WO2022201464A1 - リチウムイオン二次電池、分離膜及びこれらの製造方法 - Google Patents

リチウムイオン二次電池、分離膜及びこれらの製造方法 Download PDF

Info

Publication number
WO2022201464A1
WO2022201464A1 PCT/JP2021/012676 JP2021012676W WO2022201464A1 WO 2022201464 A1 WO2022201464 A1 WO 2022201464A1 JP 2021012676 W JP2021012676 W JP 2021012676W WO 2022201464 A1 WO2022201464 A1 WO 2022201464A1
Authority
WO
WIPO (PCT)
Prior art keywords
solvent
separation membrane
negative electrode
positive electrode
mass
Prior art date
Application number
PCT/JP2021/012676
Other languages
English (en)
French (fr)
Inventor
直人 黒田
紘揮 三國
Original Assignee
昭和電工マテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昭和電工マテリアルズ株式会社 filed Critical 昭和電工マテリアルズ株式会社
Priority to JP2023508346A priority Critical patent/JPWO2022201464A1/ja
Priority to CN202180094537.7A priority patent/CN116888796A/zh
Priority to US18/278,820 priority patent/US20240178518A1/en
Priority to EP21933069.3A priority patent/EP4293780A1/en
Priority to KR1020237020241A priority patent/KR20230110306A/ko
Priority to PCT/JP2021/012676 priority patent/WO2022201464A1/ja
Priority to TW111111046A priority patent/TWI851979B/zh
Publication of WO2022201464A1 publication Critical patent/WO2022201464A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/40Separators; Membranes; Diaphragms; Spacing elements inside cells
    • H01M50/409Separators, membranes or diaphragms characterised by the material
    • H01M50/411Organic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present invention relates to lithium ion secondary batteries, separation membranes, and manufacturing methods thereof.
  • the present inventors considered disposing a separation membrane between the positive electrode and the negative electrode. Separation membranes used for such applications desirably have high ionic conductivity.
  • One aspect of the present invention is a separation membrane having high ionic conductivity, which is used in a lithium ion secondary battery in which the positive electrode mixture layer and the negative electrode mixture layer contain different solvents, and a lithium ion separator comprising the separation membrane.
  • An object of the present invention is to provide a secondary battery and a manufacturing method thereof.
  • One aspect of the present invention is a lithium ion secondary battery comprising a positive electrode mixture layer, a separation membrane, and a negative electrode mixture layer in this order, wherein the positive electrode mixture layer comprises a positive electrode active material, a first lithium salt, and A first solvent is contained, the negative electrode mixture layer contains a negative electrode active material, a second lithium salt, and a second solvent different from the first solvent, and the separation membrane has lithium ion conductivity
  • a lithium ion secondary battery comprising a polymer, a third lithium salt, and a third solvent, wherein the polymer is a polymer of polymerizable components including a monomer and a thiol compound.
  • Another aspect of the present invention provides a positive electrode mixture layer containing a positive electrode active material, a first lithium salt, and a first solvent, and a negative electrode active material, a second lithium salt, and a first solvent. and a negative electrode mixture layer containing a different second solvent, a separation membrane to be disposed between the positive electrode mixture layer and the negative electrode mixture layer, the separator having lithium ion conductivity , a third lithium salt, and a third solvent, wherein the polymer is a polymer of polymerizable components including a monomer and a thiol compound.
  • Another aspect of the present invention includes a step of obtaining a positive electrode comprising a positive electrode mixture layer containing a positive electrode active material, a first lithium salt, and a first solvent, a negative electrode active material, a second lithium salt, and a second A step of obtaining a negative electrode having a negative electrode mixture layer containing a second solvent different from the solvent of 1, a polymerizable component containing a monomer and a thiol compound, a third lithium salt, and a third solvent.
  • a method for producing a lithium ion secondary battery comprising a step of forming a slurry into a film and then reacting a polymerizable component to obtain a separation membrane, and a step of providing a separation membrane between a positive electrode and a negative electrode.
  • Another aspect of the present invention provides a positive electrode mixture layer containing a positive electrode active material, a first lithium salt, and a first solvent, and a negative electrode active material, a second lithium salt, and a first solvent.
  • a method for producing a separation membrane to be disposed between a positive electrode mixture layer and a negative electrode mixture layer in a lithium ion secondary battery comprising a negative electrode mixture layer containing a different second solvent comprising: and a polymerizable component containing a thiol compound, a third lithium salt, and a third solvent, and then forming a slurry into a film, and then reacting the polymerizable component to obtain a separation membrane.
  • a manufacturing method is provided.
  • the thiol compound may have two or more thiol groups.
  • the monomers may include a first monomer having two (meth)acryloyl groups and a second monomer having three or more (meth)acryloyl groups.
  • a separation membrane having high ionic conductivity which is used in a lithium ion secondary battery containing different solvents in the positive electrode mixture layer and the negative electrode mixture layer, and the separation membrane It is possible to provide lithium ion secondary batteries and production methods thereof. According to one aspect of the present invention, it is possible to form the separation membrane in a shorter time. According to one aspect of the present invention, a method for manufacturing a separation membrane with improved productivity is provided. Since the separation membrane according to one aspect of the present invention has excellent film-forming properties, it is less likely to be subject to restrictions on the equipment used during film formation, and a separation membrane with a larger area can be produced more stably.
  • FIG. 1 is a perspective view showing a lithium ion secondary battery according to one embodiment
  • FIG. FIG. 2 is an exploded perspective view showing an embodiment of an electrode group in the lithium ion secondary battery shown in FIG. 1;
  • the term "process” includes not only an independent process, but also when the intended action of the process is achieved even if it cannot be clearly distinguished from other processes. .
  • the numerical range indicated using “to” indicates the range including the numerical values before and after “to” as the minimum and maximum values, respectively.
  • (meth)acrylic acid means acrylic acid or methacrylic acid corresponding thereto.
  • FIG. 1 is a perspective view showing a lithium ion secondary battery according to one embodiment.
  • a lithium ion secondary battery 1 according to one embodiment is a so-called laminated secondary battery that includes an electrode group 2 and a bag-shaped battery outer body 3 that houses the electrode group 2. be.
  • the electrode group 2 is provided with a positive current collecting tab 4 and a negative current collecting tab 5 .
  • the positive electrode current collector tab 4 and the negative electrode current collector tab 5 are provided in a battery outer body so that the positive electrode current collector and the negative electrode current collector (details will be described later) can be electrically connected to the outside of the lithium ion secondary battery 1. It protrudes from the inside of 3 to the outside.
  • the lithium ion secondary battery 1 may have a shape other than the laminate type (coin type, cylindrical type, etc.).
  • the battery outer package 3 may be a container formed of a laminated film, for example.
  • the laminated film may be, for example, a laminated film in which a polymer film such as a polyethylene terephthalate (PET) film, a metal foil such as aluminum, copper, or stainless steel, and a sealant layer such as polypropylene are laminated in this order.
  • PET polyethylene terephthalate
  • metal foil such as aluminum, copper, or stainless steel
  • sealant layer such as polypropylene
  • FIG. 2 is an exploded perspective view showing one embodiment of the electrode group 2 in the lithium ion secondary battery 1 shown in FIG.
  • the electrode group 2 includes a positive electrode 6, a separation membrane 7, and a negative electrode 8 in this order.
  • the positive electrode 6 includes a positive electrode current collector 9 and a positive electrode mixture layer 10 provided on the positive electrode current collector 9 .
  • a positive current collector tab 4 is provided on the positive current collector 9 .
  • the negative electrode 8 includes a negative electrode current collector 11 and a negative electrode mixture layer 12 provided on the negative electrode current collector 11 .
  • a negative electrode collector tab 5 is provided on the negative electrode collector 11 .
  • the positive electrode current collector 9 is made of, for example, aluminum, titanium, stainless steel, nickel, calcined carbon, conductive polymer, conductive glass, or the like.
  • the thickness of the positive electrode current collector 9 may be, for example, 1 ⁇ m or more and may be 50 ⁇ m or less.
  • the negative electrode current collector 11 is made of, for example, copper, stainless steel, nickel, aluminum, titanium, calcined carbon, conductive polymer, conductive glass, aluminum-cadmium alloy, or the like.
  • the thickness of the negative electrode current collector 11 may be, for example, 1 ⁇ m or more and 50 ⁇ m or less.
  • the positive electrode mixture layer 10 contains a positive electrode active material, a lithium salt (first lithium salt), and a solvent (first solvent).
  • the positive electrode active material may be, for example, lithium oxide.
  • the positive electrode active material may be lithium phosphate.
  • lithium phosphates include lithium manganese phosphate ( LiMnPO4 ), lithium iron phosphate ( LiFePO4 ), lithium cobalt phosphate ( LiCoPO4 ) and lithium vanadium phosphate ( Li3V2 ( PO4). 3 ).
  • the content of the positive electrode active material may be 70% by mass or more, 80% by mass or more, or 85% by mass or more based on the total amount of the positive electrode mixture layer.
  • the content of the positive electrode active material may be 95% by mass or less, 92% by mass or less, or 90% by mass or less based on the total amount of the positive electrode mixture layer.
  • the first lithium salt is, for example, LiPF6 , LiBF4, LiClO4, LiB( C6H5 ) 4 , LiCH3SO3 , CF3SO2OLi , LiN ( SO2F ) 2 ( LiFSI, lithium bis fluorosulfonylimide), LiN(SO 2 CF 3 ) 2 (LiTFSI, lithium bistrifluoromethanesulfonylimide), and LiN(SO 2 CF 2 CF 3 ) 2 .
  • LiPF6 LiBF4, LiClO4, LiB( C6H5 ) 4
  • LiCH3SO3 , CF3SO2OLi LiN ( SO2F ) 2 ( LiFSI, lithium bis fluorosulfonylimide), LiN(SO 2 CF 3 ) 2 (LiTFSI, lithium bistrifluoromethanesulfonylimide), and LiN(SO 2 CF 2 CF 3 ) 2 .
  • the content of the first lithium salt may be 0.5 mol/L or more, 0.7 mol/L or more, or 0.8 mol/L or more, and is 1.5 mol/L. 1.3 mol/L or less, or 1.2 mol/L or less.
  • the first solvent is a solvent for dissolving the first lithium salt.
  • the first solvent include cyclic carbonates such as ethylene carbonate, propylene carbonate, vinylene carbonate, vinylethylene carbonate, fluoroethylene carbonate and difluoroethylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate and ethylmethyl carbonate; Cyclic esters such as butyrolactone, ⁇ -valerolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -hexanolactone, tetrahydrofuran, 1,3-dioxane, dimethoxyethane, diethoxyethane, methoxyethoxyethane, glyme, diglyme, triglyme Ethers such as tetraglyme, phosphate esters such as phosphoric acid triester, nitriles such as acetonitrile, benzonitrile, adiponitrile, glut
  • Solvents preferably used as the first solvent are solvents with excellent oxidation resistance, such as acetonitrile and ethylene carbonate. Thereby, the oxidation resistance of the positive electrode mixture layer 10 can be enhanced.
  • the content of the first solvent contained in the positive electrode mixture layer 10 can be appropriately set within a range in which the first lithium salt can be dissolved. and may be 80% by mass or less.
  • the positive electrode mixture layer 10 may further contain a binder and a conductive material as other components.
  • the binder is a polymer containing at least one selected from the group consisting of ethylene tetrafluoride, vinylidene fluoride, hexafluoropropylene, acrylic acid, maleic acid, ethyl methacrylate, methyl methacrylate, and acrylonitrile as a monomer unit, styrene-butadiene It may be rubber such as rubber, isoprene rubber, acrylic rubber, or the like.
  • the binder is preferably polyvinylidene fluoride or a copolymer containing hexafluoropropylene and vinylidene fluoride as monomer units.
  • the content of the binder may be 0.3% by mass or more, 0.5% by mass or more, 1% by mass or more, or 1.5% by mass or more based on the total amount of the positive electrode mixture layer, or 10% by mass. % or less, 8 mass % or less, 6 mass % or less, or 4 mass % or less.
  • the conductive material may be a carbon material such as carbon black, acetylene black, graphite, carbon fiber, or carbon nanotube. These conductive materials are used singly or in combination of two or more.
  • the content of the conductive material may be 0.1% by mass or more, 1% by mass or more, or 3% by mass or more based on the total amount of the positive electrode mixture layer. From the viewpoint of suppressing the increase in the volume of the positive electrode 6 and the accompanying decrease in the energy density of the lithium ion secondary battery 1, the content of the conductive material is preferably 15% by mass or less, based on the total amount of the positive electrode mixture layer, and more. It is preferably 10% by mass or less, more preferably 8% by mass or less.
  • the thickness of the positive electrode mixture layer 10 may be 5 ⁇ m or more, 10 ⁇ m or more, 15 ⁇ m or more, or 20 ⁇ m or more, and may be 100 ⁇ m or less, 80 ⁇ m or less, 70 ⁇ m or less, or 50 ⁇ m or less.
  • the negative electrode mixture layer 12 contains a negative electrode active material, a lithium salt (second lithium salt), and a solvent (second solvent).
  • negative electrode active material those commonly used in the field of energy devices can be used.
  • specific examples of negative electrode active materials include metal lithium, lithium titanate (Li 4 Ti 5 O 12 ), lithium alloys or other metal compounds, carbon materials, metal complexes, organic polymer compounds, and the like. . These negative electrode active materials are used singly or in combination of two or more.
  • Carbon materials include natural graphite (flaky graphite, etc.), graphite such as artificial graphite, amorphous carbon, carbon fiber, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black.
  • the negative electrode active material may be a negative electrode active material containing silicon as a constituent element, a negative electrode active material containing tin as a constituent element, or the like.
  • the negative electrode active material may be a negative electrode active material containing silicon as a constituent element.
  • the negative electrode active material containing silicon as a constituent element may be an alloy containing silicon as a constituent element, for example, silicon and nickel, copper, iron, cobalt, manganese, zinc, indium, silver, titanium, germanium, bismuth, It may be an alloy containing at least one selected from the group consisting of antimony and chromium as constituent elements.
  • the negative electrode active material containing silicon as a constituent element may be an oxide , a nitride, or a carbide. It may be a silicon nitride such as 2N2O , a silicon carbide such as SiC, or the like.
