリルアミド等の(メタ)アクリル酸エステルモノマー以外のモノマーが共重合されていてもよい。これらは1種単独で用いてもよく、2種以上を併用してもよい。 Further, monomers other than (meth)acrylic acid ester monomers such as acrylic acid, methacrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, and N-methylolacrylamide may be copolymerized. These may be used individually by 1 type, and may use 2 or more types together.
 アクリル系重合体(A)は、反応性官能基を含有することにより、後述する架橋剤(B)の官能基と反応して三次元網目構造を形成し樹脂層11の凝集性を高め易くなる。アクリル系重合体(A)の反応性官能基としては、カルボキシル基、アミノ基、エポキシ基、水酸基等が挙げられるが、後述するように架橋剤として好ましく使用される有機多価イソシアネート化合物と選択的に反応させやすいことから、水酸基を含むことが好ましい。 Since the acrylic polymer (A) contains a reactive functional group, it reacts with the functional group of the cross-linking agent (B) described later to form a three-dimensional network structure, thereby making it easier to increase the cohesion of the resin layer 11. . Examples of the reactive functional group of the acrylic polymer (A) include carboxyl group, amino group, epoxy group, and hydroxyl group. Since it is easy to react with , it preferably contains a hydroxyl group.
 反応性官能基は、上述した水酸基含有(メタ)アクリレートやアクリル酸等の反応性官能基を有する単量体を用いてアクリル系重合体(A)を構成することで、アクリル系重合体(A)に導入できる。 The reactive functional group is obtained by forming the acrylic polymer (A) using a monomer having a reactive functional group such as the hydroxyl group-containing (meth)acrylate or acrylic acid described above. ).
 反応性官能基を有するモノマー(以下、反応基含有モノマーともいう。)のアクリル系重合体(A)の全構成モノマー中の割合は、0.3質量%以上であることが好ましく、特に0.5質量%以上であることが好ましい。また、上記割合は、40質量%以下であることが好ましく、特に20質量%以下であることが好ましい。反応基含有モノマーをこの範囲で含有することで、所望の凝集力を達成しながらも、所望の粘着力を実現し易くなる。 The proportion of the monomer having a reactive functional group (hereinafter also referred to as a reactive group-containing monomer) in the total monomers constituting the acrylic polymer (A) is preferably 0.3% by mass or more, particularly 0.3% by mass or more. It is preferably 5% by mass or more. Moreover, the above ratio is preferably 40% by mass or less, and particularly preferably 20% by mass or less. By containing the reactive group-containing monomer within this range, it becomes easier to achieve the desired adhesive strength while achieving the desired cohesive strength.
 また、アクリル系重合体(A)は、構成モノマーとして、上記したアルキル(メタ)アクリレートを含有することが好ましく、より好ましくはアルキル基の炭素数が1~10のアルキル(メタ)アクリレート、特に好ましくはアルキル基の炭素数が4~8のアルキル(メタ)アクリレートを含有することが好ましい。アクリル系重合体(A)が上記したアルキル(メタ)アクリレートを含有する場合、アルキル(メタ)アクリレートのアクリル系重合体(A)の全構成モノマー中の割合は、30質量%以上であることが好ましく、特に35質量%以上であることが好ましい。また、上記割合は、99質量%以下であることが好ましく、特に95質量%以下であることが好ましい。アルキル(メタ)アクリレートをこの範囲で含有することで、所望の凝集力を達成しながらも、所望の粘着力を実現し易くなる。 In addition, the acrylic polymer (A) preferably contains the above alkyl (meth)acrylate as a constituent monomer, more preferably an alkyl (meth)acrylate having an alkyl group having 1 to 10 carbon atoms, and particularly preferably an alkyl (meth)acrylate. preferably contains an alkyl (meth)acrylate having 4 to 8 carbon atoms in the alkyl group. When the acrylic polymer (A) contains the alkyl (meth)acrylate described above, the proportion of the alkyl (meth)acrylate in the total constituent monomers of the acrylic polymer (A) is 30% by mass or more. It is preferably 35% by mass or more, and particularly preferably 35% by mass or more. Moreover, the above ratio is preferably 99% by mass or less, and particularly preferably 95% by mass or less. By containing the alkyl (meth)acrylate within this range, it becomes easier to achieve the desired adhesive strength while achieving the desired cohesive strength.
 架橋剤(B)の使用は、樹脂層11の貯蔵弾性率を所望の範囲に調整し易いという観点から好ましい。架橋剤(B)としては、アクリル系重合体(A)等が有する反応性官能基との反応性を有する多官能性化合物を用いることができる。このような多官能性化合物の例としては、イソシアネート化合物、エポキシ化合物、アミン化合物、メラミン化合物、アジリジン化合物、ヒドラジン化合物、アルデヒド化合物、オキサゾリン化合物、金属アルコキシド化合物、金属キレート化合物、金属塩、アンモニウム塩、反応性フェノール樹脂等を挙げることができる。 The use of the cross-linking agent (B) is preferable from the viewpoint of facilitating adjustment of the storage elastic modulus of the resin layer 11 within a desired range. As the cross-linking agent (B), a polyfunctional compound having reactivity with the reactive functional groups of the acrylic polymer (A) or the like can be used. Examples of such polyfunctional compounds include isocyanate compounds, epoxy compounds, amine compounds, melamine compounds, aziridine compounds, hydrazine compounds, aldehyde compounds, oxazoline compounds, metal alkoxide compounds, metal chelate compounds, metal salts, ammonium salts, Reactive phenol resin etc. can be mentioned.
 架橋剤(B)の配合量は、アクリル系重合体(A)100質量部に対して、0.001質量部以上であることが好ましく、特に0.1質量部以上であることが好ましく、さらには0.2質量部以上であることが好ましい。また、架橋剤(B)の配合量は、アクリル系重合体(A)100質量部に対して、20質量部以下であることが好ましく、特に10質量部以下であることが好ましく、さらには5質量部以下であることが好ましい。 The amount of the cross-linking agent (B) is preferably 0.001 parts by mass or more, particularly preferably 0.1 parts by mass or more, relative to 100 parts by mass of the acrylic polymer (A). is preferably 0.2 parts by mass or more. In addition, the amount of the cross-linking agent (B) is preferably 20 parts by mass or less, particularly preferably 10 parts by mass or less, and further preferably 5 parts by mass with respect to 100 parts by mass of the acrylic polymer (A). It is preferably no more than parts by mass.
 なお、樹脂層11を構成する粘着剤は、活性エネルギー線硬化性を有する粘着剤であってもよい。このような活性エネルギー線硬化性粘着剤としては、公知のものを使用することができ、例えば国際公開第2018/084021号に開示されるものを使用することができる。 The adhesive constituting the resin layer 11 may be an adhesive having active energy ray curability. As such an active energy ray-curable pressure-sensitive adhesive, a known one can be used, for example, the one disclosed in International Publication No. 2018/084021 can be used.
 樹脂層11を形成するための粘着性組成物には、上述した成分に加えて、その他の添加剤を添加してもよい。当該添加剤の例としては、粘着付与剤、染料や顔料等の着色材料、難燃剤、フィラー、帯電防止剤等が挙げられる。なお、当該粘着性組成物は、ワーク小片の分離を良好に生じさせ易いという観点からは、ガス発生剤を含有しないことが好ましい。ガス発生剤を使用すると、樹脂層11全域でガスが発生することがある。その場合、意図した位置のみでフルアブレーションを生じさせて、そこに位置するワーク小片のみを分離させることが困難となり、ワーク小片の分離を良好に行うことが困難となる場合がある。 In addition to the components described above, other additives may be added to the adhesive composition for forming the resin layer 11 . Examples of such additives include tackifiers, coloring materials such as dyes and pigments, flame retardants, fillers, antistatic agents, and the like. The adhesive composition preferably does not contain a gas generating agent from the viewpoint that the work pieces are easily separated. When a gas generating agent is used, gas may be generated over the entire resin layer 11 . In that case, it may be difficult to cause full ablation only at the intended position and separate only the small work pieces located there, and it may be difficult to separate the small work pieces satisfactorily.
(3)樹脂層の厚さ
 本実施形態における樹脂層11の厚さは、1μm以上であることが好ましく、特に2μm以上であることが好ましく、さらには3μm以上が好ましい。樹脂層11の厚さが1μm以上であることで、良好なフルアブレーションを生じさせ易いものとなる。また、樹脂層11の厚さは、60μm以下であることが好ましく、特に40μm以下であることが好ましく、さらには20μm以下であることが好ましい。樹脂層11の厚さが60μm以下であることで、上述した条件2を満たし易いものとなる。
(3) Thickness of Resin Layer The thickness of the resin layer 11 in the present embodiment is preferably 1 μm or more, particularly preferably 2 μm or more, further preferably 3 μm or more. When the thickness of the resin layer 11 is 1 μm or more, it becomes easy to cause good full abrasion. Also, the thickness of the resin layer 11 is preferably 60 μm or less, particularly preferably 40 μm or less, further preferably 20 μm or less. When the thickness of the resin layer 11 is 60 μm or less, the condition 2 described above can be easily satisfied.
2.基材
