WO2022153745A1 - Workpiece handling sheet and device manufacturing method - Google Patents

Workpiece handling sheet and device manufacturing method Download PDF

Info

Publication number
WO2022153745A1
WO2022153745A1 PCT/JP2021/045507 JP2021045507W WO2022153745A1 WO 2022153745 A1 WO2022153745 A1 WO 2022153745A1 JP 2021045507 W JP2021045507 W JP 2021045507W WO 2022153745 A1 WO2022153745 A1 WO 2022153745A1
Authority
WO
WIPO (PCT)
Prior art keywords
work
handling sheet
interface
ablation
ablation layer
Prior art date
Application number
PCT/JP2021/045507
Other languages
French (fr)
Japanese (ja)
Inventor
健太 古野
彰朗 福元
洋司 若山
征太郎 山口
Original Assignee
リンテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンテック株式会社 filed Critical リンテック株式会社
Priority to KR1020237004773A priority Critical patent/KR20230129372A/en
Priority to JP2022575143A priority patent/JPWO2022153745A1/ja
Priority to CN202180063345.XA priority patent/CN116261585A/en
Priority to JP2022575524A priority patent/JPWO2022153877A1/ja
Priority to JP2022575525A priority patent/JPWO2022153878A1/ja
Priority to PCT/JP2021/048936 priority patent/WO2022153877A1/en
Priority to KR1020237005271A priority patent/KR20230132433A/en
Priority to PCT/JP2021/048937 priority patent/WO2022153878A1/en
Priority to CN202180063657.0A priority patent/CN116234693A/en
Priority to TW111100496A priority patent/TW202244239A/en
Priority to TW111100497A priority patent/TW202235577A/en
Publication of WO2022153745A1 publication Critical patent/WO2022153745A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/57Working by transmitting the laser beam through or within the workpiece the laser beam entering a face of the workpiece from which it is transmitted through the workpiece material to work on a different workpiece face, e.g. for effecting removal, fusion splicing, modifying or reforming
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages

Definitions

  • the present invention relates to a work handling sheet that can be used for handling small workpieces such as semiconductor parts and semiconductor devices, and a device manufacturing method using the work handling sheet, and in particular, a micro light emitting diode, a power device, and a MEMS. It relates to a work handling sheet that can be used for handling small pieces of work such as (Micro Electro Mechanical Systems), and a device manufacturing method using the work handling sheet.
  • a work handling sheet that can be used for handling small pieces of work such as (Micro Electro Mechanical Systems), and a device manufacturing method using the work handling sheet.
  • each pixel is composed of micro light emitting diodes, and the light emission of each micro light emitting diode is controlled independently.
  • a micro light emitting diode arranged on a supply substrate such as sapphire or glass on a wiring board provided with wiring.
  • the use of laser light irradiation is being considered.
  • the layer is irradiated with laser light to cause ablation of the layer at the irradiated position, thereby supporting the layer.
  • a method of mounting a micro light emitting diode separated from the body (laser lift-off) on a wiring substrate has been studied (Patent Document 1). Since the laser beam is excellent in directivity and convergence, it is easy to control the irradiation position, and selective placement can be performed satisfactorily.
  • the present invention has been made in view of such an actual situation, and provides a work handling sheet capable of satisfactorily handling even a fine work piece, and a device manufacturing method using the work handling sheet.
  • the purpose is.
  • the present invention comprises a base material and an interfacial ablation layer which is laminated on one side of the base material, can hold a small piece of work, and ablates the interface by irradiation with laser light.
  • a work handling sheet comprising the above, wherein the interfacial ablation layer contains an ultraviolet absorber (Invention 1).
  • the interfacial ablation layer contains an ultraviolet absorber, the interfacial ablation is effectively performed when irradiated with laser light, thereby targeting small pieces of work as an object. Can be separated well towards.
  • the ultraviolet absorber is preferably an organic compound (Invention 2).
  • the ultraviolet absorber is preferably a compound having one or more heterocycles (Invention 3).
  • the ultraviolet absorber has at least one carbon ring and a heterocycle, and all the carbon rings and the heterocycle contained in the ultraviolet absorber are monocyclic rings, respectively. It is preferable that there is (Invention 4).
  • the ultraviolet absorber is preferably a compound having a plurality of aromatic rings (Invention 5).
  • the content of the ultraviolet absorber in the interfacial ablation layer is preferably 1% by mass or more and 75% by mass or less (Invention 6).
  • the work handling sheet preferably has an absorbance of light rays having a wavelength of 355 nm of 2.0 or more (Invention 7).
  • the work handling sheet preferably has a transmittance of light rays having a wavelength of 355 nm of 1.0% or less (Invention 8).
  • the interface ablation layer is preferably an adhesive layer (Invention 9).
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is preferably an acrylic pressure-sensitive adhesive (Invention 10).
  • the laser light has a wavelength in the ultraviolet region (Invention 11).
  • the work piece is obtained by individualizing a work held on a surface of the interface ablation layer opposite to the base material on the surface. Is preferable (Invention 14).
  • the work piece is at least one selected from semiconductor parts and semiconductor devices (Invention 15).
  • the work piece is a light emitting diode selected from a mini light emitting diode and a micro light emitting diode (Invention 16).
  • the present invention relates to a plurality of work handling sheets including a base material and an interfacial ablation layer containing an ultraviolet absorber laminated on one side of the base material on the surface on the interfacial ablation layer side.
  • Laser light is irradiated to the step and the position where at least one piece of the work piece is attached in the interfacial ablation layer in the laminated body to generate interfacial ablation at the irradiated position in the interfacial ablation layer.
  • the device is manufactured by comprising a separation step of separating the work piece existing at the position where the interface ablation occurs from the work handling sheet and placing the work piece on the object.
  • a method is provided (Invention 17).
  • the work piece in the preparatory step, is obtained by individualizing the work held on the surface of the interface ablation layer opposite to the base material on the surface. It is preferable (Invention 18).
  • the work piece is at least one selected from semiconductor parts and semiconductor devices (Invention 19).
  • a light emitting device including a plurality of the light emitting diodes by using a light emitting diode selected from a mini light emitting diode and a micro light emitting diode as the work piece (Invention 20). ..
  • the light emitting device is preferably a display (invention 21).
  • the work handling sheet according to the present invention can handle even fine pieces of work satisfactorily, and according to the device manufacturing method according to the present invention, a device having excellent performance can be manufactured.
  • FIG. 1 shows a cross-sectional view of a work handling sheet according to an embodiment.
  • the work handling sheet 1 shown in FIG. 1 includes a base material 12 and an interface ablation layer 11 laminated on one side of the base material 12.
  • the interface ablation layer 11 can hold a small piece of work. That is, the work handling sheet 1 according to the present embodiment can hold the work pieces laminated on the surface of the interface ablation layer 11 opposite to the base material 12 in that state.
  • the interface ablation layer 11 holds the work piece by exhibiting adhesiveness to the work piece.
  • the interface ablation layer 11 preferably contains a pressure-sensitive adhesive as one of the components constituting the interface ablation layer 11, that is, a pressure-sensitive adhesive layer.
  • the interfacial ablation layer 11 in the present embodiment is interfacial ablated by irradiation with laser light. That is, the interface ablation layer 11 locally ablates the interface in the region irradiated with the laser beam.
  • the laser light is not particularly limited as long as it can cause interfacial ablation, and may be a laser light having any wavelength in the ultraviolet region, the visible light region, and the infrared region, and among them, the ultraviolet region. Laser light having the wavelength of is preferable.
  • the interfacial ablation means that a part of the components constituting the interfacial ablation layer 11 is evaporated or volatilized by the energy of the laser beam, and the gas generated thereby is the interface between the interfacial ablation layer 11 and the base material 12. It means that a gap (blister) is generated by accumulating in. In this case, the shape of the interface ablation layer 11 is changed by the blister, the work pieces are peeled off from the interface ablation layer 11, and the work pieces are separated.
  • the interface ablation layer 11 in the present embodiment contains an ultraviolet absorber.
  • the presence of the UV absorber in the interfacial ablation layer 11 improves the efficiency with which the interfacial ablation layer 11 receives energy from the laser beam.
  • interfacial ablation is effectively generated, and the held work pieces can be well separated from the interfacial ablation layer 11.
  • the amount of laser light irradiation required to cause sufficient separation of the work pieces can be reduced, the operating cost of the laser light irradiation device can be reduced, and only the target work pieces can be easily separated satisfactorily.
  • the accuracy is improved, and further, damage to the device or the like due to excessive laser light irradiation can be prevented.
  • Interface ablation layer 11 The specific configuration and composition of the interface ablation layer 11 in the present embodiment has the property of being able to hold small pieces of work, having the property of interfacial ablation by irradiation with laser light, and containing an ultraviolet absorber. As long as it does, it is not particularly limited.
  • the interface ablation layer 11 preferably contains an adhesive as one of the constituents thereof, from the viewpoint that the property of being able to hold small pieces of work can be easily exhibited.
  • the interface ablation layer 11 contains a pressure-sensitive adhesive
  • the interface ablation layer 11 is preferably made of a pressure-sensitive composition containing an ultraviolet absorber.
  • the type of ultraviolet absorber in the present embodiment is not particularly limited.
  • the ultraviolet absorber in the present embodiment may be an organic compound or an inorganic compound, but is preferably an organic compound from the viewpoint of easily causing good interfacial ablation.
  • UV absorber When the UV absorber is an organic compound, preferred examples of the UV absorber are hydroxyphenyltriazine-based UV absorbers, benzophenone-based UV absorbers, benzotriazole-based UV absorbers, benzoate-based UV absorbers, and benzooxadinone.
  • hydroxyphenyltriazine-based UV absorbers and benzophenone-based UV absorbers have good absorbency at the third harmonic of YAG (355 nm) and are likely to cause good interfacial ablation. It is preferable to use at least one of an ultraviolet absorber and a benzotriazole-based ultraviolet absorber, and it is particularly preferable to use a hydroxyphenyltriazine-based ultraviolet absorber.
  • hydroxyphenyltriazine-based ultraviolet absorber examples include 2- [4- (octyl-2-methylethanoate) oxy-2-hydroxyphenyl] -4,6- [bis (2,4-dimethylphenyl)] -1.
  • One of these may be used alone, or two or more thereof may be used in combination.
  • tris [2,4,6- [2- ⁇ 4-( Octyl-2-methylethanoate) oxy-2-hydroxyphenyl ⁇ ]-1,3,5-triazine and 2- (2-hydroxy-4- [1-octyloxycarbonylethoxy] phenyl) -4,6-bis It is preferable to use at least one of (4-phenylphenyl) -1,3,5-triazine.
  • the ultraviolet absorber is an organic compound
  • the ultraviolet absorber is preferably a compound having one or more heterocycles as a characteristic of its chemical structure.
  • the number of heterocycles is preferably 4 or less, and particularly preferably 1.
  • the ultraviolet absorber in the present embodiment has at least one carbon ring and a heterocycle, and all the carbon rings and the heterocycle contained in the ultraviolet absorber are monocyclic rings, respectively. Is also preferable.
  • the ultraviolet absorber in the present embodiment is a compound having a plurality of aromatic rings.
  • the number of aromatic rings is preferably two or more.
  • the number of aromatic rings is preferably 6 or less, and particularly preferably 3 or less.
  • each heterocycle preferably has at least one selected from nitrogen, oxygen, phosphorus, sulfur, silicon and selenium as an element other than carbon constituting them, particularly. , Nitrogen, oxygen, phosphorus and sulfur, preferably having at least one selected from.
  • the number of atoms constituting the ring structure of the heterocycle is not particularly limited, and is, for example, 3 or more and 9 or less, and particularly preferably 5 or more and 6 or less.
  • Specific examples of the preferred heterocycle include triazine, benzotriazole, thiophene, pyrrole, imidazole, pyridine, pyrazine and the like.
  • aromatic ring examples include benzene, naphthalene, anthracene, biphenyl, triphenyl and the like.
  • an ultraviolet absorber having the structure of the following formula (1) Tris [2,4,6-[2- ⁇ 4- (octyl-2-)) Methylethanoate) oxy-2-hydroxyphenyl ⁇ ]-1,3,5-triazine).
  • the content of the ultraviolet absorber in the interface ablation layer 11 in the present embodiment is preferably 1% by mass or more, more preferably 2% by mass or more, and particularly preferably 3% by mass or more. Further, it is preferably 5% by mass or more.
  • the content of the ultraviolet absorber is 1% by mass or more, the interfacial ablation layer 11 efficiently absorbs the laser beam, thereby facilitating good interfacial ablation.
  • the content of the ultraviolet absorber in the interface ablation layer 11 in the present embodiment is preferably 75% by mass or less, more preferably 60% by mass or less, and particularly preferably 50% by mass or less. It is preferable, and more preferably 20% by mass or less. When the content of the ultraviolet absorber is 75% by mass or less, the viscosity of the material for forming the interface ablation layer 11 becomes appropriate, and it becomes easy to secure good film-forming property.
  • the ultraviolet absorber may be blended in this adhesive composition.
  • the blending amount of the ultraviolet absorber in the adhesive composition is preferably 1% by mass or more, more preferably 2% by mass or more, and particularly preferably 3% by mass or more. Further, it is preferably 5% by mass or more.
  • the blending amount of the ultraviolet absorber is 1% by mass or more, the interfacial ablation layer 11 efficiently absorbs the laser light, thereby facilitating good interfacial ablation.
  • the blending amount of the ultraviolet absorber in the adhesive composition is preferably 75% by mass or less, more preferably 60% by mass or less, particularly preferably 50% by mass or less, and further. Is preferably 20% by mass or less. When the blending amount of the ultraviolet absorber is 75% by mass or less, the obtained pressure-sensitive adhesive can easily exhibit the desired adhesive strength.
  • the interface ablation layer 11 in the present embodiment may contain an adhesive in addition to the ultraviolet absorber.
  • the interface ablation layer 11 is preferably formed from an adhesive composition containing an ultraviolet absorber.
  • the above-mentioned adhesive is not particularly limited as long as it can exhibit sufficient holding power (adhesive power) for an adherend such as a small piece of work.
  • the above-mentioned adhesives include acrylic adhesives, rubber adhesives, silicone adhesives, urethane adhesives, polyester adhesives, polyvinyl ether adhesives and the like. Among these, it is preferable to use an acrylic pressure-sensitive adhesive from the viewpoint of easily exerting a desired adhesive strength.
  • the acrylic pressure-sensitive adhesive examples include an acrylic pressure-sensitive adhesive using the acrylic polymer (A) as a base polymer.
  • the weight average molecular weight (Mw) of the acrylic polymer (A) is preferably 10,000 or more, and particularly preferably 100,000 or more.
  • the weight average molecular weight (Mw) is preferably 2 million or less, and more preferably 1.5 million or less.
  • the weight average molecular weight of the acrylic polymer (A) is 10,000 or more, it becomes easy to increase the cohesive force of the obtained adhesive force, and it becomes easy to suppress the adhesive residue on the separated work pieces. Further, when the weight average molecular weight is 2 million or less, it becomes easy to obtain a stable coating film of the interface ablation layer.
  • the weight average molecular weight (Mw) in the present specification is a standard polystyrene-equivalent value measured by a gel permeation chromatography method (GPC method).
  • the glass transition temperature (Tg) of the acrylic polymer (A) is preferably ⁇ 70 ° C. or higher, and particularly preferably ⁇ 60 ° C. or higher.
  • the glass transition temperature (Tg) is preferably 20 ° C. or lower, and particularly preferably 10 ° C. or lower.
  • the acrylic polymer (A) preferably contains at least a (meth) acrylic acid ester monomer as a constituent monomer, and a functional group capable of reacting with a functional group of the cross-linking agent (B) described later (hereinafter referred to as a functional group). , Also referred to as "reactive functional group").
  • the (meth) acrylic acid ester monomer examples include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, and 2-ethylhexyl (.
  • the number of carbon atoms of alkyl groups such as meta) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, and lauryl (meth) acrylate.
  • a monomer other than the (meth) acrylic acid ester monomer such as acrylic acid, methacrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, and N-methylolacrylamide may be copolymerized. These may be used alone or in combination of two or more.
  • the acrylic polymer (A) contains a reactive functional group, it reacts with the functional group of the cross-linking agent (B) described later to form a three-dimensional network structure, and it becomes easy to enhance the cohesiveness of the interface ablation layer. ..
  • the reactive functional group of the acrylic polymer (A) include a carboxyl group, an amino group, an epoxy group, a hydroxyl group and the like, and as described later, it is selectively selected from an organic polyvalent isocyanate compound preferably used as a cross-linking agent. It is preferable to contain a hydroxyl group because it easily reacts with.
  • the reactive functional group is an acrylic polymer (A) by forming an acrylic polymer (A) using the above-mentioned monomer having a reactive functional group such as a hydroxyl group-containing (meth) acrylate or acrylic acid. ) Can be introduced.
  • the ratio of the monomer having a reactive functional group (hereinafter, also referred to as a reactive group-containing monomer) to the total constituent monomers of the acrylic polymer (A) is preferably 0.3% by mass or more, and particularly 0. It is preferably 5% by mass or more. Further, the above ratio is preferably 40% by mass or less, and particularly preferably 20% by mass or less.
  • the acrylic polymer (A) preferably contains the above-mentioned alkyl (meth) acrylate as a constituent monomer, more preferably an alkyl (meth) acrylate having an alkyl group having 1 to 10 carbon atoms, and particularly preferably. Preferably contains an alkyl (meth) acrylate having 4 to 8 carbon atoms in the alkyl group.
  • the proportion of the alkyl (meth) acrylate in the total constituent monomers of the acrylic polymer (A) may be 30% by mass or more. It is preferable, and it is particularly preferable that it is 35% by mass or more. Further, the above ratio is preferably 99% by mass or less, and particularly preferably 95% by mass or less.
  • cross-linking agent (B) is preferable from the viewpoint that the storage elastic modulus of the interface ablation layer 11 can be easily adjusted to a desired range.
  • a polyfunctional compound having reactivity with a reactive functional group of the acrylic polymer (A) or the like can be used.
  • polyfunctional compounds include isocyanate compounds, epoxy compounds, amine compounds, melamine compounds, aziridine compounds, hydrazine compounds, aldehyde compounds, oxazoline compounds, metal alkoxide compounds, metal chelate compounds, metal salts, ammonium salts, etc. Reactive phenolic resin and the like can be mentioned.
  • the blending amount of the cross-linking agent (B) is preferably 0.001 part by mass or more, particularly preferably 0.1 part by mass or more, and further preferably 0.1 part by mass or more with respect to 100 parts by mass of the acrylic polymer (A). Is preferably 0.2 parts by mass or more.
  • the amount of the cross-linking agent (B) to be blended is preferably 20 parts by mass or less, particularly preferably 10 parts by mass or less, and further 5 by mass with respect to 100 parts by mass of the acrylic polymer (A). It is preferably parts by mass or less.
  • the pressure-sensitive adhesive constituting the interface ablation layer 11 may be a pressure-sensitive adhesive having active energy ray curability.
  • active energy ray-curable pressure-sensitive adhesive known ones can be used, and for example, those disclosed in International Publication No. 2018/084021 can be used.
  • additives may be added to the adhesive composition for forming the interfacial ablation layer 11.
  • the additive include tackifiers, coloring materials such as dyes and pigments, flame retardants, fillers, antistatic agents and the like.
  • the adhesive composition preferably does not contain a gas generating agent from the viewpoint that the separation of the work pieces is likely to occur satisfactorily.
  • gas may be generated in the entire interface ablation layer 11. In that case, it may be difficult to cause interfacial ablation only at the intended position and separate only the work pieces located there, and it may be difficult to separate the work pieces satisfactorily.
  • the thickness of the interface ablation layer 11 in the present embodiment is preferably 3 ⁇ m or more, particularly preferably 20 ⁇ m or more, and further preferably 25 ⁇ m or more.
  • the thickness of the interface ablation layer 11 is preferably 100 ⁇ m or less, particularly preferably 50 ⁇ m or less, and further preferably 40 ⁇ m or less. When the thickness of the interface ablation layer 11 is within the above range, it becomes easy to achieve both the holding of the work pieces on the interface ablation layer 11 and the separation of the work pieces by the interface ablation.
  • Base material 12 in the present embodiment is not particularly limited in composition and physical properties. From the viewpoint that the work handling sheet 1 easily exerts a desired function, the base material 12 is preferably made of a resin.
  • the base material 12 is composed of a resin
  • examples of the resin include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; both polyethylene, polypropylene, polybutene, polybutadiene, polymethylpentene, and ethylene-norbornene.
  • Polyethylene-based resins such as polymers and norbornene resins; ethylene-vinyl acetate copolymers; ethylene- (meth) acrylic acid copolymers, ethylene- (meth) methyl acrylate copolymers, and other ethylene- (meth) acrylics.
  • Ethylene copolymer resin such as acid ester copolymer; polyvinyl chloride resin such as polyvinyl chloride and vinyl chloride copolymer; (meth) acrylic acid ester copolymer; polyurethane; polyimide; polystyrene; polycarbonate; fluororesin And so on.
  • the resin constituting the base material 12 may be a crosslinked resin of the above-mentioned resin or a modified resin such as the ionomer of the above-mentioned resin.
  • the base material 12 may be a single-layer film made of the above-mentioned resin, or may be a laminated film in which a plurality of the films are laminated. In this laminated film, the materials constituting each layer may be the same type or different types.
  • the surface of the base material 12 in the present embodiment may be surface-treated by an oxidation method, an unevenness method, or a primer treatment for the purpose of improving the adhesion to the interface ablation layer 11.
  • an oxidation method include corona discharge treatment, plasma discharge treatment, chromium oxidation treatment (wet), flame treatment, hot air treatment, ozone, and ultraviolet irradiation treatment
  • examples of the unevenness method include sandblasting and sandblasting. Examples include a thermal spraying method.
  • the base material 12 in the present embodiment may contain various additives such as a colorant, a flame retardant, a plasticizer, an antistatic agent, a lubricant, and a filler. Further, when the interface ablation layer 11 contains a material that is cured by the active energy rays, it is preferable that the base material 12 has transparency to the active energy rays.
  • the method for producing the base material 12 in the present embodiment is not particularly limited as long as the base material 12 is produced from the resin.
  • it can be produced by molding a resin into a sheet by a melt extrusion method such as a T-die method or a round die method; a calendar method; a solution method such as a dry method or a wet method.
  • the thickness of the base material 12 in the present embodiment is preferably 10 ⁇ m or more, particularly preferably 30 ⁇ m or more, and further preferably 50 ⁇ m or more.
  • the thickness of the base material 12 is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, particularly preferably 200 ⁇ m or less, further preferably 150 ⁇ m or less, and preferably 100 ⁇ m or less. Is the most preferable.
  • the work handling sheet 1 has rigidity and flexibility in a predetermined balance, and it becomes easy to perform good handling of the work small pieces.
  • the configuration of the release sheet is arbitrary, and an example is one in which a plastic film is peeled off with a release agent or the like.
  • the plastic film include polyester films such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, and polyolefin films such as polypropylene and polyethylene.
  • the release agent a silicone type, a fluorine type, a long chain alkyl type or the like can be used, and among these, a silicone type which can obtain stable performance at a low cost is preferable.
  • the thickness of the release sheet is not particularly limited, and may be, for example, 20 ⁇ m or more and 250 ⁇ m or less.
  • an adhesive layer may be laminated on the surface of the interface ablation layer 11 opposite to the base material 12.
  • a work piece is attached to the surface of the adhesive layer opposite to the interface ablation layer 11, and the adhesive layer is diced together with the work piece to laminate a piece of work in which individualized adhesive layers are laminated. Can be obtained.
  • the chip is easily fixed to the object on which the work piece is mounted by the individualized adhesive layer.
  • a material containing a thermoplastic resin and a low molecular weight thermosetting adhesive component, a material containing a B stage (semi-curable) thermosetting adhesive component, and the like are used. It is preferable to use it.
  • the protective film forming layer may be laminated on the surface of the interface ablation layer 11 opposite to the base material 12.
  • a work is attached to the surface of the protective film forming layer opposite to the interface ablation layer 11, and the protective film forming layer is diced together with the work to obtain an individualized protective film forming layer. Stacked work pieces can be obtained.
  • a protective film forming layer is usually laminated on a surface opposite to the surface on which the circuit is formed.
  • the work handling sheet according to the present embodiment preferably has an absorbance of light rays having a wavelength of 355 nm of 2.0 or more, more preferably 2.5 or more, and particularly 3.0 or more. It is preferably present, and more preferably 3.5 or more.
  • the absorbance of light rays having a wavelength of 355 nm is 2.0 or more, it is possible to reduce the amount of ultraviolet rays reaching the work pieces when irradiated with laser light, effectively damaging the surface of the work pieces. It is possible to separate the work pieces while suppressing them.
  • the upper limit of the absorbance is not particularly limited, and may be, for example, 6.0 or less. The details of the method for measuring the absorbance are as described in Test Examples described later.
  • the transmittance of light rays having a wavelength of 355 nm is preferably 1.0% or less, more preferably 0.5% or less, and particularly 0.3% or less. It is preferably 0.1% or less.
  • the transmittance of light rays having a wavelength of 355 nm is 0.3% or less, it is possible to reduce the amount of ultraviolet rays reaching the work pieces when irradiated with laser light, which is effective in damaging the surface of the work pieces. It is possible to separate the work pieces while suppressing the work.
  • the lower limit of the transmittance is not particularly limited, and may be, for example, 0.0001% or more, and particularly 0.0001% or more. The details of the method for measuring the transmittance are as described in Test Examples described later.
  • the adhesive force of the silicon wafer to the mirror surface is preferably 10 mN / 25 mm or more, particularly preferably 100 mN / 25 mm or more, and further 200 mN / 25 mm or more. Is preferable.
  • the adhesive strength is 90 mN / 25 mm or more, it becomes easy to satisfactorily fix an adherend such as a work piece to the work handling sheet, and the handleability becomes excellent.
  • the adhesive strength is preferably 30,000 mN / 25 mm or less, particularly preferably 15,000 mN / 25 mm or less, and further preferably 10,000 mN / 25 mm or less. When the adhesive strength is 30,000 mN / 25 mm or less, it becomes easier to better separate the work pieces by laser irradiation.
  • the manufacturing method of the work handling sheet 1 according to the present embodiment is not particularly limited.
  • the interface ablation layer 11 may be directly formed on the base material 12, or the interface ablation layer 11 may be transferred onto the base material 12 after the interface ablation layer 11 is formed on the process sheet. ..
  • the interface ablation layer 11 contains an adhesive as one of the constituents thereof
  • the interface ablation layer 11 can be formed by a known method. For example, a tacky composition for forming the interfacial ablation layer 11 and, if desired, a coating solution further containing a solvent or dispersion medium are prepared. Then, the coating liquid is applied to one side of the base material or the peelable surface of the release sheet (hereinafter, may be referred to as "peeling surface"). Subsequently, the interface ablation layer 11 can be formed by drying the obtained coating film.
  • the above-mentioned coating liquid can be applied by a known method, for example, a bar coating method, a knife coating method, a roll coating method, a blade coating method, a die coating method, a gravure coating method, or the like.
  • the properties of the coating liquid are not particularly limited as long as it can be coated, and the coating liquid may contain a component for forming the interface ablation layer 11 as a solute or a dispersoid. be.
  • the release sheet may be peeled off as a process material, or the interface ablation layer 11 may be protected until it is attached to the adherend. ..
  • the adhesive composition for forming the interface ablation layer 11 contains the above-mentioned cross-linking agent, by changing the above-mentioned drying conditions (temperature, time, etc.) or by separately providing a heat treatment. It is preferable to proceed the cross-linking reaction between the polymer component in the coating film and the cross-linking agent to form a cross-linked structure in the interface ablation layer 11 at a desired abundance density. Further, in order to allow the above-mentioned cross-linking reaction to proceed sufficiently, after the work handling sheet 1 is completed, it may be cured by allowing it to stand in an environment of, for example, 23 ° C. and a relative humidity of 50% for several days.
  • the work handling sheet 1 according to the present embodiment can be suitably used for handling small pieces of work. As described above, in the work handling sheet 1 according to the present embodiment, since the interface ablation layer 11 efficiently ablates the interface by irradiation with laser light, the small pieces of work held on the interface ablation layer 11 are high. It can be separated toward a predetermined position with accuracy.
  • the work handling sheet 1 is held on the surface of the interface ablation layer 11 opposite to the base material 12 by the interface ablation locally generated in the interface ablation layer 11.
  • a method of selectively separating any work piece from the plurality of work pieces from the interfacial ablation layer 11 can be mentioned.
  • the plurality of work pieces held on the interface ablation layer 11 are the work (material of the work pieces) held on the surface of the interface ablation layer 11 opposite to the base material 12. It may be obtained by individualizing on the surface. That is, the work piece may be obtained by dicing the work on the interface ablation layer 11. Alternatively, the work piece may be one formed independently of the work handling sheet 1 according to the present embodiment and placed on the interface ablation layer 11.
  • the work handling sheet 1 includes the above-mentioned adhesive layer and protective film forming layer, it is preferable to dice these layers and the work on the interface ablation layer 11. As a result, it is possible to obtain a work piece in which these layers are individualized and laminated.
  • the area of the work pieces in a plan view is preferably 10 ⁇ m 2 or more, and particularly preferably 100 ⁇ m 2 or more.
  • the work piece preferably has an area of 1 mm 2 or less when viewed in a plan view, and particularly preferably 0.25 mm 2 or less.
  • the minimum side of the work pieces is preferably 2 ⁇ m or more, particularly preferably 5 ⁇ m or more, and further preferably 10 ⁇ m or more. preferable. The minimum side is preferably 1 mm or less, and particularly preferably 0.5 mm or less.
  • the dimensions of the rectangular workpiece pieces include 2 ⁇ m ⁇ 5 ⁇ m, 10 ⁇ m ⁇ 10 ⁇ m, 0.5 mm ⁇ 0.5 mm, 1 mm ⁇ 1 mm, and the like.
  • the work handling sheet 1 according to the present embodiment can satisfactorily handle such fine work pieces, particularly even fine work pieces that are difficult to separate from the sheet by pushing up the needle.
  • the work handling sheet 1 according to the present embodiment is relatively large, such as one having an area of more than 1 mm 2 (for example, 1 mm 2 to 2000 mm 2 ) and one having a thickness of 1 to 10000 ⁇ m (for example, 10 to 1000 ⁇ m). It can handle small pieces of work of a size well.
  • small workpieces include semiconductor parts and semiconductor devices, and more specifically, micro light emitting diodes, power devices, MEMS (Micro Electro Mechanical Systems), and the like.
  • the work piece is preferably a light emitting diode, and particularly preferably a light emitting diode selected from a mini light emitting diode and a micro light emitting diode.
  • mini light emitting diodes and micro light emitting diodes are arranged at a high density has been studied, and in the manufacture of such a device, the present embodiment capable of handling these light emitting diodes with high accuracy.
  • the work handling sheet 1 according to the above is very suitable.
  • the device manufacturing method includes at least three steps of a preparation step (FIG. 2 (a)), a placement step (FIG. 2 (b)), and a separation step (FIGS. 2 (c) and (d)).
  • a laminated body in which a plurality of work pieces 2 are held on the surface of the work handling sheet 1 according to the present embodiment on the interface ablation layer 12 side is prepared. ..
  • the laminated body may be prepared by placing a separately prepared work piece 2 on the work handling sheet 1, or a work held on the surface on the interface ablation layer 11 side is individually formed on the surface. It may be prepared by ablation (ie, dicing). The dicing can be performed by a known method.
  • the shape and size of the work piece 2 are not particularly limited as described above, and the preferred size is also as described above.
  • semiconductor parts, semiconductor devices, and the like can be mentioned, and in particular, light emitting diodes such as mini light emitting diodes and micro light emitting diodes can be mentioned.
  • the laminate is arranged so that the surfaces of the laminate 2 on the work fragment 2 side face each other with respect to the object 3 that can accept the workpiece 2. ..
  • An example of the object 3 is appropriately determined according to the device to be manufactured, but when the work piece 2 is a light emitting diode, specific examples of the object 3 include a substrate, a sheet, a reel, and the like. In particular, a wiring board provided with wiring is preferably used.
  • the laser beam is irradiated to the position of the interface ablation layer 11 in the laminated body to which at least one work piece 2 is attached.
  • the irradiation may be performed simultaneously on a plurality of positions to which the work pieces 2 are attached, or may be sequentially performed on those positions.
  • the irradiation conditions of the laser beam are not limited as long as it is possible to cause interfacial ablation.
  • a device for irradiation a known device can be used.
  • interfacial ablation can be generated at the irradiated position in the interfacial ablation layer 11.
  • the components constituting the region evaporate or volatilize to become the reaction region 13.
  • the gas generated by the evaporation or volatilization accumulates between the base material 11 and the reaction region 13, and the blister 5 is formed. Due to the formation of the blister 5, the interface ablation layer 11 is locally deformed at the position of the work piece 2', and the work piece 2'is separated so as to be peeled off from the interface ablation layer 11.
  • the work piece 2'existing at the position where the interface ablation has occurred can be placed on the object 3.
  • FIG. 3 shows how the work pieces 2 are separated by sequentially irradiating the laser beam, and in particular, the state after separation (two on the left), the state during separation (center), and the separation. The previous state (two on the right) is shown.
  • the separated blister 5 is usually in a slightly deflated state as compared with the separated blister 5.
  • the interface ablation layer 11 When the interface ablation layer 11 contains an active energy ray-curable pressure-sensitive adhesive as one of its constituent components, the interface ablation layer 11 may be cured by irradiation with the above-mentioned laser light. Then, the hardening may reduce the adhesive force of the interface ablation layer 11 to the work piece 2 and, in combination with the above-mentioned action by the interface ablation, may cause good separation of the work piece 2'. Alternatively, the interface ablation layer 11 may be irradiated with active energy rays different from the above-mentioned irradiation of laser light, thereby reducing the adhesive force to the work piece 2. Such activation energy ray irradiation may be performed before or after irradiation with laser light.
  • the activation energy ray irradiation may be performed locally on the interface ablation layer 11 or may be performed on the entire surface of the interface ablation layer 11.
  • the irradiation conditions and the irradiation device for the above-mentioned active energy ray irradiation are not particularly limited, and known conditions and known devices can be used.
  • the device manufacturing method described above may include steps other than the preparation step, the placement step, and the separation step. For example, grind, die bonding, wire bonding, molding, inspection, transfer step, and the like may be performed at an arbitrary timing between the preparation step and the separation step.
  • various devices can be manufactured by appropriately selecting the work piece 2 and the object 3 to be used.
  • a light emitting diode selected from a mini light emitting diode and a micro light emitting diode is used as the work piece 2
  • a light emitting device including a plurality of such light emitting diodes can be manufactured, and more specifically, a display.
  • another layer is laminated between the interface ablation layer 11 and the base material 12 in the work handling sheet 1 according to the present embodiment, or on the surface of the base material 12 opposite to the interface ablation layer 11. May be good.
  • Specific examples of the other layer include an adhesive layer.
  • the above-mentioned separation step or the like can be performed with the surface on the pressure-sensitive adhesive layer side attached to a support base (transparent substrate such as a glass plate).
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is not particularly limited, but preferably one that is difficult to absorb the active energy ray and is difficult to block the active energy ray. In this case, when the laser beam is irradiated through the pressure-sensitive adhesive layer, the laser beam easily reaches the interface ablation layer 11, and good interface ablation is likely to occur.
  • the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer it is preferable to use a pressure-sensitive adhesive having no active energy ray-curable component, and in particular, a pressure-sensitive adhesive containing no active energy ray-curable component may be used. preferable.
  • the pressure-sensitive adhesive layer does not cure even when irradiated with the laser beam, whereby the intention of the work handling sheet 1 from the transparent substrate 1 It is also possible to prevent peeling that does not occur.
  • the thickness of the pressure-sensitive adhesive layer is not particularly limited, but is preferably 5 to 50 ⁇ m, for example.
  • Example 1 (1) Preparation of Adhesive Composition 80 parts by mass of 2-ethylhexyl acrylate and 20 parts by mass of 2-hydroxyethyl acrylate were polymerized by a solution polymerization method to obtain an acrylic polymer. The weight average molecular weight (Mw) of this acrylic polymer was measured by the method described later and found to be 600,000.
  • a release sheet manufactured by Lintec Corporation, product name "SP-PET38131" in which a silicone-based release agent layer is formed on one side of a 38 ⁇ m-thick polyethylene terephthalate film.
  • the coating liquid of the adhesive composition obtained in the above step (1) was applied to the peeled surface, and the obtained coating film was dried by heating.
  • the above-mentioned weight average molecular weight (Mw) is a standard polystyrene-equivalent weight average molecular weight measured under the following conditions (GPC measurement) using gel permeation chromatography (GPC).
  • GPC measurement gel permeation chromatography
  • Examples 2 to 14 and Comparative Examples 1 to 2 A work handling sheet was produced in the same manner as in Example 1 except that the content of the cross-linking agent and the type and content of the ultraviolet absorber were changed as shown in Table 1.
  • Example 15 As a base material, a resin composition containing an ethylene-methacrylic acid copolymer (manufactured by Mitsui DuPont Polychemical Co., Ltd., product name "Nucrel NH903C”) is used as a small T-die extruder (manufactured by Toyo Seiki Seisakusho Co., Ltd., product name "Lab”).
  • Example 1 except that a base material (polyolefin-based base material) having a thickness of 80 ⁇ m obtained by extrusion molding with a plastic mill ”) is used and the content of the ultraviolet absorber is changed as shown in Table 1.
  • a work handling sheet was manufactured in the same manner as above.
  • a silicon wafer was diced into a chip having a size of 300 ⁇ m ⁇ 300 ⁇ m using a dicing apparatus (manufactured by Disco Corporation, product name “DFD6362”). Then, the dicing sheet was irradiated with ultraviolet rays (illuminance 230 mW / cm 2 , light intensity 190 mJ / cm 2 ). As a result, a laminated body in which a plurality of chips were provided on the dicing sheet was obtained.
  • a dicing apparatus manufactured by Disco Corporation, product name “DFD6362”.
  • the release sheet was peeled off from the work handling sheets produced in Examples and Comparative Examples, and the exposed exposed surface was bonded to the surface of the laminate obtained as described above in which a plurality of chips exist. ..
  • the dicing sheet was peeled off from the plurality of chips.
  • a plurality of chips were transferred from the dicing sheet to the work handling sheet, and a laminated body in which the plurality of chips were provided on the work handling sheet was obtained.
  • Example 14 The release sheet was peeled off from the work handling sheet produced in Example 14, and the exposed exposed surface was attached to one side of a silicon wafer (# 2000, thickness: 350 ⁇ m). Subsequently, a dicing ring frame was attached to the peripheral edge of the exposed surface of the work handling sheet (position not overlapping the silicon wafer). Further, the work handling sheet was cut according to the outer diameter of the ring frame. Then, a silicon wafer was diced into a chip having a size of 300 ⁇ m ⁇ 300 ⁇ m using a dicing apparatus (manufactured by Disco Corporation, product name “DFD6362”). As a result, a laminated body in which a plurality of chips were provided on the work handling sheet was obtained.
  • a dicing apparatus manufactured by Disco Corporation, product name “DFD6362”.
  • Examples 1 to 3 and 5 to 15 and Comparative Example 1 A laser beam irradiator (YAG third harmonic (wavelength 355 nm), pulse width 20 ns, light intensity 700 mJ / cm 2 ) was used to irradiate the chip with laser light through the work handling sheet. The irradiation was performed on a region of 270 ⁇ m ⁇ 270 ⁇ m in the center of the chip. Other irradiation conditions were frequency: 30 kHz and irradiation amount: 50 ⁇ J / shot. In addition, irradiation was performed by selecting 100 chips (a group of 10 vertical ⁇ 10 horizontal chips) from a plurality of chips.
  • Example 4 and Comparative Example 2 The chip was irradiated with laser light through the work handling sheet using a laser light irradiation device (manufactured by KEYENCE, product name "MD-U1000C"). The irradiation was performed by sequentially irradiating the center of the chip with laser light spots in a circular motion. At this time, the diameter of the laser beam spot was set to 25 ⁇ m, and the inner diameter of the ring generated as the irradiation locus was set to 65 ⁇ m. Other irradiation conditions were frequency: 40 kHz, scan speed: 500 mm / s, and irradiation amount: 50 ⁇ J / shot. Further, the irradiation was performed by selecting 100 chips (a group of 10 vertical ⁇ 10 horizontal chips) from a plurality of chips and performing the irradiation on them.
  • a laser light irradiation device manufactured by KEYENCE, product name "MD-U1000C”
  • the measurement was carried out by irradiating a light beam having a slit width of 20 nm and a wavelength of 355 nm toward the surface on the interface ablation layer side using an integrating sphere built in the spectrophotometer. The results are shown in Table 1.
  • Test Example 3 Evaluation of chip protection
  • a digital microscope manufactured by Keyence, product name "VHX-7000"
  • VHX-7000 digital microscope
  • Test Example 4 Evaluation of chip visibility through tape
  • the chip visibility through the tape was evaluated according to the following criteria. ⁇ ... I was able to see it. ⁇ ... I could't see it.
  • Tinuvin477 Tris [2,4,6-[2- ⁇ 4- (octyl-2-methylethanoate) oxy-2-hydroxyphenyl ⁇ ]] -1,3,5-triazine (hydroxyphenyltriazine UV absorber, Made by BASF, product name "Tinuvin 477”)
  • Tinuvin 479 2- (2-hydroxy-4- [1-octyloxycarbonylethoxy] phenyl) -4,6-bis (4-phenylphenyl) -1,3,5-triazine (hydroxyphenyltriazine UV absorber, Made by BASF, product name "Tinuvin 479”)
  • Tinuvin 326 2- (5-chloro-2H-benzotriazole-2-yl) -6- (1,1-dimethylethyl) -4-methylphenol (benzotriazole UV absorber, manufactured by BASF, product name "Tinuvin 326"
  • the work handling sheet manufactured in the examples was excellent in laser lift-off suitability. Further, in the work handling sheet produced in the examples, the ultraviolet transmittance is sufficiently lowered, and the chip protection and the chip visibility through the tape are excellent.
  • the work handling sheet of the present invention can be suitably used for manufacturing a display or the like provided with a micro light emitting diode as a pixel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laminated Bodies (AREA)
  • Adhesive Tapes (AREA)

Abstract

This workpiece handling sheet 1 is provided with a substrate 12 and an interface ablation layer 11 which is laminated on one surface of the substrate 12 and which can hold small workpieces 2 and perform interface ablation by irradiation with a laser, wherein the interface ablation layer 11 is characterized by containing a UV absorbing agent. This workpiece handling sheet allows favorably handling even fine workpieces.

