WO2022201630A1 - 双極型蓄電池 - Google Patents

双極型蓄電池 Download PDF

Info

Publication number
WO2022201630A1
WO2022201630A1 PCT/JP2021/041941 JP2021041941W WO2022201630A1 WO 2022201630 A1 WO2022201630 A1 WO 2022201630A1 JP 2021041941 W JP2021041941 W JP 2021041941W WO 2022201630 A1 WO2022201630 A1 WO 2022201630A1
Authority
WO
WIPO (PCT)
Prior art keywords
separator
positive electrode
active material
negative electrode
material layer
Prior art date
Application number
PCT/JP2021/041941
Other languages
English (en)
French (fr)
Inventor
直規 中北
英明 吉田
智史 柴田
亮 田井中
Original Assignee
古河電池株式会社
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 古河電池株式会社, 古河電気工業株式会社 filed Critical 古河電池株式会社
Priority to JP2023508452A priority Critical patent/JPWO2022201630A1/ja
Publication of WO2022201630A1 publication Critical patent/WO2022201630A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/06Lead-acid accumulators
    • H01M10/18Lead-acid accumulators with bipolar electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/68Selection of materials for use in lead-acid accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings; Jackets or wrappings
    • H01M50/102Primary casings; Jackets or wrappings characterised by their shape or physical structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/463Separators, membranes or diaphragms characterised by their shape
    • H01M50/466U-shaped, bag-shaped or folded
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/60Arrangements or processes for filling or topping-up with liquids; Arrangements or processes for draining liquids from casings
    • H01M50/609Arrangements or processes for filling with liquid, e.g. electrolytes
    • H01M50/627Filling ports

