WO2022199085A1 - 一种石膏建材智能生产线智能监控系统及方法 - Google Patents

一种石膏建材智能生产线智能监控系统及方法 Download PDF

Info

Publication number
WO2022199085A1
WO2022199085A1 PCT/CN2021/132621 CN2021132621W WO2022199085A1 WO 2022199085 A1 WO2022199085 A1 WO 2022199085A1 CN 2021132621 W CN2021132621 W CN 2021132621W WO 2022199085 A1 WO2022199085 A1 WO 2022199085A1
Authority
WO
WIPO (PCT)
Prior art keywords
speed
section
sections
monitoring
production
Prior art date
Application number
PCT/CN2021/132621
Other languages
English (en)
French (fr)
Inventor
王兵
杨正波
杨小东
张羽飞
武建江
Original Assignee
中建材创新科技研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中建材创新科技研究院有限公司 filed Critical 中建材创新科技研究院有限公司
Publication of WO2022199085A1 publication Critical patent/WO2022199085A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • G05B19/4185Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by the network communication
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/31From computer integrated manufacturing till monitoring
    • G05B2219/31088Network communication between supervisor and cell, machine group

Definitions

  • the invention relates to the technical field of gypsum building material production lines, in particular to an intelligent monitoring system and method for a gypsum building material intelligent production line.
  • Multifunctional decorative board is a multifunctional decorative board with the characteristics of personalized design, factory production, prefabricated construction, ready-to-live, safety and environmental protection. It completely changes the traditional decoration method and building materials industry and perfectly replaces putty. , brushing paint, sticking wallpaper and wall coverings and other on-site wet operations, replacing wood, bricks, blocks and other decoration materials, completely solving the problem of indoor decoration pollution from the root.
  • the production line of the decorative sheet workshop is composed of several sections, such as feeding, turning machine, dust collection, laminating machine, etc., which are interlinked and complement each other.
  • the gypsum board customized by the gypsum board workshop enters the special laminating equipment through the feeding machine, the turning machine and the dust collector, and then is cut into the film and packaged into pieces of brand-new decorative boards. .
  • the object of the present invention is to provide an intelligent monitoring system and method for an intelligent production line of gypsum building materials, so as to solve the problem that in the prior art, there is no mutual communication between various sections, and after the production speeds of all sections are linked and communicated, all sections synchronously adjust production in the same direction speed, there may be technical problems that the operation of the section exceeds the safe range.
  • the present invention specifically provides the following technical solutions:
  • An intelligent monitoring method for an intelligent production line of gypsum building materials comprising the following steps:
  • Step 100 Divide the gypsum board production line into a plurality of sections from top to bottom, and each section is provided with a monitoring module for monitoring the safe operation of the section, and the plurality of sections and the monitoring module are respectively connected to the PLC system bus;
  • Step 200 Select the production control object that affects the running speed of the section in each section, the PLC system establishes a function model between the production control object of each section and the running speed of the section, and the PLC system converts all the sections of all sections.
  • the monitoring modules are integrated to form an integrated monitoring component to adaptively and synchronously adjust the running speed of all sections;
  • Step 300 Set the safety threshold value of the monitoring module of each work section, compare the feedback value of each monitoring module with the corresponding safety threshold value, and the PLC system uses the integrated monitoring component to adjust the safety threshold in a stepped manner.
  • the running speed of the threshold section is adjusted synchronously and the running speed of other sections is adjusted in the same direction;
  • Step 400 Under the condition that the feedback value of the monitoring module is within the safety threshold and tends to be stable, re-adjust the operating speed of the sections that exceed the safety threshold and gradually return to the safe operating speed, and all sections are at the safe operating speed.
  • the monitoring data of the monitoring module are all within the safety threshold range.
  • the gypsum building material production line is divided into a plurality of sections from top to bottom, which are respectively a feeding and turning plate control section, a film coating treatment section, a coating film cutting control section and a
  • the blanking and flapping section, and the multi-dimensional control parameters of each section respectively include the operation speed control object, the position control object and the pneumatic component control object.
  • both the lamination processing section and lamination cutting control section include a segmented conveying system
  • the operation speed control object includes the feeding flap control section, lamination processing section
  • the production control object that affects the running speed in the section, the film-covering and shearing control section, the blanking and flapping section, and the sectional conveying system;
  • the conveying speed of the segmented conveying system is adjusted according to the mapping relationship.
  • step 200 there are two ways to change the running speed of each section, which are:
  • the operating speed of the work section is regulated on the human-computer interaction interface of the PLC system, the PLC system adjusts the parameters of the production control object according to the function model between the production control object and the operating speed of the work section, and the PLC system changes the corresponding work section the value of the production control object;
  • the parameters of the production control object are regulated on the human-computer interaction interface of the PLC system, and the PLC system calculates the operation speed of the section according to the function model between the production control object and the operation speed of the section;
  • the running speed of each section is not exactly the same as the function model between the production control object, and the running speed of each section is not exactly the same.
  • the different running speeds corresponding to all sections are realized through the speed matching relationship. The speed is synchronized and adjusted in the same direction.
  • the speed matching relationship of the running speeds of all the sections is established so that all the sections can adjust the production speed in the same direction synchronously.
  • the production speed is indirectly adjusted by the formula, and the PLC system regulates the parameters of the remaining production control objects of the work section according to the function model between the production control object and the operating speed of the work section, wherein, the specific realization of the speed matching relationship formula of the running speed of all the work sections is established.
  • the method is:
  • the speed matching relationship is used for indirect adjustment according to the same speed regulation range to adjust the running speed of each section synchronously and in the same direction.
  • the monitoring module of each section is used to monitor the temperature characteristic information of the section, and the safety thresholds of the temperature characteristic information of each section are not exactly the same, and the integrated
  • the chemical monitoring component is used to automatically and synchronously adjust the running speed of all sections according to the feedback value of any one of the monitoring modules;
  • the PLC system automatically adjusts the running speeds of all sections in the same direction according to the uniform equal-step automatic synchronization
  • step 300 the operating speeds of all the sections are divided into a plurality of operating speed intervals, and two adjacent operating speed intervals have a speed folding area, and the center of each operating speed interval is The value corresponds to a stepped value, and the PLC system uses the integrated monitoring component to adjust the running speed of the section exceeding the safety threshold in a stepped manner and synchronously adjust the running speed of other sections in the same direction.
  • the specific implementation method is:
  • step 400 when the temperature representation information of the section exceeding the safety threshold is within the safety threshold range and tends to be stable, the operating speed of all sections is readjusted and gradually restored to the safe operating speed, The temperature characterization information for all sections at safe operating speeds is within safe thresholds.
  • the present invention further provides the following technical scheme: an intelligent monitoring system for an intelligent production line of gypsum building materials, the gypsum board production line is modularized and classified according to the production process, and the gypsum board production line sequentially includes multiple Each section module, the gypsum board production line includes sequentially from top to bottom:
  • the feeding control system is used to realize the sequential transfer of each gypsum board from the stacking point, and the base plate of the gypsum board is all facing upwards through the turning operation;
  • a film coating processing system which is used to perform a film coating operation on the substrate of the gypsum board
  • Lamination cutting control system for cutting the lamination
  • the blanking and flapping system is used to collect and stack the laminated sheets
  • a monitoring system for monitoring the safe operation of the system is installed in the material feeding control system, the film coating processing system, the film top shearing control system and the material unloading flap system;
  • the feeding control system, the lamination processing system, the lamination cutting control system, the unloading flapping system and the monitoring system are all connected with the PLC control system bus;
  • the PLC control system logically integrates the control objects in all sections, and has a linkage interaction relationship in the control objects for functional integration to form a device speed bus control module.
  • the PLC control system integrates the control objects of all sections.
  • the monitoring system is integrated to form an integrated monitoring component to adaptively and synchronously adjust the running speed of all sections to a safe range.
  • the device speed bus control module is used to select the control object that affects the production speed on the gypsum board production line, and to determine the control object that directly adjusts the production speed and the control object that indirectly adjusts the production speed. Describe the control object, and determine the speed matching mode between the control object that directly adjusts the production speed and the control object that indirectly adjusts the production speed to realize the synchronous adjustment of the running speed of all sections;
  • the integrated monitoring component integrates the monitoring data of the monitoring systems of all the sections, and when the data of any one of the monitoring systems exceeds the safety threshold, the device speed bus control module is activated to synchronously adjust the running speeds of all sections in the same direction. , to use the monitoring system to adjust the speed of all sections to match the job.
  • the present invention has the following beneficial effects:
  • the present invention monitors the temperature of each section correspondingly through the intelligent monitoring system, and the temperature of each section is fed back to the comparison result with the corresponding safety threshold.
  • the This section automatically adjusts the running speed according to the monitoring results, and the running speeds of other sections are synchronously modified in the same direction to adaptively change the running speed. Therefore, under the action of the monitoring system, all sections of the production line can realize adaptive running speed adjustment.
  • the speed of the gypsum board production line can be adjusted in the same direction and the production can be stabilized.
  • FIG. 1 is a structural block diagram of an intelligent monitoring system according to an embodiment of the present invention.
  • FIG. 2 is a schematic flowchart of an intelligent monitoring method provided by an embodiment of the present invention.
  • 1-Feeding control system 2-Lamination processing system; 3-Lamination clipping control system; 4-Unloading flap system; 5-PLC control system; 6-Equipment speed bus control module; 8- Integrated monitoring components.
  • the present invention provides an intelligent monitoring method for an intelligent production line of gypsum building materials.
  • a linkage control method for the speed of the sections of the production line is established, that is, to modify
  • the running speeds of any section are set, the running speeds of other sections are synchronously modified in the same direction, so that the running speeds of all sections can be re-matched after adjustment, so as to achieve stable gypsum board production.
  • this embodiment adopts the intelligent monitoring system. Correspondingly monitor the temperature of each section, as well as the comparison result between the temperature feedback of each section and the corresponding safety threshold, when any section exceeds the safe work threshold at the current operating speed, it will be automatically monitored according to the monitoring results. Adjust the running speed, and the running speeds of other sections are synchronously modified in the same direction to adaptively change the running speed. Therefore, under the action of the monitoring system, all sections of the production line can realize adaptive running speed adjustment, which ensures the safe operation of the production line. On the premise, the speed of the gypsum board production line can be adjusted in the same direction and the production can be stabilized.
  • Step 100 Divide the gypsum board production line into multiple sections from top to bottom, and each section is provided with a monitoring module for monitoring the safe operation of the section, and the multiple sections and the monitoring module are respectively connected to the PLC system bus.
  • step 100 the gypsum building material production line is divided into a plurality of sections from top to bottom, which are respectively the control section of the feeding flap, the coating processing section, the cutting control section of the coating and the cutting section, and the section of each section is
  • the multi-dimensional control parameters respectively include the operation speed control object, the position control object and the pneumatic component control object.
  • Step 200 Select the production control object that affects the running speed of the section in each section, the PLC system establishes a function model between the production control object of each section and the running speed of the section, and the PLC system integrates the monitoring modules of all sections into one The integrated monitoring component adjusts the running speed of all sections with adaptive synchronization.
  • step 200 there are two ways to change the running speed of each section, which are:
  • the human-computer interaction interface of the PLC system controls the operation speed of the section, the PLC system adjusts the parameters of the production control object according to the function model between the production control object and the operation speed of the section, and the PLC system changes the value of the production control object of the corresponding section.
  • the human-computer interaction interface of the PLC system regulates the parameters of the production control object, and the PLC system calculates the operation speed of the section according to the function model between the production control object and the operation speed of the section.
  • the running speed of each section is related to the corresponding speed control object, and forms a stable control system for a gypsum board production line.
  • a logical linkage system is established between the running speeds of all sections to ensure that the running speeds of all sections are synchronously adjusted in the same direction. Therefore, there is no need to manually adjust the running speed of other sections, so that the entire system can still maintain a stable production process after adjusting the running speed.
  • the production control object of each section and the section running speed of each section form an independent module.
  • the staff can adjust the parameters of the production control object, according to the difference between the production control object and the running speed of the section. Determine the running speed of each section by using the function model between them, or adjust the running speed directly, determine the parameters of the production control object according to the function model between the production control object and the running speed of the section, and change the parameters of the production control object through the PLC system .
  • the function model between the running speed of each section and the production control object is not exactly the same, and the running speed of each section is not exactly the same.