Description

ワークハンドリングシートおよびデバイス製造方法Work handling sheet and device manufacturing method
 本発明は、半導体部品や半導体装置等のワーク小片を取り扱うために使用可能なワークハンドリングシート、および当該ワークハンドリングシートを用いたデバイス製造方法に関するものであり、特に、マイクロ発光ダイオード、パワーデバイス、MEMS(Micro Electro Mechanical Systems)等のワーク小片を取り扱うために使用可能なワークハンドリングシート、および当該ワークハンドリングシートを用いたデバイス製造方法に関するものである。 The present invention relates to a work handling sheet that can be used for handling small workpieces such as semiconductor parts and semiconductor devices, and a device manufacturing method using the work handling sheet, and in particular, a micro light emitting diode, a power device, and a MEMS. It relates to a work handling sheet that can be used for handling small pieces of work such as (Micro Electro Mechanical Systems), and a device manufacturing method using the work handling sheet.
 近年、マイクロ発光ダイオードを用いたディスプレイの開発が進められている。当該ディスプレイでは、個々の画素がマイクロ発光ダイオードで構成され、各マイクロ発光ダイオードの発光が独立に制御されている。当該ディスプレイの製造においては、一般的に、サファイア、ガラス等の供給基板上に配置されたマイクロ発光ダイオードを、配線が設けられた配線基板上に実装する必要がある。 In recent years, the development of displays using micro light emitting diodes has been promoted. In the display, each pixel is composed of micro light emitting diodes, and the light emission of each micro light emitting diode is controlled independently. In the manufacture of the display, it is generally necessary to mount a micro light emitting diode arranged on a supply substrate such as sapphire or glass on a wiring board provided with wiring.
 上記実装の際には、供給基板上に配置された複数のマイクロ発光ダイオードを、配線基板の所定の位置に正確に載置する必要がある。このとき、複数のマイクロ発光ダイオードの中から所定のものを選択的に配線基板に載置させる必要があったり、複数のマイクロ発光ダイオードを同時に載置させる必要もある。 At the time of the above mounting, it is necessary to accurately mount a plurality of micro light emitting diodes arranged on the supply board at a predetermined position on the wiring board. At this time, it is necessary to selectively mount a predetermined one from a plurality of micro light emitting diodes on the wiring board, or it is also necessary to mount a plurality of micro light emitting diodes at the same time.
 このような実装を良好に行う観点から、レーザー光の照射を利用することが検討されている。例えば、複数のマイクロ発光ダイオードを所定の層を介して支持体に保持した後、当該層に対してレーザー光を照射することで、その照射した位置において当該層のアブレーションを生じさせ、それによって支持体から分離(レーザーリフトオフ)したマイクロ発光ダイオードを配線基板に載置する方法が検討されている(特許文献1)。レーザー光は、指向性および収束性に優れているため、照射する位置を制御しやすく、選択的な載置を良好に行うことができる。 From the viewpoint of performing such mounting well, the use of laser light irradiation is being considered. For example, after holding a plurality of micro light emitting diodes on a support via a predetermined layer, the layer is irradiated with laser light to cause ablation of the layer at the irradiated position, thereby supporting the layer. A method of mounting a micro light emitting diode separated from the body (laser lift-off) on a wiring substrate has been studied (Patent Document 1). Since the laser beam is excellent in directivity and convergence, it is easy to control the irradiation position, and selective placement can be performed satisfactorily.
特許第6546278号Patent No. 6546278
 しかしながら、マイクロ発光ダイオードの更なる微細化や、マイクロ発光ダイオードのより高密度な実装も進められており、これらにも対応する上では、特許文献1のような従来の手法よりも効率良く多数のマイクロ発光ダイオードといった微細なワーク小片を取り扱うことができる手段が求められている。 However, further miniaturization of micro light emitting diodes and higher density mounting of micro light emitting diodes are being promoted, and in dealing with these, a large number of micro light emitting diodes are more efficiently used than conventional methods such as Patent Document 1. There is a need for a means capable of handling fine workpiece pieces such as micro light emitting diodes.
 本発明は、このような実状に鑑みてなされたものであり、微細なワーク小片であっても良好に取り扱うことが可能なワークハンドリングシート、および当該ワークハンドリングシートを用いたデバイス製造方法を提供することを目的とする。 The present invention has been made in view of such an actual situation, and provides a work handling sheet capable of satisfactorily handling even a fine work piece, and a device manufacturing method using the work handling sheet. The purpose is.
 上記目的を達成するために、第1に本発明は、基材と、前記基材における片面側に積層され、ワーク小片を保持可能であるとともに、レーザー光の照射によって界面アブレーションする界面アブレーション層とを備えるワークハンドリングシートであって、前記界面アブレーション層が、紫外線吸収剤を含有することを特徴とするワークハンドリングシートを提供する(発明1)。 In order to achieve the above object, firstly, the present invention comprises a base material and an interfacial ablation layer which is laminated on one side of the base material, can hold a small piece of work, and ablates the interface by irradiation with laser light. Provided is a work handling sheet comprising the above, wherein the interfacial ablation layer contains an ultraviolet absorber (Invention 1).
 上記発明(発明1)に係るワークハンドリングシートは、界面アブレーション層が紫外線吸収剤を含有していることで、レーザー光を照射した場合に効果的に界面アブレーションし、それによりワーク小片を対象物に向けて良好に分離することができる。 In the work handling sheet according to the above invention (Invention 1), since the interfacial ablation layer contains an ultraviolet absorber, the interfacial ablation is effectively performed when irradiated with laser light, thereby targeting small pieces of work as an object. Can be separated well towards.
 上記発明(発明1)において、前記紫外線吸収剤は、有機化合物であることが好ましい(発明2)。 In the above invention (Invention 1), the ultraviolet absorber is preferably an organic compound (Invention 2).
 上記発明(発明1,2)において、前記紫外線吸収剤は、1個以上の複素環を有する化合物であることが好ましい(発明3)。 In the above inventions (Inventions 1 and 2), the ultraviolet absorber is preferably a compound having one or more heterocycles (Invention 3).
 上記発明(発明1~3)において、前記紫外線吸収剤は、炭素環および複素環の少なくとも1種を有し、前記紫外線吸収剤が有する全ての前記炭素環および前記複素環は、それぞれ単環であることが好ましい(発明4)。 In the above inventions (Inventions 1 to 3), the ultraviolet absorber has at least one carbon ring and a heterocycle, and all the carbon rings and the heterocycle contained in the ultraviolet absorber are monocyclic rings, respectively. It is preferable that there is (Invention 4).
 上記発明(発明1~4)において、前記紫外線吸収剤は、複数の芳香環を有する化合物であることが好ましい(発明5)。 In the above inventions (Inventions 1 to 4), the ultraviolet absorber is preferably a compound having a plurality of aromatic rings (Invention 5).
 上記発明(発明1~5)において、前記界面アブレーション層中における紫外線吸収剤の含有量は、1質量%以上、75質量%以下であることが好ましい(発明6)。 In the above inventions (Inventions 1 to 5), the content of the ultraviolet absorber in the interfacial ablation layer is preferably 1% by mass or more and 75% by mass or less (Invention 6).
 上記発明(発明1~6)において、前記ワークハンドリングシートは、波長355nmの光線の吸光度が、2.0以上であることが好ましい(発明7)。 In the above inventions (Inventions 1 to 6), the work handling sheet preferably has an absorbance of light rays having a wavelength of 355 nm of 2.0 or more (Invention 7).
 上記発明(発明1~7)において、前記ワークハンドリングシートは、波長355nmの光線の透過率が、1.0%以下であることが好ましい(発明8)。 In the above inventions (Inventions 1 to 7), the work handling sheet preferably has a transmittance of light rays having a wavelength of 355 nm of 1.0% or less (Invention 8).
 上記発明(発明1~8)において、前記界面アブレーション層は、粘着剤層であることが好ましい(発明9)。 In the above inventions (Inventions 1 to 8), the interface ablation layer is preferably an adhesive layer (Invention 9).
 上記発明(発明9)において、前記粘着剤層を構成する粘着剤は、アクリル系粘着剤であることが好ましい(発明10)。 In the above invention (Invention 9), the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is preferably an acrylic pressure-sensitive adhesive (Invention 10).
 上記発明(発明1~10)において、前記レーザー光は、紫外域の波長を有するものであることが好ましい(発明11)。 In the above inventions (Inventions 1 to 10), it is preferable that the laser light has a wavelength in the ultraviolet region (Invention 11).
 上記発明(発明1~11)においては、前記界面アブレーション層に界面アブレーションを生じさせたときに、当該界面アブレーションが生じた位置においてブリスターが形成されることが好ましい(発明12)。 In the above inventions (Inventions 1 to 11), when interfacial ablation is generated in the interfacial ablation layer, it is preferable that a blister is formed at the position where the interfacial ablation occurs (Invention 12).
 上記発明(発明1~12)においては、前記界面アブレーション層において局所的に生じさせた界面アブレーションによって、前記界面アブレーション層における前記基材とは反対の面上に保持された複数のワーク小片のうちの任意のワーク小片を、前記界面アブレーション層から選択的に分離するために使用されるものであることが好ましい(発明13)。 In the above inventions (Inventions 1 to 12), among a plurality of work pieces held on a surface opposite to the base material in the interface ablation layer by the interface ablation locally generated in the interface ablation layer. It is preferable that any piece of the work piece of the above is used for selectively separating from the interfacial ablation layer (Invention 13).
 上記発明(発明13)において、前記ワーク小片は、前記界面アブレーション層における前記基材とは反対の面上に保持されたワークを当該面上において個片化することで得られたものであることが好ましい(発明14)。 In the above invention (Invention 13), the work piece is obtained by individualizing a work held on a surface of the interface ablation layer opposite to the base material on the surface. Is preferable (Invention 14).
 上記発明(発明13,14)において、前記ワーク小片は、半導体部品および半導体装置から選択される少なくとも1種であることが好ましい(発明15)。 In the above inventions (Inventions 13 and 14), it is preferable that the work piece is at least one selected from semiconductor parts and semiconductor devices (Invention 15).
 上記発明(発明13~15)において、前記ワーク小片は、ミニ発光ダイオードおよびマイクロ発光ダイオードから選択される発光ダイオードであることが好ましい(発明16)。 In the above inventions (Inventions 13 to 15), it is preferable that the work piece is a light emitting diode selected from a mini light emitting diode and a micro light emitting diode (Invention 16).
 第2に本発明は、基材と、前記基材における片面側に積層された、紫外線吸収剤を含有する界面アブレーション層とを備えるワークハンドリングシートにおける、前記界面アブレーション層側の面上に複数のワーク小片が保持されてなる積層体を準備する準備工程と、前記ワーク小片を受容可能な対象物に対して、前記積層体における前記ワーク小片側の面が向かい合うように前記積層体を配置する配置工程と、前記積層体における前記界面アブレーション層における、少なくとも1つの前記ワーク小片が貼付されている位置に対し、レーザー光を照射して、前記界面アブレーション層における前記照射された位置において界面アブレーションを生じさせることで、当該界面アブレーションが生じた位置に存在する前記ワーク小片を前記ワークハンドリングシートから分離し、前記ワーク小片を前記対象物上に載置する分離工程とを備えることを特徴とするデバイス製造方法を提供する(発明17)。 Secondly, the present invention relates to a plurality of work handling sheets including a base material and an interfacial ablation layer containing an ultraviolet absorber laminated on one side of the base material on the surface on the interfacial ablation layer side. A preparatory step for preparing a laminate in which the work pieces are held, and an arrangement in which the laminate is arranged so that the surfaces on the work piece side of the laminate face each other with respect to an object that can accept the work pieces. Laser light is irradiated to the step and the position where at least one piece of the work piece is attached in the interfacial ablation layer in the laminated body to generate interfacial ablation at the irradiated position in the interfacial ablation layer. The device is manufactured by comprising a separation step of separating the work piece existing at the position where the interface ablation occurs from the work handling sheet and placing the work piece on the object. A method is provided (Invention 17).
 上記発明(発明17)において、前記準備工程においては、前記界面アブレーション層における前記基材とは反対の面上に保持されたワークを当該面上において個片化することで、前記ワーク小片を得ることが好ましい(発明18)。 In the above invention (Invention 17), in the preparatory step, the work piece is obtained by individualizing the work held on the surface of the interface ablation layer opposite to the base material on the surface. It is preferable (Invention 18).
 上記発明(発明17,18)において、前記ワーク小片は、半導体部品および半導体装置から選択される少なくとも1種であることが好ましい(発明19)。 In the above inventions (Inventions 17 and 18), it is preferable that the work piece is at least one selected from semiconductor parts and semiconductor devices (Invention 19).
 上記発明(発明17~19)においては、ミニ発光ダイオードおよびマイクロ発光ダイオードから選択される発光ダイオードを前記ワーク小片として用いて、前記発光ダイオードを複数備える発光装置を製造することが好ましい(発明20)。 In the above inventions (Inventions 17 to 19), it is preferable to manufacture a light emitting device including a plurality of the light emitting diodes by using a light emitting diode selected from a mini light emitting diode and a micro light emitting diode as the work piece (Invention 20). ..
 上記発明(発明20)において、前記発光装置は、ディスプレイであることが好ましい(発明21)。 In the above invention (invention 20), the light emitting device is preferably a display (invention 21).
 本発明に係るワークハンドリングシートは、微細なワーク小片であっても良好に取り扱うことができ、また、本発明に係るデバイス製造方法によれば、優れた性能を有するデバイスを製造することができる。 The work handling sheet according to the present invention can handle even fine pieces of work satisfactorily, and according to the device manufacturing method according to the present invention, a device having excellent performance can be manufactured.
本発明の一実施形態に係るワークハンドリングシートの断面図である。It is sectional drawing of the work handling sheet which concerns on one Embodiment of this invention. 本発明の一実施形態に係るワークハンドリングシートを使用したデバイス製造方法を説明する断面図である。It is sectional drawing explaining the device manufacturing method using the work handling sheet which concerns on one Embodiment of this invention. レーザー光の照射により生じたブリスターおよび反応領域の状態を説明する断面図である。It is sectional drawing explaining the state of a blister and a reaction region generated by irradiation of a laser beam.
 以下、本発明の実施形態について説明する。
 図1には、一実施形態に係るワークハンドリングシートの断面図が示される。図1に示されるワークハンドリングシート1は、基材12と、基材12における片面側に積層された界面アブレーション層11とを備える。
Hereinafter, embodiments of the present invention will be described.
FIG. 1 shows a cross-sectional view of a work handling sheet according to an embodiment. The work handling sheet 1 shown in FIG. 1 includes a base material 12 and an interface ablation layer 11 laminated on one side of the base material 12.
 本実施形態に係るワークハンドリングシート1においては、界面アブレーション層11が、ワーク小片を保持可能である。すなわち、本実施形態に係るワークハンドリングシート1は、界面アブレーション層11における基材12とは反対の面上に積層されたワーク小片を、その状態のまま保持することができる。 In the work handling sheet 1 according to the present embodiment, the interface ablation layer 11 can hold a small piece of work. That is, the work handling sheet 1 according to the present embodiment can hold the work pieces laminated on the surface of the interface ablation layer 11 opposite to the base material 12 in that state.
 上記保持の具体的な態様は限定されないものの、好ましい例としては、界面アブレーション層11がワーク小片に対する粘着性を発揮することで保持することが挙げられる。この場合、界面アブレーション層11は、後述する通り、それを構成する成分の1つとして粘着剤を含むこと、すなわち粘着剤層であることが好ましい。 Although the specific mode of the above holding is not limited, a preferable example is that the interface ablation layer 11 holds the work piece by exhibiting adhesiveness to the work piece. In this case, as will be described later, the interface ablation layer 11 preferably contains a pressure-sensitive adhesive as one of the components constituting the interface ablation layer 11, that is, a pressure-sensitive adhesive layer.
 また、本実施形態における界面アブレーション層11は、レーザー光の照射によって界面アブレーションするものである。すなわち、界面アブレーション層11は、上記レーザー光の照射を受けた領域において、局所的な界面アブレーションするものである。なお、上記レーザー光としては、界面アブレーションを生じさせることが可能であれば特に限定されず、紫外域、可視光域および赤外域のいずれの波長を有するレーザー光であってよく、中でも、紫外域の波長を有するレーザー光が好ましい。 Further, the interfacial ablation layer 11 in the present embodiment is interfacial ablated by irradiation with laser light. That is, the interface ablation layer 11 locally ablates the interface in the region irradiated with the laser beam. The laser light is not particularly limited as long as it can cause interfacial ablation, and may be a laser light having any wavelength in the ultraviolet region, the visible light region, and the infrared region, and among them, the ultraviolet region. Laser light having the wavelength of is preferable.
 本明細書において、界面アブレーションとは、上記レーザー光のエネルギーによって界面アブレーション層11を構成する成分の一部が蒸発または揮発し、それによって生じたガスが界面アブレーション層11と基材12との界面に溜まって空隙(ブリスター)が生じることを指す。この場合、ブリスターによって界面アブレーション層11の形状が変化し、ワーク小片が界面アブレーション層11から剥がれ落ちて、ワーク小片が分離することとなる。 In the present specification, the interfacial ablation means that a part of the components constituting the interfacial ablation layer 11 is evaporated or volatilized by the energy of the laser beam, and the gas generated thereby is the interface between the interfacial ablation layer 11 and the base material 12. It means that a gap (blister) is generated by accumulating in. In this case, the shape of the interface ablation layer 11 is changed by the blister, the work pieces are peeled off from the interface ablation layer 11, and the work pieces are separated.
 そして、本実施形態における界面アブレーション層11は、紫外線吸収剤を含有する。界面アブレーション層11中に紫外線吸収剤が存在することで、界面アブレーション層11が、レーザー光からエネルギーを受け取る効率が向上する。これにより、効果的に界面アブレーションが生じ、保持したワーク小片を界面アブレーション層11から良好に分離することが可能となる。特に、ワーク小片の十分な分離を生じさせるために必要となるレーザー光の照射量が低減し、レーザー光の照射装置の稼働コストを低減できるとともに、ターゲットとするワーク小片のみを良好に分離し易くなって精度が向上し、さらには、過度なレーザー光照射による装置等の損傷を防ぐこともできる。 Then, the interface ablation layer 11 in the present embodiment contains an ultraviolet absorber. The presence of the UV absorber in the interfacial ablation layer 11 improves the efficiency with which the interfacial ablation layer 11 receives energy from the laser beam. As a result, interfacial ablation is effectively generated, and the held work pieces can be well separated from the interfacial ablation layer 11. In particular, the amount of laser light irradiation required to cause sufficient separation of the work pieces can be reduced, the operating cost of the laser light irradiation device can be reduced, and only the target work pieces can be easily separated satisfactorily. As a result, the accuracy is improved, and further, damage to the device or the like due to excessive laser light irradiation can be prevented.
1.界面アブレーション層
 本実施形態における界面アブレーション層11の具体的な構成や組成は、ワーク小片を保持可能であるとともに、レーザー光の照射によって界面アブレーションするという性質を有し、且つ、紫外線吸収剤を含有するものである限り、特に限定されない。
1. 1. Interface ablation layer The specific configuration and composition of the interface ablation layer 11 in the present embodiment has the property of being able to hold small pieces of work, having the property of interfacial ablation by irradiation with laser light, and containing an ultraviolet absorber. As long as it does, it is not particularly limited.
 ワーク小片を保持可能であるという性質を良好に発揮しやすいという観点からは、界面アブレーション層11は、前述した通り、それを構成する成分の1つとして粘着剤を含むことが好ましい。界面アブレーション層11が粘着剤を含む場合、界面アブレーション層11は、紫外線吸収剤を含有する粘着性組成物からなるものであることが好ましい。 As described above, the interface ablation layer 11 preferably contains an adhesive as one of the constituents thereof, from the viewpoint that the property of being able to hold small pieces of work can be easily exhibited. When the interface ablation layer 11 contains a pressure-sensitive adhesive, the interface ablation layer 11 is preferably made of a pressure-sensitive composition containing an ultraviolet absorber.
(1)紫外線吸収剤
 本実施形態における紫外線吸収剤の種類は特に限定されない。本実施形態における紫外線吸収剤は、有機化合物であってもよく、無機化合物であってもよいが、良好な界面アブレーションを生じさせ易いという観点からは有機化合物であることが好ましい。
(1) Ultraviolet absorber The type of ultraviolet absorber in the present embodiment is not particularly limited. The ultraviolet absorber in the present embodiment may be an organic compound or an inorganic compound, but is preferably an organic compound from the viewpoint of easily causing good interfacial ablation.
 紫外線吸収剤が有機化合物である場合、当該紫外線吸収剤の好ましい例としては、ヒドロキシフェニルトリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、ベンゾトリアゾール系紫外線吸収剤、ベンゾエート系紫外線吸収剤、ベンゾオキサジノン系紫外線吸収剤、フェニルサリシレート系紫外線吸収剤、シアノアクリレート系紫外線吸収剤、ニッケル錯塩系紫外線吸収剤、ハイドロキノン系紫外線吸収剤、サリチル酸系紫外線吸収剤、マロン酸エステル系紫外線吸収剤、シュウ酸系紫外線吸収剤等の化合物が挙げられる。これらは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。 When the UV absorber is an organic compound, preferred examples of the UV absorber are hydroxyphenyltriazine-based UV absorbers, benzophenone-based UV absorbers, benzotriazole-based UV absorbers, benzoate-based UV absorbers, and benzooxadinone. UV absorbers, phenylsalicylate UV absorbers, cyanoacrylate UV absorbers, nickel complex salt UV absorbers, hydroquinone UV absorbers, salicylic acid UV absorbers, malonic acid ester UV absorbers, oxalic UV absorbers Examples include compounds such as absorbers. These may be used individually by 1 type, and may be used in combination of 2 or more type.
 上述した紫外線吸収剤の中でも、YAGの第三次高調波(355nm)において良好な吸収性を有し、且つ良好な界面アブレーションを生じさせ易いという観点から、ヒドロキシフェニルトリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤およびベンゾトリアゾール系紫外線吸収剤の少なくとも1種を使用することが好ましく、とりわけヒドロキシフェニルトリアジン系紫外線吸収剤を使用することが好ましい。 Among the above-mentioned UV absorbers, hydroxyphenyltriazine-based UV absorbers and benzophenone-based UV absorbers have good absorbency at the third harmonic of YAG (355 nm) and are likely to cause good interfacial ablation. It is preferable to use at least one of an ultraviolet absorber and a benzotriazole-based ultraviolet absorber, and it is particularly preferable to use a hydroxyphenyltriazine-based ultraviolet absorber.
 上記ヒドロキシフェニルトリアジン系紫外線吸収剤としては、2-[4-(オクチル-2-メチルエタノエート)オキシ-2-ヒドロキシフェニル]-4,6-[ビス(2,4-ジメチルフェニル)]-1,3,5-トリアジン、2-[4-(2-ヒドロキシ-3-ドデシロキシ-プロピル)オキシ-2-ヒドロキシフェニル]-4,6-[ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-(2-ヒドロキシ-3-トリデシロキシ-プロピル)オキシ-2-ヒドロキシフェニル]-4,6-[ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-(2,4-ジヒドロキシフェニル)-4,6-ビス-(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-(2-ヒドロキシ-3-(2’-エチル)ヘキシルオキシ]-2-ヒドロキシフェニル]-4,6-[ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4-ビス[2-ヒドロキシ-4-ブトキシフェニル]-6-(2,4-ジブトキシフェニル)-1,3-5-トリアジン、2-(2-ヒドロキシ-4-[1-オクチルオキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン、トリス[2,4,6-[2-{4-(オクチル-2-メチルエタノエート)オキシ-2-ヒドロキシフェニル}]-1,3,5-トリアジンなどが挙げられる。これらは、1種を単独で用いてもよいし、2種以上を組み合わせて用いてもよい。これらの中でも、トリス[2,4,6-[2-{4-(オクチル-2-メチルエタノエート)オキシ-2-ヒドロキシフェニル}]-1,3,5-トリアジンおよび2-(2-ヒドロキシ-4-[1-オクチルオキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジンの少なくとも一方を使用することが好ましい。 Examples of the hydroxyphenyltriazine-based ultraviolet absorber include 2- [4- (octyl-2-methylethanoate) oxy-2-hydroxyphenyl] -4,6- [bis (2,4-dimethylphenyl)] -1. , 3,5-Triazine, 2- [4- (2-Hydroxy-3-dodecyloxy-propyl) oxy-2-hydroxyphenyl] -4,6- [bis (2,4-dimethylphenyl) -1,3 5-Triazine, 2- [4- (2-hydroxy-3-tridecyloxy-propyl) oxy-2-hydroxyphenyl] -4,6- [bis (2,4-dimethylphenyl) -1,3,5-triazine , 2- (2,4-dihydroxyphenyl) -4,6-bis- (2,4-dimethylphenyl) -1,3,5-triazine, 2- [4- (2-hydroxy-3- (2') -Ethyl) hexyloxy] -2-hydroxyphenyl] -4,6- [bis (2,4-dimethylphenyl) -1,3,5-triazine, 2,4-bis [2-hydroxy-4-butoxyphenyl] ] -6- (2,4-dibutoxyphenyl) -1,3-5-triazine, 2- (2-hydroxy-4- [1-octyloxycarbonylethoxy] phenyl) -4,6-bis (4- Phenylphenyl) -1,3,5-triazine, tris [2,4,6- [2- {4- (octyl-2-methylethanoate) oxy-2-hydroxyphenyl}]] -1,3,5- Examples thereof include triazine. One of these may be used alone, or two or more thereof may be used in combination. Among these, tris [2,4,6- [2- {4-( Octyl-2-methylethanoate) oxy-2-hydroxyphenyl}]-1,3,5-triazine and 2- (2-hydroxy-4- [1-octyloxycarbonylethoxy] phenyl) -4,6-bis It is preferable to use at least one of (4-phenylphenyl) -1,3,5-triazine.
 また、紫外線吸収剤が有機化合物である場合、当該紫外線吸収剤は、その化学構造上の特徴として、1個以上の複素環を有する化合物であることが好ましい。この場合、複素環の数は、4個以下であることが好ましく、特に1個であることが好ましい。 When the ultraviolet absorber is an organic compound, the ultraviolet absorber is preferably a compound having one or more heterocycles as a characteristic of its chemical structure. In this case, the number of heterocycles is preferably 4 or less, and particularly preferably 1.
 また、別の化学構造上の特徴として、本実施形態における紫外線吸収剤は、炭素環および複素環の少なくとも1種を有するとともに、当該紫外線吸収剤が有する全ての炭素環および複素環がそれぞれ単環であることも好ましい。 Further, as another chemical structural feature, the ultraviolet absorber in the present embodiment has at least one carbon ring and a heterocycle, and all the carbon rings and the heterocycle contained in the ultraviolet absorber are monocyclic rings, respectively. Is also preferable.