  • the content of the negative electrode active material may be 60% by mass or more, 65% by mass or more, or 70% by mass or more based on the total amount of the negative electrode mixture layer.
  • the content of the negative electrode active material may be 99% by mass or less, 95% by mass or less, or 90% by mass or less based on the total amount of the negative electrode mixture layer.
  • the type and content of the second lithium salt may be the same as those of the first lithium salt contained in the positive electrode mixture layer 10 described above.
  • the second lithium salt may be the same as or different from the first lithium salt.
  • the second solvent is a solvent for dissolving the second lithium salt.
  • the same solvent as that used as the first solvent can be used, but a solvent different from the first solvent is used.
  • suitable solvents can be used for the positive electrode 6 and the negative electrode 8, respectively, and various performances of the lithium ion secondary battery 1, such as improved energy density and improved life, can be improved.
  • Solvents that are preferably used as the second solvent are solvents with excellent resistance to reduction, such as ⁇ -butyrolactone and tetrahydrofuran. Thereby, reductive decomposition of the second solvent contained in the negative electrode mixture layer 12 can be suppressed.
  • the content of the second solvent contained in the negative electrode mixture layer 12 can be appropriately set within a range in which the second lithium salt can be dissolved. and may be 80% by mass or less.
  • the negative electrode mixture layer 12 may further contain a binder and a conductive material as other components.
  • the types and contents of the binder and the conductive material may be the same as the types and the contents of the binder and the conductive material in the positive electrode mixture layer 10 described above.
  • the thickness of the negative electrode mixture layer 12 may be 10 ⁇ m or more, 15 ⁇ m or more, or 20 ⁇ m or more, and may be 100 ⁇ m or less, 80 ⁇ m or less, 70 ⁇ m or less, 50 ⁇ m or less, 40 ⁇ m or less, or 30 ⁇ m or less.
  • the separation membrane 7 is a separation membrane to be arranged between the positive electrode mixture layer 10 and the negative electrode mixture layer 12 in the lithium ion secondary battery 1 .
  • This separation film has a role of separating the first solvent and the second solvent contained in the positive electrode mixture layer 10 and the negative electrode mixture layer 12 from each other and preventing them from being mixed with each other. It is possible to exchange lithium ions through the separation membrane 7 .
  • the separation membrane 7 contains a polymer having lithium ion conductivity, a lithium salt (third lithium salt), and a solvent (third solvent).
  • Polymers having lithium ion conductivity are polymers of polymerizable components including monomers and thiol compounds.
  • a polymer having lithium ion conductivity means a polymer having the property of being able to conduct lithium ions derived from the lithium salt in the presence of the lithium salt. Whether or not a polymer can conduct lithium ions can be confirmed by measuring the ionic conductivity of the polymer, and the ionic conductivity measured when 1 to 40% by mass of a lithium salt is added to the polymer If the peak of is 1 ⁇ 10 ⁇ 6 S/cm or more, it can be said that the polymer has lithium ion conductivity.
  • a polymer having lithium ion conductivity may be a polymer having at least one group selected from the group consisting of a carbonyl group and an ether group.
  • Ether groups include linear ether groups and cyclic ether groups.
  • polymers having lithium ion conductivity examples include polyalkyl (meth)acrylates such as polymethyl (meth)acrylate; poly(polyalkylene glycol di(meth)acrylates such as poly(polyethylene glycol di(meth)acrylate); acrylate); poly(meth)acrylic acid; polyacrylamide; polymethacrylamide; poly N-isopropylacrylamide; be done.
  • polyalkyl (meth)acrylates such as polymethyl (meth)acrylate
  • poly(polyalkylene glycol di(meth)acrylates such as poly(polyethylene glycol di(meth)acrylate); acrylate); poly(meth)acrylic acid; polyacrylamide; polymethacrylamide; poly N-isopropylacrylamide; be done.
  • the monomers in the polymerizable component may include a first monomer having two (meth)acryloyl groups and a second monomer having three or more (meth)acryloyl groups. In this case, it is possible to form a separation film that is thinner and has a lower resistance value.
  • the first monomer is a compound having two (meth)acryloyl groups and a linking group that links the two (meth)acryloyl groups.
  • the linking group may contain hydrocarbon groups and/or heteroatom-containing groups.
  • the linking group may include an oxygen atom-containing group as a heteroatom-containing group, such as an ether group (--O--).
  • a linking group may be a divalent group consisting of a hydrocarbon group (eg, an alkylene group) and a heteroatom-containing group (eg, an ether group), such as a polyoxyalkylene group or an oxyalkylene group.
  • the first monomer may be a monomer represented by formula (1-1) below.
  • R 11 and R 12 each independently represent a hydrogen atom or a methyl group (--CH 3 ).
  • n represents an integer of 1 or more. n may be, for example, 5 or more, 10 or more, 15 or more, 20 or more, 40 or less, 35 or less, 30 or less, or 25 or less.
  • Z 11 represents an alkylene group.
  • Z 11 may be, for example, an alkylene group having 1 to 6 or 1 to 3 carbon atoms.
  • Z 11 can be, for example, -CH 2 -CH 2 -, -CH(CH 3 )-CH 2 -.
  • the ionic conductivity of the first monomer at 25° C. may be, for example, 0.01 mS/cm or more, 0.05 mS/cm or more, or 0.10 mS/cm or more, 1.0 mS/cm or less, 0.1 mS/cm or more. It may be 50 mS/cm or less, or 0.30 mS/cm or less.
  • the ionic conductivity of the first monomer at 25° C. can be measured by the following method.
  • a slurry is prepared by mixing the first monomer, lithium salt, solvent, and photoinitiator.
  • a silicon rubber frame (4 ⁇ 4 cm, 1 mm thick) is placed on a PET sheet (8 ⁇ 8 cm, 0.035 mm thick), and the prepared slurry is placed in the frame. Thereafter, ultraviolet light (wavelength: 365 nm) is irradiated to polymerize the first monomer, thereby obtaining a separation membrane.
  • the separation membrane is removed from the frame and subjected to the tests described below.
  • the lithium salt may be LiN( SO2CF3 ) 2 ( LiTFSI, lithium bistrifluoromethanesulfonylimide).
  • the solvent may be 1-ethyl-3-methylimidazolium-bis(trifluoromethanesulfonyl)imide (EMI-TFSI).
  • the photoinitiator may be 2-hydroxy-2-methyl-1-phenylpropanone.
  • the irradiation time of ultraviolet light (wavelength 365 nm) may be 15 minutes.
  • polyethylene glycol #1000 diacrylate for example, trade name: NK Ester A-1000, manufactured by Shin-Nakamura Chemical Co., Ltd.
  • polyethylene glycol #800 diacrylate for example, trade name: NK Ester A-800 , manufactured by Shin-Nakamura Chemical Co., Ltd.
  • the first monomer may be used singly or in combination of two or more.
  • the content of the first polymer contained as a monomer unit in the polymer may be 5% by mass or more, 10% by mass or more, or 15% by mass or more, and may be 70% by mass or less, 60% by mass or less, based on the total weight of the separation membrane. % by mass or less, or 50% by mass or less.
  • a second monomer is a monomer having three or more (meth)acryloyl groups.
  • the number of (meth)acryloyl groups in the second monomer may be, for example, 3-6, 3-4, or 4.
  • the second monomer may be a compound having three or more (meth)acryloyl groups and a linking group linking these (meth)acryloyl groups.
  • the linking group may contain hydrocarbon groups and/or heteroatom-containing groups.
  • the linking group may include an oxygen atom-containing group as a heteroatom-containing group, such as an ether group (--O--).
  • a linking group may be a divalent group consisting of a hydrocarbon group (eg, an alkylene group) and a heteroatom-containing group (eg, an ether group), such as a polyoxyalkylene group or an oxyalkylene group.
  • the second monomer having three (meth)acryloyl groups may be a monomer represented by the following formula (1-2).
  • R 13 , R 14 and R 15 each independently represent a hydrogen atom or a methyl group.
  • Z 2 , Z 3 and Z 4 each independently represent an alkylene group.
  • the alkylene group represented by Z 2 , Z 3 and Z 4 may be an alkylene group having 1 to 6 or 1 to 3 carbon atoms, and may be a methylene group (--CH 2 --).
  • Z5 represents an alkyl group.
  • Z 5 may be, for example, an alkyl group having 1 to 10, 1 to 6 or 1 to 3 carbon atoms, or may be an ethyl group (--CH 2 --CH 3 ).
  • a monovalent hydrocarbon group represented by X may be, for example, an alkyl group.
  • Examples of the second monomer having three (meth)acryloyl groups include trimethylolpropane triacrylate (eg, trade name: NK Ester A-TMPT, manufactured by Shin-Nakamura Chemical Co., Ltd.).
  • the second monomer having four (meth)acryloyl groups may be a monomer represented by the following formula (1-3).
  • R 16 , R 17 , R 18 and R 19 each independently represent a hydrogen atom or a methyl group.
  • Z 6 , Z 7 , Z 8 and Z 9 each independently represent an alkylene group.
  • the alkylene group represented by Z 2 , Z 3 and Z 4 may be an alkylene group having 1 to 6 or 1 to 3 carbon atoms, and may be an ethylene group (--CH 2 --CH 2 --).
  • a, b, c and d each independently represent an integer of 0 or more or 1 or more.
  • a+b+c+d may be 4 or more, 10 or more, 20 or more, or 30 or more, and may be 50 or less, or 40 or less.
  • Examples of the second monomer having three (meth)acryloyl groups include ethoxylated pentaerythritol tetraacrylate (eg, trade name: NK Ester A-TM35E, manufactured by Shin-Nakamura Chemical Co., Ltd.).
  • the ionic conductivity of the second monomer at 25° C. may be, for example, 0.001 mS/cm or more, or 0.01 mS/cm or more, and 0.5 mS/cm or less, or 0.05 mS/cm or less. you can The ionic conductivity of the second monomer at 25°C can be measured using the second monomer by the same method as the method for measuring the ionic conductivity of the first monomer at 25°C. In the measurement of the ionic conductivity of the second monomer at 25° C., the ultraviolet light (wavelength: 365 nm) irradiation time may be 2 minutes.
  • the second monomer may be used singly or in combination of two or more.
  • the content of the second polymer contained as a monomer unit in the polymer may be 5% by mass or more, 10% by mass or more, or 15% by mass or more, 70% by mass or less, 60% by mass or less, based on the total weight of the separation membrane. % by mass or less, or 50% by mass or less.
  • the ratio (C2/C1) of the mass (C2) of the second monomer to the mass (C1) of the first monomer, contained as a monomer unit in the polymer, further lowers the resistance value of the separation membrane. can be 5 or less, 4 or less, 3 or less, 2 or less, 1 or less, or 1/2 or less.
  • the ratio (C2/C1) of the mass (C2) of the second monomer to the mass (C1) of the first monomer, which is contained as a monomer unit in the polymer, is such that the separation ability of the separation membrane is even more excellent. 1/5 or more, 1/4 or more, 1/3 or more, 1/2 or more, 1 or more, or 2 or more.
  • the total content of monomers contained as monomer units may be 60% by mass or more, 70% by mass or more, or 80% by mass or more, and may be 90% by mass or less, 80% by mass or less, or 70% by mass or less. you can
  • a thiol compound is a compound having at least one thiol group (-SH).
  • a separation membrane comprising a polymer formed by a polymerization reaction in the presence of a thiol compound has high ionic conductivity.
  • the polymerizable component contains a thiol compound, it becomes possible to form a film in a shorter time. Although there are no particular restrictions on the reason why the film can be formed in a shorter time, the following reasons are conceivable.
  • a thiol compound takes a radical from a long-chain polymer whose reactivity has decreased during the course of the polymerization reaction, and generates a thiyl radical (--S.). Since thiyl radicals can react with other moderate polymers and/or unreacted monomers, it is believed that the generation of thiyl radicals accelerates the polymerization reaction, resulting in faster film formation. be done.
  • the number of thiol groups per molecule of the thiol compound is 1 or more, and may be, for example, 2 or more, 3 or more, or 4 or more, and may be 4 or less, or 3 or less.
  • the thiol compound may have a primary thiol group or a secondary thiol group.
  • the thiol group in the thiol compound may be a secondary thiol group from the viewpoint of enabling film formation in a much shorter time.
  • the thiol compound may be a compound having 3 to 4 secondary thiol groups from the viewpoint of having higher ion conductivity and from the viewpoint of enabling film formation in a shorter time.
  • a secondary thiol group is a thiol group attached to a carbon atom that is attached to two carbon atoms and one hydrogen atom.
  • the thiol compound may be a compound represented by the following formula (1-4).
  • X 1 , X 2 and X 3 each independently represent a monovalent group having a thiol group
  • Y 1 is an alkyl group or —OX 4
  • X 4 represents a monovalent group having a thiol group.
  • Y 1 may be an alkyl group having 1 to 8, 1 to 6, or 1 to 3 carbon atoms, and may be a methyl group.
  • a monovalent group having a thiol group may be a group having a secondary thiol group and represented by the following formula (1-5).
  • Y 2 represents an alkylene group.
  • Y 2 may be an alkylene group having 1 to 8, 1 to 6, or 1 to 3 carbon atoms, and may be a methylene group ( --CH.sub.2--).
  • * indicates a bond (bonding site with oxygen atom).
  • thiol compounds examples include pentaerythritol tetrakis(3-mercaptobutyrate) (eg, Showa Denko Co., Ltd. "Karens MT (registered trademark) PE-1"), trimethylolpropane tris(3-mercaptobutyrate). (For example, "Karenzu MT (registered trademark) TPMB” manufactured by Showa Denko KK) can be mentioned.
  • the thiol compounds exemplified above can be used alone or in combination of two or more.
  • the amount of the thiol compound is 1% by mass or more, 2% by mass or more, based on the total amount of the separation membrane, from the viewpoint of further improving the separation ability of the separation membrane and from the viewpoint of further increasing the ion conductivity of the separation membrane. , 3% by mass or more, or 4% by mass or more, and may be 20% by mass or less, or 15% by mass or less.
  • the polymer content may be 60% by mass or more, 70% by mass or more, or 80% by mass or more, and may be 90% by mass or less, 80% by mass or less, or 70% by mass or less, based on the total amount of the separation membrane. .
  • the type of the third lithium salt may be the same as the first lithium salt contained in the positive electrode mixture layer 10 described above.
  • the third lithium salt may be the same as the first lithium salt and/or the second lithium salt, or different from the first lithium salt and/or the second lithium salt.
  • the content of the third lithium salt is preferably 5% by mass or more, more preferably 13% by mass, based on the total amount of the third lithium salt and the third solvent. % or more, more preferably 15 mass % or more.
  • the content of the third lithium salt is preferably 35% by mass or less, more preferably 23% by mass or less, based on the total amount of the third lithium salt and the third solvent, from the viewpoint of the viscosity of the solvent. Preferably, it is 20% by mass or less.
  • the content of the third lithium salt is preferably 2% by mass or more, more preferably 3% by mass or more, and still more preferably 5% by mass, based on the total amount of the separation membrane. That's it.
  • the content of the third lithium salt is preferably 12% by mass or less, more preferably 9% by mass or less, and even more preferably 6% by mass, based on the total amount of the separation membrane. It is below.
  • the third solvent is a solvent for dissolving the third lithium salt.
  • the third solvent is preferably an ionic liquid or glyme represented by the following formula (2), more preferably an ionic liquid.