  • the different running speeds corresponding to all sections are determined by the speed matching relationship It realizes the synchronous adjustment of the running speed of all sections in the same direction.
  • the speed matching relationship is used for indirect adjustment according to the same speed regulation range to adjust the running speed of each section synchronously and in the same direction, and the running speed of other sections is adjusted to V+V*(V2-V1)/V1;
  • both the lamination processing section and the lamination cutting control section include a segmented conveying system
  • the operation speed control objects include the feeding flap control section, lamination processing section, lamination running shear control section, The production control objects that affect the running speed in the blanking and flapping section and the sectional conveying system;
  • a mapping relationship between the running speed of the section and the conveying speed of the corresponding section conveying system is established.
  • this embodiment not only links the operation speed of each section, but also defines the mapping relationship between the operation speed of the section and the conveying speed of sections. Since each section is working, the head and tail of the gypsum board are required to be in the neutral position. If it is too large, it will not be able to collide with adjacent boards. Therefore, in order to ensure stable operation, in general, when the distance between different section conveying systems is fixed, the running speed of the gypsum board passing through the section is different from that of the section located behind the section.
  • the mapping relationship between the conveying speeds of the section conveying system and the adjusted operating speed of the section are used to determine the adjusted conveying speed of the section conveying system.
  • the monitoring system needs to monitor each section.
  • the temperature change of the section can adjust the running speed of all sections adaptively according to the temperature change of any section.
  • step 200 the monitoring module of each section is used to monitor the temperature characterization information of the section, and the safety thresholds of the temperature characterization information of each section are not exactly the same, and the integrated monitoring component is used to monitor the feedback from any monitoring module.
  • the value automatically adjusts the running speed of all sections synchronously;
  • the PLC system automatically adjusts the running speed of all sections in the same direction according to the unified equal-step automatic synchronization
  • Step 300 Set the safety threshold of the monitoring module of each section, compare the feedback value of each monitoring module with the corresponding safety threshold, and the PLC system uses the integrated monitoring component to adjust the operation speed of the section exceeding the safety threshold in a stepwise manner. And synchronously adjust the running speed of other sections in the same direction.
  • step 300 the operating speeds of all the sections are divided into a plurality of operating speed intervals, and two adjacent operating speed intervals have speed folding areas, the center value of each operating speed interval corresponds to a stepped value, and the PLC system utilizes an integrated
  • the specific implementation method that the monitoring component adjusts the running speed of the section exceeding the safety threshold in a stepwise manner and synchronously adjusts the running speed of other sections in the same direction is as follows:
  • Step 400 Under the condition that the feedback value of the monitoring module is within the safety threshold and tends to be stable, re-adjust the operating speed of the sections that exceed the safety threshold and gradually return to the safe operating speed, and the monitoring module monitors all sections at the safe operating speed.
  • the data are all within safe thresholds.
  • step 400 when the temperature representation information of the section exceeding the safety threshold is within the range of the safety threshold and tends to be stable, the operating speed of all sections is readjusted and gradually returned to the safe operating speed, and the temperature of all sections at the safe operating speed Characterization information is within the safe threshold range.
  • a safety monitoring mode is added to the speed linkage adjustment system of the gypsum board production line.
  • the staff can select the required running speed through the human-computer interaction interface of the PLC system, and the monitoring system monitors the synchronization and synchronization of all the sections.
  • the running speed of the section will be adaptively reduced, and in order to ensure the speed matching of the production line, the speed linkage adjustment system is synchronized with the To adjust the running speed of all sections.
  • this embodiment combines the monitoring system and the speed linkage adjustment system. Under the action of the speed linkage adjustment system, the running speeds of all sections are synchronously adjusted in the same direction. After the adjustment, all sections are adaptively adjusted to the safe range under the action of the monitoring system. Realize the variable frequency dynamic balance production work of the production line.
  • the present embodiment also provides an intelligent monitoring system for an intelligent production line of gypsum building materials.
  • the gypsum board production line is modularized and classified according to the production process.
  • the gypsum board production line includes a plurality of section modules from top to bottom.
  • the gypsum board production line includes, from top to bottom, a feeding control system 1, a lamination processing system 2, a lamination fast shearing control system 3, and a blanking and turning plate system 4.
  • the feeding control system 1 is used to realize the sequential transfer of each gypsum board from the stacking point, and the substrates of the gypsum board are all facing upward through the turning operation; the film coating processing system 2 is used to coat the substrate of the gypsum board. Operation; Lamination Flying Shearing Control System 3 is used for cutting the lamination; blanking and turning plate system 4 is used to collect and stack the lamination-formed sheets.
  • a monitoring system 7 for monitoring the safe operation of the system is installed in the feeding control system 1, the lamination processing system 2, the laminating shearing control system 3 and the blanking flap system 4, and the feeding control system 1, lamination processing
  • the system 2, the control system 3 of the film-covered flying shearing, the blanking and turning plate system 4 and the monitoring system 7 are all connected with the PLC control system 5 by bus.
  • the PLC control system 5 integrates the control objects in all the sections respectively, and has a linkage interaction relationship in the control objects for functional integration to form the equipment speed bus control module 6.
  • the PLC control system 5 integrates the monitoring systems 7 of all sections to form
  • the integrated monitoring component 8 adjusts the running speed of all sections to a safe range with self-adaptive synchronization.
  • the device speed bus control module 6 is used to select the control object that affects the production speed on the gypsum board production line, and to determine the control object that directly adjusts the production speed and the control object that indirectly adjusts the production speed, and determines the control object that directly adjusts the production speed and the indirect adjustment.
  • the speed matching method between the control objects of the production speed can realize the synchronous adjustment of the running speed of all sections;
  • the integrated monitoring component 8 integrates the monitoring data of the monitoring systems 7 of all sections, and if the data of any monitoring system 7 exceeds the safety threshold, the device speed bus control module 6 is activated to adjust the running speed of all sections synchronously and in the same direction, so as to utilize the monitoring System 7 adjusts the speed of all sections to match the job.
  • the temperature of each section is correspondingly monitored by the intelligent monitoring system, and the temperature of each section is fed back to the comparison result with the corresponding safety threshold.
  • the running speed is automatically adjusted according to the monitoring results of this section, and the running speeds of other sections are synchronously modified in the same direction to adaptively change the running speed.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Programmable Controllers (AREA)
  • Testing And Monitoring For Control Systems (AREA)
  • Control Of Conveyors (AREA)

