WO2022199039A1 - 一种多层锂金属电池负极及其制备方法和制备设备 - Google Patents

一种多层锂金属电池负极及其制备方法和制备设备 Download PDF

Info

Publication number
WO2022199039A1
WO2022199039A1 PCT/CN2021/129086 CN2021129086W WO2022199039A1 WO 2022199039 A1 WO2022199039 A1 WO 2022199039A1 CN 2021129086 W CN2021129086 W CN 2021129086W WO 2022199039 A1 WO2022199039 A1 WO 2022199039A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
layer
lithium metal
negative electrode
ion conductor
Prior art date
Application number
PCT/CN2021/129086
Other languages
English (en)
French (fr)
Inventor
岳敏
张世奇
冯玮晶
杨凯
钱超
Original Assignee
深圳市研一新材料有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市研一新材料有限责任公司 filed Critical 深圳市研一新材料有限责任公司
Priority to US18/552,585 priority Critical patent/US20240186480A1/en
Publication of WO2022199039A1 publication Critical patent/WO2022199039A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/0402Methods of deposition of the material
    • H01M4/0421Methods of deposition of the material involving vapour deposition
    • H01M4/0423Physical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • H01M4/366Composites as layered products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0565Polymeric materials, e.g. gel-type or solid-type
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/134Electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1395Processes of manufacture of electrodes based on metals, Si or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0082Organic polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the invention relates to the technical field of lithium batteries, in particular to a multi-layer lithium metal battery negative electrode and a preparation method and preparation equipment thereof.
  • lithium-ion batteries Since the first batch of lithium-ion batteries mass-produced by Sony in 1991, the "rocking-chair battery” has become the fastest-growing lithium-ion battery in the market. The energy density and specific capacity of the existing lithium-ion batteries are gradually approaching their theoretical limits. . With the rapid development of portable electronic devices and electric vehicle markets, traditional carbon anodes are gradually unable to meet people's increasing demand for energy density, and the search for new anode materials has become the development trend of the lithium battery industry in the future. Lithium metal has the lowest redox potential (-3.04V, relative to standard hydrogen electrodes) and extremely high specific capacity (3860mAh ⁇ g -1 ), and lithium metal anode materials have received considerable attention.
  • Chinese patent application CN105845891A discloses a metal lithium negative electrode with a double-layer structure.
  • the metal lithium negative electrode is composed of a metal lithium layer on the bottom layer and a surface covering layer on the upper layer.
  • the surface covering layer is made of carbon material, polymer material and glass fiber.
  • One or more of them are assembled into a battery by using an electrolyte and a positive electrode material, which can regulate the distribution of lithium ions on the surface of the negative electrode and suppress the massive production of lithium dendrites.
  • the metal lithium anode cannot completely eliminate the influence of lithium dendrite growth, and the thickness of the surface covering layer is up to 200 ⁇ m, which will increase the internal resistance of the battery, affect the transport rate of lithium ions, and thus reduce the capacity retention rate of electrochemical cycles.
  • Chinese patent application CN107093705A discloses a method for preparing a solid electrolyte protective layer, specifically dissolving salts or esters as additives into an organic solvent to make an electrolyte solution; taking the electrolyte solution and reacting with metal lithium sheets, so that the lithium sheet is A solid electrolyte protective layer is formed on the surface.
  • the solid electrolyte protective layer has a certain inhibitory effect on lithium dendrites, the protective layer is not dense and uniform, has low mechanical strength, and contains by-products generated by the reaction between the electrolyte solution and the metal lithium flakes.
  • Chinese patent application CN108565398A discloses a lithium negative electrode with an inorganic protective coating and a preparation method thereof.
  • the inorganic protective layer is composed of a lithium ion conductor inorganic compound or an inorganic compound that can generate a lithium ion conductor in situ on the surface of the lithium negative electrode and is bonded It is prepared by the agent, which promotes the uniform deposition of lithium ions and slows down the growth of lithium dendrites.
  • the agent which promotes the uniform deposition of lithium ions and slows down the growth of lithium dendrites.
  • this patent is only applicable to lithium sheets.
  • the coating method is used, the coating thickness is too large, the particle size of the inorganic compound particles is more than 50nm, and the binder content is large, which leads to a decrease in ion conductivity, which is not conducive to the transmission of lithium ions. Decreased electrochemical performance.
  • the technical problem to be solved by the present invention is to overcome the shortcomings and deficiencies of the prior art, and to provide a multi-layer lithium metal battery negative electrode and a preparation method and preparation equipment thereof.
  • the present invention provides the following technical solutions.
  • a multi-layer lithium metal battery negative electrode comprises a current collector, a lithium metal layer, a fast ion conductor layer and a functional protection layer.
  • the preparation method of the above-mentioned multilayer lithium metal battery negative electrode it comprises the following steps:
  • a device for preparing the negative electrode of the above-mentioned multilayer lithium metal battery which is used to implement the method for preparing the negative electrode of the above-mentioned multilayer lithium metal battery, comprising a first vacuum evaporation device and a second vacuum evaporation device located in the same vacuum chamber and conveying devices;
  • the first vacuum evaporation device and the second vacuum evaporation device respectively include an evaporation tank and a temperature control unit, preferably, the first vacuum evaporation device and the second vacuum evaporation device respectively include an evaporation tank and a temperature control unit. temperature unit;
  • the two vacuum evaporation devices are equipped with a film thickness detection device
  • the conveying device includes a winding and collecting device, preferably, the winding and collecting device includes an unwinding roller, a guide roller, a temperature control roller, a heat preservation roller, a cooling roller and a winding roller.
  • the present invention provides a multi-layer lithium metal battery negative electrode and a preparation method and preparation equipment thereof, which have the following advantages compared with the prior art:
  • the present invention continuously and integratedly completes the production from a lithium source to a lithium metal negative electrode with a multi-layer structure through a vacuum evaporation and coating process.
  • the vacuum evaporation process refers to a process in which the evaporation material is vaporized, evaporated or sublimated to the surface of the substrate under vacuum conditions to form a thin film by increasing the temperature.
  • the rolling method usually cannot achieve the thickness of the negative electrode provided by the present invention. Even if the thickness required by the present invention can be achieved, the requirements for rolling equipment are extremely strict, so it is obviously impossible to achieve mass production.
  • the multi-layer lithium metal battery negative electrode of the present invention can be adapted to most battery systems with lithium metal as the negative electrode, such as lithium-sulfur (Li-S) battery system and lithium-oxygen (Li-O 2 ) battery after a little treatment system, etc.
  • the preparation process of the present invention is relatively simple, the preparation process is easy to control, the cost can be saved, and the mass production of large-scale industrialization is facilitated.
  • the fast ion conductor layer has lithophilicity.
  • Fast ionic conductors not only have high ionic conductivity, but also have excellent barrier properties, are uniform and dense, and can protect lithium metal from stable existence in air for a certain period of time without being corroded.
  • the existence of the fast ion conductor layer can not only reduce the side reaction between lithium and the electrolyte, but also effectively reduce the overpotential of lithium ion nucleation, make the lithium ion diffuse evenly, and reduce the nucleation driving force of lithium dendrites. , inhibiting the growth of lithium dendrites.
  • the thickness of the fast ion conductor layer has a significant impact on the deposition rate of lithium ions.
  • a fast ion conductor layer with a thickness of 1.5-4.5 ⁇ m can not only maintain the effective transport of lithium ions, but also ensure the uniformity of lithium ion deposition. Too thick fast ion conductor layers will reduce the transport efficiency of lithium ions, while too thin layers will affect the process of lithium nucleation, thereby reducing the uniformity of lithium deposition.
  • the protective substances in the functional protective layer can react with lithium dendrites to generate inert substances.
  • the protective material can react with lithium metal to form inert substances, thereby inhibiting the uneven growth of lithium dendrites, avoiding the risk of short circuit inside the battery, and improving safety performance.
  • the cycle performance and service life of the battery during the charging and discharging process are improved; but if only dense and uniform protective substances are introduced on the fast ion conductor layer, the ion conductivity of iodine or sulfur will be poor. To a certain extent, the transport of lithium ions is hindered, thereby reducing the capacity. Therefore, it is necessary to introduce a polymer solid electrolyte to "dilute" the protective substance.
  • the polymer solid electrolyte can improve the ionic conductivity without affecting the reaction between the protective substance and the lithium dendrite to generate an inert substance, and has good organic flexibility, which can effectively alleviate the volume change of lithium metal during electrochemical cycling. the resulting stress.
  • the functional protective layer is uniformly coated on the fast ion conductor material, and part of the protective material penetrates into the fast ion conductor layer, which can inhibit the formation of lithium dendrites and enhance the conductivity of lithium ions.
  • FIG. 1 is a schematic structural diagram of the negative electrode of the multilayer lithium metal battery of the present invention.
  • FIG. 2 is a schematic structural diagram of an apparatus for preparing the negative electrode of the multilayer lithium metal battery of the present invention.
  • FIG. 3 is a comparison diagram of the cycle performance of the batteries of Example 1 and Comparative Example 1.
  • FIG. 3 is a comparison diagram of the cycle performance of the batteries of Example 1 and Comparative Example 1.
  • the present invention provides a multilayer lithium metal battery negative electrode, which includes a current collector, a lithium metal layer, a fast ion conductor layer and a functional protection layer.
  • one side of the current collector is provided with a lithium metal layer
  • the side of the lithium metal layer away from the current collector is provided with a fast ion conductor layer
  • the side away from the current collector is provided with the fast ion conductor layer
  • the fast ion conductor layer comprises a halide salt or oxide or peroxide or nitride containing more than one metal selected from lithium, magnesium or copper, the halide salt preferably being Chloride, iodide and/or fluoride, preferably the fast ion conductor layer contains lithium chloride, lithium sulfide, lithium iodide, lithium fluoride, magnesium fluoride, copper oxide, lithium oxide, magnesium nitride, phosphide
  • the fast ion conductor layer contains lithium chloride, lithium sulfide, lithium iodide, lithium fluoride, magnesium fluoride or copper oxide.