 本実施形態における基材12は、その組成や物性について特に限定されない。ワークハンドリングシート1が所望の機能を発揮し易いという観点からは、基材12は、樹脂から構成されることが好ましい。基材12が樹脂から構成される場合、当該樹脂の例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリエチレン、ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテン、エチレン-ノルボルネン共重合体、ノルボルネン樹脂等のポリオレフィン系樹脂;エチレン-酢酸ビニル共重合体;エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸メチル共重合体、その他のエチレン-(メタ)アクリル酸エステル共重合体等のエチレン系共重合樹脂;ポリ塩化ビニル、塩化ビニル共重合体等のポリ塩化ビニル系樹脂;(メタ)アクリル酸エステル共重合体;ポリウレタン;ポリイミド;ポリスチレン;ポリカーボネート;フッ素樹脂などが挙げられる。また、基材12を構成する樹脂は、上述した樹脂を架橋したものや、上述した樹脂のアイオノマーといった変性したものであってもよい。また、基材12は、上述した樹脂からなる単層のフィルムであってもよく、あるいは、当該フィルムが複数積層されてなる積層フィルムであってもよい。この積層フィルムにおいて、各層を構成する材料は同種であってもよく、異種であってもよい。
2. Substrate The composition and physical properties of the substrate 12 in the present embodiment are not particularly limited. From the viewpoint that the work handling sheet 1 can easily exhibit the desired functions, the base material 12 is preferably made of resin. When the base material 12 is made of a resin, examples of the resin include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; polyethylene, polypropylene, polybutene, polybutadiene, polymethylpentene, and ethylene-norbornene. Polymer, polyolefin resin such as norbornene resin; ethylene-vinyl acetate copolymer; ethylene-(meth)acrylic acid copolymer, ethylene-(meth)methyl acrylate copolymer, other ethylene-(meth)acryl Ethylene-based copolymer resins such as acid ester copolymers; polyvinyl chloride-based resins such as polyvinyl chloride and vinyl chloride copolymers; (meth)acrylic acid ester copolymers; polyurethanes; polyimides; etc. Further, the resin constituting the base material 12 may be a crosslinked resin or a modified ionomer of the above resin. Further, the substrate 12 may be a single-layer film made of the resin described above, or may be a laminated film formed by laminating a plurality of such films. In this laminated film, the materials constituting each layer may be of the same type or of different types.
 本実施形態における基材12の表面には、樹脂層11に対する密着性を向上させる目的で、酸化法や凹凸化法などによる表面処理、あるいはプライマー処理を施してもよい。上記酸化法としては、例えばコロナ放電処理、プラズマ放電処理、クロム酸化処理(湿式)、火炎処理、熱風処理、オゾン、紫外線照射処理などが挙げられ、また、凹凸化法としては、例えばサンドブラスト法、溶射処理法などが挙げられる。 For the purpose of improving adhesion to the resin layer 11, the surface of the base material 12 in this embodiment may be subjected to surface treatment such as an oxidation method or roughening method, or a primer treatment. Examples of the oxidation method include corona discharge treatment, plasma discharge treatment, chromium oxidation treatment (wet), flame treatment, hot air treatment, ozone, and ultraviolet irradiation treatment. A thermal spraying method and the like can be mentioned.
 本実施形態における基材12は、着色剤、難燃剤、可塑剤、帯電防止剤、滑剤、フィラー等の各種添加剤を含有してもよい。また、樹脂層11が、活性エネルギー線により硬化する材料を含む場合、基材12は活性エネルギー線に対する透過性を有することが好ましい。 The base material 12 in this embodiment may contain various additives such as colorants, flame retardants, plasticizers, antistatic agents, lubricants, and fillers. Moreover, when the resin layer 11 contains a material that is cured by active energy rays, the substrate 12 preferably has transparency to the active energy rays.
 本実施形態における基材12の製造方法は、樹脂から基材12を製造するものである限り特に限定されない。例えば、Tダイ法、丸ダイ法等の溶融押出法;カレンダー法;乾式法、湿式法等の溶液法等によって、樹脂をシート状に成形することで製造することができる。 The manufacturing method of the base material 12 in this embodiment is not particularly limited as long as the base material 12 is manufactured from resin. For example, it can be produced by forming a resin into a sheet by a melt extrusion method such as a T-die method or a round die method; a calendering method; or a solution method such as a dry method or a wet method.
 本実施形態における基材12の厚さは、10μm以上であることが好ましく、特に30μm以上であることが好ましく、さらには50μm以上であることが好ましい。また、基材12厚さは、500μm以下であることが好ましく、300μm以下であることがより好ましく、特に200μm以下であることが好ましく、さらには150μm以下であることが好ましく、100μm以下であることが最も好ましい。基材12の厚さが上記範囲であることで、ワークハンドリングシート1が剛性と柔軟性とを所定のバランスで備えるものとなり、ワーク小片の良好なハンドリングを行い易いものとなる。 The thickness of the base material 12 in this embodiment is preferably 10 μm or more, particularly preferably 30 μm or more, further preferably 50 μm or more. The thickness of the base material 12 is preferably 500 μm or less, more preferably 300 μm or less, particularly preferably 200 μm or less, further preferably 150 μm or less, and 100 μm or less. is most preferred. When the thickness of the base material 12 is within the above range, the work handling sheet 1 has rigidity and flexibility in a predetermined balance, and the small work piece can be easily handled well.
3.剥離シート
 本実施形態に樹脂層11が、それを構成する成分の1つとして粘着剤を含む場合、樹脂層11における基材12とは反対側の面をワーク小片に貼付するまでの間、当該面を保護する目的で、当該面に剥離シートが積層されていてもよい。
3. Release sheet In the present embodiment, when the resin layer 11 contains an adhesive as one of its constituent components, the surface of the resin layer 11 opposite to the base material 12 is adhered to the work piece. A release sheet may be laminated on the surface for the purpose of protecting the surface.
 上記剥離シートの構成は任意であり、プラスチックフィルムを剥離剤等により剥離処理したものが例示される。当該プラスチックフィルムの具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、およびポリプロピレンやポリエチレン等のポリオレフィンフィルムが挙げられる。上記剥離剤としては、シリコーン系、フッ素系、長鎖アルキル系等を用いることができ、これらの中でも、安価で安定した性能が得られるシリコーン系が好ましい。 The configuration of the release sheet is arbitrary, and examples thereof include plastic films that have undergone a release treatment using a release agent or the like. Specific examples of the plastic film include polyester films such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, and polyolefin films such as polypropylene and polyethylene. As the release agent, a silicone-based release agent, a fluorine-based release agent, a long-chain alkyl-based release agent, or the like can be used.
 上記剥離シートの厚さについては特に制限はなく、例えば、20μm以上、250μm以下であってよい。 The thickness of the release sheet is not particularly limited, and may be, for example, 20 μm or more and 250 μm or less.
4.その他の構成
 本実施形態に係るワークハンドリングシート1では、樹脂層11における基材12とは反対側の面に接着剤層が積層されていてもよい。当該シートでは、接着剤層における樹脂層11とは反対側の面にワークを貼付し、当該ワークとともに接着剤層をダイシングすることで、個片化された接着剤層が積層されたワーク小片を得ることができる。当該チップは、この個片化された接着剤層によって、当該ワーク小片が搭載される対象に対して容易に固定することが可能となる。上述した接着剤層を構成する材料としては、熱可塑性樹脂と低分子量の熱硬化性接着成分とを含有するものや、Bステージ(半硬化状)の熱硬化型接着成分を含有するもの等を用いることが好ましい。
4. Other Configurations In the work handling sheet 1 according to the present embodiment, an adhesive layer may be laminated on the surface of the resin layer 11 opposite to the substrate 12 . In the sheet, a workpiece is attached to the surface of the adhesive layer opposite to the resin layer 11, and the adhesive layer is diced together with the workpiece to obtain small workpieces laminated with the individualized adhesive layers. Obtainable. The chip can be easily fixed to the object on which the work piece is mounted by the individualized adhesive layer. Examples of the material constituting the adhesive layer include those containing a thermoplastic resin and a low-molecular-weight thermosetting adhesive component, those containing a B-stage (semi-cured) thermosetting adhesive component, and the like. It is preferable to use
 また、本実施形態に係るワークハンドリングシート1では、樹脂層11における基材12とは反対側の面に保護膜形成層が積層されていてもよい。このようなシートでは、保護膜形成層における樹脂層11とは反対側の面にワークを貼付し、当該ワークとともに保護膜形成層をダイシングすることで、個片化された保護膜形成層が積層されたワーク小片を得ることができる。当該ワークとしては、片面に回路が形成されたものが使用されることが好ましく、この場合、通常、当該回路が形成された面とは反対側の面に保護膜形成層が積層される。個片化された保護膜形成層は、所定のタイミングで硬化させることで、十分な耐久性を有する保護膜をワーク小片に形成することができる。保護膜形成層は、未硬化の硬化性接着剤からなることが好ましい。 In addition, in the work handling sheet 1 according to the present embodiment, a protective film-forming layer may be laminated on the surface of the resin layer 11 opposite to the substrate 12 . In such a sheet, a work is attached to the surface of the protective film-forming layer opposite to the resin layer 11, and the protective film-forming layer is diced together with the work, so that the individualized protective film-forming layers are laminated. A hardened work piece can be obtained. As the work, one having a circuit formed on one side is preferably used. In this case, a protective film-forming layer is usually laminated on the side opposite to the side on which the circuit is formed. By curing the individualized protective film-forming layer at a predetermined timing, a protective film having sufficient durability can be formed on the work pieces. The protective film-forming layer is preferably made of an uncured curable adhesive.