Definitions

  • Embodiments of the present invention relate to bipolar storage batteries.
  • the lead-acid battery described in Patent Document 1 includes a bipolar plate in which a positive electrode active material layer and a negative electrode active material layer are provided on one side and the other side of a conductive metal substrate.
  • the bipolar plates are sandwiched between a pair of end plates and a separator is provided between each pair of adjacent bipolar plates.
  • a lead-acid battery used in an electric storage system as described above needs to have a life performance that can withstand long-term operation because of its intended use.
  • the separator sandwiched between the positive electrode active material layer and the negative electrode active material layer facing each other is in contact with the positive electrode active material layer and the negative electrode active material layer, so that the electrolyte impregnated in the separator is has a role of bringing into contact with the positive electrode active material layer and the negative electrode active material layer. It also has a function of pressing the positive electrode active material layer and the negative electrode active material layer.
  • the separator Considering the role of the separator, the separator must be in uniform contact with the positive electrode active material layer and the negative electrode active material layer. However, for example, when injecting the electrolyte during assembly, if the amount of electrolyte injected per unit time is increased in order to shorten the assembly tact time, the separator will deform due to the pressure during the injection of the electrolyte, resulting in uniformity. contact may be inhibited. If the separator is deformed in this manner, the positive electrode active material layer and the negative electrode active material layer will not be in uniform contact with each other, and short circuits may easily occur between the positive electrode side and the negative electrode side.
  • the present invention prevents the short circuit between the positive electrode side and the negative electrode side in the cell member by arranging the separator so that the separator is not deformed by the pressure of the injected electrolyte when the electrolyte is injected into the separator. It is an object of the present invention to provide a bipolar storage battery capable of preventing this.
  • a bipolar storage battery includes a positive electrode having a positive electrode current collector and a positive electrode active material layer, a negative electrode having a negative electrode current collector and a negative electrode active material layer, and Spaced-apart stacked cell members with intervening separators and covering at least one of the positive and negative sides of the cell members forming a plurality of spaces for individually housing the plurality of cell members.
  • the separator has a space forming member including a substrate and a frame surrounding the side surface of the cell member. It is placed in a position facing the mouth.
  • a bipolar storage battery includes a positive electrode having a positive electrode current collector and a positive electrode active material layer, a negative electrode having a negative electrode current collector and a negative electrode active material layer, and a positive electrode.
  • a cell member having a separator interposed between the cell member and the negative electrode; It has a space forming member including a substrate covering at least one side and a frame surrounding the side of the cell member. The closed end of the separator, which becomes a crease that appears when the separator is folded, is arranged at a position facing the injection port for injecting the electrolytic solution into the separator.
  • the separator is arranged so that the separator is not deformed by the pressure of the electrolyte solution injected when the electrolyte solution is injected into the separator, and the positive electrode side and the negative electrode side in the cell member are separated. Short circuits can be prevented from occurring.
  • the separator in the bipolar storage battery has a first surface and a second surface with different surface roughnesses, and is in contact with the positive electrode active material layer and the negative electrode active material layer.
  • the surface has a smaller surface roughness than either the first surface or the second surface.
  • FIG. 1 is a cross-sectional view showing the structure of a bipolar storage battery according to an embodiment of the invention
  • FIG. 1 is an enlarged cross-sectional view showing an enlarged part of a structure of a bipolar storage battery according to an embodiment of the present invention
  • FIG. 1 is a cross-sectional view showing the structure of a bipolar lead-acid battery 100 according to an embodiment of the invention.
  • the bipolar lead-acid battery 100 of the first embodiment of the present invention includes a plurality of cell members 110, a plurality of bipolar plates (space forming members) 120, and a first end plate ( space forming member) 130 , a second end plate (space forming member) 140 and a cover plate 170 .
  • FIG. 1 shows the bipolar lead-acid battery 100 in which three cell members 110 are stacked
  • the number of cell members 110 is determined by battery design.
  • the number of bipolar plates 120 depends on the number of cell members 110 .
  • the stacking direction of the cell members 110 is the Z direction (the vertical direction in FIG. 1 or FIG. 2).
  • the cell member 110 includes a positive electrode 111, a negative electrode 112, and a separator (electrolyte layer) 113.
  • the positive electrode 111 has a positive electrode lead foil 111a and a positive electrode active material layer 111b.
  • the negative electrode 112 has a negative electrode lead foil 112a and a negative electrode active material layer 112b.
  • the positive electrode lead foil 111a, the positive electrode active material layer 111b, the separator 113, the negative electrode active material layer 112b, and the negative electrode lead foil 112a are laminated in this order. Separator 113 is interposed between positive electrode 111 and negative electrode 112 .
  • the separator 113 is impregnated with an electrolytic solution.
  • One of the four end faces of the frame is formed with a notch forming a liquid inlet for pouring the electrolytic solution into the space C (separator 113).
  • the notch When the notch is formed on the side surface of the frame on the right side of the drawing, the notch penetrates the frame in the X direction and has a semicircular recessed shape from both end surfaces of the frame in the Z direction.
  • This cutout portion does not participate in the above-described joining structure, and when the above-mentioned joining structure is formed by vibration welding, the facing cutout portions form a circular injection port.
  • the injection port 180 is provided as shown in FIG. That is, it is provided so as to penetrate from the frame toward the separator 130 side and open to the cell C. As shown in FIG. In the bipolar lead-acid battery 100 shown in FIG. 1, the electrolyte is injected into the separator 113 from the injection port 180 shown on the right side of the drawing. A lid is provided on the liquid injection port 180 to prevent foreign matter from entering, but the illustration thereof is omitted in FIG.
  • separator 113 is in a folded state. Specifically, in the embodiment of the present invention, one sheet of separator 113 is folded in two and used, for example. Therefore, the separator 113 is folded to form a peak side portion of the crease.
  • the peak-side portion is hereinafter appropriately referred to as the closed end 113a.
  • the separator 113 is arranged such that the closed end 113a faces the injection port 180 provided in the bipolar plate 120 for injecting the electrolytic solution into the separator 113. be. Therefore, in FIG. 1, the closed end 113a is shown to be on the right side of the drawing.
  • the reason why the closed end 113a of the separator 113 is arranged so as to face the inlet 180 is that the closed end 113a is bent and therefore stronger than the other portions of the separator 113. .
  • the deformation of the separator occurs because the electrolytic solution vigorously hits a small gap in the laminated surface of the separator when the electrolytic solution is injected, and the laminated surface is expanded.
  • the closed end 113a of the separator 113 so as to face the liquid inlet 180, when the electrolytic solution is injected from the liquid inlet 180 toward the separator 113, the electrolytic solution is applied to the closed end 113a. will be injected. Therefore, deformation of the separator 113 can be prevented.
  • the separator 113 is folded in two, but it is not limited to being folded in two, as long as the closed end 113a, which is a crease, can be arranged at a position facing the injection port 180.
  • the separator 113 it is also possible to use the separator 113 by folding it in three, four, or the like.
  • the separator 113 is formed in a flat plate shape and folded in two.
  • the separator 113 before being folded has two planar surfaces having a large area and four surfaces connected to these two surfaces around these two surfaces.
  • one of these two surfaces is referred to as the first surface, and the other surface is referred to as the second surface.
  • These two surfaces are formed to have different surface roughnesses.
  • a surface with a small surface roughness is a dense surface, and a surface with a large surface roughness is a surface with a rough surface.
  • Separator 113 in the embodiment of the present invention has a different surface roughness between the above-described first surface and second surface. That is, among the first surface and the second surface, one surface has a small surface roughness and the other surface has a large surface roughness.
  • first surface the surface with small surface roughness
  • second surface the surface with large surface roughness
  • the separator 113 is folded in two. , folded in half. More specifically, it is folded so that the surface that is outside in the folded state becomes the first surface.
  • the second surfaces which are surfaces with a large surface roughness, face each other.
  • the separator 113 folded in this way is disposed between the positive electrode active material layer 111b and the negative electrode active material layer 112b, the first portion of the separator 113 facing outward in the folded state and having a small surface roughness is placed. is in contact with the positive electrode active material layer 111b or the negative electrode active material layer 112b.
  • FIG. 2 is an enlarged cross-sectional view showing a part of the structure of the bipolar lead-acid battery 100 according to the embodiment of the invention.
  • one separator 113 is arranged between the positive electrode active material layer 111b and the negative electrode active material layer 112b while being folded in half.
  • the separator 113 is folded so that the first surface faces outward and the second face faces inside, as described above. Therefore, the first surface of the separator 113 is in contact with the positive electrode active material layer 111 b and the negative electrode active material layer 112 . Also, in this case, the second surfaces of the separators 113 are arranged to face each other. Therefore, the second surfaces come into contact with each other.
  • the surface roughness of the separator 113 was also measured.
  • an image acquired using a Hilox device (MXB-2500REZ) was used with the 3D automatic tiling function of the image processing software "Hirox RH-2000" also of Hilox.
  • the measurement magnification was 200 times to 600 times, and the cutoff value ( ⁇ c) was 8.0 to 0.8. At this time, pay attention to the relationship between "surface roughness” and “waviness”, and adjust the measurement magnification and cutoff value so that appropriate measurement results can be obtained.
  • the surface roughness of the separator in the present examples and comparative examples was measured before the separator was impregnated with the electrolytic solution. However, the measurement may be performed after the separator is impregnated with the electrolytic solution, washed with water and dried, or after the separator extracted from the dismantled storage battery is washed with water and dried.
  • the ten-point average roughness (Rz) of the "dense" surface with small surface roughness is preferably 90 ⁇ m or less, more preferably 15 ⁇ m or more and 90 ⁇ m or less.
  • the dimensions in the X direction and the Y direction of the positive electrode lead foil 111a are larger than the dimensions in the X direction and the Y direction of the positive electrode active material layer 111b.
  • the dimensions in the X direction and the Y direction of the negative electrode lead foil 112a are larger than the dimensions in the X direction and the Y direction of the negative electrode active material layer 112b.
  • the positive electrode lead foil 111a is larger (thicker) than the negative electrode lead foil 112a
  • the positive electrode active material layer 111b is larger (thicker) than the negative electrode active material layer 112b.
  • a plurality of cell members 110 are stacked and arranged at intervals in the Z direction, and substrates 121 of bipolar plates 120 are arranged at the intervals. That is, the plurality of cell members 110 are stacked with the substrates 121 of the bipolar plates 120 sandwiched therebetween.
  • the plurality of bipolar plates 120, the first end plate 130, and the second end plate 140 form a space for forming a plurality of spaces (cells) C for individually accommodating the plurality of cell members 110. It is a member.
  • the bipolar plate 120 covers both the positive electrode side and the negative electrode side of the cell member 110, and includes a substrate 121 having a rectangular planar shape and a frame 122 that surrounds the side surfaces of the cell member 110 and covers the four end surfaces of the substrate 121. And, it is a space forming member including.
  • the bipolar plate 120 further includes pillars 123 protruding vertically from both sides of the substrate 121 .
  • the number of pillars 123 protruding from each surface of the substrate 121 may be one or plural.
  • the substrate 121, the frame 122, and the pillars 123 that constitute the bipolar plate 120 are integrally formed of, for example, a thermoplastic resin.
  • a thermoplastic resin examples include acrylonitrile-butadiene-styrene copolymer (ABS resin) and polypropylene. These thermoplastic resins are excellent in moldability and also in sulfuric acid resistance. Therefore, even if the electrolyte comes into contact with the bipolar plate 120, the bipolar plate 120 is unlikely to be decomposed, deteriorated, corroded, or the like.
  • the dimension of the frame 122 is larger than the dimension (thickness) of the substrate 121, and the dimension between the projecting end faces of the pillars 123 is the same as the dimension of the frame 122.
  • a space C is formed between the substrates 121 by stacking the plurality of bipolar plates 120 with the frames 122 and the pillars 123 in contact with each other. The dimension of the space C in the Z direction is maintained by the pillars 123 that are in contact with each other.
  • the positive electrode lead foil 111a, the positive electrode active material layer 111b, the negative electrode lead foil 112a, the negative electrode active material layer 112b, and the separator 113 have through holes 111c, 111d, 112c, 112d, and 113b through which the columnar portion 123 penetrates. formed respectively.
  • a substrate 121 of the bipolar plate 120 has a plurality of through holes 121a penetrating through the plate surface.
  • a first concave portion 121b is formed on one surface of the substrate 121, and a second concave portion 121c is formed on the other surface.
  • the depth of the first recess 121b is deeper than the depth of the second recess 121c.
  • the X-direction and Y-direction dimensions of the first recess 121b and the second recess 121c correspond to the X- and Y-direction dimensions of the positive electrode lead foil 111a and the negative electrode lead foil 112a.
  • the substrate 121 of the bipolar plate 120 is arranged between adjacent cell members 110 in the Z direction.
  • the positive electrode lead foil 111a of the cell member 110 is placed in the first concave portion 121b of the substrate 121 of the bipolar plate 120 with an adhesive 150 interposed therebetween.
  • a cover plate 170 for covering the outer edge of the positive electrode lead foil 111a is provided.
  • the cover plate 170 is a thin plate-like frame and has a rectangular inner line and an outer line.
  • the inner edge of the cover plate 170 overlaps the outer edge of the positive electrode lead foil 111 a
  • the outer edge of the cover plate 170 overlaps the peripheral edge of the first recess 121 b on one surface of the substrate 121 .
  • the rectangle forming the inner line of the cover plate 170 is smaller than the rectangle forming the outer line of the positive electrode active material layer 111b. Also, the rectangle forming the outline of the cover plate 170 is larger than the rectangle forming the opening surface of the first recess 121b.
  • the adhesive 150 wraps around from the end face of the positive electrode lead foil 111a to the outer edge on the opening side of the first recess 121b, and is arranged between the inner edge of the cover plate 170 and the outer edge of the positive electrode lead foil 111a. be.
  • the adhesive 150 is also arranged between the outer edge of the cover plate 170 and one surface of the substrate 121 .
  • the cover plate 170 is fixed by the adhesive 150 across the peripheral edge of the first recess 121b on one surface of the substrate 121 and the outer edge of the positive electrode lead foil 111a. As a result, the outer edge of the positive electrode lead foil 111a is covered with the cover plate 170 even at the boundary with the edge of the first recess 121b.
  • the negative electrode lead foil 112 a of the cell member 110 is arranged via the adhesive 150 in the second recess 121 c of the substrate 121 of the bipolar plate 120 .
  • the outer edge of the negative electrode lead foil 112a may also be covered with a cover plate similar to the cover plate 170 covering the outer edge of the positive electrode lead foil 111a.
  • a conductor 160 is arranged in the through hole 121 a of the substrate 121 of the bipolar plate 120 . Both end surfaces of the conductor 160 are in contact with and bonded to the positive electrode lead foil 111a and the negative electrode lead foil 112a. That is, the conductor 160 electrically connects the positive electrode lead foil 111a and the negative electrode lead foil 112a. As a result, all of the plurality of cell members 110 are electrically connected in series.
  • the first end plate 130 is a space forming member including a substrate 131 covering the positive electrode side of the cell member 110 and a frame 132 surrounding the side surface of the cell member 110 . Further, a columnar portion 133 is provided that vertically protrudes from one surface of the substrate 131 (the surface of the bipolar plate 120 arranged on the most positive electrode side facing the substrate 121).
  • the planar shape of the substrate 131 is rectangular, and four end surfaces of the substrate 131 are covered with a frame 132 .
  • the substrate 131, the frame 132, and the pillars 133 are integrally formed of, for example, the thermoplastic resin described above.
  • the number of pillars 133 protruding from one surface of substrate 131 may be one, or may be plural. number.
  • First end plate 130 is laminated with frame 132 and column 133 in contact with frame 122 and column 123 of bipolar plate 120 arranged on the outermost side (positive electrode side).
  • a space C is formed between the substrate 121 of the bipolar plate 120 and the substrate 131 of the first end plate 130 .
  • the dimension of the space C in the Z direction is maintained by the columnar portion 123 of the bipolar plate 120 and the columnar portion 133 of the first end plate 130 that are in contact with each other.
  • Through-holes 111c, 111d, and 113b through which the column portion 133 penetrates are formed in the positive electrode lead foil 111a, the positive electrode active material layer 111b, and the separator 113 of the cell member 110 arranged on the outermost side (on the positive electrode side), respectively. ing.
  • a concave portion 131b is formed on one surface of the substrate 131 of the first end plate 130 .
  • the X-direction and Y-direction dimensions of the recess 131b correspond to the X- and Y-direction dimensions of the positive electrode lead foil 111a.
  • the positive electrode lead foil 111a of the cell member 110 is placed in the concave portion 131b of the substrate 131 of the first end plate 130 with an adhesive 150 interposed therebetween. Also, like the substrate 121 of the bipolar plate 120 , the cover plate 170 is fixed to one side of the substrate 131 with an adhesive 150 . As a result, the outer edge of the positive electrode lead foil 111a is covered with the cover plate 170 even at the boundary with the peripheral edge of the recess 131b.
  • the first end plate 130 also includes a positive electrode terminal (not shown in FIG. 1) electrically connected to the positive electrode lead foil 111a in the recess 131b.
  • the second end plate 140 is a space forming member including a substrate 141 covering the negative electrode side of the cell member 110 and a frame 142 surrounding the side surface of the cell member 110 . Further, a pillar portion 143 is provided that vertically protrudes from one surface of the substrate 141 (the surface of the bipolar plate 120 arranged on the most negative electrode side facing the substrate 121).
  • the planar shape of the substrate 141 is rectangular, and four end faces of the substrate 141 are covered with a frame 142 .
