WO2022201394A1 - 光源パラメータ情報管理方法、光源パラメータ情報管理装置及びコンピュータ可読媒体 - Google Patents

光源パラメータ情報管理方法、光源パラメータ情報管理装置及びコンピュータ可読媒体 Download PDF

Info

Publication number
WO2022201394A1
WO2022201394A1 PCT/JP2021/012384 JP2021012384W WO2022201394A1 WO 2022201394 A1 WO2022201394 A1 WO 2022201394A1 JP 2021012384 W JP2021012384 W JP 2021012384W WO 2022201394 A1 WO2022201394 A1 WO 2022201394A1
Authority
WO
WIPO (PCT)
Prior art keywords
light source
parameter information
target
management method
information management
Prior art date
Application number
PCT/JP2021/012384
Other languages
English (en)
French (fr)
Inventor
裕司 峰岸
理 若林
Original Assignee
ギガフォトン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ギガフォトン株式会社 filed Critical ギガフォトン株式会社
Priority to CN202180092695.9A priority Critical patent/CN116802562A/zh
Priority to PCT/JP2021/012384 priority patent/WO2022201394A1/ja
Priority to JP2023508286A priority patent/JPWO2022201394A1/ja
Publication of WO2022201394A1 publication Critical patent/WO2022201394A1/ja
Priority to US18/363,381 priority patent/US20240023217A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/708Construction of apparatus, e.g. environment aspects, hygiene aspects or materials
    • G03F7/70975Assembly, maintenance, transport or storage of apparatus
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • H05B45/50Circuit arrangements for operating light-emitting diodes [LED] responsive to malfunctions or undesirable behaviour of LEDs; responsive to LED life; Protective circuits
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70025Production of exposure light, i.e. light sources by lasers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70491Information management, e.g. software; Active and passive control, e.g. details of controlling exposure processes or exposure tool monitoring processes
    • G03F7/70525Controlling normal operating mode, e.g. matching different apparatus, remote control or prediction of failure
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/17Operational modes, e.g. switching from manual to automatic mode or prohibiting specific operations
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/175Controlling the light source by remote control
    • H05B47/19Controlling the light source by remote control via wireless transmission