5.ワークハンドリングシートの製造方法
 本実施形態に係るワークハンドリングシート1の製造方法は特に限定されない。例えば、基材12上に樹脂層11を直接形成してもよく、あるいは、工程シート上で樹脂層11を形成した後、当該樹脂層11を基材12上に転写してもよい。
5. Method for Manufacturing Work Handling Sheet A method for manufacturing the work handling sheet 1 according to the present embodiment is not particularly limited. For example, the resin layer 11 may be directly formed on the substrate 12, or the resin layer 11 may be formed on a process sheet and then transferred onto the substrate 12.
 樹脂層11が、それを構成する成分の1つとして粘着剤を含む場合、当該樹脂層11の形成は、公知の方法により行うことができる。例えば、樹脂層11を形成するための粘着性組成物、および所望によりさらに溶媒または分散媒を含有する塗布液を調製する。そして、基材の片面または剥離シートの剥離性を有する面(以下、「剥離面」という場合がある。)に上記塗布液を塗布する。続いて、得られた塗膜を乾燥させることで、樹脂層11を形成することができる。 When the resin layer 11 contains an adhesive as one of its constituent components, the resin layer 11 can be formed by a known method. For example, a coating liquid containing an adhesive composition for forming the resin layer 11 and optionally a solvent or a dispersion medium is prepared. Then, the above coating liquid is applied to one side of the base material or the releasable side of the release sheet (hereinafter sometimes referred to as "release side"). Subsequently, the resin layer 11 can be formed by drying the obtained coating film.
 上述した塗布液の塗布は公知の方法により行うことができ、例えば、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等により行うことができる。なお、塗布液は、塗布を行うことが可能であればその性状は特に限定されず、樹脂層11を形成するための成分を溶質として含有する場合もあれば、分散質として含有する場合もある。また、剥離シート上に樹脂層11を形成した場合、当該剥離シートは工程材料として剥離してもよいし、被着体に貼付するまでの間、樹脂層11を保護していてもよい。 The application of the coating liquid described above can be performed by a known method, for example, bar coating, knife coating, roll coating, blade coating, die coating, gravure coating, or the like. The properties of the coating liquid are not particularly limited as long as it can be applied, and the coating liquid may contain components for forming the resin layer 11 as solutes or dispersoids in some cases. . Further, when the resin layer 11 is formed on the release sheet, the release sheet may be released as a process material, or may protect the resin layer 11 until it is attached to an adherend.
 樹脂層11を形成するための粘着性組成物が前述した架橋剤を含有する場合には、上記の乾燥の条件(温度、時間など)を変えることにより、または加熱処理を別途設けることにより、塗膜内のポリマー成分と架橋剤との架橋反応を進行させ、樹脂層11内に所望の存在密度で架橋構造を形成することが好ましい。さらに、上述した架橋反応を十分に進行させるために、ワークハンドリングシート1の完成後、例えば23℃、相対湿度50%の環境に数日間静置するといった養生を行ってもよい。 When the adhesive composition for forming the resin layer 11 contains the above-described cross-linking agent, the drying conditions (temperature, time, etc.) described above may be changed, or heat treatment may be performed separately. It is preferable to promote a cross-linking reaction between the polymer component in the film and the cross-linking agent to form a cross-linked structure with a desired existence density in the resin layer 11 . Furthermore, in order to allow the cross-linking reaction to proceed sufficiently, after the work handling sheet 1 is completed, it may be cured by leaving it in an environment of, for example, 23° C. and a relative humidity of 50% for several days.
6.ワークハンドリングシートの使用方法
 本実施形態に係るワークハンドリングシート1は、ワーク小片の取り扱いのために好適に使用することができる。前述した通り、本実施形態に係るワークハンドリングシート1では、樹脂層11が、レーザー光の照射によって効率的にフルアブレーションするものであるため、樹脂層11上に保持されたワーク小片を高い精度で所定の位置に向けて分離することができる。
6. Method of Using Work Handling Sheet The work handling sheet 1 according to this embodiment can be suitably used for handling small pieces of work. As described above, in the work handling sheet 1 according to the present embodiment, the resin layer 11 is efficiently fully ablated by laser light irradiation, so that the small work piece held on the resin layer 11 can be removed with high precision. It can be separated towards a predetermined position.
 本実施形態に係るワークハンドリングシート1の使用方法の一例としては、樹脂層11において局所的に生じさせたフルアブレーションによって、樹脂層11における基材12とは反対の面上に保持された複数のワーク小片のうちの任意のワーク小片を、樹脂層11から選択的に分離するという使用方法が挙げられる。 As an example of a method of using the work handling sheet 1 according to the present embodiment, a plurality of ablation held on the surface of the resin layer 11 opposite to the base material 12 by full abrasion locally generated in the resin layer 11 A method of use is to selectively separate any one of the small work pieces from the resin layer 11 .
 上記使用方法において、樹脂層11上に保持された複数のワーク小片は、樹脂層11における基材12とは反対の面上に保持されたワーク(ワーク小片の材料となるもの)を当該面上において個片化することで得られたものであってもよい。すなわち、ワーク小片は、樹脂層11上にてワークをダイシングすることで得られたものであってもよい。あるいは、ワーク小片は、本実施形態に係るワークハンドリングシート1とは独立して形成されたものを、樹脂層11上に載置されたものであってもよい。 In the method of use described above, the plurality of small work pieces held on the resin layer 11 are arranged so that the work (material of the small work pieces) held on the surface of the resin layer 11 opposite to the base material 12 is placed on the surface of the resin layer 11. It may be obtained by singulating in. That is, the work piece may be obtained by dicing the work on the resin layer 11 . Alternatively, the work piece may be formed independently of the work handling sheet 1 according to the present embodiment and placed on the resin layer 11 .
 なお、本実施形態に係るワークハンドリングシート1が前述した接着剤層や保護膜形成層を備える場合には、これらの層とワークとを樹脂層11上にてダイシングすることが好ましい。これにより、これらの層が個片化されてなるものが積層されたワーク小片を得ることができる。 In addition, when the work handling sheet 1 according to the present embodiment includes the adhesive layer and the protective film forming layer described above, it is preferable to dice these layers and the work on the resin layer 11 . As a result, it is possible to obtain workpiece pieces in which these layers are separated into individual pieces and laminated.
 本実施形態におけるワーク小片の形状やサイズについては特に限定されないものの、サイズに関し、ワーク小片は、平面視したときにおける面積が10μm以上であることが好ましく、特に100μm以上であることが好ましい。また、ワーク小片は、平面視したときにおける面積が1mm以下であることが好ましく、特に0.25mm以下であることが好ましい。また、ワーク小片の寸法としては、ワーク小片が矩形である場合、ワーク小片の最小の一辺が、2μm以上であることが好ましく、特に5μm以上であることが好ましく、さらには10μm以上であることが好ましい。また、上記最小の一辺は、1mm以下であることが好ましく、特に0.5mm以下であることが好ましい。矩形のワーク小片の寸法の具体例としては、2μm×5μm、10μm×10μm、0.5mm×0.5mm、1mm×1mm等が挙げられる。本実施形態に係るワークハンドリングシート1は、このような微細なワーク小片、特に、ニードルの突き上げによるシートからの分離が困難な微細なワーク小片であっても良好に取り扱うことができる。その一方で、本実施形態に係るワークハンドリングシート1は、面積が1mmを超えるもの(例えば1mm~2000mm)や、厚さが1~10000μmのもの(例えば10~1000μm)といった比較的大きなサイズのワーク小片についても良好に取り扱うことができる。 Although the shape and size of the work piece in the present embodiment are not particularly limited, the work piece preferably has an area of 10 μm 2 or more, particularly 100 μm 2 or more, when viewed from above. In addition, the work piece preferably has an area of 1 mm 2 or less, particularly preferably 0.25 mm 2 or less when viewed from above. As for the size of the work piece, when the work piece is rectangular, the minimum side of the work piece is preferably 2 μm or more, particularly preferably 5 μm or more, and further preferably 10 μm or more. preferable. Moreover, the minimum side is preferably 1 mm or less, and particularly preferably 0.5 mm or less. Specific examples of the dimensions of the rectangular work piece include 2 μm×5 μm, 10 μm×10 μm, 0.5 mm×0.5 mm, 1 mm×1 mm, and the like. The work handling sheet 1 according to the present embodiment can satisfactorily handle such fine work pieces, especially fine work pieces that are difficult to separate from the sheet by pushing up a needle. On the other hand, the work handling sheet 1 according to the present embodiment has a relatively large area, such as one having an area exceeding 1 mm 2 (for example, 1 mm 2 to 2,000 mm 2 ) or having a thickness of 1 to 10,000 μm (for example, 10 to 1,000 μm). Work piece pieces of any size can also be handled well.