  • the substrate 141, the frame 142, and the pillars 143 are integrally formed of, for example, the thermoplastic resin described above.
  • the number of pillars 143 protruding from one surface of substrate 141 may be one, or may be plural. number.
  • Second end plate 140 is laminated with frame 142 and column 143 in contact with frame 122 and column 123 of bipolar plate 120 arranged on the outermost side (negative electrode side).
  • a space C is formed between the substrate 121 of the bipolar plate 120 and the substrate 141 of the second end plate 140 .
  • the dimension of the space C in the Z direction is maintained by the columnar portion 123 of the bipolar plate 120 and the columnar portion 143 of the second end plate 140 that are in contact with each other.
  • Through-holes 112c, 112d, and 113b through which the column portion 143 penetrates are formed in the negative electrode lead foil 112a, the negative electrode active material layer 112b, and the separator 113 of the cell member 110 arranged on the outermost side (on the negative electrode side), respectively. ing.
  • a concave portion 141 b is formed on one surface of the substrate 141 of the second end plate 140 .
  • the X-direction and Y-direction dimensions of the recess 141b correspond to the X- and Y-direction dimensions of the negative electrode lead foil 112a.
  • the negative electrode lead foil 112a of the cell member 110 is placed in the concave portion 141b of the substrate 141 of the second end plate 140 with an adhesive 150 interposed therebetween.
  • the second end plate 140 also includes a negative terminal (not shown in FIG. 1) electrically connected to the negative lead foil 112a in the recess 141b.
  • vibration welding when joining the bipolar plates 120 facing each other, the bipolar plate 120 facing the first end plate 130, or the bipolar plate 120 facing the second end plate 140, for example, vibration welding, Various welding methods such as ultrasonic welding and hot plate welding can be employed. Of these, vibration welding is performed by vibrating surfaces to be welded while pressurizing them during welding, and the welding cycle is fast and reproducibility is good. Therefore, vibration welding is more preferably used.
  • objects to be welded include not only the frames disposed at positions facing each other in the bipolar plate 120, the first end plate 130, and the second end plate 140, but also the columns.
  • the bipolar lead-acid battery 100 of this embodiment can be manufactured, for example, by a method including steps described below.
  • the substrate 121 of the bipolar plate 120 is placed on a workbench with the first concave portion 121b facing upward.
  • the adhesive 150 is applied to the first recess 121b, and the positive electrode lead foil 111a is placed in the first recess 121b.
  • the column portion 123 of the bipolar plate 120 is passed through the through hole 111c of the positive electrode lead foil 111a.
  • the adhesive 150 is cured and the positive electrode lead foil 111 a is attached to one surface of the substrate 121 .
  • the substrate 121 is placed on the workbench with the second concave portion 121c side facing upward, and the conductor 160 is inserted into the through hole 121a.
  • the adhesive 150 is applied to the second recess 121c, and the negative electrode lead foil 112a is placed in the second recess 121c.
  • the column portion 123 of the bipolar plate 120 is passed through the through hole 112c of the negative electrode lead foil 112a.
  • the adhesive 150 is cured, and the negative electrode lead foil 112 a is attached to the other surface of the substrate 121 .
  • the substrate 121 is placed on the workbench with the first concave portion 121b side facing upward.
  • An adhesive 150 is applied to the outer edge of the positive electrode lead foil 111a and the upper surface of the substrate 121, which will be the edge of the first recess 121b, and the cover plate 170 is placed thereon to cure the adhesive 150.
  • the cover plate 170 is fixed over the outer edge of the positive electrode lead foil 111a and over the portion of the substrate 121 (peripheral edge of the first recess 121b) that continues to the outside thereof.
  • bipolar plate 120 with lead foil for positive and negative electrodes is obtained.
  • a necessary number of bipolar plates 120 with lead foils for positive and negative electrodes are prepared.
  • the substrate 131 of the first end plate 130 is placed on the workbench with the concave portion 131b facing upward.
  • the adhesive 150 is applied to the recess 131b, the positive electrode lead foil 111a is placed in the recess 131b, and the adhesive 150 is cured.
  • the column portion 133 of the end plate 130 is passed through the through hole 111c of the positive electrode lead foil 111a.
  • the adhesive 150 is cured and the positive electrode lead foil 111 a is attached to one surface of the substrate 131 .
  • the adhesive 150 is applied to the outer edge of the positive electrode lead foil 111a and to the upper surface of the substrate 131, which is the edge of the recess 131b, and the cover plate 170 is placed thereon to cure the adhesive 150.
  • the cover plate 170 is fixed over the outer edge of the positive electrode lead foil 111a and over the portion of the substrate 131 continuing to the outside thereof. This obtains the end plate with the lead foil for positive electrodes.
  • the substrate 141 of the second end plate 140 is placed on the workbench with the concave portion 141b facing upward.
  • the adhesive 150 is applied to the recess 141b, the negative electrode lead foil 112a is placed in the recess 141b, and the adhesive 150 is cured.
  • the column portion 143 of the second end plate 140 is passed through the through hole 112c of the negative electrode lead foil 112a.
  • the adhesive 150 is cured to obtain the second end plate 140 in which the negative electrode lead foil 112a is attached to one surface of the substrate 141 .
  • the first end plate 130 to which the positive lead foil 111a and the cover plate 170 are fixed is placed on a workbench with the positive lead foil 111a facing upward.
  • the positive electrode active material layer 111b is placed in the cover plate 170 and placed on the positive electrode lead foil 111a.
  • the columnar portion 133 of the first end plate 130 is passed through the through hole 111d of the positive electrode active material layer 111b.
  • the separator 113 first separator 113A, second separator 113B
  • the negative electrode active material layer 112b are placed on the positive electrode active material layer 111b.
  • the bipolar plate 120 with positive and negative lead foils is placed with the negative lead foil 112a side facing downward.
  • the columnar portion 123 of the bipolar plate 120 is put on the columnar portion 133 of the first end plate 130 through the through hole 113b of the separator 113 and the through hole 112d of the negative electrode active material layer 112b.
  • the frame 122 of the bipolar plate 120 is placed on the frame 132 of the first end plate 130 .
  • the first end plate 130 is fixed, and vibration welding is performed while vibrating the bipolar plate 120 in the diagonal direction of the substrate 121 .
  • the frame 122 of the bipolar plate 120 is joined onto the frame 132 of the first end plate 130 .
  • the column portion 123 of the bipolar plate 120 is joined onto the column portion 133 of the first end plate 130 .
  • the bipolar plate 120 is joined onto the first end plate 130 , and the cell member 110 is arranged in the space C formed by the first end plate 130 and the bipolar plate 120 .
  • the positive electrode lead foil 111 a is exposed on the top surface of the bipolar plate 120 .
  • the positive electrode active material layer 111b, the separator 113, and the negative electrode active material layer are placed on the thus-obtained assembly in which the bipolar plate 120 is bonded onto the first end plate 130. 112b are placed in this order. Thereafter, another bipolar plate 120 with lead foils for positive and negative electrodes is placed with the lead foil 112a for negative electrodes facing downward.
  • this combined body is fixed, and vibration welding is performed while vibrating another bipolar plate 120 with lead foil for positive and negative electrodes in the diagonal direction of the substrate 121 .
  • This vibration welding process is continued until the required number of bipolar plates 120 are bonded onto the first end plate 130 .
  • the positive electrode active material layer 111b the positive electrode active material layer 111b, the separators 113 (the first separator 113A, the second separator 113B), and the negative electrode are placed.
  • the active material layer 112b is placed in this order.
  • the second end plate 140 is placed with the negative electrode lead foil 112a facing downward.
  • this combined body is fixed, and vibration welding is performed while vibrating the second end plate 140 in the diagonal direction of the substrate 141 .
  • the second end plate 140 is joined on the uppermost bipolar plate 120 of the combined body in which all the bipolar plates 120 are joined.
  • a joining structure is formed by vibration welding of the opposing surfaces of the frames, and the notches of the opposing frames form one end surface of the bipolar lead-acid battery 100, for example, in the X direction.
  • a circular injection port 180 is formed at each space C of .
  • a predetermined amount of electrolytic solution is injected into each space C through the injection port 180 to impregnate the separator 113 with the electrolytic solution.
  • the bipolar lead-acid battery 100 can be manufactured by forming under predetermined conditions.
  • the injection hole may be formed by providing a notch in the frame in advance, or may be opened using a drill or the like after joining the frame.
  • a bipolar lead-acid battery includes a plurality of cell members each having a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and an electrolytic layer interposed between the positive electrode and the negative electrode, and a plurality of these cell members. and a plurality of frame units forming a plurality of spaces (cells) for individually accommodating the cell members.
  • the frame unit is composed of a substrate surrounding at least one of the positive electrode side and the negative electrode side of the cell member, and a frame surrounding the side surface of the cell member. Note that the frame unit is made of resin.
  • the above-described cell members and substrates of the frame unit are alternately laminated, and the cell members are electrically connected in series.
  • the surfaces of adjacent frame units that come into contact with each other are joined via a joining material made of metal.
  • the separator is arranged in the electrolytic layer mentioned above. An AGM separator manufactured by Nippon Sheet Glass Co., Ltd. was used as this separator.
  • the separator is folded in two and used as described above. Therefore, one of the two sides forming two planar surfaces (the first surface and the second surface) having a large area of the separator so that the desired size is obtained when the separator is folded in two. Prepare a separator whose side is twice the desired length. Then, it is folded in two at approximately half positions of the long sides.
  • this separator has a first surface and a second surface with different surface roughness (here, as described above, the first surface has a higher surface roughness than the second surface). small). Therefore, when folding, it is folded so that the first surface faces outward. Thus, the second faces are folded inwards, with the folded second faces facing each other.
  • the separator folded in two is arranged so that the clogged end, which is the crease, faces the injection port. Then, the electrolytic solution is injected into the separator within a predetermined period of time to form the container. Then, the liquid inlet was covered with a control valve and an upper lid was adhered to fabricate a desired bipolar lead-acid battery.
  • bipolar lead-acid battery in which the closed end of the folded separator was placed facing the injection port as described above, the closed end of the separator was not opposed to the injection port.
  • bipolar lead-acid battery placed in the The latter bipolar lead-acid battery was manufactured with the same structure and process as the former bipolar lead-acid battery, except that the method of arranging the separators was different.
  • a capacity test was performed, and the result of the 10-hour rate capacity test was taken as the battery capacity.
  • a capacity test was conducted by placing the battery in a water bath at 25°C ⁇ 2°C. The specific condition is discharging at 0.1C (-4.5A) with respect to 45Ah, which is the rated capacity of the battery. The battery is discharged at a rate of 10 hours until the terminal voltage drops to 1.8 V/cell and the discharge duration is recorded. A 10-hour rate capacity was obtained from the discharge current and the discharge duration.
  • the discharge and charge were repeated in a pattern in which the discharge depth, which is the ratio of the discharge amount to the discharge capacity, was 70% of the rated capacity. Specifically, the pattern is as shown below.
  • bipolar lead-acid battery first prepare a fully charged bipolar lead-acid battery.
  • This bipolar lead-acid battery is discharged at a current value of 0.1 C with respect to the 10-hour rate rated capacity obtained by the capacity test.
  • the discharge time is set to 7 hours in order to set the discharge depth to 70%.
  • CC-CV charging constant-current and constant-voltage charging
  • the battery is charged at a current value of 0.1 C with respect to the 10-hour rate rated capacity, and when the terminal voltage of the battery reaches 2.45 V/cell, constant voltage charging is performed. Then, charging is carried out until the charged quantity of electricity reaches 104% of the discharged quantity of electricity. This discharge and charge are regarded as one cycle, and this cycle is repeated 1000 times.
  • the bipolar lead-acid battery was disassembled, the separator was taken out, and the amount of deformation of the taken out separator was measured.
  • the size of the separator before being put into the test is compared with the size of the separator dismantled and taken out after the test. , and when the deformation was larger than 5%, it was set as "x". The results of the tests are shown in the table below.
  • injection speed indicates the speed at which the electrolyte is injected into the separator through the injection port.
  • slow indicates the conventional slow injection.
  • fast in the case of Example 1 and Comparative Example 1, it is described as “fast”. This "fast” means faster than the conventional example.
  • “Workability” is the workability when injecting the electrolytic solution into the separator, and "O” indicates good workability, and "X” indicates poor workability. That is, in the case of Example 1 and Comparative Example 1, since the injection speed is “fast”, the operation of injecting the specified amount of electrolyte into the separator is completed faster than in the conventional example. Therefore, in Example 1 and Comparative Example 1, workability was judged to be good, and " ⁇ " is indicated. On the other hand, in the case of the conventional example, since the injection speed is slow, the workability is not good and is indicated by "x".
  • the "Destruction of Separator” column indicates whether or not the amount of deformation was 5% or less by comparing the size of the separator before the above-mentioned test introduction and the size of the separator after the test.
  • Conventional Example and Example 1 are “no (the amount of deformation of the separator after the test is 5% or less)", while Comparative Example 1 is “yes (the amount of deformation of the separator after the test is 5%). %)”.
  • the injection speed is slow, so the deformation amount of the separator is 5% or less, which is good.
  • the injection speed is slow, workability is difficult, and as a result, the "evaluation” is "x".
  • the injection speed is high, and therefore the workability is good.
  • the surface of the separator facing the injection port is a crease surface (closed end), even if the injection speed is increased and the electrolyte is injected, the amount of deformation of the separator is 5% or less. Therefore, the evaluation was also "0".
  • Comparative Example 1 Although the injection speed was high and the workability was good, since the surface of the separator facing the injection port was a laminated surface, the deformation amount of the separator was greater than 5%. Therefore, the evaluation is also "x".
  • the injection speed can be increased. Even if the speed was increased, the amount of deformation of the separator remained at 5% or less, and breakage of the separator could not be confirmed. Therefore, by arranging the separator so that the separator is not deformed by the pressure of the injected electrolyte when the electrolyte is injected into the separator, it is possible to prevent the occurrence of a short circuit between the positive electrode side and the negative electrode side inside the cell member. be able to.
  • the positive electrode active material that is taken out by disassembling the bipolar lead-acid battery at the end of the test. Then, the positive electrode active material taken out is washed with water and dried, and the positive electrode active material is vertically divided into four parts.
  • the crystallite size of ⁇ PbO 2 is confirmed at each site of the positive electrode active material, and the difference is measured. Since the grains of the active material grow with charging and discharging, when the active material is used locally, the grains grow more in those places, and the crystallite size of ⁇ PbO 2 increases. Therefore, for the crystallite size of ⁇ PbO 2 at each site, the difference in size between before and after the test is calculated.
  • Example 2 two tests, Example 2 and Example 3, were conducted. Further, in each of these examples, the surface of the separator facing the injection port is a "folded surface (closed end)". As is clear from the tests shown in Table 1 above, the results show that the amount of deformation of the separator is less when the crease surface is opposed to the liquid inlet rather than the laminated surface, and the separator arrangement is more appropriate. for it was obtained.
  • the above-mentioned column of "arrangement image” shows how the separator folded in two is arranged between the positive electrode active material layer and the negative electrode active material layer. Also, here, one separator folded in two is used. Therefore, the surface in contact with the positive electrode active material layer and the negative electrode active material layer is either the first surface with small surface roughness or the second surface with large surface roughness.
  • “Rough” indicates a surface with a large surface roughness, which is the second surface in the above description.
  • “dense” indicates a surface with small surface roughness, which is the first surface in the above description.
  • the second surface is the outside, that is, the second surface is in contact with the positive electrode active material layer 111b and the negative electrode active material layer 112b.
  • the first surfaces are arranged to face each other on the inside. In Table 2, this is indicated as “sparse, dense and coarse”.
  • the second surface with the larger surface roughness when the second surface with the larger surface roughness is folded on the outside, the first surface with the smaller surface roughness is folded inward and face each other. Conversely, when the first surface with the smaller surface roughness is folded outward, the second surface with the larger surface roughness is folded inward and face each other. Therefore, if it is expressed accurately, for example, when it is folded in two so that the surface with the larger surface roughness faces the outside, it is expressed as "dense, dense, coarse”.
  • Example 2 when the second surface, which is a surface having a large surface roughness, is in contact with the positive electrode active material layer and the negative electrode active material layer, at least the closed end of the separator faces the liquid inlet. placed. Therefore, there is an effect that deformation of the separator due to the injection of the electrolytic solution is not observed, so it is judged to be "good”.
  • the electrolytic solution is injected from the separator arrangement.
  • the separator arrangement In addition to the effect that no deformation of the separator was observed due to the deformation, there was no difference of 100 ⁇ (angstrom) or more in the crystallite diameter at each site.
  • the surface of the separator with small surface roughness so as to face the active material layer for positive electrode and the active material layer for negative electrode, the surface pressure applied to the active material layer based on the arrangement of the separator is made uniform as much as possible. Therefore, the active material layer can be prevented from peeling off, and the battery capacity can be maintained and the battery life can be extended.
  • the separator is folded and arranged so that the closed end faces the injection port.
  • the separator used here is one sheet, and this one sheet of separator is folded.
  • Bipolar lead acid battery 110 ... Cell member 111... Positive electrode 112... Negative electrode 111a... Lead foil for positive electrode 112a... Lead foil for negative electrode 111b... Active material layer for positive electrode 112b Negative electrode active material layer 113 Separator 120 Biplate 121 Biplate substrate 121a Substrate through hole 122 Biplate frame 130 First end plate 131 first end plate substrate 132 first end plate frame 140 second end plate 141 second end plate substrate 142 Frame body of second end plate 150 Adhesive layer 160 Conductor 164 Leg surface (one opposing surface) 170... Cover plate 180... Injection port C... Cell (space for accommodating cell members)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