  • a combination of one or two or more, particularly preferably, the fast ion conductor layer contains one or a combination of two or more of lithium chloride, lithium sulfide, lithium iodide or lithium fluoride.
  • the functional protective layer comprises a protective substance and a polymer solid electrolyte.
  • the protective substance comprises iodine and/or sulphur.
  • the polymer solid state electrolyte comprises polyvinylidene fluoride (PVDF), polyethylene oxide (PEO), polypropylene oxide (PPO), polyvinylidene chloride (PVDC), polyvinylidene Vinyl chloride (PVC), polyacrylonitrile (PAN), polymethyl methacrylate (PMMA), polyacrylate, polyvinylidene fluoride-hexafluoropropylene copolymer (PVDF-HFP), polymethyl ethylene carbonate (PPC) or a combination of one or more of polyethyl cyanoacrylate; preferably, the polymer solid electrolyte contains polyvinylidene fluoride (PVDF), polyethylene oxide (PEO), polypropylene oxide (PPO), polyvinylidene chloride (PVDC), polyvinyl chloride (PVC), polyacrylonitrile (PAN) or polymethyl methacrylate (PMMA) in one or a combination of two or more
  • the mass ratio of the protective substance to the polymer solid electrolyte is 1:(0.9-1.5), preferably 1:(1.0-1.5).
  • the thickness of the negative electrode of the multilayer lithium metal battery is 14.0-45.0 ⁇ m, preferably 15.3-36.7 ⁇ m.
  • the thickness of the current collector is 10.0-18 ⁇ m, preferably 10.0-15 ⁇ m.
  • the thickness of the lithium metal layer is 1.0-18.0 ⁇ m, preferably 1.5-15.0 ⁇ m, more preferably 1.7-14.4 ⁇ m.
  • the thickness of the fast ion conductor layer is 1.5-4.5 ⁇ m, preferably 2.3-3.8 ⁇ m.
  • the thickness of the functional protection layer is 1.5-4.5 ⁇ m, preferably 1.5-2.9 ⁇ m.
  • the present invention also provides a method for preparing the negative electrode of the above-mentioned multilayer lithium metal battery, which comprises the following steps:
  • the steps (1) and (2) are continuously integrated.
  • step (1) comprises: heating the lithium source under vacuum in an inert atmosphere to deposit lithium metal vapor onto the current collector, thereby forming a lithium metal layer-containing current collector.
  • step (2) comprises: heating the fast ion conductor under vacuum in an inert atmosphere, so that the fast ion conductor vapor is deposited on the current collector of the lithium-containing metal layer, thereby forming a fast ion plated conductor A current collector for the lithium-containing metal layer of the conductor layer.
  • step (3) includes: adding the protective substance to the organic solution, and performing ultrasonic dispersion and magnetic stirring in sequence to obtain a uniform slurry; coating the slurry in step (2)
  • the obtained lithium-containing metal layer current collector plated with the fast ion conductor layer is then dried, preferably transferred to an oven for drying to obtain a multi-layer lithium metal battery negative electrode.
  • the inert atmosphere is an argon atmosphere
  • the organic solution is a mixed solution of polymer solid electrolyte and dimethylformamide (DMF) or N-methylpyrrolidone (NMP), and the polymer
  • DMF dimethylformamide
  • NMP N-methylpyrrolidone
  • the mass ratio of solid electrolyte to DMF or NMP is 1:(8 ⁇ 10);
  • the content of DMF or NMP in the mixed solution is not particularly limited, as long as the polymer solid electrolyte and the protective material can be dissolved or dispersed.
  • step (3) the time of ultrasonic dispersion is 1-3 hours.
  • step (3) the time of magnetic stirring is 15-20 h.
  • step (3) the rotational speed of the magnetic stirring is 800-1000 rpm.
  • the drying temperature is 60-90°C.
  • the drying time is 10-30 min.
  • the initial temperature of the lithium source is 25°C
  • the heating temperature of the lithium source is 550-750°C, preferably 600-750°C.
  • the heating rate of the lithium source is 2-10°C/min, preferably 5-8°C/min.
  • the temperature of the current collector is 80-100°C, preferably 80-90°C.
  • the moving speed of the current collector is 1-8 m/min, preferably 2-6 m/min.
  • the current collector used in the present invention is a common commercial battery grade copper foil.
  • the initial temperature of the fast ion conductor is 25°C
  • the heating temperature of the fast ion conductor is 700-1000°C, preferably 800-1000°C.
  • the heating rate of the fast ion conductor is 2-10°C/min, preferably 5-8°C/min.
  • the temperature of the current collector containing the lithium metal layer is 80-100°C, preferably 80-90°C.
  • the moving speed of the current collector of the lithium metal layer is 1-8 m/min, preferably 2-6 m/min.
  • the moving speed of the current collector, the current collector of the lithium-containing metal layer, and the current collector of the lithium-containing metal layer coated with the fast ion conductor layer is equal to the conveying speed of the conveying device, for example, equal to the winding speed of the winding collection device .
  • the current collector, the current collector of the lithium-containing metal layer, and the current collector of the lithium-containing metal layer coated with the fast ion conductor layer are connected in series by the conveying device, the current collector, the lithium-containing metal layer
  • the moving speed of the current collector of the metal layer and the current collector of the lithium-containing metal layer coated with the fast ion conductor layer is the same and equal to the conveying speed of the conveying device, eg equal to the winding speed of the winding collecting device.
  • the degree of vacuum is 1 ⁇ 10 -4 to 1 ⁇ 10 -2 Pa.
  • the lithium source is a metal lithium ingot or a metal lithium melt, and the lithium purity of the lithium source is not particularly limited, as long as a predetermined evaporation effect can be obtained. , usually the lithium purity of the lithium source is greater than 95%, preferably greater than 98%.
  • the purity of metal lithium ingot or metal lithium melt cannot reach 100%, and it inevitably contains metal impurities or metal impurity compounds. Due to the different vapor pressures of different metals at the same temperature, the condensation time during evaporation Points are also different. Therefore, in the vacuum evaporation step, the relationship between the metal vapor pressure and the temperature is used to start the winding collection device in advance, and by adjusting the temperature, the sodium and potassium impurities in the lithium ingot are first transformed into a gaseous state and evaporated on the current collector. In the subsequent process, this section of product can be cut off for centralized recycling.
  • the fast ion conductor is lithium chloride, lithium sulfide, lithium iodide, lithium fluoride, magnesium fluoride, copper oxide, lithium oxide, magnesium nitride, A combination of one or more of lithium phosphide, lithium bromide or lithium peroxide, preferably one or two of lithium chloride, lithium sulfide, lithium iodide, lithium fluoride, magnesium fluoride or copper oxide combination of the above.
  • the purity of the fast ion conductor is not particularly limited, as long as a predetermined evaporation effect can be obtained, usually the purity of the fast ion conductor is greater than 99.0%, preferably greater than 99.9%.
  • the purity of the protective substance is not particularly limited, as long as the predetermined effect can be obtained, the purity of the protective substance is greater than 99.0%, preferably greater than 99.9%; for polymerization
  • the purity of the polymer solid state electrolyte is not particularly limited, as long as the predetermined effect can be obtained. Generally, the purity of the polymer solid state electrolyte is greater than 99.0%, preferably greater than 99.9%.
  • the present invention also provides a device for preparing the negative electrode of the multi-layer lithium metal battery, which is used to implement the method for preparing the negative electrode of the multi-layer lithium metal battery, which includes a first vacuum evaporation device, a second vacuum evaporation device located in the same vacuum chamber Vacuum evaporation device and conveying device;
  • the first vacuum evaporation device and the second vacuum evaporation device respectively include an evaporation tank and a temperature control unit, preferably, the first vacuum evaporation device and the second vacuum evaporation device respectively include an evaporation tank and a temperature control unit. temperature unit;
  • the two vacuum evaporation devices are equipped with a film thickness detection device
  • the conveying device includes a winding and collecting device.
  • the winding and collecting device includes an unwinding roller, a guide roller, a temperature control roller, a heat preservation roller, a cooling roller and a winding roller. More preferably, the winding and collecting device includes One unwinding roller, multiple (preferably 3-5) guide rollers, multiple (preferably 3-5) temperature control rollers, one heat preservation roller, one cooling roller and one winding roller.
  • a temperature control unit is used to heat the evaporation tank.
  • the temperature control unit is equipped with a resistance heating source and a heat preservation layer, which has heating and heat preservation functions, and can continuously and stably provide a heat source for the sample to be evaporated and Keep warm.
  • two vacuum evaporation devices are located in the same vacuum chamber and connected in series by a conveying device such as a winding collection device to complete the continuous and integrated connection of the substrates to be evaporated.
  • the evaporation tank is a crucible, preferably one or a combination of two or more of platinum crucible, nickel crucible or iron crucible.
  • the first vacuum evaporation device is used for evaporating lithium metal onto the current collector to form the current collector containing the lithium metal layer;
  • the second vacuum evaporation device is used for evaporating the fast ion conductor onto the lithium-containing metal layer on the current collector to form the current collector of the lithium-containing metal layer plated with the fast ion conductor layer.
  • a film thickness detection device is respectively provided on the outlet side of each vacuum evaporation device for detecting the thickness of the foil after evaporation.
  • the film thickness detection device can perform real-time monitoring during the evaporation process, and can control the temperature of the temperature control unit according to the detected film thickness value.
  • the gas output from the crucible can be increased to a certain extent, and the film thickness can be increased by increasing the evaporation amount at the same time.
  • the effect of reducing the gas output, evaporation and film thickness can be achieved.
  • an airflow baffle and a guide plate are respectively provided to prevent vapor from overflowing the evaporation device.