 ワーク小片としては、半導体部品や半導体装置等が挙げられ、より具体的には、マイクロ発光ダイオード、パワーデバイス、MEMS(Micro Electro Mechanical Systems)等が挙げられる。これらの中でも、ワーク小片は発光ダイオードであることが好適であり、特にミニ発光ダイオードおよびマイクロ発光ダイオードから選択される発光ダイオードであることが好ましい。近年、ミニ発光ダイオードやマイクロ発光ダイオードが高密度に配置された装置の開発が検討されており、そのような装置の製造においては、これらの発光ダイオードを高い精度で取り扱うことが可能な本実施形態に係るワークハンドリングシート1が非常に適している。 Examples of small work pieces include semiconductor parts and semiconductor devices, and more specifically, micro light-emitting diodes, power devices, MEMS (Micro Electro Mechanical Systems), and the like. Among these, the work pieces are preferably light emitting diodes, and particularly preferably light emitting diodes selected from mini light emitting diodes and micro light emitting diodes. In recent years, the development of devices in which mini light emitting diodes and micro light emitting diodes are densely arranged has been studied. is very suitable.
 以下に、ワークハンドリングシート1の具体的な使用例として、デバイス製造方法を図2に基づいて説明する。当該デバイス製造方法は、準備工程(図2(a))、配置工程(図2(b))および分離工程(図2(c)および(d))という3つの工程を少なくとも備える。 As a specific usage example of the work handling sheet 1, a device manufacturing method will be described below with reference to FIG. The device manufacturing method includes at least three steps: a preparation step (FIG. 2(a)), an arrangement step (FIG. 2(b)), and a separation step (FIGS. 2(c) and (d)).
 準備工程においては、図2(a)に示すように、本実施形態に係るワークハンドリングシート1における、樹脂層11側の面上に複数のワーク小片2が保持されてなる積層体を準備する。当該積層体は、別途作製したワーク小片2をワークハンドリングシート1上に載置することで準備してもよく、あるいは、樹脂層11側の面上に保持されたワークを当該面上において個片化すること(すなわちダイシングすること)で準備してもよい。当該ダイシングは、公知の方法で行うことができる。 In the preparation process, as shown in FIG. 2(a), a laminate is prepared in which a plurality of small work pieces 2 are held on the resin layer 11 side surface of the work handling sheet 1 according to the present embodiment. The laminate may be prepared by placing a separately prepared work piece 2 on the work handling sheet 1, or a work held on the surface of the resin layer 11 side may be individually separated on the surface. may be prepared by slicing (ie, dicing). The dicing can be performed by a known method.
 ワーク小片2の形状やサイズは、前述した通り、特に限定はなく、好ましいサイズも前述した通りである。ワーク小片2の具体例についても、前述した通り、半導体部品や半導体装置等が挙げられ、特に、ミニ発光ダイオードおよびマイクロ発光ダイオードといった発光ダイオードが挙げられる。 The shape and size of the work piece 2 are not particularly limited as described above, and the preferred size is also as described above. Specific examples of the workpiece 2 also include, as described above, semiconductor components and semiconductor devices, and particularly light-emitting diodes such as mini light-emitting diodes and micro light-emitting diodes.
 続く配置工程においては、図2(b)に示すように、ワーク小片2を受容可能な対象物3に対して、上記積層体におけるワーク小片2側の面が向かい合うように上記積層体を配置する。対象物3の例は、製造するデバイスに応じて適宜決定されるものの、ワーク小片2が発光ダイオードである場合には、対象物3の具体例としては、基板、シート、リール等が挙げられ、特に配線が設けられた配線基板が好適に使用される。 In the subsequent arranging step, as shown in FIG. 2B, the laminate is arranged so that the surface of the laminate on the side of the small work piece 2 faces the object 3 that can receive the small work piece 2. . Examples of the object 3 are appropriately determined according to the device to be manufactured. In particular, a wiring substrate provided with wiring is preferably used.
 その後、分離工程において、まず図2(c)に示すように、上記積層体における樹脂層11における、少なくとも1つのワーク小片2が貼付されている位置に対し、レーザー光を照射する。当該照射は、ワーク小片2が貼付されている複数の位置に対して同時に行ってもよく、あるいはそれらの位置に対して順次行ってもよい。レーザー光の照射条件としては、フルアブレーションを生じさせることが可能である限り限定されない。照射のための装置としては、公知のものを使用することができる。 After that, in the separation step, first, as shown in FIG. 2(c), the position of the resin layer 11 of the laminate to which at least one work piece 2 is attached is irradiated with a laser beam. The irradiation may be performed simultaneously on a plurality of positions where the work pieces 2 are attached, or may be performed sequentially on those positions. The laser light irradiation conditions are not limited as long as full ablation can be caused. As a device for irradiation, a known device can be used.
 上記照射により、図2(d)に示されるように、樹脂層11における照射された位置においてフルアブレーションを生じさせることができる。具体的には、レーザー光の照射によって、樹脂層11を構成していた成分が蒸発または揮発し、照射された位置における樹脂層11が消失する。これにより、ワーク小片2をワークハンドリングシート1側に保持するものがなくなり、対象物3に向けて落下する。その結果、当該フルアブレーションが生じた位置に存在するワーク小片2’を、対象物3上に載置することができる。 The above irradiation can cause full ablation at the irradiated position in the resin layer 11, as shown in FIG. 2(d). Specifically, the laser light irradiation evaporates or volatilizes the components constituting the resin layer 11, and the resin layer 11 at the irradiated position disappears. As a result, there is nothing to hold the small work piece 2 on the side of the work handling sheet 1 , and the small work piece 2 falls toward the object 3 . As a result, the work piece 2 ′ existing at the position where the full ablation has occurred can be placed on the object 3 .
 なお、本実施形態における樹脂層11が、前述した活性エネルギー線硬化性粘着剤から構成される粘着剤層である場合、上述したデバイス製造方法は、次の硬化工程をさらに備えていてもよい。すなわち、樹脂層11側の面上に複数のワーク小片2が保持されてなる積層体における樹脂層11の全体に対し、または、上記積層体における樹脂層11における、少なくとも1つのワーク小片2が貼付されている位置に対し、活性エネルギー線を照射することによって、樹脂層11を全体的または局所的に硬化させる硬化工程を備えていてもよい。この硬化工程は、上述した分離工程の前に行ってもよく、または、上述した分離工程と同時に行ってもよい。 In addition, when the resin layer 11 in this embodiment is an adhesive layer composed of the active energy ray-curable adhesive described above, the device manufacturing method described above may further include the following curing step. That is, at least one work piece 2 is attached to the entire resin layer 11 in the laminate in which a plurality of work pieces 2 are held on the surface on the resin layer 11 side, or in the resin layer 11 in the laminate. A curing step may be provided in which the resin layer 11 is wholly or locally cured by irradiating active energy rays to the positions where the resin layer 11 is formed. This curing step may be performed prior to the separation step described above, or may be performed simultaneously with the separation step described above.
 硬化工程における活性エネルギー線の照射は、公知の手法を用いて行ってよく、例えば、光源として高圧水銀ランプや紫外線LEDを備える紫外線照射装置や、分離工程でも使用されるレーザー光照射装置を使用してもよい。硬化工程と分離工程とを同時に行う場合には、レーザー光照射装置を用いたレーザー光4の照射を、活性エネルギー線の照射を兼ねたものとして行うことが好ましい。 Irradiation of active energy rays in the curing step may be performed using a known technique, for example, an ultraviolet irradiation device equipped with a high-pressure mercury lamp or an ultraviolet LED as a light source, or a laser light irradiation device used in the separation step. may When the curing process and the separation process are performed simultaneously, it is preferable to perform the irradiation with the laser light 4 using the laser light irradiation device in combination with the irradiation with the active energy ray.
 上述したデバイス製造方法は、準備工程、配置工程、硬化工程および分離工程以外の工程を備えていてもよい。例えば、準備工程と分離工程との間の任意のタイミングにおいて、グラインド、ダイボンディング、ワイヤーボンディング、モールディング、検査、転写工程等を行っても良い。 The device manufacturing method described above may include processes other than the preparation process, placement process, curing process, and separation process. For example, grinding, die bonding, wire bonding, molding, inspection, transfer process, etc. may be performed at any timing between the preparation process and the separation process.