  • R 21 and R 22 each independently represent an alkyl group having 1 to 4 carbon atoms, and k represents an integer of 3 to 6.
  • the ionic liquid contains the following anionic and cationic components.
  • the ionic liquid in this specification is a substance that is liquid at -20°C or higher.
  • the anion component of the ionic liquid is not particularly limited, but includes halogen anions such as Cl ⁇ , Br ⁇ and I ⁇ , inorganic anions such as BF 4 ⁇ and N(SO 2 F) 2 ⁇ ([FSI] ⁇ ), B (C 6 H 5 ) 4 ⁇ , CH 3 SO 2 O ⁇ , CF 3 SO 2 O ⁇ , N(SO 2 C 4 F 9 ) 2 ⁇ , N(SO 2 CF 3 ) 2 ⁇ ([TFSI] ⁇ ) , N(SO 2 C 2 F 5 ) 2 — and other organic anions.
  • the anion component of the ionic liquid preferably contains at least one anion component represented by the following formula (3).
  • the anion component represented by formula (3) is, for example, N(SO 2 C 4 F 9 ) 2 ⁇ , N(SO 2 F) 2 ⁇ ([FSI] ⁇ ), N(SO 2 CF 3 ) 2 ⁇ ([TFSI] ⁇ ) and N(SO 2 C 2 F 5 ) 2 ⁇ .
  • the anion component of the ionic liquid is more preferably N(SO 2 C 4 F 9 ) 2 ⁇ , CF 3 SO 2 O ⁇ , [FSI] ⁇ . , [TFSI] ⁇ , and N(SO 2 C 2 F 5 ) 2 ⁇ , more preferably [FSI] ⁇ .
  • the cationic component of the ionic liquid is not particularly limited, it is preferably at least one selected from the group consisting of chain quaternary onium cations, piperidinium cations, pyrrolidinium cations, pyridinium cations, and imidazolium cations.
  • a chain quaternary onium cation is, for example, a compound represented by the following formula (4).
  • R 31 to R 34 are each independently a chain alkyl group having 1 to 20 carbon atoms or a chain alkoxyalkyl group represented by RO-(CH 2 ) n - (R represents a methyl group or an ethyl group, n represents an integer of 1 to 4), and X represents a nitrogen atom or a phosphorus atom.
  • the number of carbon atoms in the alkyl group represented by R 31 to R 34 is preferably 1-20, more preferably 1-10, still more preferably 1-5.
  • the piperidinium cation is, for example, a nitrogen-containing six-membered cyclic compound represented by the following formula (5).
  • R 35 and R 36 are each independently an alkyl group having 1 to 20 carbon atoms, or an alkoxyalkyl group represented by R—O—(CH 2 ) n — (R is methyl group or an ethyl group, and n represents an integer of 1 to 4).
  • the number of carbon atoms in the alkyl group represented by R 35 and R 36 is preferably 1-20, more preferably 1-10, still more preferably 1-5. ]
  • a pyrrolidinium cation is, for example, a five-membered cyclic compound represented by the following formula (6).
  • R 37 and R 38 are each independently an alkyl group having 1 to 20 carbon atoms, or an alkoxyalkyl group represented by R—O—(CH 2 ) n — (R is methyl group or an ethyl group, and n represents an integer of 1 to 4).
  • the number of carbon atoms in the alkyl group represented by R 37 and R 38 is preferably 1-20, more preferably 1-10, still more preferably 1-5.
  • a pyridinium cation is, for example, a compound represented by the following formula (7).
  • R 39 to R 43 are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxyalkyl group represented by RO-(CH 2 ) n - (R is a methyl group, or an ethyl group, and n represents an integer of 1 to 4), or a hydrogen atom.
  • the number of carbon atoms in the alkyl group represented by R 39 to R 43 is preferably 1-20, more preferably 1-10, still more preferably 1-5.
  • the imidazolium cation is, for example, a compound represented by the following formula (8).
  • R 44 to R 48 are each independently an alkyl group having 1 to 20 carbon atoms, an alkoxyalkyl group represented by R—O—(CH 2 ) n — (R is a methyl group, or an ethyl group, and n represents an integer of 1 to 4), or a hydrogen atom.
  • the number of carbon atoms in the alkyl group represented by R 44 to R 48 is preferably 1-20, more preferably 1-10, still more preferably 1-5.
  • the ionic liquid is more specifically N,N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium-bis(trifluoromethanesulfonyl)imide (DEME-TFSI), N,N-diethyl-N -methyl-N-(2-methoxyethyl)ammonium-bis(fluorosulfonyl)imide (DEME-FSI), 1-ethyl-3-methylimidazolium-bis(trifluoromethanesulfonyl)imide (EMI-TFSI), 1- Ethyl-3-methylimidazolium-bis(fluorosulfonyl)imide (EMI-FSI), N-methyl-N-propylpyrrolidinium-bis(trifluoromethanesulfonyl)imide (Py13-TFSI), N-methyl-N- Propylpyrrolidinium-bis(fluorosulfonyl)imide (P
  • R 21 and R 22 each independently represent an alkyl group having 4 or less carbon atoms or a fluoroalkyl group having 4 or less carbon atoms, and k represents an integer from 1 to 6.
  • R 21 and R 22 are each independently preferably a methyl group or an ethyl group.
  • the separation membrane 7 contains glyme as a solvent, part or all of the glyme may form a complex with the lithium salt (third lithium salt).
  • the content of the third solvent is 40% by mass or less, 38% by mass or less based on the total amount of the separation membrane, from the viewpoint of obtaining the separation membrane 7 having excellent separation ability of the solvents (first solvent and second solvent). 35% by mass or less, 33% by mass or less, 30% by mass or less, 25% by mass or less, 20% by mass or less, 18% by mass or less, 15% by mass or less, 13% by mass or less, or 10% by mass or less . From the viewpoint of further increasing the ionic conductivity of the separation membrane 7, the content of the third solvent is 5% by mass or more, 8% by mass or more, 18% by mass or more, or 27% by mass or more based on the total amount of the separation membrane. may
  • the content of the third solvent can be measured by the method shown below. First, after diluting the separation membrane about 10 times with methanol, extraction is performed for 15 minutes by ultrasonic irradiation to obtain an extract. 1.0 ⁇ L of this extract is injected into the gas chromatograph to perform gas chromatograph mass spectrometry. Specific conditions for gas chromatography mass spectrometry are as follows.
  • the separation membrane 7 may further contain, for example, inorganic oxide particles as other components, or may not contain them in order to further improve the ionic conductivity of the separation membrane.
  • the thickness of the separation membrane 7 may be 80 ⁇ m or more or 85 ⁇ m or less, and may be 400 ⁇ m or less, 300 ⁇ m or less, 200 ⁇ m or less, or 100 ⁇ m or less from the viewpoint of further enhancing the separation ability of the separation membrane 7 .
  • the ionic conductivity of the separation membrane may be, for example, more than 0.05 mS/cm, or 0.06 mS/cm or more, and may be, for example, 0.15 mS/cm or less.
  • the ionic conductivity of the separation membrane is measured by the method described in Examples below.
  • a method for manufacturing a lithium ion secondary battery 1 includes steps of obtaining a positive electrode 6 including a positive electrode mixture layer 10 containing a positive electrode active material, a first lithium salt, and a first solvent; a step of obtaining a negative electrode 8 comprising a negative electrode mixture layer 12 containing a substance, a second lithium salt, and a second solvent different from the first solvent; A step of forming a slurry containing a lithium salt and a third solvent into a film and then polymerizing a polymerizable component to obtain a separation membrane 7; and a step of providing.
  • the order of each step is arbitrary.
  • the positive electrode active material, the first lithium salt, the first solvent, the negative electrode active material, the second lithium salt, the second solvent, the third lithium salt, and the third solvent are specifically Aspects are as described above.
  • the positive electrode 6 and the negative electrode 8 can be obtained using a known method.
  • a material used for the positive electrode mixture layer 10 or the negative electrode mixture layer 12 is dispersed in an appropriate amount of dispersion medium using a kneader, a disperser, or the like to obtain a slurry of the positive electrode mixture or the negative electrode mixture.
  • the positive electrode mixture or the negative electrode mixture is applied onto the positive electrode current collector 9 or the negative electrode current collector 11 by a doctor blade method, a dipping method, a spray method, or the like, and the dispersion medium is volatilized to obtain the positive electrode 6 and the negative electrode mixture.
  • a negative electrode 8 is obtained.
  • the dispersion medium may be water, N-methyl-2-pyrrolidone (NMP), or the like.
  • a slurry containing a polymerizable component containing a monomer and a thiol compound, a third lithium salt, and a third solvent is prepared.
  • the polymerizable component including monomers and thiol compounds are as described above.
  • the total content of monomers in the slurry may be 60% by mass or more, or 70% by mass or more, and may be 90% by mass or less, or 80% by mass or less, based on the total amount of the slurry.
  • the content of the thiol compound in the slurry may be 1 part by mass or more, 2 parts by mass or more, 3 parts by mass or more, or 4 parts by mass or more with respect to the total amount of 100 parts by mass of the monomers, and may be 20 parts by mass or less, Alternatively, it may be 15 parts by mass or less.
  • the content of the third solvent in the slurry is 40% by mass or less, 38% by mass or less, 35% by mass or less, 33% by mass or less, 30% by mass or less, 25% by mass or less, and 20% by mass or less based on the total amount of the slurry. , 18% by mass or less, 15% by mass or less, 13% by mass or less, or 10% by mass or less.
  • the content of the third solvent is 5% by mass or more, 8% by mass or more, 18% by mass or more, or 27% by mass or more based on the total amount of the slurry. good too. Thereby, the content of the third solvent contained in the separation membrane 7 can be set within the range described above.
  • a polymerization initiator may be added to the slurry. Thereby, the polymerizable compound can be favorably polymerized, and the separation membrane can be favorably produced from the slurry.
  • the polymerization initiator may be a thermal polymerization initiator or a photopolymerization initiator, and can be appropriately selected depending on the purpose.
  • Thermal polymerization initiators include azobisisobutyronitrile and azobis(2-methylbutyronitrile).
  • photopolymerization initiators examples include 2-hydroxy-2-methyl-1-phenylpropanone and diphenyl(2,4,6-trimethylbenzoyl)phosphine oxide.
  • the content of the polymerization initiator may be 0.5% by mass or more, 1% by mass or more, 10% by mass or more, or 20% by mass or more, 50% by mass or less, 40% by mass or less, It may be 30% by mass or less, 10% by mass or less, 5% by mass or less, or 3% by mass or less.
  • the slurry may further contain an inorganic filler as another component, or may contain no inorganic filler.
  • the above-described slurry is formed into a film, and then the polymerizable component is polymerized.
  • a method of forming the slurry into a film is, for example, a method of setting a frame of arbitrary size on one side of a base material such as a PET sheet and pouring the slurry into the frame.
  • the slurry may be formed into a film by applying the slurry onto one surface of the substrate by a doctor blade method, dipping method, spray method, or the like.
  • the method for polymerizing the polymerizable component is to apply heat under predetermined conditions.
  • the heating temperature may be, for example, 80-90°C.
  • the heating time may be appropriately adjusted depending on the heating temperature, and is, for example, 1 to 10 minutes.
  • the method of polymerizing the polymerizable component is a method of irradiating light under predetermined conditions.
  • the polymerizable compound may be polymerized by irradiation with light containing wavelengths within the range of 200-400 nm (ultraviolet light).
  • the positive electrode 6, the separation film 7 and the negative electrode 8 are laminated by lamination, for example.
  • the electrode group 2 including the positive electrode 6, the negative electrode 8, and the separation film 7 provided between the positive electrode 6 and the negative electrode 8 can be obtained.
  • the lithium ion secondary battery 1 can be obtained by housing the electrode group 2 in the battery outer package 3 .
  • a monomer represented by the following formula (A) (n 23 in the formula, trade name: NK Ester A-1000, manufactured by Shin Nakamura Chemical Co.
  • Table 1 shows the composition of each material.
  • a silicon rubber frame (4 ⁇ 4 cm, 1 mm thick) was placed on a PET sheet (8 ⁇ 8 cm, 0.035 mm thick), and the prepared slurry was placed in the frame. Thereafter, the slurry was irradiated with ultraviolet light (wavelength: 365 nm) to polymerize the monomer, thereby obtaining a separation membrane. The separation membrane was removed from the frame and subjected to the tests described below.
  • the separation film formation time (minimum exposure time) was 50 seconds.
  • Example 2 Separation membranes were produced in the same manner as in Example 1 except that the composition of the slurry was changed as shown in Table 1.
  • the separation film formation time (minimum exposure time) was 30 seconds.
  • Example 3 Separation membranes were produced in the same manner as in Example 1 except that the composition of the slurry was changed as shown in Table 1.
  • the separation film formation time (minimum exposure time) was 20 seconds.
  • Example 4 Separation membranes were produced in the same manner as in Example 1 except that the composition of the slurry was changed as shown in Table 1.
  • the separation film formation time (minimum exposure time) was 20 seconds.
  • the ionic conductivity of the separation membranes was evaluated by fabricating test cells using the separation membranes of Examples and Comparative Examples. First, an upper lid (CR2032 cap, manufactured by Hosensha), a 1.6 mm thick plate spring, a 1.0 mm thick SUS spacer (2 pieces), a separation membrane, a gasket, a lower lid (CR2032 case, manufactured by Hosensha ) were laminated in order, the upper lid and the lower lid were crimped to prepare a test cell, and the bulk resistance of the separation membrane was measured.
  • the measurement equipment and measurement conditions were as follows. Measurement device: VSP electrochemical measurement system (manufactured by BioLogic) Measurement temperature: 25°C AC amplitude: 10mV Frequency range: 10mHz to 1MHz
  • the separation membranes according to Examples had higher ionic conductivity than the separation membranes according to Comparative Examples.
  • the separation membrane according to the example could be formed in a shorter time than the separation membrane according to the comparative example.
  • a separation membrane according to an example or a comparative example and a separator are stacked and sandwiched between two silicon rubber (thickness: 0.5 mm) sheets. placed in Dimethyl carbonate (DMC) was put into the cell on the separation membrane side, and the appearance of the separator was visually observed after a predetermined number of days had passed. If the separation membrane has excellent solvent separation ability, DMC does not easily permeate through the separation membrane. Penetrate the separator. Therefore, by observing the appearance of the separator and confirming whether or not DMC has permeated into the separator, it is possible to evaluate the solvent separation ability of the separation membrane (solvents corresponding to the first solvent and the second solvent). can.
  • DMC Dimethyl carbonate
  • the separation membranes according to the examples did not permeate DMC into the separator even after 3 days from the start of the test, and were shown to be separation membranes with excellent solvent separation ability.
  • SYMBOLS 1 Lithium ion secondary battery, 2... Electrode group, 3... Battery outer body, 4... Positive electrode collector tab, 5... Negative electrode collector tab, 6... Positive electrode, 7... Separation membrane, 8... Negative electrode, 9... Positive electrode collector 10. Positive electrode mixture layer, 11. Negative electrode current collector, 12. Negative electrode mixture layer.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Cell Separators (AREA)