Abstract

本发明公开了一种石膏建材智能生产线智能监控系统及方法,将石膏板材生产线自上而下划分为多个工段,且在每个工段均设有用于监测工段安全运行的监控模块,分别将多个工段和监控模块与PLC系统总线连接;PLC系统将所有工段的监控模块集成形成一体化监控组件以自适应同步调整所有工段的运行速度;设定每个工段的监控模块的安全阈值,PLC系统利用一体化监控组件按照阶梯式调整超出安全阈值的工段的运行速度且同步同向调整其他工段的运行速度;重新调整超出安全阈值的工段的运行速度逐级恢复至安全运行速度,所有工段在安全运行速度下的监控模块监测数据均处于安全阈值范围内;本发明保证生产线安全运行,并实现石膏板生产线的速度同向调整以及稳定生产。

Description

一种石膏建材智能生产线智能监控系统及方法 技术领域
本发明涉及石膏建材生产线技术领域,具体涉及一种石膏建材智能生产线智能监控系统及方法。
背景技术
多功能装饰板材是一种具有个性化设计、工厂化生产、装配式施工、即装即住、安全环保等特点于一体多功能饰面板材,彻底改变传统装修工法和建材产业,完美替代刮腻子、刷油漆涂料、贴壁纸壁布等现场湿法作业,替代木材、砖头、砌块等多种装修材料,从根源上彻底解决室内装修污染问题。
装饰板材车间的生产线由上料,翻板机,收尘,覆膜机等多个工段组成,环环相扣,相辅相成。在装饰板材生产过程中,石膏板车间定制的石膏板经由上料机,翻板机,除尘机之后,进入专门的覆膜设备中,之后再经过切膜,包装成了一块块崭新的装饰板材。
但是现有的石膏板材生产线还存在的缺陷如下:
(1)各工段之间不存在相互通讯,所以当生产线需要更改速度时,需要人工对各个工段单独进行操作,增大了人工劳动强度且必须停机,无法实现连续生产;
(2)将所有工段的生产速度联动通讯后,所有工段同步同向调整生产速度,但是由于每个工段的运行速度承受能力不同,即不同工段在对应调整运行速度后,其温度表征信息增长幅度不同,且每个工段的温度安全阈值范围也不同,因此当其他工段随着一个工段同步同向调整生产速度后,可能会出现工段运行超过安全范围的问题。
发明内容
本发明的目的在于提供一种石膏建材智能生产线智能监控系统及方法,以解决现有技术中各工段之间不存在相互通讯,且所有工段的生产速度联动通讯后,所有工段同步同向调整生产速度,可能会出现工段运行超过安全范的技术问题。
为解决上述技术问题,本发明具体提供下述技术方案:
一种石膏建材智能生产线智能监控方法,包括以下步骤:
步骤100、将石膏板材生产线自上而下划分为多个工段,且在每个工段均设有用于监测工段安全运行的监控模块,分别将多个工段和监控模块与PLC系统总线连接;
步骤200、选定每个工段内影响工段运行速度的生产控制对象,所述PLC系统建立每个工段的生产控制对象与工段运行速度之间的函数模型,并且所述PLC系统将所有工段的所述监控模块集成形成一体化监控组件以自适应同步调整所有工段的运行速度;
步骤300、设定每个工段的所述监控模块的安全阈值,将每个监控模块的反馈值与对应的安全阈值进行对比,所述PLC系统利用所述一体化监控组件按照阶梯式调整超出安全阈值的工段的运行速度且同步同向调整其他工段的运行速度;
步骤400、在所述监控模块的反馈值处于所述安全阈值内且趋于稳定的状态下,重新调整超出安全阈值的工段的运行速度逐级恢复至安全运行速度,所有工段在安全运行速度下的所述监控模块监测数据均处于安全阈值范围内。
作为本发明的一种优选方案,在步骤100中,所述石膏建材生产线自上而下分为多个工段,分别为上料翻板控制工段、覆膜处理工段、覆膜追剪控制工段以及下料翻板工段,且每个工段的多维操控参数分别均包括运作速度控制对象、位置控制对象和气动元件控制对象。
作为本发明的一种优选方案,所述覆膜处理工段和覆膜追剪控制工段均包括设有分段输送系统,所述运作速度控制对象包括所述上料翻板控制工段、覆膜处理工段、覆膜追剪控制工段、下料翻板工段以及分段输送系统中影响运行速度的所述生产控制对象;
调整所述分段输送系统的输送速度的实现方法为:
建立所述工段的运行速度与对应的分段输送系统的输送速度之间的映射 关系;
确保所述石膏板按照稳定间距输送不变的前提下,按照映射关系调整分段输送系统的输送速度。
作为本发明的一种优选方案,在步骤200中,改变每个工段的运行速度的方式分为两种,分别为:
在所述PLC系统的人机交互界面调控工段运行速度,所述PLC系统根据所述生产控制对象与工段运行速度之间的函数模型调整所述生产控制对象参数,且所述PLC系统更改对应工段的生产控制对象的数值;
在所述PLC系统的人机交互界面调控生产控制对象参数,所述PLC系统根据所述生产控制对象与工段运行速度之间的函数模型计算所述工段运行速度;
每个工段的运行速度与所述生产控制对象之间的函数模型不完全相同,且每个工段的运行速度不完全相同,所有工段对应的不同的运行速度通过速度匹配关系式实现所有工段的运行速度同步同向联动调整。
作为本发明的一种优选方案,建立所有工段运行速度的速度匹配关系式以使得所有工段同步同向的调整生产速度,先选择直接调整生产速度的工段,则剩余的所述工段根据速度匹配关系式间接调整生产速度,所述PLC系统根据生产控制对象与工段运行速度之间的函数模型调控剩余的所述工段的生产控制对象参数,其中,建立所有工段运行速度的速度匹配关系式的具体实现方法为:
确定直接调整运行速度的工段的速度调控幅度;
所述速度匹配关系式用于按照相同的速度调控幅度间接调整以将每个工段的运行速度同步同向调整。
按照工段运行速度与输送系统的输送速度之间的映射关系调整输送系统的生产控制对象,以保持两个石膏板材的头尾部的固定间距。
作为本发明的一种优选方案,在步骤200中,每个工段的所述监控模块用于监测工段的温度表征信息,且每个工段的温度表征信息的安全阈值不完 全相同,且所述一体化监控组件用于根据任一个所述监控模块的反馈值自动同步调整所有工段的运行速度;
当任一个所述监控模块的反馈值在设定运行速度的状态下超出该所述监控模块对应的安全阈值,所述PLC系统按照统一等阶式自动同步同向调整所有工段的运行速度;
当所述监控模块的反馈值逐渐接近该所述监控模块对应的安全阈值,则所有工段保持调整后的运行速度实现对石膏板材的生产作业;
当该所述监控模块的反馈值处于该所述监控模块对应的安全阈值且保持稳定,则所有工段重新调整至设定运行速度,以实现变频动态生产工作。
作为本发明的一种优选方案,在步骤300中,所有工段的运行速度分别划分为多个运行速度区间,且相邻两个运行速度区间具有速度折叠区,每个所述运行速度区间的中心值对应一个阶梯值,所述PLC系统利用所述一体化监控组件按照阶梯式调整超出安全阈值的工段的运行速度且同步同向调整其他工段的运行速度的具体实现方法为:
判断超出安全阈值的工段,以及超出安全阈值的工段当前所在的运行速度区间,并按照阶梯式顺次下调所述工段的运行速度区间,以将所述工段调整至下一个运行速度区间的阶梯值;