 以上説明したデバイス製造方法によれば、使用するワーク小片2や対象物3を適宜選択することで様々なデバイスを製造することができる。例えば、ワーク小片2として、ミニ発光ダイオードおよびマイクロ発光ダイオードから選択される発光ダイオードを用いた場合には、そのような発光ダイオードを複数備える発光装置を製造することができ、より具体的にはディスプレイを製造することができる。特に、マイクロ発光ダイオードを画素として備えるディスプレイや、複数のミニ発光ダイオードをバックライトとして備えるディスプレイを製造することができる。 According to the device manufacturing method described above, various devices can be manufactured by appropriately selecting the work piece 2 and the target object 3 to be used. For example, when a light emitting diode selected from mini light emitting diodes and micro light emitting diodes is used as the work piece 2, a light emitting device comprising a plurality of such light emitting diodes can be manufactured, more specifically a display can be manufactured. In particular, it is possible to produce displays with micro LEDs as pixels and displays with a plurality of mini LEDs as backlight.
 また、本実施形態に係るワークハンドリングシート1は、当該シート上に設けられた複数のワーク小片2のうち、所定のワーク小片2を選択的に除去する方法にも使用することができる。 In addition, the work handling sheet 1 according to this embodiment can also be used for a method of selectively removing a predetermined small work piece 2 out of a plurality of small work pieces 2 provided on the sheet.
 例えば、本実施形態に係るワークハンドリングシート1上にて複数の発光ダイオード等を製造した後、当該シート上にて発光ダイオードの検査を行う。そこで不良品と確認された発光ダイオードのみについて、フルアブレーションを生じさせてワークハンドリングシート1から脱離させ、除去することができる。 For example, after manufacturing a plurality of light-emitting diodes on the work handling sheet 1 according to this embodiment, the light-emitting diodes are inspected on the sheet. Therefore, only the light-emitting diodes confirmed to be defective can be detached and removed from the work handling sheet 1 by causing full abrasion.
 さらに、それら良品の集合を、ワークハンドリングシート1から出荷用シートに転写することもできる。このとき、樹脂層11が前述した活性エネルギー線硬化性粘着剤から構成される場合には、当該樹脂層11に対して活性エネルギー線を照射することで、ワークハンドリングシート1の発光ダイオードに対する粘着力を低下させて、良品の集合を出荷用シートに良好に転写することができる。その後、不良品が除去された位置には、別途作製した良品を再配置することで、良品のみが設けられたワークハンドリングシート1を得ることもできる。 Furthermore, it is also possible to transfer the set of good products from the work handling sheet 1 to the shipping sheet. At this time, when the resin layer 11 is composed of the active energy ray-curable adhesive described above, by irradiating the resin layer 11 with an active energy ray, the adhesive strength of the work handling sheet 1 to the light-emitting diode is increased. can be reduced to allow good collections to transfer well to shipping sheets. After that, by rearranging a separately manufactured non-defective product in the position where the defective product has been removed, it is possible to obtain the work handling sheet 1 on which only the non-defective product is provided.
 上記のような、フルアブレーションによって不良品を除去する方法では、シートのエキスパンドおよび不良品のピックアップを行う必要がないため、発光ダイオードの間隔の変更や、位置のズレが生じ難くい。そのため、出荷用シートに対して良好に転写し易いものとなる。 With the above method of removing defective products by full ablation, there is no need to expand the sheet or pick up defective products, so it is difficult to change the spacing of the light-emitting diodes or cause misalignment. As a result, it can be easily and satisfactorily transferred to the shipping sheet.
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiments described above are described to facilitate understanding of the present invention, and are not described to limit the present invention. Therefore, each element disclosed in the above embodiments is meant to include all design changes and equivalents that fall within the technical scope of the present invention.
 例えば、本実施形態に係るワークハンドリングシート1における樹脂層11と基材12との間、または基材12における樹脂層11とは反対側の面には、他の層が積層されていてもよい。当該他の層の具体例としては、粘着剤層が挙げられる。この場合、当該粘着剤層側の面を支持台(ガラス板等の透明基板)に貼付した状態で、上述した分離工程等を行うことができる。 For example, another layer may be laminated between the resin layer 11 and the base material 12 in the work handling sheet 1 according to the present embodiment, or on the surface of the base material 12 opposite to the resin layer 11. . A specific example of the other layer is an adhesive layer. In this case, the above-described separation step and the like can be performed in a state in which the adhesive layer side surface is adhered to a support base (a transparent substrate such as a glass plate).
 上記粘着剤層を構成する粘着剤としては、特に限定されないものの、活性エネルギー線を吸収し難く且つ活性エネルギー線を遮断し難いものが好ましい。この場合、当該粘着剤層を介してレーザー光を照射する場合に、当該レーザー光が樹脂層11に到達し易くなり、良好なフルアブレーションを生じさせ易くなる。具体的には、上記粘着剤層を構成する粘着剤として、活性エネルギー線硬化性を有しない粘着剤を使用することが好ましく、特に活性エネルギー線硬化性成分を含有しない粘着剤を使用することが好ましい。活性エネルギー線硬化性を有しない粘着剤を使用することにより、上記レーザー光を照射した場合であっても上記粘着剤層が硬化することがなく、それにより透明基板からのワークハンドリングシート1の意図しない剥離を防ぐことも可能となる。上記粘着剤層の厚さとしては、特に限定されないものの、例えば、5~50μmであることが好ましい。 The adhesive that constitutes the adhesive layer is not particularly limited, but one that is difficult to absorb active energy rays and difficult to block active energy rays is preferable. In this case, when laser light is irradiated through the pressure-sensitive adhesive layer, the laser light easily reaches the resin layer 11, and good full abrasion is likely to occur. Specifically, as the adhesive constituting the adhesive layer, it is preferable to use an adhesive that does not have active energy ray-curable properties, and in particular, an adhesive that does not contain an active energy ray-curable component is preferably used. preferable. By using an adhesive that does not have active energy ray curability, the adhesive layer does not harden even when irradiated with the laser beam, thereby making the work handling sheet 1 from a transparent substrate. It is also possible to prevent peeling that does not occur. Although the thickness of the pressure-sensitive adhesive layer is not particularly limited, it is preferably 5 to 50 μm, for example.
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。 Although the present invention will be described in more detail with reference to examples and the like, the scope of the present invention is not limited to these examples and the like.
〔実施例1〕
(1)粘着性組成物の調製
 アクリル酸2-エチルヘキシル70質量部と、アクリル酸2-ヒドロキシエチル30質量部とを、溶液重合法により重合させて、アクリル系重合体を得た。このアクリル系重合体の重量平均分子量(Mw)を後述の方法によって測定したところ、80万であった。
[Example 1]
(1) Preparation of Adhesive Composition 70 parts by mass of 2-ethylhexyl acrylate and 30 parts by mass of 2-hydroxyethyl acrylate were polymerized by a solution polymerization method to obtain an acrylic polymer. When the weight average molecular weight (Mw) of this acrylic polymer was measured by the method described later, it was 800,000.
 上記で得られたアクリル系重合体100質量部(固形分換算,以下同じ)と、架橋剤としてのトリメチロールプロパン変性トリレンジイソシアネート(東ソー社製,商品名「コロネートL」)1.5質量部と、レーザー光吸収成分としてのトリス[2,4,6-[2-{4-(オクチル-2-メチルエタノエート)オキシ-2-ヒドロキシフェニル}]-1,3,5-トリアジン(ヒドロキシフェニルトリアジン系紫外線吸収剤,BASF社製,製品名「Tinuvin477」)5質量部とを溶媒中で混合し、粘着性組成物の塗布液を得た。 100 parts by mass of the acrylic polymer obtained above (in terms of solid content, hereinafter the same), and 1.5 parts by mass of trimethylolpropane-modified tolylene diisocyanate (manufactured by Tosoh Corporation, trade name "Coronate L") as a cross-linking agent and tris[2,4,6-[2-{4-(octyl-2-methylethanoate)oxy-2-hydroxyphenyl}]-1,3,5-triazine (hydroxyphenyl 5 parts by mass of a triazine-based ultraviolet absorber, manufactured by BASF, product name "Tinuvin 477") were mixed in a solvent to obtain a coating liquid of an adhesive composition.
(2)ワークハンドリングシートの作製
 基材としての、片面が易接着処理されたポリエチレンテレフタレートフィルム(東洋紡製,製品名「コスモシャイン A4100」,厚さ:50μm)における易接着処理面に対して、上記工程(1)で得られた粘着性組成物の塗布液を塗布し、得られた塗膜を加熱により乾燥させた。これにより、基材上に厚さ2μmの樹脂層(粘着剤層)を形成した。
(2) Preparation of work handling sheet As a base material, the above-mentioned The coating liquid of the adhesive composition obtained in step (1) was applied, and the obtained coating film was dried by heating. Thereby, a resin layer (adhesive layer) having a thickness of 2 μm was formed on the substrate.
 続いて、樹脂層における基材とは反対の面側と、厚さ38μmのポリエチレンテレフタレートフィルムの片面にシリコーン系の剥離剤層が形成されてなる剥離シート(リンテック社製,製品名「SP-PET381031」)の剥離面と貼り合わせた。これにより、剥離シート、樹脂層および基材が順に積層されてなるワークハンドリングシートを得た。 Subsequently, a release sheet (manufactured by Lintec Co., Ltd., product name "SP-PET381031 ”). As a result, a work handling sheet was obtained in which the release sheet, the resin layer and the substrate were laminated in order.