  • the evaporation tank of the first vacuum evaporation device is used for containing the lithium source; the evaporation tank of the second vacuum evaporation device is used for containing the fast ion conductor.
  • the transport device can transport the current collector to the first vacuum evaporation device, and transport the current collector containing the lithium metal layer to the second vacuum evaporation device.
  • the first vacuum evaporation device 15 includes a temperature control unit 7 , an evaporation tank 8 , an airflow baffle 9 and a guide plate
  • the second vacuum evaporation device 16 includes a temperature control unit 7 ′, an evaporation tank 8 ', the airflow baffle 9' and the deflector.
  • the heating temperature of the evaporation tank 8 containing the lithium source can be controlled to 550-750°C, preferably 600-750°C.
  • the initial temperature of the vapor deposition tank 8 is 25°C.
  • the heating rate of the evaporation tank 8 containing the lithium source can be controlled to be 2-10°C/min, preferably 5-8°C/min .
  • the distance between the evaporation tank 8 containing the lithium source and the current collector can be adjusted to 10-40 mm, preferably 15-40 mm 30mm.
  • the temperature of the current collector can be controlled to 80-100°C, preferably 80-90°C, by adjusting the temperature of the temperature control roller 10 above the first vacuum evaporation device.
  • the temperature of the current collector of the lithium metal layer can be maintained at 70°C to 80°C by adjusting the temperature of the heat preservation roll 12 .
  • the moving speed of the current collector can be controlled to be 1-8 m/min, preferably 2-6 m/min.
  • the heating temperature of the evaporation tank 8' containing the fast ion conductor can be controlled to 700-1000°C, preferably 800-1000°C .
  • the initial temperature of the vapor deposition tank 8' is 25°C.
  • the heating rate of the evaporation tank 8' containing the fast ion conductor can be controlled to be 2-10°C/min, preferably 5-8°C/min. min.
  • the distance between the evaporation tank 8' containing the fast ion conductor and the current collector of the lithium-containing metal layer can be controlled as 40 to 80 mm, preferably 50 to 70 mm.
  • the temperature of the current collector containing the lithium metal layer can be controlled to 80-100°C, preferably 80-90°C.
  • the current collector of the lithium-containing metal layer plated with the fast ion conductor layer can be controlled to be 40 to 50°C.
  • the moving speed of the current collector of the lithium metal layer can be controlled to be 1 to 8 m/min, preferably 2 to 6 m/min.
  • the first vacuum evaporation device and the second vacuum evaporation device are located in the same vacuum chamber.
  • the vacuum degree of the vacuum chamber is 1 ⁇ 10 -4 to 1 ⁇ 10 -2 Pa, and the water oxygen value is less than 0.1 ppm.
  • an inert atmosphere is introduced into the vacuum chamber, and the inert atmosphere is an argon atmosphere.
  • Each vacuum evaporation device is equipped with its own dedicated temperature control unit for controlling the heating temperature of the evaporation tank, wherein each temperature control unit includes a heating device and a thermal insulation layer.
  • the evaporation tank is a crucible, preferably one or more of platinum crucible, nickel crucible or iron crucible.
  • the coating machine was purchased from Shenzhen Kejingzhida Technology Co., Ltd., the model is MSK-AFA-MC400;
  • the ultrasonic disperser was purchased from Shanghai Ningshang Ultrasonic Instrument Co., Ltd., model SY-250;
  • the magnetic stirrer was purchased from Thinky Japan Co., Ltd., model ARM-310;
  • the electronic analytical balance was purchased from Sartorius Scientific Instruments (Beijing) Co., Ltd., model CUBIS_II_SEMI-MICRO;
  • Platinum crucible, nickel crucible, iron crucible and ceramic crucible were purchased from Tianjin Yinpeng Development Metal Products Co., Ltd.;
  • the battery testing equipment was purchased from Shenzhen Newwell Electronics Co., Ltd., model CT-4008T-5V6A;
  • the atomic absorption spectrometer was purchased from Shanghai Spectrum Instrument Co., Ltd., model SP-3803AA;
  • the lithium source was purchased from Jiangxi Ganfeng Lithium Industry Co., Ltd.;
  • the vacuum chamber (including the first vacuum evaporation device and the second vacuum evaporation device) was set to an argon atmosphere, and a lithium metal ingot with a mass of 300 g (the purity of the metal lithium ingot) was added to the crucible in the first vacuum evaporation device. 99.0%), lithium chloride with a mass of 100 g was added to the crucible in the second vacuum evaporation device. Then, the vacuum degree of the vacuum chamber was set to 1 ⁇ 10 -3 Pa, and the water oxygen value was kept less than 0.1 ppm.
  • the crucible containing 300g of lithium metal ingots in the first vacuum evaporation device is heated, and the temperature rise rate is 5 °C/min, the crucible is heated to 650 °C at a constant speed, and the temperature is maintained, the lithium metal ingot is changed from solid state to liquid state, and finally into lithium vapor.
  • the temperature of the temperature control roller is adjusted, the temperature of the current collector is adjusted to 90°C, and lithium vapor is deposited on the current collector with a temperature of 90°C and a thickness of 10 ⁇ m, thereby forming a dense and uniform current collector containing a lithium metal layer, wherein , the distance between the crucible and the current collector is 25mm, and the winding speed of the winding collecting device (ie the moving speed of the current collector) is set to 4.5m/min.
  • the thickness of the lithium metal layer was measured to be 9.2 ⁇ m, and the lithium purity of the lithium metal layer was measured to be 99.995% using an atomic absorption spectrometer.
  • the current collector of the lithium metal layer is transported to the second vacuum evaporation device by the holding roller of the winding collection device, wherein the winding speed of the winding collection device (that is, the moving speed of the current collector of the lithium metal layer) is 4.5 m /min, the temperature of the current collector containing the lithium metal layer was maintained at 80°C by the heat-retaining roller.
  • the winding speed of the winding collection device that is, the moving speed of the current collector of the lithium metal layer
  • the crucible containing 100 g of lithium chloride in the second vacuum vapor deposition apparatus was heated, and the crucible was heated at a constant rate to 850° C. at a temperature increase rate of 6° C./min, and the temperature was maintained. Adjust the temperature of the temperature control roller to adjust the temperature of the current collector of the lithium-containing metal layer to 90°C, and deposit lithium chloride vapor onto the current collector of the lithium-containing metal layer at a temperature of 90°C to form a layer plated with a fast ion conductor
  • the current collector of the lithium metal layer wherein the distance between the crucible and the current collector of the lithium metal layer is 60mm, and the winding speed of the winding collection device is 4.5m/min consistent with step (1).
  • the thickness of the fast ion conductor layer was measured to be 2.94 ⁇ m.
  • the thickness of the fast-ion conductor layer is obtained by subtracting the thickness of the current collector of the lithium-containing metal layer prepared in step (1) from the thickness of the current collector of the lithium-containing metal layer plated with the fast-ion conductor layer.
  • iodine 100 g of iodine, a protective material, was added to an organic solution, the organic solution was a mixed solution of 100 g of PVDF and 800 g of N-methylpyrrolidone (NMP), and after ultrasonic dispersion for 1 h, magnetic stirring was performed for 18 h, and the rotational speed of the magnetic stirring was 900 rpm to obtain a uniform solution.
  • the slurry use a coating machine to coat the slurry on the current collector of the lithium-containing metal layer plated with the fast ion conductor layer obtained in step (2), and then transfer it to an oven with a temperature of 80 ° C for 15min. , to obtain a functional protective layer, the mass ratio of the protective substance in the functional protective layer to the polymer solid electrolyte is 1.0:1.0, and finally a negative electrode of a multilayer lithium metal battery is obtained;
  • the thickness of the functional protective layer was measured to be 2.88 ⁇ m, and the thickness of the functional protective layer was subtracted from the thickness of the negative electrode of the multilayer lithium metal battery minus the lithium-containing fast ion conductor layer prepared in step (2). The thickness of the metal layer current collector is obtained.
  • Comparative Example 1 The steps and contents of the preparation method of Comparative Example 1 are basically the same as those of Example 1, except that Comparative Example 1 only performs the lithium metal vapor deposition treatment of step (0) and step (1), but does not perform step (2) The fast ion conductor evaporation step and the protective substance and polymer solid electrolyte coating step of step (3).
  • Comparative Example 2 The steps and content of the preparation method of Comparative Example 2 are basically the same as those of Example 1, the difference is that Comparative Example 2 only carries out the lithium metal evaporation of step (0), step (1) and the fast ion conductor of step (2).
  • the vapor deposition step is performed without the protective substance and polymer solid electrolyte coating steps of step (3).
  • Comparative Example 3 The steps and contents of the preparation method of Comparative Example 3 are basically the same as those of Example 1, except that Comparative Example 3 only carries out the lithium metal vapor deposition of step (0), step (1) and the protective substance and protective material of step (3).
  • the polymer solid electrolyte coating step is performed without the fast ion conductor vapor deposition step of step (2).
  • the steps and contents of the preparation method of Comparative Example 4 are basically the same as those of Example 1, the difference is that in Comparative Example 4, the lithium metal evaporation of step (0), step (1), and the fast ion of step (2) were carried out.
  • the steps and contents of the preparation method of Comparative Example 5 are basically the same as those of Example 1, the difference is that in Comparative Example 5, the lithium metal evaporation of step (0), step (1), and the fast ion of step (2) were carried out.
  • Tables 1 to 3 show the components and process parameters of Examples 1 to 6 and 1 to 5 of Comparative Examples, wherein Table 1 shows steps (0) and 1 to 5 of Examples 1 to 6 and 1 to 5 of Comparative Examples.
  • the process parameters of step (1) Table 2 provides the composition and process parameters of step (2) in Examples 1 to 6 and 1 to 5 of Comparative Examples, and Table 3 provides Examples 1 to 6 and Comparative Examples The components and process parameters of step (3) in 1 to 5.