セパレータに電解液を注入する際の圧によってセパレータが変形しないようにセパレータを配置して正極側と負極側とで短絡が生ずることを防止するとともに、充放電時における活物質の局所的な利用を抑制しセル内における活物質の均一な利用を実現することで蓄電池の長寿命化を図る。双極型蓄電池は、正極(111)、負極(112)、および正極(111)と負極(112)との間に介在するセパレータ(113)を備え、間隔を開けて積層配置された、セル部材(110)と、複数のセル部材(110)を個別に収容する複数の空間を形成する、空間形成部材(120)と、を有し、セパレータ(113)は、折り畳まれることで現れる折り目となる閉塞端(113a)が、セパレータ(113)に対して電解液を注入する注液口(180)と対向する位置に配置される。

Description

双極型蓄電池
 本発明の実施の形態は、双極型蓄電池に関する。
 近年、太陽光や風力等の自然エネルギーを利用した発電設備が増えている。このような発電設備においては、発電量を制御することができないことから、蓄電池を利用して電力負荷の平準化を図るようにしている。すなわち、発電量が消費量よりも多いときには差分を蓄電池に充電する一方、発電量が消費量よりも小さいときには差分を蓄電池から放電するようにしている。上述した蓄電池としては、経済性や安全性等の観点から、鉛蓄電池が多用されている。このような従来の鉛蓄電池としては、例えば、下記特許文献1に記載されているものが知られている。
 この特許文献1に記載された鉛蓄電池では、導電性金属基材の一方面及び他方面に正極用活物質層及び負極用活物質層が設けられたバイポーラプレートを備えている。当該バイポーラプレートは一対のエンドプレートで挟まれるとともに、隣接したバイポーラプレートの各々の対の間にはセパレータが設けられている。そして、上述したような蓄電システムに用いられる鉛蓄電池は、その用途から長期間の運用に耐えることのできる寿命性能を有している必要がある。
特開平6-349519号
 しかしながら、実際に運用される場合の環境や個々の蓄電池の性能等、各種条件はまちまちである。そのため、基板の電位分布や電解液の濃度差等、種々の要因によって活物質が局所的に使用されてしまうことが考えられる。このような状態が継続すると軟化と呼ばれる蓄電池の寿命を縮める状態に陥り、蓄電池の寿命が早期に尽きてしまうことも生じ得る。
 また、対向する正極用活物質層と負極用活物質層との間に挟まれるセパレータは、正極用活物質層と負極用活物質層と接触することによって、当該セパレータに含浸されている電解液を正極用活物質層と負極用活物質層とに接触させる役割を有する。また、正極用活物質層と負極用活物質層と押さえる役割も有している。
 このようなセパレータの役割からすれば、あくまでもセパレータは正極用活物質層と負極用活物質層に均一に接触している必要がある。但し、例えば、組み立て時に電解液を注入する際に、組み立てのタクトタイムを短縮するために単位時間あたりの注液量を増加させると、電解液の注入時の圧によりセパレータに変形が生じて均一な接触が阻害されることもあり得る。このようにセパレータが変形してしまうと、正極用活物質層と負極用活物質層に均一に接触しなくなってしまうばかりか、正極側と負極側とで短絡しやすくなることも考えられる。
 さらに、上述したセパレータの役割に鑑みれば、セパレータによる正極用活物質層や負極用活物質層に掛かる面圧が不均一な状態となると、両活物質層の保持力が低下し、活物質層の剥落に伴う電池容量の低下を招来しかねない。
 本発明は、セパレータに電解液を注入する際に注入される電解液の圧によってセパレータが変形しないようにセパレータを配置することで、セル部材内部における正極側と負極側とで短絡が生ずることを防止することが可能な双極型蓄電池を提供することを目的とする。
 また、充放電時における活物質の局所的な利用を抑制し、セル内における活物質の均一な利用を実現することで、たとえ局所的な利用が行われることによる活物質の利用のバラツキが生じたとしてもこのバラツキを許容し蓄電池の長寿命化を図ることが可能な双極型蓄電池を提供することを目的とする。
 さらに、セパレータの配置に基づく活物質層に掛かる面圧を可能な限り均一化することで活物質層の剥落を防止し、電池容量の維持、長寿命化を図ることが可能な双極型蓄電池を提供することを目的とする。
 本発明の一態様に係る双極型蓄電池は、正極用集電板と正極用活物質層を有する正極、負極用集電板と負極用活物質層を有する負極、および正極と負極との間に介在するセパレータを備え、間隔を開けて積層配置された、セル部材と、複数のセル部材を個別に収容する複数の空間を形成する、セル部材の正極の側および負極の側の少なくとも一方を覆う基板と、セル部材の側面を囲う枠体と、を含む空間形成部材と、を有し、セパレータは、折り畳まれることで現れる折り目となる閉塞端が、セパレータに対して電解液を注入する注液口と対向する位置に配置される。
 本発明によれば、本発明の一態様に係る双極型蓄電池は、正極用集電板と正極用活物質層を有する正極、負極用集電板と負極用活物質層を有する負極、および正極と負極との間に介在するセパレータを備え、間隔を開けて積層配置された、セル部材と、複数のセル部材を個別に収容する複数の空間を形成する、セル部材の正極の側および負極の側の少なくとも一方を覆う基板と、セル部材の側面を囲う枠体と、を含む空間形成部材と、を有する。そしてセパレータは、折り畳まれることで現れる折り目となる閉塞端が、セパレータに対して電解液を注入する注液口と対向する位置に配置される。このような構成を採用することによって、セパレータに電解液を注入する際に注入される電解液の圧によってセパレータが変形しないようにセパレータを配置して、セル部材内部における正極側と負極側とで短絡が生ずることを防止することができる。
 また、本発明の一態様に係る双極型蓄電池におけるセパレータは、表面粗さの異なる第1の面と第2の面とを有するとともに、正極用活物質層と負極用活物質層とに接触する面が第1の面または第2の面のいずれかより表面粗さの小さな面である。このような構成を採用することによって、充放電時における活物質の局所的な利用を抑制し、セル内における活物質の均一な利用を実現することで、たとえ局所的な利用が行われることによる活物質の利用のバラツキが生じたとしてもこのバラツキを許容し蓄電池の長寿命化を図ることができる。
本発明の実施の形態に係る双極型蓄電池の構造を示す断面図である。 本発明の実施の形態に係る双極型蓄電池の構造の一部を拡大して示す拡大断面図である。
 以下、本発明の実施の形態について図面を参照して詳細に説明する。なお、以下に説明する各実施の形態は、本発明の一例を示したものである。また、これらの各実施の形態には種々の変更又は改良を加えることが可能であり、その様な変更又は改良を加えた形態も本発明に含まれ得る。これらの各実施の形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。なお、以下においては、様々な蓄電池の中から鉛蓄電池を例に挙げて説明する。
 〔全体構成〕
 まず、本発明の実施の形態における双極型鉛蓄電池の全体構成について説明する。図1は、本発明の実施の形態に係る双極型鉛蓄電池100の構造を示す断面図である。
 図1に示すように、本発明の第1の実施の形態の双極型鉛蓄電池100は、複数のセル部材110と、複数枚のバイポーラプレート(空間形成部材)120と、第1のエンドプレート(空間形成部材)130と、第2のエンドプレート(空間形成部材)140と、カバープレート170とを有する。
 ここで、図1ではセル部材110が3個積層された双極型鉛蓄電池100を示しているが、セル部材110の数は電池設計により決定される。また、バイポーラプレート120の数はセル部材110の数に応じて決まる。
 なお、以下においては、図1及び後述する図2に示すように、セル部材110の積層方向をZ方向(図1、或いは、図2の上下方向)とし、Z方向に垂直な方向で且つ互いに垂直な方向をX方向およびY方向とする。
 セル部材110は、正極111、負極112、およびセパレータ(電解質層)113を備えている。正極111は、正極用鉛箔111aと正極用活物質層111bとを有する。負極112は負極用鉛箔112aと負極用活物質層112bとを有する。
 セル部材110において、正極用鉛箔111a、正極用活物質層111b、セパレータ113、負極用活物質層112b、および負極用鉛箔112aは、この順に積層されている。セパレータ113は、正極111と負極112との間に介在している。
 セパレータ113には電解液が含浸されている。そして枠体が有する四つの端面のうちの一つの端面には、空間C(セパレータ113)に電解液を入れるための注液口を形成する切り欠き部が形成されている。この切り欠き部は、例えば図面右側に存在する枠体の側面に形成されている場合、枠体をX方向に貫通し、枠体のZ方向の両端面から半円弧状に凹む形状を有する。そして、この切り欠き部は上述の接合構造に関与せず、振動溶接により上述の接合構造が形成される際に、対向する切り欠き部によって円形の注液口が形成される。
 具体的には、注液口180は図1に示すように設けられている。すなわち、枠体からセパレータ130の側に向けて貫通しセルCに開口するように設けられている。電解液は、図1に示す双極型鉛蓄電池100においては、図面右側に示されている注液口180からセパレータ113に対して注液される。なお、注液口180には異物が入り込まないように蓋が設けられているが、図1ではその描画を省略している。
 そして本発明の実施の形態における双極型鉛蓄電池100では、セパレータ113は、折り畳まれた状態である。具体的には、本発明の実施の形態においては、1枚のセパレータ113が、例えば、2つ折りにされて使用される。そのため、セパレータ113には、折り畳まれることで折り目の山側の部分が形成される。当該山側の部分を、以下、適宜閉塞端113aと表す。
 すなわち、例えば、1枚のセパレータ113を2つ折りにすると、折り畳んだ部分が生ずることになるが、この部分には折り目があることから、この端部は閉じた状態となる。この端部が上述した閉塞端113aである。一方、セパレータ113におけるその他の3方は、折り目はないため開放した状態となっている(開放端となる)。
 そして本発明の実施の形態においては、この閉塞端113aがセパレータ113に対して電解液を注入するためにバイポーラプレート120に設けられている注液口180に対向するように、セパレータ113が配置される。そのため図1においては、当該閉塞端113aが図面右側にくるように示されている。
 そのため、注液口180から電解液がセパレータ113に注入される際には、その先にセパレータ113の折り目である、閉塞端113aがあることになる。注入された電解液は、まずこの閉塞端113aに当たり、セパレータ113全体に染み込んでいくことになる。
 このようにセパレータ113の閉塞端113aを注液口180に対向するように配置するのは、閉塞端113aは折り曲げられていることからセパレータ113の他の部分よりも強度が増しているからである。すなわちセパレータの変形は、電解液の注入の際に電解液がセパレータの積層面の小さな隙間に勢いよく当たることで積層面が押し広げられるために生ずる。
 そのため、セパレータ113の閉塞端113aを注液口180に対向するように配置することで、注液口180から電解液をセパレータ113に向けて注入する場合に、当該閉塞端113aに当てながら電解液を注入することになる。そのため、セパレータ113の変形を防止することができる。
 なお、ここではセパレータ113を2つ折りにした例を挙げたが、折り目である閉塞端113aが注液口180に対向する位置に配置することができるのであれば、2つ折りに限らず、例えば、セパレータ113を三つ折り、四つ折り等に折り曲げて使用することも可能である。
 ここで本発明の実施の形態におけるセパレータ113は、平板状に形成されたものを2つに折り畳んで使用している。折り畳む前のセパレータ113は、大きな面積を備える平面状の2つの面と、これら2面の周囲においてこれら2面に連なる4つの面とを備えている。ここでは、便宜上、これら2面のうち、一方の面を第1の面とし、他方の面を第2の面と表す。これら2面では、互いに表面粗さが異なるように形成されている。
 表面粗さの小さな面は密な面であり、表面粗さの大きな面は表面粗さが粗い面である。そして、本発明の実施の形態におけるセパレータ113は、上述した第1の面と第2の面とで表面粗さに違いがある。すなわち、これら第1の面と第2の面とにおいて、一方の面が表面粗さの小さな面であり、他方が表面粗さの大きな面となる。