Abstract

本発明の一側面は、正極合剤層、分離膜、及び負極合剤層をこの順に備えるリチウムイオン二次電池であって、正極合剤層が、正極活物質、第1のリチウム塩、及び第1の溶媒を含有し、負極合剤層が、負極活物質、第2のリチウム塩、及び第1の溶媒とは異なる第2の溶媒を含有し、分離膜が、リチウムイオン伝導性を有するポリマ、第3のリチウム塩、及び第3の溶媒を含有し、ポリマが、モノマ及びチオール化合物を含む重合性成分の重合物である、リチウムイオン二次電池を提供する。

Description

リチウムイオン二次電池、分離膜及びこれらの製造方法
 本発明は、リチウムイオン二次電池、分離膜及びこれらの製造方法に関する。
 近年、携帯型電子機器、電気自動車等の普及により、リチウムイオン二次電池に代表される二次電池においては、更なる性能の向上が求められている。例えば、正極と負極とに互いに種類が異なる電解質を含有させることにより、リチウムイオン二次電池の性能を向上させることが検討されている(例えば、特許文献1)。
特開2001-110447号公報
 正極及び負極に互いに種類が異なる電解質を含有させたリチウムイオン二次電池においては、電解質に含まれる溶媒が、正極及び負極間で混じり合うことなく、十分に分離されていることが重要である。本発明者らは、このようなリチウムイオン二次電池において電解質中の溶媒を分離するため、正極及び負極間に分離膜を配置することを考えた。このような用途に用いられる分離膜は高いイオン伝導度を有していることが望ましい。
 本発明の一側面は、正極合剤層及び負極合剤層において互いに異なる溶媒を含有するリチウムイオン二次電池に用いられ、高いイオン伝導度を有する分離膜、及び当該分離膜を備えたリチウムイオン二次電池、並びにこれらの製造方法を提供することを目的とする。
 本発明の一側面は、正極合剤層、分離膜、及び負極合剤層をこの順に備えるリチウムイオン二次電池であって、正極合剤層が、正極活物質、第1のリチウム塩、及び第1の溶媒を含有し、負極合剤層が、負極活物質、第2のリチウム塩、及び第1の溶媒とは異なる第2の溶媒を含有し、分離膜が、リチウムイオン伝導性を有するポリマ、第3のリチウム塩、及び第3の溶媒を含有し、ポリマが、モノマ及びチオール化合物を含む重合性成分の重合物である、リチウムイオン二次電池を提供する。
 本発明の他の一側面は、正極活物質、第1のリチウム塩、及び第1の溶媒を含有する正極合剤層と、負極活物質、第2のリチウム塩、及び第1の溶媒とは異なる第2の溶媒を含有する負極合剤層と、を備えるリチウムイオン二次電池において、正極合剤層及び負極合剤層の間に配置されるための分離膜であって、リチウムイオン伝導性を有するポリマ、第3のリチウム塩、及び第3の溶媒を含有し、ポリマが、モノマ及びチオール化合物を含む重合性成分の重合物である、分離膜を提供する。
 本発明の他の一側面は、正極活物質、第1のリチウム塩、及び第1の溶媒を含有する正極合剤層を備える正極を得る工程、負極活物質、第2のリチウム塩、及び第1の溶媒とは異なる第2の溶媒を含有する負極合剤層を備える負極を得る工程、モノマ及びチオール化合物を含む重合性成分と、第3のリチウム塩と、第3の溶媒とを含有するスラリを膜状に成形してから重合性成分を反応させることにより分離膜を得る工程、並びに、正極と負極との間に、分離膜を設ける工程を備える、リチウムイオン二次電池の製造方法を提供する。
 本発明の他の一側面は、正極活物質、第1のリチウム塩、及び第1の溶媒を含有する正極合剤層と、負極活物質、第2のリチウム塩、及び第1の溶媒とは異なる第2の溶媒を含有する負極合剤層と、を備えるリチウムイオン二次電池において、正極合剤層及び負極合剤層の間に配置されるための分離膜の製造方法であって、モノマ及びチオール化合物を含む重合性成分と、第3のリチウム塩と、第3の溶媒とを含有するスラリを膜状に成形してから重合性成分を反応させることにより分離膜を得る工程を備える、製造方法を提供する。
 各側面において、チオール化合物が、2つ以上のチオール基を有していてよい。
 各側面において、モノマは、2つの(メタ)アクリロイル基を有する第1のモノマと、3つ以上の(メタ)アクリロイル基を有する第2のモノマと、を含んでいてよい。
 本発明の一側面によれば、正極合剤層及び負極合剤層において互いに異なる溶媒を含有するリチウムイオン二次電池に用いられ、高いイオン伝導度を有する分離膜、及び当該分離膜を備えたリチウムイオン二次電池、並びにこれらの製造方法を提供することができる。本発明の一側面よれば、より短時間で分離膜の成膜が可能である。本発明の一側面によれば、生産性が向上した分離膜の製造方法が提供される。本発明の一側面に係る分離膜は、成膜性に優れるため、成膜する際の使用装置の制限を受けづらく、面積のより大きな分離膜のより安定的な製造が可能となる。
一実施形態に係るリチウムイオン二次電池を示す斜視図である。 図1に示したリチウムイオン二次電池における電極群の一実施形態を示す分解斜視図である。
 以下、図面を適宜参照しながら、本発明の実施形態について説明する。ただし、本発明は以下の実施形態に限定されるものではない。以下の実施の形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。このことは、数値および範囲についても同様であり、本発明を不当に制限するものではないと解釈すべきである。
 本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。
 本明細書において「~」を用いて示された数値範囲は、「~」の前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示す。
 本明細書において組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
 本明細書において、(メタ)アクリル酸は、アクリル酸又はそれに対応するメタクリル酸を意味する。(メタ)アクリレート等の他の類似表現についても同様である。
 図1は、一実施形態に係るリチウムイオン二次電池を示す斜視図である。図1に示すように、一実施形態に係るリチウムイオン二次電池1は、電極群2と、電極群2を収容する袋状の電池外装体3とを備える、いわゆるラミネート型の二次電池である。電極群2には、正極集電タブ4及び負極集電タブ5が設けられている。正極集電タブ4及び負極集電タブ5は、それぞれ正極集電体及び負極集電体(詳細は後述)がリチウムイオン二次電池1の外部と電気的に接続可能なように、電池外装体3の内部から外部へ突き出している。リチウムイオン二次電池1は、他の一実施形態において、ラミネート型以外の形状(コイン型、円筒型等)であってもよい。
 電池外装体3は、例えば積層フィルムで形成された容器であってよい。積層フィルムは、例えば、ポリエチレンテレフタレート(PET)フィルム等のポリマーフィルムと、アルミニウム、銅、ステンレス鋼等の金属箔と、ポリプロピレン等のシーラント層とがこの順で積層された積層フィルムであってよい。
 図2は、図1に示したリチウムイオン二次電池1における電極群2の一実施形態を示す分解斜視図である。図2に示すように、本実施形態に係る電極群2は、正極6と、分離膜7と、負極8とをこの順に備えている。正極6は、正極集電体9と、正極集電体9上に設けられた正極合剤層10とを備えている。正極集電体9には、正極集電タブ4が設けられている。負極8は、負極集電体11と、負極集電体11上に設けられた負極合剤層12とを備えている。負極集電体11には、負極集電タブ5が設けられている。
 正極集電体9は、例えば、アルミニウム、チタン、ステンレス、ニッケル、焼成炭素、導電性高分子、導電性ガラス等で形成されている。正極集電体9の厚さは、例えば、1μm以上であってよく、50μm以下であってよい。
 負極集電体11は、例えば、銅、ステンレス、ニッケル、アルミニウム、チタン、焼成炭素、導電性高分子、導電性ガラス、アルミニウム-カドミウム合金等で形成されている。負極集電体11の厚さは、例えば、1μm以上であってよく、50μm以下であってよい。
 正極合剤層10は、一実施形態において、正極活物質、リチウム塩(第1のリチウム塩)、及び溶媒(第1の溶媒)を含有する。
 正極活物質は、例えば、リチウム酸化物であってよい。リチウム酸化物としては、例えば、LiCoO、LiNiO、LiMnO、LiCoNi1-y、LiCo1-y、LiNi1-y、LiMn及びLiMn2-y(各式中、Mは、Na、Mg、Sc、Y、Mn、Fe、Co、Cu、Zn、Al、Cr、Pb、Sb、V及びBからなる群より選ばれる少なくとも1種の元素を示す(ただし、Mは、各式中の他の元素と異なる元素である)。x=0~1.2、y=0~0.9、z=2.0~2.3である。)が挙げられる。LiNi1-yで表されるリチウム酸化物は、LiNi1-(y1+y2)Coy1Mny2(ただし、x及びzは上述したものと同様であり、y1=0~0.9、y2=0~0.9であり、且つ、y1+y2=0~0.9である。)であってよく、例えばLiNi1/3Co1/3Mn1/3、LiNi0.5Co0.2Mn0.3、LiNi0.6Co0.2Mn0.22、LiNi0.8Co0.1Mn0.1であってよい。LiNi1-yで表されるリチウム酸化物は、LiNi1-(y3+y4)Coy3Aly4(ただし、x及びzは上述したものと同様であり、y3=0~0.9、y4=0~0.9であり、且つ、y3+y4=0~0.9である。)であってよく、例えばLiNi0.8Co0.15Al0.05であってもよい。
 正極活物質は、リチウムのリン酸塩であってもよい。リチウムのリン酸塩としては、例えば、リン酸マンガンリチウム(LiMnPO)、リン酸鉄リチウム(LiFePO)、リン酸コバルトリチウム(LiCoPO)及びリン酸バナジウムリチウム(Li(PO)が挙げられる。
 正極活物質の含有量は、正極合剤層全量基準で、70質量%以上、80質量%以上、又は85質量%以上であってよい。正極活物質の含有量は、正極合剤層全量を基準として、95質量%以下、92質量%以下、又は90質量%以下であってよい。
 第1のリチウム塩は、例えば、LiPF、LiBF、LiClO、LiB(C、LiCHSO、CFSOOLi、LiN(SOF)(LiFSI、リチウムビスフルオロスルホニルイミド)、LiN(SOCF(LiTFSI、リチウムビストリフルオロメタンスルホニルイミド)、及びLiN(SOCFCFからなる群より選ばれる少なくとも1種であってよい。
 第1のリチウム塩の含有量は、第1の溶媒全量を基準として、0.5mol/L以上、0.7mol/L以上、又は0.8mol/L以上であってよく、1.5mol/L以下、1.3mol/L以下、又は1.2mol/L以下であってよい。
 第1の溶媒は、第1のリチウム塩を溶解するための溶媒である。第1の溶媒は、例えば、エチレンカーボネート、プロピレンカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート等の環状カーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート、γ-ブチロラクトン、γ-バレロラクトン、δ-バレロラクトン、ε-カプロラクトン、γ-ヘキサノラクトン等の環状エステル、テトラヒドロフラン、1,3-ジオキサン、ジメトキシエタン、ジエトキシエタン、メトキシエトキシエタン、グライム、ジグライム、トリグライム、テトラグライム等のエーテル、リン酸トリエステル等のリン酸エステル、アセトニトリル、ベンゾニトリル、アジポニトリル、グルタロニトリル等のニトリル、ジメチルスルホン、ジエチルスルホン等の鎖状スルホン、スルホラン等の環状スルホン、プロパンスルトン等の環状スルホン酸エステルなどであってよい。第1の溶媒は、1種を単独で又は2種以上を組み合わせて用いられる。
 第1の溶媒として好ましく用いられる溶媒は、アセトニトリル、エチレンカーボネート等の、耐酸化性に優れた溶媒である。これにより、正極合剤層10の耐酸化性を高めることができる。
 正極合剤層10に含まれる第1の溶媒の含有量は、第1のリチウム塩を溶解できる範囲で適宜設定することができるが、例えば、正極合剤層全量を基準として、10質量%以上であってよく、80質量%以下であってよい。
 正極合剤層10は、他の成分として、バインダ及び導電材を更に含有してもよい。