  • soft-packed cells lithium metal batteries
  • the negative electrodes of multilayer lithium metal batteries prepared in Examples 1 to 6 and Comparative Examples 1 to 5 were cold-pressed, edge trimmed, cut into pieces and slit to obtain negative electrode pole pieces.
  • a polyethylene film (PE) was used as the separator with a thickness of 10 ⁇ m.
  • EMC ethyl methyl carbonate
  • DEC diethyl carbonate
  • the activated battery was charged to 4.2V at a constant current of 1C, then charged at a constant voltage to a cut-off current of 0.02C, left for 10 minutes, and then discharged to 2.5V at a constant current of 1C, left for 10 minutes, and the first cycle discharge capacity was measured. Then repeat the charge-discharge cycle test at 1C. Test the specific capacity and capacity retention rate of the battery for the 500th charge and discharge, and test its cycle life. Calculate the capacity retention rate after the 500th cycle of the lithium-ion battery as follows:
  • Capacity retention rate after the 500th cycle (discharge capacity after the 500th cycle/discharge capacity at the first cycle) ⁇ 100%
  • the standard cycle life of a battery refers to the number of charge and discharge cycles that the battery can withstand before the battery capacity decays to 80% of its initial capacity under a certain charge and discharge system.
  • a cycle is a full charge plus a full discharge.
  • the analysis of the test results of Examples 1 to 6 and Comparative Example 1 shows that the negative electrodes of the multilayer lithium metal batteries in Examples 1 to 6 include a lithium metal layer, a fast ion conductor layer and a functional protection layer. After 500 cycles, the capacity retention rate of the battery is still greater than 90%. This indicates that the capacity decay of lithium metal batteries is less, and the cycle stability is significantly improved. The reason may be that there is basically no dead lithium and dendrites generated during battery cycling, and most of the lithium ions can be stably intercalated and intercalated during battery cycling. come out. In addition, Examples 1 to 6 all passed the puncture test, which shows that the lithium metal battery using the negative electrode of the multilayer lithium metal battery of the present invention has good safety.
  • the functional protective layer of the present invention can react with lithium dendrites to generate inert substances, which helps to suppress short circuits, fires, and the like.
  • Comparative Example 1 the negative electrode of the lithium metal battery does not contain a fast ion conductor layer and a functional protective layer. Although the initial specific capacity of Comparative Example 1 is close to that of Examples 1 to 6, the capacity retention rate decreases significantly. The specific capacity decays rapidly. This is because the negative electrode of lithium battery without any surface evaporation treatment has uneven deposition of lithium ions to form dendrites during the battery cycle, and the negative electrode of lithium metal battery has many side reactions with the electrolyte, resulting in excessive consumption of lithium ions. .
  • Comparative Example 2 the negative electrode of the lithium metal battery does not include a functional protective layer. After 500 cycles, the specific capacity was 124.31 mAh/g, and the capacity retention rate was 85.01%. Although the initial specific capacity of Comparative Example 2 is close to that of Examples 1 to 6, and it can be cycled stably for a certain period of time, it still cannot solve the problem of short battery cycle life. Because the functional protective layer is not coated, the further development of lithium dendrites cannot be completely prevented. The growth leads to further consumption of lithium ions, attenuation of specific capacity, and a large amount of lithium is "wasted", resulting in poor cycle performance and safety and shortened cycle life of lithium metal batteries.
  • Comparative Example 3 shows that in Comparative Example 3, the negative electrode of the lithium metal battery does not include a fast ion conductor layer.
  • the specific capacity was 36.78 mAh/g, and the capacity retention rate was 26.83%.
  • Comparative Example 3 has a lower initial specific capacity, because inside the negative electrode of the lithium metal battery of Comparative Example 3, the lithium metal layer is directly in contact with the functional protective layer, and the lithium It reacts with the protective substance to form an inert substance, which irreversibly consumes part of the lithium before the battery is not used, resulting in a decrease in the discharge capacity of the first cycle.
  • Comparative Example 4 shows that in Comparative Example 4, the functional protection layer of the negative electrode of the lithium metal battery does not contain a polymer solid electrolyte.
  • the specific capacity was 124.98 mAh/g, and the capacity retention rate was 86.35%.
  • the fast ion conductor layer in Comparative Example 4 can promote the uniform deposition of lithium ions, and the protective substance in the functional protective layer can react with the further grown dendrites to generate inert substances to ensure that the battery does not suffer from internal short circuit.
  • the functional protective layer only contains protective substances and does not contain polymer solid electrolytes, the ionic conductivity of the protective substances is weak, which hinders the transport of lithium ions to a certain extent. The cycle life is significantly shortened.
  • Comparative Example 5 shows that in Comparative Example 5, the functional protective layer of the negative electrode of the lithium metal battery does not contain a protective substance. After 500 cycles, the specific capacity was 122.38mAh/g, and the capacity retention rate was 81.62%. Although the initial specific capacity of Comparative Example 5 is close to that of Examples 1 to 6, the cycle life is shorter. This is because there is no protective substance in the functional protective layer, which cannot prevent the further growth of lithium dendrites. Once the uneven deposition of lithium ions occurs And accumulated growth to form dendrites and dead lithium, resulting in continuous consumption of lithium ions, resulting in specific capacity attenuation, shortened cycle life, and brought security risks.
  • FIG. 3 provides a comparison chart of the cycle performance of the batteries in Example 1 and Comparative Example 1. It is obvious that the battery of Example 1 has a better cycle than the battery in Comparative Example 1 after activation at 0.1C. performance.
  • the surface-modified lithium metal negative electrode of the present invention obtains unexpectedly excellent composite efficacy, and has excellent performance in terms of cycle capacity retention rate and safety and stability.
  • the present invention utilizes a continuous and integrated vapor deposition method to ensure that the functional materials of the lithium metal layer and the fast ion conductor layer have extremely small particle size and extremely high density, and the functional materials of each layer have a super strong bond. It can make the fast ion conductor layer completely cover the lithium metal layer and reduce the layer thickness to ultra-thin, without increasing the internal resistance of the battery, while ensuring the lithium ion transmission rate without affecting the electrochemical performance of the battery.
  • the present invention has a unique composite structure, wherein the fast ion conductor layer not only has excellent barrier properties, but also enables metal lithium to exist stably in the air for a certain period of time without being eroded, thereby facilitating the subsequent coating process , and in the battery system, the existence of the fast ion conductor layer can not only effectively reduce the side reaction with the electrolyte, but also effectively reduce the overpotential of lithium ion nucleation, make the lithium ion diffuse evenly, and reduce the nucleation drive of dendrites to prevent the formation of lithium dendrites; the protective substances in the functional protective layer can react with lithium dendrites to generate inert substances, which can inhibit the uneven growth of lithium dendrites to a certain extent and avoid the risk of internal short circuits; in the functional protective layer
  • the polymer solid electrolyte has good organic flexibility without affecting the reaction of protective substances and lithium dendrites to generate inert substances, which can effectively relieve the stress caused by the volume change of lithium metal during electrochemical
  • the composite synergistic effect of these three layers is used to significantly improve the performance of the lithium metal battery. Cycling performance, cycle life and safety, solving the problem of lithium dendrites in lithium metal anodes.