 さらなる化学構造上の特徴として、本実施形態における紫外線吸収剤は、複数の芳香環を有する化合物であることも好ましい。この場合、芳香環の数は、2個以上であることが好ましい。また、芳香環の数は、6個以下であることが好ましく、特に3個以下であることが好ましい。 As a further chemical structural feature, it is also preferable that the ultraviolet absorber in the present embodiment is a compound having a plurality of aromatic rings. In this case, the number of aromatic rings is preferably two or more. The number of aromatic rings is preferably 6 or less, and particularly preferably 3 or less.
 上述した化学構造上の特徴において、それぞれの複素環は、それらを構成する炭素以外の元素として、窒素、酸素、リン、硫黄、ケイ素およびセレンから選択される少なくとも1種を有することが好ましく、特に、窒素、酸素、リンおよび硫黄から選択される少なくとも1種を有することが好ましい。また、複素環の環構造を構成する原子の数は特に限定はなく、例えば3個以上、9個以下であり、特に5個以上、6個以下であることが好ましい。好ましい複素環の具体例としては、トリアジン、ベンゾトリアゾール、チオフェン、ピロール、イミダゾール、ピリジン、ピラジン等が挙げられる。 In the above-mentioned chemical structural characteristics, each heterocycle preferably has at least one selected from nitrogen, oxygen, phosphorus, sulfur, silicon and selenium as an element other than carbon constituting them, particularly. , Nitrogen, oxygen, phosphorus and sulfur, preferably having at least one selected from. The number of atoms constituting the ring structure of the heterocycle is not particularly limited, and is, for example, 3 or more and 9 or less, and particularly preferably 5 or more and 6 or less. Specific examples of the preferred heterocycle include triazine, benzotriazole, thiophene, pyrrole, imidazole, pyridine, pyrazine and the like.
 また、上述した化学構造上の特徴において、芳香環の好ましい例としては、ベンゼン、ナフタレン、アントラセン、ビフェニル、トリフェニル等が挙げられる。 Further, in the above-mentioned chemical structural characteristics, preferable examples of the aromatic ring include benzene, naphthalene, anthracene, biphenyl, triphenyl and the like.
 上述した化学構造上の特徴を有する紫外線吸収剤の例としては、以下の式(1)の構造を有する紫外線吸収剤(トリス[2,4,6-[2-{4-(オクチル-2-メチルエタノエート)オキシ-2-ヒドロキシフェニル}]-1,3,5-トリアジン)が挙げられる。 As an example of the ultraviolet absorber having the above-mentioned chemical structural characteristics, an ultraviolet absorber having the structure of the following formula (1) (Tris [2,4,6-[2- {4- (octyl-2-)) Methylethanoate) oxy-2-hydroxyphenyl}]-1,3,5-triazine).
Figure JPOXMLDOC01-appb-C000001
Figure JPOXMLDOC01-appb-C000001
 本実施形態における界面アブレーション層11中における紫外線吸収剤の含有量は、1質量%以上であることが好ましく、2質量%以上であることがより好ましく、特に3質量%以上であることが好ましく、さらには5質量%以上であることが好ましい。紫外線吸収剤の含有量が1質量%以上であることで、界面アブレーション層11がレーザー光を効率的に吸収し、それによって良好に界面アブレーションし易いものとなる。また、本実施形態における界面アブレーション層11中における紫外線吸収剤の含有量は、75質量%以下であることが好ましく、60質量%以下であることがより好ましく、特に50質量%以下であることが好ましく、さらには20質量%以下であることが好ましい。紫外線吸収剤の含有量が75質量%以下であることで、界面アブレーション層11形成のための材料の粘度が適度なものとなり、良好な造膜性を確保し易くなる。 The content of the ultraviolet absorber in the interface ablation layer 11 in the present embodiment is preferably 1% by mass or more, more preferably 2% by mass or more, and particularly preferably 3% by mass or more. Further, it is preferably 5% by mass or more. When the content of the ultraviolet absorber is 1% by mass or more, the interfacial ablation layer 11 efficiently absorbs the laser beam, thereby facilitating good interfacial ablation. Further, the content of the ultraviolet absorber in the interface ablation layer 11 in the present embodiment is preferably 75% by mass or less, more preferably 60% by mass or less, and particularly preferably 50% by mass or less. It is preferable, and more preferably 20% by mass or less. When the content of the ultraviolet absorber is 75% by mass or less, the viscosity of the material for forming the interface ablation layer 11 becomes appropriate, and it becomes easy to secure good film-forming property.
 また、本実施形態における界面アブレーション層11が後述する粘着性組成物から形成される場合、紫外線吸収剤はこの粘着性組成物中に配合されてもよい。その場合、当該粘着性組成物中における紫外線吸収剤の配合量は、1質量%以上であることが好ましく、2質量%以上であることがより好ましく、特に3質量%以上であることが好ましく、さらには5質量%以上であることが好ましい。紫外線吸収剤の配合量が1質量%以上であることで、界面アブレーション層11がレーザー光を効率的に吸収し、それによって良好に界面アブレーションし易いものとなる。また、上記粘着性組成物中における紫外線吸収剤の配合量は、75質量%以下であることが好ましく、60質量%以下であることがより好ましく、特に50質量%以下であることが好ましく、さらには20質量%以下であることが好ましい。紫外線吸収剤の配合量が75質量%以下であることで、得られる粘着剤が所望の粘着力を発揮し易いものとなる。 Further, when the interface ablation layer 11 in the present embodiment is formed from the adhesive composition described later, the ultraviolet absorber may be blended in this adhesive composition. In that case, the blending amount of the ultraviolet absorber in the adhesive composition is preferably 1% by mass or more, more preferably 2% by mass or more, and particularly preferably 3% by mass or more. Further, it is preferably 5% by mass or more. When the blending amount of the ultraviolet absorber is 1% by mass or more, the interfacial ablation layer 11 efficiently absorbs the laser light, thereby facilitating good interfacial ablation. Further, the blending amount of the ultraviolet absorber in the adhesive composition is preferably 75% by mass or less, more preferably 60% by mass or less, particularly preferably 50% by mass or less, and further. Is preferably 20% by mass or less. When the blending amount of the ultraviolet absorber is 75% by mass or less, the obtained pressure-sensitive adhesive can easily exhibit the desired adhesive strength.
(2)粘着剤
 前述した通り、本実施形態における界面アブレーション層11は、紫外線吸収剤に加えて、粘着剤を含むものであってもよい。この場合、界面アブレーション層11は、紫外線吸収剤を含有する粘着性組成物から形成されるものであることが好ましい。
(2) Adhesive As described above, the interface ablation layer 11 in the present embodiment may contain an adhesive in addition to the ultraviolet absorber. In this case, the interface ablation layer 11 is preferably formed from an adhesive composition containing an ultraviolet absorber.
 上記粘着剤としては、ワーク小片等の被着体に対する十分な保持力(粘着力)を発揮することができる限り、特に限定されない。上記粘着剤の例としては、アクリル系粘着剤、ゴム系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤、ポリエステル系粘着剤、ポリビニルエーテル系粘着剤等が挙げられる。これらの中でも、所望の粘着力を発揮し易いという観点から、アクリル系粘着剤を使用することが好ましい。 The above-mentioned adhesive is not particularly limited as long as it can exhibit sufficient holding power (adhesive power) for an adherend such as a small piece of work. Examples of the above-mentioned adhesives include acrylic adhesives, rubber adhesives, silicone adhesives, urethane adhesives, polyester adhesives, polyvinyl ether adhesives and the like. Among these, it is preferable to use an acrylic pressure-sensitive adhesive from the viewpoint of easily exerting a desired adhesive strength.
 上記アクリル系粘着剤としては、アクリル系重合体(A)をベースポリマーとするアクリル系粘着剤が挙げられる。アクリル系重合体(A)の重量平均分子量(Mw)は、1万以上であることが好ましく、特に10万以上であることが好ましい。また、当該重量平均分子量(Mw)は、200万以下であることが好ましく、特に150万以下であることがより好ましい。アクリル系重合体(A)の重量平均分子量が1万以上であることで、得られる粘着力の凝集力を高め易くなり、分離したワーク小片への粘着剤残りを抑制し易くなる。また、重量平均分子量が200万以下であることで、安定した界面アブレーション層の塗膜を得易くなる。なお、本明細書における重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー法(GPC法)により測定した標準ポリスチレン換算の値である。 Examples of the acrylic pressure-sensitive adhesive include an acrylic pressure-sensitive adhesive using the acrylic polymer (A) as a base polymer. The weight average molecular weight (Mw) of the acrylic polymer (A) is preferably 10,000 or more, and particularly preferably 100,000 or more. The weight average molecular weight (Mw) is preferably 2 million or less, and more preferably 1.5 million or less. When the weight average molecular weight of the acrylic polymer (A) is 10,000 or more, it becomes easy to increase the cohesive force of the obtained adhesive force, and it becomes easy to suppress the adhesive residue on the separated work pieces. Further, when the weight average molecular weight is 2 million or less, it becomes easy to obtain a stable coating film of the interface ablation layer. The weight average molecular weight (Mw) in the present specification is a standard polystyrene-equivalent value measured by a gel permeation chromatography method (GPC method).
 また、アクリル系重合体(A)のガラス転移温度(Tg)は、-70℃以上であることが好ましく、特に-60℃以上であることが好ましい。また、当該ガラス転移温度(Tg)は、20℃以下であることが好ましく、特に10℃以下であることが好ましい。アクリル系重合体(A)のガラス転移温度(Tg)が、上記範囲であることで、所望の凝集力を達成しながらも、所望の粘着力を実現し易くなる。 The glass transition temperature (Tg) of the acrylic polymer (A) is preferably −70 ° C. or higher, and particularly preferably −60 ° C. or higher. The glass transition temperature (Tg) is preferably 20 ° C. or lower, and particularly preferably 10 ° C. or lower. When the glass transition temperature (Tg) of the acrylic polymer (A) is in the above range, it becomes easy to achieve a desired adhesive force while achieving a desired cohesive force.
 上記アクリル系重合体(A)は、構成モノマーとして、少なくとも、(メタ)アクリル酸エステルモノマーを含有することが好ましく、また、後述する架橋剤(B)の官能基と反応し得る官能基(以下、「反応性官能基」ともいう)を有することが好ましい。 The acrylic polymer (A) preferably contains at least a (meth) acrylic acid ester monomer as a constituent monomer, and a functional group capable of reacting with a functional group of the cross-linking agent (B) described later (hereinafter referred to as a functional group). , Also referred to as "reactive functional group").
 上記(メタ)アクリル酸エステルモノマーとしては、具体的には、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、ペンチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、イソオクチル(メタ)アクリレート、n-オクチル(メタ)アクリレート、n-ノニル(メタ)アクリレート、イソノニル(メタ)アクリレート、デシル(メタ)アクリレート、ラウリル(メタ)アクリレート等のアルキル基の炭素数が1~18のアルキル(メタ)アクリレート;シクロアルキル基の炭素数が1~18程度のシクロアルキル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、ジシクロペンテニル(メタ)アクリレート、ジシクロペンテニルオキシエチル(メタ)アクリレート、イミド(メタ)アクリレートなどの環状骨格を有する(メタ)アクリレート;ヒドロキシメチル(メタ)アクリレート、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレートなどの水酸基含有(メタ)アクリレート;グリシジル(メタ)アクリレート、β-メチルグリシジル(メタ)アクリレート、(3,4-エポキシシクロヘキシル)メチル(メタ)アクリレート、3-エポキシシクロ-2-ヒドロキシプロピル(メタ)アクリレートなどのエポキシ基含有(メタ)アクリレートが挙げられる。 Specific examples of the (meth) acrylic acid ester monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, pentyl (meth) acrylate, and 2-ethylhexyl (. The number of carbon atoms of alkyl groups such as meta) acrylate, isooctyl (meth) acrylate, n-octyl (meth) acrylate, n-nonyl (meth) acrylate, isononyl (meth) acrylate, decyl (meth) acrylate, and lauryl (meth) acrylate. Alkyl (meth) acrylate of 1 to 18; cycloalkyl (meth) acrylate, benzyl (meth) acrylate, isobornyl (meth) acrylate, dicyclopentanyl (meth) acrylate having a cycloalkyl group having about 1 to 18 carbon atoms. , Dicyclopentenyl (meth) acrylate, dicyclopentenyloxyethyl (meth) acrylate, (meth) acrylate having a cyclic skeleton such as imide (meth) acrylate; hydroxymethyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate , 2-Hydroxypropyl (meth) acrylate and other hydroxyl group-containing (meth) acrylates; glycidyl (meth) acrylate, β-methylglycidyl (meth) acrylate, (3,4-epoxycyclohexyl) methyl (meth) acrylate, 3-epoxy Examples thereof include epoxy group-containing (meth) acrylates such as cyclo-2-hydroxypropyl (meth) acrylates.
 また、アクリル酸、メタクリル酸、イタコン酸、酢酸ビニル、アクリロニトリル、スチレン、N-メチロールアクリルアミド等の(メタ)アクリル酸エステルモノマー以外のモノマーが共重合されていてもよい。これらは1種単独で用いてもよく、2種以上を併用してもよい。 Further, a monomer other than the (meth) acrylic acid ester monomer such as acrylic acid, methacrylic acid, itaconic acid, vinyl acetate, acrylonitrile, styrene, and N-methylolacrylamide may be copolymerized. These may be used alone or in combination of two or more.
 アクリル系重合体(A)は、反応性官能基を含有することにより、後述する架橋剤(B)の官能基と反応して三次元網目構造を形成し界面アブレーション層の凝集性を高め易くなる。アクリル系重合体(A)の反応性官能基としては、カルボキシル基、アミノ基、エポキシ基、水酸基等が挙げられるが、後述するように架橋剤として好ましく使用される有機多価イソシアネート化合物と選択的に反応させやすいことから、水酸基を含むことが好ましい。 Since the acrylic polymer (A) contains a reactive functional group, it reacts with the functional group of the cross-linking agent (B) described later to form a three-dimensional network structure, and it becomes easy to enhance the cohesiveness of the interface ablation layer. .. Examples of the reactive functional group of the acrylic polymer (A) include a carboxyl group, an amino group, an epoxy group, a hydroxyl group and the like, and as described later, it is selectively selected from an organic polyvalent isocyanate compound preferably used as a cross-linking agent. It is preferable to contain a hydroxyl group because it easily reacts with.
 反応性官能基は、上述した水酸基含有(メタ)アクリレートやアクリル酸等の反応性官能基を有する単量体を用いてアクリル系重合体(A)を構成することで、アクリル系重合体(A)に導入できる。 The reactive functional group is an acrylic polymer (A) by forming an acrylic polymer (A) using the above-mentioned monomer having a reactive functional group such as a hydroxyl group-containing (meth) acrylate or acrylic acid. ) Can be introduced.
 反応性官能基を有するモノマー(以下、反応基含有モノマーともいう。)のアクリル系重合体(A)の全構成モノマー中の割合は、0.3質量%以上であることが好ましく、特に0.5質量%以上であることが好ましい。また、上記割合は、40質量%以下であることが好ましく、特に20質量%以下であることが好ましい。反応基含有モノマーをこの範囲で含有することで、所望の凝集力を達成しながらも、所望の粘着力を実現し易くなる。 The ratio of the monomer having a reactive functional group (hereinafter, also referred to as a reactive group-containing monomer) to the total constituent monomers of the acrylic polymer (A) is preferably 0.3% by mass or more, and particularly 0. It is preferably 5% by mass or more. Further, the above ratio is preferably 40% by mass or less, and particularly preferably 20% by mass or less. By containing the reactive group-containing monomer in this range, it becomes easy to achieve the desired adhesive force while achieving the desired cohesive force.
 また、アクリル系重合体(A)は、構成モノマーとして、上記したアルキル(メタ)アクリレートを含有することが好ましく、より好ましくはアルキル基の炭素数が1~10のアルキル(メタ)アクリレート、特に好ましくはアルキル基の炭素数が4~8のアルキル(メタ)アクリレートを含有することが好ましい。アクリル系重合体(A)が上記したアルキル(メタ)アクリレートを含有する場合、アルキル(メタ)アクリレートのアクリル系重合体(A)の全構成モノマー中の割合は、30質量%以上であることが好ましく、特に35質量%以上であることが好ましい。また、上記割合は、99質量%以下であることが好ましく、特に95質量%以下であることが好ましい。アルキル(メタ)アクリレートをこの範囲で含有することで、所望の凝集力を達成しながらも、所望の粘着力を実現し易くなる。 Further, the acrylic polymer (A) preferably contains the above-mentioned alkyl (meth) acrylate as a constituent monomer, more preferably an alkyl (meth) acrylate having an alkyl group having 1 to 10 carbon atoms, and particularly preferably. Preferably contains an alkyl (meth) acrylate having 4 to 8 carbon atoms in the alkyl group. When the acrylic polymer (A) contains the above-mentioned alkyl (meth) acrylate, the proportion of the alkyl (meth) acrylate in the total constituent monomers of the acrylic polymer (A) may be 30% by mass or more. It is preferable, and it is particularly preferable that it is 35% by mass or more. Further, the above ratio is preferably 99% by mass or less, and particularly preferably 95% by mass or less. By containing the alkyl (meth) acrylate in this range, it becomes easy to achieve the desired adhesive force while achieving the desired cohesive force.
 架橋剤(B)の使用は、界面アブレーション層11の貯蔵弾性率を所望の範囲に調整し易いという観点から好ましい。架橋剤(B)としては、アクリル系重合体(A)等が有する反応性官能基との反応性を有する多官能性化合物を用いることができる。このような多官能性化合物の例としては、イソシアネート化合物、エポキシ化合物、アミン化合物、メラミン化合物、アジリジン化合物、ヒドラジン化合物、アルデヒド化合物、オキサゾリン化合物、金属アルコキシド化合物、金属キレート化合物、金属塩、アンモニウム塩、反応性フェノール樹脂等を挙げることができる。 The use of the cross-linking agent (B) is preferable from the viewpoint that the storage elastic modulus of the interface ablation layer 11 can be easily adjusted to a desired range. As the cross-linking agent (B), a polyfunctional compound having reactivity with a reactive functional group of the acrylic polymer (A) or the like can be used. Examples of such polyfunctional compounds include isocyanate compounds, epoxy compounds, amine compounds, melamine compounds, aziridine compounds, hydrazine compounds, aldehyde compounds, oxazoline compounds, metal alkoxide compounds, metal chelate compounds, metal salts, ammonium salts, etc. Reactive phenolic resin and the like can be mentioned.
 架橋剤(B)の配合量は、アクリル系重合体(A)100質量部に対して、0.001質量部以上であることが好ましく、特に0.1質量部以上であることが好ましく、さらには0.2質量部以上であることが好ましい。また、架橋剤(B)の配合量は、アクリル系重合体(A)100質量部に対して、20質量部以下であることが好ましく、特に10質量部以下であることが好ましく、さらには5質量部以下であることが好ましい。 The blending amount of the cross-linking agent (B) is preferably 0.001 part by mass or more, particularly preferably 0.1 part by mass or more, and further preferably 0.1 part by mass or more with respect to 100 parts by mass of the acrylic polymer (A). Is preferably 0.2 parts by mass or more. The amount of the cross-linking agent (B) to be blended is preferably 20 parts by mass or less, particularly preferably 10 parts by mass or less, and further 5 by mass with respect to 100 parts by mass of the acrylic polymer (A). It is preferably parts by mass or less.
 なお、界面アブレーション層11を構成する粘着剤は、活性エネルギー線硬化性を有する粘着剤であってもよい。このような活性エネルギー線硬化性粘着剤としては、公知のものを使用することができ、例えば国際公開第2018/084021号に開示されるものを使用することができる。 The pressure-sensitive adhesive constituting the interface ablation layer 11 may be a pressure-sensitive adhesive having active energy ray curability. As such an active energy ray-curable pressure-sensitive adhesive, known ones can be used, and for example, those disclosed in International Publication No. 2018/084021 can be used.
 界面アブレーション層11を形成するための粘着性組成物には、上述した成分に加えて、その他の添加剤を添加してもよい。当該添加剤の例としては、粘着付与剤、染料や顔料等の着色材料、難燃剤、フィラー、帯電防止剤等が挙げられる。なお、当該粘着性組成物は、ワーク小片の分離を良好に生じさせ易いという観点からは、ガス発生剤を含有しないことが好ましい。ガス発生剤を使用すると、界面アブレーション層11全域でガスが発生することがある。その場合、意図した位置のみで界面アブレーションを生じさせて、そこに位置するワーク小片のみを分離させることが困難となり、ワーク小片の分離を良好に行うことが困難となる場合がある。 In addition to the above-mentioned components, other additives may be added to the adhesive composition for forming the interfacial ablation layer 11. Examples of the additive include tackifiers, coloring materials such as dyes and pigments, flame retardants, fillers, antistatic agents and the like. The adhesive composition preferably does not contain a gas generating agent from the viewpoint that the separation of the work pieces is likely to occur satisfactorily. When a gas generating agent is used, gas may be generated in the entire interface ablation layer 11. In that case, it may be difficult to cause interfacial ablation only at the intended position and separate only the work pieces located there, and it may be difficult to separate the work pieces satisfactorily.
(3)界面アブレーション層の厚さ
 本実施形態における界面アブレーション層11の厚さは、3μm以上であることが好ましく、特に20μm以上であることが好ましく、さらには25μm以上が好ましい。また、界面アブレーション層11の厚さは、100μm以下であることが好ましく、特に50μm以下であることが好ましく、さらには40μm以下であることが好ましい。界面アブレーション層11の厚さが上記範囲であることで、界面アブレーション層11上におけるワーク小片の保持と、界面アブレーションによるワーク小片の分離とを両立し易いものとなる。
(3) Thickness of Interface Ablation Layer The thickness of the interface ablation layer 11 in the present embodiment is preferably 3 μm or more, particularly preferably 20 μm or more, and further preferably 25 μm or more. The thickness of the interface ablation layer 11 is preferably 100 μm or less, particularly preferably 50 μm or less, and further preferably 40 μm or less. When the thickness of the interface ablation layer 11 is within the above range, it becomes easy to achieve both the holding of the work pieces on the interface ablation layer 11 and the separation of the work pieces by the interface ablation.
2.基材
 本実施形態における基材12は、その組成や物性について特に限定されない。ワークハンドリングシート1が所望の機能を発揮し易いという観点からは、基材12は、樹脂から構成されることが好ましい。基材12が樹脂から構成される場合、当該樹脂の例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系樹脂;ポリエチレン、ポリプロピレン、ポリブテン、ポリブタジエン、ポリメチルペンテン、エチレン-ノルボルネン共重合体、ノルボルネン樹脂等のポリオレフィン系樹脂;エチレン-酢酸ビニル共重合体;エチレン-(メタ)アクリル酸共重合体、エチレン-(メタ)アクリル酸メチル共重合体、その他のエチレン-(メタ)アクリル酸エステル共重合体等のエチレン系共重合樹脂;ポリ塩化ビニル、塩化ビニル共重合体等のポリ塩化ビニル系樹脂;(メタ)アクリル酸エステル共重合体;ポリウレタン;ポリイミド;ポリスチレン;ポリカーボネート;フッ素樹脂などが挙げられる。また、基材12を構成する樹脂は、上述した樹脂を架橋したものや、上述した樹脂のアイオノマーといった変性したものであってもよい。また、基材12は、上述した樹脂からなる単層のフィルムであってもよく、あるいは、当該フィルムが複数積層されてなる積層フィルムであってもよい。この積層フィルムにおいて、各層を構成する材料は同種であってもよく、異種であってもよい。
2. Base material The base material 12 in the present embodiment is not particularly limited in composition and physical properties. From the viewpoint that the work handling sheet 1 easily exerts a desired function, the base material 12 is preferably made of a resin. When the base material 12 is composed of a resin, examples of the resin include polyester resins such as polyethylene terephthalate, polybutylene terephthalate, and polyethylene naphthalate; both polyethylene, polypropylene, polybutene, polybutadiene, polymethylpentene, and ethylene-norbornene. Polyethylene-based resins such as polymers and norbornene resins; ethylene-vinyl acetate copolymers; ethylene- (meth) acrylic acid copolymers, ethylene- (meth) methyl acrylate copolymers, and other ethylene- (meth) acrylics. Ethylene copolymer resin such as acid ester copolymer; polyvinyl chloride resin such as polyvinyl chloride and vinyl chloride copolymer; (meth) acrylic acid ester copolymer; polyurethane; polyimide; polystyrene; polycarbonate; fluororesin And so on. Further, the resin constituting the base material 12 may be a crosslinked resin of the above-mentioned resin or a modified resin such as the ionomer of the above-mentioned resin. Further, the base material 12 may be a single-layer film made of the above-mentioned resin, or may be a laminated film in which a plurality of the films are laminated. In this laminated film, the materials constituting each layer may be the same type or different types.
 本実施形態における基材12の表面には、界面アブレーション層11に対する密着性を向上させる目的で、酸化法や凹凸化法などによる表面処理、あるいはプライマー処理を施してもよい。上記酸化法としては、例えばコロナ放電処理、プラズマ放電処理、クロム酸化処理(湿式)、火炎処理、熱風処理、オゾン、紫外線照射処理などが挙げられ、また、凹凸化法としては、例えばサンドブラスト法、溶射処理法などが挙げられる。 The surface of the base material 12 in the present embodiment may be surface-treated by an oxidation method, an unevenness method, or a primer treatment for the purpose of improving the adhesion to the interface ablation layer 11. Examples of the oxidation method include corona discharge treatment, plasma discharge treatment, chromium oxidation treatment (wet), flame treatment, hot air treatment, ozone, and ultraviolet irradiation treatment, and examples of the unevenness method include sandblasting and sandblasting. Examples include a thermal spraying method.
 本実施形態における基材12は、着色剤、難燃剤、可塑剤、帯電防止剤、滑剤、フィラー等の各種添加剤を含有してもよい。また、界面アブレーション層11が、活性エネルギー線により硬化する材料を含む場合、基材12は活性エネルギー線に対する透過性を有することが好ましい。 The base material 12 in the present embodiment may contain various additives such as a colorant, a flame retardant, a plasticizer, an antistatic agent, a lubricant, and a filler. Further, when the interface ablation layer 11 contains a material that is cured by the active energy rays, it is preferable that the base material 12 has transparency to the active energy rays.
 本実施形態における基材12の製造方法は、樹脂から基材12を製造するものである限り特に限定されない。例えば、Tダイ法、丸ダイ法等の溶融押出法;カレンダー法;乾式法、湿式法等の溶液法等によって、樹脂をシート状に成形することで製造することができる。 The method for producing the base material 12 in the present embodiment is not particularly limited as long as the base material 12 is produced from the resin. For example, it can be produced by molding a resin into a sheet by a melt extrusion method such as a T-die method or a round die method; a calendar method; a solution method such as a dry method or a wet method.
 本実施形態における基材12の厚さは、10μm以上であることが好ましく、特に30μm以上であることが好ましく、さらには50μm以上であることが好ましい。また、基材12厚さは、500μm以下であることが好ましく、300μm以下であることがより好ましく、特に200μm以下であることが好ましく、さらには150μm以下であることが好ましく、100μm以下であることが最も好ましい。基材12の厚さが上記範囲であることで、ワークハンドリングシート1が剛性と柔軟性とを所定のバランスで備えるものとなり、ワーク小片の良好なハンドリングを行い易いものとなる。 The thickness of the base material 12 in the present embodiment is preferably 10 μm or more, particularly preferably 30 μm or more, and further preferably 50 μm or more. The thickness of the base material 12 is preferably 500 μm or less, more preferably 300 μm or less, particularly preferably 200 μm or less, further preferably 150 μm or less, and preferably 100 μm or less. Is the most preferable. When the thickness of the base material 12 is within the above range, the work handling sheet 1 has rigidity and flexibility in a predetermined balance, and it becomes easy to perform good handling of the work small pieces.