 なお、以下の説明では、説明の都合上、表面粗さの小さな面を「第1の面」と表し、表面粗さの大きな面を「第2の面」と表す。なお、第1の面と第2の面と表面粗さの違いとの関係はあくまでも便宜的なものであり、表面粗さの大きな面を第1の面とすることももちろんできる。
 本発明の実施の形態においては、上述したように、セパレータ113を2つに折り畳んでいるが、この場合、上述した大きな面積を備える2面(第1の面と第2の面)を、例えば、半分に折り畳む。より具体的には、折り畳んだ状態において外側になる面が第1の面となるように折り畳む。そしてこのように折り畳むと、表面粗さの大きな面である第2の面は、互いに対向する形になる。
 このように折り畳まれたセパレータ113を正極用活物質層111bと負極用活物質層112bとの間に配置すると、セパレータ113のうち、折り畳んだ状態において外側に向いている表面粗さの小さな第1の面が、正極用活物質層111b、または、負極用活物質層112bと接することになる。
 この点を図2を用いて説明する。図2は、本発明の実施の形態に係る双極型鉛蓄電池100の構造の一部を拡大して示す拡大断面図である。図2における双極型鉛蓄電池100では、1枚のセパレータ113が2つ折りに折り畳まれた状態で正極用活物質層111bと負極用活物質層112bとの間に配置されている。
 セパレータ113は、上述したように第1の面が外側に、第2の面が内側となるように折り畳まれている。そのため、セパレータ113の第1の面が正極用活物質層111b及び負極用活物質層112に接することになる。またこの場合、セパレータ113の第2の面は互いに対向する位置に配置されることになる。このため、第2の面同士が接触することになる。
 なおセパレータ113については、表面粗さについても測定を行った。当該表面粗さの測定には、ハイロックス社の装置(MXB-2500REZ)を用いて取得した画像を、同じくハイロックス社の画像処理ソフトウェア「HiroxRH-2000」の3D自動タイリング機能を用いた。測定するセパレータは、50mm×50mm(=250mm)の平板状にした。測定倍率は200倍~600倍、カットオフ値(λc)は8.0~0.8とした。このとき、「表面粗さ」と「うねり」の関係に留意し、適切な測定結果が得られるように、測定倍率やカットオフ値を調整する。
 なお、本実施例および比較例におけるセパレータの表面粗さの測定は、セパレータを電解液に含浸する前とした。但し、セパレータを電解液に含浸し水洗および乾燥させた後に測定しても、蓄電池を解体して摘出したセパレータを水洗および乾燥させた後に測定しても良い。
 この測定結果として、表面粗さの小さな「密」な面における好ましい十点平均粗さ(Rz)は、90μm以下、より好ましくは、15μm以上90μm以下であることが望ましい。
 正極用鉛箔111aのX方向およびY方向の寸法は、正極用活物質層111bのX方向およびY方向の寸法より大きい。同様に、負極用鉛箔112aのX方向およびY方向の寸法は、負極用活物質層112bのX方向およびY方向の寸法より大きい。また、Z方向の寸法(厚さ)は、正極用鉛箔111aの方が負極用鉛箔112aより大きく(厚く)、正極用活物質層111bの方が負極用活物質層112bより大きい(厚い)。
 複数のセル部材110は、Z方向に間隔を開けて積層配置され、この間隔の部分にバイポーラプレート120の基板121が配置されている。すなわち、複数のセル部材110は、バイポーラプレート120の基板121を間に挟まれた状態で積層されている。
 このように、複数枚のバイポーラプレート120と第1のエンドプレート130と第2のエンドプレート140は、複数のセル部材110を個別に収容する複数の空間(セル)Cを形成するための空間形成部材である。
 すなわち、バイポーラプレート120は、セル部材110の正極側および負極側の両方を覆い、平面形状が長方形の基板121と、セル部材110の側面を囲うとともに基板121の4つの端面を覆うに枠体122と、を含む空間形成部材である。
 また、図1に示すように、バイポーラプレート120は、さらに基板121の両面から垂直に突出する柱部123を備える。当該基板121の各面から突出する柱部123の数は一つであってもよいし、複数であってもよい。
 バイポーラプレート120を構成する基板121と枠体122と柱部123は、一体に、例えば、熱可塑性樹脂で形成されている。バイポーラプレート120を形成する熱可塑性樹脂としては、例えば、アクリロニトリル-ブタジエン-スチレン共重合体(ABS樹脂)、ポリプロピレンが挙げられる。これらの熱可塑性樹脂は、成形性に優れているとともに耐硫酸性にも優れている。よって、バイポーラプレート120に電解液が接触したとしても、バイポーラプレート120に分解、劣化、腐食等が生じにくい。
 Z方向において、枠体122の寸法は基板121の寸法(厚さ)より大きく、柱部123の突出端面間の寸法は枠体122の寸法と同じである。そして、複数のバイポーラプレート120が枠体122および柱部123同士を接触させて積層されることにより、基板121と基板121との間に空間Cが形成される。そして、互いに接触する柱部123同士により、空間CのZ方向の寸法が保持される。
 正極用鉛箔111a、正極用活物質層111b、負極用鉛箔112a、負極用活物質層112b、およびセパレータ113には、柱部123を貫通させる貫通穴111c,111d,112c,112d,113bがそれぞれ形成されている。
 バイポーラプレート120の基板121は、板面を貫通する複数の貫通穴121aを有する。基板121の一方の面に第1の凹部121bが、他方の面に第2の凹部121cが形成されている。第1の凹部121bの深さは第2の凹部121cの深さより深い。第1の凹部121bおよび第2の凹部121cのX方向およびY方向の寸法は、正極用鉛箔111aおよび負極用鉛箔112aのX方向およびY方向の寸法に対応させてある。
 バイポーラプレート120の基板121は、Z方向で、隣り合うセル部材110の間に配置されている。そして、バイポーラプレート120の基板121の第1の凹部121bに、セル部材110の正極用鉛箔111aが接着剤150を介して配置されている。
 正極用鉛箔111aの外縁部には、当該外縁部を覆うためのカバープレート170が設けられている。このカバープレート170は、薄板状の枠体で、長方形の内形線および外形線を有する。そして、カバープレート170の内縁部が正極用鉛箔111aの外縁部と重なり、カバープレート170の外縁部が基板121の一面の第1の凹部121bの周縁部と重なっている。
 すなわち、カバープレート170の内形線をなす長方形は、正極用活物質層111bの外形線をなす長方形より小さい。また、カバープレート170の外形線をなす長方形は、第1の凹部121bの開口面をなす長方形より大きい。
 接着剤150は、正極用鉛箔111aの端面から第1の凹部121bの開口側の外縁部まで回り込んで、カバープレート170の内縁部と正極用鉛箔111aの外縁部との間に配置される。また接着剤150は、カバープレート170の外縁部と基板121の一面との間にも配置されている。
 すなわち、カバープレート170は接着剤150により、基板121の一面の第1の凹部121bの周縁部と正極用鉛箔111aの外縁部とに亘って固定されている。これにより、正極用鉛箔111aの外縁部は、第1の凹部121bの周縁部との境界部においてもカバープレート170で覆われている。
 また、バイポーラプレート120の基板121の第2の凹部121cに、セル部材110の負極用鉛箔112aが接着剤150を介して配置されている。なお、図1では示していないが、負極用鉛箔112aの外縁部も正極用鉛箔111aの外縁部を覆っているカバープレート170と同様のカバープレートで覆われていても良い。
 バイポーラプレート120の基板121の貫通穴121aには導通体160が配置されている。導通体160の両端面は、正極用鉛箔111aおよび負極用鉛箔112aと接触し、結合されている。すなわち、導通体160により正極用鉛箔111aと負極用鉛箔112aとが電気的に接続されている。その結果、複数のセル部材110の全てが電気的に直列に接続されている。
 図1に示すように、第1のエンドプレート130は、セル部材110の正極側を覆う基板131と、セル部材110の側面を囲う枠体132と、を含む空間形成部材である。また、基板131の一面(最も正極側に配置されるバイポーラプレート120の基板121と対向する面)から垂直に突出する柱部133を備える。
 基板131の平面形状は長方形であり、基板131の4つの端面が枠体132で覆われている。基板131と枠体132と柱部133が一体に、例えば、上述した熱可塑性樹脂で形成されている。なお、基板131の一面から突出する柱部133の数は1つであってもよいし、複数であってもよいが、柱部133と接触させるバイポーラプレート120の柱部123の数に対応した数となる。
 Z方向において、枠体132の寸法は基板131の寸法(厚さ)より大きく、柱部133の突出端面間の寸法は枠体132の寸法と同じである。そして、第1のエンドプレート130は、最も外側(正極側)に配置されるバイポーラプレート120の枠体122および柱部123に対して、枠体132および柱部133を接触させて積層される。
 これにより、バイポーラプレート120の基板121と第1のエンドプレート130の基板131との間に空間Cが形成される。そして、互いに接触するバイポーラプレート120の柱部123と第1のエンドプレート130の柱部133とにより、空間CのZ方向の寸法が保持される。
 最も外側(正極側)に配置されるセル部材110の正極用鉛箔111a、正極用活物質層111b、およびセパレータ113には、柱部133を貫通させる貫通穴111c,111d,113bがそれぞれ形成されている。
 第1のエンドプレート130の基板131の一面に凹部131bが形成されている。凹部131bのX方向およびY方向の寸法は、正極用鉛箔111aのX方向およびY方向の寸法に対応させてある。
 第1のエンドプレート130の基板131の凹部131bに、セル部材110の正極用鉛箔111aが接着剤150を介して配置されている。また、バイポーラプレート120の基板121と同様に、カバープレート170が接着剤150により基板131の一面側に固定されている。これにより、正極用鉛箔111aの外縁部が、凹部131bの周縁部との境界部においてもカバープレート170で覆われている。
 また、第1のエンドプレート130は、凹部131b内の正極用鉛箔111aと電気的に接続された、図1では図示されていない正極端子を備えている。
 第2のエンドプレート140は、セル部材110の負極側を覆う基板141と、セル部材110の側面を囲う枠体142と、を含む空間形成部材である。また、基板141の一面(最も負極側に配置されるバイポーラプレート120の基板121と対向する面)から垂直に突出する柱部143を備える。
 基板141の平面形状は長方形であり、基板141の4つの端面が枠体142で覆われている。基板141と枠体142と柱部143が一体に、例えば、上述した熱可塑性樹脂で形成されている。なお、基板141の一面から突出する柱部143の数は一つであってもよいし、複数であってもよいが、柱部143と接触させるバイポーラプレート120の柱部123の数に対応した数となる。
 Z方向において、枠体142の寸法は基板131の寸法(厚さ)より大きく、二つの柱部143の突出端面間の寸法は枠体142の寸法と同じである。そして、第2のエンドプレート140は、最も外側(負極側)に配置されるバイポーラプレート120の枠体122および柱部123に対して、枠体142および柱部143を接触させて積層される。
 これにより、バイポーラプレート120の基板121と第2のエンドプレート140の基板141との間に空間Cが形成される。そして、互いに接触するバイポーラプレート120の柱部123と第2のエンドプレート140の柱部143とにより、空間CのZ方向の寸法が保持される。
 最も外側(負極側)に配置されるセル部材110の負極用鉛箔112a、負極用活物質層112b、およびセパレータ113には、柱部143を貫通させる貫通穴112c,112d,113bがそれぞれ形成されている。
 第2のエンドプレート140の基板141の一面に凹部141bが形成されている。凹部141bのX方向およびY方向の寸法は、負極用鉛箔112aのX方向およびY方向の寸法に対応させてある。