 なお、形成された樹脂層中のレーザー光吸収成分の含有量を算出すると、4.69質量%であった。また、樹脂層中のレーザー光吸収成分の含有量をX質量%とし、樹脂層の厚さをYμmとした場合における、XをYで除した値(X/Y)を本実施例について算出すると、2.35であった。 The calculated content of the laser light absorbing component in the formed resin layer was 4.69% by mass. Further, when the content of the laser light absorbing component in the resin layer is X mass % and the thickness of the resin layer is Y μm, the value obtained by dividing X by Y (X/Y) is calculated for this example. , 2.35.
(3)重量平均分子量の測定方法
 前述した重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて以下の条件で測定(GPC測定)した標準ポリスチレン換算の重量平均分子量である。
<測定条件>
・測定装置:東ソー社製,HLC-8320
・GPCカラム(以下の順に通過):東ソー社製
 TSK gel superH-H
 TSK gel superHM-H
 TSK gel superH2000
・測定溶媒:テトラヒドロフラン
・測定温度:40℃
(3) Measurement method of weight average molecular weight The weight average molecular weight (Mw) described above is a weight average molecular weight in terms of standard polystyrene measured using gel permeation chromatography (GPC) under the following conditions (GPC measurement).
<Measurement conditions>
・ Measuring device: HLC-8320 manufactured by Tosoh Corporation
・ GPC column (passed in the following order): TSK gel superH-H manufactured by Tosoh Corporation
TSK gel super HM-H
TSK gel super H2000
・Measurement solvent: tetrahydrofuran ・Measurement temperature: 40°C
〔実施例2~3および比較例1~2〕
 架橋剤の含有量、レーザー光吸収成分の含有量、および樹脂層の厚さを表1に示すように変更する以外、実施例1と同様にしてワークハンドリングシートを製造した。なお、比較例1は、レーザー光吸収成分を使用しなかった例である。
[Examples 2-3 and Comparative Examples 1-2]
A work handling sheet was produced in the same manner as in Example 1 except that the content of the cross-linking agent, the content of the laser light absorbing component, and the thickness of the resin layer were changed as shown in Table 1. Comparative Example 1 is an example in which no laser light absorbing component was used.
 なお、表1には、実施例2~3および比較例1~2についての、樹脂層中のレーザー光吸収成分の含有量(質量%)、および、樹脂層中のレーザー光吸収成分の含有量をX質量%とし、樹脂層の厚さをYμmとした場合におけるXをYで除した値(X/Y)も示す。 Table 1 shows the content (% by mass) of the laser light absorbing component in the resin layer and the content of the laser light absorbing component in the resin layer for Examples 2 and 3 and Comparative Examples 1 and 2. A value obtained by dividing X by Y (X/Y) is also shown, where X mass % is defined as the thickness of the resin layer and Y μm is defined as the thickness of the resin layer.
〔試験例〕(レーザーリフトオフ適性の評価)
(1)ワークハンドリングシート上におけるチップの準備(準備工程)
 シリコンウエハ(#2000,厚さ:350μm)の片面に、ダイシングシート(リンテック社製,製品名「D-485H」)の粘着面を貼付した。続いて、当該ダイシングシートにおける上記粘着面の周縁部(シリコンウエハとは重ならない位置)に、ダイシング用リングフレームを付着させた。さらに、リングフレームの外径に合わせてダイシングシートを裁断した。その後、ダイシング装置(ディスコ社製,製品名「DFD6362」)を用いて、シリコンウエハを、300μm×300μmのサイズを有するチップにダイシングした。その後、ダイシングシートに対して、紫外線(照度230mW/cm,光量190mJ/cm)を照射した。これにより、ダイシングシート上に複数のチップが設けられてなる積層体を得た。
[Test example] (Evaluation of suitability for laser lift-off)
(1) Chip preparation on work handling sheet (preparation process)
An adhesive surface of a dicing sheet (manufactured by Lintec, product name “D-485H”) was attached to one side of a silicon wafer (#2000, thickness: 350 μm). Subsequently, a ring frame for dicing was adhered to the periphery of the adhesive surface of the dicing sheet (the position not overlapping the silicon wafer). Furthermore, the dicing sheet was cut according to the outer diameter of the ring frame. Thereafter, the silicon wafer was diced into chips having a size of 300 μm×300 μm using a dicing machine (manufactured by Disco, product name “DFD6362”). After that, the dicing sheet was irradiated with ultraviolet light (illuminance: 230 mW/cm 2 , light amount: 190 mJ/cm 2 ). As a result, a laminate having a plurality of chips provided on the dicing sheet was obtained.
 続いて、実施例および比較例で製造したワークハンドリングシートから剥離シートを剥離し、それにより露出した露出面と、上記の通り得られた積層体における複数のチップが存在する面とを貼り合わせた。その後、複数のチップからダイシングシートを剥離した。これにより、複数のチップをダイシングシートからワークハンドリングシートに転写し、ワークハンドリングシート上に複数のチップが設けられてなる積層体を得た。 Subsequently, the release sheet was peeled off from the work handling sheets produced in Examples and Comparative Examples, and the exposed surface thus exposed was bonded to the surface on which the plurality of chips of the laminate obtained as described above existed. . After that, the dicing sheet was peeled off from the plurality of chips. As a result, a plurality of chips were transferred from the dicing sheet to the work handling sheet to obtain a laminate having a plurality of chips provided on the work handling sheet.
(2)レーザー光照射によるチップの分離(分離工程)
 上記工程(1)にて得られた、ワークハンドリングシート上に複数のチップが設けられてなる積層体について、レーザー光照射装置を用いて、ワークハンドリングシート越しに、個々のチップに対してレーザー光を照射した。
(2) Separation of chips by laser light irradiation (separation process)
For the laminate in which a plurality of chips are provided on the work handling sheet obtained in the above step (1), a laser beam is applied to each chip through the work handling sheet using a laser light irradiation device. was irradiated.
 具体的には、レーザー光照射装置(キーエンス社製,製品名「MD-U1000C」)を用いてワークハンドリングシート越しにチップに対して、波長355nmのレーザー光を照射した。当該照射は、レーザー光スポットを、チップの外周部から中央に向かって渦巻き状に走査して、チップの全面に照射されるように行った。このとき、レーザー光スポットの直径は20μmとし、周波数:40kHz、スキャン速度:500mm/s、照射量:50μJ/shotとした。また、照射は、複数のチップの中から100個のチップ(縦10個×横10個のチップのまとまり)を選択し、それらに対して行った。 Specifically, the chip was irradiated with a laser beam with a wavelength of 355 nm through the work handling sheet using a laser beam irradiation device (manufactured by Keyence Corporation, product name "MD-U1000C"). The irradiation was carried out by spirally scanning the laser light spot from the periphery of the chip toward the center so that the entire surface of the chip was irradiated. At this time, the diameter of the laser light spot was 20 μm, the frequency was 40 kHz, the scanning speed was 500 mm/s, and the irradiation amount was 50 μJ/shot. Also, 100 chips (a group of 10 vertical chips by 10 horizontal chips) were selected from a plurality of chips and irradiated.
(3)樹脂層の消失およびチップ分離の確認
 以上の照射を行った位置について、レーザー顕微鏡を用いて、樹脂層の消失の有無を確認した。そして、以下の基準に基づいて、樹脂層の消失について評価した。結果を表1に示す。
 ○…全ての位置において十分に消失していた。
 ×…消失が不十分である箇所があった。
(3) Confirmation of Disappearance of Resin Layer and Chip Separation Whether or not the resin layer was dissipated was confirmed using a laser microscope for the positions irradiated as described above. Then, disappearance of the resin layer was evaluated based on the following criteria. Table 1 shows the results.
◯: Sufficiently disappeared at all positions.
×: There was a portion where the disappearance was insufficient.
 さらに、ワークハンドリングシートからのチップの脱離の有無を確認し、以下の基準に基づいて、レーザーリフトオフ適性を評価した。結果を表1に示す。
 ○…100個全てのチップについて、脱離が生じた。
 ×…脱離が生じたチップの数が、100個未満であった。
Furthermore, the presence or absence of detachment of the chip from the work handling sheet was confirmed, and laser lift-off aptitude was evaluated based on the following criteria. Table 1 shows the results.
Good: Detachment occurred for all 100 chips.
x: The number of chips where detachment occurred was less than 100.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1から明らかなように、実施例で製造したワークハンドリングシートは、レーザーリフトオフ適性に優れていた。 As is clear from Table 1, the work handling sheets produced in Examples were excellent in suitability for laser lift-off.
 本発明のワークハンドリングシートは、マイクロ発光ダイオードを画素として備えるディスプレイ等の製造に好適に使用することができる。 The work handling sheet of the present invention can be suitably used for manufacturing a display or the like having micro light-emitting diodes as pixels.
1…ワークハンドリングシート
 11…樹脂層
 12…基材
2,2’…ワーク小片
3…対象物
4…レーザー光
REFERENCE SIGNS LIST 1 work handling sheet 11 resin layer 12 base material 2, 2' work piece 3 object 4 laser beam