3.剥離シート
 本実施形態に界面アブレーション層11が、それを構成する成分の1つとして粘着剤を含む場合、界面アブレーション層11における基材12とは反対側の面をワーク小片に貼付するまでの間、当該面を保護する目的で、当該面に剥離シートが積層されていてもよい。
3. 3. Peeling sheet When the interface ablation layer 11 contains an adhesive as one of its constituent components in the present embodiment, until the surface of the interface ablation layer 11 opposite to the base material 12 is attached to the work piece. , A release sheet may be laminated on the surface for the purpose of protecting the surface.
 上記剥離シートの構成は任意であり、プラスチックフィルムを剥離剤等により剥離処理したものが例示される。当該プラスチックフィルムの具体例としては、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート等のポリエステルフィルム、およびポリプロピレンやポリエチレン等のポリオレフィンフィルムが挙げられる。上記剥離剤としては、シリコーン系、フッ素系、長鎖アルキル系等を用いることができ、これらの中でも、安価で安定した性能が得られるシリコーン系が好ましい。 The configuration of the release sheet is arbitrary, and an example is one in which a plastic film is peeled off with a release agent or the like. Specific examples of the plastic film include polyester films such as polyethylene terephthalate, polybutylene terephthalate and polyethylene naphthalate, and polyolefin films such as polypropylene and polyethylene. As the release agent, a silicone type, a fluorine type, a long chain alkyl type or the like can be used, and among these, a silicone type which can obtain stable performance at a low cost is preferable.
 上記剥離シートの厚さについては特に制限はなく、例えば、20μm以上、250μm以下であってよい。 The thickness of the release sheet is not particularly limited, and may be, for example, 20 μm or more and 250 μm or less.
4.その他の構成
 本実施形態に係るワークハンドリングシート1では、界面アブレーション層11における基材12とは反対側の面に接着剤層が積層されていてもよい。当該シートでは、接着剤層における界面アブレーション層11とは反対側の面にワークを貼付し、当該ワークとともに接着剤層をダイシングすることで、個片化された接着剤層が積層されたワーク小片を得ることができる。当該チップは、この個片化された接着剤層によって、当該ワーク小片が搭載される対象に対して容易に固定することが可能となる。上述した接着剤層を構成する材料としては、熱可塑性樹脂と低分子量の熱硬化性接着成分とを含有するものや、Bステージ(半硬化状)の熱硬化型接着成分を含有するもの等を用いることが好ましい。
4. Other Configurations In the work handling sheet 1 according to the present embodiment, an adhesive layer may be laminated on the surface of the interface ablation layer 11 opposite to the base material 12. In the sheet, a work piece is attached to the surface of the adhesive layer opposite to the interface ablation layer 11, and the adhesive layer is diced together with the work piece to laminate a piece of work in which individualized adhesive layers are laminated. Can be obtained. The chip is easily fixed to the object on which the work piece is mounted by the individualized adhesive layer. As the material constituting the adhesive layer described above, a material containing a thermoplastic resin and a low molecular weight thermosetting adhesive component, a material containing a B stage (semi-curable) thermosetting adhesive component, and the like are used. It is preferable to use it.
 また、本実施形態に係るワークハンドリングシート1では、界面アブレーション層11における基材12とは反対側の面に保護膜形成層が積層されていてもよい。このようなシートでは、保護膜形成層における界面アブレーション層11とは反対側の面にワークを貼付し、当該ワークとともに保護膜形成層をダイシングすることで、個片化された保護膜形成層が積層されたワーク小片を得ることができる。当該ワークとしては、片面に回路が形成されたものが使用されることが好ましく、この場合、通常、当該回路が形成された面とは反対側の面に保護膜形成層が積層される。個片化された保護膜形成層は、所定のタイミングで硬化させることで、十分な耐久性を有する保護膜をワーク小片に形成することができる。保護膜形成層は、未硬化の硬化性接着剤からなることが好ましい。 Further, in the work handling sheet 1 according to the present embodiment, the protective film forming layer may be laminated on the surface of the interface ablation layer 11 opposite to the base material 12. In such a sheet, a work is attached to the surface of the protective film forming layer opposite to the interface ablation layer 11, and the protective film forming layer is diced together with the work to obtain an individualized protective film forming layer. Stacked work pieces can be obtained. As the work, it is preferable to use a work having a circuit formed on one surface, and in this case, a protective film forming layer is usually laminated on a surface opposite to the surface on which the circuit is formed. By curing the individualized protective film forming layer at a predetermined timing, a protective film having sufficient durability can be formed on the work piece. The protective film forming layer is preferably made of an uncured curable adhesive.
5.ワークハンドリングシートの物性
 本実施形態に係るワークハンドリングシートは、波長355nmの光線の吸光度が、2.0以上であることが好ましく、2.5以上であることがより好ましく、特に3.0以上であることが好ましく、さらには3.5以上であることが好ましい。波長355nmの光線の吸光度が2.0以上であることで、レーザー光の照射時に、ワーク小片に到達する紫外域の光線の量を低減することができ、ワーク小片の表面の損傷を効果的に抑制しながら、ワーク小片の分離を行うことが可能となる。なお、上記吸光度の上限値については特に限定されず、例えば6.0以下であってよい。また、上記吸光度の測定方法の詳細は、後述する試験例に記載の通りである。
5. Physical Properties of Work Handling Sheet The work handling sheet according to the present embodiment preferably has an absorbance of light rays having a wavelength of 355 nm of 2.0 or more, more preferably 2.5 or more, and particularly 3.0 or more. It is preferably present, and more preferably 3.5 or more. When the absorbance of light rays having a wavelength of 355 nm is 2.0 or more, it is possible to reduce the amount of ultraviolet rays reaching the work pieces when irradiated with laser light, effectively damaging the surface of the work pieces. It is possible to separate the work pieces while suppressing them. The upper limit of the absorbance is not particularly limited, and may be, for example, 6.0 or less. The details of the method for measuring the absorbance are as described in Test Examples described later.
 本実施形態に係るワークハンドリングシートは、波長355nmの光線の透過率が、1.0%以下であることが好ましく、0.5%以下であることがより好ましく、特に0.3%以下であることが好ましく、さらには0.1%以下であることが好ましい。波長355nmの光線の透過率が0.3%以下であることで、レーザー光の照射時に、ワーク小片に到達する紫外域の光線の量を低減することができ、ワーク小片の表面の損傷を効果的に抑制しながら、ワーク小片の分離を行うことが可能となる。なお、上記透過率の下限値については特に限定されず、例えば0.00001%以上であってよく、特に0.0001%以上であってよい。また、上記透過率の測定方法の詳細は、後述する試験例に記載の通りである。 In the work handling sheet according to the present embodiment, the transmittance of light rays having a wavelength of 355 nm is preferably 1.0% or less, more preferably 0.5% or less, and particularly 0.3% or less. It is preferably 0.1% or less. When the transmittance of light rays having a wavelength of 355 nm is 0.3% or less, it is possible to reduce the amount of ultraviolet rays reaching the work pieces when irradiated with laser light, which is effective in damaging the surface of the work pieces. It is possible to separate the work pieces while suppressing the work. The lower limit of the transmittance is not particularly limited, and may be, for example, 0.0001% or more, and particularly 0.0001% or more. The details of the method for measuring the transmittance are as described in Test Examples described later.
 本実施形態に係るワークハンドリングシートでは、シリコンウエハのミラー面に対する粘着力が、10mN/25mm以上であることが好ましく、特に100mN/25mm以上であることが好ましく、さらには200mN/25mm以上であることが好ましい。上記粘着力が90mN/25mm以上であることによりワークハンドリングシートにワーク小片等の被着体を良好に固定し易くなり、ハンドリング性により優れたものとなる。また、上記粘着力は、30000mN/25mm以下であることが好ましく、特に15000mN/25mm以下であることが好ましく、さらには10000mN/25mm以下であることが好ましい。上記粘着力が30000mN/25mm以下であることにより、レーザー光照射によるワーク小片の分離をより良好に行い易くなる。 In the work handling sheet according to the present embodiment, the adhesive force of the silicon wafer to the mirror surface is preferably 10 mN / 25 mm or more, particularly preferably 100 mN / 25 mm or more, and further 200 mN / 25 mm or more. Is preferable. When the adhesive strength is 90 mN / 25 mm or more, it becomes easy to satisfactorily fix an adherend such as a work piece to the work handling sheet, and the handleability becomes excellent. The adhesive strength is preferably 30,000 mN / 25 mm or less, particularly preferably 15,000 mN / 25 mm or less, and further preferably 10,000 mN / 25 mm or less. When the adhesive strength is 30,000 mN / 25 mm or less, it becomes easier to better separate the work pieces by laser irradiation.
6.ワークハンドリングシートの製造方法
 本実施形態に係るワークハンドリングシート1の製造方法は特に限定されない。例えば、基材12上に界面アブレーション層11を直接形成してもよく、あるいは、工程シート上で界面アブレーション層11を形成した後、当該界面アブレーション層11を基材12上に転写してもよい。
6. Manufacturing Method of Work Handling Sheet The manufacturing method of the work handling sheet 1 according to the present embodiment is not particularly limited. For example, the interface ablation layer 11 may be directly formed on the base material 12, or the interface ablation layer 11 may be transferred onto the base material 12 after the interface ablation layer 11 is formed on the process sheet. ..
 界面アブレーション層11が、それを構成する成分の1つとして粘着剤を含む場合、当該界面アブレーション層11の形成は、公知の方法により行うことができる。例えば、界面アブレーション層11を形成するための粘着性組成物、および所望によりさらに溶媒または分散媒を含有する塗布液を調製する。そして、基材の片面または剥離シートの剥離性を有する面(以下、「剥離面」という場合がある。)に上記塗布液を塗布する。続いて、得られた塗膜を乾燥させることで、界面アブレーション層11を形成することができる。 When the interface ablation layer 11 contains an adhesive as one of the constituents thereof, the interface ablation layer 11 can be formed by a known method. For example, a tacky composition for forming the interfacial ablation layer 11 and, if desired, a coating solution further containing a solvent or dispersion medium are prepared. Then, the coating liquid is applied to one side of the base material or the peelable surface of the release sheet (hereinafter, may be referred to as "peeling surface"). Subsequently, the interface ablation layer 11 can be formed by drying the obtained coating film.
 上述した塗布液の塗布は公知の方法により行うことができ、例えば、バーコート法、ナイフコート法、ロールコート法、ブレードコート法、ダイコート法、グラビアコート法等により行うことができる。なお、塗布液は、塗布を行うことが可能であればその性状は特に限定されず、界面アブレーション層11を形成するための成分を溶質として含有する場合もあれば、分散質として含有する場合もある。また、剥離シート上に界面アブレーション層11を形成した場合、当該剥離シートは工程材料として剥離してもよいし、被着体に貼付するまでの間、界面アブレーション層11を保護していてもよい。 The above-mentioned coating liquid can be applied by a known method, for example, a bar coating method, a knife coating method, a roll coating method, a blade coating method, a die coating method, a gravure coating method, or the like. The properties of the coating liquid are not particularly limited as long as it can be coated, and the coating liquid may contain a component for forming the interface ablation layer 11 as a solute or a dispersoid. be. Further, when the interface ablation layer 11 is formed on the release sheet, the release sheet may be peeled off as a process material, or the interface ablation layer 11 may be protected until it is attached to the adherend. ..
 界面アブレーション層11を形成するための粘着性組成物が前述した架橋剤を含有する場合には、上記の乾燥の条件(温度、時間など)を変えることにより、または加熱処理を別途設けることにより、塗膜内のポリマー成分と架橋剤との架橋反応を進行させ、界面アブレーション層11内に所望の存在密度で架橋構造を形成することが好ましい。さらに、上述した架橋反応を十分に進行させるために、ワークハンドリングシート1の完成後、例えば23℃、相対湿度50%の環境に数日間静置するといった養生を行ってもよい。 When the adhesive composition for forming the interface ablation layer 11 contains the above-mentioned cross-linking agent, by changing the above-mentioned drying conditions (temperature, time, etc.) or by separately providing a heat treatment. It is preferable to proceed the cross-linking reaction between the polymer component in the coating film and the cross-linking agent to form a cross-linked structure in the interface ablation layer 11 at a desired abundance density. Further, in order to allow the above-mentioned cross-linking reaction to proceed sufficiently, after the work handling sheet 1 is completed, it may be cured by allowing it to stand in an environment of, for example, 23 ° C. and a relative humidity of 50% for several days.
7.ワークハンドリングシートの使用方法
 本実施形態に係るワークハンドリングシート1は、ワーク小片の取り扱いのために好適に使用することができる。前述した通り、本実施形態に係るワークハンドリングシート1では、界面アブレーション層11が、レーザー光の照射によって効率的に界面アブレーションするものであるため、界面アブレーション層11上に保持されたワーク小片を高い精度で所定の位置に向けて分離することができる。
7. How to use the work handling sheet The work handling sheet 1 according to the present embodiment can be suitably used for handling small pieces of work. As described above, in the work handling sheet 1 according to the present embodiment, since the interface ablation layer 11 efficiently ablates the interface by irradiation with laser light, the small pieces of work held on the interface ablation layer 11 are high. It can be separated toward a predetermined position with accuracy.
 本実施形態に係るワークハンドリングシート1の使用方法の一例としては、界面アブレーション層11において局所的に生じさせた界面アブレーションによって、界面アブレーション層11における基材12とは反対の面上に保持された複数のワーク小片のうちの任意のワーク小片を、界面アブレーション層11から選択的に分離するという使用方法が挙げられる。 As an example of the method of using the work handling sheet 1 according to the present embodiment, the work handling sheet 1 is held on the surface of the interface ablation layer 11 opposite to the base material 12 by the interface ablation locally generated in the interface ablation layer 11. A method of selectively separating any work piece from the plurality of work pieces from the interfacial ablation layer 11 can be mentioned.
 上記使用方法において、界面アブレーション層11上に保持された複数のワーク小片は、界面アブレーション層11における基材12とは反対の面上に保持されたワーク(ワーク小片の材料となるもの)を当該面上において個片化することで得られたものであってもよい。すなわち、ワーク小片は、界面アブレーション層11上にてワークをダイシングすることで得られたものであってもよい。あるいは、ワーク小片は、本実施形態に係るワークハンドリングシート1とは独立して形成されたものを、界面アブレーション層11上に載置されたものであってもよい。 In the above method of use, the plurality of work pieces held on the interface ablation layer 11 are the work (material of the work pieces) held on the surface of the interface ablation layer 11 opposite to the base material 12. It may be obtained by individualizing on the surface. That is, the work piece may be obtained by dicing the work on the interface ablation layer 11. Alternatively, the work piece may be one formed independently of the work handling sheet 1 according to the present embodiment and placed on the interface ablation layer 11.
 なお、本実施形態に係るワークハンドリングシート1が前述した接着剤層や保護膜形成層を備える場合には、これらの層とワークとを界面アブレーション層11上にてダイシングすることが好ましい。これにより、これらの層が個片化されてなるものが積層されたワーク小片を得ることができる。 When the work handling sheet 1 according to the present embodiment includes the above-mentioned adhesive layer and protective film forming layer, it is preferable to dice these layers and the work on the interface ablation layer 11. As a result, it is possible to obtain a work piece in which these layers are individualized and laminated.
 本実施形態におけるワーク小片の形状やサイズについては特に限定されないものの、サイズに関し、ワーク小片は、平面視したときにおける面積が10μm以上であることが好ましく、特に100μm以上であることが好ましい。また、ワーク小片は、平面視したときにおける面積が1mm以下であることが好ましく、特に0.25mm以下であることが好ましい。また、ワーク小片の寸法としては、ワーク小片が矩形である場合、ワーク小片の最小の一辺が、2μm以上であることが好ましく、特に5μm以上であることが好ましく、さらには10μm以上であることが好ましい。また、上記最小の一辺は、1mm以下であることが好ましく、特に0.5mm以下であることが好ましい。矩形のワーク小片の寸法の具体例としては、2μm×5μm、10μm×10μm、0.5mm×0.5mm、1mm×1mm等が挙げられる。本実施形態に係るワークハンドリングシート1は、このような微細なワーク小片、特に、ニードルの突き上げによるシートからの分離が困難な微細なワーク小片であっても良好に取り扱うことができる。その一方で、本実施形態に係るワークハンドリングシート1は、面積が1mmを超えるもの(例えば1mm~2000mm)や、厚さが1~10000μmのもの(例えば10~1000μm)といった比較的大きなサイズのワーク小片についても良好に取り扱うことができる。 Although the shape and size of the work pieces in the present embodiment are not particularly limited, the area of the work pieces in a plan view is preferably 10 μm 2 or more, and particularly preferably 100 μm 2 or more. Further, the work piece preferably has an area of 1 mm 2 or less when viewed in a plan view, and particularly preferably 0.25 mm 2 or less. Further, as for the dimensions of the work pieces, when the work pieces are rectangular, the minimum side of the work pieces is preferably 2 μm or more, particularly preferably 5 μm or more, and further preferably 10 μm or more. preferable. The minimum side is preferably 1 mm or less, and particularly preferably 0.5 mm or less. Specific examples of the dimensions of the rectangular workpiece pieces include 2 μm × 5 μm, 10 μm × 10 μm, 0.5 mm × 0.5 mm, 1 mm × 1 mm, and the like. The work handling sheet 1 according to the present embodiment can satisfactorily handle such fine work pieces, particularly even fine work pieces that are difficult to separate from the sheet by pushing up the needle. On the other hand, the work handling sheet 1 according to the present embodiment is relatively large, such as one having an area of more than 1 mm 2 (for example, 1 mm 2 to 2000 mm 2 ) and one having a thickness of 1 to 10000 μm (for example, 10 to 1000 μm). It can handle small pieces of work of a size well.
 ワーク小片としては、半導体部品や半導体装置等が挙げられ、より具体的には、マイクロ発光ダイオード、パワーデバイス、MEMS(Micro Electro Mechanical Systems)等が挙げられる。これらの中でも、ワーク小片は発光ダイオードであることが好適であり、特にミニ発光ダイオードおよびマイクロ発光ダイオードから選択される発光ダイオードであることが好ましい。近年、ミニ発光ダイオードやマイクロ発光ダイオードが高密度に配置された装置の開発が検討されており、そのような装置の製造においては、これらの発光ダイオードを高い精度で取り扱うことが可能な本実施形態に係るワークハンドリングシート1が非常に適している。 Examples of small workpieces include semiconductor parts and semiconductor devices, and more specifically, micro light emitting diodes, power devices, MEMS (Micro Electro Mechanical Systems), and the like. Among these, the work piece is preferably a light emitting diode, and particularly preferably a light emitting diode selected from a mini light emitting diode and a micro light emitting diode. In recent years, the development of a device in which mini light emitting diodes and micro light emitting diodes are arranged at a high density has been studied, and in the manufacture of such a device, the present embodiment capable of handling these light emitting diodes with high accuracy. The work handling sheet 1 according to the above is very suitable.
 以下に、ワークハンドリングシート1の具体的な使用例として、デバイス製造方法を図2に基づいて説明する。当該デバイス製造方法は、準備工程(図2(a))、配置工程(図2(b))および分離工程(図2(c)および(d))という3つの工程を少なくとも備える。 Below, as a specific use example of the work handling sheet 1, a device manufacturing method will be described with reference to FIG. The device manufacturing method includes at least three steps of a preparation step (FIG. 2 (a)), a placement step (FIG. 2 (b)), and a separation step (FIGS. 2 (c) and (d)).
 準備工程においては、図2(a)に示すように、本実施形態に係るワークハンドリングシート1における、界面アブレーション層12側の面上に複数のワーク小片2が保持されてなる積層体を準備する。当該積層体は、別途作製したワーク小片2をワークハンドリングシート1上に載置することで準備してもよく、あるいは、界面アブレーション層11側の面上に保持されたワークを当該面上において個片化すること(すなわちダイシングすること)で準備してもよい。当該ダイシングは、公知の方法で行うことができる。 In the preparatory step, as shown in FIG. 2A, a laminated body in which a plurality of work pieces 2 are held on the surface of the work handling sheet 1 according to the present embodiment on the interface ablation layer 12 side is prepared. .. The laminated body may be prepared by placing a separately prepared work piece 2 on the work handling sheet 1, or a work held on the surface on the interface ablation layer 11 side is individually formed on the surface. It may be prepared by ablation (ie, dicing). The dicing can be performed by a known method.
 ワーク小片2の形状やサイズは、前述した通り、特に限定はなく、好ましいサイズも前述した通りである。ワーク小片2の具体例についても、前述した通り、半導体部品や半導体装置等が挙げられ、特に、ミニ発光ダイオードおよびマイクロ発光ダイオードといった発光ダイオードが挙げられる。 The shape and size of the work piece 2 are not particularly limited as described above, and the preferred size is also as described above. As a specific example of the work piece 2, as described above, semiconductor parts, semiconductor devices, and the like can be mentioned, and in particular, light emitting diodes such as mini light emitting diodes and micro light emitting diodes can be mentioned.
 続く配置工程においては、図2(b)に示すように、ワーク小片2を受容可能な対象物3に対して、上記積層体におけるワーク小片2側の面が向かい合うように上記積層体を配置する。対象物3の例は、製造するデバイスに応じて適宜決定されるものの、ワーク小片2が発光ダイオードである場合には、対象物3の具体例としては、基板、シート、リール等が挙げられ、特に配線が設けられた配線基板が好適に使用される。 In the subsequent arrangement step, as shown in FIG. 2B, the laminate is arranged so that the surfaces of the laminate 2 on the work fragment 2 side face each other with respect to the object 3 that can accept the workpiece 2. .. An example of the object 3 is appropriately determined according to the device to be manufactured, but when the work piece 2 is a light emitting diode, specific examples of the object 3 include a substrate, a sheet, a reel, and the like. In particular, a wiring board provided with wiring is preferably used.
 その後、分離工程において、まず図2(c)に示すように、上記積層体における界面アブレーション層11における、少なくとも1つのワーク小片2が貼付されている位置に対し、レーザー光を照射する。当該照射は、ワーク小片2が貼付されている複数の位置に対して同時に行ってもよく、あるいはそれらの位置に対して順次行ってもよい。レーザー光の照射条件としては、界面アブレーションを生じさせることが可能である限り限定されない。照射のための装置としては、公知のものを使用することができる。 After that, in the separation step, first, as shown in FIG. 2C, the laser beam is irradiated to the position of the interface ablation layer 11 in the laminated body to which at least one work piece 2 is attached. The irradiation may be performed simultaneously on a plurality of positions to which the work pieces 2 are attached, or may be sequentially performed on those positions. The irradiation conditions of the laser beam are not limited as long as it is possible to cause interfacial ablation. As a device for irradiation, a known device can be used.
 上記照射により、図2(d)に示されるように、界面アブレーション層11における照射された位置において界面アブレーションを生じさせることができる。具体的には、レーザー光の照射によって、界面アブレーション層11における基材12に近位な領域において、当該領域を構成していた成分が蒸発または揮発し、反応領域13となる。そして、上記蒸発または揮発によって生じたガスが基材11と反応領域13との間に溜まり、ブリスター5が形成される。当該ブリスター5の形成によって、ワーク小片2’の位置において局所的に界面アブレーション層11が変形し、界面アブレーション層11から剥がされるようにワーク小片2’が分離する。以上により、当該界面アブレーションが生じた位置に存在するワーク小片2’を、対象物3上に載置することができる。 By the above irradiation, as shown in FIG. 2D, interfacial ablation can be generated at the irradiated position in the interfacial ablation layer 11. Specifically, by irradiation with laser light, in the region proximal to the base material 12 in the interface ablation layer 11, the components constituting the region evaporate or volatilize to become the reaction region 13. Then, the gas generated by the evaporation or volatilization accumulates between the base material 11 and the reaction region 13, and the blister 5 is formed. Due to the formation of the blister 5, the interface ablation layer 11 is locally deformed at the position of the work piece 2', and the work piece 2'is separated so as to be peeled off from the interface ablation layer 11. As described above, the work piece 2'existing at the position where the interface ablation has occurred can be placed on the object 3.
 なお、レーザー光の照射によって生じた反応領域13およびブリスター5は、通常、ワーク小片2’の分離した後も残ったままとなる。図3には、順次レーザー光を照射してワーク小片2の分離を行っていく様子が示されており、特に、分離後の状態(左2つ)、分離中の状態(中央)、および分離前の状態(右2つ)が示されている。図示されるように、通常、分離後のブリスター5は、分離中のブリスター5に比べて、多少しぼんだ状態となる。 The reaction region 13 and the blister 5 generated by the irradiation of the laser light usually remain even after the work piece 2'is separated. FIG. 3 shows how the work pieces 2 are separated by sequentially irradiating the laser beam, and in particular, the state after separation (two on the left), the state during separation (center), and the separation. The previous state (two on the right) is shown. As shown, the separated blister 5 is usually in a slightly deflated state as compared with the separated blister 5.