 第2のエンドプレート140の基板141の凹部141bに、セル部材110の負極用鉛箔112aが接着剤150を介して配置されている。また、第2のエンドプレート140は、凹部141b内の負極用鉛箔112aと電気的に接続された、図1では図示されていない負極端子を備えている。
 ここで、対向するバイポーラプレート120同士、第1のエンドプレート130と対向するバイポーラプレート120、或いは、第2のエンドプレート140と対向するバイポーラプレート120との接合の際には、例えば、振動溶着、超音波溶着、熱板溶着といった、各種溶着の方法を採用することができる。このうち振動溶着は、接合の際に接合の対象となる面を加圧しながら振動させることで溶着するものであり、溶着のサイクルが早く、再現性も良い。そのためより好適には、振動溶着が用いられる。
 なお、溶着の対象としては、互いに対向するバイポーラプレート120、第1のエンドプレート130、第2のエンドプレート140において対向する位置に配置される枠体のみならず、各柱部も含まれる。
〔製造方法〕
 この実施の形態の双極型鉛蓄電池100は、例えば、以下に説明する各工程を有する方法で製造することができる。
<正負極用鉛箔付きバイポーラプレートの作製工程>
 先ず、バイポーラプレート120の基板121を、第1の凹部121b側を上に向けて作業台に置く。第1の凹部121bに接着剤150を塗布し、第1の凹部121b内に正極用鉛箔111aを入れる。その際に、正極用鉛箔111aの貫通穴111cにバイポーラプレート120の柱部123を通す。この接着剤150を硬化させて、基板121の一面に正極用鉛箔111aを貼り付ける。
 次に、基板121の第2の凹部121c側を上に向けて作業台に置き、貫通穴121aに導通体160を挿入する。次に、第2の凹部121cに接着剤150を塗布し、第2の凹部121c内に負極用鉛箔112aを入れる。その際に、負極用鉛箔112aの貫通穴112cにバイポーラプレート120の柱部123を通す。この接着剤150を硬化させて、基板121の他面に負極用鉛箔112aを貼り付ける。
 次に、基板121の第1の凹部121b側を上に向けて作業台に置く。正極用鉛箔111aの外縁部の上および第1の凹部121bの縁部となる基板121の上面に接着剤150を塗布し、その上にカバープレート170を載せて接着剤150を硬化させる。これにより、カバープレート170を、正極用鉛箔111aの外縁部の上とその外側に連続する基板121の部分(第1の凹部121bの周縁部)の上に亘って固定する。
 次に、抵抗溶接を行って、導通体160と正極用鉛箔111aと負極用鉛箔112aとを接続する。これにより、正負極用鉛箔付きのバイポーラプレート120を得る。この正負極用鉛箔付きのバイポーラプレート120を必要枚数だけ用意する。
<正極用鉛箔付きエンドプレートの作製工程>
 第1のエンドプレート130の基板131を、凹部131b側を上に向けて作業台に置く。凹部131bに接着剤150を塗布し、凹部131b内に正極用鉛箔111aを入れて接着剤150を硬化させる。その際に、正極用鉛箔111aの貫通穴111cにエンドプレート130の柱部133を通す。この接着剤150を硬化させて、基板131の一面に正極用鉛箔111aを貼り付ける。
 次に、正極用鉛箔111aの外縁部の上および凹部131bの縁部となる基板131の上面に接着剤150を塗布し、その上にカバープレート170を載せて接着剤150を硬化させる。これにより、カバープレート170を、正極用鉛箔111aの外縁部の上とその外側に連続する基板131の部分の上に亘って固定する。これにより、正極用鉛箔付きエンドプレートを得る。
<負極用鉛箔付きエンドプレートの作製工程>
 第2のエンドプレート140の基板141を、凹部141b側を上に向けて作業台に置く。凹部141bに接着剤150を塗布し、凹部141b内に負極用鉛箔112aを入れて接着剤150を硬化させる。その際に、負極用鉛箔112aの貫通穴112cに第2のエンドプレート140の柱部143を通す。この接着剤150を硬化させて、基板141の一面に負極用鉛箔112aが貼り付けられた第2のエンドプレート140を得る。
<プレート同士を積層して接合する工程>
 先ず、正極用鉛箔111aおよびカバープレート170が固定された第1のエンドプレート130を、正極用鉛箔111aを上に向けて作業台に置く。カバープレート170の中に正極用活物質層111bを入れて正極用鉛箔111aの上に置く。その際に、正極用活物質層111bの貫通穴111dに第1のエンドプレート130の柱部133を通す。次に、正極用活物質層111bの上に、セパレータ113(第1のセパレータ113A、第2のセパレータ113B)、負極用活物質層112bを置く。
 次に、この状態の第1のエンドプレート130の上に、正負極用鉛箔付きのバイポーラプレート120の負極用鉛箔112a側を下に向けて置く。その際に、バイポーラプレート120の柱部123を、セパレータ113の貫通穴113bおよび負極用活物質層112bの貫通穴112dに通して、第1のエンドプレート130の柱部133の上に載せる。併せて、第1のエンドプレート130の枠体132の上に、バイポーラプレート120の枠体122を載せる。
 この状態で、第1のエンドプレート130を固定し、バイポーラプレート120を基板121の対角線方向に振動させながら振動溶接を行う。これにより、第1のエンドプレート130の枠体132の上に、バイポーラプレート120の枠体122が接合される。また、第1のエンドプレート130の柱部133の上にバイポーラプレート120の柱部123が接合される。
 その結果、第1のエンドプレート130の上にバイポーラプレート120が接合され、第1のエンドプレート130とバイポーラプレート120とで形成される空間Cにセル部材110が配置される。バイポーラプレート120の上面に正極用鉛箔111aが露出した状態となる。
 次に、このようにして得られた、第1のエンドプレート130の上にバイポーラプレート120が接合されている結合体の上に、正極用活物質層111b、セパレータ113、および負極用活物質層112bをこの順に載せる。その後、さらに、別の正負極用鉛箔付きのバイポーラプレート120を、負極用鉛箔112a側を下に向けて置く。
 この状態で、この結合体を固定し、別の正負極用鉛箔付きのバイポーラプレート120を基板121の対角線方向に振動させながら振動溶接を行う。この振動溶接工程を、必要な枚数のバイポーラプレート120が第1のエンドプレート130の上に接合されるまで続けて行う。
 最後に、全てのバイポーラプレート120が接合された結合体の最も上側のバイポーラプレート120の上に、正極用活物質層111b、セパレータ113(第1のセパレータ113A、第2のセパレータ113B)、および負極用活物質層112bをこの順に載せる。そしてさらに、第2のエンドプレート140を、負極用鉛箔112a側を下に向けて置く。
 この状態で、この結合体を固定し、第2のエンドプレート140を基板141の対角線方向に振動させながら振動溶接を行う。これにより、全てのバイポーラプレート120が接合された結合体の最も上側のバイポーラプレート120の上に、第2のエンドプレート140が接合される。
 なお、上記の説明においては、第1のエンドプレート130から第2のエンドプレート140に向けて順に積層する流れを説明したが、この積層順は、反対に第2のエンドプレート140から第1のエンドプレート130に向けて順に積層することとしても良い。
<注液および化成工程>
 上述の各プレート同士の積層、接合工程において、枠体の対向面同士の振動溶接による接合構造が形成され、対向する枠体の切り欠き部によって、双極型鉛蓄電池100の例えばX方向の一端面の各空間Cの位置に、円形の注液口180が形成されている。この注液口180から各空間Cの内部に電解液を所定量注液し、セパレータ113に電解液を含浸させる。その上で所定の条件で化成することで、双極型鉛蓄電池100を作製できる。
 なお、注入穴は、上述のように、予め枠体に切り欠き部を設けることで形成してもよいし、枠体の接合後にドリル等を用いて開けてもよい。
  (実施例)
 以下に、実施例及び比較例を示して、本発明をさらに具体的に説明する。まず、各実施例及び比較例として使用する双極型鉛蓄電池の構成を以下の通りとした。
 すなわち、双極型鉛蓄電池は、正極用活物質層を有する正極、負極用活物質層を有する負極、及び正極と負極との間に介在する電解層を備えた複数のセル部材と、これら複数のセル部材を個別に収容する複数の空間(セル)を形成する複数のフレームユニットと、を備える。そして、フレームユニットは、セル部材の正極側及び負極側の少なくとも一方を囲う基板と、セル部材の側面を囲うフレームとから構成される。なお、フレームユニットは樹脂で形成されている。
 上述したセル部材とフレームユニットの基板とが交互に積層され、セル部材同士が直列に電気的に接続されている。また、フレームユニットのうち、隣接するフレームユニットであって互いに接触する面は、金属からなる接合材を介して接合されている。なお、上述した電解層には、セパレータを配置している。このセパレータには、日本板硝子製のAGMセパレータを使用した。
 ここで、本発明の実施の形態に係るセパレータとしては、上述したように、当該セパレータを2つ折りにして用いる。そのため、2つに折り畳んだ際に所望の大きさとなるように、セパレータのうち大きな面積を備える平面状の2つの面(第1の面と第2の面)を構成する2つの辺のうち一方の辺が所望の長さの2倍となっているセパレータを用意する。そして、この長辺の略半分の位置で2つに折り畳む。
 また、このセパレータは表面粗さの異なる第1の面と第2の面とを備えている(ここでは、上述したように、第1の面の方が第2の面よりも表面粗さが小さなことを前提とする)。そこで、折り畳む際には第1の面が外側に向くように折り畳む。従って、第2の面は内側に折り畳まれ、折り畳まれた第2の面が互いに対向することになる。
 併せてこの2つ折りに折り畳まれたセパレータを折り目となる閉塞端が注液口と対向するように配置する。そして、所定の時間内に電解液をセパレータに注入して電槽化成を行う。その上で、注液口に制御弁を被せて上蓋を接着し、所望の双極型鉛蓄電池を作製した。
 また、セパレータの変形を確認するために、上述したような折り畳んだセパレータの閉塞端を注液口に対向させて配置した双極型鉛蓄電池の他、セパレータの閉塞端を注液口に対向させずに配置した双極型鉛蓄電池も用意した。なお、後者の双極型鉛蓄電池については、セパレータの配置方法が異なる他は、前者の双極型鉛蓄電池と同様の構造、工程をもって作製した。
 その上で、以上説明したような2種類の双極型鉛蓄電池を使用して、以下に示す容量試験及び寿命試験を実施した。
 まず、容量試験を行い、10時間率容量試験の結果を電池容量とした。また容量試験は、電池を25℃±2℃の水槽に置いて行った。具体的な条件は、電池の定格容量である45Ahに対して、0.1Cで放電(-4.5A)する。電池の端子電圧が1.8V/セルに低下するまで、10時間率電流で放電し、放電持続時間を記録する。放電電流と放電持続時間から10時間率容量を求めた。
 一方、上記容量試験の結果を基に、寿命試験では、定格容量に対して、放電容量に対する放電量の比である放電深度を70%とする放電と充電を繰り返すパターンで行った。具体的には以下に示すパターンの通りである。
 すなわち、まず満充電状態にした双極型鉛蓄電池を用意する。この双極型鉛蓄電池について、容量試験で求めた10時間率定格容量に対して、0.1Cの電流値で放電する。上述したように、放電深度を70%とするため、放電時間は7時間とする。
 その上で、定電流定電圧充電(CC-CV充電)を実施する。具体的には、10時間率定格容量に対して、0.1Cの電流値で充電し、電池の端子電圧が2.45V/セルに到達したら、定電圧充電にする。そして、放電電気量に対して、充電電気量が104%になるまで充電を実施する。この放電と充電を1サイクルとし、このサイクルを1000回繰り返し実施する。
 その後、双極型鉛蓄電池の解体を行ってセパレータを取り出し、取り出されたセパレータの変形量を測定した。
 ここでは、試験投入前のセパレータのサイズと試験後に解体されて取り出されたセパレータのサイズとを比較し、試験後のセパレータの変形量が5%以下であれば、「〇」との判定を行い、5%よりも大きく変形していた場合には「×」とした。試験の結果は、以下の表に示す通りである。
Figure JPOXMLDOC01-appb-T000001