计算该工段的速度调整幅度,将其他工段的运行速度以及分段输送系统的输送速度以速度调整幅度以基准同步同向调整运行速度;
继续利用所述监控模块计算超出安全阈值的工段的温度表征信息,并计算所述温度表征信息的变动幅度以继续阶梯式顺次下调所有工段的运行速度。
作为本发明的一种优选方案,在步骤400中,在超出安全阈值的工段的温度表征信息处于安全阈值范围内且趋于稳定时,重新调整所有工段的运行速度逐级恢复至安全运行速度,所有工段在安全运行速度下的温度表征信息均处于安全阈值范围内。
为解决上述技术问题,本发明还进一步提供下述技术方案:一种石膏建 材智能生产线智能监控系统,将石膏板材生产线按照生产流程进行模块化分类,所述石膏板材生产线自上而下依次包括多个工段模块,所述石膏板材生产线自上而下依次包括:
上料控制系统,用于实现将每个石膏板从堆垛点的顺序转移,且通过翻板操作将石膏板的基板均朝上;
覆膜处理系统,用于对所述石膏板的基板进行覆膜操作;
覆膜追剪控制系统,用于对覆膜的切断处理;
下料翻板系统,用于将覆膜成型的板材收集码垛;
所述上料控制系统、覆膜处理系统、覆膜追剪控制系统和所述下料翻板系统内均安装有用于监测系统安全运行的监控系统;
所述上料控制系统、覆膜处理系统、覆膜追剪控制系统、所述下料翻板系统和所述监控系统均与所述PLC控制系统总线连接;
所述PLC控制系统将所有工段中的控制对象分别进行逻辑集成,并且在所述控制对象中具有联动交互关系进行功能集成以形成设备速度总线控制模块,所述PLC控制系统将所有工段的所述监控系统集成形成一体化监控组件以自适应同步调整所有工段的运行速度至安全范围。
作为本发明的一种优选方案,所述设备速度总线控制模块用于选择石膏板生产线上影响生产速度的所述控制对象,并确定直接调整生产速度的所述控制对象以及间接调整生产速度的所述控制对象,且确定直接调整生产速度的控制对象和间接调整生产速度的控制对象之间的速度匹配方式以实现所有工段的运行速度同步同向调整;
所述一体化监控组件将所有工段的所述监控系统的监测数据联动集成,在任一个所述监控系统的数据超出安全阈值,则启动所述设备速度总线控制模块同步同向调整所有工段的运行速度,以利用所述监控系统调整所有工段的速度匹配作业。
本发明与现有技术相比较具有如下有益效果:
本发明通过智能监控系统对应监控每个工段的温度,以及每个工段的温 度反馈至与对应的安全阈值之间的对比结果,当任一个工段在当前的运行速度下超出安全工作阈值,则根据该工段根据监测结果自动调整运行速度,且其他工段的运行速度同步同向修改,以自适应更改运行速度,因此在监控系统的作用下,生产线的所有工段可以实现自适应性的运行速度调整,在保证生产线安全运行的前提下,实现石膏板生产线的速度同向调整以及稳定生产。
附图说明
为了更清楚地说明本发明的实施方式或现有技术中的技术方案,下面将对实施方式或现有技术描述中所需要使用的附图作简单地介绍。显而易见地,下面描述中的附图仅仅是示例性的,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据提供的附图引伸获得其它的实施附图。
图1为本发明实施例提供智能监控系统的结构框图;
图2为本发明实施例提供智能监控方法的流程示意图。
图中的标号分别表示如下:
1-上料控制系统;2-覆膜处理系统;3-覆膜追剪控制系统;4-下料翻板系统;5-PLC控制系统;6-设备速度总线控制模块;7-监控系统;8-一体化监控组件。
本发明的较佳实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图2所示,本发明提供了一种石膏建材智能生产线智能监控方法,在石膏板生产线上,为了确保每个工段之间的运行速度相互关联,建立生产线工段速度的联动调控方式,即修改任意工段的运行速度时,其他工段的运行速度同步同向修改,以将所有工段的运行速度在调整后重新匹配,实现稳定的石膏板材生产工作。
但是由于每个工段的运行速度承受能力不同,即不同工段在对应调整运行速度后,其温度表征信息增长幅度不同,且每个工段的温度安全阈值范围也不同,因此本实施方式通过智能监控系统对应监控每个工段的温度,以及每个工段的温度反馈至与对应的安全阈值之间的对比结果,当任一个工段在当前的运行速度下超出安全工作阈值,则根据该工段根据监测结果自动调整运行速度,且其他工段的运行速度同步同向修改,以自适应更改运行速度,因此在监控系统的作用下,生产线的所有工段可以实现自适应性的运行速度调整,在保证生产线安全运行的前提下,实现石膏板生产线的速度同向调整以及稳定生产。
具体包括以下步骤:
步骤100、将石膏板材生产线自上而下划分为多个工段,且在每个工段均设有用于监测工段安全运行的监控模块,分别将多个工段和监控模块与PLC系统总线连接。
在步骤100中,石膏建材生产线自上而下分为多个工段,分别为上料翻板控制工段、覆膜处理工段、覆膜追剪控制工段以及下料翻板工段,且每个工段的多维操控参数分别均包括运作速度控制对象、位置控制对象和气动元件控制对象。
步骤200、选定每个工段内影响工段运行速度的生产控制对象,PLC系统建立每个工段的生产控制对象与工段运行速度之间的函数模型,并且PLC系统将所有工段的监控模块集成形成一体化监控组件以自适应同步调整所有工段的运行速度。
在步骤200中,改变每个工段的运行速度的方式分为两种,分别为:
1、述PLC系统的人机交互界面调控工段运行速度,PLC系统根据生产控制对象与工段运行速度之间的函数模型调整生产控制对象参数,且PLC系统更改对应工段的生产控制对象的数值。
2、PLC系统的人机交互界面调控生产控制对象参数,PLC系统根据生产控制对象与工段运行速度之间的函数模型计算工段运行速度。
每个工段的运行速度跟对应的速度控制对象有关,且形成一条石膏板材生产线的稳定操控系统,所有工段的运行速度之间建立一个逻辑联动系统,以保证所有工段的运行速度同步同向调整,因此无需手动调整其他工段的运行速度,使得整个系统在调整运行速度后仍能保持稳定的生产流程。
而在PLC系统的人机交互界面上,每个工段的生产控制对象和每个工段的工段运行速度形成一个独立的模块,工作人员可以调整生产控制对象参数,根据生产控制对象与工段运行速度之间的函数模型来确定每个工段的运行速度,或者直接调整运行速度,根据生产控制对象与工段运行速度之间的函数模型来确定生产控制对象的参数,并通过PLC系统更改生产控制对象的参数。
另外还需要特别说明的是,每个工段的运行速度与生产控制对象之间的函数模型不完全相同,且每个工段的运行速度不完全相同,所有工段对应的不同的运行速度通过速度匹配关系式实现所有工段的运行速度同步同向联动调整。
建立所有工段运行速度的速度匹配关系式以使得所有工段同步同向的调整生产速度,先选择直接调整生产速度的工段,则剩余的工段根据速度匹配关系式间接调整生产速度,PLC系统根据生产控制对象与工段运行速度之间的函数模型调控剩余的工段的生产控制对象参数,其中,建立所有工段运行速度的速度匹配关系式的具体实现方法为:
1、确定直接调整运行速度的工段的速度调控幅度,由原来的V1改为V2,则速度调控幅度具体为(V2-V1)/V1;
2、速度匹配关系式用于按照相同的速度调控幅度间接调整以将每个工段的运行速度同步同向调整,其他工段的运行速度调整为V+V*(V2-V1)/V1;
3、根据生产控制对象与工段运行速度之间的函数模型调整生产控制对象的参数;
4、按照工段运行速度与输送系统的输送速度之间的映射关系调整输送系统的生产控制对象,以保持两个石膏板材的头尾部的固定间距。
需要补充说明的是,覆膜处理工段和覆膜追剪控制工段均包括设有分段输送系统,运作速度控制对象包括上料翻板控制工段、覆膜处理工段、覆膜追剪控制工段、下料翻板工段以及分段输送系统中影响运行速度的生产控制对象;
调整分段输送系统的输送速度的实现方法为:
建立工段的运行速度与对应的分段输送系统的输送速度之间的映射关系。
确保石膏板按照稳定间距输送不变的前提下,按照映射关系调整分段输送系统的输送速度。
因此本实施方式不仅仅将每个工段的运作速度进行联动,还限定了工段运行速度与分段输送速度之间的映射关系,由于每个工段在工作时,要求石膏板材的头尾空档不能太大,更不能相邻板材发生顶碰,因此为了确保稳定工作,一般情况下,石膏板材在不同分段输送系统的间距固定不变的情况下,通过工段的运行速度与位于工段后方的分段输送系统的输送速度之间的映射关系,以及调整后的工段运行速度,来确定分段输送系统调整的输送速度。
另外,由于每个工段的运行速度承受能力不同,即不同工段在对应调整运行速度后,其温度表征信息增长幅度不同,且每个工段的温度安全阈值范围也不同,因此需要监控系统监控每个工段的温度变化,以根据任意一个工段的温度变化自适应调整所有工段的运行速度。
因此在步骤200中,每个工段的监控模块用于监测工段的温度表征信息,且每个工段的温度表征信息的安全阈值不完全相同,且一体化监控组件用于根据任一个监控模块的反馈值自动同步调整所有工段的运行速度;
当任一个监控模块的反馈值在设定运行速度的状态下超出该监控模块对应的安全阈值,PLC系统按照统一等阶式自动同步同向调整所有工段的运行速度;
当监控模块的反馈值逐渐接近该监控模块对应的安全阈值,则所有工段保持调整后的运行速度实现对石膏板材的生产作业;
当该监控模块的反馈值处于该监控模块对应的安全阈值且保持稳定,则所有工段重新调整至设定运行速度,以实现变频动态生产工作。
步骤300、设定每个工段的监控模块的安全阈值,将每个监控模块的反馈值与对应的安全阈值进行对比,PLC系统利用一体化监控组件按照阶梯式调整超出安全阈值的工段的运行速度且同步同向调整其他工段的运行速度。
在步骤300中,所有工段的运行速度分别划分为多个运行速度区间,且相邻两个运行速度区间具有速度折叠区,每个运行速度区间的中心值对应一个阶梯值,PLC系统利用一体化监控组件按照阶梯式调整超出安全阈值的工段的运行速度且同步同向调整其他工段的运行速度的具体实现方法为:
判断超出安全阈值的工段,以及超出安全阈值的工段当前所在的运行速度区间,并按照阶梯式顺次下调工段的运行速度区间,以将工段调整至下一个运行速度区间的阶梯值;
计算该工段的速度调整幅度,将其他工段的运行速度以及分段输送系统的输送速度以速度调整幅度以基准同步同向调整运行速度;
继续利用监控模块计算超出安全阈值的工段的温度表征信息,并计算温度表征信息的变动幅度以继续阶梯式顺次下调所有工段的运行速度。
步骤400、在监控模块的反馈值处于安全阈值内且趋于稳定的状态下,重新调整超出安全阈值的工段的运行速度逐级恢复至安全运行速度,所有工段在安全运行速度下的监控模块监测数据均处于安全阈值范围内。
在步骤400中,在超出安全阈值的工段的温度表征信息处于安全阈值范围内且趋于稳定时,重新调整所有工段的运行速度逐级恢复至安全运行速度,所有工段在安全运行速度下的温度表征信息均处于安全阈值范围内。
相当于说,本实施方式在石膏板材生产线工段速度联动调整系统上增加安全监控模式,工作人员通过PLC系统的人机交互界面可以选定所需的运行速度,而监控系统则监控所有工段同步同向调整运行速度后的耐受能力,当任一工段在当前调整运行速度下超过安全运行范围,则自适应下降该工段的运行速度,且为了保证生产线的速度匹配,结合速度联动调整系统同步同向 调整所有工段的运行速度。
因此本实施方式结合监控系统和速度联动调整系统,在速度联动调整系统的作用下,同步同向调整所有工段的运行速度,调整之后,所有工段在监控系统的作用下自适应调整至安全范围,实现生产线的变频动态平衡生产工作。
另外,如图1所示,本实施方式还提供了一种石膏建材智能生产线智能监控系统,将石膏板材生产线按照生产流程进行模块化分类,石膏板材生产线自上而下依次包括多个工段模块,石膏板材生产线自上而下依次包括上料控制系统1、覆膜处理系统2、覆膜追剪控制系统3和下料翻板系统4。
上料控制系统1用于实现将每个石膏板从堆垛点的顺序转移,且通过翻板操作将石膏板的基板均朝上;覆膜处理系统2用于对石膏板的基板进行覆膜操作;覆膜追剪控制系统3用于对覆膜的切断处理;下料翻板系统4用于将覆膜成型的板材收集码垛。
上料控制系统1、覆膜处理系统2、覆膜追剪控制系统3和下料翻板系统4内均安装有用于监测系统安全运行的监控系统7,且上料控制系统1、覆膜处理系统2、覆膜追剪控制系统3、下料翻板系统4和监控系统7均与PLC控制系统5总线连接。
PLC控制系统5将所有工段中的控制对象分别进行逻辑集成,并且在控制对象中具有联动交互关系进行功能集成以形成设备速度总线控制模块6,PLC控制系统5将所有工段的监控系统7集成形成一体化监控组件8以自适应同步调整所有工段的运行速度至安全范围。
设备速度总线控制模块6用于选择石膏板生产线上影响生产速度的控制对象,并确定直接调整生产速度的控制对象以及间接调整生产速度的控制对象,且确定直接调整生产速度的控制对象和间接调整生产速度的控制对象之间的速度匹配方式以实现所有工段的运行速度同步同向调整;
一体化监控组件8将所有工段的监控系统7的监测数据联动集成,在任一个监控系统7的数据超出安全阈值,则启动设备速度总线控制模块6同步 同向调整所有工段的运行速度,以利用监控系统7调整所有工段的速度匹配作业。
因此本实施方式通过智能监控系统对应监控每个工段的温度,以及每个工段的温度反馈至与对应的安全阈值之间的对比结果,当任一个工段在当前的运行速度下超出安全工作阈值,则根据该工段根据监测结果自动调整运行速度,且其他工段的运行速度同步同向修改,以自适应更改运行速度。
以上实施例仅为本申请的示例性实施例,不用于限制本申请,本申请的保护范围由权利要求书限定。本领域技术人员可以在本申请的实质和保护范围内,对本申请做出各种修改或等同替换,这种修改或等同替换也应视为落在本申请的保护范围内。