 界面アブレーション層11がそれを構成する成分の1つとして活性エネルギー線硬化性粘着剤を含有する場合には、当該界面アブレーション層11が、上述したレーザー光の照射によって硬化してもよい。そして、当該硬化によって、界面アブレーション層11のワーク小片2に対する粘着力が低下し、上述した界面アブレーションによる作用と相まって、ワーク小片2’の良好な分離が生じるものとなってもよい。あるいは、上記界面アブレーション層11に対して、上述したレーザー光の照射とは異なる活性エネルギー線照射を行い、それによってワーク小片2に対する粘着力を低下させてもよい。このような活性エネルギー線照射は、レーザー光の照射の前後のいずれに行ってもよい。また、当該活性エネルギー線照射は、界面アブレーション層11に対して局所的に行うものであってもよく、または、界面アブレーション層11の全面に対して行うものであってもよい。上述した活性エネルギー線照射の照射条件や照射装置は特に限定されず、公知の条件および公知の装置を用いることができる。 When the interface ablation layer 11 contains an active energy ray-curable pressure-sensitive adhesive as one of its constituent components, the interface ablation layer 11 may be cured by irradiation with the above-mentioned laser light. Then, the hardening may reduce the adhesive force of the interface ablation layer 11 to the work piece 2 and, in combination with the above-mentioned action by the interface ablation, may cause good separation of the work piece 2'. Alternatively, the interface ablation layer 11 may be irradiated with active energy rays different from the above-mentioned irradiation of laser light, thereby reducing the adhesive force to the work piece 2. Such activation energy ray irradiation may be performed before or after irradiation with laser light. Further, the activation energy ray irradiation may be performed locally on the interface ablation layer 11 or may be performed on the entire surface of the interface ablation layer 11. The irradiation conditions and the irradiation device for the above-mentioned active energy ray irradiation are not particularly limited, and known conditions and known devices can be used.
 上述したデバイス製造方法は、準備工程、配置工程および分離工程以外の工程を備えていてもよい。例えば、準備工程と分離工程との間の任意のタイミングにおいて、グラインド、ダイボンディング、ワイヤーボンディング、モールディング、検査、転写工程等を行っても良い。 The device manufacturing method described above may include steps other than the preparation step, the placement step, and the separation step. For example, grind, die bonding, wire bonding, molding, inspection, transfer step, and the like may be performed at an arbitrary timing between the preparation step and the separation step.
 以上説明したデバイス製造方法によれば、使用するワーク小片2や対象物3を適宜選択することで様々なデバイスを製造することができる。例えば、ワーク小片2として、ミニ発光ダイオードおよびマイクロ発光ダイオードから選択される発光ダイオードを用いた場合には、そのような発光ダイオードを複数備える発光装置を製造することができ、より具体的にはディスプレイを製造することができる。特に、マイクロ発光ダイオードを画素として備えるディスプレイや、複数のミニ発光ダイオードをバックライトとして備えるディスプレイを製造することができる。 According to the device manufacturing method described above, various devices can be manufactured by appropriately selecting the work piece 2 and the object 3 to be used. For example, when a light emitting diode selected from a mini light emitting diode and a micro light emitting diode is used as the work piece 2, a light emitting device including a plurality of such light emitting diodes can be manufactured, and more specifically, a display. Can be manufactured. In particular, it is possible to manufacture a display having a micro light emitting diode as a pixel and a display having a plurality of mini light emitting diodes as a backlight.
 以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。 The embodiments described above are described for facilitating the understanding of the present invention, not for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.
 例えば、本実施形態に係るワークハンドリングシート1における界面アブレーション層11と基材12との間、または基材12における界面アブレーション層11とは反対側の面には、他の層が積層されていてもよい。当該他の層の具体例としては、粘着剤層が挙げられる。この場合、当該粘着剤層側の面を支持台(ガラス板等の透明基板)に貼付した状態で、上述した分離工程等を行うことができる。 For example, another layer is laminated between the interface ablation layer 11 and the base material 12 in the work handling sheet 1 according to the present embodiment, or on the surface of the base material 12 opposite to the interface ablation layer 11. May be good. Specific examples of the other layer include an adhesive layer. In this case, the above-mentioned separation step or the like can be performed with the surface on the pressure-sensitive adhesive layer side attached to a support base (transparent substrate such as a glass plate).
 上記粘着剤層を構成する粘着剤としては、特に限定されないものの、活性エネルギー線を吸収し難く且つ活性エネルギー線を遮断し難いものが好ましい。この場合、当該粘着剤層を介してレーザー光を照射する場合に、当該レーザー光が界面アブレーション層11に到達し易くなり、良好な界面アブレーションを生じさせ易くなる。具体的には、上記粘着剤層を構成する粘着剤として、活性エネルギー線硬化性を有しない粘着剤を使用することが好ましく、特に活性エネルギー線硬化性成分を含有しない粘着剤を使用することが好ましい。活性エネルギー線硬化性を有しない粘着剤を使用することにより、上記レーザー光を照射した場合であっても上記粘着剤層が硬化することがなく、それにより透明基板からのワークハンドリングシート1の意図しない剥離を防ぐことも可能となる。上記粘着剤層の厚さとしては、特に限定されないものの、例えば、5~50μmであることが好ましい。 The pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is not particularly limited, but preferably one that is difficult to absorb the active energy ray and is difficult to block the active energy ray. In this case, when the laser beam is irradiated through the pressure-sensitive adhesive layer, the laser beam easily reaches the interface ablation layer 11, and good interface ablation is likely to occur. Specifically, as the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer, it is preferable to use a pressure-sensitive adhesive having no active energy ray-curable component, and in particular, a pressure-sensitive adhesive containing no active energy ray-curable component may be used. preferable. By using a pressure-sensitive adhesive that does not have active energy ray curability, the pressure-sensitive adhesive layer does not cure even when irradiated with the laser beam, whereby the intention of the work handling sheet 1 from the transparent substrate 1 It is also possible to prevent peeling that does not occur. The thickness of the pressure-sensitive adhesive layer is not particularly limited, but is preferably 5 to 50 μm, for example.
 以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。 Hereinafter, the present invention will be described in more detail with reference to Examples and the like, but the scope of the present invention is not limited to these Examples and the like.
〔実施例1〕
(1)粘着性組成物の調製
 アクリル酸2-エチルヘキシル80質量部と、アクリル酸2-ヒドロキシエチル20質量部とを、溶液重合法により重合させて、アクリル系重合体を得た。このアクリル系重合体の重量平均分子量(Mw)を後述の方法によって測定したところ、60万であった。
[Example 1]
(1) Preparation of Adhesive Composition 80 parts by mass of 2-ethylhexyl acrylate and 20 parts by mass of 2-hydroxyethyl acrylate were polymerized by a solution polymerization method to obtain an acrylic polymer. The weight average molecular weight (Mw) of this acrylic polymer was measured by the method described later and found to be 600,000.
 上記で得られたアクリル系重合体100質量部(固形分換算,以下同じ)と、架橋剤としてのトリメチロールプロパン変性トリレンジイソシアネート(東ソー社製,商品名「コロネートL」)0.94質量部と、紫外線吸収剤としてのトリス[2,4,6-[2-{4-(オクチル-2-メチルエタノエート)オキシ-2-ヒドロキシフェニル}]-1,3,5-トリアジン(ヒドロキシフェニルトリアジン系紫外線吸収剤,BASF社製,製品名「Tinuvin477」)2.0質量部とを溶媒中で混合し、粘着性組成物の塗布液を得た。 100 parts by mass of the acrylic polymer obtained above (solid content equivalent, the same applies hereinafter) and 0.94 parts by mass of trimethylol propane-modified tolylene diisocyanate (manufactured by Toso Co., Ltd., trade name "Coronate L") as a cross-linking agent. And Tris as an ultraviolet absorber [2,4,6- [2- {4- (octyl-2-methylethanoate) oxy-2-hydroxyphenyl}]-1,3,5-triazine (hydroxyphenyltriazine) A coating solution of an adhesive composition was obtained by mixing 2.0 parts by mass of a UV absorber, product name "Tinuvin 477") manufactured by BASF, in a solvent.
(2)界面アブレーション層(粘着剤層)の形成
 厚さ38μmのポリエチレンテレフタレートフィルムの片面にシリコーン系の剥離剤層が形成されてなる剥離シート(リンテック社製,製品名「SP-PET381031」)の剥離面に対して、上記工程(1)で得られた粘着性組成物の塗布液を塗布し、得られた塗膜を加熱により乾燥させた。これにより、塗膜が乾燥してなる厚さ30μmの界面アブレーション層と、剥離シートとが積層されてなる積層体を得た。
(2) Formation of interfacial ablation layer (adhesive layer) A release sheet (manufactured by Lintec Corporation, product name "SP-PET38131") in which a silicone-based release agent layer is formed on one side of a 38 μm-thick polyethylene terephthalate film. The coating liquid of the adhesive composition obtained in the above step (1) was applied to the peeled surface, and the obtained coating film was dried by heating. As a result, a laminate obtained by laminating an interface ablation layer having a thickness of 30 μm, which is obtained by drying the coating film, and a release sheet.
(3)ワークハンドリングシートの作製
 上記工程(2)で得られた積層体における界面アブレーション層側の面と、基材としてのポリエチレンテレフタレートフィルム(三菱ケミカル社製,製品名「T-910 WM19」,厚さ:50μm)の片面とを貼り合わせることで、剥離シートが貼付された状態のワークハンドリングシートを得た。
(3) Preparation of Work Handling Sheet The surface of the laminate obtained in the above step (2) on the interface ablation layer side and the polyethylene terephthalate film as the base material (manufactured by Mitsubishi Chemical Corporation, product name "T-910 WM19", By laminating one side with a thickness of 50 μm), a work handling sheet with a release sheet attached was obtained.
 ここで、前述した重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて以下の条件で測定(GPC測定)した標準ポリスチレン換算の重量平均分子量である。
<測定条件>
・測定装置:東ソー社製,HLC-8320
・GPCカラム(以下の順に通過):東ソー社製
 TSK gel superH-H
 TSK gel superHM-H
 TSK gel superH2000
・測定溶媒:テトラヒドロフラン
・測定温度:40℃
Here, the above-mentioned weight average molecular weight (Mw) is a standard polystyrene-equivalent weight average molecular weight measured under the following conditions (GPC measurement) using gel permeation chromatography (GPC).
<Measurement conditions>
-Measuring device: HLC-8320 manufactured by Tosoh Corporation
-GPC column (passed in the following order): TSK gel superH-H manufactured by Tosoh Corporation
TSK gel superHM-H
TSK gel superH2000
-Measurement solvent: tetrahydrofuran-Measurement temperature: 40 ° C
〔実施例2~14および比較例1~2〕
 架橋剤の含有量ならびに紫外線吸収剤の種類および含有量を表1に示すように変更する以外、実施例1と同様にしてワークハンドリングシートを製造した。
[Examples 2 to 14 and Comparative Examples 1 to 2]
A work handling sheet was produced in the same manner as in Example 1 except that the content of the cross-linking agent and the type and content of the ultraviolet absorber were changed as shown in Table 1.
〔実施例15〕
 基材として、エチレン-メタクリル酸共重合体を含有する樹脂組成物(三井デュポンポリケミカル社製,製品名「ニュクレルNH903C」)を、小型Tダイ押出機(東洋精機製作所社製,製品名「ラボプラストミル」)によって押出成形して得られた、厚さ80μmの基材(ポリオレフィン系基材)を使用するとともに、紫外線吸収剤の含有量を表1に示すように変更する以外、実施例1と同様にしてワークハンドリングシートを製造した。
[Example 15]
As a base material, a resin composition containing an ethylene-methacrylic acid copolymer (manufactured by Mitsui DuPont Polychemical Co., Ltd., product name "Nucrel NH903C") is used as a small T-die extruder (manufactured by Toyo Seiki Seisakusho Co., Ltd., product name "Lab"). Example 1 except that a base material (polyolefin-based base material) having a thickness of 80 μm obtained by extrusion molding with a plastic mill ”) is used and the content of the ultraviolet absorber is changed as shown in Table 1. A work handling sheet was manufactured in the same manner as above.
〔試験例1〕(レーザーリフトオフ適性の評価)
(1)ワークハンドリングシート上におけるチップの準備(準備工程)
 (1-1)実施例1~13および15ならびに比較例1~2
 シリコンウエハ(#2000,厚さ:350μm)の片面に、ダイシングシート(リンテック社製,製品名「D-485H」)の粘着面を貼付した。続いて、当該ダイシングシートにおける上記粘着面の周縁部(シリコンウエハとは重ならない位置)に、ダイシング用リングフレームを付着させた。さらに、リングフレームの外径に合わせてダイシングシートを裁断した。その後、ダイシング装置(ディスコ社製,製品名「DFD6362」)を用いて、シリコンウエハを、300μm×300μmのサイズを有するチップにダイシングした。その後、ダイシングシートに対して、紫外線(照度230mW/cm,光量190mJ/cm)を照射した。これにより、ダイシングシート上に複数のチップが設けられてなる積層体を得た。
[Test Example 1] (Evaluation of laser lift-off suitability)
(1) Tip preparation on the work handling sheet (preparation process)
(1-1) Examples 1 to 13 and 15 and Comparative Examples 1 to 2.
An adhesive surface of a dicing sheet (manufactured by Lintec Corporation, product name "D-485H") was attached to one side of a silicon wafer (# 2000, thickness: 350 μm). Subsequently, a dicing ring frame was attached to the peripheral edge of the adhesive surface (position not overlapping the silicon wafer) of the dicing sheet. Further, the dicing sheet was cut according to the outer diameter of the ring frame. Then, a silicon wafer was diced into a chip having a size of 300 μm × 300 μm using a dicing apparatus (manufactured by Disco Corporation, product name “DFD6362”). Then, the dicing sheet was irradiated with ultraviolet rays (illuminance 230 mW / cm 2 , light intensity 190 mJ / cm 2 ). As a result, a laminated body in which a plurality of chips were provided on the dicing sheet was obtained.
 続いて、実施例および比較例で製造したワークハンドリングシートから剥離シートを剥離し、それにより露出した露出面と、上記の通り得られた積層体における複数のチップが存在する面とを貼り合わせた。その後、複数のチップからダイシングシートを剥離した。これにより、複数のチップをダイシングシートからワークハンドリングシートに転写し、ワークハンドリングシート上に複数のチップが設けられてなる積層体を得た。 Subsequently, the release sheet was peeled off from the work handling sheets produced in Examples and Comparative Examples, and the exposed exposed surface was bonded to the surface of the laminate obtained as described above in which a plurality of chips exist. .. Then, the dicing sheet was peeled off from the plurality of chips. As a result, a plurality of chips were transferred from the dicing sheet to the work handling sheet, and a laminated body in which the plurality of chips were provided on the work handling sheet was obtained.
 (1-2)実施例14
 実施例14で製造したワークハンドリングシートから剥離シートを剥離し、それにより露出した露出面を、シリコンウエハ(#2000,厚さ:350μm)の片面に貼付した。続いて、上記ワークハンドリングシートにおける上記露出面の周縁部(シリコンウエハとは重ならない位置)に、ダイシング用リングフレームを付着させた。さらに、リングフレームの外径に合わせてワークハンドリングシートを裁断した。その後、ダイシング装置(ディスコ社製,製品名「DFD6362」)を用いて、シリコンウエハを、300μm×300μmのサイズを有するチップにダイシングした。これにより、ワークハンドリングシート上に複数のチップが設けられてなる積層体を得た。
(1-2) Example 14
The release sheet was peeled off from the work handling sheet produced in Example 14, and the exposed exposed surface was attached to one side of a silicon wafer (# 2000, thickness: 350 μm). Subsequently, a dicing ring frame was attached to the peripheral edge of the exposed surface of the work handling sheet (position not overlapping the silicon wafer). Further, the work handling sheet was cut according to the outer diameter of the ring frame. Then, a silicon wafer was diced into a chip having a size of 300 μm × 300 μm using a dicing apparatus (manufactured by Disco Corporation, product name “DFD6362”). As a result, a laminated body in which a plurality of chips were provided on the work handling sheet was obtained.
(2)レーザー光照射によるチップの分離(分離工程)
 上記工程(1)にて得られた、ワークハンドリングシート上に複数のチップが設けられてなる積層体について、レーザー光照射装置を用いて、ワークハンドリングシート越しにチップに対してレーザー光を照射した。当該照射は、2種類のレーザー光照射装置を用いて行い、実施例1~3および5~15ならびに比較例1については1種類目のレーザー光照射装置(表1中「タイプ1」と表記)を用い、実施例4および比較例2については2種類目のレーザー光照射装置(表1中「タイプ2」と表記)を用いて行った。
(2) Separation of chips by laser irradiation (separation step)
The laminate obtained in the above step (1), in which a plurality of chips are provided on the work handling sheet, was irradiated with laser light on the chips through the work handling sheet using a laser light irradiation device. .. The irradiation is performed using two types of laser light irradiation devices, and the first type of laser light irradiation device for Examples 1 to 3 and 5 to 15 and Comparative Example 1 (denoted as "Type 1" in Table 1). In Example 4 and Comparative Example 2, a second type of laser light irradiation device (denoted as “Type 2” in Table 1) was used.
 (2-1)実施例1~3および5~15ならびに比較例1
 レーザー光照射装置(YAG第三次高調波(波長355nm)かつパルス幅20nsで、光量700mJ/cm)を用いて、ワークハンドリングシート越しにチップに対してレーザー光を照射した。当該照射は、チップ中央の270μm×270μmの領域に対して行った。その他の照射条件としては、周波数:30kHz、照射量:50μJ/shotとした。また、照射は、複数のチップの中から100個のチップ(縦10個×横10個のチップのまとまり)を選択し、それらに対して行った。
(2-1) Examples 1 to 3 and 5 to 15 and Comparative Example 1
A laser beam irradiator (YAG third harmonic (wavelength 355 nm), pulse width 20 ns, light intensity 700 mJ / cm 2 ) was used to irradiate the chip with laser light through the work handling sheet. The irradiation was performed on a region of 270 μm × 270 μm in the center of the chip. Other irradiation conditions were frequency: 30 kHz and irradiation amount: 50 μJ / shot. In addition, irradiation was performed by selecting 100 chips (a group of 10 vertical × 10 horizontal chips) from a plurality of chips.
 (2-2)実施例4および比較例2
 レーザー光照射装置(キーエンス社製,製品名「MD-U1000C」)を用いてワークハンドリングシート越しにチップに対してレーザー光を照射した。当該照射は、チップ中央に対し、レーザー光スポットを、円を描くように順次照射することで行った。このとき、レーザー光スポットの直径は25μmとし、照射の軌跡として生じるリングの内径が65μmとなるように行った。その他の照射条件としては周波数:40kHz、スキャン速度:500mm/s、照射量:50μJ/shotとした。また、照射は、複数のチップの中から100個のチップ(縦10個x横10個のチップのまとまり)を選択し、それらに対して行った。
(2-2) Example 4 and Comparative Example 2
The chip was irradiated with laser light through the work handling sheet using a laser light irradiation device (manufactured by KEYENCE, product name "MD-U1000C"). The irradiation was performed by sequentially irradiating the center of the chip with laser light spots in a circular motion. At this time, the diameter of the laser beam spot was set to 25 μm, and the inner diameter of the ring generated as the irradiation locus was set to 65 μm. Other irradiation conditions were frequency: 40 kHz, scan speed: 500 mm / s, and irradiation amount: 50 μJ / shot. Further, the irradiation was performed by selecting 100 chips (a group of 10 vertical × 10 horizontal chips) from a plurality of chips and performing the irradiation on them.
(3)ブリスターおよびチップ分離の確認
 以上の照射を行ったワークハンドリングシートおよびチップについて、ワークハンドリングシートにおける基材と界面アブレーション層との界面におけるブリスターの発生の有無、およびワークハンドリングシートからのチップの脱離の有無を確認し、以下の基準に基づいて、レーザーリフトオフ適性を評価した。結果を表1に示す。
 ◎…100個全てのチップの位置においてブリスターが発生し、且つ、100個全てのチップが脱離した。
 ○…ブリスターの発生および脱離が生じたチップの数が、80個以上、100個未満であった。
 ×…ブリスターの発生および脱離が生じたチップの数が、80個未満であった。
(3) Confirmation of separation of blister and insert Regarding the work handling sheet and chip that have been irradiated as described above, the presence or absence of blister at the interface between the base material and the interface ablation layer on the work handling sheet, and the presence or absence of blister from the work handling sheet. The presence or absence of detachment was confirmed, and the laser lift-off suitability was evaluated based on the following criteria. The results are shown in Table 1.
⊚ ... Blister was generated at the positions of all 100 chips, and all 100 chips were detached.
◯ ... The number of chips in which blisters were generated and detached was 80 or more and less than 100.
X ... The number of chips in which blisters were generated and detached was less than 80.
〔試験例2〕(紫外線吸光度および紫外線透過率の測定)
 実施例および比較例で製造したワークハンドリングシートから剥離シートを剥離し、界面アブレーション層を露出させた。このワークハンドリングシートについて、紫外・可視・近赤外分光光度計(島津製作所製,製品名「UV-3600」)および付属の大形試料室(島津製作所製,製品名「MPC-3100」)を用いて、紫外線吸光度および紫外線透過率(%)を測定した。当該測定は、上記分光光度計に内蔵の積分球を使用して、スリット幅20nmにて、波長355nmの光線を、界面アブレーション層側の面に向けて照射させることで行った。結果を表1に示す。
[Test Example 2] (Measurement of UV absorbance and UV transmittance)
The release sheet was peeled off from the work handling sheets produced in Examples and Comparative Examples to expose the interfacial ablation layer. For this work handling sheet, use an ultraviolet / visible / near-infrared spectrophotometer (manufactured by Shimadzu Corporation, product name "UV-3600") and an attached large sample chamber (manufactured by Shimadzu Corporation, product name "MPC-3100"). UV absorbance and UV transmittance (%) were measured using. The measurement was carried out by irradiating a light beam having a slit width of 20 nm and a wavelength of 355 nm toward the surface on the interface ablation layer side using an integrating sphere built in the spectrophotometer. The results are shown in Table 1.
〔試験例3〕(チップ保護性の評価)
 試験例1において、レーザー光照射によりワークハンドリングシートから脱離した全てのチップについて、レーザー光の照射面におけるレーザー光照射痕の有無をデジタルマイクロスコープ(キーエンス製,製品名「VHX-7000」)を用いて、倍率100倍で目視にて確認し、下記の基準にてチップ保護性を評価した。結果を表1に示す。
 ◎…レーザー光照射の痕跡が生じていなかった。
 ○…入射したレーザーの照射パターンに対し、痕跡が不明瞭で照射パターンが判明できないと判断したもの
 ×…入射したレーザーの照射パターンに対し、痕跡として明瞭に照射パターンが判明できると判断したもの
[Test Example 3] (Evaluation of chip protection)
In Test Example 1, for all the chips detached from the work handling sheet by laser light irradiation, a digital microscope (manufactured by Keyence, product name "VHX-7000") was used to check the presence or absence of laser light irradiation marks on the laser light irradiation surface. It was visually confirmed at a magnification of 100 times, and the chip protection was evaluated according to the following criteria. The results are shown in Table 1.
◎… There was no trace of laser light irradiation.
○… It was judged that the trace was unclear with respect to the irradiation pattern of the incident laser and the irradiation pattern could not be determined. ×… It was judged that the irradiation pattern could be clearly identified as a trace with respect to the irradiation pattern of the incident laser.
〔試験例4〕(テープ越しチップ視認性の評価)
 試験例1における、ワークハンドリングシートに転写された複数のチップについて、ワークハンドリングシート越しにチップの表面が目視で視認できるか確認し、以下の基準にてテープ越しチップ視認性を評価した。
 ○…視認できた。
 ×…視認できなかった。
[Test Example 4] (Evaluation of chip visibility through tape)
With respect to the plurality of chips transferred to the work handling sheet in Test Example 1, it was confirmed whether the surface of the chips could be visually visually recognized through the work handling sheet, and the chip visibility through the tape was evaluated according to the following criteria.
○… I was able to see it.
× ... I couldn't see it.
 なお、表1に記載の略号等の詳細は以下の通りである。
 Tinuvin477:トリス[2,4,6-[2-{4-(オクチル-2-メチルエタノエート)オキシ-2-ヒドロキシフェニル}]-1,3,5-トリアジン(ヒドロキシフェニルトリアジン系紫外線吸収剤,BASF社製,製品名「Tinuvin477」)
 Tinuvin479:2-(2-ヒドロキシ-4-[1-オクチルオキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン(ヒドロキシフェニルトリアジン系紫外線吸収剤,BASF社製,製品名「Tinuvin479」)
 Tinuvin326:2-(5-クロロ-2H-ベンゾトリアゾール-2-イル)-6-(1,1-ジメチルエチル)-4-メチルフェノール(ベンゾトリアゾール系紫外線吸収剤,BASF社製,製品名「Tinuvin326」)
 CYASORB UV-24:2,2’-ジヒドロキシ-4-メトキシベンゾフェノン(ベンゾフェノン系紫外線吸収剤,SOLVAY社製,製品名「CYASORB UV-24」)
 PET:ポリエチレンテレフタレートフィルム(三菱ケミカル社製,製品名「T-910 WM19」,厚さ:50μm)
 PO:ポリオレフィン系フィルム(エチレン-メタクリル酸共重合体を含有する樹脂組成物(三井デュポンポリケミカル社製,製品名「ニュクレルNH903C」)を、小型Tダイ押出機(東洋精機製作所社製,製品名「ラボプラストミル」)によって押出成形して得られた厚さ80μmのフィルム)
Details of the abbreviations and the like shown in Table 1 are as follows.
Tinuvin477: Tris [2,4,6-[2- {4- (octyl-2-methylethanoate) oxy-2-hydroxyphenyl}]] -1,3,5-triazine (hydroxyphenyltriazine UV absorber, Made by BASF, product name "Tinuvin 477")
Tinuvin 479: 2- (2-hydroxy-4- [1-octyloxycarbonylethoxy] phenyl) -4,6-bis (4-phenylphenyl) -1,3,5-triazine (hydroxyphenyltriazine UV absorber, Made by BASF, product name "Tinuvin 479")
Tinuvin 326: 2- (5-chloro-2H-benzotriazole-2-yl) -6- (1,1-dimethylethyl) -4-methylphenol (benzotriazole UV absorber, manufactured by BASF, product name "Tinuvin 326"")
CYASORB UV-24: 2,2'-dihydroxy-4-methoxybenzophenone (benzophenone-based UV absorber, manufactured by SOLVAY, product name "CYASORB UV-24")
PET: Polyethylene terephthalate film (manufactured by Mitsubishi Chemical Corporation, product name "T-910 WM19", thickness: 50 μm)
PO: Polyolefin-based film (resin composition containing ethylene-methacrylic acid copolymer (manufactured by Mitsui DuPont Polychemical Co., Ltd., product name "Nucrel NH903C"), small T-die extruder (manufactured by Toyo Seiki Seisakusho Co., Ltd., product name) 80 μm thick film obtained by extrusion molding with “Laboplast Mill”)
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 表1から明らかなように、実施例で製造したワークハンドリングシートは、レーザーリフトオフ適性に優れていた。さらに、実施例で製造したワークハンドリングシートでは、紫外線透過率が十分に低下するととともに、チップ保護性およびテープ越しチップ視認性に優れていた。 As is clear from Table 1, the work handling sheet manufactured in the examples was excellent in laser lift-off suitability. Further, in the work handling sheet produced in the examples, the ultraviolet transmittance is sufficiently lowered, and the chip protection and the chip visibility through the tape are excellent.
 本発明のワークハンドリングシートは、マイクロ発光ダイオードを画素として備えるディスプレイ等の製造に好適に使用することができる。 The work handling sheet of the present invention can be suitably used for manufacturing a display or the like provided with a micro light emitting diode as a pixel.
1…ワークハンドリングシート
 11…界面アブレーション層
 12…基材
 13…反応領域
2,2’…ワーク小片
3…対象物
4…レーザー光
5…ブリスター
6…レーザー光照射点
1 ... Work handling sheet 11 ... Interfacial ablation layer 12 ... Base material 13 ... Reaction area 2, 2'... Work small pieces 3 ... Object 4 ... Laser light 5 ... Blister 6 ... Laser light irradiation point