 バインダは、四フッ化エチレン、フッ化ビニリデン、ヘキサフルオロプロピレン、アクリル酸、マレイン酸、エチルメタクリレート、メチルメタクリレート、及びアクリロニトリルからなる群より選ばれる少なくとも1種をモノマ単位として含有するポリマ、スチレン-ブタジエンゴム、イソプレンゴム、アクリルゴム等のゴムなどであってよい。バインダは、好ましくは、ポリフッ化ビニリデン、又は、ヘキサフルオロプロピレンとフッ化ビニリデンとをモノマ単位として含有するコポリマである。
 バインダの含有量は、正極合剤層全量を基準として、0.3質量%以上、0.5質量%以上、1質量%以上、又は1.5質量%以上であってよく、また、10質量%以下、8質量%以下、6質量%以下、又は4質量%以下であってよい。
 導電材は、カーボンブラック、アセチレンブラック、黒鉛、炭素繊維、カーボンナノチューブ等の炭素材料などであってよい。これらの導電材は、1種を単独で又は2種以上を組み合わせて用いられる。
 導電材の含有量は、正極合剤層全量を基準として、0.1質量%以上、1質量%以上、又は3質量%以上であってよい。導電材の含有量は、正極6の体積の増加及びそれに伴うリチウムイオン二次電池1のエネルギ密度の低下を抑制する観点から、正極合剤層全量を基準として、好ましくは15質量%以下、より好ましくは10質量%以下、更に好ましくは8質量%以下である。
 正極合剤層10の厚さは、5μm以上、10μm以上、15μm以上、又は20μm以上であってよく、100μm以下、80μm以下、70μm以下、又は50μm以下であってよい。
 負極合剤層12は、一実施形態において、負極活物質、リチウム塩(第2のリチウム塩)、及び溶媒(第2の溶媒)を含有する。
 負極活物質は、エネルギーデバイスの分野で常用されるものを使用できる。負極活物質としては、具体的には、例えば、金属リチウム、チタン酸リチウム(LiTi12)、リチウム合金又はその他の金属化合物、炭素材料、金属錯体、有機高分子化合物等が挙げられる。これらの負極活物質は、1種を単独で又は2種以上を組み合わせて用いられる。炭素材料としては、天然黒鉛(鱗片状黒鉛等)、人造黒鉛等の黒鉛(グラファイト)、非晶質炭素、炭素繊維、及びアセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラックなどが挙げられる。負極活物質は、より大きな理論容量(例えば、500~1500Ah/kg)を得る観点から、ケイ素を構成元素として含む負極活物質、スズを構成元素として含む負極活物質等であってもよい。これらの中でも、負極活物質は、ケイ素を構成元素として含む負極活物質であってよい。
 ケイ素を構成元素として含む負極活物質は、ケイ素を構成元素として含む合金であってよく、例えば、ケイ素と、ニッケル、銅、鉄、コバルト、マンガン、亜鉛、インジウム、銀、チタン、ゲルマニウム、ビスマス、アンチモン及びクロムからなる群より選ばれる少なくとも1種とを構成元素として含む合金であってよい。ケイ素を構成元素として含む負極活物質は、酸化物、窒化物、又は炭化物であってもよく、具体的には、例えば、SiO、SiO、LiSiO等のケイ素酸化物、Si、SiO等のケイ素窒化物、SiC等のケイ素炭化物などであってよい。
 負極活物質の含有量は、負極合剤層全量を基準として、60質量%以上、65質量%以上、又は70質量%以上であってよい。負極活物質の含有量は、負極合剤層全量を基準として、99質量%以下、95質量%以下、又は90質量%以下であってよい。
 第2のリチウム塩の種類及びその含有量は、上述した正極合剤層10に含まれる第1のリチウム塩と同様であってよい。第2のリチウム塩は、第1のリチウム塩と同種であってよく、異種であってもよい。
 第2の溶媒は、第2のリチウム塩を溶解するための溶媒である。第2の溶媒としては、上述した第1の溶媒として用いられるものと同様のものを用いることができるが、第1の溶媒とは異なる溶媒が用いられる。これにより、正極6及び負極8にそれぞれ適した溶媒を使用できるため、エネルギ密度、寿命向上といった、リチウムイオン二次電池1の種々の性能を向上させることが可能となる。
 第2の溶媒として好ましく用いられる溶媒は、γ-ブチロラクトン、テトラヒドロフラン等の、耐還元性に優れた溶媒である。これにより、負極合剤層12に含まれる第2の溶媒の還元分解を抑制することができる。
 負極合剤層12に含まれる第2の溶媒の含有量は、第2のリチウム塩を溶解できる範囲で適宜設定することができるが、例えば、負極合剤層全量を基準として、10質量%以上であってよく、80質量%以下であってよい。
 負極合剤層12は、他の成分として、バインダ及び導電材を更に含有してもよい。バインダ及び導電材の種類及びその含有量は、上述した正極合剤層10におけるバインダ及び導電材の種類及びその含有量と同様であってよい。
 負極合剤層12の厚さは、10μm以上、15μm以上、又は20μm以上であってよく、100μm以下、80μm以下、70μm以下、50μm以下、40μm以下、又は30μm以下であってよい。
 分離膜7は、リチウムイオン二次電池1において、正極合剤層10及び負極合剤層12の間に配置されるための分離膜である。この分離膜は、正極合剤層10及び負極合剤層12に含まれる第1の溶媒及び第2の溶媒を互いに分離し、それぞれが混じり合わないようにする役割を有する。分離膜7を通して、リチウムイオンの授受を行うことは可能である。
 分離膜7は、リチウムイオン伝導性を有するポリマ、リチウム塩(第3のリチウム塩)、及び溶媒(第3の溶媒)を含有する。リチウムイオン伝導性を有するポリマは、モノマ及びチオール化合物を含む重合性成分の重合物である。
 リチウムイオン伝導性を有するポリマは、リチウム塩の存在下、当該リチウム塩に由来するリチウムイオンを伝導できる性質を有するポリマを意味する。ポリマがリチウムイオンを伝導できるか否かは、ポリマについてイオン伝導度を測定することにより確認することができ、ポリマに対してリチウム塩を1~40質量%添加したときに測定されるイオン伝導度のピークが1×10-6S/cm以上であれば、リチウムイオン伝導性を有するポリマということができる。
 リチウムイオン伝導性を有するポリマは、カルボニル基及びエーテル基からなる群より選択される少なくとも一種の基を有するポリマであってよい。エーテル基には、鎖状エーテル基及び環状エーテル基が含まれる。
 このようなリチウムイオン伝導性を有するポリマとしては、例えば、ポリメチル(メタ)アクリレート等のポリアルキル(メタ)アクリレート;ポリ(ポリエチレングリコールジ(メタ)アクリレート)等のポリ(ポリアルキレングリコールジ(メタ)アクリレート);ポリ(メタ)アクリル酸;ポリアクリルアミド;ポリメタクリルアミド;ポリN-イソプロピルアクリルアミド;ポリメチルビニルケトン;ポリ酢酸ビニル;ポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレンエーテルグリコール等のポリアルキレングリコールが挙げられる。
 重合性成分中のモノマは、2つの(メタ)アクリロイル基を有する第1のモノマと、3つ以上の(メタ)アクリロイル基を有する第2のモノマと、を含んでいてよい。この場合、より薄く、かつ、抵抗値もより低い分離膜を形成することができる。
 第1のモノマは、2つの(メタ)アクリロイル基と、当該2つの(メタ)アクリロイル基を連結する連結基とを有する化合物である。連結基は、炭化水素基及び/又はヘテロ原子含有基を含んでいてよい。連結基は、ヘテロ原子含有基として、酸素原子含有基を含んでいてよく、例えば、エーテル基(-O-)を含んでいてよい。連結基は、炭化水素基(例えば、アルキレン基)及びヘテロ原子含有基(例えば、エーテル基)からなる2価の基であってよく、例えば、ポリオキシアルキレン基又はオキシアルキレン基であってよい。
 第1のモノマは、下記式(1-1)で表されるモノマであってよい。
Figure JPOXMLDOC01-appb-C000001
 式(1-1)中、R11及びR12はそれぞれ独立に、水素原子又はメチル基(-CH)を示す。
 nは、1以上の整数を示す。nは、例えば、5以上、10以上、15以上、20以上であってよく、40以下、35以下、30以下、又は25以下であってよい。
 Z11は、アルキレン基を示す。Z11は、例えば、炭素数1~6又は1~3のアルキレン基であってよい。Z11は、例えば、-CH-CH-、-CH(CH)-CH-であってよい。
 第1のモノマの25℃におけるイオン伝導度は、例えば、0.01mS/cm以上、0.05mS/cm以上、又は0.10mS/cm以上であってよく、1.0mS/cm以下、0.50mS/cm以下、又は0.30mS/cm以下であってよい。
 第1のモノマの25℃におけるイオン伝導度は、次に示す方法によって測定することができる。
<イオン電導度を測定するための分離膜の作製>
 第1のモノマ、リチウム塩、溶媒、及び光重合開始剤を混合して、スラリを調製する。PET製のシート(8×8cm、厚さ0.035mm)の上にシリコンゴム製の枠(4×4cm、厚さ1mm)を設置し、枠の中に調製したスラリを入れる。その後、紫外光(波長365nm)を照射して第1のモノマを重合させることにより、分離膜を得る。分離膜を枠から外して、以下に示す試験に供する。ここで、リチウム塩は、LiN(SOCF(LiTFSI、リチウムビストリフルオロメタンスルホニルイミド)であってよい。溶媒は、1-エチル-3-メチルイミダゾリウム-ビス(トリフルオロメタンスルホニル)イミド(EMI-TFSI)であってよい。光重合開始剤は、2-ヒドロキシ-2-メチル-1-フェニルプロパノンであってよい。紫外光(波長365nm)の照射時間は、15分間であってよい。
<イオン伝導度の測定>
 分離膜を用いて試験用セルを作製することにより、分離膜のイオン伝導度を評価する。上蓋(CR2032用キャップ、宝泉社製)、1.6mm厚の板バネ、1.0mm厚のSUS製スペーサ(2枚)、分離膜、ガスケット、下蓋(CR2032用ケース、宝泉社製)の順にこれらを積層し、上蓋と下蓋をかしめて試験用セルを作製する。測定装置及び測定条件は下記のとおりである。
 測定装置:VSP 電気化学測定システム(BioLogic社製)
 測定温度:25℃
 AC振幅:10mV
 周波数範囲:10mHz~1MHz
 測定後、下記の式(α)に従い分離膜のイオン伝導度を算出した。
 σ=L/RA・・・(α)
 σ(S/cm):イオン伝導度
 L(cm):分離膜の厚さ
 R(Ω):バルク抵抗
 A(cm):SUS製スペーサの断面積
 第1のモノマとしては、ポリエチレングリコール#1000ジアクリレート(例えば、商品名:NKエステルA-1000、新中村化学工業社製)、ポリエチレングリコール#800ジアクリレート(例えば、商品名:NKエステルA-800、新中村化学工業社製)が挙げられる。
 第1のモノマは、1種を単独で又は2種以上を組み合わせて用いてもよい。
 ポリマ中に単量体単位として含まれる第1のポリマの含有量は、分離膜全量基準で、5質量%以上、10質量%以上又は15質量%以上であってよく、70質量%以下、60質量%以下、又は50質量%以下であってよい。
 第2のモノマは、(メタ)アクリロイル基を3つ以上有するモノマである。第2のモノマにおける(メタ)アクリロイル基の数は、例えば、3~6であってよく、3~4であってよく、4であってよい。
 第2のモノマは、3つ以上の(メタ)アクリロイル基と、これらの(メタ)アクリロイル基を連結する連結基とを有する化合物であってよい。連結基は、炭化水素基及び/又はヘテロ原子含有基を含んでいてよい。連結基は、ヘテロ原子含有基として、酸素原子含有基を含んでいてよく、例えば、エーテル基(-O-)を含んでいてよい。連結基は、炭化水素基(例えば、アルキレン基)及びヘテロ原子含有基(例えば、エーテル基)からなる2価の基であってよく、例えば、ポリオキシアルキレン基又はオキシアルキレン基であってよい。
 (メタ)アクリロイル基を3つ有する第2のモノマは、下記式(1-2)で表されるモノマであってよい。
Figure JPOXMLDOC01-appb-C000002
 式(1-2)中、R13、R14及びR15は、それぞれ独立に、水素原子、又はメチル基を示す。
 Z、Z及びZは、それぞれ独立にアルキレン基を示す。Z、Z及びZで表されるアルキレン基は、炭素数1~6又は1~3のアルキレン基であってよく、メチレン基(-CH-)であってよい。
 Zは、アルキル基を示す。Zは、例えば、炭素数1~10、1~6又は1~3のアルキル基であってよく、エチル基(-CH-CH)であってよい。Xで表される1価の炭化水素基は、例えば、アルキル基であってよい。