Definitions

  • the present disclosure relates to a light source parameter information management method, a light source parameter information management device, and a computer-readable medium.
  • a KrF excimer laser device that outputs laser light with a wavelength of about 248 nm and an ArF excimer laser device that outputs laser light with a wavelength of about 193 nm are used.
  • the spectral line width of the spontaneous oscillation light of the KrF excimer laser device and the ArF excimer laser device is as wide as 350-400 pm. Therefore, if the projection lens is made of a material that transmits ultraviolet light, such as KrF and ArF laser light, chromatic aberration may occur. As a result, resolution can be reduced. Therefore, it is necessary to narrow the spectral line width of the laser light output from the gas laser device to such an extent that the chromatic aberration can be ignored. Therefore, in the laser resonator of the gas laser device, a line narrow module (LNM) including a band narrowing element (etalon, grating, etc.) is provided in order to narrow the spectral line width.
  • LNM line narrow module
  • a gas laser device whose spectral line width is narrowed will be referred to as a band-narrowed gas laser device.
  • a light source parameter information management method is a light source parameter information management method for managing parameter information of a light source used in an exposure apparatus, and is a variable that is a priority target parameter prioritized in operation of the light source. obtaining priority target parameter information including target values for items and variables; estimating maintenance information including a value representing a service life of a consumable in a light source based on the priority target parameter information; and outputting information.
  • a light source parameter information management device includes a processor and a memory in which a program executed by the processor is stored. Obtain priority target parameter information including variable items and variable target values that are priority target parameters that are prioritized in the operation of the light source, and based on the priority target parameter information, a value that represents the life of the consumables in the light source until maintenance , and output the maintenance information.
  • a computer-readable medium is a non-transitory computer-readable medium recording a program that causes a computer to implement a function of managing parameter information of a light source used in an exposure apparatus,
  • a computer is provided with a function of acquiring priority target parameter information including items of variables that are priority target parameters prioritized in the operation of the light source and target values of the variables;
  • It is a computer-readable medium on which a program for realizing a function of estimating maintenance information including a value representing a life until maintenance, a function of outputting maintenance information, and a program for realizing the function are recorded.
  • FIG. 1 schematically illustrates the configuration of a semiconductor manufacturing system within an exemplary semiconductor factory.
  • FIG. 2 schematically shows the configuration of the lithography system.
  • FIG. 3 shows an example of an output pattern of the light emission trigger signal output from the exposure control section to the laser control section.
  • FIG. 4 shows an example of an exposure pattern for step-and-scan exposure on a wafer.
  • FIG. 5 shows the relationship between one scan field on the wafer and the static exposure area.
  • FIG. 6 shows an example of a static exposure area.
  • FIG. 7 schematically shows the configuration of a light source for an exemplary exposure apparatus.
  • FIG. 8 shows the configuration of the semiconductor manufacturing system according to the first embodiment.
  • FIG. 1 schematically illustrates the configuration of a semiconductor manufacturing system within an exemplary semiconductor factory.
  • FIG. 2 schematically shows the configuration of the lithography system.
  • FIG. 3 shows an example of an output pattern of the light emission trigger signal output from the exposure control section to the laser control section.
  • FIG. 4 shows an example of an
  • FIG. 9 is a block diagram showing the overall flow of processing in the semiconductor manufacturing system according to the first embodiment.
  • FIG. 10 is a flowchart showing an example of processing contents in the data analysis server.
  • FIG. 11 is a graph showing a method of obtaining the target values of the light source parameters and their ranges from the regression curve.
  • FIG. 12 is a flowchart showing an example of processing contents in the light source parameter management server.
  • FIG. 13 is a flow chart showing an example of processing contents in the light source parameter management server.
  • FIG. 14 is a flow chart showing an example of a subroutine applied to step S22 of FIG.
  • FIG. 15 is a flow chart showing an example of a subroutine applied to step S29 of FIG. 13 and step S44 of FIG.
  • FIG. 10 is a flowchart showing an example of processing contents in the data analysis server.
  • FIG. 11 is a graph showing a method of obtaining the target values of the light source parameters and their ranges from the regression curve.
  • FIG. 12 is
  • FIG. 16 is a block diagram showing the overall flow of processing in the semiconductor manufacturing system according to the second embodiment.
  • FIG. 17 is a flowchart showing an example of a confirmation flow of recommended target parameter information in the data analysis server according to the second embodiment.
  • FIG. 18 is a graph showing an analysis example of the relationship between recommended target parameters and exposure performance parameters.
  • FIG. 19 is a flow chart showing an example of processing contents in the light source parameter management server according to the second embodiment.
  • FIG. 20 is a flowchart illustrating an example of processing contents in the light source parameter management server according to the second embodiment.
  • FIG. 21 is a flow chart showing an example of a subroutine applied to step S72 of FIG.
  • FIG. 22 is a flow chart showing an example of a subroutine applied to step S79 of FIG.
  • FIG. 23 is a flow chart showing an example of a subroutine applied to step S106 of FIG.
  • FIG. 24 is a flow chart showing an example of processing contents in the light source parameter management server according to the third embodiment.
  • FIG. 25 is a flow chart showing an example of a subroutine applied to step S71 of FIG.
  • FIG. 26 is an example of a graph showing the relationship between priority target parameters and operation control parameters.
  • FIG. 27 is a flow chart showing an example of processing contents in the data analysis server according to the fourth embodiment.
  • FIG. 28 is a graph showing an example of a method of obtaining a target spectral linewidth and its range using a regression curve.
  • FIG. 29 is a flow chart showing an example of a subroutine applied to step S71 of FIG.
  • FIG. 30 is an example of a graph showing the relationship between the spectral linewidth and the lens interval of the wavefront modulator.
  • FIG. 31 is a flowchart showing an example of processing contents in the light source parameter management server when the priority target parameter value is a high pulse energy value and the recommended target parameter value is a wide spectral line width value.
  • FIG. 32 is an example of a graph showing the relationship between the pulse energy and the lens spacing of the wavefront modulator.
  • FIG. 33 is an example of a graph showing the relationship between pulse energy and spectral linewidth.
  • FIG. 34 is a flowchart showing an example of processing contents in the light source parameter management server when the priority target parameter value is a high pulse energy value and the range of the pulse energy stability parameter can be relaxed.
  • FIG. 35 is an example of a graph showing the relationship between halogen gas partial pressure and pulse energy and the relationship between halogen gas partial pressure and pulse energy stability.
  • FIG. 36 is a graph showing a setting example of the halogen gas partial pressure when giving priority to the stability of the pulse energy in the optical performance priority mode.
  • FIG. 37 is an example of a graph showing the relationship between duty ratio and pulse energy.
  • FIG. 38 is a flowchart showing an example of processing contents in the light source parameter management server when the priority target parameter is the duty ratio and the range of the pulse energy stability parameter can be relaxed.
  • FIG. 35 is an example of a graph showing the relationship between halogen gas partial pressure and pulse energy and the relationship between halogen gas partial pressure and pulse energy stability.
  • FIG. 36 is a graph showing a setting example of the halogen
  • FIG. 39 is a flow chart showing an example of the processing contents applied in the consumables life extension mode operation.
  • FIG. 40 is an example of a graph showing the relationship between gas consumption per unit pulse and pulse energy.
  • FIG. 41 is an example of a processing flow applied in the case of gas consumption reduction mode operation.
  • FIG. 42 is an example of a processing flow applied in power saving mode operation.
  • FIG. 43 is a block diagram showing a modification of the fourth embodiment;
  • FIG. 44 is a table showing a specific example of parameter information regarding a light source.
  • FIG. 45 is a chart showing a specific example of priority target parameter information.
  • FIG. 46 is a chart showing a specific example of recommended target parameter information.
  • FIG. 47 is a chart showing a specific example of maintenance information.
  • FIG. 48 is a chart showing a specific example of operation control target parameter information.
  • Embodiment 4 9.1 Configuration 9.2 Performance Priority Mode Operation 9.2.1 Example of Spectral Linewidth ⁇ as Priority Target Parameter 9.2.1.1 Operation 9.2.1.2 Effect 9.2.1. 3 Others 9.2.2 When pulse energy is the priority target parameter 9.2.2.1 Example of when obtaining high pulse energy is given priority and exposure can be performed by widening spectral line width ⁇ 9.2 .2.1.1 Operation 9.2.2.1.2 Effects 9.2.2.1.3 Others 9.2.2.2 Obtaining high pulse energy is a priority and pulse energy stability is specified 9.2.2.2.1 Operation 9.2.2.2.2 Effects 9.2.2.2.3 Others 9.2.2.3 High duty ratio Example of a case where priority is given to operation at 9.2.2.3.1 Operation 9.2.2.3.2 Effect 9.2.2.
  • parameter information 11 Computer-readable medium on which the program is recorded. Others
  • embodiments of the present disclosure will be described in detail with reference to the drawings.
  • the embodiments described below show some examples of the present disclosure and do not limit the content of the present disclosure.
  • not all the configurations and operations described in each embodiment are essential as the configurations and operations of the present disclosure.
  • the same reference numerals are given to the same components, and redundant explanations are omitted.
  • Consables refer to parts or modules that deteriorate due to pulse output of a light source used in an exposure apparatus and need to be replaced.
  • a light source chamber there may be a light source chamber, a narrowband module (LNM), an out-coupling mirror (OC), a monitor module, and the like.
  • LNM narrowband module
  • OC out-coupling mirror
  • monitor module a monitor module
  • replacement includes replacing consumables with new ones, as well as maintaining and/or restoring the functions of parts by cleaning consumables, and relocating the same consumables.
  • CD Crritical Dimension
  • “Overlay” refers to the superposition of fine patterns formed on wafers such as semiconductors.
  • Exposure conditions refer to the conditions under which the resist of wafers such as semiconductors is exposed. Specific examples include illumination conditions, projection conditions, exposure dose, spectral characteristics of light sources, output characteristics of light sources, and the like.
  • a "parameter” is an item that represents a variable.
  • Parameter value is the value of the above variable. That is, it is a specific numerical value of the above parameter.
  • Parameter information is a collection of data that includes multiple variables and the values of the multiple variables.
  • the spectral linewidth parameter information is a collection of data including a variable (item) called spectral linewidth and its value, and a variable (item) called spectral linewidth stability (operating range) and its value.
  • Values indicative of spectral linewidth stability include, for example, the lower and upper limits of the operating range.
  • the spectral linewidth parameter information may also include a variable of a period during which operation is performed while satisfying the spectral linewidth value and stability, and data of the value.
  • target such as “target parameter” and “target parameter information” means that it is a parameter or parameter information that is set as a control target.
  • the target parameter information may include a target value, which is the control target of the parameter, and information indicating its allowable range.
  • the allowable range referred to here may be read as the operating range of the parameter, the operating specification, the variation range, the stability range, or the like.
  • Priority target parameter information is a collection of data of items of variables that are target parameters prioritized in the operation of the light source and target values of the variables. A specific example of the priority target parameter information will be described later (Fig. 45).
  • the priority target parameter information also includes the following two cases.
  • the light source's light performance priority mode operation refers to operating the light source so as to prioritize the light performance of the light source.
  • Consumables life extension mode operation refers to operating the light source so as to extend the life of the consumables of the light source.
  • Consumption reduction mode operation refers to operating the light source so as to reduce the power consumption and gas consumption of the light source. Power and laser gas are each elements consumed by the operation of the light source.
  • Recommended target parameter information refers to parameters that are different from the priority target parameters estimated when the light source is operated with target parameter information that is prioritized in light source operation, and that are parameters that require specification relaxation. It is a collection of target value data. A specific example of the recommended target parameter information will be described later (FIG. 46).
  • Maintenance information is a collection of data on the number of remaining pulses or the remaining time until maintenance of each consumable that requires periodic replacement of parts of the light source after the operation of the light source is stopped. A specific example of maintenance information will be described later (FIG. 47).
  • the remaining number of pulses or remaining time until maintenance for each consumable is a value that indicates the life of each consumable (remaining life until maintenance). If the number of pulses per unit time, such as the average number of pulses per day, is known, the remaining number of pulses until maintenance of consumables can be converted into the remaining time. As a parameter indicating the service life of consumables, the number of remaining pulses until maintenance may be used, the remaining time may be used, or both of them may be used.
  • the maintenance information may also include date and time information indicating when the consumables should be replaced.
  • “Operating control target parameters” are light source control target parameters necessary for the light source to achieve the priority target parameter information.
  • "Operating control target parameter information” is an aggregate of an operating control target parameter and a target value, and a plurality of operating control target parameters may be set in order to satisfy a plurality of required specifications. A specific example of the operation control target parameter information will be described later (Fig. 48).
  • External device is a device that receives at least one of priority target parameter information, recommended target parameter information, and maintenance information.
  • a semiconductor factory management system a display device (a display device for informing the operator of priority control parameter information, recommended target parameter information, maintenance information, etc.), an exposure device, an exposure device management system, etc. are external devices. can be.
  • FIG. 1 schematically shows the configuration of a semiconductor manufacturing system 200 in an exemplary semiconductor factory.
  • Semiconductor manufacturing system 200 includes a plurality of lithography systems 10 , wafer inspection equipment management system 202 , exposure equipment management system 204 , light source management system 206 , and semiconductor factory management system 208 .
  • the semiconductor factory management system 208 is connected to the wafer inspection device management system 202 , the exposure device management system 204 and the light source management system 206 via the network 210 .
  • the network 210 is a communication line capable of transmitting information by wire, wireless, or a combination thereof.
  • Network 210 may be a wide area network or a local area network.
  • lithography system identification codes #1, #2, . . . #k, . w is the number of lithography systems included in semiconductor manufacturing system 200 .
  • w is an integer of 1 or more.
  • k is an integer ranging from 1 to w.
  • Each lithography system #k includes a wafer inspection device 12, an exposure device 14, and a light source 16.
  • the wafer inspection apparatus 12, the exposure apparatus 14, and the light source 16 included in the lithography system #k are hereinafter referred to as wafer inspection apparatus #k, exposure apparatus #k, and light source #k, respectively.
  • each lithography system #k is shown to include one each of wafer inspection apparatus #k, exposure apparatus #k, and light source #k.
  • Some or all of the plurality of lithography systems #1 to #w may have different configurations.
  • the number and arrangement of wafer inspection apparatus #k, exposure apparatus #k, and light source #k included in lithography system #k can be appropriately designed.
  • Each lithography system #k includes one or more wafer inspection devices #k, one or more exposure devices #k, and one or more light sources #k.
  • the wafer inspection equipment management system 202 is connected to each of the wafer inspection equipments #1 to #w via the first local area network 211 .
  • the exposure apparatus management system 204 is connected to each exposure apparatus #1 to #w via a second local area network 212 .
  • a light source management system 206 is connected to each of the light sources # 1 to #w via a third local area network 213 .
  • the first local area network 211 is indicated as “LAN1", the second local area network 212 as “LAN2”, and the third local area network 213 as "LAN3".
  • the wafer inspection apparatuses #1 to #w measure the physical characteristic values of the surface of each wafer on which the respective resist patterns are formed.
  • Physical characteristic values are, for example, CD values, overlays, magnification values, and surface heights.
  • the wafer inspection apparatus management system 202 acquires the physical property values measured for each wafer from the wafer inspection apparatuses #1 to #w, and stores the measured physical property values for each wafer in each lithography system #k. and store each characteristic value data. Furthermore, the wafer inspection apparatus management system 202 organizes and stores the physical characteristic value data for each scan field of each wafer.
  • the wafer inspection apparatus management system 202 outputs part or all of these measurement data to the semiconductor factory management system 208 and a data analysis server (not shown) as necessary.
  • the exposure apparatus management system 204 acquires data including exposure conditions and measurement values for each wafer and each scan field from the exposure apparatuses #1 to #w.
  • Exposure conditions are, for example, projection conditions, illumination conditions, and the like.
  • the "measured value” is, for example, the amount of exposure, the focus position, and the like.
  • the exposure apparatus management system 204 stores data of exposure conditions and measurement values for each lithography system #k, each wafer, and each scan field.
  • the exposure apparatus management system 204 outputs part or all of these measurement data to the semiconductor factory management system 208 and the data analysis server as required.
  • the light source management system 206 acquires operation data from each of the light sources #1 to #w, and stores the operation data of the light source #k for each lithography system #k.
  • the operating data includes, for example, spectral characteristic value data, pulse energy characteristic value data, laser light output characteristic value data, and the like.
  • Spectral characteristic values are, for example, wavelength and spectral line width.
  • the output characteristic values of the laser light include, for example, the pulse energy value, ⁇ (standard deviation value) indicating variations in pulse energy, dose stability, the number of pulses per unit time, and the duty ratio.
  • the operating data includes measurement data measured using a sensor or the like during operation of the light source #k.
  • the light source management system 206 organizes and stores these data for each lithography system, each wafer, and each scan field, and if necessary, the semiconductor factory management system 208 and data analysis server. , some or all of these measurement data are output.
  • the semiconductor factory management system 208 manages the entire semiconductor factory.
  • the semiconductor factory management system 208 receives information obtained by, for example, the wafer inspection device management system 202 , the exposure device management system 204 , and the light source management system 206 .
  • FIG. 2 schematically shows a configuration example of the lithography system #k.
  • Lithography system #k includes wafer inspection apparatus 12 , exposure apparatus 14 , and light source 16 .
  • the wafer inspection device 12 can perform the following measurements by irradiating the wafer with laser light and measuring the reflected light or diffracted light. That is, the wafer inspection apparatus 12 is capable of measurements including CD, wafer height, and overlay. Also, the wafer inspection device 12 may be a high-resolution scanning electron microscope (SEM).
  • the wafer inspection device 12 includes a wafer inspection controller 220 , a wafer holder 225 and a wafer stage 226 .
  • the exposure apparatus 14 includes an exposure control unit 50, a beam delivery unit (BDU) 15, a high reflection mirror 51, an illumination optical system 66, a reticle 74 and a reticle stage 76, a projection optical system 78, a wafer holder 80 and a wafer.
  • a stage 81 and a focus sensor 84 are included.
  • the exposure apparatus #k includes an exposure sensor (not shown) for measuring the exposure on the wafer WF held by the wafer holder 80 .
  • the illumination optical system 66 is configured to shape the incident laser beam into a rectangular static exposure area SEA (see FIG. 5) with a substantially uniform light intensity distribution.
  • the illumination optical system 66 is configured to generate an illumination pattern (not shown) so that the illumination conditions for the reticle 74 can be changed.
  • the illumination pattern may be, for example, polarized illumination, annular illumination, dipole illumination, and the like.
  • the projection optical system 78 is arranged to form an image of the reticle pattern on the wafer WF. NA) can be adjusted.
  • the focus sensor 84 is arranged so that the distance between the wafer WF surface and the projection optical system 78 can be measured.
  • the light source 16 is, for example, an excimer laser device capable of narrowband oscillation with variable wavelength and spectral linewidth, and includes a laser control unit 90, a monitor module (not shown in FIG. 1), a chamber, and a narrowband module. , out-coupling mirrors, and other devices.
  • a laser control unit 90 for example, an excimer laser device capable of narrowband oscillation with variable wavelength and spectral linewidth
  • monitor module not shown in FIG. 1
  • a chamber for example, a laser control unit 90, a monitor module (not shown in FIG. 1), a chamber, and a narrowband module. , out-coupling mirrors, and other devices.
  • out-coupling mirrors and other devices.
  • a control device functioning as each control unit such as the exposure control unit 50 and the laser control unit 90 can be realized by a combination of hardware and software of one or more computers.
  • Software is synonymous with program.
  • a programmable controller is included in the concept of a computer.
  • a computer includes a CPU (Central Processing Unit) and a memory.
  • a programmable controller is included in the concept of a computer. Also, part or all of the processing functions of the control device may be realized using an integrated circuit represented by FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit).
  • controllers may be connected to each other via a communication network such as a local area network or the Internet.
  • program units may be stored in both local and remote memory storage devices.
  • the exposure controller 50 outputs various target parameter values to the light source 16 .
  • the target parameter values provided from exposure controller 50 to light source 16 include target wavelength ⁇ t, target spectral linewidth ⁇ t, target pulse energy Et, and other target parameter values.
  • the laser control unit 90 adjusts the selected wavelength and wavelength bandwidth of the narrow-band module of the laser resonator, which will be described later, so that the output wavelength and spectral linewidth of the light source 16 become the target wavelength ⁇ t and the target spectral linewidth ⁇ t. , to control. Then, the laser control unit 90 outputs pulsed laser light in synchronization with the light emission trigger signal Tr, and outputs data measured by a monitor module, which will be described later, to the exposure control unit 50 and the light source management system 206 . Data measured by the monitor module include wavelength ⁇ , spectral linewidth ⁇ , pulse energy E, and the like.
  • the exposure control unit 50 controls the reticle stage 76 and the wafer stage 81 while outputting the light emission trigger signal Tr by a step-and-scan method, which will be described later, on the resist-coated wafer WF, thereby displaying the image of the reticle 74 on the wafer WF.
  • the resist is scanned and exposed.
  • the exposure control unit 50 then outputs the exposure condition data to the exposure apparatus management system 204 .
  • the exposure condition data includes, for example, the conditions (illumination pattern) of the illumination optical system 66, the dose (exposure amount), the focus (the distance between the projection optical system 78 and the wafer surface), and the conditions of the projection optical system 78 (for example, , NA) and
  • the wafer inspection apparatus 12 develops the exposed wafer WF in a developing apparatus (not shown), and then detects physical characteristic values (e.g., CD value, overlay, magnification, surface height, etc.).
  • the wafer inspection control unit 220 then outputs these measurement data to the wafer inspection apparatus management system 202 .
  • FIG. 3 shows an example of an output pattern of the light emission trigger signal Tr output from the exposure controller 50 to the laser controller 90 .
  • an actual exposure pattern is entered after adjustment exposure for each wafer WF.
  • the light source 16 stops oscillating during the step period in the step-and-scan exposure, and outputs pulsed laser light according to the interval of the light emission trigger signal Tr during the scanning period.
  • Such a laser oscillation pattern is called a burst operation pattern.
  • FIG. 4 shows an example of an exposure pattern of step-and-scan exposure on the wafer WF.
  • Each of the numerous rectangular areas shown within the wafer WF in FIG. 4 is a scan field SF.
  • the scan field SF is an exposure area for one scan exposure and is also called a scan area.
  • the wafer WF is divided into a plurality of exposure areas (scan fields SF) of a predetermined size, and the period between the start (Wafer START) and the end (Wafer END) of wafer exposure is Secondly, each exposure area is scanned and exposed.
  • the first predetermined exposure area of the wafer WF is exposed by the first scan exposure (Scan#1), and then the second predetermined exposure area is exposed by the second scan exposure (Scan#2). ) is repeated.
  • a plurality of pulsed laser beams can be continuously output from the laser device during one scanning exposure. This scan exposure is sequentially repeated, and after completing the scan exposure of the entire exposure area of the first wafer WF, the adjustment exposure is performed again, and then the wafer exposure of the second wafer WF is performed.
  • Step-and-scan exposure is performed in the order of the dashed arrows shown in FIG. 4 from Wafer START ⁇ Scan #1 ⁇ Scan #2 ⁇ .
  • the wafer WF is an example of a semiconductor substrate (photosensitive substrate) coated with a resist.
  • FIG. 5 shows the relationship between one scan field SF on the wafer WF and the static exposure area SEA.
  • the reticle 74 is irradiated with a rectangular laser beam having a substantially uniform light intensity distribution, and the reticle 74 and the wafer WF are aligned with the reduction magnification of the projection optical system 78 in the minor axis direction (Y-axis direction).
  • the reticle pattern is exposed onto the scan field SF on the wafer WF by exposing while moving in different directions in the Y-axis direction accordingly.
  • This example shows a case where the wafer stage 81 moves in the negative direction of the Y-axis and the scanning direction moves in the positive direction of the Y-axis during scanning exposure.
  • the movement time of the next step may be shortened by combining the case where the wafer stage 81 moves in the positive direction of the Y axis and the scanning direction moves in the negative direction.
  • N slit the number of pulses Ns of the pulsed laser light irradiated to the resist while performing scanning exposure.
  • N slit the number of pulses Ns of the pulsed laser light irradiated to the resist while performing scanning exposure.
  • FIG. 7 schematically shows the configuration of an exemplary light source 16 .
  • the light source 16 is, for example, a KrF excimer laser device and includes a chamber 100, a band narrowing module (LNM) 102, an inverter 104, an output coupling mirror (OC) 106, a wavefront tuner 107, and a monitor module 108. , a charger 110 , a pulse power module (PPM) 112 , a gas supply device 114 , a gas exhaust device 116 and an exit shutter 118 .
  • LNM band narrowing module
  • OC output coupling mirror
  • PPM pulse power module
  • the chamber 100 includes a first window 121, a second window 122, a cross flow fan (CFF) 123, a motor 124 that rotates the CFF 123, a pair of electrodes 125 and 126, an electrical insulator 127, and a pressure sensor. 128 and a heat exchanger (not shown).
  • CFF cross flow fan
  • the inverter 104 is a power supply device for the motor 124 .
  • Inverter 104 receives a command signal from laser controller 90 specifying the frequency of the power to be supplied to motor 124 .
  • the frequency of the inverter 104 By controlling the frequency of the inverter 104, the rotational speed of the CFF 123 can be controlled.
  • PPM 112 is connected to electrode 125 via a feedthrough in electrical insulator 127 of chamber 100 .
  • PPM 112 includes a semiconductor switch 129, a charging capacitor, a pulse transformer, and a pulse compression circuit, all not shown.
  • the LNM 102 includes a beam expander using a first prism 131 and a second prism 132, a rotating stage 134, and a grating 136.
  • the first prism 131 and the second prism 132 are arranged to expand the light beam emitted from the second window 122 of the chamber 100 in the Y-axis direction and enter the grating 136 .
  • the grating 136 is Littrow arranged so that the incident angle and the diffraction angle of the laser light match.
  • the second prism 132 is arranged on the rotary stage 134 so that the angle of incidence of the laser light on the grating 136 and the angle of diffraction thereof change when the rotary stage 134 rotates.
  • the OC 106 is a partially reflective mirror, arranged to form an optical resonator together with the LMN 102 .
  • a chamber 100 is placed on the optical path of this optical resonator.
  • a wavefront modulator 107 is arranged between the OC 106 and the chamber 100 .
  • the wavefront modulator 107 includes a cylindrical concave lens 171 , a cylindrical convex lens 172 and a linear stage 174 .
  • the radius of curvature of the wavefront viewed from the Z axis can be changed.
  • the monitor module 108 includes a first beam splitter 141 and a second beam splitter 142, a pulse energy detector 144, and a spectrum detector 146.
  • the first beam splitter 141 is arranged on the optical path of the laser light output from the OC 106 so that part of the laser light is reflected and enters the second beam splitter 142 .
  • the pulse energy detector 144 is arranged so that the laser light that has passed through the second beam splitter 142 is incident thereon. Pulse energy detector 144 may be, for example, a photodiode that measures ultraviolet light intensity. A second beam splitter 142 is positioned such that a portion of the laser light is reflected onto a spectral detector 146 .
  • the spectrum detector 146 may be, for example, an etalon spectroscope including an etalon and an image sensor.
  • the monitor etalon spectroscope has a configuration capable of measuring interference fringes generated by the etalon with an image sensor. Then, based on the generated interference fringes, the center wavelength and spectral line width of the output pulsed laser beam are measured.
  • the gas supply device 114 includes an inert gas supply source 152 that is an inert laser gas supply source and a halogen gas supply source 154 that is a halogen-containing laser gas supply source. Connected via piping.
  • An inert laser gas is a mixed gas of Kr gas and Ne gas.
  • the laser gas containing halogen is a mixed gas of F2 gas, Kr gas and Ne gas.
  • the gas supply device 114 is connected to the chamber 100 via piping.
  • the gas supply device 114 includes an automatic valve and a mass flow controller (not shown) for supplying a predetermined amount of inert laser gas or halogen-containing laser gas to the chamber 100 .
  • the gas exhaust device 116 is connected to the chamber 100 via piping.
  • the gas exhaust device 116 includes a halogen filter and an exhaust pump (not shown) for removing halogen, and is configured to exhaust the halogen-removed laser gas to the outside.
  • the exit shutter 118 is arranged on the optical path of the laser light output from the light source 16 to the outside, and has a configuration capable of outputting the laser light to the outside and blocking the light.
  • the light source 16 is arranged so that the laser light output from the light source 16 through the exit shutter 118 enters the exposure device 14 .
  • the laser control unit 90 After exhausting the gas present in the chamber 100 through the gas exhaust device 116, the laser control unit 90 causes the mixed gas of Kr and Ne and the mixed gas of F2, Kr, and Ne to be mixed through the gas supply device 114. Gases are charged into the chamber 100 to the desired gas composition and total gas pressure.
  • the laser control unit 90 rotates the motor 124 at a predetermined number of revolutions via the inverter 104 to rotate the CFF 123 . As a result, the laser gas flows between the electrodes 125,126.
  • the laser control unit 90 receives the target pulse energy Et from the exposure control unit 50 of the exposure device 14, and outputs data of the charging voltage V to the charger 110 so that the pulse energy becomes Et.
  • the charger 110 charges the charging capacitor of the PPM 112 to the charging voltage V.
  • the trigger signal Tr2 is input to the semiconductor switch 129 of the PPM 112 from the laser controller 90 in synchronization with the light emission trigger signal Tr1.
  • the semiconductor switch 129 operates, the current pulse is compressed by the magnetic compression circuit of the PPM 112 and a high voltage is applied between the electrodes 125 and 126 according to the charging voltage V. FIG. As a result, a discharge is generated between the electrodes 125 and 126 to excite the laser gas in the discharge space.
  • excimer light which is ultraviolet light
  • This excimer light oscillates by going back and forth between the OC 106 and the LMN 102 and being amplified.
  • narrow-band pulsed laser light is output from the OC 106 .
  • a pulsed laser beam output from the OC 104 enters the monitor module 108 .
  • a part of the laser light is sampled by the first beam splitter 141 in the monitor module 108 and enters the second beam splitter 142 .
  • the second beam splitter 142 transmits part of the incident laser beam to enter the pulse energy detector 144 and reflects another part of the laser beam to enter the spectrum detector 146 .
  • the pulse energy E of the pulse laser light output from the light source 16 is measured by the pulse energy detector 144 , and data of the measured pulse energy E is output from the pulse energy detector 144 to the laser controller 90 .
  • the spectrum detector 146 measures the center wavelength ⁇ and the spectral line width ⁇ , and outputs data of the measured center wavelength ⁇ and the spectral line width ⁇ from the spectrum detector 146 to the laser controller 90 .
  • the laser control unit 90 receives the target pulse energy Et, target wavelength ⁇ t, and target spectral linewidth ⁇ t from the exposure device 14 .
  • the laser controller 90 controls the pulse energy based on the pulse energy E measured by the pulse energy detector 144 and the target pulse energy Et.
  • the laser control unit 90 performs wavelength control and spectral line width control based on the center wavelength ⁇ and the target wavelength ⁇ t measured by the spectrum detector 146 .
  • the laser control unit 90 receives the target pulse energy Et, the target wavelength ⁇ t, and the target spectral line width ⁇ t from the exposure device 14, and every time the light emission trigger signal Tr1 is input, A pulsed laser beam is output from the light source 16 in synchronization.
  • the laser control unit 90 performs the following gas control ([1] to [4]) in order to suppress these adverse effects.
  • Halogen injection control refers to reducing the amount of halogen gas consumed mainly by discharge in the chamber 100 during laser oscillation to a gas containing a halogen gas at a higher concentration than the halogen gas in the chamber 100. is a gas control that replenishes the halogen gas by injecting .
  • the laser control unit 90 controls the halogen partial pressure in the chamber 100 to be the target halogen partial pressure Hgct.
  • the target halogen partial pressure Hgct is one of the operational control target parameters of the light source 16 .
  • Partial Gas exchange control refers to a gas that partially exchanges the laser gas in the chamber 100 with new laser gas so as to suppress an increase in the impurity gas concentration in the chamber 100 during laser oscillation. Control.
  • Gas pressure control is defined as a laser gas that is injected into the chamber 100 when it is difficult to control the pulse energy of the pulsed laser light output from the light source 16 within the control range of the charging voltage V. is a gas control that controls the pulse energy by varying the total gas pressure P of .
  • the upper limit value (HVULt) and lower limit value (HVLLt) of the control range of charging voltage V are one of the operation control target parameters of light source 16 .
  • gas consumption Gw is defined.
  • the gas consumption Gw is defined as the laser gas consumption per unit pulse number.
  • the target gas consumption Gwt is one of the operation control target parameters of the light source 16, and the light source 16 is controlled so that the gas consumption per unit pulse number is Gwt.
  • the laser controller 90 controls the gas exhaust device .
  • Halogen gas is removed from the laser gas exhausted from the chamber 100 by a halogen filter (not shown), and the laser gas is exhausted to the outside of the light source 16 .
  • the laser control unit 90 receives data of these parameter values including the number of oscillation pulses, the charging voltage V, the gas pressure P in the chamber 100, the pulse energy E of the laser light, the wavelength ⁇ , and the spectral line width ⁇ . are output to the exposure apparatus 14 and the light source management system 206 .
  • FIG. 7 shows an example of a narrow band KrF excimer laser device as the light source 16, but the light source 16 is not limited to this example and may be a narrow band ArF excimer laser device.
  • the present invention is not limited to this example. and an amplifier for performing the laser device.
  • the master oscillator In a laser device including a master oscillator and an amplifier, the master oscillator outputs narrow-band laser light in the amplifiable wavelength range of an ArF laser or KrF laser, which is a combination of a solid-state laser and a nonlinear crystal. It may be a solid-state laser device.
  • the light source is designed to guarantee operation within the range of specifications determined as a product.
  • FIG. 8 shows the configuration of a semiconductor manufacturing system 300 according to the first embodiment. The points of the configuration of FIG. 8 that are different from those of FIG. 1 will be described.
  • a semiconductor manufacturing system 300 shown in FIG. 8 has a configuration in which a data analysis server 310 and a light source parameter management server 320 are added to the configuration of the semiconductor manufacturing system 200 shown in FIG.
  • the data analysis server 310 and the light source parameter management server 320 are connected to the network 210 .
  • Each of the data analysis server 310 and the light source parameter management server 320 includes a processor (not shown) and a storage device storing programs.
  • a storage device is a tangible non-transitory computer-readable medium, and includes, for example, a memory as a main storage device and a storage as an auxiliary storage device.
  • the computer-readable medium may be, for example, a semiconductor memory, a Hard Disk Drive (HDD) device, or a Solid State Drive (SSD) device, or a combination thereof.
  • the processor includes a CPU and executes various processes by executing program instructions.
  • a processor may be a combination of a CPU and a GPU (Graphics Processing Unit), and may include an integrated circuit such as a Programmable Logic Device (PLD).
  • PLD Programmable Logic Device
  • FIG. 9 is a block diagram showing the overall processing flow of the semiconductor manufacturing system 300. As shown in FIG. The data analysis server 310 executes the following steps (A-1 to A-5).
  • Step A-1 The data analysis server 310 stores the data of the wafer inspection apparatus management system 202, the data of the exposure apparatus management system 204, the data of the light source management system 206, the factory tracking data 207, are linked to each lithography system, each wafer, and each scan, and the respective data are organized and saved.
  • Tracking data 207 includes, for example, data tracking the yield of chips within a wafer.
  • Step A-2 The data analysis server 310 analyzes the parameter information of the lithography system #k organized and saved in step A-1.
  • the analysis method in the data analysis server 310 for example, the method described in Patent Document 4 may be applied.
  • Step A-3 The data analysis server 310 extracts the parameters of the light source #k that greatly affect the exposure performance parameters from the analysis results of step A-2.
  • Step A-4 The data analysis server 310 obtains priority target parameter information for the light source #k based on the relationship between the parameters of the light source #k and the exposure performance parameters extracted in step A-3.
  • Step A-5 The data analysis server 310 outputs the priority target parameter information of the light source #k obtained in step A-4 to the semiconductor factory management system 208.
  • the semiconductor factory management system 208 executes the following steps (B-1, B-2).
  • Step B-1 The semiconductor factory management system 208 receives priority target parameter information for light source #k and management information 209 for other semiconductor factories.
  • Other semiconductor factory management information 209 is, for example, data including semiconductor factory processes, semiconductor yields, factory line schedules, and semiconductor manufacturing costs.
  • Step B-2 The semiconductor factory management system 208 outputs the priority target parameter information of the light source #k to the light source parameter management server 320 based on the acquired priority target parameter information and other semiconductor factory management information. do.
  • the light source parameter management server 320 executes the following steps (C-1 to C-3).
  • Step C-1 The light source parameter management server 320 receives priority target parameter information from the semiconductor factory management system 208 .
  • Step C-2 The light source parameter management server 320 estimates the light source maintenance information when the priority target parameter information is set.
  • Step C-3 The light source parameter management server 320 outputs maintenance information to the semiconductor factory management system 208 .
  • the semiconductor factory management system 208 further executes the following steps (B-4, B-5).
  • Step B-4 The semiconductor factory management system 208 receives maintenance information for light source #k.
  • Step B-5 The semiconductor factory management system 208 determines whether or not to permit operation of the light source #k (OK/NOK) based on the other semiconductor factory management information 209 and the maintenance information of the light source #k. The result is output to the light source parameter management server 320 .
  • the semiconductor factory management system 208 outputs an OK signal when permitting the operation of the light source #k (when judging OK), and outputs a NOK signal when not permitting the operation of the light source #k (when judging NOK). .
  • the light source parameter management server 320 further executes the following steps (C-4 to C-6).
  • Step C-4 When an OK determination permitting operation of light source #k is obtained, light source parameter management server 320 outputs priority target parameter information to light source #k via light source management system 206 . As a result, the priority target parameter information is set for the light source #k, and the operation of the light source #k is controlled based on the priority target parameter information.
  • Step C-5 Further, when an OK determination is obtained, the light source parameter management server 320 estimates, from the operation data of the light source #k, maintenance information when operating while satisfying the priority target parameter information, and estimates it. It outputs maintenance information to the semiconductor factory management system 208 .
  • Step C-6 On the other hand, when a NOK determination is obtained that the operation of the light source #k is not permitted, the light source parameter management server 320 instructs the light source #k to stop operation via the light source management system 206. Outputs a signal (operation stop signal). As a result, light source #k stops operating.
  • FIG. 10 is a flow chart showing an example of processing contents in the data analysis server 310 .
  • the processing of the steps shown in FIG. 10 is implemented by the processor included in the data analysis server 310 executing program instructions.
  • step S11 the data analysis server 310 acquires various data from the wafer inspection apparatus management system 202, the exposure apparatus management system 204, the light source management system 206, etc.
  • the wafer inspection data, the light source data, and the exposure apparatus data are arranged and stored for each scan of each wafer in k.
  • step S12 the data analysis server 310 analyzes the correlation between each parameter of the light source #k and each parameter of the exposure performance of the exposure apparatus #k.
  • step S13 the data analysis server 310 selects light source parameters that are highly correlated with exposure performance parameters.
  • step S14 the data analysis server 310 calculates a regression curve of the parameters of the light source #k selected to have a high correlation with the exposure performance parameters of the exposure apparatus #k.
  • step S15 the data analysis server 310 calculates, from the calculated regression curve, the target value and the range of the parameters of the light source #k where the parameter values of the exposure performance are within the allowable range (see FIG. 11).
  • step S16 the data analysis server 310 outputs the target parameter value of the light source and its range as priority target parameter information for the light source #k.
  • the data analysis server 310 terminates the flowchart of FIG. 10 after step S16.
  • FIG. 11 is a graph showing a method of obtaining the target value and range of the light source parameter from the regression curve.
  • the horizontal axis of FIG. 11 represents the exposure performance parameter value R, and the vertical axis represents the light source parameter value L.
  • a regression curve RC is a regression curve of the light source parameters of the light source #k selected to have a high correlation with the exposure performance parameters of the exposure apparatus #k.
  • the target value Lt of the light source parameter and its allowable range are indicated from the regression curve RC. Allowable lower limit value Lmin and allowable upper limit value Lmax can be obtained.
  • a set of data including the light source parameter target value Lt, the allowable lower limit value Lmin, and the allowable upper limit value Lmax thus obtained can be the priority target parameter information of the light source.
  • FIGS. 12 and 13 are flowcharts showing an example of processing contents in the light source parameter management server 320.
  • the processing of the steps shown in FIGS. 12 and 13 is implemented by the processor included in the light source parameter management server 320 executing program instructions.
  • the light source parameter management server 320 acquires the priority target parameter information of light source #k in step S20.
  • the priority target parameter information of the light source #k acquired by the light source parameter management server 320 is not limited to one item of target parameters. may
  • step S22 the light source parameter management server 320 estimates the maintenance information of the light source #k when the light source #k is set as the priority target parameter information.
  • the subroutine of step S22 will be described later (FIG. 14).
  • step S ⁇ b>23 the light source parameter management server 320 outputs the estimated maintenance information for the light source #k to the semiconductor factory management system 208 .
  • step S24 the light source parameter management server 320 determines which of the operation OK or operation NOK signal has been received from the semiconductor factory management system 208.
  • the light source parameter management server 320 proceeds to step S25.
  • step S25 the light source parameter management server 320 outputs an operation stop signal for light source #k.
  • maintenance of the light source #k is performed based on the maintenance information output in step S23.