  • FIG. 1 The schematic diagram of the structure of the negative electrode of the multilayer lithium metal battery of the present invention is shown in FIG. 1 , and the schematic diagram of the equipment of the present invention is shown in FIG. 2 . These schematic diagrams are for the convenience of description, rather than showing the actual size and proportion of the equipment of the present invention. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Composite Materials (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及一种多层锂金属电池负极及其制备方法和制备设备,所述多层锂金属电池负极包含集流体、锂金属层、快离子导体层以及功能保护层。本发明还涉及所述多层锂金属电池负极的制备方法,其特征在于,包含以下步骤:(1)锂金属蒸镀步骤;(2)快离子导体蒸镀步骤;以及(3)保护物质和聚合物固态电解质涂布步骤。此外,本发明涉及一种制备所述多层锂金属电池负极的设备。本发明的多层锂金属电池负极利用了锂金属层、快离子导体层和功能保护层的复合协同作用,明显地提高了锂金属电池的循环性能、循环寿命和安全性,解决了锂金属负极中出现的锂枝晶问题。

Description

一种多层锂金属电池负极及其制备方法和制备设备 技术领域
本发明涉及锂电池技术领域,具体涉及一种多层锂金属电池负极及其制备方法和制备设备。
背景技术
从1991年索尼公司量产的第一批锂离子电池至今,“摇椅式电池”成为进入市场发展最快的锂离子电池,现有体系的锂离子电池的能量密度以及比容量逐渐逼近其理论极限。随着便携式电子设备和电动汽车市场的快速发展,传统的碳负极渐渐无法满足人们日益增长对能量密度的需求,寻找新型负极材料成为未来锂电行业的发展趋势。锂金属具有最低的氧化还原电位(-3.04V,相对于标准氢电极)和极高的比容量(3860mAh·g -1),锂金属负极材料已受到相当大的关注。
然而在实际应用中,锂金属负极的高活性带来较大的安全隐患。由于锂离子的不均匀沉积所引发的枝晶问题限制了锂金属负极商业化的进程。锂枝晶的存在会在一定程度增大比表面积,并加剧界面副反应,加快固体电解质界面膜(SEI膜)的破裂与再生。同时,不规则的枝晶断裂后,会成为失去电化学活性的“死锂”,使负极严重“粉化”,增加阻抗,降低锂电池的循环容量与循环寿命。此外,持续生长的枝晶穿透隔膜后,与正极接触,造成电池内部短路,严重影响锂金属电池的实际应用。
目前,如何抑制锂枝晶的生长,改善锂金属负极稳定性,已经成为相关学者的研究热点。中国专利申请CN105845891A公开了一种具有双层结构的金属锂负极,该金属锂负极由底层的金属锂层及上层的表面覆盖层构成,所述表面覆盖层为碳材料、聚合物材料和玻璃纤维中的一种或几种,采用电解液和正极材料组装为电池,可调控锂离子在负极表面的分布,抑制锂枝晶的大量产生。然而,该金属锂负极不能完全消除锂枝晶生长的影响,该表面覆盖层的厚度最大为200μm, 会增加电池的内阻,影响锂离子的传输速率,从而降低电化学循环的容量保持率。
中国专利申请CN107093705A公开了一种固态电解质保护层的制备方法,具体为将盐类或酯类作为添加剂溶解到有机溶剂中,制成电解质溶液;取电解质溶液与金属锂片反应,使得在锂片表面形成一层固态电解质保护层。虽然固态电解质保护层对锂枝晶有一定的抑制作用,但是该保护层不致密、不均一,机械强度较低,且包含伴随电解质溶液与金属锂片反应生成的副产物。
中国专利申请CN108565398A公开了一种具有无机保护涂层的锂负极及其制备方法,所述无机保护层由锂离子导体无机化合物或可在锂负极表面原位生成锂离子导体的无机化合物与粘结剂制备而成,促使锂离子均匀沉积,减缓了锂枝晶的生长。但是,当锂枝晶生长到一定程度后,由于没有保护物质与锂枝晶进行反应,无法进一步遏制锂枝晶的生长,因而无法规避电池内部的短路风险。另外,该专利仅仅适用于锂片,采用涂布法,涂布厚度偏大,无机化合物粒子的粒径为50nm以上,粘结剂含量多,导致导离子性降低,不利于锂离子的传输,降低电化学性能。
根据宁波材料技术与工程研究所的研发团队与美国太平洋西北国家实验室张继光教授、许武课题组的共同研究,基于一种简单有效的离子置换反应而在锂金属表面制备了银-氟化锂人工界面(Zhe Peng,et al.“Enhanced Stability of Li Metal Anodes by Synergetic Control of Nucleation and the Solid Electrolyte Interphase”,doi:10.1002/aenm.201901764.)。锂离子在银颗粒表面具有较高的吸附能力,可有效降低锂离子在还原过程中的传质能垒,实现锂金属在沉积过程中的有序成核,避免局部的枝晶生长。然而这种方法又存在着一些无法克服的问题,如所涉及的原料的成本偏高,人工界面工艺复杂,生产效率较低以及目前难以实现大规模工业量产等的问题。
因此,针对现有技术中锂金属电池的循环稳定性能不佳、使用寿命较短、安全性差等问题,迫切需要开发一种新的锂金属电池负极, 其能够有效避免内部锂枝晶的生长,制备过程易于控制,生产成本低,并且可以大规模工业化生产。
发明内容
本发明所要解决的技术问题是克服现有技术的缺点和不足,提供一种多层锂金属电池负极及其制备方法和制备设备。
具体而言,本发明提供了如下技术方案。
一种多层锂金属电池负极,其包含集流体、锂金属层、快离子导体层以及功能保护层。
上述多层锂金属电池负极的制备方法,其包含以下步骤:
(1)锂金属蒸镀步骤;
(2)快离子导体蒸镀步骤;以及
(3)保护物质和聚合物固态电解质涂布步骤。
一种制备上述多层锂金属电池负极的设备,其用于实施上述多层锂金属电池负极的制备方法,其包括位于同一个真空仓内的第一真空蒸镀装置、第二真空蒸镀装置和输送装置;
其中,第一真空蒸镀装置和第二真空蒸镀装置分别包括蒸镀槽和控温单元,优选地,第一真空蒸镀装置和第二真空蒸镀装置分别包括一个蒸镀槽和一个控温单元;
所述两个真空蒸镀装置均配有膜厚检测装置;
所述输送装置包括卷绕收集装置,优选地,所述卷绕收集装置包含放卷辊、导向辊、控温辊、保温辊、降温辊以及收卷辊。
本发明所取得的有益效果是:
本发明提供一种多层锂金属电池负极及其制备方法和制备设备,与现有技术相比具有以下优点:
(1)本发明通过真空蒸镀与涂布工艺,连续一体化地完成从锂源到具有多层结构的锂金属负极的生产。真空蒸镀工艺是指在真空条件下,通过升高温度使蒸镀材料气化、蒸发或升华至基板表面而沉积形成薄膜的工艺。辊压法通常无法达到本发明提供的负极的厚度,即 使能达到本发明要求的厚度,对辊压设备的要求也极为苛刻,因此显然无法实现大规模地量产。本发明的多层锂金属电池负极可在稍加处理后适配大多数以锂金属为负极的电池体系,如锂-硫(Li-S)电池体系和锂-氧(Li-O 2)电池体系等。总之,本发明的制备工艺较为简单,制备过程易于控制,可节约成本,并有利于大规模工业化的量产。
(2)关于本发明中的多层锂金属电池负极的复合结构,其中快离子导体层具有亲锂性。快离子导体还不仅具有较高的离子传导率,而且具有优秀的阻隔性能,均一且致密,能够保护锂金属在空气中稳定存在一定时间而不被腐蚀。在电池体系中,快离子导体层的存在不仅能够减少锂与电解液之间的副反应,同时可有效降低锂离子成核过电位,使锂离子均匀扩散,减少锂枝晶的成核驱动力,抑制了锂枝晶的生长。快离子导体层的厚度对锂离子的沉积速度有着显著影响,厚度为1.5~4.5μm的快离子导体层既能够维持锂离子的有效传输,又能够保证锂离子沉积的均匀性。快离子导体层过厚将会降低锂离子的传输效率,而过薄则会影响锂成核的过程,从而降低锂沉积的均匀性。功能保护层中的保护物质能够与锂枝晶反应而生成惰性物质。一旦锂枝晶生长到一定程度,而与功能保护层接触时,保护物质能够与锂金属进行反应而生成惰性物质,从而抑制锂枝晶的不均匀生长,规避电池内部的短路风险,安全性能更高,同时提高电池在充放电过程中的循环性能与使用寿命;但如果仅仅引入致密且均一的保护物质置于快离子导体层之上,则因为碘或硫的离子传导性较差,将会在一定程度上阻碍锂离子的传输,进而降低容量。因此需要引入聚合物固态电解质来“稀释”保护物质。聚合物固态电解质在不影响保护物质与锂枝晶反应而生成惰性物质的前提下,提高离子传导性,并且具有较好的有机柔韧性,能够有效缓解在电化学循环过程中锂金属的体积变化所产生的应力作用。另外,功能保护层均匀涂布于快离子导体材料上,其中的部分保护物质渗透至快离子导体层中,能够抑制锂枝晶的生成并且增强锂离子的传导率。
附图说明
图1为本发明的多层锂金属电池负极的结构示意图。
图2为制备本发明的多层锂金属电池负极的设备的结构示意图。
图3为实施例1与对比例1的电池循环性能对比图。
附图标记
1.集流体
2.锂金属层
3.快离子导体层
4.功能保护层
5.放卷辊
6.导向辊
6’.导向辊
7.控温单元
7’.控温单元
8.蒸镀槽
8’.蒸镀槽