 (メタ)アクリロイル基を3つ有する第2のモノマとしては、例えば、トリメチロールプロパントリアクリレート(例えば、商品名:NKエステルA-TMPT、新中村化学工業社製)が挙げられる。
 (メタ)アクリロイル基を4つ有する第2のモノマは、下記式(1-3)で表されるモノマであってよい。
Figure JPOXMLDOC01-appb-C000003
 式(1-3)中、R16、R17、R18及びR19は、それぞれ独立に、水素原子、又はメチル基を示す。
 Z、Z、Z及びZは、それぞれ独立にアルキレン基を示す。Z、Z及びZで表されるアルキレン基は、炭素数1~6又は1~3のアルキレン基であってよく、エチレン基(-CH-CH-)であってよい。
 a、b、c及びdは、それぞれ独立に、0以上又は1以上の整数を示す。a+b+c+dは、4以上、10以上、20以上、又は30以上であってよく、50以下、又は40以下であってよい。
 (メタ)アクリロイル基を3つ有する第2のモノマとしては、例えば、エトキシ化ペンタエリスリトールテトラアクリレート(例えば、商品名:NKエステルA-TM35E、新中村化学工業社製)が挙げられる。
 第2のモノマの25℃におけるイオン伝導度は、例えば、0.001mS/cm以上、又は0.01mS/cm以上であってよく、0.5mS/cm以下、又は0.05mS/cm以下であってよい。第2のモノマの25℃におけるイオン伝導度は、第2のモノマを用い、上記の第1のモノマの25℃におけるイオン伝導度の測定方法と同様の手法により測定することができる。第2のモノマの25℃におけるイオン伝導度の測定において、紫外光(波長365nm)の照射時間は、2分間であってよい。
 第2のモノマは1種単独で用いられてもよく、2種以上を組み合わせて用いてもよい。
 ポリマ中に単量体単位として含まれる第2のポリマの含有量は、分離膜全量基準で、5質量%以上、10質量%以上又は15質量%以上であってよく、70質量%以下、60質量%以下、又は50質量%以下であってよい。
 ポリマ中に単量体単位として含まれる、第1のモノマの質量(C1)に対する第2のモノマの質量(C2)の比(C2/C1)は、分離膜の抵抗値をより一層低くすることができる観点から、5以下、4以下、3以下、2以下、1以下、又は1/2以下であってよい。ポリマ中に単量体単位として含まれる、第1のモノマの質量(C1)に対する第2のモノマの質量(C2)の比(C2/C1)は、分離膜の分離能力がより一層優れたものとなる観点から、1/5以上、1/4以上、1/3以上、1/2以上、1以上、又は2以上であってよい。
 単量体単位として含まれるモノマの総含有量は、60質量%以上、70質量%以上又は80質量%以上であってよく、90質量%以下、80質量%以下、又は70質量%以下であってよい。
 チオール化合物は、チオール基(-SH)を少なくとも1つ有する化合物である。チオール化合物の存在下での重合反応によって形成されたポリマを含む分離膜は、高いイオン伝導度を有する。加えて、重合性成分がチオール化合物を含む場合には、より短時間での成膜が可能になる。より短時間での成膜が可能になる理由は、特に制限されないが、以下の理由が考えられる。チオール化合物は、重合反応の過程で反応性が低下した長鎖のポリマから、ラジカルを奪い取り、チイルラジカル(-S)を発生させる。チイルラジカルは、他の中程度のポリマ及び/又は未反応のモノマと反応することができるため、チイルラジカルの生成によって、重合反応が促進され、結果として、より短時間での成膜が可能になると考えられる。
 チオール化合物1分子あたりのチオール基の数は、1以上であり、例えば、2以上、3以上又は4以上であってよく、4以下、又は3以下であってよい。
 チオール化合物は、1級チオール基又は2級チオール基を有していてよい。チオール化合物中のチオール基は、より一層短時間での成膜が可能になる観点から、2級チオール基であってよい。チオール化合物は、より高いイオン伝導性を有する観点及びより短時間での成膜が可能になる観点から、2級チオール基を3~4個有する化合物であってよい。2級チオール基は、2個の炭素原子及び1個の水素原子に結合した炭素原子に結合したチオール基である。
 チオール化合物は、下記式(1-4)で表される化合物であってよい。
Figure JPOXMLDOC01-appb-C000004
 式(1-4)中、X、X及びXは、それぞれ独立にチオール基を有する1価の基を示し、Yは、アルキル基、又は-O-Xで表され、Xがチオール基を有する1価の基である基を示す。Yは、炭素数1~8、1~6、又は1~3のアルキル基であってよく、メチル基であってよい。
 チオール基を有する1価の基は、2級チオール基を有する下記式(1-5)で表される基であってよい。
Figure JPOXMLDOC01-appb-C000005
 式(1-5)中、Yはアルキレン基を示す。Yは炭素数1~8、1~6、又は1~3のアルキレン基であってよく、メチレン基(-CH-)であってよい。式(1-5)中、*は結合手(酸素原子との結合部位)を示す。
 チオール化合物としては、例えば、ペンタエリスリトールテトラキス(3-メルカプトブチレート)(例えば、昭和電工(株)製「カレンズMT(登録商標) PE-1」)、トリメチロールプロパン トリス(3-メルカプトブチレート)(例えば、昭和電工(株)製「カレンズMT(登録商標)TPMB」)が挙げられる。
 以上例示したチオール化合物は、単独で又は2種以上を組み合わせて使用することができる。
 チオール化合物の量は、分離膜の分離能力の更なる向上の観点、及び、分離膜のイオン伝導度がより一層高くなる観点から、分離膜の全量基準で、1質量%以上、2質量%以上、3質量%以上、又は4質量%以上であってよく、20質量%以下、又は15質量%以下であってよい。
 ポリマの含有量は、分離膜全量基準で、60質量%以上、70質量%以上又は80質量%以上であってよく、90質量%以下、80質量%以下、又は70質量%以下であってよい。
 第3のリチウム塩の種類は、上述した正極合剤層10に含まれる第1のリチウム塩と同様であってよい。第3のリチウム塩は、第1のリチウム塩及び/又は第2のリチウム塩と同種であってよく、第1のリチウム塩及び/又は第2のリチウム塩と異種であってもよい。
 第3のリチウム塩の含有量は、分離膜のイオン伝導度に優れる観点から、第3のリチウム塩及び第3の溶媒の合計量を基準として、好ましくは5質量%以上、より好ましくは13質量%以上、更に好ましくは15質量%以上である。第3のリチウム塩の含有量は、溶媒の粘度の観点から、第3のリチウム塩及び第3の溶媒の合計量を基準として、好ましくは35質量%以下、より好ましくは23質量%以下、更に好ましくは20質量%以下である。
 第3のリチウム塩の含有量は、分離膜7のイオン伝導度をより高める観点から、分離膜全量基準で、好ましくは2質量%以上、より好ましくは3質量%以上、更に好ましくは5質量%以上である。第3のリチウム塩の含有量は、分離膜7のイオン伝導度をより高める観点から、分離膜全量基準で、好ましくは12質量%以下、より好ましくは9質量%以下、更に好ましくは6質量%以下である。
 第3の溶媒は、第3のリチウム塩を溶解するための溶媒である。第3の溶媒は、分離膜からの揮発を抑制する観点から、好ましくはイオン液体、又は下記式(2)で表されるグライムであり、より好ましくはイオン液体である。
21O-(CHCHO)-R22   (2)
[式(2)中、R21及びR22はそれぞれ独立に炭素数1~4のアルキル基を示し、kは3~6の整数を示す。]
 イオン液体は、以下のアニオン成分及びカチオン成分を含有する。なお、本明細書におけるイオン液体は、-20℃以上で液状の物質である。
 イオン液体のアニオン成分は、特に限定されないが、Cl、Br、I等のハロゲンのアニオン、BF 、N(SOF) ([FSI])等の無機アニオン、B(C 、CHSO、CFSO、N(SO 、N(SOCF ([TFSI])、N(SO 等の有機アニオンなどであってよい。イオン液体のアニオン成分は、好ましくは、下記式(3)で表されるアニオン成分の少なくとも1種を含有する。
 N(SO2m+1)(SO2n+1    (3)
[式(3)中、m及びnは、それぞれ独立に0~5の整数を表す。m及びnは、互いに同一でも異なっていてもよく、好ましくは互いに同一である。]
 式(3)で表されるアニオン成分は、例えば、N(SO 、N(SOF) ([FSI])、N(SOCF ([TFSI])及びN(SO である。イオン液体のアニオン成分は、リチウムイオン二次電池1におけるイオン伝導度を向上させる観点から、より好ましくは、N(SO 、CFSO、[FSI]、[TFSI]、及びN(SO からなる群より選ばれる少なくとも1種を含有し、更に好ましくは[FSI]を含有する。
 イオン液体のカチオン成分は、特に限定されないが、好ましくは鎖状四級オニウムカチオン、ピペリジニウムカチオン、ピロリジニウムカチオン、ピリジニウムカチオン、及びイミダゾリウムカチオンからなる群より選ばれる少なくとも1種である。
 鎖状四級オニウムカチオンは、例えば、下記式(4)で表される化合物である。
Figure JPOXMLDOC01-appb-C000006
[式(4)中、R31~R34は、それぞれ独立に、炭素数が1~20の鎖状アルキル基、又はR-O-(CH-で表される鎖状アルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表し、Xは、窒素原子又はリン原子を表す。R31~R34で表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
 ピペリジニウムカチオンは、例えば、下記式(5)で表される、窒素を含有する六員環環状化合物である。
Figure JPOXMLDOC01-appb-C000007
[式(5)中、R35及びR36は、それぞれ独立に、炭素数が1~20のアルキル基、又はR-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表す。R35及びR36で表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
 ピロリジニウムカチオンは、例えば、下記式(6)で表される五員環環状化合物である。
Figure JPOXMLDOC01-appb-C000008
[式(6)中、R37及びR38は、それぞれ独立に、炭素数が1~20のアルキル基、又はR-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)を表す。R37及びR38で表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
 ピリジニウムカチオンは、例えば、下記式(7)で示される化合物である。
Figure JPOXMLDOC01-appb-C000009
[式(7)中、R39~R43は、それぞれ独立に、炭素数が1~20のアルキル基、R-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)、又は水素原子を表す。R39~R43で表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
 イミダゾリウムカチオンは、例えば、下記式(8)で示される化合物である。
Figure JPOXMLDOC01-appb-C000010
[式(8)中、R44~R48は、それぞれ独立に、炭素数が1~20のアルキル基、R-O-(CH-で表されるアルコキシアルキル基(Rはメチル基又はエチル基を表し、nは1~4の整数を表す)、又は水素原子を表す。R44~R48で表されるアルキル基の炭素数は、好ましくは1~20、より好ましくは1~10、更に好ましくは1~5である。]
 イオン液体は、より具体的には、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム-ビス(トリフルオロメタンスルホニル)イミド(DEME-TFSI)、N,N-ジエチル-N-メチル-N-(2-メトキシエチル)アンモニウム-ビス(フルオロスルホニル)イミド(DEME-FSI)、1-エチル-3-メチルイミダゾリウム-ビス(トリフルオロメタンスルホニル)イミド(EMI-TFSI)、1-エチル-3-メチルイミダゾリウム-ビス(フルオロスルホニル)イミド(EMI-FSI)、N-メチル-N-プロピルピロリジニウム-ビス(トリフルオロメタンスルホニル)イミド(Py13-TFSI)、N-メチル-N-プロピルピロリジニウム-ビス(フルオロスルホニル)イミド(Py13-FSI)、N-エチル-N-メチルピロリジニウム-ビス(トリフルオロメタンスルホニル)イミド(Py12-TFSI)、N-エチル-N-メチルピロリジニウム-ビス(フルオロスルホニル)イミド(Py12-FSI)、1-エチル-3-メチルイミダゾリウムジシアナミド(EMI-DCA)等であってよい。