  • the light source parameter management server 320 terminates the flowchart of FIG. 12 after step S25.
  • step S24 if the light source parameter management server 320 receives the operation OK signal from the semiconductor factory management system 208 in the determination of step S24, the light source parameter management server 320 proceeds to step S26.
  • step S26 the light source parameter management server 320 outputs priority target parameter information to light source #k.
  • step S26 the light source parameter management server 320 proceeds to step S27 in FIG.
  • step S27 the light source parameter management server 320 outputs an operation signal for light source #k.
  • step S28 the light source parameter management server 320 acquires the operation data of light source #k.
  • step S29 the light source parameter management server 320 estimates maintenance information when setting priority target parameter information from the operation data of light source #k.
  • the subroutine of step S29 will be described later (FIG. 15).
  • step S ⁇ b>30 the light source parameter management server 320 outputs the maintenance information estimated for the light source #k to the semiconductor factory management system 208 .
  • step S ⁇ b>31 the light source parameter management server 320 determines whether or not a light source operation stop signal has been received from the semiconductor factory management system 208 . If the determination result in step S31 is No, the light source parameter management server 320 returns to step S28.
  • step S31 the determination result in step S31 is Yes, the light source parameter management server 320 proceeds to step S32.
  • step S32 the light source parameter management server 320 outputs an operation stop signal for the light source #k. In the semiconductor factory, maintenance of the light source #k is carried out based on the maintenance information. The light source parameter management server 320 terminates the flowchart of FIG. 12 after step S32.
  • FIG. 14 is a flow chart showing an example of a subroutine applied to step S22 of FIG. 14 starts, the light source parameter management server 320 outputs priority target parameter information to the light source #k in step S41.
  • step S42 the light source parameter management server 320 outputs an adjustment operation signal for light source #k.
  • the light source #k starts adjusted operation and outputs various data (adjusted operation data) obtained by performing the adjusted operation to the light source parameter management server 320 .
  • step S43 the light source parameter management server 320 acquires the adjusted operation data of light source #k.
  • step S44 the light source parameter management server 320 performs a process of estimating maintenance information when setting priority target parameter information from the operation data of light source #k.
  • the "operating data of light source #k” in this case is the "adjusted operating data of light source #k" acquired in step S43.
  • the subroutine of the process applied to step S44 may be common to the subroutine applied to step S29 of FIG.
  • step S44 the light source parameter management server 320 returns to the flowchart of FIG.
  • FIG. 15 is a flow chart showing an example of a subroutine applied to step S29 of FIG. 13 and step S44 of FIG.
  • the light source parameter management server 320 acquires the operation data of light source #k in step S51.
  • the light source parameter management server 320 calls a learning model used in the process of estimating the degree of deterioration of consumables.
  • This learning model is a pre-trained machine consisting of a neural network created by performing machine learning using supervised learning data so that the operation data of the light source is input and the degree of deterioration of consumables is output. It may be a learning model (inference model).
  • Patent Document 1 discloses a method of creating a learning model for estimating the degree of deterioration of consumables from operating data of the light source and a method of calculating the number of pulses from the degree of deterioration output as the inference result of the learning model to maintenance. You can adopt the technology that is used.
  • Patent Document 1 describes the following method. That is, a machine learning method for creating a learning model for predicting the life of consumables of a laser device, which corresponds to different oscillation pulse numbers during the period from the start of use of the consumables to the replacement of the consumables. obtaining first life-related information including data of life-related parameters of the consumables recorded by means of the first life-related information; by creating training data that associates the first life-related information with a level representing the degree of deterioration, and performing machine learning using the training data, so that the life-related parameter data is used to determine the number of consumables A machine learning method including creating a learning model for predicting the degree of deterioration and storing the created learning model.
  • Patent Document 1 describes a learning model storage unit that stores a learning model created by implementing the above-described machine learning method, and a request signal for life prediction processing for a consumable to be replaced in a laser device. and an information acquisition unit that acquires current second life-related information about the consumable to be replaced, and based on the learning model of the consumable to be replaced and the second life-related information,
  • a laser device including a life prediction unit that calculates the life and remaining life of consumables, and an information output unit that notifies an external device of information on the calculated life and remaining life of consumables to be replaced.
  • a consumables management device is described.
  • the light source parameter management server 320 may have the same functions as the consumables management device described in Patent Document 1.
  • step S53 the light source parameter management server 320 inputs the operating data of the light source #k into the learning model to estimate the degree of deterioration.
  • step S54 the light source parameter management server 320 calculates the remaining number of pulses from the estimated degree of deterioration to maintenance of each consumable.
  • step S55 the light source parameter management server 320 outputs the remaining number of pulses until maintenance as maintenance information. After step S55, the light source parameter management server 320 returns to the flow charts shown in FIGS.
  • the learning model used in the flowchart of FIG. 15 is created based on supervised learning data for each mode when the maintenance life of consumables differs depending on the priority target parameter information described later. be. Then, the light source parameter management server 320 may call a learning model corresponding to each priority target parameter.
  • the light source parameter management server 320 is an example of a "light source parameter information management device" in the present disclosure.
  • a method including steps executed by the light source parameter management server 320 is an example of a “light source parameter information management method” in the present disclosure.
  • the data analysis server 310 is used to derive optimal priority target parameter information for the exposure process of the lithography system #k, and this priority target parameter information is sent to the light source #k.
  • this priority target parameter information is sent to the light source #k.
  • Embodiment 1 it is possible for individual users or semiconductor processes to operate the light source so as to maintain specific target parameter information that is of particular importance.
  • the yield of semiconductor manufacturing can be improved, and costs can be improved. Also, optimum exposure for the semiconductor process becomes possible.
  • the data analysis server 310 and the light source parameter management server 320 are described for each function. These two functions may be implemented. Also, the functions of both servers may be shared by the light source management system 206 or the exposure apparatus management system 204 . Also, the function of the data analysis server 310 may be provided to the exposure apparatus management system 204 , the light source parameter management server 320 , or the light source management system 206 .
  • the output result of the data analysis server 310 or the light source parameter management server 320 may be output to a display device or the like (not shown) and displayed so that the operator can understand it.
  • the priority target parameter information may be output to the exposure apparatus #k via the exposure apparatus management system 204 . Then, the priority target parameter information may be transmitted from the exposure apparatus #k to the light source #k to control the light source #k.
  • FIG. 16 is a block diagram showing the overall processing flow of the semiconductor manufacturing system according to the second embodiment.
  • the system configuration of the second embodiment may be the same as the configuration of the first embodiment (FIG. 8).
  • FIG. 16 shows an example of outputting recommended target parameter information necessary for setting priority target parameter information in addition to the flow of FIG.
  • the light source parameter management server 320 estimates and outputs maintenance information and recommended target parameter information to an external device when setting priority target parameter information for light source #k.
  • the recommended target parameter information includes, for example, at least one of target spectral characteristic parameter information, target output characteristic parameter information, and target consumption parameter information.
  • the recommended target parameter information for light source #k is output to data analysis server 310 via semiconductor factory management system 208 .
  • the data analysis server 310 analyzes the correlation between the recommended target parameter and the exposure performance parameter, determines whether the operation is OK/NOK when the recommended target parameter information is set to the light source #k, and outputs the determination result. Output to the semiconductor factory management system 208 .
  • the semiconductor factory management system 208 determines OK/NOK of the operation of the light source #k based on the maintenance information, the recommended target parameter information, and other semiconductor factory management information 209 .
  • priority target parameter information and recommended target parameter information are set for light source #k via light source management system 206, and light source #k is set so as to satisfy these target parameter information. is controlled.
  • FIG. 17 is a flowchart showing a confirmation flow of recommended target parameter information in the data analysis server 310 of the second embodiment.
  • the semiconductor factory management system 208 sends the recommended target parameter information to the data analysis server 310 in determining whether or not to adopt the received recommended target parameter information, and causes the data analysis server 310 to confirm the propriety of the recommended target parameter information. receive results.
  • the data analysis server 310 receives the recommended target parameter information of the light source #k in step S60.
  • step S62 the data analysis server 310 analyzes the relationship between the value range of each parameter in the recommended target parameter information of the light source #k and the value range of the exposure performance parameter.
  • step S63 the data analysis server 310 determines whether the parameter value of the exposure performance is within the allowable range in the range of each parameter value of the recommended target parameter information (see FIG. 18).
  • step S63 the data analysis server 310 proceeds to step S64.
  • step S64 the data analysis server 310 outputs an OK signal indicating that the recommended target parameter information is appropriate (OK).
  • step S63 determines whether the recommendation result of step S63 is Yes. If the determination result of step S63 is No, the data analysis server 310 proceeds to step S65. In step S65, the data analysis server 310 outputs an NG signal indicating that the recommended target parameter information is inappropriate (NG).
  • step S64 or step S65 the data analysis server 310 ends the flowchart of FIG.
  • FIG. 18 is a graph showing an analysis example of the relationship between recommended target parameters and exposure performance parameters.
  • the horizontal axis of FIG. 18 represents recommended target parameters, and the vertical axis represents exposure performance parameters.
  • the relationship between exposure performance parameter values and recommended target parameter values is obtained.
  • the lower limit value and the upper limit value indicating the allowable range of the exposure performance parameter value are specified, it is possible to determine whether the corresponding exposure performance parameter value is within the allowable range within the recommended target parameter value range. .
  • FIGS. 19 and 20 are flowcharts showing an example of processing contents in the light source parameter management server 320 of the second embodiment. 19 and 20 are obtained by changing steps S22, S23, S26, S29 and S30 in the flowcharts of FIGS. 12 and 13 to steps S72, S73, S76, S79 and S80, respectively. Steps S70, S74, S75, S77, S78, S81 and S82 in FIG. 13 are the same as steps S20, S24, S25, S27, S28, S31 and S32 in the flow charts in FIGS. omit the description.
  • step S72 the light source parameter management server 320 estimates the maintenance information and the recommended target parameter information of the light source #k when the light source #k is set as the priority target parameter information.
  • the subroutine of step S72 will be described later (FIG. 21).
  • step S ⁇ b>73 the light source parameter management server 320 outputs the estimated maintenance information of the light source #k and the recommended target parameter information to the semiconductor factory management system 208 .
  • step S74 if the light source parameter management server 320 receives an OK signal permitting operation from the semiconductor factory management system 208, the light source parameter management server 320 proceeds to step S76.
  • step S76 the light source parameter management server 320 outputs priority target parameter information and recommended target parameter information to light source #k. After step S76, the light source parameter management server 320 proceeds to step S77 in FIG.
  • the light source parameter management server 320 After acquiring the operation data of the light source #k in step S78, the light source parameter management server 320 acquires the maintenance information and the recommended target parameter information in the case of setting the priority target parameter information from the operation data of the light source #k in step S79. and estimate The subroutine of step S79 will be described later (FIG. 22).
  • step S80 the light source parameter management server 320 outputs the maintenance information estimated for the light source #k and the recommended target parameter information to the semiconductor factory management system 208.
  • steps S81 and S82 are the same as steps S31 and S32.
  • FIG. 21 is a flow chart showing an example of a subroutine applied to step S72 of FIG. Steps S91, S92, and S93 in the flowchart of FIG. 21 are the same as steps S41, S42, and S43 in the flowchart of FIG. 14, respectively, so overlapping descriptions are omitted.
  • step S44 of FIG. 14 is changed to step S94.
  • step S94 the light source parameter management server 320 performs a process of estimating maintenance information and recommended target parameter information when setting priority target parameter information from the operation data of light source #k.
  • the "operating data of light source #k” in this case is the "adjusted operating data of light source #k” obtained in step S93.
  • the subroutine of the processing applied to step S94 may be common to the subroutine applied to step S79 of FIG.
  • FIG. 22 is a flow chart showing an example of a subroutine applied to step S79 of FIG. 20 and step S94 of FIG. Steps S101, S102, S103, S104 and S105 in the flowchart of FIG. 22 are the same as steps S51, S52, S53, S54 and S55 in the flowchart of FIG.
  • the flowchart of FIG. 22 has steps S106 and S107 added after step S55 of FIG.
  • step S106 the light source parameter management server 320 obtains the performance parameter value range of each light source from the operating data of the light source #k, and estimates recommended target parameter information.
  • the subroutine of step S106 will be described later (FIG. 23).
  • step S107 the light source parameter management server 320 outputs recommended target parameter information estimated for light source #k.
  • step S107 the light source parameter management server 320 returns to the flow charts shown in FIGS.
  • FIG. 23 is a flow chart showing an example of a subroutine applied to step S106 of FIG.
  • the light source parameter management server 320 acquires the operating data of the light source #k.
  • the light source parameter management server 320 calculates the average value Pav of each performance parameter value and its standard deviation value P ⁇ from the operating data of the light source #k.
  • Each performance parameter value is the value of each parameter that expresses the performance of the pulsed laser beam. For example, there are pulse energy E and its stability E ⁇ , spectral line width ⁇ and its stability ⁇ , and the like.
  • step S123 the light source parameter management server 320 multiplies the standard deviation value P ⁇ of each performance parameter by the safety factor K.
  • the safety factor K may be a value in the range of 3-5, for example. When the safety factor K is 3, the range of values is ⁇ 3 ⁇ with respect to the average value.
  • step S124 the light source parameter management server 320 outputs the average value Pav of each performance parameter value and its range K ⁇ P ⁇ as recommended target parameter information.
  • step S124 the light source parameter management server 320 ends the flowchart in FIG. 23 and returns to the flowchart in FIG.
  • ⁇ K ⁇ P ⁇ is used as an example of the expression of the performance parameter value range, but this is not restrictive, and ⁇ K ⁇ (P ⁇ /Pav) ⁇ 100(%) may also be used. .
  • the semiconductor factory management system 208 can comprehensively consider these pieces of information and determine whether the operation of the light source #k is OK or NOK.
  • the second embodiment it is possible to present recommended target parameter information requiring specification relaxation, confirm OK/NOK of the operation, and perform exposure, thereby suppressing a decrease in the yield of the exposure process.
  • the light source #k can be operated by setting it to the recommended target parameter information that can be relaxed. An increase in gas consumption can be suppressed.
  • the semiconductor factory management system 208 determines OK/NOK based on the management information 209 of other semiconductor factories. , the recommended target parameter information is output, and the exposure apparatus management system 204 determines OK/NOK of exposure execution as the exposure apparatus #k, and the semiconductor factory management system 208 receives the determination result. Factory management system 208 may make an overall OK/NOK decision.
  • Embodiment 3 8.1 Configuration
  • the system configuration and overall flow of the third embodiment may be the same as those of the second embodiment.
  • the third embodiment differs from the second embodiment in that the light source parameter management server 320 changes (resets) the operation control target parameter value of the light source #k based on the priority target parameter information of the light source #k.
  • a default operation control parameter value is set for the light source #k, and when the priority target parameter information is specified, the parameter value related to this is reset.
  • FIG. 24 is a flow chart showing an example of processing contents in the light source parameter management server 320 of the third embodiment.
  • steps common to those in FIG. 19 are denoted by the same step numbers, and overlapping descriptions are omitted.
  • the flowchart shown in FIG. 24 includes step S71 between steps S70 and S72 in FIG.
  • step S71 the light source parameter management server 320 resets the operation control target parameter value of the light source #k based on the priority target parameter information of the light source #k.
  • Other steps may be the same as in FIG.
  • the flowchart after step S76 may be the same as that of FIG.
  • FIG. 25 is a flow chart showing an example of a subroutine applied to step S71 of FIG.
  • the light source parameter management server 320 selects the operation control target parameters for the light source #k based on the priority target parameter information.
  • step S132 the light source parameter management server 320 retrieves data on the relationship between the priority target parameter and the operation control target parameter of light source #k.
  • the light source parameter management server 320 stores data such as table data or approximate curves indicating the relationship between the priority target parameter and the operation control target parameter of the light source #k, and calls this relationship data.
  • step S133 the light source parameter management server 320 obtains the operation control target parameter value Po for approaching the priority target parameter value Pt from the called data (see FIG. 26).
  • step S134 the light source parameter management server 320 outputs the operation control target parameter value Po to the light source #k. After step S134, the light source parameter management server 320 returns to the flow chart of FIG.
  • FIG. 26 is an example of a graph showing the relationship between priority target parameters and operation control parameters.
  • the light source parameter management server 320 calls the data indicating the relationship as shown in FIG. 26 in step S132 of FIG. Then, in step S133, as shown in FIG. 26, an operation control target parameter value Po corresponding to the priority target parameter value Pt is obtained.
  • Embodiment 4 9.1 Configuration The fourth embodiment is a more specific example of the third embodiment.
  • the system configuration and overall flow of the fourth embodiment may be the same as those of the first embodiment.
  • Embodiment 4 exemplifies the case of operating in each of the optical performance priority mode, consumables life extension mode, and consumption reduction mode.
  • optical performance priority mode operation for example, when giving priority to spectral linewidth performance, when giving priority to pulse energy (output) performance, or when giving priority to energy stability performance
  • optical performance priority mode operation for example, when giving priority to spectral linewidth performance, when giving priority to pulse energy (output) performance, or when giving priority to energy stability performance
  • performance to be emphasized A specific example of the operation when operation in such a mode giving priority to specific optical performance is requested is shown below.
  • FIG. 27 is a flow chart showing an example of processing contents in the data analysis server 310 of the fourth embodiment.
  • Step S141 is the same as step S11 in FIG.
  • step S142 the data analysis server 310 analyzes the correlation between the spectral linewidth ⁇ of the light source #k and the CD-related parameters of the resist pattern formed by the exposure apparatus #k.
  • step S144 the data analysis server 310 calculates a regression curve between the spectral line width ⁇ of the light source #k and the CD of the resist pattern formed by the exposure apparatus #k.
  • step S145 the data analysis server 310 calculates, from the calculated regression curve, the target value and range of the spectral line width ⁇ of the light source #k in which the parameter CD value is within the allowable range.
  • step S146 the data analysis server 310 outputs the calculated target spectral linewidth ⁇ tp of the light source #k and its range ( ⁇ tp ⁇ tp) as priority target parameter information of the light source #k.
  • the target spectral linewidth ⁇ tp and its range ( ⁇ tp ⁇ tp) are examples of “spectral linewidth parameter information” in the present disclosure.
  • step S146 the flowchart of FIG. 27 ends.
  • FIG. 28 is a graph showing an example of a method of obtaining the target spectral linewidth ⁇ t and its range using a regression curve.
  • the horizontal axis of FIG. 28 represents the CD, and the vertical axis represents the spectral linewidth ⁇ of the light source.
  • a regression curve RC2 is a curve showing the correlation between the CD and the spectral line width ⁇ .
  • the target spectral line width ⁇ t which is the target value of the spectral line width ⁇ of the light source, and its allowable range are obtained from the regression curve RC.
  • An allowable lower limit value ⁇ t ⁇ t and an allowable upper limit value ⁇ t+ ⁇ t indicating the range can be obtained.
  • a set of data including the target spectral linewidth ⁇ t and its range ( ⁇ t ⁇ t) thus obtained can be the target spectral linewidth ⁇ tp and its range ( ⁇ tp ⁇ tp) as priority target parameter information of the light source.
  • FIG. 29 is a flowchart showing an example in which the flowchart of FIG. 25 is applied when the spectral line width ⁇ is the priority target parameter.
  • the flowchart of FIG. 29 is applied as the subroutine of step S71 of FIG.
  • step S ⁇ b>151 the light source parameter management server 320 retrieves data on the relationship between the spectral line width ⁇ and the lens spacing LD of the wavefront modulator 107 .
  • a lens distance LD is the distance between the concave lens 171 and the convex lens 172 that constitute the wavefront modulator 107 .
  • step S154 the light source parameter management server 320 outputs the spectral linewidth ⁇ tp to light source #k as priority target parameter information.
  • the light source parameter management server 320 may also output the spectral linewidth ⁇ tp as the priority target parameter information to the exposure apparatus #k.
  • the light source parameter management server 320 returns to the flow chart of FIG.
  • FIG. 30 is an example of a graph showing the relationship between the spectral linewidth ⁇ and the lens spacing LD of the wavefront tuner 107.
  • FIG. The horizontal axis of FIG. 30 represents the spectral line width ⁇ , and the vertical axis represents the lens spacing LD.
  • the lens spacing Ct corresponding to the target spectral linewidth ⁇ t can be obtained.
  • the spectral line width matched to the exposure process is narrow, and it is possible to operate the light source with a limited range, thereby improving the yield due to the exposure process of the critical layer.
  • the maintenance information for consumables may be estimated based on operation data obtained by performing adjusted oscillation with priority target parameter information set to light source #k.
  • step S154 outputs data to light source #k
  • data may be output to exposure device #k.
  • these data may be output from exposure apparatus #k to light source #k as priority target parameter values.
  • pulse energy is a priority target parameter 9.2.2.1 Example where obtaining high pulse energy is given priority and exposure can be performed by widening spectral line width ⁇ Light source #k If the step of the exposure process is a rough layer or if a resist pattern is formed on a stepped substrate that requires a deep depth of focus, exposure must be performed under the following conditions (Condition A and Condition B). be.
  • Exposure is performed with a wide spectral line width ⁇ in order to deepen the depth of focus.
  • Condition B Furthermore, when exposing a resist with low resist sensitivity or a thick film resist, the pulse energy of the light source #k is set high in order to maintain the throughput.
  • the priority target parameter is pulse energy
  • the target value Etp is set to a high pulse energy value
  • the recommended target parameter is spectral line width
  • the target value ⁇ tr An example of the processing flow in the light source parameter management server 320 when operating the light source #k by setting a wide spectral linewidth value to is shown.
  • FIG. 31 is a flowchart showing an example in which the flowchart of FIG. 25 is applied to a mode in which high pulse energy is prioritized.
  • the flowchart of FIG. 31 is applied as the subroutine of step S71 of FIG.
  • step S161 the light source parameter management server 320 sets the pulse energy target value Etp of the priority target parameter.
  • step S ⁇ b>162 the light source parameter management server 320 calls the relationship data between the pulse energy E and the lens spacing LD of the wavefront modulator 107 .
  • step S165 the light source parameter management server 320 calls the relationship data between the pulse energy E and the spectral line width ⁇ .
  • step S166 the light source parameter management server 320 uses the retrieved relational data to obtain the spectral line width ⁇ tr at which the pulse energy E, which is the priority target parameter, becomes the target value Etp (see FIG. 33).
  • ⁇ tr is the target value of the recommended target spectral linewidth.
  • step S167 the light source parameter management server 320 registers the spectral linewidth ⁇ as recommended target parameter information.
  • step S168 the light source parameter management server 320 outputs the target spectral linewidth ⁇ tr as the operation control target parameter value to the light source #k.
  • step S169 the light source parameter management server 320 outputs the target pulse energy Etp as the priority target parameter value to the light source #k.
  • the light source parameter management server 320 may also output at least one of the target spectral linewidth ⁇ tr and the target pulse energy Etp to the exposure apparatus #k.
  • step S169 the light source parameter management server 320 returns to the flowchart of FIG.
  • FIG. 32 is an example of a graph showing the relationship between the pulse energy E and the lens spacing LD of the wavefront modulator 107.
  • FIG. The horizontal axis of FIG. 32 represents the pulse energy E, and the vertical axis represents the lens interval LD.
  • the lens spacing Ct corresponding to the target pulse energy value Etp can be obtained.
  • FIG. 33 is an example of a graph showing the relationship between pulse energy E and spectral line width ⁇ .
  • the horizontal axis of FIG. 33 represents the pulse energy E, and the vertical axis represents the spectral line width ⁇ .
  • a target spectral linewidth ⁇ tr corresponding to the target pulse energy value Etp can be obtained using the relational data shown in FIG.
  • the spectral line width ⁇ is widened. becomes possible.
  • the spectral linewidth is widened as a means of increasing the target pulse energy, so it is possible to suppress the decrease in the number of remaining pulses until maintenance of consumables and the increase in gas consumption.
  • step S168 and S168 output the operation control target parameter value and the priority target parameter value to light source #k, but exposure These pieces of information may be output to device #k. During actual exposure, these target parameter values may be output from exposure apparatus #k to light source #k.
  • This example shows an example of changing the lens spacing LD of the wavefront modulator 107 to change the spectral linewidth ⁇ .
  • the spectral linewidth ⁇ may be widened to give some margin to the pulse energy.
  • FIG. is the pulse energy, a high pulse energy value is set as the target value Etp, and the range of the pulse energy stability parameter can be relaxed. If the pulse energy E is a priority target parameter and exposure can be performed with relaxed specifications for pulse energy stability, the flowchart in FIG. 34 can be applied instead of the flowchart in FIG.
  • step S171 the light source parameter management server 320 sets the pulse energy target value Etp of the priority target parameter.
  • step S172 the light source parameter management server 320 retrieves data on the relationship between the halogen gas partial pressure Hgc and the pulse energy E and the relationship between the halogen gas partial pressure Hgc and the pulse energy stability E ⁇ .
  • step S173 the light source parameter management server 320 uses the retrieved relational data to obtain the target value Hgct of the halogen gas partial pressure that maximizes the pulse energy E (see FIG. 35).
  • step S174 the light source parameter management server 320 outputs the target value Hgct of the halogen gas partial pressure as the operation control target parameter to the light source #k.
  • step S177 the light source parameter management server 320 registers the pulse energy stability E ⁇ as recommended target parameter information.
  • step S179 the light source parameter management server 320 outputs the target pulse energy Etp as the priority target parameter value to the light source #k.
  • the light source parameter management server 320 may also output the target pulse energy Etp to the exposure apparatus #k.
  • step S179 the light source parameter management server 320 returns to the flow chart of FIG.
  • FIG. 35 is an example of a graph showing the relationship between the halogen gas partial pressure Hgc and the pulse energy E, and the relationship between the halogen gas partial pressure Hgc and the pulse energy stability E ⁇ .
  • the horizontal axis of FIG. 35 represents the halogen gas partial pressure Hgc in the chamber 100, the left vertical axis represents the pulse energy E, and the right vertical axis represents the pulse energy stability E ⁇ .
  • the mountain-shaped curve shown by a thick line is a graph showing the relationship between the halogen gas partial pressure Hgc and the pulse energy E
  • the valley-shaped curve shown by a thin line shows the relationship between the halogen gas partial pressure Hgc and the pulse energy stability E ⁇ . It is a graph showing.
  • the halogen gas partial pressure Hgc in the chamber 100 is controlled so that the halogen gas partial pressure Hgct becomes the maximum value Emax of the pulse energy E. , the pulse energy E can be increased. Therefore, exposure throughput is improved.
  • the target halogen gas partial pressure Hgct which is an operation control parameter, is determined so that the pulse energy E of the halogen gas partial pressure Hgc is maximized.
  • the stability E ⁇ may degrade to the E ⁇ r values shown in FIG.
  • the pulse energy stability E ⁇ may be registered as recommended target parameter information, and the recommended target parameter information may be estimated from the operation data during adjustment oscillation and output to the external device.
  • the gas consumption per pulse Gwt which is the operation control target parameter for light source #k
  • Gwt the gas consumption per pulse
  • the optical performance priority mode there may be a mode that prioritizes the stability of pulse energy.
  • the target halogen gas partial pressure Hgct is set as the operation control target parameter so that the value of the pulse energy stability E ⁇ is minimized (stability is maximized).
  • light source #k can be operated by allowing a decrease in the number of remaining pulses until maintenance of consumables or by increasing the target gas consumption per pulse Gwt. becomes.
  • the duty ratio in this case is expressed by the following formula.
  • FIG. 37 is a graph showing the relationship between duty ratio and pulse energy. As shown in FIG. 37, generally, under the same conditions (when the same gas pressure and the same charging voltage are applied), the pulse energy of the light output from the light source tends to decrease as the duty ratio increases. There is Therefore, when operating the light source with a high duty ratio, it is necessary to operate under conditions where the pulse energy of the light source is high.
  • the relationship as shown in FIG. 37 shows a similar tendency even if the number of pulses per unit time is plotted on the horizontal axis and the pulse energy is plotted on the vertical axis.
  • the pulse energy decreases. Therefore, when the light source is operated by increasing the number of pulses per unit time, the measures for compensating for the pulse energy are the same as in the case of a high duty ratio. be.
  • FIG. 38 shows an example of a flowchart when the duty ratio is the priority target parameter and the range of the pulse energy stability parameter can be relaxed.
  • the flowchart of FIG. 38 can be applied instead of the flowchart of FIG.
  • step S181 the light source parameter management server 320 sets Drtp, which is a priority target parameter.
  • the burst pattern duty ratio Drtp which is a priority parameter, is a duty ratio calculated from the operation pattern for the next exposure.
  • Steps S182, S183, S184 and S187 may be the same as steps S172, S173, S174 and S177 of FIG.
  • step S189 the light source parameter management server 320 outputs the target duty ratio Drtp as priority target parameter information to light source #k.
  • the light source parameter management server 320 may also output the target duty ratio to the exposure apparatus #k.
  • the exposure device outputs a trigger pattern to the light source #k so as to perform exposure with a burst exposure pattern close to this target duty ratio Drtp.
  • the pulse energy stability may deteriorate. Therefore, the pulse energy stability may be registered as recommended target parameter information, and the recommended target parameter information may be estimated from operation data during adjustment oscillation and output to an external device.
  • the gas consumption per pulse Gwt which is the operation control target parameter for light source #k
  • the gas consumption per pulse Gwt may be increased and reset. This makes it possible to maintain the number of remaining pulses for maintenance of consumables.
  • the priority target parameter is the duty ratio, but the invention is not limited to this example, and for example, the output per unit time may be set as the priority target parameter.
  • a process flow such as that shown in FIG. 31 or FIG. 38 is executed to, for example, broaden the spectral linewidth, or relax the range of the pulse energy stability parameter, or reduce the gas consumption per pulse.
  • the operation control target parameter is set under the condition that the pulse energy can be maintained. Then, a value with a high duty ratio or a large number of pulses per unit time may be set as the target priority parameter information to operate the light source #k.
  • FIG. 39 is an example of a processing flow applied in the case of consumables life extension mode operation. 39 is applied to step S71 of FIG. 24 in the case of consumables life extension mode operation.
  • step S191 the light source parameter management server 320 selects operating parameters that can extend the life of consumables.
  • Halogen gas partial pressure is one of the operational parameters that lead to higher pulse energies for the same gas pressure and charging voltage (see FIG. 35).
  • the light source parameter management server 320 selects the halogen gas partial pressure.
  • Steps S192, S193, S194 and S197 may be the same as steps S182, S183, S184 and S187 of FIG. 38, respectively.
  • step S197 the light source parameter management server 320 returns to the flowchart of FIG.
  • the pulse energy and the pulse energy stability may be obtained based on the data during the adjustment operation and output to the external device.
  • the spectral linewidth and the spectral linewidth stability may be obtained based on the data during the adjustment operation and output to the external device.
  • the operation control target of light source #k It may be reset by increasing the gas consumption Gwt for each pulse, which is a parameter. This also makes it possible to extend the remaining number of pulses until maintenance of consumables.
  • the set gas consumption Gwt for each pulse may be output to the external device as the recommended target parameter information.
  • the maintenance information may be output to an external device based on the data during adjustment operation when the gas consumption Gwt for each pulse is increased and set.
  • Consumable life extension mode operation can extend the number of pulses remaining until consumable maintenance. By extending the number of pulses remaining until the maintenance of the consumables, for example, it becomes possible to match the maintenance timing of the other consumables of the lithography system #k with the maintenance timing of the light source #k, thereby reducing downtime of the production line. You can improve your time. Further, according to the consumables life extension mode operation, it is possible to match the maintenance timing of the consumables for the light source #k with the maintenance timing of the consumables for the light source #j (j ⁇ k).
  • FIG. 40 is a graph showing the relationship between gas consumption per unit pulse and pulse energy. As shown in FIG. 40, generally, the light source tends to increase the pulse energy of the light output from the light source as the gas consumption per unit pulse increases.
  • gas consumption per unit pulse makes it possible to keep the pulse energy of the light source high. Conversely, gas consumption can be reduced if the pulse energy can be kept high by other parameters.
  • FIG. 41 is an example of a processing flow applied in the case of gas consumption reduction mode operation. In the case of gas consumption reduction mode operation, the flow chart of FIG. 41 is applied to step S71 of FIG.
  • step S201 the light source parameter management server 320 sets the gas consumption Gwtp as a priority target parameter.
  • Steps S202, S203, S204 and step S207 may be the same as steps S182, S183, S184 and step S187 of FIG. 38, respectively.
  • step S208 the light source parameter management server 320 outputs the target gas consumption Gwtp, which is priority target parameter information, to light source #k.
  • step S208 the light source parameter management server 320 returns to the flowchart of FIG.
  • the light source parameter management server 320 obtains the pulse energy stability as the recommended target parameter information based on the data during the adjustment operation. The light source parameter management server 320 then outputs the estimated recommended target parameter information and maintenance information to an external device.
  • the recommended target parameter information obtains the spectrum line width ⁇ and the stability range of the spectrum line width based on the operation data during the adjustment operation. Then, the recommended target parameter information and the maintenance information are output to an external device.
  • the gas consumption per unit pulse can be reduced.
  • the gas consumption reduction mode operation has a large cost reduction effect when the cost of the excimer laser gas rises.
  • the gas consumption reduction mode operation is an effective means.
  • the above example shows three examples of resetting the target halogen partial pressure, widening the target spectral linewidth, and shortening the number of remaining pulses until maintenance. However, without being limited to these examples, these three examples may be combined as appropriate. By doing so, it is also possible to reduce the range of relaxed specifications of the recommended target parameters.
  • FIG. 42 is an example of a processing flow applied in the case of power saving mode operation. In the case of power saving mode operation, the flowchart of FIG. 42 is applied to step S71 of FIG.
  • the light source parameter management server 320 selects an operation control target parameter capable of reducing power consumption (power consumption) as a priority target parameter.
  • the light source parameter management server 320 selects the charging voltage of the charger 110 as one of the operation control target parameters capable of reducing power consumption.
  • step S212 the light source parameter management server 320 resets the operation range HVLLt to HVULt of the charging voltage of the charger 110 as the operation control target parameter for the light source #k. Since the power consumption depends on the charging voltage of the laser device that is the light source, the power consumption can be suppressed by setting the lower limit HVLLt and the upper limit HVULt of the target charging voltage as low as possible within the operable range.
  • step S213 the light source parameter management server 320 outputs the operation range HVLLt to HVULt of the charging voltage as operation control parameter information to the light source #k.
  • step S213 the light source parameter management server 320 returns to the flowchart of FIG.
  • the power consumption can be suppressed by setting the lower limit value HVLLt and the upper limit value HVULt, which are the range of the charging voltage target value, low within the operable range. That is, the lower limit value HVLLt and the upper limit value HVULt of the target charging voltage of charger 110 as the operation control target parameter for light source #k may be reset to lower values than in the normal case.
  • the light source parameter management server 320 obtains, as the recommended target parameter information, parameter information regarding the stability of the pulse energy and the gas consumption based on the operation data during the adjustment operation. and maintenance information to an external device.
  • the pulse energy can be increased under the conditions of the same gas pressure and the same charging voltage. This margin of pulse energy can be distributed to the operating range of the charging voltage.
  • the light source parameter management server 320 obtains the stability range of the pulse energy as the recommended target parameter information based on the operation data during the adjustment operation, and outputs this recommended target parameter information to the external device.
  • the light source parameter management server 320 obtains the spectral line width and the stability range of the spectral line width as the recommended target parameter information based on the operation data during the adjustment operation, and sends this recommended target parameter information to an external device. Output to device.
  • the power consumption of the motor 124 that drives the CFF 123 can be cited as an item with a high percentage of the power consumption of the laser device. In this case, power consumption can be reduced by reducing the rotation speed of the CFF 123 .
  • the stability of pulse energy may deteriorate and the lifetime of the chamber may be shortened.
  • the recommended target parameter information may be output to an external device to determine whether the operation is OK/NOK.
  • FIG. 43 is a block diagram showing a modification of the fourth embodiment.
  • the semiconductor manufacturing system may be configured with an input/display device 330 connected to a light source parameter management server 320 .
  • the input/display device 330 includes an input device for receiving input of information from the operator and a display device for displaying various information.
  • the input device may be, for example, a keyboard, mouse, multi-touch panel, voice input device, or any suitable combination thereof.
  • the input/display device 330 may be an information processing terminal device such as a personal computer or a tablet terminal that can access the light source parameter management server 320 via a communication line.
  • a plurality of input/display devices 330 may be present.
  • An operator in the factory may select the light source #k from the input/display device 330 and input priority target parameter information, thereby displaying maintenance information and recommended target parameter information on the input/display device 330 . After confirming the maintenance information and the recommended target parameter information, the operator may determine whether the operation is OK/NOK and input the result of the determination from the input/display device 330 .
  • the method of inputting priority target parameter information from the input/display device 330 is not limited to directly inputting information on parameters and their numerical values.
  • mode information such as extended mode operation or consumption reduction mode operation from the input/display device 330
  • priority target parameter information defined for each mode is automatically set, and similar operations are performed. You may take action.
  • the input/display device 330 is presented with a mode selection menu containing selection candidates for a plurality of modes.
  • the light source parameter management server 320 takes in the priority target parameter information including target values with narrowed spectral line widths defined in the spectral line width priority mode. Conversion from mode information to corresponding parameter information may be performed in the input/display device 330 or in the light source parameter management server 320 .
  • FIG. 44 shows a specific example of parameter information regarding the light source.
  • spectral linewidth parameter information is a collection of data including spectral linewidth and its value, and spectral linewidth stability and its value.
  • FIG. 45 shows a specific example of priority target parameter information.
  • the spectral linewidth priority target parameter information includes the priority target spectral linewidth as a variable, the target value ⁇ tp of the priority spectral linewidth, the stability of the priority target spectral linewidth as another variable, and a target value ⁇ tp of the variation width of the preferential spectral linewidth ⁇ .
  • the spectral line width here is an example of the "first variable” in the present disclosure
  • the target value ⁇ tp is an example of the "first target value” in the present disclosure.
  • the fluctuation width of the spectral linewidth ⁇ corresponds to the allowable numerical range of the spectral linewidth ⁇ .
  • the fluctuation range of the spectral linewidth ⁇ is an example of the “second variable” in the present disclosure
  • the target value ⁇ tp is an example of the “second target value” in the present disclosure.
  • FIG. 46 shows a specific example of recommended target parameter information. 46, the phrase "priority target parameter" shown in FIG. 45 is changed to "recommended target parameter", and the preferential target value shown in FIG. 45 is changed to a recommended target value. It differs from FIG. 45 in that
  • the consumables include the chamber 100, the LNM band narrowing module, and the output coupling mirror (OC).
  • Other optical modules such as an optical pulse stretcher not shown are also included.
  • FIG. 48 shows a specific example of operation control target parameter information.
  • the operation control parameters the voltage commanded to the charger (charging voltage), the halogen gas partial pressure, and the lens interval of the wavefront modulator were given, but the operation control parameters are limited to this example. Also included are control gains for feedback control of, for example, spectral linewidth, wavelength, and pulse energy.
  • Computer-readable medium recording the program
  • a program containing instructions for causing a computer to function can be stored in an optical disk, magnetic disk, or other computer-readable medium. (a tangible non-transitory information storage medium), and the program can be provided through this information storage medium.
  • the excimer laser device is exemplified as the light source used in the exposure device, but the present invention is not limited to this, and may be a solid-state laser device or extreme ultraviolet (EUV) light with a wavelength of about 13 nm. It may be an EUV light generator or the like.
  • the EUV light generation device may be, for example, an LPP (Laser Produced Plasma) type device that uses plasma generated by irradiating a target material with laser light.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Health & Medical Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Epidemiology (AREA)
  • Public Health (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