Claims (21)

  1.  基材と、
     前記基材における片面側に積層され、ワーク小片を保持可能であるとともに、レーザー光の照射によって界面アブレーションする界面アブレーション層と
    を備えるワークハンドリングシートであって、
     前記界面アブレーション層が、紫外線吸収剤を含有する
    ことを特徴とするワークハンドリングシート。
    With the base material
    A work handling sheet laminated on one side of the base material, capable of holding small pieces of work, and provided with an interfacial ablation layer that ablates the interface by irradiation with laser light.
    A work handling sheet in which the interfacial ablation layer contains an ultraviolet absorber.
  2.  前記紫外線吸収剤は、有機化合物であることを特徴とする請求項1に記載のワークハンドリングシート。 The work handling sheet according to claim 1, wherein the ultraviolet absorber is an organic compound.
  3.  前記紫外線吸収剤は、1個以上の複素環を有する化合物であることを特徴とする請求項1または2に記載のワークハンドリングシート。 The work handling sheet according to claim 1 or 2, wherein the ultraviolet absorber is a compound having one or more heterocycles.
  4.  前記紫外線吸収剤は、炭素環および複素環の少なくとも1種を有し、
     前記紫外線吸収剤が有する全ての前記炭素環および前記複素環は、それぞれ単環である
    ことを特徴とする請求項1~3のいずれか一項に記載のワークハンドリングシート。
    The ultraviolet absorber has at least one of a carbon ring and a heterocycle, and has
    The work handling sheet according to any one of claims 1 to 3, wherein all the carbon rings and the heterocycles contained in the ultraviolet absorber are monocyclic rings.
  5.  前記紫外線吸収剤は、複数の芳香環を有する化合物であることを特徴とする請求項1~4のいずれか一項に記載のワークハンドリングシート。 The work handling sheet according to any one of claims 1 to 4, wherein the ultraviolet absorber is a compound having a plurality of aromatic rings.
  6.  前記界面アブレーション層中における紫外線吸収剤の含有量は、1質量%以上、75質量%以下であることを特徴とする請求項1~5のいずれか一項に記載のワークハンドリングシート。 The work handling sheet according to any one of claims 1 to 5, wherein the content of the ultraviolet absorber in the interface ablation layer is 1% by mass or more and 75% by mass or less.
  7.  前記ワークハンドリングシートは、波長355nmの光線の吸光度が、2.0以上であることを特徴とする請求項1~6のいずれか一項に記載のワークハンドリングシート。 The work handling sheet according to any one of claims 1 to 6, wherein the work handling sheet has an absorbance of light rays having a wavelength of 355 nm of 2.0 or more.
  8.  前記ワークハンドリングシートは、波長355nmの光線の透過率が、1.0%以下であることを特徴とする請求項1~7のいずれか一項に記載のワークハンドリングシート。 The work handling sheet according to any one of claims 1 to 7, wherein the work handling sheet has a transmittance of light rays having a wavelength of 355 nm of 1.0% or less.
  9.  前記界面アブレーション層は、粘着剤層であることを特徴とする請求項1~8のいずれか一項に記載のワークハンドリングシート。 The work handling sheet according to any one of claims 1 to 8, wherein the interface ablation layer is an adhesive layer.
  10.  前記粘着剤層を構成する粘着剤は、アクリル系粘着剤であることを特徴とする請求項9に記載のワークハンドリングシート。 The work handling sheet according to claim 9, wherein the pressure-sensitive adhesive constituting the pressure-sensitive adhesive layer is an acrylic pressure-sensitive adhesive.
  11.  前記レーザー光は、紫外域の波長を有するものであることを特徴とする請求項1~10のいずれか一項に記載のワークハンドリングシート。 The work handling sheet according to any one of claims 1 to 10, wherein the laser light has a wavelength in the ultraviolet region.
  12.  前記界面アブレーション層に界面アブレーションを生じさせたときに、当該界面アブレーションが生じた位置においてブリスターが形成されることを特徴とする請求項1~11のいずれか一項に記載のワークハンドリングシート。 The work handling sheet according to any one of claims 1 to 11, wherein a blister is formed at a position where the interfacial ablation occurs when the interfacial ablation is generated in the interfacial ablation layer.
  13.  前記界面アブレーション層において局所的に生じさせた界面アブレーションによって、前記界面アブレーション層における前記基材とは反対の面上に保持された複数のワーク小片のうちの任意のワーク小片を、前記界面アブレーション層から選択的に分離するために使用されるものであることを特徴とする請求項1~12のいずれか一項に記載のワークハンドリングシート。 By the interfacial ablation locally generated in the interfacial ablation layer, any work piece among a plurality of work pieces held on the surface of the interfacial ablation layer opposite to the base material can be subjected to the interfacial ablation layer. The work handling sheet according to any one of claims 1 to 12, characterized in that it is used for selectively separating from.
  14.  前記ワーク小片は、前記界面アブレーション層における前記基材とは反対の面上に保持されたワークを当該面上において個片化することで得られたものであることを特徴とする請求項13に記載のワークハンドリングシート。 13. The work piece is obtained by individualizing a work held on a surface of the interface ablation layer opposite to the base material on the surface. Described work handling sheet.
  15.  前記ワーク小片は、半導体部品および半導体装置から選択される少なくとも1種であることを特徴とする請求項13または14に記載のワークハンドリングシート。 The work handling sheet according to claim 13 or 14, wherein the work piece is at least one selected from a semiconductor component and a semiconductor device.
  16.  前記ワーク小片は、ミニ発光ダイオードおよびマイクロ発光ダイオードから選択される発光ダイオードであることを特徴とする請求項13~15のいずれか一項に記載のワークハンドリングシート。 The work handling sheet according to any one of claims 13 to 15, wherein the work piece is a light emitting diode selected from a mini light emitting diode and a micro light emitting diode.
  17.  基材と、前記基材における片面側に積層された、紫外線吸収剤を含有する界面アブレーション層とを備えるワークハンドリングシートにおける、前記界面アブレーション層側の面上に複数のワーク小片が保持されてなる積層体を準備する準備工程と、
     前記ワーク小片を受容可能な対象物に対して、前記積層体における前記ワーク小片側の面が向かい合うように前記積層体を配置する配置工程と、
     前記積層体における前記界面アブレーション層における、少なくとも1つの前記ワーク小片が貼付されている位置に対し、レーザー光を照射して、前記界面アブレーション層における前記照射された位置において界面アブレーションを生じさせることで、当該界面アブレーションが生じた位置に存在する前記ワーク小片を前記ワークハンドリングシートから分離し、前記ワーク小片を前記対象物上に載置する分離工程と
    を備えることを特徴とするデバイス製造方法。
    A plurality of work pieces are held on the surface on the interface ablation layer side of the work handling sheet including the substrate and the interface ablation layer containing an ultraviolet absorber laminated on one side of the substrate. The preparatory process for preparing the laminate and
    An arrangement step of arranging the laminated body so that the surfaces on the work piece side of the laminated body face each other with respect to an object that can accept the work small pieces.
    By irradiating a position in the interfacial ablation layer of the laminated body to which at least one piece of the work is attached with laser light to cause interfacial ablation at the irradiated position in the interfacial ablation layer. A device manufacturing method comprising a separation step of separating the work piece existing at a position where the interface ablation occurs from the work handling sheet and placing the work piece on the object.
  18.  前記準備工程においては、前記界面アブレーション層における前記基材とは反対の面上に保持されたワークを当該面上において個片化することで、前記ワーク小片を得ることを特徴とする請求項17に記載のデバイス製造方法。 17. The preparatory step is characterized in that a work piece held on a surface opposite to the base material in the interface ablation layer is individualized on the surface to obtain the work piece. The device manufacturing method described in.
  19.  前記ワーク小片は、半導体部品および半導体装置から選択される少なくとも1種であることを特徴とする請求項17または18に記載のデバイス製造方法。 The device manufacturing method according to claim 17 or 18, wherein the work piece is at least one selected from a semiconductor component and a semiconductor device.
  20.  ミニ発光ダイオードおよびマイクロ発光ダイオードから選択される発光ダイオードを前記ワーク小片として用いて、前記発光ダイオードを複数備える発光装置を製造することを特徴とする請求項17~19のいずれか一項に記載のデバイス製造方法。 The invention according to any one of claims 17 to 19, wherein a light emitting device including a plurality of the light emitting diodes is manufactured by using a light emitting diode selected from a mini light emitting diode and a micro light emitting diode as the work piece. Device manufacturing method.
  21.  前記発光装置は、ディスプレイであることを特徴とする請求項20に記載のデバイス製造方法。 The device manufacturing method according to claim 20, wherein the light emitting device is a display.
PCT/JP2021/045507 2021-01-13 2021-12-10 Workpiece handling sheet and device manufacturing method WO2022153745A1 (en)