Claims (10)

  1. 一种石膏建材智能生产线智能监控方法,其特征在于:包括以下步骤:
    步骤100、将石膏板材生产线自上而下划分为多个工段,且在每个工段均设有用于监测工段安全运行的监控模块,分别将多个工段和监控模块与PLC系统总线连接;
    步骤200、选定每个工段内影响工段运行速度的生产控制对象,所述PLC系统建立每个工段的生产控制对象与工段运行速度之间的函数模型,并且所述PLC系统将所有工段的所述监控模块集成形成一体化监控组件以自适应同步调整所有工段的运行速度;
    步骤300、设定每个工段的所述监控模块的安全阈值,将每个监控模块的反馈值与对应的安全阈值进行对比,所述PLC系统利用所述一体化监控组件按照阶梯式调整超出安全阈值的工段的运行速度且同步同向调整其他工段的运行速度;
    步骤400、在所述监控模块的反馈值处于所述安全阈值内且趋于稳定的状态下,重新调整超出安全阈值的工段的运行速度逐级恢复至安全运行速度,所有工段在安全运行速度下的所述监控模块监测数据均处于安全阈值范围内。
  2. 根据权利要求1所述的一种石膏建材智能生产线智能监控方法,其特征在于:在步骤100中,所述石膏建材生产线自上而下分为多个工段,分别为上料翻板控制工段、覆膜处理工段、覆膜追剪控制工段以及下料翻板工段,且每个工段的多维操控参数分别均包括运作速度控制对象、位置控制对象和气动元件控制对象。
  3. 根据权利要求2所述的一种石膏建材智能生产线智能监控方法,其特征在于:所述覆膜处理工段和覆膜追剪控制工段均包括设有分段输送系统,所述运作速度控制对象包括所述上料翻板控制工段、覆膜处理工段、覆膜追剪控制工段、下料翻板工段以及分段输送系统中影响运行速度的所述生产控制对象;
    调整所述分段输送系统的输送速度的实现方法为:
    建立所述工段的运行速度与对应的分段输送系统的输送速度之间的映射关系;
    确保所述石膏板按照稳定间距输送不变的前提下,按照映射关系调整分段输送系统的输送速度。
  4. 根据权利要求2所述的一种石膏建材智能生产线智能监控方法,其特征在于:在步骤200中,改变每个工段的运行速度的方式分为两种,分别为:
    在所述PLC系统的人机交互界面调控工段运行速度,所述PLC系统根据所述生产控制对象与工段运行速度之间的函数模型调整所述生产控制对象参数,且所述PLC系统更改对应工段的生产控制对象的数值;
    在所述PLC系统的人机交互界面调控生产控制对象参数,所述PLC系统根据所述生产控制对象与工段运行速度之间的函数模型计算所述工段运行速度;
    每个工段的运行速度与所述生产控制对象之间的函数模型不完全相同,且每个工段的运行速度不完全相同,所有工段对应的不同的运行速度通过速度匹配关系式实现所有工段的运行速度同步同向联动调整。
  5. 根据权利要求4所述的一种石膏建材智能生产线智能监控方法,其特征在于:建立所有工段运行速度的速度匹配关系式以使得所有工段同步同向的调整生产速度,先选择直接调整生产速度的工段,则剩余的所述工段根据速度匹配关系式间接调整生产速度,所述PLC系统根据生产控制对象与工段运行速度之间的函数模型调控剩余的所述工段的生产控制对象参数,其中,建立所有工段运行速度的速度匹配关系式的具体实现方法为:
    确定直接调整运行速度的工段的速度调控幅度;
    所述速度匹配关系式用于按照相同的速度调控幅度间接调整以将每个工段的运行速度同步同向调整;
    按照工段运行速度与输送系统的输送速度之间的映射关系调整输送系统的生产控制对象,以保持两个石膏板材的头尾部的固定间距。
  6. 根据权利要求5所述的一种石膏建材智能生产线智能监控方法,其特征在于:在步骤200中,每个工段的所述监控模块用于监测工段的温度表征信息,且每个工段的温度表征信息的安全阈值不完全相同,且所述一体化监控组件用于根据任一个所述监控模块的反馈值自动同步调整所有工段的运行速度;
    当任一个所述监控模块的反馈值在设定运行速度的状态下超出该所述监控模块对应的安全阈值,所述PLC系统按照统一等阶式自动同步同向调整所有工段的运行速度;
    当所述监控模块的反馈值逐渐接近该所述监控模块对应的安全阈值,则所有工段保持调整后的运行速度实现对石膏板材的生产作业;
    当该所述监控模块的反馈值处于该所述监控模块对应的安全阈值且保持稳定,则所有工段重新调整至设定运行速度,以实现变频动态生产工作。
  7. 根据权利要求5所述的一种石膏建材智能生产线智能监控方法,其特征在于:在步骤300中,所有工段的运行速度分别划分为多个运行速度区间,且相邻两个运行速度区间具有速度折叠区,每个所述运行速度区间的中心值对应一个阶梯值,所述PLC系统利用所述一体化监控组件按照阶梯式调整超出安全阈值的工段的运行速度且同步同向调整其他工段的运行速度的具体实现方法为:
    判断超出安全阈值的工段,以及超出安全阈值的工段当前所在的运行速度区间,并按照阶梯式顺次下调所述工段的运行速度区间,以将所述工段调整至下一个运行速度区间的阶梯值;
    计算该工段的速度调整幅度,将其他工段的运行速度以及分段输送系统的输送速度以速度调整幅度以基准同步同向调整运行速度;
    继续利用所述监控模块计算超出安全阈值的工段的温度表征信息,并计算所述温度表征信息的变动幅度以继续阶梯式顺次下调所有工段的运行速度。
  8. 根据权利要求7所述的一种石膏建材智能生产线智能监控方法,其特 征在于:在步骤400中,在超出安全阈值的工段的温度表征信息处于安全阈值范围内且趋于稳定时,重新调整所有工段的运行速度逐级恢复至安全运行速度,所有工段在安全运行速度下的温度表征信息均处于安全阈值范围内。
  9. 一种石膏建材智能生产线智能监控系统,其特征在于,将石膏板材生产线按照生产流程进行模块化分类,所述石膏板材生产线自上而下依次包括多个工段模块,所述石膏板材生产线自上而下依次包括:
    上料控制系统(1),用于实现将每个石膏板从堆垛点的顺序转移,且通过翻板操作将石膏板的基板均朝上;
    覆膜处理系统(2),用于对所述石膏板的基板进行覆膜操作;
    覆膜追剪控制系统(3),用于对覆膜的切断处理;
    下料翻板系统(4),用于将覆膜成型的板材收集码垛;
    所述上料控制系统(1)、覆膜处理系统(2)、覆膜追剪控制系统(3)和所述下料翻板系统(4)内均安装有用于监测系统安全运行的监控系统(7);
    所述上料控制系统(1)、覆膜处理系统(2)、覆膜追剪控制系统(3)、所述下料翻板系统(4)和所述监控系统(7)均与所述PLC控制系统(5)总线连接;
    所述PLC控制系统(5)将所有工段中的控制对象分别进行逻辑集成,并且在所述控制对象中具有联动交互关系进行功能集成以形成设备速度总线控制模块(6),所述PLC控制系统(5)将所有工段的所述监控系统(7)集成形成一体化监控组件(8)以自适应同步调整所有工段的运行速度至安全范围。
  10. 根据权利要求9所述的一种石膏建材智能生产线智能监控系统,其特征在于:所述设备速度总线控制模块(6)用于选择石膏板生产线上影响生产速度的所述控制对象,并确定直接调整生产速度的所述控制对象以及间接调整生产速度的所述控制对象,且确定直接调整生产速度的控制对象和间接调整生产速度的控制对象之间的速度匹配方式以实现所有工段的运行速度同步同向调整;
    所述一体化监控组件(8)将所有工段的所述监控系统(7)的监测数据联动集成,在任一个所述监控系统(7)的数据超出安全阈值,则启动所述设备速度总线控制模块(6)同步同向调整所有工段的运行速度,以利用所述监控系统(7)调整所有工段的速度匹配作业。
PCT/CN2021/132621 2021-03-24 2021-11-24 一种石膏建材智能生产线智能监控系统及方法 WO2022199085A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110312041.4 2021-03-24
CN202110312041.4A CN113093667B (zh) 2021-03-24 2021-03-24 一种石膏建材智能生产线智能监控系统及方法