露光装置に用いられる光源のパラメータ情報を管理する光源パラメータ情報管理方法であって、光源の運転で優先される優先目標パラメータである変数の項目と変数の目標値とを含む優先目標パラメータ情報を取得することと、優先目標パラメータ情報に基づいて、光源における消耗品のメインテナンスまでの寿命を表す値を含むメインテナンス情報を推定することと、メインテナンス情報を出力することと、を含む。

Description

光源パラメータ情報管理方法、光源パラメータ情報管理装置及びコンピュータ可読媒体
 本開示は、光源パラメータ情報管理方法、光源パラメータ情報管理装置及びコンピュータ可読媒体に関する。
 近年、半導体露光装置においては、半導体集積回路の微細化及び高集積化につれて、解像力の向上が要請されている。このため、露光用光源から放出される光の短波長化が進められている。例えば、露光用のガスレーザ装置としては、波長約248nmのレーザ光を出力するKrFエキシマレーザ装置、ならびに波長約193nmのレーザ光を出力するArFエキシマレーザ装置が用いられる。
 KrFエキシマレーザ装置及びArFエキシマレーザ装置の自然発振光のスペクトル線幅は、350~400pmと広い。そのため、KrF及びArFレーザ光のような紫外線を透過する材料で投影レンズを構成すると、色収差が発生してしまう場合がある。その結果、解像力が低下し得る。そこで、ガスレーザ装置から出力されるレーザ光のスペクトル線幅を、色収差が無視できる程度となるまで狭帯域化する必要がある。そのため、ガスレーザ装置のレーザ共振器内には、スペクトル線幅を狭帯域化するために、狭帯域化素子(エタロンやグレーティング等)を含む狭帯域化モジュール(Line Narrow Module:LNM)が備えられる場合がある。以下では、スペクトル線幅が狭帯域化されるガスレーザ装置を狭帯域化ガスレーザ装置という。
国際公開第2020/161865号 国際公開第2020/031301号 国際公開第2019/043780号 特開2010-67794号公報 米国特許第5383217号 特開平11-121339号公報
概要
 本開示の1つの観点に係る光源パラメータ情報管理方法は、露光装置に用いられる光源のパラメータ情報を管理する光源パラメータ情報管理方法であって、光源の運転で優先される優先目標パラメータである変数の項目と変数の目標値とを含む優先目標パラメータ情報を取得することと、優先目標パラメータ情報に基づいて、光源における消耗品のメインテナンスまでの寿命を表す値を含むメインテナンス情報を推定することと、メインテナンス情報を出力することと、を含む。
 本開示の他の1つの観点に係る光源パラメータ情報管理装置は、プロセッサと、プロセッサが実行するプログラムが記憶されるメモリと、を含み、プロセッサがプログラムの命令を実行することにより、プロセッサが、光源の運転で優先される優先目標パラメータである変数の項目と変数の目標値とを含む優先目標パラメータ情報を取得し、優先目標パラメータ情報に基づいて、光源における消耗品のメインテナンスまでの寿命を表す値を含むメインテナンス情報を推定し、メインテナンス情報を出力する。
 本開示の他の1つの観点に係るコンピュータ可読媒体は、露光装置に用いられる光源のパラメータ情報を管理する機能をコンピュータに実現させるプログラムが記録された非一過性のコンピュータ可読媒体であって、コンピュータに、光源の運転で優先される優先目標パラメータである変数の項目と前記変数の目標値とを含む優先目標パラメータ情報を取得する機能と、優先目標パラメータ情報に基づいて、光源における消耗品のメインテナンスまでの寿命を表す値を含むメインテナンス情報を推定する機能と、メインテナンス情報を出力する機能と、実現させるプログラムが記録されたコンピュータ可読媒体である。
 本開示のいくつかの実施形態を、単なる例として、添付の図面を参照して以下に説明する。
図1は、例示的な半導体工場内の半導体製造システムの構成を概略的に示す。 図2は、リソグラフィーシステムの構成を概略的に示す。 図3は、露光制御部からレーザ制御部に出力される発光トリガ信号の出力パターンの例を示す。 図4は、ウエハ上でのステップアンドスキャン露光の露光パターンの例を示す。 図5は、ウエハ上の1つのスキャンフィールドとスタティック露光エリアとの関係を示す。 図6は、スタティック露光エリアの例を示す。 図7は、例示的な露光装置用の光源の構成を概略的に示す。 図8は、実施形態1に係る半導体製造システムの構成を示す。 図9は、実施形態1に係る半導体製造システムにおける全体的な処理の流れを示すブロック図である。 図10は、データ解析用サーバにおける処理内容の例を示すフローチャートである。 図11は、回帰曲線から光源パラメータの目標値とその範囲とを求める方法を示すグラフである。 図12は、光源パラメータ管理用サーバにおける処理内容の例を示すフローチャートである。 図13は、光源パラメータ管理用サーバにおける処理内容の例を示すフローチャートである。 図14は、図12のステップS22に適用されるサブルーチンの例を示すフローチャートである。 図15は、図13のステップS29及び図14のステップS44に適用されるサブルーチンの例を示すフローチャートである。 図16は、実施形態2に係る半導体製造システムにおける全体的な処理の流れを示すブロック図である。 図17は、実施形態2のデータ解析用サーバにおける推奨目標パラメータ情報の確認フローの例を示すフローチャートである。 図18は、推奨目標パラメータと露光性能のパラメータとの関係の解析例を示すグラフである。 図19は、実施形態2の光源パラメータ管理用サーバにおける処理内容の例を示すフローチャートである。 図20は、実施形態2の光源パラメータ管理用サーバにおける処理内容の例を示すフローチャートである。 図21は、図19のステップS72に適用されるサブルーチンの例を示すフローチャートである。 図22は、図20のステップS79及び図21のステップS94に適用されるサブルーチンの例を示すフローチャートである。 図23は、図22のステップS106に適用されるサブルーチンの例を示すフローチャートである。 図24は、実施形態3の光源パラメータ管理用サーバにおける処理内容の例を示すフローチャートである。 図25は、図24のステップS71に適用されるサブルーチンの例を示すフローチャートである。 図26は、優先目標パラメータと運転制御パラメータとの関係を示すグラフの例である。 図27は、実施形態4のデータ解析用サーバにおける処理内容の例を示すフローチャートである。 図28は、回帰曲線を用いて目標スペクトル線幅とその範囲とを求める方法の例を示すグラフである。 図29は、スペクトル線幅が優先目標パラメータである場合に、図24のステップS71に適用されるサブルーチンの例を示すフローチャートである。 図30は、スペクトル線幅と波面調節器のレンズ間隔との関係を示すグラフの例である。 図31は、優先目標パラメータ値を高パルスエネルギの値とし、推奨目標パラメータ値を広いスペクトル線幅の値とする場合の光源パラメータ管理用サーバにおける処理内容の例を示すフローチャートである。 図32は、パルスエネルギと波面調節器のレンズ間隔との関係を示すグラフの例である。 図33は、パルスエネルギとスペクトル線幅との関係を示すグラフの例である。 図34は、優先目標パラメータ値を高パルスエネルギの値とし、パルスエネルギ安定性のパラメータの範囲が仕様緩和可能な場合の光源パラメータ管理用サーバにおける処理内容の例を示すフローチャートである。 図35は、ハロゲンガス分圧とパルスエネルギの関係と、ハロゲンガス分圧とパルスエネルギ安定性の関係と、を示すグラフの例である。 図36は、光性能優先モードにおいてパルスエネルギの安定性を優先させる場合のハロゲンガス分圧の設定例を示すグラフである。 図37は、デューティ比とパルスエネルギとの関係を示すグラフの例である。 図38は、優先目標パラメータをデューティ比とし、パルスエネルギ安定性のパラメータの範囲が仕様緩和可能な場合の光源パラメータ管理用サーバにおける処理内容の例を示すフローチャートである。 図39は、消耗品寿命延長モード運転の場合に適用される処理内容の例を示すフローチャートである。 図40は、単位パルス当たりのガス消費量とパルスエネルギとの関係を示すグラフの例である。 図41は、ガス消費量低減モード運転の場合に適用される処理フローの例である。 図42は、省電力モード運転の場合に適用される処理フローの例である。 図43は、実施形態4の変形例を示すブロック図である。 図44は、光源に関するパラメータ情報の具体例を示す図表である。 図45は、優先目標パラメータ情報の具体例を示す図表である。 図46は、推奨目標パラメータ情報の具体例を示す図表である。 図47は、メインテナンス情報の具体例を示す図表である。 図48は、運転制御目標パラメータ情報の具体例を示す図表である。
実施形態
 -目次-
1.用語の説明
2.半導体製造システムの説明
 2.1 構成
 2.2 動作
3.リソグラフィーシステムの説明
 3.1 構成
 3.2 動作
4.ウエハ上への露光パターンの例
5.光源の例
 5.1 構成
 5.2 動作
 5.3 その他
 5.4 課題
6.実施形態1
 6.1 構成
 6.2 動作
  6.2.1 データ解析用サーバの処理例
  6.2.2 光源パラメータ管理用サーバの処理例
 6.3 効果
 6.4 その他
7.実施形態2
 7.1 構成
 7.2 動作
  7.2.1 データ解析用サーバの処理例
  7.2.2 光源パラメータ管理サーバの処理例
 7.3 効果
 7.4 その他
8.実施形態3
 8.1 構成
 8.2 動作
 8.3 効果
9.実施形態4
 9.1 構成
 9.2 性能優先モード運転
  9.2.1 スペクトル線幅Δλが優先目標パラメータの場合の例
   9.2.1.1 動作
   9.2.1.2 効果
   9.2.1.3 その他
  9.2.2 パルスエネルギが優先目標パラメータの場合
   9.2.2.1 高パルスエネルギを得ることが優先され、スペクトル線幅Δλを広くして露光が可能な場合の例
    9.2.2.1.1 動作
    9.2.2.1.2 効果
    9.2.2.1.3 その他
   9.2.2.2 高パルスエネルギを得ることが優先され、パルスエネルギ安定性を仕様緩和して露光が可能な場合の例
    9.2.2.2.1 動作
    9.2.2.2.2 効果
    9.2.2.2.3 その他
   9.2.2.3 高デューティ比で運転することが優先され、パルスエネルギ安定性を仕様緩和して露光が可能な場合の例
    9.2.2.3.1 動作
    9.2.2.3.2 効果
    9.2.2.3.3 その他
 9.3 消耗品寿命延長モード運転
  9.3.1 目標ハロゲンガス分圧を再設定する例
   9.3.1.1 動作
   9.3.1.2 効果
  9.3.2 目標スペクトル線幅を再設定する例
  9.3.3 ガス消費量を再設定する例
  9.3.4 効果
  9.3.5 その他
 9.4 消費量低減モード運転
  9.4.1 ガス消費量低減モード運転
   9.4.1.1 目標ハロゲン分圧を再設定する例
   9.4.1.2 目標スペクトル線幅を広げる例
   9.4.1.3 メインテナンスまでの残りパルス数を減少させる例
   9.4.1.4 効果
   9.4.1.5 その他
  9.4.2 省電力モード運転
   9.4.2.1 充電電圧の目標値を再設定する例
   9.4.2.2 ハロゲンガス分圧の目標値を再設定する例
   9.4.2.3 目標スペクトル線幅を広げる例
  9.4.3 効果
  9.4.4 その他
 9.5 変形例
10.パラメータ情報の具体例
11.プログラムを記録したコンピュータ可読媒体について
12.その他
 以下、本開示の実施形態について、図面を参照しながら詳しく説明する。以下に説明される実施形態は、本開示のいくつかの例を示すものであって、本開示の内容を限定するものではない。また、各実施形態で説明される構成及び動作の全てが本開示の構成及び動作として必須であるとは限らない。なお、同一の構成要素には同一の参照符号を付して、重複する説明を省略する。
 1.用語の説明
 「消耗品」とは、露光装置に用いられる光源がパルス出力することによって、劣化して、交換する部品又はモジュールをいう。例えば、光源のチャンバ、狭帯域化モジュール(LNM)、出力結合ミラー(OC)、モニタモジュール等があり得る。「交換」の概念には、消耗品を新しいものに置き換えることの他、消耗品を洗浄するなどして部品の機能の維持及び/又は回復を図り、同じ消耗品を再配置することも含まれる。
 「クリティカルディメンジョン(Critical Dimension:CD)」とは、半導体等のウエハ上に形成された微細パターンの寸法をいう。
 「オーバーレイ(重ね合わせ)」とは、半導体等のウエハ上に形成された微細パターンの重ね合わせをいう。
 「露光条件」とは、半導体等のウエハのレジストに露光した条件をいう。具体例としては、照明条件、投影条件、露光量、光源のスペクトル特性、光源の出力特性等があり得る。
 本明細書において、「パラメータ」と、「パラメータ値」と、「パラメータ情報」とはそれぞれ以下のような意味で用いる。
 「パラメータ」とは、変数を表す項目である。
 「パラメータ値」とは、上記変数の値である。つまり、上記パラメータの具体的な数値である。
 「パラメータ情報」とは、複数の変数とその複数の変数の値とを含むデータの集合体である。
 パラメータ情報の具体例については後述する(図44)。例えば、スペクトル線幅のパラメータ情報は、スペクトル線幅という変数(項目)及びその値と、スペクトル線幅の安定性(動作範囲)という変数及びその値と、を含むデータの集合体である。スペクトル線幅の安定性を示す値には、例えば、動作範囲の下限値と上限値とが含まれる。また、スペクトル線幅のパラメータ情報には、そのスペクトル線幅の値と安定性とを満たして動作させる期間という変数及びその値のデータが含まれてもよい。
 「目標パラメータ」や「目標パラメータ情報」など「目標」を付けた表記は、制御目標にするパラメータやパラメータ情報であることを意味する。目標パラメータ情報には、パラメータの制御目標である目標値と、その許容範囲を示す情報とが含まれてよい。ここでいう許容範囲は、パラメータの動作範囲、動作仕様、変動幅、あるいは安定性の範囲などに読み替えてもよい。
 「優先目標パラメータ情報」とは、光源の運転で優先される目標パラメータである変数の項目と、その変数の目標値とのデータの集合体である。優先目標パラメータ情報の具体例は後述する(図45)。
 さらに、優先目標パラメータ情報は、以下の2つの場合も含む。
 a)光源の光性能優先モード運転と、消耗品の寿命延長モード運転と、消費量低減モード運転と、のうちいずれかの優先モードをユーザが選択する場合も含む。
 b)優先目標パラメータの変数の項目と、その変数の目標値と、を含むデータの集合体を、光源が運転可能な案として提示し、ユーザが光源の優先目標パラメータの変数の項目を選定する場合も含む。
 ここで、各優先モード運転の定義を以下に示す。
 光源の光性能優先モード運転とは、光源の光性能を優先するように光源を運転させることをいう。
 消耗品寿命延長モード運転とは、光源の消耗品の寿命を延長するように光源を運転させることをいう。
 消費量低減モード運転とは、光源の消費電力やガス消費量を低減するように光源を運転させることをいう。電力及びレーザガスのそれぞれは、光源の運転によって消費される要素である。
 「推奨目標パラメータ情報」とは、光源の運転で優先される目標パラメータ情報で光源を運転した場合に推定される優先目標パラメータと異なるパラメータであって、仕様緩和が必要なパラメータの変数の項目と目標値のデータの集合体である。推奨目標パラメータ情報の具体例は後述する(図46)。
 「メインテナンス情報」とは、光源の運転を停止して、光源の定期的に部品交換が必要なそれぞれの消耗品のメインテナンスまでの残りパルス数又は残り時間のデータの集合体である。メインテナンス情報の具体例は後述する(図47)。
 消耗品ごとのメインテナンスまでの残りパルス数又は残り時間は、それぞれの消耗品の寿命(メインテナンスまでの残存寿命)を示す値である。なお、一日当たりの平均パルス数など、単位時間当たりのパルス数が把握されている場合、消耗品のメインテナンスまでの残りパルス数は、残り時間に換算することができる。消耗品の寿命を示すパラメータとしてメインテナンスまでの残りパルス数を用いてもよいし、残り時間を用いてもよく、これらの両方を用いてもよい。また、メインテナンス情報は、消耗品の交換時期を示す日時の情報を含んでもよい。
 「運転制御目標パラメータ」とは、光源が優先目標パラメータ情報を実現するために必要な光源の制御目標パラメータである。「運転制御目標パラメータ情報」とは、運転制御目標パラメータと目標値との集合体であって、複数の要求の仕様を満たすために、複数の運転制御目標パラメータを設定することがある。運転制御目標パラメータ情報の具体例は後述する(図48)。
 「外部装置」とは、優先目標パラメータ情報、推奨目標パラメータ情報及びメインテナンス情報の少なくとも1つを受信する装置である。具体的には、例えば、半導体工場管理システム、表示装置(優先制御パラメータ情報、推奨目標パラメータ情報、メインテナンス情報などをオペレータに知らせるための表示装置)、露光装置、露光装置用管理システム等が外部装置となり得る。
 2.半導体製造システムの説明
 2.1 構成
 図1に、例示的な半導体工場内の半導体製造システム200の構成を概略的に示す。半導体製造システム200は、複数のリソグラフィーシステム10と、ウエハ検査装置用管理システム202と、露光装置用管理システム204と、光源用管理システム206と、半導体工場管理システム208と、を含む。
 半導体工場管理システム208は、ネットワーク210を介して、ウエハ検査装置用管理システム202、露光装置用管理システム204及び光源用管理システム206に接続される。
 ネットワーク210は、有線もしくは無線又はこれらの組み合わせによる情報伝達が可能な通信回線である。ネットワーク210は、ワイドエリアネットワークであってもよいし、ローカルエリアネットワークであってもよい。
 半導体製造システム200に含まれる複数のリソグラフィーシステム10のそれぞれを識別するために、ここではリソグラフィーシステム識別符号#1,#2,…#k,…#wを用いる。wは半導体製造システム200に含まれるリソグラフィーシステムの数である。wは1以上の整数である。kは1以上w以下の範囲の整数である。
 それぞれのリソグラフィーシステム#kは、ウエハ検査装置12と、露光装置14と、光源16と、を含む。以下、説明の便宜上、リソグラフィーシステム#kに含まれるウエハ検査装置12、露光装置14、及び光源16のそれぞれを、ウエハ検査装置#k、露光装置#k、及び光源#kと表記する。ここでは簡単のために、それぞれのリソグラフィーシステム#kは、ウエハ検査装置#kと、露光装置#kと、光源#kと、をそれぞれ1台ずつ含む形態を示す。
 複数のリソグラフィーシステム#1~#wの一部又は全部は、互いに異なる形態であってもよい。リソグラフィーシステム#kに含まれるウエハ検査装置#k、露光装置#k、光源#kの各々の台数や配置形態などは適宜設計し得る。それぞれのリソグラフィーシステム#kは、1つ以上のウエハ検査装置#kと、1つ以上の露光装置#kと、1つ以上の光源#kと、を含んで構成される。
 ウエハ検査装置用管理システム202は、第1ローカルエリアネットワーク211を介して、それぞれのウエハ検査装置#1~#wに接続される。露光装置用管理システム204は、第2ローカルエリアネットワーク212を介して、それぞれの露光装置#1~#wに接続される。光源用管理システム206は、第3ローカルエリアネットワーク213を介して、それぞれの光源#1~#wに接続される。
 図1において、第1ローカルエリアネットワーク211を「LAN1」、第2ローカルエリアネットワーク212を「LAN2」、第3ローカルエリアネットワーク213を「LAN3」とそれぞれ表示した。
 2.2 動作
 ウエハ検査装置#1~#wは、ウエハ毎に、それぞれのレジストパターンが形成されたウエハの表面の物理的な特性値を計測する。「物理的な特性値」は、例えばCD値、オーバーレイ、倍率値、及び表面の高さなどである。ウエハ検査装置用管理システム202は、ウエハ検査装置#1~#wからウエハ毎に計測された物理的な物性値を取得し、それぞれのリソグラフィーシステム#kのそれぞれのウエハ毎に、計測された物理的な特性値のデータをそれぞれ保存する。さらに、ウエハ検査装置用管理システム202は、それぞれのウエハのスキャンフィールド毎に、物理的な特性値のデータを整理して保存する。そして、ウエハ検査装置用管理システム202は、必要に応じて半導体工場管理システム208と図示しないデータ解析用サーバとなどに、これらの計測データの一部又は全部を出力する。
 露光装置用管理システム204は、露光装置#1~#wからウエハ毎及びスキャンフィールド毎に、露光された条件と計測値とを含むデータを取得する。「露光された条件」は、例えば、投影条件や照明条件などである。「計測値」は、例えば、露光量やフォーカス位置などである。露光装置用管理システム204は、リソグラフィーシステム#k毎と、ウエハ毎と、スキャンフィールド毎とに、露光された条件と、計測値とのデータをそれぞれ保存する。露光装置用管理システム204は、必要に応じて半導体工場管理システム208とデータ解析用サーバとなどに、これらの計測データの一部又は全部を出力する。
 光源用管理システム206は、光源#1~#wからそれぞれの運転データを取得し、リソグラフィーシステム#k毎に、光源#kの運転データを保存する。運転データとは、例えば、スペクトル特性値のデータと、パルスエネルギ特性値のデータと、レーザ光の出力特性値のデータと、などが含まれる。スペクトル特性値とは、例えば、波長及びスペクトル線幅などである。レーザ光の出力特性値とは、例えば、パルスエネルギ値、パルスエネルギのばらつきを示すσ(標準偏差値)、ドーズ安定性、単位時間当たりのパルス数及びデューティ比などである。運転データは、光源#kの運転中にセンサ等を用いて計測される計測データを含む。
 また、光源用管理システム206は、リソグラフィーシステム毎と、ウエハ毎と、スキャンフィールド毎と、に、これらデータを整理して保存し、必要に応じて半導体工場管理システム208とデータ解析用サーバとなどに、これらの計測データの一部又は全部を出力する。
 半導体工場管理システム208は、半導体工場全体を管理する。半導体工場管理システム208は、例えば、ウエハ検査装置用管理システム202と、露光装置用管理システム204と、光源用管理システム206と、のそれぞれが取得した情報を受信する。
 3.リソグラフィーシステムの説明
 3.1 構成
 図2に、リソグラフィーシステム#kの構成例を概略的に示す。リソグラフィーシステム#kは、ウエハ検査装置12と、露光装置14と、光源16と、を含む。
 ウエハ検査装置12は、ウエハ上にレーザ光を照射してその反射光又は回折光を測定することによって、以下の計測が可能となる。すなわち、ウエハ検査装置12は、CDと、ウエハの高さと、オーバーレイと、を含む計測が可能である。また、ウエハ検査装置12は、高分解能スキャン電子顕微鏡(Scanning Electron Microscope:SEM)であってもよい。ウエハ検査装置12は、ウエハ検査制御部220と、ウエハホルダ225と、ウエハステージ226と、を含む。
 露光装置14は、露光制御部50と、ビームデリバリユニット(BDU)15と、高反射ミラー51と、照明光学系66と、レチクル74及びレチクルステージ76と、投影光学系78と、ウエハホルダ80及びウエハステージ81と、フォーカスセンサ84と、を含む。露光装置#kは、ウエハホルダ80に保持されたウエハWF上での露光量を計測するための図示しない露光量センサを含む。
 照明光学系66は、入射したレーザビームを矩形状の略均一な光強度分布のスタティック露光エリアSEA(図5参照)に整形するよう構成される。照明光学系66はレチクル74への照明条件が変更可能なように、図示しない照明パターンを生成できる構成となっている。照明パターンは、例えば、偏光照明と、輪帯照明と、ダイポール照明と、などであってよい。
 投影光学系78は、レチクルパターンをウエハWF上に結像させるように配置され、投影光学系78の結像条件が調整できるように、例えば、図示しない絞りが配置され、開口数(Numerical Aperture:NA)を調整できる構成を含む。
 フォーカスセンサ84は、ウエハWF表面と投影光学系78との間の距離が計測可能なように配置される。
 光源16は、例えば、波長及びスペクトル線幅可変の狭帯域発振可能なエキシマレーザ装置であって、レーザ制御部90と、図1に示されていないモニタモジュールと、チャンバと、狭帯域化モジュールと、出力結合ミラーと、その他の装置と、を含む。エキシマレーザ装置の詳細な構成例については図5で後述する。
 本開示において、露光制御部50及びレーザ制御部90などの各制御部として機能する制御装置は、1台又は複数台のコンピュータのハードウェア及びソフトウェアの組み合わせによって実現することが可能である。ソフトウェアはプログラムと同義である。プログラマブルコントローラはコンピュータの概念に含まれる。コンピュータは、CPU(Central Processing Unit)及びメモリを含んで構成される。プログラマブルコントローラはコンピュータの概念に含まれる。また、制御装置の処理機能の一部又は全部は、FPGA(Field Programmable Gate Array)やASIC(Application Specific Integrated Circuit)に代表される集積回路を用いて実現してもよい。
 また、複数の制御装置の機能を1台の制御装置で実現することも可能である。さらに本開示において、制御装置は、ローカルエリアネットワークやインターネットといった通信ネットワークを介して互いに接続されてもよい。分散コンピューティング環境において、プログラムユニットは、ローカル及びリモート両方のメモリストレージデバイスに保存されてもよい。
 3.2 動作
 露光制御部50は、各種目標パラメータ値を光源16に出力する。露光制御部50から光源16に提供される目標パラメータ値は、目標波長λtと、目標スペクトル線幅Δλtと、目標パルスエネルギEtと、その他目標パラメータ値と、を含む。
 レーザ制御部90は、光源16の出力波長とスペクトル線幅とが目標波長λtと目標スペクトル線幅Δλtとになるように、レーザ共振器の後述する狭帯域モジュールの選択波長と、波長帯域幅と、を制御する。そして、レーザ制御部90は、発光トリガ信号Trと同期してパルスレーザ光を出力させ、後述するモニタモジュールによって計測されたデータを露光制御部50及び光源用管理システム206に出力する。モニタモジュールによって計測されるデータは、波長λと、スペクトル線幅Δλと、パルスエネルギEと、等を含む。
 露光制御部50は、レジストがコートされたウエハWFを後述するステップアンドスキャンの方式で、発光トリガ信号Trを出力しながらレチクルステージ76及びウエハステージ81を制御し、レチクル74の像をウエハWF上のレジストにスキャン露光する。そして、露光制御部50は、露光条件のデータを露光装置用管理システム204に出力する。露光条件のデータは、例えば、照明光学系66の条件(照明パターン)と、ドーズ(露光量)と、フォーカス(投影光学系78とウエハ表面との距離)と、投影光学系78の条件(例えば、NA)と、を含む。
 ウエハ検査装置12は、上記露光した後のウエハWFを、図示しない現像装置で現像後、レジストパターンが形成されたウエハDWの物理的な特性値(例えば、CD値と、オーバーレイと、倍率と、表面の高さと、等を含む)を計測する。そして、ウエハ検査制御部220は、これらの計測データをウエハ検査装置用管理システム202に出力する。
 4.ウエハ上への露光パターンの例
 図3に、露光制御部50からレーザ制御部90に出力される発光トリガ信号Trの出力パターンの例を示す。この例では、ウエハWF毎に、調整露光の後、実露光パターンに入る。光源16は、ステップアンドスキャン露光におけるステップ期間中は、発振休止し、スキャン期間中は、発光トリガ信号Trの間隔に応じてパルスレーザ光を出力する。このようなレーザ発振のパターンをバースト運転パターンという。
 図4に、ウエハWF上でのステップアンドスキャン露光の露光パターンの例を示す。図4のウエハWF内に示す多数の矩形領域のそれぞれはスキャンフィールドSFである。スキャンフィールドSFは、1回のスキャン露光の露光領域であり、スキャン領域とも呼ばれる。ウエハ露光は、図4に示すように、ウエハWFを複数の所定サイズの露光領域(スキャンフィールドSF)に分割して、ウエハ露光の開始(Wafer START)と終了(Wafer END)との間の期間に、各露光領域をスキャン露光することにより行われる。