Claims (19)

  1.  基材と、前記基材における片面側に積層され、ワーク小片を保持可能である樹脂層とを備えるワークハンドリングシートであって、
     前記樹脂層が、レーザー光の波長に対して吸収性を有するレーザー光吸収成分を10質量%以上で含有し、
     前記樹脂層が、前記レーザー光の照射によってフルアブレーションする
    ことを特徴とするワークハンドリングシート。
    A work handling sheet comprising a base material and a resin layer laminated on one side of the base material and capable of holding a small work piece,
    The resin layer contains 10% by mass or more of a laser light absorbing component having an absorptive property with respect to the wavelength of the laser light,
    A work handling sheet, wherein the resin layer is fully ablated by irradiation with the laser beam.
  2.  基材と、前記基材における片面側に積層され、ワーク小片を保持可能である樹脂層とを備えるワークハンドリングシートであって、
     前記樹脂層が、レーザー光の波長に対して吸収性を有するレーザー光吸収成分を含有し、
     前記樹脂層中の前記レーザー光吸収成分の含有量をX質量%とし、前記樹脂層の厚さをYμmとした場合に、XをYで除した値(X/Y)が、2.0以上である
    ことを特徴とするワークハンドリングシート。
    A work handling sheet comprising a base material and a resin layer laminated on one side of the base material and capable of holding a small work piece,
    The resin layer contains a laser light absorbing component having an absorptive property with respect to the wavelength of the laser light,
    When the content of the laser light absorbing component in the resin layer is X mass % and the thickness of the resin layer is Y μm, the value obtained by dividing X by Y (X/Y) is 2.0 or more. A work handling sheet characterized by:
  3.  前記レーザー光吸収成分は、紫外線吸収剤および光重合開始剤の少なくとも一種であることを特徴とする請求項1または2に記載のワークハンドリングシート。 The work handling sheet according to claim 1 or 2, wherein the laser light absorbing component is at least one of an ultraviolet absorber and a photopolymerization initiator.
  4.  前記紫外線吸収剤は、有機化合物であることを特徴とする請求項3に記載のワークハンドリングシート。 The work handling sheet according to claim 3, wherein the ultraviolet absorber is an organic compound.
  5.  前記紫外線吸収剤は、1個以上の複素環を有する化合物であることを特徴とする請求項3または4に記載のワークハンドリングシート。 The work handling sheet according to claim 3 or 4, wherein the ultraviolet absorber is a compound having one or more heterocycles.
  6.  前記紫外線吸収剤は、炭素環および複素環の少なくとも1種を有し、
     前記紫外線吸収剤が有する全ての前記炭素環および前記複素環は、それぞれ単環である
    ことを特徴とする請求項3~5のいずれか一項に記載のワークハンドリングシート。
    The ultraviolet absorber has at least one of a carbocyclic ring and a heterocyclic ring,
    6. The work handling sheet according to any one of claims 3 to 5, wherein all of the carbon rings and heterocycles of the ultraviolet absorber are monocyclic rings.
  7.  前記紫外線吸収剤は、複数の芳香環を有する化合物であることを特徴とする請求項3~6のいずれか一項に記載のワークハンドリングシート。 The work handling sheet according to any one of claims 3 to 6, wherein the ultraviolet absorber is a compound having a plurality of aromatic rings.
  8.  前記樹脂層は、粘着剤層であることを特徴とする請求項1~7のいずれか一項に記載のワークハンドリングシート。 The work handling sheet according to any one of claims 1 to 7, wherein the resin layer is an adhesive layer.
  9.  前記粘着剤層を構成する粘着剤は、アクリル系粘着剤であることを特徴とする請求項8に記載のワークハンドリングシート。 The work handling sheet according to claim 8, wherein the adhesive constituting the adhesive layer is an acrylic adhesive.
  10.  前記レーザー光は、紫外域の波長を有するものであることを特徴とする請求項1~9のいずれか一項に記載のワークハンドリングシート。 The work handling sheet according to any one of claims 1 to 9, wherein the laser light has a wavelength in the ultraviolet region.
  11.  前記樹脂層において局所的に生じさせたフルアブレーションによって、前記樹脂層における前記基材とは反対の面上に保持された複数のワーク小片のうちの任意のワーク小片を、前記樹脂層から選択的に分離するために使用されるものであることを特徴とする請求項1~10のいずれか一項に記載のワークハンドリングシート。 An arbitrary work piece out of a plurality of work pieces held on a surface of the resin layer opposite to the base material is selectively removed from the resin layer by full ablation locally generated in the resin layer. The work handling sheet according to any one of claims 1 to 10, which is used for separating into.
  12.  前記ワーク小片は、前記樹脂層における前記基材とは反対の面上に保持されたワークを当該面上において個片化することで得られたものであることを特徴とする請求項11に記載のワークハンドリングシート。 12. The work piece according to claim 11, wherein the work piece is obtained by singulating a work held on a surface of the resin layer opposite to the base material on the surface of the resin layer. work handling sheet.
  13.  前記ワーク小片は、半導体部品および半導体装置から選択される少なくとも1種であることを特徴とする請求項11または12に記載のワークハンドリングシート。 The work handling sheet according to claim 11 or 12, wherein the small work pieces are at least one selected from semiconductor parts and semiconductor devices.
  14.  前記ワーク小片は、ミニ発光ダイオードおよびマイクロ発光ダイオードから選択される発光ダイオードであることを特徴とする請求項11~13のいずれか一項に記載のワークハンドリングシート。 The work handling sheet according to any one of claims 11 to 13, wherein the work pieces are light emitting diodes selected from mini light emitting diodes and micro light emitting diodes.
  15.  請求項1~14のいずれか一項に記載のワークハンドリングシートにおける、前記樹脂層側の面上に複数のワーク小片が保持されてなる積層体を準備する準備工程と、
     前記ワーク小片を受容可能な対象物に対して、前記積層体における前記ワーク小片側の面が向かい合うように前記積層体を配置する配置工程と、
     前記積層体における前記樹脂層における、少なくとも1つの前記ワーク小片が貼付されている位置に対し、レーザー光を照射して、前記樹脂層における前記照射された位置においてフルアブレーションを生じさせることで、当該フルアブレーションが生じた位置に存在する前記ワーク小片を前記ワークハンドリングシートから分離し、前記ワーク小片を前記対象物上に載置する分離工程と
    を備えることを特徴とするデバイス製造方法。
    A preparation step of preparing a laminate in which a plurality of small work pieces are held on the resin layer side surface of the work handling sheet according to any one of claims 1 to 14;
    an arrangement step of arranging the laminate so that the surface of the laminate on the side of the small work piece faces an object capable of receiving the small work piece;
    By irradiating a laser beam to a position where at least one of the work pieces is attached in the resin layer of the laminate to cause full ablation at the irradiated position in the resin layer, the and a separation step of separating the small work piece existing at a position where full ablation has occurred from the work handling sheet and placing the small work piece on the object.
  16.  前記準備工程においては、前記樹脂層における前記基材とは反対の面上に保持されたワークを当該面上において個片化することで、前記ワーク小片を得ることを特徴とする請求項15に記載のデバイス製造方法。 16. The work piece according to claim 15, wherein in the preparation step, the work piece held on the surface of the resin layer opposite to the base material is singulated on the surface to obtain the work pieces. A method for manufacturing the described device.
  17.  前記ワーク小片は、半導体部品および半導体装置から選択される少なくとも1種であることを特徴とする請求項15または16に記載のデバイス製造方法。 The device manufacturing method according to claim 15 or 16, wherein the work piece is at least one selected from semiconductor parts and semiconductor devices.
  18.  ミニ発光ダイオードおよびマイクロ発光ダイオードから選択される発光ダイオードを前記ワーク小片として用いて、前記発光ダイオードを複数備える発光装置を製造することを特徴とする請求項15~17のいずれか一項に記載のデバイス製造方法。 The light-emitting device according to any one of claims 15 to 17, wherein a light-emitting diode selected from mini-light-emitting diodes and micro-light-emitting diodes is used as the work piece to manufacture a light-emitting device comprising a plurality of the light-emitting diodes. Device manufacturing method.
  19.  前記発光装置は、ディスプレイであることを特徴とする請求項18に記載のデバイス製造方法。 The device manufacturing method according to claim 18, wherein the light emitting device is a display.
PCT/JP2022/000965 2021-03-26 2022-01-13 Workpiece handling sheet and device manufacturing method WO2022201767A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023508665A JPWO2022201767A1 (en) 2021-03-26 2022-01-13