9.气流挡板
9’.气流挡板
10.控温辊
10’.控温辊
11.膜厚检测装置
11’.膜厚检测装置
12.保温辊
13.降温辊
14.收卷辊
15.第一真空蒸镀装置
16.第二真空蒸镀装置
17.真空仓
具体实施方式
如上所述,本发明提供了一种多层锂金属电池负极,其包含集流体、锂金属层、快离子导体层以及功能保护层。
在本发明的一个优选实施方案中,集流体的一侧设置有锂金属层,锂金属层背离于集流体的一侧设置有快离子导体层,快离子导体层背离于集流体的一侧设置有功能保护层。
在本发明的一个优选实施方案中,快离子导体层包含含有选自锂、镁或铜的一种以上金属的卤化物盐或氧化物或过氧化物或氮化物,所述卤化物盐优选为氯化物、碘化物和/或氟化物,优选地,快离子导体层包含氯化锂、硫化锂、碘化锂、氟化锂、氟化镁、氧化铜、氧化锂、氮化镁、磷化锂、溴化锂或过氧化锂中的一种或两种以上的组合,更优选地,快离子导体层包含氯化锂、硫化锂、碘化锂、氟化锂、氟化镁或氧化铜中的一种或两种以上的组合,特别优选地,快离子导体层包含氯化锂、硫化锂、碘化锂或氟化锂中的一种或两种以上的组合。
在本发明的一个优选实施方案中,功能保护层包含保护物质和聚合物固态电解质。
在本发明的一个优选实施方案中,保护物质包含碘和/或硫。
在本发明的一个优选实施方案中,聚合物固态电解质包含聚偏氟乙烯(PVDF)、聚环氧乙烷(PEO)、聚环氧丙烷(PPO)、聚偏二氯乙烯(PVDC)、聚氯乙烯(PVC)、聚丙烯腈(PAN)、聚甲基丙烯酸甲酯(PMMA)、聚丙烯酸酯、聚偏氟乙烯-六氟丙烯共聚物(PVDF-HFP)、聚甲基乙撑碳酸酯(PPC)或聚氰基丙烯酸乙酯中的一种或两种以上的组合;优选地,聚合物固态电解质包含聚偏氟乙烯(PVDF)、聚环氧乙烷(PEO)、聚环氧丙烷(PPO)、聚偏二氯乙烯(PVDC)、聚氯乙烯(PVC)、聚丙烯腈(PAN)或聚甲基丙烯酸甲酯(PMMA)中的一种或两种以上的组合。
在本发明的一个优选实施方案中,保护物质与聚合物固态电解质 的质量比为1:(0.9~1.5),优选为1:(1.0~1.5)。
在本发明的一个优选实施方案中,多层锂金属电池负极的厚度为14.0~45.0μm,优选为15.3~36.7μm。
在本发明的一个优选实施方案中,集流体的厚度为10.0~18μm,优选为10.0~15μm。
在本发明的一个优选实施方案中,锂金属层的厚度为1.0~18.0μm,优选为1.5~15.0μm,更优选为1.7~14.4μm。
在本发明的一个优选实施方案中,快离子导体层的厚度为1.5~4.5μm,优选为2.3~3.8μm。
在本发明的一个优选实施方案中,功能保护层的厚度为1.5~4.5μm,优选为1.5~2.9μm。
本发明还提供上述多层锂金属电池负极的制备方法,其包含以下步骤:
(1)锂金属蒸镀步骤;
(2)快离子导体蒸镀步骤;以及
(3)保护物质和聚合物固态电解质涂布步骤。
在本发明的一个优选实施方案中,所述步骤(1)和(2)是连续一体化的。
在本发明的一个优选实施方案中,步骤(1)包括:在惰性气氛中在真空下加热锂源,使锂金属蒸气沉积到集流体上,从而形成含锂金属层的集流体。
在本发明的一个优选实施方案中,步骤(2)包括:在惰性气氛中在真空下加热快离子导体,使快离子导体蒸气沉积到含锂金属层的集流体上,从而形成镀有快离子导体层的含锂金属层的集流体。
在本发明的一个优选实施方案中,步骤(3)包括:将保护物质加入到有机溶液中,依次进行超声分散与磁力搅拌,获得均匀的浆料;将该浆料涂布在步骤(2)所获得的镀有快离子导体层的含锂金属层的集流体上,随后进行烘干,优选转移至烘箱内进行烘干,得到多层锂金属电池负极。
在本发明的一个优选实施方案中,在步骤(1)-(2)中,惰性气氛为氩气气氛;
在本发明的一个优选实施方案中,在步骤(3)中,有机溶液为聚合物固态电解质与二甲基甲酰胺(DMF)或N-甲基吡咯烷酮(NMP)的混合溶液,且所述聚合物固态电解质与DMF或NMP的质量比为1:(8~10);
需要说明的是,所述混合溶液中DMF或NMP的含量并没有特别限制,只要能够溶解或分散所述聚合物固态电解质和所述保护物质材料即可。
在本发明的一个优选实施方案中,在步骤(3)中,超声分散的时间为1~3h。
在本发明的一个优选实施方案中,在步骤(3)中,磁力搅拌的时间为15~20h。
在本发明的一个优选实施方案中,在步骤(3)中,磁力搅拌的转速为800~1000rpm。
在本发明的一个优选实施方案中,在步骤(3)中,烘干温度为60~90℃。
在本发明的一个优选实施方案中,在步骤(3)中,烘干时间为10~30min。
在本发明的一个优选实施方案中,在步骤(1)中,锂源的初始温度为25℃,锂源的加热温度为550~750℃,优选600~750℃。
在本发明的一个优选实施方案中,在步骤(1)中,锂源的升温速度为2~10℃/min,优选为5~8℃/min。
在本发明的一个优选实施方案中,在步骤(1)中,集流体的温度为80~100℃,优选为80~90℃。
在本发明的一个优选实施方案中,在步骤(1)中,集流体的移动速度为1~8m/min,优选为2~6m/min。
本发明中使用的集流体为常见的商业化电池级铜箔。
在本发明的一个优选实施方案中,在步骤(2)中,快离子导体 的初始温度为25℃,快离子导体的加热温度为700~1000℃,优选800~1000℃。
在本发明的一个优选实施方案中,在步骤(2)中,快离子导体的升温速度为2~10℃/min,优选为5~8℃/min。
在本发明的一个优选实施方案中,在步骤(2)中,含锂金属层的集流体的温度为80~100℃,优选为80~90℃。
在本发明的一个优选实施方案中,在步骤(2)中,含锂金属层的集流体的移动速度为1~8m/min,优选为2~6m/min。
在本发明中,集流体、含锂金属层的集流体和镀有快离子导体层的含锂金属层的集流体的移动速度等于输送装置的输送速度,例如等于卷绕收集装置的收卷速度。
在本发明的一个具体实施例中,由于集流体、含锂金属层的集流体和镀有快离子导体层的含锂金属层的集流体是通过输送装置串联起来的,因此集流体、含锂金属层的集流体和镀有快离子导体层的含锂金属层的集流体的移动速度相同,且等于输送装置的输送速度,例如等于卷绕收集装置的收卷速度。
在本发明的一个优选实施方案中,在步骤(1)和(2)中,真空度为1×10 -4~1×10 -2Pa。
在本发明的一个优选实施方案中,在步骤(1)中,锂源为金属锂锭或金属锂熔液,其中对于锂源的锂纯度没有特别限定,只要能获得预定的蒸镀效果即可,通常锂源的锂纯度大于95%,优选大于98%。
需要说明的是,金属锂锭或金属锂熔液的纯度无法达到100%,其不可避免地含有金属杂质或金属杂质化合物,由于在同一温度下不同金属的蒸气压不同,蒸镀时的冷凝时间点也不同。因此,在真空蒸镀步骤中,利用金属蒸气压与温度的关系,预先启动卷绕收集装置,通过调整温度,使得锂锭中的钠钾杂质先一步转变为气态,蒸镀于集流体上。而在随后的工序中,可将此段产品裁下,集中回收处理。
在本发明的一个优选实施方案中,在步骤(2)中,快离子导体为氯化锂、硫化锂、碘化锂、氟化锂、氟化镁、氧化铜、氧化锂、氮 化镁、磷化锂、溴化锂或过氧化锂中的一种或两种以上的组合,优选为氯化锂、硫化锂、碘化锂、氟化锂、氟化镁或氧化铜中的一种或两种以上的组合。
在本发明的一个优选实施方案中,在步骤(2)中,对于快离子导体的纯度没有特别限定,只要能获得预定的蒸镀效果即可,通常快离子导体的纯度大于99.0%,优选大于99.9%。
在本发明的一个优选实施方案中,在步骤(3)中,对于保护物质的纯度没有特别限定,只要能获得预定的效果即可,保护物质的纯度大于99.0%,优选大于99.9%;对于聚合物固态电解质的纯度没有特别限定,只要能获得预定的效果即可,通常聚合物固态电解质的纯度大于99.0%,优选大于99.9%。
本发明还提供一种制备上述多层锂金属电池负极的设备,其用于实施上述多层锂金属电池负极的制备方法,其包括位于同一个真空仓内的第一真空蒸镀装置、第二真空蒸镀装置和输送装置;
其中,第一真空蒸镀装置和第二真空蒸镀装置分别包括蒸镀槽和控温单元,优选地,第一真空蒸镀装置和第二真空蒸镀装置分别包括一个蒸镀槽和一个控温单元;
所述两个真空蒸镀装置均配有膜厚检测装置;
输送装置包括卷绕收集装置,优选地,所述卷绕收集装置包含放卷辊、导向辊、控温辊、保温辊、降温辊以及收卷辊,更优选地,所述卷绕收集装置包含一个放卷辊、多个(优选3-5个)导向辊、多个(优选3-5个)控温辊、一个保温辊、一个降温辊以及一个收卷辊。
在本发明的一个优选实施方案中,利用控温单元对蒸镀槽进行加热,控温单元配备有电阻加热源与保温层,具有加热与保温功能,可为待蒸发样品持续稳定地提供热源并进行保温。
在本发明的一个优选实施方案中,两个真空蒸镀装置位于同一个真空仓内并由输送装置如卷绕收集装置串联起来,完成待蒸镀基材的连续一体化连接。
在本发明的一个优选实施方案中,蒸镀槽为坩埚,优选为铂金坩 埚、镍坩埚或铁坩埚中的一种或两种以上的组合。
在本发明中,第一真空蒸镀装置用于将锂金属蒸镀至集流体上从而形成含锂金属层的集流体;第二真空蒸镀装置用于将快离子导体蒸镀至含锂金属层的集流体上从而形成镀有快离子导体层的含锂金属层的集流体。
在本发明的一个优选实施方案中,在每个真空蒸镀装置的出口侧分别设置膜厚检测装置,用于检测蒸镀后的箔材厚度。膜厚检测装置能够在蒸镀过程中进行实时监测,可根据检测到的膜厚值对控温单元进行温度调控。通过升高温度而加速蒸气分子的热运动,可在一定程度上加大坩埚的出气量,同时增加蒸镀量,即可增加膜厚。同理,通过降低温度从而减缓蒸气分子的热运动,可实现减小出气量、蒸镀量和膜厚的效果。