 すなわち、ウエハ露光では、ウエハWFの第1の所定の露光領域を1回目のスキャン露光(Scan#1)で露光し、次いで、第2の所定の露光領域を2回目のスキャン露光(Scan#2)で露光するというステップを繰り返す。1回のスキャン露光中は、複数のパルスレーザ光が連続的にレーザ装置から出力され得る。このスキャン露光を順次繰り返し、1枚目のウエハWFの全露光領域をスキャン露光し終えたら、再度、調整露光を行った後、2枚目のウエハWFのウエハ露光が行われる。
 図4に示す破線矢印の順番で、Wafer START→Scan#1→Scan#2→・・・・・・・→Scan#126→Wafer ENDまでステップアンドスキャン露光される。ウエハWFはレジストが塗布された半導体基板(感光基板)の一例である。
 図5に、ウエハWF上の1つのスキャンフィールドSFとスタティック露光エリアSEAとの関係を示す。スタティック露光エリアSEAは、長方形の光強度分布が略均一なレーザビームがレチクル74上に照射され、短軸方向(Y軸方向)に、レチクル74とウエハWFとが投影光学系78の縮小倍率に応じてY軸方向に互いに異なる向きで移動しなら露光することによって、レチクルパターンが、ウエハWF上のスキャンフィールドSFに露光される。
 この例では、スキャン露光時に、ウエハステージ81はY軸の負の方向に、スキャン方向は、Y軸の正の方向に移動した場合の例を示している。ただし、ウエハステージ81はY軸の正の方向に、スキャン方向は、負の方向に移動する場合を組み合わせることによって、次のステップの移動時間を短縮してもよい。
 ここで、スキャン露光しながらレジストに照射されるパルスレーザ光のパルス数NsをNスリットという。図6に示すように、一括露光可能なスタティック露光エリアSEAの短軸方向の長さをBy、長軸方向の長さをBxとすると、Nスリットは次式で表される。
  Ns=f・Vw/By
 式中のVwはウエハWFのスキャン速度であり、fは光源の繰り返し周波数である。
 5.光源の例
 5.1 構成
 図7に、例示的な光源16の構成を概略的に示す。光源16は、例えば、KrFエキシマレーザ装置であって、チャンバ100と、狭帯域化モジュール(LNM)102と、インバータ104と、出力結合ミラー(OC)106と、波面調節器107と、モニタモジュール108と、充電器110と、パルスパワーモジュール(PPM)112と、ガス供給装置114と、ガス排気装置116と、出射口シャッタ118と、を含む。
 チャンバ100は、第1ウインドウ121と、第2ウインドウ122と、クロスフローファン(CFF)123と、CFF123を回転させるモータ124と、1対の電極125,126と、電気絶縁物127と、圧力センサ128と、図示しない熱交換器と、を含む。
 インバータ104は、モータ124の電源供給装置である。インバータ104は、モータ124に供給する電力の周波数を特定する指令信号をレーザ制御部90から受信する。インバータ104の周波数を制御することによってCFF123の回転数を制御可能な構成となっている。
 PPM112は、チャンバ100の電気絶縁物127中のフィードスルーを介して電極125と接続される。PPM112は、半導体スイッチ129と、いずれも図示しない、充電コンデンサと、パルストランスと、パルス圧縮回路と、を含む。
 LNM102は、第1プリズム131及び第2プリズム132を用いたビームエキスパンダと、回転ステージ134と、グレーティング136と、を含む。第1プリズム131及び第2プリズム132は、チャンバ100の第2ウインドウ122から出射された光のビームをY軸方向に拡大し、グレーティング136に入射するように配置される。
 ここで、グレーティング136はレーザ光の入射角と回折角とが一致するようにリトロー配置される。第2プリズム132は、回転ステージ134が回転したときに、レーザ光のグレーティング136への入射角と回折角とが変化するように回転ステージ134上に配置される。
 OC106は部分反射ミラーであって、LMN102と共に光共振器を構成するように配置される。チャンバ100は、この光共振器の光路上に配置される。
 波面調節器107は、OC106とチャンバ100との間に配置される。波面調節器107は、シリンドリカル状の凹レンズ171と、シリンドリカル状の凸レンズ172と、リニアステージ174と、を含む。凹レンズ171と凸レンズ172との距離をリニアステージ174で変化させることによって、Z軸から見た波面の曲率半径を変更可能な構成となっている。
 モニタモジュール108は、第1ビームスプリッタ141及び第2ビームスプリッタ142と、パルスエネルギ検出器144と、スペクトル検出器146と、を含む。第1ビームスプリッタ141は、OC106から出力されたレーザ光の光路上に配置され、レーザ光の一部が反射されて第2ビームスプリッタ142に入射するように配置される。
 パルスエネルギ検出器144は、第2ビームスプリッタ142を透過したレーザ光が入射するように配置される。パルスエネルギ検出器144は、例えば、紫外線の光強度を計測するフォトダイオードであってもよい。第2ビームスプリッタ142は、レーザ光の一部が反射されてスペクトル検出器146に入射するように配置される。
 スペクトル検出器146は、例えば、エタロンと、イメージセンサと、を含むエタロン分光器であってよい。モニタエタロン分光器は、エタロンによって生成した干渉縞をイメージセンサで計測可能な構成である。そして、この生成した干渉縞に基づいて、出力されるパルスレーザ光の中心波長とスペクトル線幅とが計測される。
 ガス供給装置114は、KrFエキシマレーザ装置の場合は、不活性なレーザガスの供給源である不活性ガス供給源152と、ハロゲンを含むレーザガスの供給源であるハロゲンガス供給源154と、のそれぞれと配管を介して接続される。不活性なレーザガスとは、KrガスとNeガスの混合ガスである。ハロゲンを含むレーザガスとは、FガスとKrガスとNeガスの混合ガスである。ガス供給装置114は、チャンバ100と配管を介して接続される。
 ガス供給装置114は、不活性なレーザガス又はハロゲンを含むレーザガスをそれぞれチャンバ100に所定量供給するための、図示しない自動バルブ及びマスフローコントローラをそれぞれ含む。
 ガス排気装置116は、配管を介してチャンバ100と接続される。ガス排気装置116は、ハロゲンを除去する図示しないハロゲンフィルタ及び排気ポンプを含み、ハロゲンを除去したレーザガスが外部に排気されるように構成される。
 出射口シャッタ118は、光源16から外部に出力されるレーザ光の光路上に配置され、外部へのレーザ光の出力と遮光とが可能な構成となっている。
 出射口シャッタ118を介して光源16から出力されたレーザ光が露光装置14に入射するように光源16が配置される。
 5.2 動作
 光源16の動作について説明する。レーザ制御部90は、チャンバ100内に存在するガスを、ガス排気装置116を介して排気した後、ガス供給装置114を介してKr及びNeの混合ガスと、FとKrとNeとの混合ガスと、を所望のガス組成及び全ガス圧となるようにチャンバ100内に充填する。
 レーザ制御部90は、インバータ104を介して、所定の回転数でモータ124を回転させてCFF123を回転させる。その結果、電極125,126間にレーザガスが流れる。
 レーザ制御部90は、露光装置14の露光制御部50から目標パルスエネルギEtを受信し、パルスエネルギがEtとなるように充電電圧Vのデータを充電器110に出力する。
 充電器110は、PPM112の充電コンデンサが充電電圧Vとなるように充電する。露光装置14から発光トリガ信号Tr1が出力されると、発光トリガ信号Tr1に同期してレーザ制御部90からトリガ信号Tr2がPPM112の半導体スイッチ129に入力される。この半導体スイッチ129が動作するとPPM112の磁気圧縮回路によって電流パルスが圧縮され、充電電圧Vに応じて高電圧が電極125,126間に印加される。その結果、電極125,126間で放電が発生し、放電空間においてレーザガスが励起される。
 放電空間の励起されたレーザガスが基底状態となるときに、紫外光であるエキシマ光が発生する。このエキシマ光はOC106とLMN102との間を往復して増幅されることによって、レーザ発振する。その結果、OC106から狭帯域化されたパルスレーザ光が出力される。
 OC104から出力されたパルスレーザ光はモニタモジュール108に入射する。モニタモジュール108では第1ビームスプリッタ141によってレーザ光の一部がサンプルされ、第2ビームスプリッタ142に入射する。第2ビームスプリッタ142は入射したレーザ光の一部を透過してパルスエネルギ検出器144に入射し、他の一部を反射してスペクトル検出器146に入射させる。
 光源16から出力されるパルスレーザ光のパルスエネルギEがパルスエネルギ検出器144によって計測され、計測されたパルスエネルギEのデータがパルスエネルギ検出器144からレーザ制御部90に出力される。
 また、スペクトル検出器146によって中心波長λとスペクトル線幅Δλとが計測され、計測された中心波長λとスペクトル線幅Δλとのデータがスペクトル検出器146からレーザ制御部90に出力される。
 レーザ制御部90は、露光装置14から目標パルスエネルギEtと目標波長λtと目標スペクトル線幅Δλtとを受信する。レーザ制御部90は、パルスエネルギ検出器144によって計測されたパルスエネルギEと目標パルスエネルギEtとを基に、パルスエネルギの制御を行う。パルスエネルギの制御は、パルスエネルギ検出器144によって計測されたパルスエネルギEと目標パルスエネルギとの差ΔE=E-Etが0に近づくように充電電圧Vを制御することを含む。
 レーザ制御部90は、スペクトル検出器146によって計測された中心波長λと目標波長λtとを基に、波長の制御とスペクトル線幅の制御とを行う。波長の制御は、スペクトル検出器146によって計測された中心波長λと目標波長λtとの差δλ=λ-λtが0に近づくように回転ステージ134の回転角を制御することを含む。
 スペクトル線幅の制御は、スペクトル検出器146によって計測されたスペクトル線幅Δλと目標スペクトル線幅Δλtとの差ΔΔλ=Δλ-Δλtが0に近づくように波面調節器107のリニアステージ174を制御することを含む。
 以上のようにレーザ制御部90は、露光装置14から目標パルスエネルギEtと目標波長λtと目標スペクトル線幅Δλtとを受信して、発光トリガ信号Tr1が入力される毎に、発光トリガ信号Tr1に同期して光源16からパルスレーザ光を出力させる。
 エキシマレーザ装置は放電を繰り返すと、電極125,126が消耗し、レーザガス中のハロゲンガスが消費されると共に、不純物ガスが生成される。チャンバ100内のハロゲンガス分圧の低下や不純物ガスの増加は、パルスレーザ光のパルスエネルギの低下やパルスエネルギの安定性に悪影響を及ぼす。レーザ制御部90は、これらの悪影響を抑制するために、以下のガス制御([1]~[4])を実行する。
 [1]ハロゲン注入制御
 ハロゲン注入制御とは、レーザ発振中に、チャンバ100内で主に放電によって消費された分のハロゲンガスを、チャンバ100内のハロゲンガスよりも高い濃度にハロゲンガスを含むガスを注入することによって、ハロゲンガスを補充するガス制御である。この制御では、レーザ制御部90は、チャンバ100内での目標ハロゲン分圧Hgctとなるように制御する。ここで、目標ハロゲン分圧Hgctは、光源16の運転制御目標パラメータの1つである。
 [2]部分ガス交換制御
 部分ガス交換制御とは、レーザ発振中に、チャンバ100内の不純物ガスの濃度の増加を抑制するように、チャンバ100内のレーザガスの一部を新しいレーザガスに交換するガス制御である。
 [3]ガス圧制御
 ガス圧制御とは、光源16から出力されるパルスレーザ光のパルスエネルギの制御が、充電電圧Vの制御範囲では困難な場合に、チャンバ100内にレーザガスを注入してレーザガスの全ガス圧Pを変化させることによって、パルスエネルギを制御するガス制御である。ここで、充電電圧Vの制御範囲の上限値(HVULt)と下限値(HVLLt)とは、光源16の運転制御目標パラメータの1つである。
 [4]全ガス交換制御
 上記の[1]、[2]及び[3]の制御では、レーザ性能(パルスエネルギ)を維持できない場合には、レーザ発振を停止し、チャンバ100中のレーザガスを排気して、新しくレーザガスを充填した後、再び、レーザを発振させて運転する。このような制御を全ガス交換制御という。
 ここで、「ガス消費量Gw」を定義する。ガス消費量Gwは、単位パルス数当たりのレーザガス消費量をと定義する。このガス消費量Gwは、ハロゲン注入制御、部分ガス交換制御、ガス圧制御及び全ガス交換制御のうち少なくとも1つの制御を行う際に、チャンバ100に供給したガス量Gaとその際に出力したパルスレーザ光のパルス数NgからGw=Ga/Ngの式によって求めることができる。
 また、目標ガス消費量Gwtは、光源16の運転制御目標パラメータの1つであり、光源16は、単位パルス数当たりガスの消費量がGwtとなるようにガス制御が行われる。
 チャンバ100からレーザガスを排気する場合に、レーザ制御部90はガス排気装置116を制御する。チャンバ100から排気されたレーザガスは図示しないハロゲンフィルタによってハロゲンガスが除去され、光源16の外部に排気される。
 レーザ制御部90は、発振パルス数と、充電電圧Vと、チャンバ100内のガス圧Pと、レーザ光のパルスエネルギEと、波長λと、スペクトル線幅Δλと、を含むこれらパラメータ値のデータを、露光装置14や光源用管理システム206に出力する。
 5.3 その他
 図7では、光源16として狭帯域化KrFエキシマレーザ装置の例を示したが、この例に限定されることなく、狭帯域化ArFエキシマレーザ装置であってもよい。
 また、光源16としてシングルチャンバの例を示したが、この例に限定されることなく、狭帯域化されたパルスレーザ光を出力するマスターオシレータと、このパルスレーザ光をエキシマレーザガスを含むチャンバによって増幅する増幅器と、を含むレーザ装置であってもよい。
 また、マスターオシレータと増幅器とを含むレーザ装置において、マスターオシレータとして、固体レーザと非線形結晶とを組み合わせた、ArFレーザ又はKrFレーザの増幅可能な波長域で、狭帯域化されたレーザ光を出力する固体レーザ装置であってもよい。
 5.4 課題
 顧客や顧客のプロセスデザインや製作している製品によって、どの目標パラメータ情報が、どのように影響するかは異なる。また、光源は設計上、製品として決められた仕様の範囲で動作することを保証している。
 しかし、このように一律の決められた目標パラメータ情報の範囲では、超微細化を進める半導体製造のユーザにとって不十分な場合が多くなってきている。
 そして、半導体の生産現場では、より細かく厳しい目標パラメータ情報でパラメータを監視し、制御するニーズが高まっている。
 しかし、個々のユーザ又は半導体プロセスで、特に重要とされる特定の優先的な目標パラメータ情報となるように運転させる光源や対応可能なリソグラフィーシステムはほとんどない。
 6.実施形態1
 6.1 構成
 図8は、実施形態1に係る半導体製造システム300の構成を示す。図8の構成について図1と異なる点を説明する。図8に示す半導体製造システム300は、図1の半導体製造システム200の構成に、データ解析用サーバ310と、光源パラメータ管理用サーバ320とが追加された構成となっている。データ解析用サーバ310及び光源パラメータ管理用サーバ320はネットワーク210に接続される。
 データ解析用サーバ310及び光源パラメータ管理用サーバ320のそれぞれは、図示しないプロセッサと、プログラムが記憶された記憶装置と、を含む。記憶装置は、有体物たる非一時的なコンピュータ可読媒体であり、例えば、主記憶装置であるメモリ及び補助記憶装置であるストレージを含む。コンピュータ可読媒体は、例えば、半導体メモリ、ハードディスクドライブ(Hard Disk Drive:HDD)装置、もしくはソリッドステートドライブ(Solid State Drive:SSD)装置又はこれらの複数の組み合わせであってよい。プロセッサはCPUを含み、プログラムの命令を実行することにより各種の処理を実行する。プロセッサは、CPUとGPU(Graphics Processing Unit)との組み合わせであってもよく、プログラマブルロジックデバイス (Programmable Logic Device:PLD)などの集積回路を含んでもよい。
 6.2 動作
 図9は、半導体製造システム300の全体的な処理フローを示すブロック図である。データ解析用サーバ310は、以下のステップ(A-1~A-5)を実行する。
 ステップA-1:データ解析用サーバ310は、ウエハ検査装置用管理システム202のデータと、露光装置用管理システム204のデータと、光源用管理システム206のデータと、工場内の追跡データ207と、を取得し、リソグラフィーシステム毎と、ウエハ毎と、スキャン毎と、に紐づけて、それぞれのデータを整理して保存する。追跡データ207には、例えば、ウエハ内のチップの歩留まりを追跡したデータが含まれる。
 ステップA-2:データ解析用サーバ310は、ステップA-1にて整理して保存されたリソグラフィーシステム#kのパラメータ情報を解析する。データ解析用サーバ310における解析方法については、例えば、特許文献4に記載の方法を適用してよい。
 ステップA-3:データ解析用サーバ310は、ステップA-2の解析結果から露光性能のパラメータに影響が大きい光源#kのパラメータを抽出する。
 ステップA-4:データ解析用サーバ310は、ステップA-3で抽出された光源#kのパラメータと露光性能のパラメータとの関係に基づいて、光源#kの優先目標パラメータ情報を求める。
 ステップA-5:データ解析用サーバ310は、ステップA-4で求めた光源#kの優先目標パラメータ情報を、半導体工場管理システム208に出力する。
 半導体工場管理システム208は、以下のステップ(B-1,B-2)を実行する。
 ステップB-1:半導体工場管理システム208は、光源#kの優先目標パラメータ情報と、その他の半導体工場の管理情報209と、を受信する。その他の半導体工場の管理情報209とは、例えば、半導体工場のプロセスと、半導体の歩留まりと、工場ラインのスケジュールと、半導体の製造コストと、を含むデータである。
 ステップB-2:半導体工場管理システム208は、取得した優先目標パラメータ情報と、その他の半導体工場の管理情報と、に基づいて、光源#kの優先目標パラメータ情報を光源パラメータ管理用サーバ320に出力する。
 光源パラメータ管理用サーバ320は、以下のステップ(C-1~C-3)を実行する。
 ステップC-1:光源パラメータ管理用サーバ320は、優先目標パラメータ情報を、半導体工場管理システム208から受信する。
 ステップC-2:光源パラメータ管理用サーバ320は、優先目標パラメータ情報を設定した場合の光源のメインテナンス情報を推定する。
 ステップC-3:光源パラメータ管理用サーバ320は、メインテナンス情報を半導体工場管理システム208に出力する。
 半導体工場管理システム208は、さらに、以下のステップ(B-4,B-5)を実行する。
 ステップB-4:半導体工場管理システム208は、光源#kのメインテナンス情報を受信する。
 ステップB-5:半導体工場管理システム208は、その他の半導体工場の管理情報209と、光源#kのメインテナンス情報と、に基づいて光源#kの運転の許否(OK/NOK)を判定し、判定結果を光源パラメータ管理用サーバ320に出力する。半導体工場管理システム208は、光源#kの運転を許可する場合(OK判定時)はOK信号を出力し、光源#kの運転を不許可とする場合(NOK判定時)はNOK信号を出力する。
 光源パラメータ管理用サーバ320は、さらに、以下のステップ(C-4~C-6)を実行する。
 ステップC-4:光源#kの運転を許可するOK判定が得られた場合、光源パラメータ管理用サーバ320は、光源用管理システム206を介して光源#kに優先目標パラメータ情報を出力する。その結果、光源#kには優先目標パラメータ情報が設定され、光源#kは優先目標パラメータ情報に基づいて運転制御される。
 ステップC-5:また、OK判定が得られた場合、光源パラメータ管理用サーバ320は、光源#kの運転データから、優先目標パラメータ情報を満たして運転する場合のメインテナンス情報を推定し、推定したメインテナンス情報を半導体工場管理システム208に出力する。
 ステップC-6:一方、光源#kの運転を不許可とするNOK判定が得られた場合、光源パラメータ管理用サーバ320は、光源用管理システム206を介して光源#kに運転停止を指令する信号(運転停止信号)を出力する。その結果、光源#kは運転を停止する。
 データ解析用サーバ310及び光源パラメータ管理用サーバ320の個々の詳しい処理フローをさらに説明する。
 6.2.1 データ解析用サーバの処理例
 図10は、データ解析用サーバ310における処理内容の例を示すフローチャートである。図10に示すステップの処理は、データ解析用サーバ310に含まれるプロセッサがプログラムの命令を実行することによって実現される。
 図10のフローチャートがスタートすると、ステップS11において、データ解析用サーバ310は、ウエハ検査装置用管理システム202、露光装置用管理システム204及び光源用管理システム206などから各種データを取得し、リソグラフィーシステム#kにおけるそれぞれのウエハのスキャン毎に、ウエハ検査データと光源データと、露光装置データと、に整理して保存する。
 ステップS12において、データ解析用サーバ310は、光源#kの各パラメータと、露光装置#kの露光性能の各パラメータとの相関性を解析する。
 ステップS13において、データ解析用サーバ310は、露光性能のパラメータと相関性が高い光源のパラメータを選定する。
 ステップS14において、データ解析用サーバ310は、露光装置#kの露光性能のパラメータと相関性が高いと選定された光源#kのパラメータの回帰曲線を計算する。
 ステップS15において、データ解析用サーバ310は、計算された回帰曲線から露光性能のパラメータ値が許容範囲となる光源#kのパラメータの目標値とその範囲とを計算する(図11参照)。
 ステップS16において、データ解析用サーバ310は、光源#kの優先目標パラメータ情報として、光源の目標パラメータ値とその範囲とを出力する。データ解析用サーバ310は、ステップS16の後、図10のフローチャートを終了する。
 図11は、回帰曲線から光源パラメータの目標値とその範囲とを求める方法を示すグラフである。図11の横軸は、露光性能パラメータ値Rを表し、縦軸は光源パラメータ値Lを表す。回帰曲線RCは、露光装置#kの露光性能パラメータと相関性が高いと選定された光源#kの光源パラメータの回帰曲線である。
 露光装置#kの露光性能パラメータの目標値Rtと、その許容範囲を示す許容下限値Rminと許容上限値Rmaxとを基に、回帰曲線RCから光源パラメータの目標値Ltと、その許容範囲を示す許容下限値Lminと許容上限値Lmaxとを求めることができる。こうして得られる光源パラメータの目標値Lt、許容下限値Lmin及び許容上限値Lmaxを含むデータの集合は、光源の優先目標パラメータ情報となり得る。
 6.2.2 光源パラメータ管理用サーバの処理例
 図12及び図13は、光源パラメータ管理用サーバ320における処理内容の例を示すフローチャートである。図12及び図13に示すステップの処理は、光源パラメータ管理用サーバ320に含まれるプロセッサがプログラムの命令を実行することによって実現される。
 図12のフローチャートがスタートすると、ステップS20において、光源パラメータ管理用サーバ320は、光源#kの優先目標パラメータ情報を取得する。光源パラメータ管理用サーバ320が取得する光源#kの優先目標パラメータ情報は、1つの項目の目標パラメータだけでなく、例えば、光源パラメータ管理用サーバ320は、優先順位が高い順に目標パラメータ情報を取得してもよい。
 ステップS22において、光源パラメータ管理用サーバ320は、光源#kが優先目標パラメータ情報に設定する場合の光源#kのメインテナンス情報を推定する。ステップS22のサブルーチンについては後述する(図14)。
 ステップS23において、光源パラメータ管理用サーバ320は、光源#kの推定されたメインテナンス情報を半導体工場管理システム208に出力する。
 ステップS24において、光源パラメータ管理用サーバ320は、半導体工場管理システム208から運転OK又は運転NOKのうち、どちらの信号を受信したかを判定する。半導体工場管理システム208から運転NOKの信号を受信した場合、光源パラメータ管理用サーバ320は、ステップS25に進む。
 ステップS25において、光源パラメータ管理用サーバ320は、光源#kの運転停止信号を出力する。半導体工場では、ステップS23で出力されたメインテナンス情報に基づいて光源#kのメインテナンスが実施される。光源パラメータ管理用サーバ320は、ステップS25の後、図12のフローチャートを終了する。
 一方、ステップS24の判定において、光源パラメータ管理用サーバ320が半導体工場管理システム208から運転OKの信号を受信した場合、光源パラメータ管理用サーバ320は、ステップS26に進む。
 ステップS26において、光源パラメータ管理用サーバ320は、光源#kに優先目標パラメータ情報を出力する。ステップS26の後、光源パラメータ管理用サーバ320は、図13のステップS27に進む。
 ステップS27において、光源パラメータ管理用サーバ320は、光源#kの運転信号を出力する。
 ステップS28において、光源パラメータ管理用サーバ320は、光源#kの運転データを取得する。
 ステップS29において、光源パラメータ管理用サーバ320は、光源#kの運転データから優先目標パラメータ情報に設定する場合のメインテナンス情報を推定する。ステップS29のサブルーチンについては後述する(図15)。
 ステップS30において、光源パラメータ管理用サーバ320は、光源#kの推定したメインテナンス情報を半導体工場管理システム208に出力する。
 ステップS31において、光源パラメータ管理用サーバ320は、半導体工場管理システム208から光源の運転停止信号を受信したか否かを判定する。ステップS31の判定結果がNo判定である場合、光源パラメータ管理用サーバ320は、ステップS28に戻る。
 ステップS31の判定結果がYes判定である場合、光源パラメータ管理用サーバ320は、ステップS32に進む。ステップS32において、光源パラメータ管理用サーバ320は、光源#kの運転停止信号を出力する。半導体工場では、メインテナンス情報に基づいて光源#kのメインテナンスが実施される。光源パラメータ管理用サーバ320は、ステップS32の後、図12のフローチャートを終了する。
 図14は、図12のステップS22に適用されるサブルーチンの例を示すフローチャートである。図14のフローチャートがスタートすると、ステップS41において、光源パラメータ管理用サーバ320は、光源#kに優先目標パラメータ情報を出力する。
 ステップS42において、光源パラメータ管理用サーバ320は、光源#kの調整運転信号を出力する。光源#kは、調整運転信号を受信することにより、調整運転を開始し、調整運転の実施によって得られる各種のデータ(調整運転データ)を光源パラメータ管理用サーバ320に出力する。
 ステップS43において、光源パラメータ管理用サーバ320は、光源#kの調整運転データを取得する。
 ステップS44において、光源パラメータ管理用サーバ320は、光源#kの運転データから優先目標パラメータ情報に設定する場合のメインテナンス情報を推定する処理を行う。この場合の「光源#kの運転データ」とは、ステップS43で取得した「光源#kの調整運転データ」である。ステップS44に適用される処理のサブルーチンは、図13のステップS29に適用されるサブルーチンと共通であってよい。
 ステップS44の後、光源パラメータ管理用サーバ320は、図12のフローチャートに復帰する。
 図15は、図13のステップS29及び図14のステップS44に適用されるサブルーチンの例を示すフローチャートである。
 図15のフローチャートがスタートすると、ステップS51において、光源パラメータ管理用サーバ320は、光源#kの運転データを取得する。
 ステップS52において、光源パラメータ管理用サーバ320は、消耗品の劣化度を推定する処理に用いる学習モデルを呼び出す。この学習モデルは、光源の運転データを入力として、消耗品の劣化度を出力するように、教師あり学習データを用いて機械学習を行うことにより作成されたニューラルネットワークで構成された学習済みの機械学習モデル(推論モデル)であってよい。光源の運転データから消耗品の劣化度を推定する学習モデルの作成方法と、学習モデルの推論結果として出力される劣化度からメインテナンスまでのパルス数を計算する方法とについては、特許文献1に開示されている技術を採用してよい。