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-053428 2021-03-26
JP2021053428 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022201767A1 true WO2022201767A1 (en) 2022-09-29

Family

ID=83396743

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/000965 WO2022201767A1 (en) 2021-03-26 2022-01-13 Workpiece handling sheet and device manufacturing method

Country Status (3)

Country Link
JP (1) JPWO2022201767A1 (en)
TW (1) TW202239021A (en)
WO (1) WO2022201767A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198569A (en) * 2000-12-26 2002-07-12 Sony Corp Transfer method of element, semiconductor device and image display device
JP2002314053A (en) * 2001-04-19 2002-10-25 Sony Corp Chip part transfer method, element arraying method using the same, and manufacturing method of image display device
JP2002311858A (en) * 2001-04-19 2002-10-25 Sony Corp Method for transferring element and method for arranging element using the same method and method for manufacturing picture display device
JP2005045074A (en) * 2003-07-23 2005-02-17 Sony Corp Method of exfoliation
JP2010177390A (en) * 2009-01-29 2010-08-12 Sony Corp Method of transferring device and method of manufacturing display apparatus
JP2018093021A (en) * 2016-12-01 2018-06-14 Jsr株式会社 Object processing method and manufacturing method of semiconductor device
WO2019207920A1 (en) * 2018-04-26 2019-10-31 Jsr株式会社 Mounting method and mounting device for semiconductor elements

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002198569A (en) * 2000-12-26 2002-07-12 Sony Corp Transfer method of element, semiconductor device and image display device
JP2002314053A (en) * 2001-04-19 2002-10-25 Sony Corp Chip part transfer method, element arraying method using the same, and manufacturing method of image display device
JP2002311858A (en) * 2001-04-19 2002-10-25 Sony Corp Method for transferring element and method for arranging element using the same method and method for manufacturing picture display device
JP2005045074A (en) * 2003-07-23 2005-02-17 Sony Corp Method of exfoliation
JP2010177390A (en) * 2009-01-29 2010-08-12 Sony Corp Method of transferring device and method of manufacturing display apparatus
JP2018093021A (en) * 2016-12-01 2018-06-14 Jsr株式会社 Object processing method and manufacturing method of semiconductor device
WO2019207920A1 (en) * 2018-04-26 2019-10-31 Jsr株式会社 Mounting method and mounting device for semiconductor elements

Also Published As

Publication number Publication date
TW202239021A (en) 2022-10-01
JPWO2022201767A1 (en) 2022-09-29

Similar Documents

Publication Publication Date Title
JP7084306B2 (en) Mask-integrated surface protection tape and method for manufacturing semiconductor chips using it
KR101880644B1 (en) Surface protective sheet
JP6580219B2 (en) Adhesive sheet and method for producing processed device-related member
JP5603757B2 (en) Laser dicing adhesive sheet and method for manufacturing semiconductor device
KR20170016814A (en) Dicing sheet
KR102478993B1 (en) Method for manufacturing adhesive sheet for stealth dicing and semiconductor device
JP7325403B2 (en) Work processing sheet
WO2022201767A1 (en) Workpiece handling sheet and device manufacturing method
CN113016055A (en) Sheet for processing workpiece
JP6818612B2 (en) Manufacturing method for semiconductor processing sheets and semiconductor devices
JP7146145B1 (en) Work handling sheet and device manufacturing method
WO2022153745A1 (en) Workpiece handling sheet and device manufacturing method
JP7325634B2 (en) Work handling sheet and device manufacturing method
KR102481244B1 (en) Method for manufacturing adhesive sheet for stealth dicing and semiconductor device
WO2022153877A1 (en) Workpiece handling sheet, method for handling small workpiece item, device manufacturing method, and use of workpiece handling sheet
KR20230129372A (en) Work handling sheets and device manufacturing methods
JP6980680B2 (en) Adhesive sheet for stealth dicing
KR102560374B1 (en) Method for manufacturing adhesive sheet for stealth dicing and semiconductor device
JP2023097043A (en) Work handling sheet and device manufacturing method
KR102680601B1 (en) Sheet for work processing
KR102560370B1 (en) Method for manufacturing adhesive sheet for stealth dicing and semiconductor device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22774572

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508665

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22774572

Country of ref document: EP

Kind code of ref document: A1