在本发明的一个优选实施方案中,在每个真空蒸镀装置中,分别设置有气流挡板和导流板,可防止蒸气溢出蒸镀装置。
在本发明中,第一真空蒸镀装置的蒸镀槽用于盛放锂源;第二真空蒸镀装置的蒸镀槽用于盛放快离子导体。
在本发明中,输送装置可将集流体输送至第一真空蒸镀装置,并将含锂金属层的集流体输送至第二真空蒸镀装置。
以下结合说明书附图对本发明的设备作进一步说明。
在本发明中,第一真空蒸镀装置15包括控温单元7、蒸镀槽8、气流挡板9和导流板,第二真空蒸镀装置16包括控温单元7’、蒸镀槽8’、气流挡板9’和导流板。
在本发明中,通过调节第一真空蒸镀装置中的控温单元7的温度,可将盛放锂源的蒸镀槽8的加热温度控制为550~750℃,优选600~750℃。在本发明中,蒸镀槽8的初始温度为25℃。
在本发明中,通过调节第一真空蒸镀装置中的控温单元7,可将盛放锂源的蒸镀槽8的升温速度控制为2~10℃/min,优选5~8℃/min。
在本发明中,通过调节第一真空蒸镀装置上方的控温辊10的高度, 可将盛放锂源的蒸镀槽8与集流体之间的距离调整为10~40mm,优选为15~30mm。
在本发明中,通过调节第一真空蒸镀装置上方的控温辊10的温度,可将集流体的温度控制为80~100℃,优选80~90℃。
在本发明中,通过调节保温辊12的温度,可将含锂金属层的集流体的温度保持在70℃~80℃。
在本发明中,通过调节卷绕收集装置,可将集流体的移动速度控制为1~8m/min,优选2~6m/min。
在本发明中,通过调节第二真空蒸镀装置的控温单元7’的温度,可将盛放快离子导体的蒸镀槽8’的加热温度控制为700~1000℃,优选800~1000℃。在本发明中,蒸镀槽8’初始温度为25℃。
在本发明中,通过调节第二真空装置中的控温单元7’,可将盛放快离子导体的蒸镀槽8’的升温速度控制为2~10℃/min,优选5~8℃/min。
在本发明中,通过调节第二真空蒸镀装置上方的控温辊10’的高度,可将盛放快离子导体的蒸镀槽8’与含锂金属层的集流体之间的距离控制为40~80mm,优选50~70mm。
在本发明中,通过调节第二真空蒸镀装置上方的控温辊10’的温度,可将含锂金属层的集流体的温度控制为80~100℃,优选80~90℃。
在本发明中,通过调节降温辊13的温度,可将镀有快离子导体层的含锂金属层的集流体控制为40~50℃。
在本发明中,通过调节卷绕收集装置,可将含锂金属层的集流体的移动速度控制为1~8m/min,优选2~6m/min。
在本发明中,第一真空蒸镀装置和第二真空蒸镀装置位于同一个真空仓内。
在本发明中,真空仓的真空度为1×10 -4~1×10 -2Pa,水氧值小于0.1ppm。在本发明中,向真空仓内通入惰性气氛,惰性气氛为氩气气氛。
每个真空蒸镀装置均配备各自专用的控温单元,用于控制蒸镀槽 的加热温度,其中,每个控温单元均含有加热装置与保温层。蒸镀槽为坩埚,优选为铂金坩埚、镍坩埚或铁坩埚中的一种或两种以上。
为了使本发明所述的内容更加便于理解,下面结合具体实施例对本发明所述的技术方案做进一步说明,但本发明不仅限于此。
下面对实施例所用的原料及设备的生产厂家,以及产品分析使用的设备和分析方法进行说明如下,本文未记载的试剂、仪器或操作步骤均是本领域普通技术人员可常规确定的内容:
涂布机购自深圳市科晶智达科技有限公司,型号为MSK-AFA-MC400;
超声分散机购自上海宁商超声仪器有限公司,型号为SY-250;
磁力搅拌机购自THINKY日本株式会社,型号为ARM-310;
电子分析天平购自赛多利斯科学仪器(北京)有限公司,型号为CUBIS_II_SEMI-MICRO;
铂金坩埚、镍坩埚、铁坩埚、陶瓷坩埚购自天津银鹏发展金属制品有限公司;
电池检测设备购自深圳市新威尔电子有限公司,型号为CT-4008T-5V6A;
原子吸收光谱仪购自上海光谱仪器有限公司,型号为SP-3803AA;
锂源购自江西赣锋锂业股份有限公司;
快离子导体材料、保护物质材料与聚合物固态电解质材料均购自上海麦克林生化科技有限公司;
实施例
实施例1
(0)投料和抽真空
将真空仓(包括第一真空蒸镀装置和第二真空蒸镀装置)设为氩气气氛,向第一真空蒸镀装置中的坩埚中加入质量为300g的金属锂锭(金属锂锭的纯度为99.0%),向第二真空蒸镀装置中的坩埚中加入质量为100g的氯化锂。然后将真空仓的真空度设为1×10 -3Pa,水 氧值保持小于0.1ppm。
(1)锂金属蒸镀
将第一真空蒸镀装置中的含有300g金属锂锭的坩埚进行加热,以升温速度为5℃/min,使坩埚匀速升温至650℃,保持该温度,金属锂锭由固态转变为液态,最终变为锂蒸气。调节控温辊的温度,将集流体的温度调整为90℃,使锂蒸气沉积在温度为90℃、厚度为10μm的集流体上,从而形成致密且均一的含锂金属层的集流体,其中,坩埚与集流体之间的距离为25mm,卷绕收集装置的收卷速度(即集流体的移动速度)设定为4.5m/min。
利用膜厚检测装置,测得锂金属层的厚度为9.2μm,利用原子吸收光谱仪,测得锂金属层的锂纯度为99.995%。
(2)快离子导体蒸镀
利用卷绕收集装置的保温辊将含锂金属层的集流体输送至第二真空蒸镀装置,其中卷绕收集装置的收卷速度(即含锂金属层的集流体的移动速度)为4.5m/min,保温辊使得含锂金属层的集流体的温度保持在80℃。
将第二真空蒸镀装置中的含有100g的氯化锂的坩埚加热,以升温速度6℃/min,使坩埚匀速升温至850℃,保持该温度。调节控温辊的温度将含锂金属层的集流体的温度调整为90℃,将氯化锂蒸气沉积到温度为90℃的含锂金属层的集流体上,从而形成镀有快离子导体层的含锂金属层的集流体,其中,坩埚与含锂金属层的集流体之间的距离为60mm,卷绕收集装置的收卷速度与步骤(1)相一致为4.5m/min。
利用膜厚检测装置,测得快离子导体层的厚度为2.94μm。快离子导体层的厚度由镀有快离子导体层的含锂金属层的集流体的厚度减去步骤(1)中制得的含锂金属层的集流体的厚度而得到。
(3)保护物质和聚合物固态电解质涂布
将保护物质材料碘100g加入到有机溶液中,所述有机溶液为PVDF 100g与N-甲基吡咯烷酮(NMP)800g的混合溶液,超声分散 1h后磁力搅拌18h,磁力搅拌的转速为900rpm,获得均匀的浆料;使用涂布机将该浆料涂布在步骤(2)所获得的镀有快离子导体层的含锂金属层的集流体上,随后转移至温度为80℃的烘箱内烘15min,获得功能保护层,所述功能保护层中的保护物质与聚合物固态电解质的质量比为1.0:1.0,最终得到多层锂金属电池负极;
利用膜厚检测装置,测得功能保护层的厚度为2.88μm,功能保护层的厚度由多层锂金属电池负极的厚度减去步骤(2)中制得的镀有快离子导体层的含锂金属层集流体的厚度而得到。
实施例2~6
实施例2~6的制备方法的步骤和内容基本与实施例1相同,不同之处在于相关的成分与工艺参数,具体如表1~3所示。
对比例1
对比例1的制备方法的步骤和内容基本与实施例1相同,不同之处在于,对比例1只进行步骤(0)和步骤(1)的锂金属蒸镀处理,而没有进行步骤(2)的快离子导体蒸镀步骤以及步骤(3)的保护物质和聚合物固态电解质涂布步骤。
对比例2
对比例2的制备方法的步骤和内容基本与实施例1相同,不同之处在于,对比例2只进行步骤(0)、步骤(1)的锂金属蒸镀以及步骤(2)的快离子导体蒸镀步骤,而没有进行步骤(3)的保护物质和聚合物固态电解质涂布步骤。
对比例3
对比例3的制备方法的步骤和内容基本与实施例1相同,不同之处在于,对比例3只进行步骤(0)、步骤(1)的锂金属蒸镀以及步骤(3)的保护物质和聚合物固态电解质涂布步骤,而没有进行步骤(2)的快离子导体蒸镀步骤。
对比例4
对比例4的制备方法的步骤和内容基本与实施例1相同,不同之处在于,对比例4中进行了步骤(0)、步骤(1)的锂金属蒸镀、步 骤(2)的快离子导体蒸镀步骤以及步骤(3)的涂布步骤,但是由步骤(3)制备的功能保护层只由保护物质涂布得到,功能保护层中未加入聚合物固态电解质(即聚偏氟乙烯)。
对比例5
对比例5的制备方法的步骤和内容基本与实施例1相同,不同之处在于,对比例5中进行了步骤(0)、步骤(1)的锂金属蒸镀、步骤(2)的快离子导体蒸镀步骤以及步骤(3)的涂布步骤,但是由步骤(3)制备的功能保护层只由聚合物固态电解质涂布得到,功能保护层中未加入保护物质(即碘)。
表1~3给出了实施例1~6和对比例的1~5的成分和工艺参数,其中表1给出了实施例1~6和对比例的1~5中的步骤(0)和步骤(1)的工艺参数,表2给出了实施例1~6和对比例的1~5中的步骤(2)的成分和工艺参数,表3给出了实施例1~6和对比例的1~5中的步骤(3)的成分和工艺参数。
表1
Figure PCTCN2021129086-appb-000001
Figure PCTCN2021129086-appb-000002
表2
Figure PCTCN2021129086-appb-000003
表3
Figure PCTCN2021129086-appb-000004
Figure PCTCN2021129086-appb-000005
性能测试
利用实施例1~6与对比例1~5制备的负极,按如下步骤制备软包电芯(锂金属电池),并进行软包电芯测试。
(1)正极极片的制备
按质量份计,将86份作为正极活性物质的磷酸铁锂、9份作为粘结剂的聚偏氟乙烯PVDF、5份作为导电剂的导电炭黑SuperP、以及130份N-甲基吡咯烷酮加入至均质机中,在27℃下以搅拌速度800rpm搅拌混合1min,然后以搅拌速度1200rpm混合15min,得到正极浆料并均匀涂覆于厚度为20μm的正极集流体铝箔上,随后在100℃下烘干、冷压、切边、裁片和分条,之后在85℃、300Pa真空条件下干燥4h,焊接极耳,得到正极极片。