 上述した式(2)で表されるグライムにおいて、式(2)中、R21及びR22は、それぞれ独立に、炭素数4以下のアルキル基又は炭素数4以下のフルオロアルキル基を表し、kは1~6の整数を表す。R21及びR22は、それぞれ独立に、好ましくはメチル基又はエチル基である。
 グライムは、具体的には、モノグライム(k=1)、ジグライム(k=2)、トリグライム(k=3)、テトラグライム(k=4)、ペンタグライム(k=5)、ヘキサグライム(k=6)であってよい。
 分離膜7が溶媒としてグライムを含有する場合、グライムの一部又は全部は、リチウム塩(第3のリチウム塩)と錯体を形成していてもよい。
 第3の溶媒の含有量は、溶媒(第1の溶媒及び第2の溶媒)の分離能力に優れた分離膜7を得る観点から、分離膜全量基準で40質量%以下、38質量%以下、35質量%以下、33質量%以下、30質量%以下、25質量%以下、20質量%以下、18質量%以下、15質量%以下、13質量%以下、又は10質量%以下であってもよい。第3の溶媒の含有量は、分離膜7のイオン伝導度をより高める観点から、分離膜全量基準で、5質量%以上、8質量%以上、18質量%以上、又は27質量%以上であってもよい。
 第3の溶媒の含有量は、次に示す方法によって測定することができる。まず、分離膜をメタノールで約10倍に希釈後、超音波照射による抽出を15分間行い、抽出液を得る。この抽出液をガスクロマトグラフに1.0μL注入して、ガスクロマトグラフ質量分析を行う。ガスクロマトグラフ質量分析の具体的な条件は下記のとおりである。
 装置名:GC-4000(GLサイエンス社製)
 キャリアガス:ヘリウム 5.0mL/分
 カラム:TC-WAX ポリエチレングリコール(0.53mm I.D.×30m、1.0μL)
 スプリット比:1/10
 注入温度:250℃
 検出温度:250℃
 オーブン温度:60℃(1分間)から20℃/分で昇温→240℃
 検出器:水素炎イオン化型検出器(FID)
 レンジ:10
 分離膜7は、他の成分として、例えば、無機酸化物粒子を更に含有してもよく、分離膜のイオン伝導度の更なる向上の点から、含有していなくてもよい。
 分離膜7の厚さは、分離膜7の分離能力をより高める観点から、80μm以上、又は85μm以下であってよく、400μm以下、300μm以下、200μm以下、又は100μm以下であってよい。
 分離膜のイオン伝導度は、例えば、0.05mS/cm超、又は0.06mS/cm以上であってよく、例えば、0.15mS/cm以下であってよい。分離膜のイオン伝導度は、後述する実施例に記載の方法によって測定される。
 続いて、リチウムイオン二次電池1の製造方法を説明する。一実施形態に係るリチウムイオン二次電池1の製造方法は、正極活物質、第1のリチウム塩、及び第1の溶媒を含有する正極合剤層10を備える正極6を得る工程と、負極活物質、第2のリチウム塩、及び第1の溶媒とは異なる第2の溶媒を含有する負極合剤層12を備える負極8を得る工程と、モノマ及びチオール化合物を含む重合性成分、第3のリチウム塩、及び第3の溶媒を含有するスラリを膜状に成形してから重合性成分を重合させることにより分離膜7を得る工程と、正極6と負極8との間に、分離膜7を設ける工程と、を備える。各工程の順序は任意である。
 上記製造方法において、正極活物質、第1のリチウム塩、第1の溶媒、負極活物質、第2のリチウム塩、第2の溶媒、第3のリチウム塩、及び第3の溶媒の具体的な態様については上述したとおりである。
 正極を得る工程、及び負極を得る工程では、公知の方法を利用して正極6及び負極8を得ることができる。例えば、正極合剤層10又は負極合剤層12に用いる材料を混練機、分散機等を用いて、適量の分散媒に分散させてスラリ状の正極合剤又は負極合剤を得る。その後、この正極合剤又は負極合剤をドクターブレード法、ディッピング法、スプレー法等により正極集電体9上、又は負極集電体11上に塗布し、分散媒を揮発させることにより正極6及び負極8が得られる。このとき、分散媒は、水、N-メチル-2-ピロリドン(NMP)等であってよい。
 分離膜を得る工程では、一実施形態において、モノマ及びチオール化合物を含む重合性成分、第3のリチウム塩、並びに、第3の溶媒を含有するスラリを調製する。モノマ及びチオール化合物を含む重合性成分の具体的な態様は上述のとおりである。
 スラリ中のモノマの総含有量は、スラリ全量基準で、60質量%以上、又は70質量%以上であってよく、90質量%以下、又は80質量%以下であってよい。
 スラリ中のチオール化合物の含有量は、モノマの総量100質量部に対して、1質量部以上、2質量部以上、3質量部以上、又は4質量部以上であってよく、20質量部以下、又は15質量部以下であってよい。
 スラリ中の第3の溶媒の含有量は、スラリ全量基準で40質量%以下、38質量%以下、35質量%以下、33質量%以下、30質量%以下、25質量%以下、20質量%以下、18質量%以下、15質量%以下、13質量%以下、又は10質量%以下であってもよい。第3の溶媒の含有量は、分離膜7のイオン伝導度をより高める観点から、スラリ全量基準で、5質量%以上、8質量%以上、18質量%以上、又は27質量%以上であってもよい。これにより、分離膜7中に含まれる第3の溶媒の含有量を上述した範囲とすることができる。
 スラリには、重合開始剤を添加してもよい。これにより、重合性化合物を好適に重合させることができ、スラリから分離膜を好適に作製できる。重合開始剤は、熱重合開始剤、又は光重合開始剤であってよく、目的に応じて適宜選択することができる。
 熱重合開始剤としては、アゾビスイソブチロニトリル、アゾビス(2-メチルブチロニトリル)等が挙げられる。
 光重合開始剤としては、2-ヒドロキシ-2-メチル-1-フェニルプロパノン、ジフェニル(2,4,6-トリメチルベンゾイル)ホスフィンオキシド等が挙げられる。
 重合開始剤の含有量は、スラリ全量基準で、0.5質量%以上、1質量%以上、10質量%以上、又は20質量%以上であってよく、50質量%以下、40質量%以下、30質量%以下、10質量%以下、5質量%以下、又は3質量%以下であってよい。
 スラリは、他の成分として、無機フィラーを更に含有してもよく、無機フィラーを含有していなくてもよい。
 分離膜を得る工程では、続いて、上述したスラリを膜状に形成してから重合性成分を重合させる。
 スラリを膜状に形成する方法は、例えば、PET製シート等の基材の一面上に任意の大きさの枠を設置し、ここにスラリを流し入れる方法である。または、ドクターブレード法、ディッピング法、スプレー法等により基材の一面上にスラリを塗布することにより、スラリを膜状に形成してもよい。
 重合性成分を重合させる方法は、スラリが熱重合開始剤を含有する場合には、所定の条件で熱を加える方法である。加熱温度は、例えば80~90℃であってよい。加熱時間は加熱温度により適宜調整すればよいが、例えば1~10分間である。
 重合性成分を重合させる方法は、スラリが光重合開始剤を含有する場合には、所定の条件で光を照射する方法である。一実施形態において、200~400nmの範囲内の波長を含む光(紫外光)の照射により、重合性化合物を重合させてよい。
 正極6と負極8との間に分離膜7を設ける工程では、正極6、分離膜7及び負極8を、例えばラミネートにより積層する。これにより、正極6と、負極8と、正極6及び負極8の間に設けられた分離膜7と、を備える電極群2を得ることができる。また、この電極群2を電池外装体3に収納して、リチウムイオン二次電池1を得ることができる。
 以下、実施例により本発明を更に具体的に説明するが、本発明はこれらの実施例に限定されるものではない。
[実施例1]
 下記式(A)で表されるモノマ(式中のn=23、商品名:NKエステルA-1000、新中村化学工業社製)、下記式(B)で表されるモノマ(式中のa+b+c+d=35、商品名:NKエステルATM-35E、新中村化学工業社製)、リチウム塩(LiTFSI)、溶媒(EMI-TFSI)、及び光重合開始剤(ベンゾイルぎ酸メチル(Methylbenzoylformate))、及び、下記式(C)で表されるチオール化合物(ペンタエリスリトール テトラキス(3-メルカプトブチレート)、商品名:カレンズMT(登録商標)PE1、昭和電工株式会社社製)を混合して、スラリを調製した。各材料の組成を表1に示す。PET製のシート(8×8cm、厚さ0.035mm)の上にシリコンゴム製の枠(4×4cm、厚さ1mm)を設置し、枠の中に調製したスラリを入れた。その後、スラリに対して紫外光(波長365nm)を照射して、モノマを重合させることにより、分離膜を得た。分離膜を枠から外して、以下に示す試験に供した。分離膜の成膜時間(最小露光時間)は、50秒間であった。
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
[実施例2]
 スラリの組成を表1に示すとおりに変更し、実施例1と同様の方法により、分離膜を作製した。分離膜の成膜時間(最小露光時間)は、30秒間であった。
[実施例3]
 スラリの組成を表1に示すとおりに変更し、実施例1と同様の方法により、分離膜を作製した。分離膜の成膜時間(最小露光時間)は、20秒間であった。
[実施例4]
 スラリの組成を表1に示すとおりに変更し、実施例1と同様の方法により、分離膜を作製した。分離膜の成膜時間(最小露光時間)は、20秒間であった。
[比較例1]
 スラリの組成を表1に示すとおりに変更し、実施例1と同様の方法により、分離膜を作製した。分離膜の成膜時間(最小露光時間)は、60秒間であった。
<イオン伝導度の評価>
 実施例及び比較例に係る分離膜を用いて試験用セルを作製することにより、分離膜のイオン伝導度を評価した。まず、上蓋(CR2032用キャップ、宝泉社製)、1.6mm厚の板バネ、1.0mm厚のSUS製スペーサ(2枚)、分離膜、ガスケット、下蓋(CR2032用ケース、宝泉社製)の順にこれらを積層し、上蓋と下蓋をかしめて試験用セルを作製し、分離膜のバルク抵抗を測定した。測定装置及び測定条件は下記のとおりとした。
 測定装置:VSP 電気化学測定システム(BioLogic社製)
 測定温度:25℃
 AC振幅:10mV
 周波数範囲:10mHz~1MHz
 測定後、下記の式(α)に従い分離膜のイオン伝導度を算出した。結果を表1に示す。
 σ=L/RA・・・(α)
 σ(S/cm):イオン伝導度
 L(cm):分離膜の厚さ
 R(Ω):バルク抵抗
 A(cm):SUS製スペーサの断面積
Figure JPOXMLDOC01-appb-T000014
 表1に示すように、実施例に係る分離膜は、比較例に係る分離膜と比べて、より高いイオン伝導度を有していた。
 実施例に係る分離膜は、比較例に係る分離膜と比べて、より短時間で、成膜可能であった。
<溶媒分離能力の評価>
 実施例又は比較例に係る分離膜と、セパレータ(UP3085、宇部興産社製)とを重ね、これらを2枚のシリコンゴム(厚み0.5mm)製シートで挟んだものを、H型セルの間に配置した。分離膜側のセルにジメチルカーボネート(DMC)を入れ、所定日数経過後のセパレータの外観を目視にて観察した。分離膜が溶媒分離能力に優れていると、DMCが分離膜を透過しにくいため、セパレータにDMCが浸透しにくいが、溶媒分離能力に劣る分離膜であれば、DMCが分離膜を透過してセパレータに浸透する。よって、セパレータの外観を観察し、セパレータへのDMCの浸透の有無を確認することにより、分離膜の溶媒(第1の溶媒及び第2の溶媒に相当する溶媒)の分離能力を評価することができる。
 実施例に係る分離膜は、試験開始から3日経過後であってもセパレータへのDMCの浸透がなく、優れた溶媒分離能力を有する分離膜であることが示された。
 1…リチウムイオン二次電池、2…電極群、3…電池外装体、4…正極集電タブ、5…負極集電タブ、6…正極、7…分離膜、8…負極、9…正極集電体、10…正極合剤層、11…負極集電体、12…負極合剤層。