 特許文献1には、次のような方法が記載されている。すなわち、レーザ装置の消耗品の寿命を予測するための学習モデルを作成する機械学習方法であって、消耗品の使用が開始されてから交換されるまでの期間中の異なる発振パルス数に対応して記録された消耗品の寿命関連パラメータのデータを含む第1の寿命関連情報を取得することと、第1の寿命関連情報を発振パルス数に応じて消耗品の劣化度を表す複数段階のレベルに分割し、第1の寿命関連情報と劣化度を表すレベルとを対応付けた訓練データを作成することと、訓練データを用いて機械学習を行うことにより、寿命関連パラメータのデータから消耗品の劣化度を予測する学習モデルを作成することと、作成された学習モデルを保存することと、を含む機械学習方法である。
 さらに、特許文献1には、上記の機械学習方法を実施することによって作成された学習モデルを保存しておく学習モデル保存部と、レーザ装置における交換予定の消耗品についての寿命予測処理の要求信号を受信して、交換予定の消耗品に関する現在の第2の寿命関連情報を取得する情報取得部と、交換予定の消耗品の学習モデルと第2の寿命関連情報とに基づいて、交換予定の消耗品の寿命と余寿命とを計算する寿命予測部と、計算によって得られた交換予定の消耗品の寿命と余寿命との情報を外部装置に通知する情報出力部と、を含むレーザ装置の消耗品管理装置が記載されている。
 光源パラメータ管理用サーバ320は、特許文献1に記載された消耗品管理装置と同様の機能を備えるものであってよい。
 ステップS53において、光源パラメータ管理用サーバ320は、光源#kの運転データを学習モデルに入力して劣化度を推定する。
 ステップS54において、光源パラメータ管理用サーバ320は、推定された劣化度から各消耗品のメインテナンスまでの残りパルス数を計算する。
 ステップS55において、光源パラメータ管理用サーバ320は、メインテナンスまでの残りパルス数をメインテナンス情報として出力する。ステップS55の後、光源パラメータ管理用サーバ320は図12及び図13に示すフローチャートに復帰する。
 なお、図15のフローチャートにて用いられる学習モデルは、後述する優先目標パラメータ情報によって、消耗品のメインテナンス寿命が異なる場合は、それぞれのモードに対する教師あり学習データに基づいて、それぞれ学習モデルが作成される。そして、光源パラメータ管理用サーバ320は、優先目標パラメータにそれぞれ対応して学習モデルを呼び出してもよい。
 光源パラメータ管理用サーバ320は本開示における「光源パラメータ情報管理装置」の一例である。光源パラメータ管理用サーバ320が実行するステップを含む方法は本開示における「光源パラメータ情報管理方法」の一例である。
 6.3 効果
 実施形態1によれば、データ解析用サーバ310を用いて、リソグラフィーシステム#kの露光プロセスに対して、最適な優先目標パラメータ情報を導き出し、この優先目標パラメータ情報を光源#kに設定して、光源#kを運転させた場合に推定されるメインテナンス情報を半導体工場管理システム208に出力することによって、リソグラフィーシステム#kの運転又は停止を効率よく管理できる。
 実施形態1によれば、個々のユーザ又は半導体プロセスで、特に重要とされる特定の目標パラメータ情報を維持でできるように光源を運転することが可能となる。
 その結果、半導体製造の歩留まりを改善でき、コスト等を改善できる。また、半導体プロセスに最適な露光が可能となる。
 6.4 その他
 実施形態1の例では、データ解析用サーバ310と、光源パラメータ管理用サーバ320とをそれぞれの機能毎に記載したが、必ずしも、これらサーバの機能を分ける必要がなく、同じサーバでこれら2つの機能を実現してもよい。また、両サーバの機能は、光源用管理システム206又は露光装置用管理システム204に機能を兼用してもよい。また、データ解析用サーバ310の機能は、露光装置用管理システム204、光源パラメータ管理用サーバ320又は光源用管理システム206に持たせてもよい。
 また、データ解析用サーバ310又は光源パラメータ管理用サーバ320の出力結果は、図示しない表示装置等に出力してオペレータが理解できるように表示してもよい。
 また、優先目標パラメータ情報は、露光装置用管理システム204を介して露光装置#kに出力してもよい。そして、優先目標パラメータ情報を、露光装置#kから光源#kに送信して光源#kを制御してもよい。
 7. 実施形態2
 7.1 構成
 図16は、実施形態2に係る半導体製造システムの全体的な処理フローを示すブロック図である。実施形態2のシステム構成は実施形態1の構成(図8)と同様であってよい。実施形態2では、実施形態1で説明した構成及びその機能に加えて、優先目標パラメータとは異なるパラメータに関する推奨目標パラメータ情報を推定して、半導体工場管理システム208などの外部装置に提供する仕組みが追加される。
 7.2 動作
 図16について、図9と異なる点を説明する。図16では、図9のフローに追加して、優先目標パラメータ情報を設定する場合に必要な推奨目標パラメータ情報を出力する場合の例を示す。
 図16において、光源パラメータ管理用サーバ320は、光源#kの優先目標パラメータ情報を設定する場合に、メインテナンス情報と、さらに推奨目標パラメータ情報と、を推定して外部装置に出力する。推奨目標パラメータ情報は、例えば、目標スペクトル特性パラメータ情報と、目標出力特性パラメータ情報と、目標消費量パラメータ情報と、のうち少なくとも1つを含む。
 光源#kの推奨目標パラメータ情報は、半導体工場管理システム208を介してデータ解析用サーバ310に出力される。
 データ解析用サーバ310は、この推奨目標パラメータと露光性能のパラメータとの相関性を解析して、推奨目標パラメータ情報を光源#kに設定した場合の運転のOK/NOKを判定し、判定結果を半導体工場管理システム208に出力する。
 また、半導体工場管理システム208は、メインテナンス情報と、推奨目標パラメータ情報と、その他の半導体工場の管理情報209と、に基づいて光源#kの運転のOK/NOKを判定する。
 OK判定が得られた場合、光源#kには、光源用管理システム206を介して、優先目標パラメータ情報と、推奨目標パラメータ情報と、が設定され、これら目標パラメータ情報を満たすように光源#kが制御される。
 7.2.1 データ解析用サーバの処理例
 図17は、実施形態2のデータ解析用サーバ310における推奨目標パラメータ情報の確認フローを示すフローチャートである。半導体工場管理システム208は、受信した推奨目標パラメータ情報の採否を判定するにあたり、データ解析用サーバ310に推奨目標パラメータ情報を送り、データ解析用サーバ310に推奨目標パラメータ情報の適否を確認させ、その結果を受け取る。
 図17のフローチャートがスタートすると、ステップS60において、データ解析用サーバ310は、光源#kの推奨目標パラメータ情報を受信する。
 ステップS62において、データ解析用サーバ310は、光源#kの推奨目標パラメータ情報の各パラメータの値の範囲と露光性能のパラメータの値の範囲との関係を解析する。
 そして、ステップS63において、データ解析用サーバ310は、推奨目標パラメータ情報の各パラメータ値の範囲において、露光性能のパラメータ値が許容範囲内であるか否かを判定する(図18参照)。
 ステップS63の判定結果がYes判定である場合、データ解析用サーバ310は、ステップS64に進む。ステップS64において、データ解析用サーバ310は、推奨目標パラメータ情報が適切(OK)であることを示すOK信号を出力する。
 一方、ステップS63の判定結果がNo判定である場合、データ解析用サーバ310は、ステップS65に進む。ステップS65において、データ解析用サーバ310は、推奨目標パラメータ情報が不適切(NG)であることを示すNG信号を出力する。
 ステップS64又はステップS65の後、データ解析用サーバ310は図17のフローチャートを終了する。
 図18は、推奨目標パラメータと露光性能のパラメータとの関係の解析例を示すグラフである。図18の横軸は推奨目標パラメータを表し、縦軸は露光性能のパラメータを表す。データ解析によって、例えば、図18のように、露光性能のパラメータ値と、推奨目標パラメータ値との関係が得られる。露光性能のパラメータ値について許容範囲を示す下限値及び上限値が特定されると、推奨目標パラメータ値の範囲において対応する露光性能のパラメータ値が許容範囲内にあるか否かを判定することができる。
 7.2.2 光源パラメータ管理サーバの処理例
 図19及び図20は、実施形態2の光源パラメータ管理用サーバ320における処理内容の例を示すフローチャートである。図19及び図20のフローチャートは、図12及び図13のフローチャートにおけるステップS22、S23、S26、S29及びS30を、ステップS72、S73、S76、S79及びS80にそれぞれ変更したものとなっている。図13のステップS70、S74、S75、S77、S78、S81及びS82は、図13及び図14のフローチャートにおけるステップS20、S24、S25、S27、S28、S31及びS32のそれぞれと同様であるため、重複する説明を省略する。
 ステップS72において、光源パラメータ管理用サーバ320は、光源#kが優先目標パラメータ情報に設定する場合の光源#kのメインテナンス情報と、推奨目標パラメータ情報と、を推定する。ステップS72のサブルーチンについては後述する(図21)。
 ステップS73において、光源パラメータ管理用サーバ320は、光源#kの推定されたメインテナンス情報と、推奨目標パラメータ情報と、を半導体工場管理システム208に出力する。
 ステップS74の判定において、光源パラメータ管理用サーバ320が半導体工場管理システム208から運転を許可するOK信号を受信した場合、光源パラメータ管理用サーバ320は、ステップS76に進む。
 ステップS76において、光源パラメータ管理用サーバ320は、光源#kに優先目標パラメータ情報と、推奨目標パラメータ情報と、を出力する。ステップS76の後、光源パラメータ管理用サーバ320は、図20のステップS77に進む。
 光源パラメータ管理用サーバ320は、ステップS78により、光源#kの運転データを取得後、ステップS79において、光源#kの運転データから優先目標パラメータ情報に設定する場合のメインテナンス情報と、推奨目標パラメータ情報と、を推定する。ステップS79のサブルーチンについては後述する(図22)。
 ステップS80において、光源パラメータ管理用サーバ320は、光源#kの推定したメインテナンス情報と、推奨目標パラメータ情報と、を半導体工場管理システム208に出力する。その後のステップS81及びS82は、ステップS31及びS32と同様である。
 図21は、図19のステップS72に適用されるサブルーチンの例を示すフローチャートである。図21のフローチャートにおけるステップS91、S92及びS93は、図14のフローチャートにおけるステップS41、S42及びS43のそれぞれと同様であるため、重複する説明を省略する。図21のフローチャートは、図14のステップS44を、ステップS94に変更したものとなっている。
 ステップS94において、光源パラメータ管理用サーバ320は、光源#kの運転データから優先目標パラメータ情報に設定する場合のメインテナンス情報と、推奨目標パラメータ情報と、を推定する処理を行う。この場合の「光源#kの運転データ」とは、ステップS93で取得した「光源#kの調整運転データ」である。ステップS94に適用される処理のサブルーチンは、図20のステップS79に適用されるサブルーチンと共通であってよい。
 図22は、図20のステップS79及び図21のステップS94に適用されるサブルーチンの例を示すフローチャートである。図22のフローチャートにおけるステップS101、S102、S103、S104及びS105は、図15のフローチャートにおけるステップS51、S52、S53、S54及びS55のそれぞれと同様であるため、重複する説明を省略する。図22のフローチャートは、図15のステップS55の後に、ステップS106及びステップS107が追加されたものとなっている。
 ステップS106において、光源パラメータ管理用サーバ320は、光源#kの運転データから光源のそれぞれの性能パラメータ値の範囲を求めて推奨目標パラメータ情報を推定する。ステップS106のサブルーチンについては後述する(図23)。
 ステップS107において、光源パラメータ管理用サーバ320は、光源#kの推定した推奨目標パラメータ情報を出力する。ステップS107の後、光源パラメータ管理用サーバ320は図19及び図20に示すフローチャートに復帰する。
 図23は、図22のステップS106に適用されるサブルーチンの例を示すフローチャートである。図23のステップS121において、光源パラメータ管理用サーバ320は、光源#kの運転データを取得する。
 ステップS122において、光源パラメータ管理用サーバ320は、光源#kの運転データから各性能パラメータ値の平均値Pavと、その標準偏差値Pσと、をそれぞれ計算する。各性能パラメータ値とは、パルスレーザ光の性能を表現する各パラメータの値である。例えば、パルスエネルギEとその安定性Eσ、スペクトル線幅Δλとその安定性Δλσ等がある。
 ステップS123において、光源パラメータ管理用サーバ320は、それぞれの性能パラメータの標準偏差値Pσにそれぞれ安全係数Kを掛ける。安全係数Kは、例えば3~5の範囲の値であってもよい。安全係数Kが3の場合は、平均値に対し±3σの値の範囲となる。
 ステップS124において、光源パラメータ管理用サーバ320は、それぞれの性能パラメータ値の平均値Pavとその範囲K・Pσとを推奨目標パラメータ情報として出力する。
 ステップS124の後、光源パラメータ管理用サーバ320は、図23のフローチャートを終了し、図22のフローチャートに復帰する。
 なお、図23では、性能パラメータ値の範囲の表現として「±K・Pσ」を例示したが、これに限らず、例えば、±K・(Pσ/Pav)・100(%)で表してもよい。
 7.3 効果
 実施形態2によれば、優先目標パラメータ情報に基づいて、メインテナンス情報だけでなく、推奨目標パラメータ情報を推定して、これらの情報が半導体工場管理システム208に出力される。これにより、半導体工場管理システム208において、これらの情報を総合的に勘案して、光源#kの運転のOK/NOKの判定が可能となる。
 また、実施形態2によれば、仕様緩和が必要な推奨目標パラメータ情報を提示して運転のOK/NOKを確認の上、露光可能なため、露光プロセスの歩留まりの低下を抑制できる。
 また、実施形態2によれば、仕様緩和可能な推奨目標パラメータ情報に設定して、光源#kを運転できるので、仕様緩和しないで運転した場合に比べて、メインテナンスまでの残りパルス数の減少やガス消費量の増加を抑制できる。
 7.4 その他
 実施形態2の例では、半導体工場管理システム208が、その他の半導体工場の管理情報209に基づいてOK/NOKを判定しているが、これに限らず、露光装置用管理システム204に、推奨目標パラメータ情報を出力し、露光装置用管理システム204にて露光装置#kとして、露光実施のOK/NOKを判定させ、その判定結果を半導体工場管理システム208が受信することにより、半導体工場管理システム208がOK/NOKを総合的に判定してもよい。
 8.実施形態3
 8.1 構成
 実施形態3のシステム構成及び全体フローは、実施形態2と同様であってよい。実施形態3は、光源パラメータ管理用サーバ320が光源#kの優先目標パラメータ情報に基づいて、光源#kの運転制御目標パラメータ値を変更(再設定)する点で実施形態2と異なる。
 光源#kには、デフォルトの運転制御パラメータ値が設定されており、優先目標パラメータ情報が指定されると、これに関連するパラメータ値が再設定される。
 8.2 動作
 図24は、実施形態3の光源パラメータ管理用サーバ320における処理内容の例を示すフローチャートである。図24において、図19と共通するステップには同一のステップ番号を付し、重複する説明は省略する。図24に示すフローチャートは、図19のステップS70とステップS72との間にステップS71を含む。
 ステップS71において、光源パラメータ管理用サーバ320は、光源#kの優先目標パラメータ情報に基づいて光源#kの運転制御目標パラメータ値の再設定を行う。他のステップは、図19と同様であってよい。また、ステップS76以降のフローチャートは図20と同様であってもよい。
 図25は、図24のステップS71に適用されるサブルーチンの例を示すフローチャートである。図25のフローチャートがスタートすると、ステップS131において、光源パラメータ管理用サーバ320は、優先目標パラメータ情報に基づいて、光源#kの運転制御目標パラメータを選定する。
 ステップS132において、光源パラメータ管理用サーバ320は、優先目標パラメータと、光源#kの運転制御目標パラメータとの関係のデータを呼び出す。光源パラメータ管理用サーバ320は、優先目標パラメータと、光源#kの運転制御目標パラメータとの関係を示すテーブルデータあるいは近似曲線などのデータを記憶しており、この関係データを呼び出す。
 ステップS133において、光源パラメータ管理用サーバ320は、呼び出したデータから優先目標パラメータ値Ptに近づくための運転制御目標パラメータ値Poを求める(図26参照)。
 ステップS134において、光源パラメータ管理用サーバ320は、光源#kに運転制御目標パラメータ値Poを出力する。ステップS134の後、光源パラメータ管理用サーバ320は図24のフローチャートに復帰する。
 図26は、優先目標パラメータと運転制御パラメータとの関係を示すグラフの例である。光源パラメータ管理用サーバ320は、図25のステップS132において、図26のような関係を示すデータを呼び出す。そして、ステップS133において、図26に示す様に、優先目標パラメータ値Ptに対応する運転制御目標パラメータ値Poを求める。
 8.3 効果
 実施形態3によれば、光源#kについての優先目標パラメータ情報が設定されると、その設定に関連する他の運転制御目標パラメータ値が再設定される。これにより、優先目標パラメータ情報を満たす運転が実現される。
 9.実施形態4
 9.1 構成
 実施形態4は、実施形態3のさらなる具体的な形態の例である。実施形態4のシステム構成及び全体フローは、実施形態1と同様であってよい。実施形態4は、光性能優先モード、消耗品寿命延長モード及び消費量低減モードの各モードで運転する場合について例示する。
 9.2 光性能優先モード運転
 光性能優先モード運転には、例えば、スペクトル線幅の性能を優先させる場合、パルスエネルギ(出力)の性能を優先させる場合、あるいは、エネルギ安定性の性能を優先させる場合など、優先する性能(重視する性能)の観点が異なる複数態様があり得る。このような特定の光性能を優先するモードでの運転が要求された場合の動作の具体例を以下に示す。
 9.2.1 スペクトル線幅Δλが優先目標パラメータとなる場合の例
 9.2.1.1 動作
 ここでは、リソグラフィーシステム#kが、クリティカルレーヤのプロセスの露光を行っている場合に関して説明する。クリティカルレーヤのプロセスでは露光装置#kの解像力を高く維持する必要があるので、目標スペクトル特性を示す目標パラメータ(例えばスペクトル線幅Δλ)を優先的に管理する必要があると推定される。この場合、データ解析用サーバ310では、図27に示すフローチャートの各ステップが実行される。
 図27は、実施形態4のデータ解析用サーバ310における処理内容の例を示すフローチャートである。ステップS141は、図10のステップS11と同様である。
 ステップS142において、データ解析用サーバ310は、光源#kのスペクトル線幅Δλと、露光装置#kで形成されたレジストパターンのCDに関連するパラメータとの相関性を解析する。
 ステップS144において、データ解析用サーバ310は、光源#kのスペクトル線幅Δλと、露光装置#kで形成されたレジストパターンのCDとの回帰曲線を計算する。
 ステップS145において、データ解析用サーバ310は、計算された回帰曲線からパラメータCD値が許容範囲となる光源#kのスペクトル線幅Δλの目標値と、その範囲と、を計算する。
 ステップS146において、データ解析用サーバ310は、光源#kの優先目標パラメータ情報として、計算された光源#kの目標スペクトル線幅Δλtpと、その範囲(Δλtp±ΔΔλtp)と、を出力する。目標スペクトル線幅Δλtpとその範囲(Δλtp±ΔΔλtp)とは本開示における「スペクトル線幅パラメータ情報」の一例である。
 ステップS146の後、図27のフローチャートを終了する。
 図28は、回帰曲線を用いて目標スペクトル線幅Δλtとその範囲とを求める方法の例を示すグラフである。図28の横軸はCDを表し、縦軸は光源のスペクトル線幅Δλを表す。回帰曲線RC2は、CDとスペクトル線幅Δλとの相関性を示す曲線である。CDの目標値CDtと、その許容範囲を示す許容下限値CDminと許容上限値CDmaxとを基に、回帰曲線RCから光源のスペクトル線幅Δλの目標値である目標スペクトル線幅Δλtと、その許容範囲を示す許容下限値Δλt-ΔΔλtと許容上限値Δλt+ΔΔλtとを求めることができる。こうして得られる目標スペクトル線幅Δλtと、その範囲(Δλt±ΔΔλt)と、を含むデータの集合は、光源の優先目標パラメータ情報としての目標スペクトル線幅Δλtpとその範囲(Δλtp±ΔΔλtp)となり得る。
 光源#kの露光プロセスがプロセスの行程が、クリティカルレーヤの場合、スペクトル線幅Δλを狭くして露光することが必要となる。
 図29は、図25のフローチャートを、スペクトル線幅Δλが優先目標パラメータである場合に適用した例を示すフローチャートである。スペクトル線幅Δλが優先目標パラメータとなる場合、図24のステップS71のサブルーチンとして、図29のフローチャートが適用される。
 ステップS151において、光源パラメータ管理用サーバ320は、スペクトル線幅Δλと波面調節器107のレンズ間隔LDとの関係のデータを呼び出す。レンズ間隔LDは波面調節器107を構成する凹レンズ171と凸レンズ172との間隔である。
 ステップS152において、光源パラメータ管理用サーバ320は、優先目標パラメータであるスペクトル線幅Δλの中心値(目標値Δλt)となるレンズ間隔LD=Ctを求める(図30参照)。
 ステップS153において、光源パラメータ管理用サーバ320は、スペクトル線幅Δλの中心値Δλtとなるように運転制御目標パラメータとしてレンズ間隔LDの初期値LC=Ctを光源#kに出力する。
 ステップS154において、光源パラメータ管理用サーバ320は、優先目標パラメータ情報としてスペクトル線幅Δλtpを光源#kに出力する。光源パラメータ管理用サーバ320は、優先目標パラメータ情報としてスペクトル線幅Δλtpを露光装置#kにも出力してもよい。ステップS154の後、光源パラメータ管理用サーバ320は図24のフローチャートに復帰する。
 図30は、スペクトル線幅Δλと波面調節器107のレンズ間隔LDとの関係を示すグラフの例である。図30の横軸はスペクトル線幅Δλを表し、縦軸はレンズ間隔LDを表す。図30のようなパラメータ間の関係を示すデータを用いて、目標スペクトル線幅Δλtに対応するレンズ間隔Ctを求めることができる。
 9.2.1.2 効果
 この例では、波面調節器107のレンズ間隔を初期値Ctとして設定することによって、短時間で、優先される目標スペクトル線幅Δλtpに設定する光源の運転が可能となる。
 この例によれば、露光プロセスにマッチした、スペクトル線幅が狭く、その範囲を限定して、光源を運転させることが可能となるため、クリティカルレーヤの露光プロセス起因による歩留まりが改善する。
 9.2.1.3 その他
 この例では、優先目標パラメータである目標スペクトル線幅のみを狭くしている。この場合、パルスエネルギの余裕が少なくなるため、消耗品のメインテナンスまでの残りパルス数が減少する。この点、実施形態2で説明したように、他の仕様緩和可能なパラメータについて推奨目標パラメータ情報を推定してもよい。
 消耗品のメインテナンス情報は、優先目標パラメータ情報を光源#kに設定した状態で調整発振を実施して得られる運転データに基づいて推定されてもよい。
 また、この例では、スペクトル線幅Δλを変化させる手段として、波面調節器107の凹レンズと凸レンズとの間のレンズ間隔を変更する例を示した。しかし、この例に限定されることなく、例えば、LNM102の第1プリズム131及び第2プリズム132をそれぞれ回転させることによって、これら2個のプリズムによるビーム拡大の倍率を調節してもよい。
 図29における最後のステップ(ステップS154)は、光源#kにデータを出力しているが、露光装置#kにデータを出力してもよい。実際の露光時には露光装置#kから、優先目標パラメータ値として、光源#kにこれらのデータを出力してもよい。
 9.2.2 パルスエネルギが優先目標パラメータとなる場合
 9.2.2.1 高パルスエネルギを得ることが優先され、スペクトル線幅Δλを広くして露光が可能な場合の例
 光源#kの露光プロセスの工程が、ラフレーヤの場合又は焦点深度の深さが要求される段差のある基板上にレジストパターンを形成する場合には、以下の条件(条件A及び条件B)で露光を行う必要がある。
 条件A:焦点深度を深くするために、スペクトル線幅Δλを広くして露光する。
 条件B:さらに、レジスト感度が低いレジストや厚膜レジストを露光する場合は、スループットを維持するために、光源#kのパルスエネルギを高く設定する。
 9.2.2.1.1 動作
 図31は、優先目標パラメータをパルスエネルギとし、その目標値Etpに高パルスエネルギの値を設定し、さらに推奨目標パラメータをスペクトル線幅とし、その目標値Δλtrに広いスペクトル線幅の値を設定して、光源#kを運転する場合の光源パラメータ管理用サーバ320における処理フローの例を示す。
 図31は、図25のフローチャートを、高パルスエネルギが優先されるモードの場合に適用した例を示すフローチャートである。パルスエネルギが優先目標パラメータとなる場合、図24のステップS71のサブルーチンとして、図31のフローチャートが適用される。
 ステップS161において、光源パラメータ管理用サーバ320は、優先目標パラメータのパルスエネルギの目標値Etpを設定する。
 ステップS162において、光源パラメータ管理用サーバ320は、パルスエネルギEと波面調節器107のレンズ間隔LDとの関係データを呼び出す。
 ステップS163において、光源パラメータ管理用サーバ320は、呼び出した関係データを用いて、優先目標パラメータであるパルスエネルギEが目標値Etpとなるレンズ間隔LD=Ctを求める(図32参照)。
 ステップS164において、光源パラメータ管理用サーバ320は、光源#kに運転制御目標パラメータの初期のレンズ間隔LC=Ctを出力する。
 ステップS165において、光源パラメータ管理用サーバ320は、パルスエネルギEとスペクトル線幅Δλとの関係データを呼び出す。
 ステップS166において、光源パラメータ管理用サーバ320は、呼び出した関係データを用いて、優先目標パラメータであるパルスエネルギEが目標値Etpとなるスペクトル線幅Δλtrを求める(図33参照)。Δλtrは推奨目標スペクトル線幅の目標値である。
 ステップS167において、光源パラメータ管理用サーバ320は、スペクトル線幅Δλを推奨目標パラメータ情報として登録する。
 ステップS168において、光源パラメータ管理用サーバ320は、光源#kに運転制御目標パラメータ値として目標スペクトル線幅Δλtrを出力する。
 ステップS169において、光源パラメータ管理用サーバ320は、光源#kに優先目標パラメータ値として目標パルスエネルギEtpを出力する。
 光源パラメータ管理用サーバ320は、露光装置#kにも目標スペクトル線幅Δλtr及び目標パルスエネルギEtpのうち少なくとも1つを出力してもよい。
 ステップS169の後、光源パラメータ管理用サーバ320は図24のフローチャートに復帰する。
 図32は、パルスエネルギEと波面調節器107のレンズ間隔LDとの関係を示すグラフの例である。図32の横軸はパルスエネルギEを表し、縦軸はレンズ間隔LDを表す。図32のような関係データを用いて、目標パルスエネルギ値Etpに対応するレンズ間隔Ctを求めることができる。
 図33は、パルスエネルギEとスペクトル線幅Δλとの関係を示すグラフの例である。図33の横軸はパルスエネルギEを表し、縦軸はスペクトル線幅Δλを表す。図33のような関係データを用いて、目標パルスエネルギ値Etpに対応する目標スペクトル線幅Δλtrを求めることができる。
 9.2.2.1.2 効果
 図31~図33を用いて説明した方式によって、優先目標パラメータの目標値である高パルスエネルギでの運転が可能となる。