Priority Applications (11)

Application Number Priority Date Filing Date Title
KR1020237004773A KR20230129372A (en) 2021-01-13 2021-12-10 Work handling sheets and device manufacturing methods
JP2022575143A JPWO2022153745A1 (en) 2021-01-13 2021-12-10
CN202180063345.XA CN116261585A (en) 2021-01-13 2021-12-10 Workpiece processing sheet and device manufacturing method
JP2022575524A JPWO2022153877A1 (en) 2021-01-13 2021-12-28
JP2022575525A JPWO2022153878A1 (en) 2021-01-13 2021-12-28
PCT/JP2021/048936 WO2022153877A1 (en) 2021-01-13 2021-12-28 Workpiece handling sheet, method for handling small workpiece item, device manufacturing method, and use of workpiece handling sheet
KR1020237005271A KR20230132433A (en) 2021-01-13 2021-12-28 Work handling sheet, method for handling small work pieces, device manufacturing method, and use of the work handling sheet
PCT/JP2021/048937 WO2022153878A1 (en) 2021-01-13 2021-12-28 Workpiece handling sheet, method for manufacturing semiconductor device, and use of workpiece handling sheet
CN202180063657.0A CN116234693A (en) 2021-01-13 2021-12-28 Workpiece processing sheet, processing method of workpiece small sheet, device manufacturing method and application of workpiece processing sheet
TW111100496A TW202244239A (en) 2021-01-13 2022-01-06 Workpiece handling sheet, method for handling small workpiece item, device manufacturing method, and use of workpiece handling sheet
TW111100497A TW202235577A (en) 2021-01-13 2022-01-06 Workpiece handling sheet, method for manufacturing semiconductor device, and use of workpiece handling sheet

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021003436 2021-01-13
JP2021-003436 2021-01-13

Publications (1)

Publication Number Publication Date
WO2022153745A1 true WO2022153745A1 (en) 2022-07-21

Family

ID=82448347

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045507 WO2022153745A1 (en) 2021-01-13 2021-12-10 Workpiece handling sheet and device manufacturing method

Country Status (2)

Country Link
TW (1) TW202240759A (en)
WO (1) WO2022153745A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251359A (en) * 2009-04-10 2010-11-04 Sony Corp Device transferring method
JP2014515883A (en) * 2011-04-11 2014-07-03 エヌディーエスユー リサーチ ファウンデーション Laser-assisted selective transfer of separated parts
WO2019207920A1 (en) * 2018-04-26 2019-10-31 Jsr株式会社 Mounting method and mounting device for semiconductor elements
JP2020188261A (en) * 2017-06-12 2020-11-19 ユニカルタ・インコーポレイテッド Method of parallelly assembling discrete components on substrate

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010251359A (en) * 2009-04-10 2010-11-04 Sony Corp Device transferring method
JP2014515883A (en) * 2011-04-11 2014-07-03 エヌディーエスユー リサーチ ファウンデーション Laser-assisted selective transfer of separated parts
JP2020188261A (en) * 2017-06-12 2020-11-19 ユニカルタ・インコーポレイテッド Method of parallelly assembling discrete components on substrate
WO2019207920A1 (en) * 2018-04-26 2019-10-31 Jsr株式会社 Mounting method and mounting device for semiconductor elements

Also Published As

Publication number Publication date
TW202240759A (en) 2022-10-16

Similar Documents

Publication Publication Date Title
KR101880644B1 (en) Surface protective sheet
KR20170008749A (en) Composite sheet for forming protective film
TWI675901B (en) Dicing sheet
KR20160106588A (en) Composite sheet for protective-film formation
KR20160039188A (en) Protective film formation-use composite sheet
JP2018154737A (en) Adhesive sheet for workpiece processing and manufacturing method therefor
WO2021193934A1 (en) Method for producing semiconductor chip with film-form adhesive
JP7062654B2 (en) Manufacturing method of adhesive sheet for stealth dicing and semiconductor device
JP7325403B2 (en) Work processing sheet
WO2022153745A1 (en) Workpiece handling sheet and device manufacturing method
KR102579051B1 (en) Manufacturing method of sheet for work processing and processed work
JPWO2020100491A1 (en) Work sheet
KR20230129372A (en) Work handling sheets and device manufacturing methods
WO2022201767A1 (en) Workpiece handling sheet and device manufacturing method
KR102481244B1 (en) Method for manufacturing adhesive sheet for stealth dicing and semiconductor device
WO2022153877A1 (en) Workpiece handling sheet, method for handling small workpiece item, device manufacturing method, and use of workpiece handling sheet
JP7146145B1 (en) Work handling sheet and device manufacturing method
JP7325634B2 (en) Work handling sheet and device manufacturing method
KR102560374B1 (en) Method for manufacturing adhesive sheet for stealth dicing and semiconductor device
JP2023097043A (en) Work handling sheet and device manufacturing method
KR102560370B1 (en) Method for manufacturing adhesive sheet for stealth dicing and semiconductor device
JP2024094095A (en) Workpiece processing sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21919634

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022575143

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21919634

Country of ref document: EP

Kind code of ref document: A1