Claims (12)

  1.  正極合剤層、分離膜、及び負極合剤層をこの順に備えるリチウムイオン二次電池であって、
     前記正極合剤層が、正極活物質、第1のリチウム塩、及び第1の溶媒を含有し、
     前記負極合剤層が、負極活物質、第2のリチウム塩、及び前記第1の溶媒とは異なる第2の溶媒を含有し、
     前記分離膜が、リチウムイオン伝導性を有するポリマ、第3のリチウム塩、及び第3の溶媒を含有し、
     前記ポリマが、モノマ及びチオール化合物を含む重合性成分の重合物である、リチウムイオン二次電池。
  2.  前記チオール化合物が、2つ以上のチオール基を有する、請求項1に記載のリチウムイオン二次電池。
  3.  前記モノマが、2つの(メタ)アクリロイル基を有する第1のモノマと、3つ以上の(メタ)アクリロイル基を有する第2のモノマと、を含む、請求項1又は2に記載のリチウムイオン二次電池。
  4.  正極活物質、第1のリチウム塩、及び第1の溶媒を含有する正極合剤層と、負極活物質、第2のリチウム塩、及び前記第1の溶媒とは異なる第2の溶媒を含有する負極合剤層と、を備えるリチウムイオン二次電池において、前記正極合剤層及び前記負極合剤層の間に配置されるための分離膜であって、
     リチウムイオン伝導性を有するポリマ、第3のリチウム塩、及び第3の溶媒を含有し、
     前記ポリマが、モノマ及びチオール化合物を含む重合性成分の重合物である、分離膜。
  5.  前記チオール化合物が、2つ以上のチオール基を有する、請求項1に記載の分離膜。
  6.  前記モノマが、2つの(メタ)アクリロイル基を有する第1のモノマと、3つ以上の(メタ)アクリロイル基を有する第2のモノマと、を含む、請求項4に記載の分離膜。
  7.  正極活物質、第1のリチウム塩、及び第1の溶媒を含有する正極合剤層を備える正極を得る工程、
     負極活物質、第2のリチウム塩、及び前記第1の溶媒とは異なる第2の溶媒を含有する負極合剤層を備える負極を得る工程、
     モノマ及びチオール化合物を含む重合性成分と、第3のリチウム塩と、第3の溶媒と、を含有するスラリを膜状に成形してから、前記重合性成分を反応させることにより分離膜を得る工程、並びに、
     前記正極と前記負極との間に、前記分離膜を設ける工程と、を備える、リチウムイオン二次電池の製造方法。
  8.  前記チオール化合物が、2つ以上のチオール基を有する、請求項7に記載のリチウムイオン二次電池の製造方法。
  9.  前記モノマが、2つの(メタ)アクリロイル基を有する第1のモノマと、3つ以上の(メタ)アクリロイル基を有する第2のモノマと、を含む、請求項7又は8に記載のリチウムイオン二次電池の製造方法。
  10.  正極活物質、第1のリチウム塩、及び第1の溶媒を含有する正極合剤層と、負極活物質、第2のリチウム塩、及び前記第1の溶媒とは異なる第2の溶媒を含有する負極合剤層と、を備えるリチウムイオン二次電池において、前記正極合剤層及び前記負極合剤層の間に配置されるための分離膜の製造方法であって、
     モノマ及びチオール化合物を含む重合性成分と、第3のリチウム塩と、第3の溶媒とを含有するスラリを膜状に成形してから前記重合性成分を反応させることにより分離膜を得る工程を備える、製造方法。
  11.  前記チオール化合物が、2つ以上のチオール基を有する、請求項10に記載の製造方法。
  12.  前記モノマが、2つの(メタ)アクリロイル基を有する第1のモノマと、3つ以上の(メタ)アクリロイル基を有する第2のモノマと、を含む、請求項10又は11に記載の製造方法。
PCT/JP2021/012676 2021-03-25 2021-03-25 リチウムイオン二次電池、分離膜及びこれらの製造方法 WO2022201464A1 (ja)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2023508346A JPWO2022201464A1 (ja) 2021-03-25 2021-03-25
CN202180094537.7A CN116888796A (zh) 2021-03-25 2021-03-25 锂离子二次电池、隔膜及其制造方法
US18/278,820 US20240178518A1 (en) 2021-03-25 2021-03-25 Lithium-ion secondary battery, separation membrane, and method for manufacturing these
EP21933069.3A EP4293780A1 (en) 2021-03-25 2021-03-25 Lithium-ion secondary battery, separation membrane, and method for manufacturing these
KR1020237020241A KR20230110306A (ko) 2021-03-25 2021-03-25 리튬 이온 2차 전지, 분리막 및 이들의 제조 방법
PCT/JP2021/012676 WO2022201464A1 (ja) 2021-03-25 2021-03-25 リチウムイオン二次電池、分離膜及びこれらの製造方法
TW111111046A TWI851979B (zh) 2021-03-25 2022-03-24 鋰離子二次電池、分離膜及該等之製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/012676 WO2022201464A1 (ja) 2021-03-25 2021-03-25 リチウムイオン二次電池、分離膜及びこれらの製造方法

Publications (1)

Publication Number Publication Date
WO2022201464A1 true WO2022201464A1 (ja) 2022-09-29

Family

ID=83396622

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012676 WO2022201464A1 (ja) 2021-03-25 2021-03-25 リチウムイオン二次電池、分離膜及びこれらの製造方法

Country Status (6)

Country Link
US (1) US20240178518A1 (ja)
EP (1) EP4293780A1 (ja)
JP (1) JPWO2022201464A1 (ja)
KR (1) KR20230110306A (ja)
CN (1) CN116888796A (ja)
WO (1) WO2022201464A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110447A (ja) 1999-10-05 2001-04-20 Sharp Corp リチウム二次電池
WO2019017310A1 (ja) * 2017-07-21 2019-01-24 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
WO2020250892A1 (ja) * 2019-06-13 2020-12-17 昭和電工マテリアルズ株式会社 二次電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001110447A (ja) 1999-10-05 2001-04-20 Sharp Corp リチウム二次電池
WO2019017310A1 (ja) * 2017-07-21 2019-01-24 富士フイルム株式会社 固体電解質組成物、固体電解質含有シート及び全固体二次電池、並びに、固体電解質含有シート及び全固体二次電池の製造方法
WO2020250892A1 (ja) * 2019-06-13 2020-12-17 昭和電工マテリアルズ株式会社 二次電池

Also Published As

Publication number Publication date
JPWO2022201464A1 (ja) 2022-09-29
CN116888796A (zh) 2023-10-13
EP4293780A1 (en) 2023-12-20
KR20230110306A (ko) 2023-07-21
US20240178518A1 (en) 2024-05-30
TW202244133A (zh) 2022-11-16

Similar Documents

Publication Publication Date Title
CN101188314A (zh) 离子化合物、电解液、电化学装置以及电池
US20160211521A1 (en) Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries using same, lithium ion secondary battery and battery system
KR102174010B1 (ko) 전지 셀 시트, 이차 전지, 전지 셀 시트의 제조 방법, 및 이차 전지의 제조 방법
WO2022201464A1 (ja) リチウムイオン二次電池、分離膜及びこれらの製造方法
JP6992362B2 (ja) リチウムイオン二次電池
WO2018198969A1 (ja) 二次電池用電池部材及び二次電池、並びにそれらの製造方法
WO2022201463A1 (ja) リチウムイオン二次電池、分離膜及びこれらの製造方法
WO2019065288A1 (ja) リチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池
TWI851979B (zh) 鋰離子二次電池、分離膜及該等之製造方法
JP7446657B2 (ja) 二次電池用電極、二次電池用電解質層及び二次電池
JP6950855B1 (ja) リチウムイオン二次電池、分離膜及びこれらの製造方法
WO2022215235A1 (ja) リチウムイオン二次電池及び分離膜
EP4235936A2 (en) Lithium ion secondary battery and separation membrane
EP4195345A1 (en) Lithium ion secondary battery and separation membrane
JP2019061827A (ja) リチウムイオン二次電池
JP2019061828A (ja) リチウムイオン二次電池用非水電解液およびそれを用いたリチウムイオン二次電池
WO2024127079A1 (ja) リチウム二次電池用電解液およびこれを用いたリチウム二次電池
KR20230086799A (ko) 리튬 이온 2차 전지 및 분리막
JP2017182946A (ja) リチウム二次電池用電解液およびこれを備えるリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933069

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20237020241

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 18278820

Country of ref document: US

Ref document number: 202180094537.7

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2021933069

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2023508346

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 2021933069

Country of ref document: EP

Effective date: 20230914

NENP Non-entry into the national phase

Ref country code: DE