 表1においては、5つの項目が示されており、左から、「注液口に対向するセパレータの面」、「注液速度」、「作業性」、「セパレータの破壊」及び「判定」である。このうち、「注液口に対向するセパレータの面」は、セパレータの配置位置として、閉塞端が注液口に向いているか(表1においては、「折り目面」と表示)、閉塞端が注液口に向いていないか(表1においては、「積層面」と表示)を示している。
 「注液速度」は、注液口を介してセパレータに電解液を注入する際の速度を示している。表1においては、従来通りゆっくりと注入する場合を「遅い」と表記している。一方、実施例1及び比較例1の場合は「速い」と表記している。この「速い」は、従来例に比べて速い、ということである。
 「作業性」は、電解液をセパレータに注入する際の作業性のことであり、作業性が良い場合は「〇」、作業性が悪い場合は「×」と表している。すなわち、実施例1と比較例1の場合には注入速度が「速い」ことから、セパレータに対して電解液を規定量注入する作業は、従来例に比べて速く終了する。そのため、実施例1と比較例1では作業性が良いと判断し「〇」と示されている。一方、従来例の場合は注入速度が遅いため、作業性は良くなく「×」と示されている。
 「セパレータの破壊」の欄は、上述した試験投入前のセパレータのサイズと試験後のセパレータのサイズとを比較して、その変形量が5%以下であったか否かを示している。表1では、従来例及び実施例1は「無(試験後のセパレータの変形量が5%以下)」であるのに対して、比較例1では「有(試験後のセパレータの変形量が5%より大きい)」であるとされる。
 「評価」は、上述した「注液速度」、「作業性」及び「セパレータの破壊」の3つの項目における試験結果から、良いと判断できる場合を「○」で示し、良くない(悪い)と判断する場合を「×」で示している。表1に示されているように、「評価」としては、従来例と比較例1はいずれも「×」であるのに対して、実施例1では「〇」となった。
 また、これまで説明した各項目について、「従来例」、「実施例1」及び「比較例1」の3つについて試験を行った。なお、上記3つの例のうち、「従来例」は、今回の試験における前提として、これまで双極型鉛蓄電池に設けられているセパレータに対して行われている電解液の注液速度等について基準として用いたものである。
 すなわち、「従来例」の場合は、注液口に対向するセパレータの面が積層面である一方、注入速度が遅いためセパレータの変形量は5%以下で良好である。一方で注入速度が遅いため作業性に難があり、その結果、「評価」は「×」となっている。これに対して「実施例1」では、注入速度は速く、そのため作業性は良好である。しかも注液口に対向するセパレータの面は折り目面(閉塞端)であることから、注入速度を速くして電解液を注入してもセパレータの変形量は5%以下で良好である。従って、評価も「〇」となった。
 一方、比較例1は、注入速度が速く作業性は良いものの、注液口に対向するセパレータの面は積層面であることから、セパレータの変形量は5%より大きくなってしまった。そのため評価も「×」となっている。
 以上の試験結果からも明らかな通り、双極型鉛蓄電池において、折り畳まれたセパレータを、注液口に対向するように折り目の面(閉塞端部)を配置することによって、注液速度を従来よりも速くしてもセパレータの変形量は5%以下に留まりセパレータの破壊は確認できなかった。従って、セパレータに電解液を注入する際に注入される電解液の圧によってセパレータが変形しないようにセパレータを配置することで、セル部材内部における正極側と負極側とで短絡が生ずることを防止することができる。
 次に、正極用活物質層、或いは、負極用活物質層に対してセパレータの表面粗さの大きな面、或いは、小さな面のいずれを接触させると、セル内においてより均一に活物質を利用することができるか、についての確認を行うための試験を行った。そのため、ここでも上述したような容量試験及び寿命試験を行った。
 但し、上述したセパレータの変形量を確認するために行った寿命試験と異なり、試験の最後に双極型鉛蓄電池の解体を行って取り出すのは正極用活物質である。その上で取り出された正極用活物質を水洗、乾燥し、正極用活物質を上下方向に4分割する。
 そして、正極用活物質の各部位において、βPbOの結晶子径を確認し、その差を測定する。活物質は充放電に伴い粒成長するため、活物質が局所的に利用されるとその箇所は、より粒成長が進行することになり、βPbOの結晶子径は大きくなっていく。そこで各部位のβPbOの結晶子径について、試験の前後でそのサイズ径の差を算出する。
 その上で、100Å(オングストローム)以上の差が認められる場合には、活物質が局所的に利用されていると判断する。一方、100Å(オングストローム)以上の差が認められなければ、活物質は局所的に利用されていないと判断する。そして当該試験結果を含め、上述した表1に示されている判定結果も含め、この試験における総合的な結果を判定結果として示した。
Figure JPOXMLDOC01-appb-T000002
 ここでは、実施例2及び実施例3の2つの試験を行った。また、これら各実施例はいずれも注液口に対向するセパレータの面は「折り目面(閉塞端)」である。これは、上記表1で示す試験において明らかな通り、注液口に対して積層面よりも折り目面を対向させる方がセパレータの変形量が少なく、セパレータの配置としてより適切であるとの結果が得られたからである。
 表2において示す項目は、表1で挙げた「注液口に対向するセパレータの面」の他、新たに「配置イメージ」という項目を設けている。また、試験の結果を示す「判定」についても設けているのは表1と同様である。
 上述した「配置イメージ」の欄には、2つに折り畳まれたセパレータがどのように正極用活物質層と負極用活物質層との間に配置されているかを示している。また、ここでは、2つ折りとされたセパレータを1枚用いている。そのため、正極用活物質層及び負極用活物質層に接触する面は、表面粗さの小さな第1の面、或いは、表面粗さの大きな第2の面のいずれかである。
 「配置イメージ」の欄には、例えば、表2の一番上に示されている「実施例2」の場合「+粗密粗-」と記載されている。ここで「+」は正極用活物質層を示しており、「-」は負極用活物質層を示している。そしてこれら「+(正極用活物質層)」と「-(負極用活物質層)」との間には「粗」と「密」の文字が3つ並んでいる。
 「粗」は、表面粗さの大きな面、上記説明における第2の面を示している。一方、「密」は、表面粗さの小さな面、上記説明における第1の面を示している。例えば、実施例2の場合、1枚のセパレータを2つに折り畳む際に、第2の面が外側、すなわち、第2の面が正極用活物質層111bと負極用活物質層112bとに接触するように折り畳むと、内側に第1の面が対向するように配置される。このことを上記表2においては、「粗密粗」と表示している。
 なお、表2における「配置イメージ」においては、折り畳んだ際の「粗」「密」の文字の表示を一部省略している。
 すなわち上述したように、表面粗さの大きな第2の面が外側となるように折り畳むと、表面粗さの小さな第1の面は内側に折り畳まれ、互いに対向するようになる。また反対に、表面粗さの小さな第1の面が外側となるように折り畳むと、表面粗さの大きな第2の面は内側に折り畳まれ、互いに対向するようになる。従って、正確に表すならば、例えば表面粗さの大きな面が外側になるように2つに折り畳んだ場合には、「粗密密粗」と表されることになる。
 但し、表面粗さの大きな面、或いは、表面粗さの小さな面のいずれが外側になるように折り畳んだとしても、内側になるのは同じ表面粗さを持つ面である。すなわち、前者の場合は表面粗さの小さな面が内側に対向するように配置され、後者の場合は表面粗さの大きな面が内側に対向するように配置される。そこで、表2においては、2つに折り畳んだ場合における内側の表面粗さについては、まとめて示すこととした。その結果、例えば上述した「粗密密粗」との表記は「粗密粗」と表されている。
 実施例2と実施例3との各実施例の「配置イメージ」と「判定」との関係を見てみる。実施例2のように、正極用活物質層及び負極用活物質層に対して表面粗さの大きな面である第2の面が接すると、少なくともセパレータの閉塞端が注液口に対向して配置される。そのため、電解液の注液に伴うセパレータの変形は認められないという効果を奏するため、「〇」と判定されている。
 一方、実施例3のように正極用活物質層及び負極用活物質層のいずれに対しても表面粗さの小さな面である第1の面が接すると、セパレータの配置から電解液の注液に伴うセパレータの変形は認められないという効果の他に、さらに各部位の結晶子径について、100Å(オングストローム)以上の差が認められなかったことから、「◎」と判定されている。
 以上の試験結果からも明らかなように、セパレータへの電解液の注液を考慮して折り畳まれたセパレータを正極用活物質層と負極用活物質層とに配置する場合、正極用活物質層、負極用活物質層に表面粗さの小さな「密」な面が接することになる。そのため、セパレータの配置から電解液の注液に伴うセパレータの変形は認められないという効果の他に、活物質層に掛かるセパレータの面圧が一定になることで、セパレータの各部位における利用率が均等になる。
 また、双極型鉛蓄電池において、充放電時における活物質の局所的な利用を抑制し、セル内における活物質の均一な利用を実現することができる。さらに、たとえ局所的な利用が行われることによる活物質の利用のバラツキが生じたとしてもこのような設定がなされることによって当該バラツキを許容することができるので蓄電池の長寿命化を図ることができる。
 また、正極用活物質層と負極用活物質層に対向するようにセパレータにおける表面粗さの小さな面を配置することによって、セパレータの配置に基づく活物質層に掛かる面圧を可能な限り均一化することができるので、活物質層の剥落を防止し、電池容量の維持、長寿命化を図ることができる。
 さらには、上述した実施例3のようにセパレータを配置することによって、セパレータの表面粗さの大きな面同士が対向するように配置される部分が生じることになるため、双極型鉛蓄電池の組み立て時におけるセパレータ層が崩れることを防止することができる。
 なお、上述したように本発明の実施の形態においては、セパレータを折り畳んで閉塞端が注液口に対向するように配置している。また、ここで使用するセパレータは、1枚であり、この1枚のセパレータを折り畳んでいる。これに対して、2枚以上のセパレータをそれぞれ折り畳んでそれぞれのセパレータに現れる折り目の山側(閉塞端)を注液口に対向するように配置することも考えられる。すなわち、複数の閉塞端が注液口に対向することになる。また、このような複数のセパレータを用いても正極用活物質層及び負極用活物質層のいずれに対しても表面粗さの小さな面を接触させることは可能である。
 しかしながら、このように2枚以上のセパレータを用いると、それぞれ隣接する閉塞端と閉塞端との間には、いわば「谷」が生ずることになる。従ってこのようなセパレータの配置では、セパレータに電解液を注入する際に当該谷の部分に電解液が当たると、その電解液の圧によってセパレータが変形しかねない。そのため、2枚以上のセパレータをそれぞれ折り畳んで隣接させて配置する場合は、セパレータを折り畳んで現れた山(閉塞端)の頂点と同一線上の位置に注液口を設けることで、本発明の効果を同様に奏すことができる。
 なお、上述したように、本発明の実施の形態においては双極型鉛蓄電池を例に挙げて説明した。但し、集電板に鉛ではなく他の金属を用いるような他の蓄電池においても上記説明内容が当てはまる場合には、当然その適用を排除するものではない。
  100・・・双極型鉛蓄電池
  110・・・セル部材
  111・・・正極
  112・・・負極
  111a・・・正極用鉛箔
  112a・・・負極用鉛箔
  111b・・・正極用活物質層
  112b・・・負極用活物質層
  113・・・セパレータ
  120・・・バイプレート
  121・・・バイプレートの基板
  121a・・・基板の貫通穴
  122・・・バイプレートの枠体
  130・・・第1のエンドプレート
  131・・・第1のエンドプレートの基板
  132・・・第1のエンドプレートの枠体
  140・・・第2のエンドプレート
  141・・・第2のエンドプレートの基板
  142・・・第2のエンドプレートの枠体
  150・・・接着剤層
  160・・・導通体
  164・・・脚部の面(一方の対向面)
  170・・・カバープレート
  180・・・注液口
    C・・・セル(セル部材を収容する空間)