 また、この方式によれば、スペクトル線幅Δλは広くなるが、露光プロセスがラフレーヤの場合や、焦点深度が要求される段差のある基板上のレジストパターンの形成もしくは厚膜レジストの場合などの露光が可能となる。
 この例では、目標のパルスエネルギを大きくする手段として、スペクトル線幅を広くしているので、消耗品のメインテナンスまでの残りパルス数が減少やガス消費量の増加するのを抑制できる。
 9.2.2.1.3 その他
 図31の最後の2つのステップ(ステップS168,S168)は、光源#kに運転制御目標パラメータ値と、優先目標パラメータ値とを出力しているが、露光装置#kにこれら情報を出力してもよい。実際の露光時には露光装置#kから、光源#kに、これらの目標パラメータ値を出力してもよい。
 この例では、スペクトル線幅Δλを変化させるのに波面調節器107のレンズ間隔LDを変更する例を示した。しかし、この例に限定されることなく、例えば、LMN102の第1プリズム131及び第2プリズム132をそれぞれ回転させることによって、これら2個のプリズムによるビーム拡大の倍率を小さくすることによって、スペクトル線幅Δλを広くし、パルスエネルギに余裕を持たせてもよい。
 9.2.2.2 高パルスエネルギを得ることが優先され、パルスエネルギ安定性を仕様緩和して露光が可能な場合の例
 9.2.2.2.1 動作
 図34は、優先目標パラメータをパルスエネルギとして高パルスエネルギの値を目標値Etpに設定し、パルスエネルギ安定性のパラメータの範囲が仕様緩和可能な場合のフローチャートの例を示す。パルスエネルギEが優先目標パラメータとなり、パルスエネルギ安定性についての仕様を緩和して露光可能な場合、図31のフローチャートに代えて、図34のフローチャートを適用し得る。
 ステップS171において、光源パラメータ管理用サーバ320は、優先目標パラメータのパルスエネルギの目標値Etpを設定する。
 ステップS172において、光源パラメータ管理用サーバ320は、ハロゲンガス分圧HgcとパルスエネルギEとの関係と、ハロゲンガス分圧Hgcとパルスエネルギ安定性Eσとの関係と、のデータを呼び出す。
 ステップS173において、光源パラメータ管理用サーバ320は、呼び出した関係データを用いて、パルスエネルギEが最大値となるハロゲンガス分圧の目標値Hgctを求める(図35参照)。
 ステップS174において、光源パラメータ管理用サーバ320は、光源#kに運転制御目標パラメータとしてハロゲンガス分圧の目標値Hgctを出力する。
 ステップS177において、光源パラメータ管理用サーバ320は、パルスエネルギ安定性Eσを推奨目標パラメータの情報として登録する。
 ステップS179において、光源パラメータ管理用サーバ320は、光源#kに優先目標パラメータ値として目標パルスエネルギEtpを出力する。光源パラメータ管理用サーバ320は、露光装置#kにも目標パルスエネルギEtpを出力してもよい。
 ステップS179の後、光源パラメータ管理用サーバ320は図24のフローチャートに復帰する。
 図35は、ハロゲンガス分圧HgcとパルスエネルギEの関係と、ハロゲンガス分圧Hgcとパルスエネルギ安定性Eσの関係と、を示すグラフの例である。図35の横軸はチャンバ100内のハロゲンガス分圧Hgcを表し、左側の縦軸はパルスエネルギE、右側の縦軸はパルスエネルギ安定性Eσを表す。
 図35において太線で示す山型の曲線はハロゲンガス分圧HgcとパルスエネルギEの関係を示すグラフであり、細線で示す谷型の曲線はハロゲンガス分圧Hgcとパルスエネルギ安定性Eσの関係を示すグラフである。図35のような関係データを用いて、パルスエネルギEの最大値Emaxに対応するハロゲンガス分圧Hgctと、パルスエネルギ安定性Eσrとを求めることができる。
 9.2.2.2.2 効果
 図34のフローチャートによれば、パルスエネルギEが最大値Emaxとなるハロゲンガス分圧Hgctとなるように、チャンバ100内のハロゲンガス分圧Hgcを制御することによって、パルスエネルギEを高くすることができる。そのため、露光のスループットが改善する。
 9.2.2.2.3その他
 図34の例では、ハロゲンガス分圧HgcをパルスエネルギEが最大となるように、運転制御パラメータである目標のハロゲンガス分圧Hgctを定めたため、パルスエネルギ安定性Eσが図35に示すEσrの値に悪化する可能性がある。
 この場合、パルスエネルギ安定性Eσを推奨目標パラメータの情報として登録しておき、調整発振時の運転データから推奨目標パラメータ情報を推定して、外部装置に出力してもよい。
 また、パルスエネルギ安定性の目標パラメータの範囲を仕様緩和することができない場合は、例えば、光源#kの運転制御目標パラメータであるパルス毎のガス消費量Gwtを増加させて運転制御目標パラメータ値を再設定してもよい。これにより、各消耗品のメインテナンスの残りパルス数の維持が可能となる。
 光性能優先モードの他の例として、パルスエネルギの安定性を優先させるモードがあってもよい。この場合は、図36に示すように、パルスエネルギ安定性Eσの値が一番小さくなるように(安定性が最も高くなるように)、運転制御目標パラメータとして目標ハロゲンガス分圧Hgctを設定してもよい。ただし、この場合パルスエネルギEが出にくくなるので、消耗品のメインテナンスまでの残りパルス数の減少を許容したり、目標のパルス当たりガス消費量Gwtを増加させることによって、光源#kの運転が可能となる。
 9.2.2.3 高デューティ比で運転することが優先され、パルスエネルギ安定性を仕様緩和して露光が可能な場合の例
 9.2.2.3.1 動作
 露光装置の光源は、一般的に、図2のように、ウエハを露光するために発振(所定の繰り返し周波数で発振)と休止を繰り返すバースト運転パターンを行う。
 この場合のデューティ比は以下の式で表される。
 デューティ比=発振時間/(発振時間+休止時間)×100(%)
 図37は、デューティ比とパルスエネルギとの関係を示すグラフである。図37に示すように、一般的に、光源は、同じ条件(同じガス圧及び同じ充電電圧を印加した時)ではデューティ比が高くなるにつれて、光源から出力される光のパルスエネルギが低くなる傾向がある。したがって、高デューティ比で光源を運転する場合は、光源のパルスエネルギが高くなる条件で運転する必要がある。
 また、図37に示すような関係は、単位時間当たりのパルス数を横軸、パルスエネルギを縦軸でプロットしても、同様な傾向が得られる。
 したがって、単位時間当たりのパルス数が増加すると、パルスエネルギが小さくなるので、単位時間当たりのパルス数を増加させて光源を運転する場合にパルスエネルギを補償する対策は高デューティ比の場合と同様である。
 図38は、デューティ比が優先目標パラメータとなり、パルスエネルギ安定性のパラメータの範囲が仕様緩和可能な場合のフローチャートの例を示す。デューティ比Drが優先目標パラメータとなり、パルスエネルギ安定性についての仕様を緩和して露光可能な場合、図31のフローチャートに代えて、図38のフローチャートを適用し得る。
 ステップS181において、光源パラメータ管理用サーバ320は、優先目標パラメータであるDrtpを設定する。優先パラメータであるバーストパターンのデューティ比Drtpは、これから露光するときの運転のパターンから計算したデューティ比である。
 ステップS182、S183、S184及びS187は、図34のステップS172、S173、S174及びS177と同様であってよい。
 ステップS187の後のステップS189において、光源パラメータ管理用サーバ320は、光源#kに優先目標パラメータ情報として目標デューティ比Drtpを出力する。光源パラメータ管理用サーバ320は、露光装置#kにも目標デューティ比を出力してもよい。露光装置はこの目標デューティ比Drtpに近いバースト露光パターンで露光するように、光源#kへのトリガパターンを出力する。
 9.2.2.3.2 効果
 パルスエネルギが最大となるハロゲンガス分圧となるように、チャンバ100内のハロゲンガス分圧を制御することによって、高デューティ比の運転が可能となる。そのため、露光のスループットが改善する。
 9.2.2.3.3 その他
 この例では、ハロゲンガス分圧をパルスエネルギが最大となるように目標のハロゲンガス分圧Hgctを定めたため、パルスエネルギ安定性が悪化する可能性がある。したがって、パルスエネルギ安定性を推奨目標パラメータ情報として登録しておき、調整発振時の運転データから推奨目標パラメータ情報を推定し、外部装置に出力してもよい。
 また、パルスエネルギ安定性の目標パラメータを仕様緩和することができない場合は、例えば、光源#kの運転制御目標パラメータであるパルス毎のガス消費量Gwtを増加させて再設定してもよい。これにより、消耗品のメインテナンスの残りパルス数の維持が可能となる。
 この例では、優先目標パラメータとしてデューティ比の場合を示したが、この例に限定されることなく、例えば、単位時間当たりの出力を優先目標パラメータとして設定してもよい。
 一般的にエキシマレーザの場合、高デューティ比又は単位時間当たりのパルス数が高くなると、パルスエネルギが出にくくなる。したがって、図31又は図38に示すような処理フローを実行して、例えば、スペクトル線幅を広げること、もしくは、パルスエネルギ安定性のパラメータの範囲を仕様緩和すること、もしくは、パルス毎のガス消費量Gwを大きくすること、又は、これらの組み合わせ等により、パルスエネルギの維持可能な条件で運転制御目標パラメータを設定する。そして、高デューティ比又は単位時間当たりのパルス数が大きい値を目標優先パラメータ情報として設定して、光源#kを運転してもよい。
 9.3 消耗品寿命延長モード運転
 半導体工場によっては、生産計画やメインテナンス計画等の事情により、消耗品のメインテナンスまでの期間を長くすることを希望する場合がある。消耗品の寿命を延長するには、同じガス圧及び同じ充電電圧の場合のパルスエネルギが高くなるように光源#kの運転制御目標パラメータを設定すればよい。
 9.3.1 目標ハロゲンガス分圧を再設定する例
 9.3.1.1 動作
 図39は、消耗品寿命延長モード運転の場合に適用される処理フローの例である。消耗品寿命延長モード運転の場合、図24のステップS71に、図39のフローチャートが適用される。
 ステップS191において、光源パラメータ管理用サーバ320は、消耗品の寿命延長可能な運転パラメータを選定する。同じガス圧及び同じ充電電圧の場合にパルスエネルギが高くなるような運転パラメータの1つとしてハロゲンガス分圧がある(図35参照)。この例では、光源パラメータ管理用サーバ320はハロゲンガス分圧を選定する。
 ステップS192、S193、ステップS194及びステップS197は、図38のステップS182、S183、S184及びステップS187のそれぞれと同様であってよい。
 ステップS197の後、光源パラメータ管理用サーバ320は、図24のフローチャートに復帰する。
 9.3.1.2 効果
 図39のように、光源#kの運転制御目標パラメータとして、目標ハロゲンガス分圧をパルスエネルギが最大エネルギとなるように再設定することによって、同じガス圧及び同じ充電電圧を設定した場合に、パルスエネルギを高くすることが可能となる。このパルスエネルギの余裕度を消耗品のメインテナンスまでの残りパルス数の延長に振り分けることが可能である。
 また、この場合は、推奨目標パラメータ情報として、調整運転時のデータに基づいて、パルスエネルギとパルスエネルギ安定性とを求めて、これらを外部装置に出力してもよい。
 9.3.2 目標スペクトル線幅を再設定する例
 図33で説明したように、光源#kの運転制御目標パラメータとして、目標スペクトル線幅を広げることによって、同じガス圧及び同じ充電電圧を印加した時のパルスエネルギを高くすることが可能となる。このパルスエネルギの余裕度を消耗品のメインテナンスまでの残りパルス数の延長に振り分けることが可能である。
 この場合は、推奨目標パラメータ情報として、調整運転時のデータに基づいて、スペクトル線幅とスペクトル線幅安定性とを求めて、これらを外部装置に出力してもよい。
 9.3.3 ガス消費量を再設定する例
 推奨目標パラメータ情報として、パルスエネルギ安定性又はスペクトル線幅等の目標パラメータを仕様緩和することができない場合は、例えば、光源#kの運転制御目標パラメータであるパルス毎のガス消費量Gwtを増加させて再設定してもよい。これにより、消耗品のメインテナンスまでの残りパルス数を延長することも可能となる。ただし、この場合は、推奨目標パラメータ情報として、設定したパルス毎のガス消費量Gwtを外部装置に出力してもよい。メインテナンス情報は、パルス毎のガス消費量Gwtを増加させて設定する場合の調整運転時のデータに基づいて、外部装置に出力してもよい。
 9.3.4 効果
 消耗品寿命延長モード運転によれば、消耗品のメインテナンスまでの残りのパルス数を延長できる。消耗品のメインテナンスまでの残りのパルス数を延長することによって、例えば、リソグラフィーシステム#kのその他の消耗品のメインテナンス時期と、光源#kのメインテナンス時期とを合わせることが可能となり、製造ラインのダウンタイムを改善することができる。また、消耗品寿命延長モード運転によれば、光源#kの消耗品のメインテナンス時期と光源#j(j≠k)の消耗品のメインテナンス時期とを合わせることも可能である。
 9.3.5 その他
 この例では目標ハロゲン分圧を再設定する例と、目標スペクトル線幅を再設定する例と、目標ガス消費量を再設定する例と、の3つの例を示したが、これらの例に限定されることなく、これら3つの例を適宜組み合わせてもよい。このようにすることによって、推奨目標パラメータ情報の仕様緩和の範囲を小さくすることも可能となる。
 9.4 消費量低減モード運転
 9.4.1 ガス消費量低減モード運転
 何らかの事情により、通常の仕様よりもガス消費量を低減したいという要望も想定される。ガス消費量を低減するには、同じガス圧及び同じ充電電圧を印加した時のパルスエネルギが高くなるように光源の運転制御目標パラメータを設定すればよい。
 図40は、単位パルス当たりのガス消費量とパルスエネルギとの関係を示すグラフである。図40に示すように、一般的に、光源は、単位パルス当たりのガス消費量が増加するにつれて、光源から出力される光のパルスエネルギが増加する傾向がある。
 この理由は、レーザガスの交換量が増加するため、チャンバ内に存在するレーザ光を吸収する不純物ガス濃度を低減することができ、パルスエネルギが増加すると考えられる。
 したがって、単位パルス当たりのガス消費量を増加させると、光源のパルスエネルギを高く維持することが可能となる。逆に言えば、他のパラメータによってパルスエネルギを高く維持することができれば、ガス消費量を低減することが可能となる。
 9.4.1.1 目標ハロゲン分圧を再設定する例
 図41は、ガス消費量低減モード運転の場合に適用される処理フローの例である。ガス消費量低減モード運転の場合、図24のステップS71に、図41のフローチャートが適用される。
 ステップS201において、光源パラメータ管理用サーバ320は、優先目標パラメータとして、ガス消費量Gwtpを設定する。ステップS202、S203、S204及びステップS207は、図38のステップS182、S183、S184及びステップS187のそれぞれと同様であってよい。
 ステップS207の後のステップS208において、光源パラメータ管理用サーバ320は、光源#kに優先目標パラメータ情報である目標ガス消費量Gwtpを出力する。
 ステップS208の後、光源パラメータ管理用サーバ320は、図24のフローチャートに復帰する。
 図35で説明したように、目標ハロゲンガス分圧Hgctを、パルスエネルギが最大エネルギとなるように調節することによって、同じガス圧及び同じ充電電圧を印加した時のパルスエネルギを高くすることが可能となる。このパルスエネルギの余裕度をガス消費量低減に振り分けることが可能である。
 この場合は、光源パラメータ管理用サーバ320は、推奨目標パラメータ情報として、調整運転時のデータに基づいて、パルスエネルギ安定性を求める。そして、光源パラメータ管理用サーバ320は、推定した推奨目標パラメータ情報とメインテナンス情報とを外部装置に出力する。
 9.4.1.2 目標スペクトル線幅を広げる例
 図33の例のように、目標スペクトル線幅Δλtを広げることによって、同じガス圧及び同じ充電電圧を印加した時のパルスエネルギを高くすることが可能となる。このパルスエネルギの余裕度をガス消費量低減に振り分けることが可能である。この場合、図24のフローチャートにおける光源#kの運転制御目標パラメータとして、以下のパラメータを再設定する。
 [1]光源#kのパルス毎のガス消費量を低減した目標ガス消費量Gwtpに設定する。
 [2]スペクトル線幅を広げた目標スペクトル線幅Δλtpに設定する。
 また、この場合は、推奨目標パラメータ情報は調整運転時の運転データに基づいて、スペクトル線幅Δλとスペクトル線幅の安定性の範囲とを求める。そして、推奨目標パラメータ情報とメインテナンス情報とを外部装置に出力する。
 9.4.1.3 メインテナンスまでの残りパルス数を減少させる例
 また、推奨目標パラメータ情報としてエネルギ安定性又はスペクトル線幅の目標パラメータを仕様緩和することができない場合は、消耗品のメインテナンスまでの残りパルス数を短くすることで、ガス消費量を抑制できる。ただし、この場合は、メインテナンス情報としてメインテナンスまでの残りパルス数が短くなることを外部装置に出力することになる。
 9.4.1.4 効果
 上記に例示したガス消費量低減モード運転によれば、単位パルス当たりのガス消費量を低減できる。ガス消費量低減モード運転は、エキシマレーザガスのコストが高騰した場合に、コスト低減効果が大きくなる。
 また、例えば、半導体工場内のエキシマレーザガスの残量が少なくなっても、光源の運転が止められない場合に、ガス消費量低減モード運転は有効な手段となる。
 9.4.1.5 その他
 上記の例では目標ハロゲン分圧を再設定する例と、目標スペクトル線幅を広げる例と、メインテナンスまでの残りパルス数を短くする例と、の3つの例を示したが、これらの例に限定されることなく、これら3つの例を適宜組み合わせてもよい。このようにすることによって、推奨目標パラメータの仕様緩和の範囲を小さくすることも可能となる。
 9.4.2 省電力モード運転
消費電力を低減するには、電源の充電電圧の範囲を低く設定することで可能となる。
 9.4.2.1 充電電圧の目標値を再設定する例
 図42は、省電力モード運転の場合に適用される処理フローの例である。省電力モード運転の場合、図24のステップS71に、図42のフローチャートが適用される。
 ステップS211において、光源パラメータ管理用サーバ320は、優先目標パラメータとして、電力消費量(消費電力)を低減可能な運転制御目標パラメータを選定する。光源パラメータ管理用サーバ320は、電力消費量を低減可能な運転制御目標パラメータの1つとして、充電器110の充電電圧を選定する。
 ステップS212において、光源パラメータ管理用サーバ320は、光源#kの運転制御目標パラメータとしての充電器110の充電電圧の運転範囲HVLLt~HVULtを再設定する。消費電力は光源であるレーザ装置の充電電圧に依存するため、目標の充電電圧の下限値HVLLtと上限値HVULtとを運転可能な範囲で低く設定することで消費電力を抑えることができる。
 ステップS213において、光源パラメータ管理用サーバ320は、光源#kに運転制御パラメータ情報として充電電圧の運転範囲HVLLt~HVULtを出力する。
 ステップS213の後、光源パラメータ管理用サーバ320は、図24のフローチャートに復帰する。
 図42の例のように、充電電圧目標値の範囲である下限値HVLLtと上限値HVULtとを運転可能な範囲で低く設定することで消費電力を抑えることができる。つまり、光源#kの運転制御目標パラメータとしての充電器110の目標充電電圧の下限値HVLLtと上限値HVULtとを、通常の場合に比べて、低い値に再設定すればよい。
 ただし、充電電圧を低く設定すると、その副作用として、パルスエネルギの安定性の悪化、ガス消費量の増加、メインテナンスまでの残りパルス数の減少など、があり得る。この場合には、光源パラメータ管理用サーバ320は、推奨目標パラメータ情報として、調整運転時の運転データに基づいて、パルスエネルギの安定性及びガス消費量に関するパラメータ情報を求め、この推奨目標パラメータ情報とメインテナンス情報とを外部装置に出力する。
 9.4.2.2 ハロゲンガス分圧の目標値を再設定する例
 図35の例のように、運転制御目標パラメータであるハロゲンガス分圧を最大のパルスエネルギが得られる目標値Hgctに設定することで、同じガス圧及び同じ充電電圧の条件でのパルスエネルギを高くすることができる。このパルスエネルギの余裕度を充電電圧の運転範囲に振り分けることが可能となる。この場合、光源パラメータ管理用サーバ320は、推奨目標パラメータ情報として、調整運転時の運転データに基づいて、パルスエネルギの安定性の範囲を求め、この推奨目標パラメータ情報を外部装置に出力する。
 9.4.2.3 目標スペクトル線幅を広げる例
 図33の例のように、運転制御目標パラメータである目標スペクトル線幅Δλtを広げることによって、同じガス圧及び同じ充電電圧を印加した時のパルスエネルギを高くすることが可能となる。このパルスエネルギの余裕度を充電電圧の運転範囲に振り分けることが可能である。この場合、光源パラメータ管理用サーバ320は、推奨目標パラメータ情報として、調整運転時の運転データに基づいて、スペクトル線幅とスペクトル線幅の安定性の範囲とを求め、この推奨目標パラメータ情報を外部装置に出力する。
 9.4.3 効果
 省電力モード運転を実施することにより、電力消費量を低減できる。また、半導体工場内の電力事情がひっ迫した場合でも、電力消費量を抑えつつ、光源の運転を継続することができる。
 9.4.4 その他
 上記の例では、充電電圧目標値を再設定する例と、ハロゲンガス分圧を再設定する例と、スペクトル線幅を広げる例と、の3つの例を示したが、これらの例に限定されることなく、これら3つの例を適宜組み合わせてもよい。このようにすることによって、推奨目標パラメータの仕様緩和の範囲を小さくすることも可能となる。
 また、レーザ装置の消費電力の割合が高い項目として、CFF123を駆動するモータ124の消費電力があげられる。この場合はCFF123の回転数を減らすことで、消費電力の抑制を実現可能である。
 しかし、この場合、パルスエネルギの安定性が悪化したり、チャンバの寿命が短くなる可能性がある。この場合においても、推奨目標パラメータ情報を外部装置に出力して、運転のOK/NOKの判定をしてもらってもよい。
 9.5 変形例
 図43は、実施形態4の変形例を示すブロック図である。図43に示すように、半導体製造システムは、光源パラメータ管理用サーバ320と接続される入力/表示装置330を備える構成であってもよい。入力/表示装置330は、オペレータからの情報の入力を受け付ける入力装置と、各種の情報を表示させる表示装置とを含む。入力装置は、例えば、キーボード、マウス、マルチタッチパネル、もしくは音声入力装置又はこれらの適宜の組み合わせであってよい。入力/表示装置330は、通信回線を介して光源パラメータ管理用サーバ320にアクセス可能なパーソナルコンピュータやタブレット端末などの情報処理端末装置であってよい。入力/表示装置330は、複数存在していてもよい。
 この入力/表示装置330から工場内のオペレータが光源#kを選択して、優先目標パラメータ情報を入力することで、メインテナンス情報や推奨目標パラメータ情報を入力/表示装置330に表示させてもよい。そして、オペレータは、メインテナンス情報や推奨目標パラメータ情報を確認した上で、運転のOK/NOKの判断をして、その判断結果を入力/表示装置330から入力してもよい。
 また、入力/表示装置330から優先目標パラメータ情報を入力する方法については、パラメータとその数値との情報を直接的に入力する態様に限らず、例えば、典型的な性能優先モード運転、消耗品寿命延長モード運転、あるいは、消費量低減モード運転などのモード情報を入力/表示装置330から入力することによって、それぞれのモードに定義付けされた優先する目標パラメータ情報を自動的に設定して、同様な動作を行ってもよい。
 一例として、入力/表示装置330には、複数のモードの選択候補を含むモード選択メニューが提示され、そのモード選択メニューの中からオペレータが例えば「スペクトル線幅優先モード」を選択する指示を入力すると、スペクトル線幅優先モードに定義付けされているスペクトル線幅を狭めた目標値を含む優先目標パラメータ情報が光源パラメータ管理用サーバ320に取り込まれる。モード情報から対応するパラメータ情報への変換は、入力/表示装置330の中で実施してもよいし、光源パラメータ管理用サーバ320の中で実施してもよい。
 10.パラメータ情報の具体例
 図44に、光源に関するパラメータ情報の具体例を示す。例えば、スペクトル線幅のパラメータ情報は、スペクトル線幅及びその値と、スペクトル線幅安定性及びその値と、を含むデータの集合体である。
 図45に、優先目標パラメータ情報の具体例を示す。例えば、スペクトル線幅の優先目標パラメータ情報は、変数としての優先目標スペクトル線幅と、その優先されるスペクトル線幅の目標値Δλtpと、他の変数としての優先目標スペクトル線幅の安定性と、その優先されるスペクトル線幅Δλの変動幅の目標値ΔΔλtpと、を含む。ここでのスペクトル線幅は本開示における「第1変数」の一例であり、目標値Δλtpは本開示における「第1目標値」の一例である。スペクトル線幅Δλの変動幅は許容されるスペクトル線幅Δλの数値範囲に相当する。スペクトル線幅Δλの変動幅は本開示における「第2変数」の一例であり、目標値ΔΔλtpは本開示における「第2目標値」の一例である。
 図46に、推奨目標パラメータ情報の具体例を示す。図46は、図45に示した「優先目標パラメータ」という語句が「推奨目標パラメータ」に変更されており、図45に示された優先的な目標値が、推奨される目標値に変更されている点で図45と異なる。
 図47に、メインテナンス情報の具体例を示す。この例では、消耗品として、チャンバ100と、LNM狭帯域化モジュールと、出力結合ミラー(OC)との例を挙げたが、この例に限定されることなく、例えば、レーザ光の光路上に配置されている他の光学モジュール(図示しない光学パルスストレッチャ等)も、含まれる。
 図48に、運転制御目標パラメータ情報の具体例を示す。この例では、運転制御パラメータの例として、充電器に指令する電圧(充電電圧)と、ハロゲンガス分圧と、波面調節器のレンズ間隔と、の例を挙げたが、この例に限定されることなく、例えば、スペクトル線幅、波長、パルスエネルギのフィードバック制御するための制御ゲインも、含まれる。
 11.プログラムを記録したコンピュータ可読媒体について
 上述の各実施形態で説明したデータ解析用サーバ310や光源パラメータ管理用サーバ320として、コンピュータを機能させるための命令を含むプログラムを光ディスクや磁気ディスクその他のコンピュータ可読媒体(有体物たる非一過性の情報記憶媒体)に記録し、この情報記憶媒体を通じてプログラムを提供することが可能である。このプログラムをコンピュータに組み込み、プロセッサがプログラムの命令を実行することにより、コンピュータに、これらのサーバの機能を実現させることができる。
 12.その他
 上述の各実施形態では、露光装置に用いられる光源として、エキシマレーザ装置を例示したが、これに限らず、固体レーザ装置であってもよいし、波長約13nmの極端紫外(EUV)光を生成するEUV光生成装置などであってもよい。EUV光生成装置は、例えば、ターゲット物質にレーザ光を照射することによって生成されるプラズマが用いられるLPP(Laser Produced Plasma)方式の装置であってよい。
 上記の説明は、制限ではなく単なる例示を意図している。したがって、特許請求の範囲を逸脱することなく本開示の実施形態に変更を加えることができることは、当業者には明らかである。また、本開示の実施形態を組み合わせて使用することも当業者には明らかである。
 本明細書及び特許請求の範囲全体で使用される用語は、明記が無い限り「限定的でない」用語と解釈されるべきである。例えば、「含む」、「有する」、「備える」、「具備する」などの用語は、「記載されたもの以外の構成要素の存在を除外しない」と解釈されるべきである。また、修飾語「1つの」は、「少なくとも1つ」又は「1又はそれ以上」を意味すると解釈されるべきである。また、「A、B及びCの少なくとも1つ」という用語は、「A」「B」「C」「A+B」「A+C」「B+C」又は「A+B+C」と解釈されるべきである。さらに、それらと「A」「B」「C」以外のものとの組み合わせも含むと解釈されるべきである。