Publications (1)

Publication Number Publication Date
WO2022199085A1 true WO2022199085A1 (zh) 2022-09-29

Family

ID=76669380

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132621 WO2022199085A1 (zh) 2021-03-24 2021-11-24 一种石膏建材智能生产线智能监控系统及方法

Country Status (2)

Country Link
CN (1) CN113093667B (zh)
WO (1) WO2022199085A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115951646A (zh) * 2023-03-14 2023-04-11 一夫科技股份有限公司 一种α型半水石膏的智能生产控制方法及系统
CN116757645A (zh) * 2023-08-14 2023-09-15 山东兴诺工贸股份有限公司 基于数据分析的玻璃加工生产智能管理系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113093667B (zh) * 2021-03-24 2022-02-22 中建材创新科技研究院有限公司 一种石膏建材智能生产线智能监控系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101446825A (zh) * 2008-12-15 2009-06-03 哈尔滨工业大学 建立基于增量建模的大型化工生产装置电气自动化系统的方法
CN105215058A (zh) * 2014-06-27 2016-01-06 宝山钢铁股份有限公司 一种钢板在中厚板轧制生产线过程中的温度下降的控制方法
CN105373067A (zh) * 2015-11-26 2016-03-02 湖北北新建材有限公司 一种石膏板生产信息实时交互方法及系统
US20190086892A1 (en) * 2017-09-20 2019-03-21 General Electric Company System and method for synchronization of device communication
CN110850822A (zh) * 2019-11-06 2020-02-28 故城北新建材有限公司 一种石膏板生产线的节电控制系统及方法
CN113093667A (zh) * 2021-03-24 2021-07-09 中建材创新科技研究院有限公司 一种石膏建材智能生产线智能监控系统及方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9916752B2 (en) * 2013-10-09 2018-03-13 Fuji Machine Mfg. Co., Ltd. Multiplexing communication system and working robot
CN204700978U (zh) * 2015-05-21 2015-10-14 新乡北新建材有限公司 一种纸面石膏板生产线的控制系统
CN107463152B (zh) * 2017-07-14 2023-08-11 广东省生物工程研究所(广州甘蔗糖业研究所) 一种甘蔗糖厂生产指挥调度系统及其运行方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101446825A (zh) * 2008-12-15 2009-06-03 哈尔滨工业大学 建立基于增量建模的大型化工生产装置电气自动化系统的方法
CN105215058A (zh) * 2014-06-27 2016-01-06 宝山钢铁股份有限公司 一种钢板在中厚板轧制生产线过程中的温度下降的控制方法
CN105373067A (zh) * 2015-11-26 2016-03-02 湖北北新建材有限公司 一种石膏板生产信息实时交互方法及系统
US20190086892A1 (en) * 2017-09-20 2019-03-21 General Electric Company System and method for synchronization of device communication
CN110850822A (zh) * 2019-11-06 2020-02-28 故城北新建材有限公司 一种石膏板生产线的节电控制系统及方法
CN113093667A (zh) * 2021-03-24 2021-07-09 中建材创新科技研究院有限公司 一种石膏建材智能生产线智能监控系统及方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115951646A (zh) * 2023-03-14 2023-04-11 一夫科技股份有限公司 一种α型半水石膏的智能生产控制方法及系统
CN116757645A (zh) * 2023-08-14 2023-09-15 山东兴诺工贸股份有限公司 基于数据分析的玻璃加工生产智能管理系统
CN116757645B (zh) * 2023-08-14 2023-11-10 山东兴诺工贸股份有限公司 基于数据分析的玻璃加工生产智能管理系统

Also Published As

Publication number Publication date
CN113093667B (zh) 2022-02-22
CN113093667A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
WO2022199085A1 (zh) 一种石膏建材智能生产线智能监控系统及方法
WO2022199092A1 (zh) 一种石膏建材智能生产线工段速度调控系统及方法
CN204471512U (zh) 一种家具板材切割装置
WO2022267328A1 (zh) 一种石膏建材多规格更换系统及方法
CN112560294B (zh) 基于智能预测建模的纸品生产工艺控制方法及系统
WO2022199093A1 (zh) 一种石膏建材智能生产线联动调整方法
CA2655498A1 (en) A process for controlling torque in a calendering system
CN1881728A (zh) 受端为弱小系统的直流输电调频控制实现方法
CN107901267A (zh) 一种气路式热切机切粒推力控制系统的控制方法
CN104440910B (zh) 一种实现机器人双手臂同步控制的方法及系统
CN201722561U (zh) 便捷式模块组合单面瓦楞机
CN205478243U (zh) 无人值守式节能型空压站控制系统
CN112060706A (zh) 一种蜂窝板的生产方法
CN101329577A (zh) 橡胶密封条挤出生产线的现场总线控制装置及方法
CN113246312B (zh) 一种石膏板封边检测调控系统及控制方法
CN105921362B (zh) 一种涂布机正反面涂布对位系统
CN111300658A (zh) 一种板材切割生产线及其控制方法
CN202106439U (zh) 一种平板式连续压机的控制装置
CN108543794A (zh) 一种环境除尘除杂自适应节能控制方法
CN210339774U (zh) 一种用于锂电池极片生产用裁刀纠偏组件
CN104993471B (zh) 多模块并联式车用大功率dc‑dc系统及其控制方法
CN113364046A (zh) 一种支撑电网频率的储能电站群协调控制方法
CN209533607U (zh) 一种同步纵向侧面打孔机
CN214137524U (zh) 一种便于操作的纸箱用分切机分离装置
CN113359636A (zh) 一种应用于石膏板生产翻板的位置调控系统及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932693

Country of ref document: EP

Kind code of ref document: A1