Claims (3)

  1.  正極用集電板と正極用活物質層を有する正極、負極用集電板と負極用活物質層を有する負極、および前記正極と前記負極との間に介在するセパレータを備え、間隔を開けて積層配置された、セル部材と、
     複数の前記セル部材を個別に収容する複数の空間を形成する、前記セル部材の前記正極の側および前記負極の側の少なくとも一方を覆う基板と、前記セル部材の側面を囲う枠体と、を含む空間形成部材と、
    を有し、
     前記セパレータは、折り畳まれることで現れる折り目となる閉塞端が、前記セパレータに対して電解液を注入する注液口と対向する位置に配置されることを特徴とする双極型蓄電池。
  2.  前記セパレータは、表面粗さの異なる第1の面と第2の面とを有するとともに、前記正極用活物質層と前記負極用活物質層とに接触する面が前記第1の面または前記第2の面のいずれかより表面粗さの小さな面であることを特徴とする請求項1に記載の双極型蓄電池。
  3.  前記正極用集電板及び前記負極用集電板は、鉛又は鉛合金からなることを特徴とする請求項1または請求項2に記載の双極型蓄電池。
PCT/JP2021/041941 2021-03-26 2021-11-15 双極型蓄電池 WO2022201630A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023508452A JPWO2022201630A1 (ja) 2021-03-26 2021-11-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-053393 2021-03-26
JP2021053393 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022201630A1 true WO2022201630A1 (ja) 2022-09-29

Family

ID=83395318

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/041941 WO2022201630A1 (ja) 2021-03-26 2021-11-15 双極型蓄電池

Country Status (2)

Country Link
JP (1) JPWO2022201630A1 (ja)
WO (1) WO2022201630A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045412A (ja) * 2001-07-30 2003-02-14 Shin Kobe Electric Mach Co Ltd 制御弁式鉛蓄電池及びその製造方法
US20140272535A1 (en) * 2013-03-15 2014-09-18 Hollingsworth & Vose Company Three-region battery separator
JP2019192584A (ja) * 2018-04-27 2019-10-31 株式会社豊田自動織機 蓄電モジュール
US20200091485A1 (en) * 2018-09-18 2020-03-19 Contemporary Amperex Technology Co., Limited Secondary battery
JP2020510968A (ja) * 2017-03-03 2020-04-09 イースト ペン マニュファクチャリング カンパニーEast Penn Manufacturing Co. バイポーラ電池及びプレート

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003045412A (ja) * 2001-07-30 2003-02-14 Shin Kobe Electric Mach Co Ltd 制御弁式鉛蓄電池及びその製造方法
US20140272535A1 (en) * 2013-03-15 2014-09-18 Hollingsworth & Vose Company Three-region battery separator
JP2020510968A (ja) * 2017-03-03 2020-04-09 イースト ペン マニュファクチャリング カンパニーEast Penn Manufacturing Co. バイポーラ電池及びプレート
JP2019192584A (ja) * 2018-04-27 2019-10-31 株式会社豊田自動織機 蓄電モジュール
US20200091485A1 (en) * 2018-09-18 2020-03-19 Contemporary Amperex Technology Co., Limited Secondary battery

Also Published As

Publication number Publication date
JPWO2022201630A1 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
TWI496335B (zh) 階梯狀結構之電池單元
JP5943243B2 (ja) 段差を有する電極組立体、それを含む電池セル、電池パック及びデバイス
US9461347B2 (en) Power storage device cell, manufacturing method and storing method therefor, and electric storage device
US20150086842A1 (en) Battery pack of irregular structure
KR20080009351A (ko) 결합부에서 전극 탭들의 크기가 동일한 전극조립체 및 이를포함하고 있는 전기화학 셀
KR20130132231A (ko) 단차를 갖는 전극 조립체 및 이를 포함하는 전지셀, 전지팩 및 디바이스
KR20120027364A (ko) 나노다공성 세퍼레이터층을 이용한 리튬 배터리
WO2008081285A1 (en) Electrical storage device
WO2022201630A1 (ja) 双極型蓄電池
WO2022201629A1 (ja) 双極型蓄電池
KR101646164B1 (ko) 초고용량 커패시터 제조방법
WO2022201628A1 (ja) 双極型蓄電池
JP2014530470A (ja) ペースティング基板を有する電極を備えたフラデッド型鉛酸蓄電池
JP7057461B1 (ja) 双極型蓄電池、双極型蓄電池の製造方法
EP3490051B1 (en) Electrode assembly comprising electrode lead coupled to long-side area
JP2013506967A (ja) 電気化学的電池およびこのような電池の製造方法
KR20210017086A (ko) 전극조립체 및 그 제조방법
TWI823239B (zh) 雙極性電池胞元極板及其製造
JP2023001638A (ja) 双極型蓄電池
WO2023085068A1 (ja) 双極型蓄電池
WO2023181796A1 (ja) 双極型蓄電池
JP2023141123A (ja) 双極型鉛蓄電池、双極型鉛蓄電池の製造方法
KR200262436Y1 (ko) 이차전지 전극구조물
KR20040087158A (ko) 와선형 납축전지의 제조방법
KR20170045515A (ko) 용량 잉여부가 형성되어 있는 음극을 포함하는 전극조립체 및 이를 포함하는 전지셀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933228

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023508452

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933228

Country of ref document: EP

Kind code of ref document: A1