Claims (20)

  1.  露光装置に用いられる光源のパラメータ情報を管理する光源パラメータ情報管理方法であって、
     前記光源の運転で優先される優先目標パラメータである変数の項目と前記変数の目標値とを含む優先目標パラメータ情報を取得することと、
     前記優先目標パラメータ情報に基づいて、前記光源における消耗品のメインテナンスまでの寿命を表す値を含むメインテナンス情報を推定することと、
     前記メインテナンス情報を出力することと、
     を含む光源パラメータ情報管理方法。
  2.  請求項1に記載の光源パラメータ情報管理方法であって、
     外部装置から前記優先目標パラメータ情報の入力を受け付け、
     前記メインテナンス情報を前記外部装置に出力する、
     光源パラメータ情報管理方法。
  3.  請求項2に記載の光源パラメータ情報管理方法であって、さらに、
     前記外部装置から前記光源の運転の許否を表すOK信号又はNOK信号を取得すること、を含む、
     光源パラメータ情報管理方法。
  4.  請求項3に記載の光源パラメータ情報管理方法であって、さらに、
     前記外部装置から前記光源の運転を許可する前記OK信号を得た場合に、前記優先目標パラメータ情報を前記光源に設定して、前記光源を制御すること、を含む、
     光源パラメータ情報管理方法。
  5.  請求項4に記載の光源パラメータ情報管理方法であって、さらに、
     前記光源の運転中のデータから、前記優先目標パラメータ情報を設定したときの前記光源の前記メインテナンス情報を推定すること、を含む、
     光源パラメータ情報管理方法。
  6.  請求項5に記載の光源パラメータ情報管理方法であって、さらに、
     前記運転中のデータから推定される前記メインテナンス情報を、前記外部装置に出力すること、を含む、
     光源パラメータ情報管理方法。
  7.  請求項3に記載の光源パラメータ情報管理方法であって、さらに、
     前記外部装置から前記光源の運転を不許可とするNOK信号を得た場合に、前記光源の運転を停止すること、を含む、
     光源パラメータ情報管理方法。
  8.  請求項1に記載の光源パラメータ情報管理方法であって、
     前記優先目標パラメータ情報は、前記優先目標パラメータである第1変数の第1目標値と、前記第1変数の数値範囲を示す第2変数の第2目標値とを含む、
     光源パラメータ情報管理方法。
  9.  請求項1に記載のパラメータ情報管理方法であって、
     前記優先目標パラメータ情報は、
     目標スペクトル特性パラメータ情報と、目標出力特性パラメータ情報と、目標消費量情報と、のうち少なくとも1つを含む、
     光源パラメータ情報管理方法。
  10.  請求項1に記載の光源パラメータ情報管理方法であって、
     前記メインテナンス情報は、前記消耗品の前記寿命を表す値として、前記消耗品のメインテナンスまでの残りパルス数及び残り時間のうち少なくとも一方の値を含む、
     光源パラメータ情報管理方法。
  11.  請求項1に記載の光源パラメータ情報管理方法であって、
     前記メインテナンス情報の推定は、
     前記優先目標パラメータ情報を前記光源に設定して前記光源を調整運転させることによって得られる運転データを、学習済みの機械学習モデルに入力し、前記機械学習モデルから前記消耗品の劣化度を出力させ、
     前記劣化度を基に前記消耗品の寿命を表す値を求めること、を含む、
     光源パラメータ情報管理方法。
  12.  請求項1に記載の光源パラメータ情報管理方法であって、さらに、
     前記取得された前記優先目標パラメータ情報とは異なるパラメータ情報を含む推奨目標パラメータ情報を推定することと、
     前記推奨目標パラメータ情報を出力することと、を含む、
     光源パラメータ情報管理方法。
  13.  請求項12に記載の光源パラメータ情報管理方法であって、
     前記推奨目標パラメータ情報は、目標スペクトル特性パラメータ情報と、目標出力特性パラメータ情報と、目標消費量パラメータ情報と、のうち少なくとも1つを含み、
     光源パラメータ情報管理方法。
  14.  請求項1に記載の光源パラメータ情報管理方法であって、
     前記優先目標パラメータ情報は、前記光源の光性能を優先する光性能優先モードと、前記光源の前記消耗品の寿命の延長を優先する消耗品寿命延長モードと、前記光源の運転で消費される要素の消費量を低減する消費量低減モードと、のうち少なくとも1つのモードを指定するモード情報を含む、
     光源パラメータ情報管理方法。
  15.  請求項14に記載の光源パラメータ情報管理方法であって、
     前記光性能優先モードは、スペクトル線幅パラメータ情報と、出力特性パラメータ情報とのいずれかを優先して前記光源を運転するモードである、
     光源パラメータ情報管理方法。
  16.  請求項14に記載の光源パラメータ情報管理方法であって、
     前記消耗品寿命延長モードは、前記光源の消耗品のメインテナンスまでの残りパルス数の延長を優先して前記光源を運転するモードである、
     光源パラメータ情報管理方法。
  17.  請求項14に記載の光源パラメータ情報管理方法であって、
     前記消費量低減モードは、レーザガスの消費量の低減と、消費電力の低減とのいずれかを優先して前記光源を運転するモードである、
     光源パラメータ情報管理方法。
  18.  請求項1に記載の光源パラメータ情報管理方法であって、
     前記優先目標パラメータは、ウエハ検査データと、前記露光装置から得られるデータと、前記光源から得られるデータと、追跡データと、に基づいて選定される、
     光源パラメータ情報管理方法。
  19.  露光装置に用いられる光源のパラメータ情報を管理する光源パラメータ情報管理装置であって、
     プロセッサと、
     前記プロセッサが実行するプログラムが記憶されるメモリと、を含み、
     前記プロセッサが前記プログラムの命令を実行することにより、前記プロセッサが、
     前記光源を運転する際に優先される優先目標パラメータである変数の項目と前記変数の目標値とを含む優先目標パラメータ情報を取得し、
     前記優先目標パラメータ情報に基づいて、前記光源における消耗品のメインテナンスまでの寿命を表す値を含むメインテナンス情報を推定し、
     前記メインテナンス情報を出力する、
     光源パラメータ情報管理装置。
  20.  露光装置に用いられる光源のパラメータ情報を管理する機能をコンピュータに実現させるプログラムが記録された非一過性のコンピュータ可読媒体であって、
     前記コンピュータに、
     前記光源を運転する際に優先される優先目標パラメータである変数の項目と前記変数の目標値とを含む優先目標パラメータ情報を取得する機能と、
     前記優先目標パラメータ情報に基づいて、前記光源における消耗品のメインテナンスまでの寿命を表す値を含むメインテナンス情報を推定する機能と、
     前記メインテナンス情報を出力する機能と、
     を実現させる前記プログラムが記録されたコンピュータ可読媒体。
PCT/JP2021/012384 2021-03-24 2021-03-24 光源パラメータ情報管理方法、光源パラメータ情報管理装置及びコンピュータ可読媒体 WO2022201394A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202180092695.9A CN116802562A (zh) 2021-03-24 2021-03-24 光源参数信息管理方法、光源参数信息管理装置和计算机可读介质
PCT/JP2021/012384 WO2022201394A1 (ja) 2021-03-24 2021-03-24 光源パラメータ情報管理方法、光源パラメータ情報管理装置及びコンピュータ可読媒体
JP2023508286A JPWO2022201394A1 (ja) 2021-03-24 2021-03-24
US18/363,381 US20240023217A1 (en) 2021-03-24 2023-08-01 Light source parameter information management method, light source parameter information management apparatus, and computer readable medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/012384 WO2022201394A1 (ja) 2021-03-24 2021-03-24 光源パラメータ情報管理方法、光源パラメータ情報管理装置及びコンピュータ可読媒体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/363,381 Continuation US20240023217A1 (en) 2021-03-24 2023-08-01 Light source parameter information management method, light source parameter information management apparatus, and computer readable medium

Publications (1)

Publication Number Publication Date
WO2022201394A1 true WO2022201394A1 (ja) 2022-09-29

Family

ID=83395386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/012384 WO2022201394A1 (ja) 2021-03-24 2021-03-24 光源パラメータ情報管理方法、光源パラメータ情報管理装置及びコンピュータ可読媒体

Country Status (4)

Country Link
US (1) US20240023217A1 (ja)
JP (1) JPWO2022201394A1 (ja)
CN (1) CN116802562A (ja)
WO (1) WO2022201394A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275951A (ja) * 1997-03-28 1998-10-13 Nikon Corp レーザ光源の寿命判定方法
JP2000306813A (ja) * 1999-04-22 2000-11-02 Nikon Corp 露光方法及び露光装置
KR20030001712A (ko) * 2001-06-27 2003-01-08 삼성전자 주식회사 노광 램프의 시간 관리기
JP2010067794A (ja) * 2008-09-11 2010-03-25 Canon Inc 露光装置及びデバイス製造方法
WO2020031301A1 (ja) * 2018-08-08 2020-02-13 ギガフォトン株式会社 リソグラフィシステムのメインテナンス管理方法、メインテナンス管理装置、及びコンピュータ可読媒体

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10275951A (ja) * 1997-03-28 1998-10-13 Nikon Corp レーザ光源の寿命判定方法
JP2000306813A (ja) * 1999-04-22 2000-11-02 Nikon Corp 露光方法及び露光装置
KR20030001712A (ko) * 2001-06-27 2003-01-08 삼성전자 주식회사 노광 램프의 시간 관리기
JP2010067794A (ja) * 2008-09-11 2010-03-25 Canon Inc 露光装置及びデバイス製造方法
WO2020031301A1 (ja) * 2018-08-08 2020-02-13 ギガフォトン株式会社 リソグラフィシステムのメインテナンス管理方法、メインテナンス管理装置、及びコンピュータ可読媒体

Also Published As

Publication number Publication date
US20240023217A1 (en) 2024-01-18
CN116802562A (zh) 2023-09-22
JPWO2022201394A1 (ja) 2022-09-29

Similar Documents

Publication Publication Date Title
TWI631427B (zh) 基於晶圓之光源參數控制技術
JP7258028B2 (ja) リソグラフィシステムのメインテナンス管理方法、メインテナンス管理装置、及びコンピュータ可読媒体
CN112771737B (zh) 激光系统和电子器件的制造方法
CN112771444B (zh) 激光系统和电子器件的制造方法
US20220373893A1 (en) Exposure system, laser control parameter production method, and electronic device manufacturing method
US7145925B2 (en) Laser oscillation apparatus, exposure apparatus, semiconductor device manufacturing method, semiconductor manufacturing factory, and exposure apparatus maintenance method
JP7428667B2 (ja) 機械学習方法、消耗品管理装置、及びコンピュータ可読媒体
WO2022201394A1 (ja) 光源パラメータ情報管理方法、光源パラメータ情報管理装置及びコンピュータ可読媒体
JP2024016176A (ja) 複数の深紫外光発振器のための制御システム
JP2007329432A (ja) 露光装置
JP7170055B2 (ja) レーザシステム、及び電子デバイスの製造方法
TW595057B (en) Laser apparatus, exposure apparatus and method
KR102408834B1 (ko) 레이저 챔버에서 전극 수명을 연장시키기 위한 장치 및 방법
US20220373896A1 (en) Exposure system and method for manufacturing electronic devices
JP7480275B2 (ja) 露光システム、レーザ制御パラメータの作成方法、及び電子デバイスの製造方法
KR20210045470A (ko) 연장된 수명을 갖는 레이저 챔버 전극 및 이러한 전극을 갖는 레이저
WO2022157897A1 (ja) レーザシステムの制御方法、レーザシステム、及び電子デバイスの製造方法
WO2022064594A1 (ja) 電子デバイスの製造方法
US20230098685A1 (en) Exposure system, exposure method, and electronic device manufacturing method
WO2023199513A1 (ja) レーザ装置、レーザ装置の波長制御方法、及び電子デバイスの製造方法
WO2023135773A1 (ja) フォトマスクの作成方法、データ作成方法、及び電子デバイスの製造方法
JPWO2019102613A1 (ja) エキシマレーザ装置、及び電子デバイスの製造方法
TW202336537A (zh) 控制電壓臨限選擇以促進多焦點成像

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21933004

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023508286

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180092695.9

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21933004

Country of ref document: EP

Kind code of ref document: A1