(2)负极极片的制备
将实施例1~6与对比例1~5制备的多层锂金属电池负极进行冷压、切边、裁片和分条,得到负极极片。
(3)隔离膜
以聚乙烯膜(PE)作为隔离膜,厚度为10μm。
(4)软包电芯的组装
将所得的正极极片、负极极片和隔离膜以叠片的方式组装成芯包,对芯包进行封装焊接,用铝塑膜封装,注入电解液(电解液配比为碳酸乙烯酯(EC):碳酸甲乙酯(EMC):碳酸二乙酯(DEC)=2:5:3,包含1.0mol/L六氟磷酸锂),制作成软包电芯(3.8mm厚、34mm宽、50mm长)。
对由实施例1~6和对比例1~5的多层锂金属电池负极制备的软包电芯进行如下性能测试:
(1)常温循环性能测试
在25℃条件下,完成电池组装后,首先将其搁置10h。
以0.1C恒流充电至4.2V,再恒压充电至截止电流0.02C,搁置10min,然后以0.1C恒流放电至2.5V,搁置10min,如此重复两次,将电池进行活化。
将活化后的电池以1C恒流充电至4.2V,再恒压充电至截止电流0.02C,搁置10min,然后以1C恒流放电至2.5V,搁置10min,测定首次循环放电容量。然后重复以1C进行充放电循环测试。测试电池充放电第500次的比容量与容量保持率,同时测试其循环寿命。按下式计算锂离子电池的第500次循环后的容量保持率:
第500次循环后的容量保持率=(第500次循环后的放电容量/首次循环放电容量)×100%
电池的标准循环寿命是指在一定的充放电系统下,电池容量衰减至其初始容量的80%之前,电池所能承受的充放电循环次数。一个循环是指一次完全充电加一次完全放电。
(2)安全性能测试
按照GB/T 31485~2015《电动汽车用动力蓄电池安全要求及试验方法》,对25℃下循环200次的电池进行穿刺实验。利用钢针刺穿电池单体(或者模组),强制破坏电池内部结构,造成内部短路,进而引发热失控。如果电池能够在针刺贯穿后1h内不爆燃、不起火,认定为通过穿刺测试。结果如表4所示。
表4
Figure PCTCN2021129086-appb-000006
Figure PCTCN2021129086-appb-000007
如表4所示,分析实施例1~6和对比例1的测试结果可知,实施例1~6中的多层锂金属电池负极包含锂金属层、快离子导体层和功能保护层,在经过500次循环后,电池的容量保持率仍大于90%。这表明锂金属电池的容量衰减较少,循环稳定性得到显著提高,其原因可能是在电池循环期间基本没有死锂与枝晶生成,大部分的锂离子可在电池循环过程中稳定的嵌入与脱出。此外,实施例1~6均通过了穿刺实验,这表明使用了本发明的多层锂金属电池负极的锂金属电池具有良好的安全性。本发明的功能保护层能够与锂枝晶发生反应而生成惰性物质,有助于抑制短路和起火等。
在对比例1中,锂金属电池负极不包含快离子导体层与功能保护层,虽然对比例1与实施例1~6的初始比容量接近,但随后,容量保持率出现较大幅度的下降,比容量出现快速衰减。这是由于,未经任何表面蒸镀处理的锂电池负极在电池循环过程中,锂离子发生不均匀沉积而形成了枝晶,锂金属电池负极与电解液发生较多副反应,过度消耗锂离子。
如表4所示,分析实施例1~6和对比例2的测试结果可知,在对比例2中,锂金属电池负极不包含功能保护层。经过500次循环后,比容量为124.31mAh/g,容量保持率为85.01%。虽然对比例2与实施例1~6的初始比容量接近,并且可稳定循环一定时间,但依然无法解决电池循环寿命短的问题,由于未涂布功能保护层,无法彻底阻止锂枝晶的进一步生长,导致锂离子进一步被消耗,比容量出现衰减,大量的锂被“浪费”,从而导致锂金属电池的循环性能和安全性变差且循环寿命变短。
如表4所示,分析实施例1~6和对比例3的测试结果可知,在对比例3中,锂金属电池负极不包含快离子导体层。在对比例3中,经过500次循环后,比容量为36.78mAh/g,容量保持率为26.83%。 与实施例1~6的初始比容量相比,对比例3具有更低的初始比容量,这是因为在对比例3的锂金属电池负极内部,锂金属层直接与功能保护层相接触,锂与保护物质发生反应,生成了惰性物质,在电池未使用前已不可逆地消耗了部分的锂,造成首次循环放电容量下降。同时由于不具备快离子导体层,更易出现锂离子的不均匀沉积,形成了枝晶与死锂,锂离子不断被消耗,比容量出现快速衰减,显著降低了循环寿命。
如表4所示,分析实施例1~6和对比例4的测试结果可知,在对比例4中,锂金属电池负极的功能保护层不包含聚合物固态电解质。在对比例4中,经过500次循环后,比容量为124.98mAh/g,容量保持率为86.35%。对比例4中的快离子导体层可促进锂离子均匀沉积,同时功能保护层中的保护物质能够与进一步生长的枝晶发生反应而生成惰性物质,确保电池不发生内部短路。但是由于功能保护层仅含有保护物质,不含有聚合物固态电解质,保护物质的导离子性较弱,在一定程度上阻碍锂离子的传输,随着电化学循环的不断推进,比容量发生衰减,循环寿命明显缩短。
如表4所示,分析实施例1~6和对比例5的测试结果可知,在对比例5中,锂金属电池负极的功能保护层不包含保护物质。经过500次循环后,比容量为122.38mAh/g,容量保持率为81.62%。虽然对比例5与实施例1~6的初始比容量接近,但循环寿命较短,这是因为在功能保护层中没有保护物质,无法阻止锂枝晶的进一步生长,一旦锂离子发生不均匀沉积并累积生长而形成了枝晶与死锂,导致锂离子不断被消耗,由此造成了比容量衰减,缩短了循环寿命,带来了安全隐患。
图3提供了实施例1与对比例1中的电池的循环性能对比图,明显看出实施例1的电池在0.1C活化后,相比于对比例1中的电池而言具有更优异的循环性能。
本发明的具有表面修饰的锂金属负极获得了出人意料的优异的复合功效,在循环容量保持率与安全稳定性方面均具有优良的表现。 一方面,本发明利用连续一体化的蒸镀法,保证了锂金属层与快离子导体层的功能材料的粒径极小,致密度极高,各层的功能材料之间具有超强的结合力,可使得快离子导体层完全覆盖锂金属层且将层厚减小至超薄,不增加电池内阻,同时保证锂离子传输速率,不影响电池的电化学性能。另一方面,本发明具有独特的复合结构,其中快离子导体层不仅具有优秀的阻隔性能,能够使金属锂在空气中稳定存在一定的时间而不受侵蚀,从而有利于进行后续的涂布工序,并且在电池体系中,快离子导体层的存在不仅可以有效减少与电解液之间的副反应,同时可有效降低锂离子成核过电位,使锂离子均匀扩散,减少枝晶的成核驱动力,防止锂枝晶的生成;功能保护层中的保护物质可以与锂枝晶进行反应,生成惰性物质,在一定程度上抑制锂枝晶的不均匀生长,规避内部短路风险;功能保护层中的聚合物固态电解质在不影响保护物质与锂枝晶反应而生成惰性物质的前提下,具有较好的有机柔韧性,可有效缓解电化学循环过程中锂金属的体积变化所产生的应力。
总之,关于本发明的多层锂金属电池负极,通过精密地蒸镀锂金属层和快离子导体层以及涂布功能保护层,利用这三层的复合协同作用,明显地提高了锂金属电池的循环性能、循环寿命和安全性,解决了锂金属负极中出现的锂枝晶问题。
本发明的多层锂金属电池负极的结构示意图如图1所示,本发明的设备示意图如图2所示,这些示意图是为了方便说明内容,而不是以实际的尺寸与比例显示本发明的设备。
以上所述仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,以上应用了具体实例对本发明进行阐述,只是用于帮助理解本发明,并不用以限制本发明。本发明所属技术领域的技术人员依据本发明的构思,还可以做出若干简单推演、变形或替换。这些推演、变形或替换方案也落入本发明的权利要求范围。

Claims (15)

  1. 一种多层锂金属电池负极,其特征在于,包含集流体、锂金属层、快离子导体层以及功能保护层。
  2. 根据权利要求1所述的多层锂金属电池负极,其特征在于,集流体的一侧设置有锂金属层,锂金属层背离于集流体的一侧设置有快离子导体层,快离子导体层背离于集流体的一侧设置有功能保护层。
  3. 根据权利要求1或2所述的多层锂金属电池负极,其特征在于,快离子导体层包含含有选自锂、镁或铜的一种以上金属的卤化物盐或氧化物或过氧化物或氮化物,所述卤化物盐优选为氯化物、碘化物和/或氟化物,优选地,快离子导体层包含氯化锂、硫化锂、碘化锂、氟化锂、氟化镁、氧化铜、氧化锂、氮化镁、磷化锂、溴化锂或过氧化锂中的一种或两种以上的组合,更优选地,快离子导体层包含氯化锂、硫化锂、碘化锂、氟化锂、氟化镁或氧化铜中的一种或两种以上的组合,特别优选地,快离子导体层包含氯化锂、硫化锂、碘化锂或氟化锂中的一种或两种以上的组合。
  4. 根据权利要求1-3中任一项所述的多层锂金属电池负极,其特征在于,功能保护层包含抑制锂活性的保护物质和聚合物固态电解质。
  5. 根据权利要求4所述的多层锂金属电池负极,其特征在于,保护物质包含碘和/或硫;
    或者聚合物固态电解质包含聚偏氟乙烯(PVDF)、聚环氧乙烷(PEO)、聚环氧丙烷(PPO)、聚偏二氯乙烯(PVDC)、聚氯乙烯(PVC)、聚丙烯腈(PAN)、聚甲基丙烯酸甲酯(PMMA)、聚丙烯酸酯、聚偏氟乙烯-六氟丙烯共聚物(PVDF-HFP)、聚甲基乙撑碳酸酯(PPC)或聚氰基丙烯酸乙酯中的一种或两种以上的组合;优选地,聚合物固态电解质包含聚偏氟乙烯(PVDF)、聚环氧乙烷(PEO)、聚环氧丙烷(PPO)、聚偏二氯乙烯(PVDC)、聚氯乙烯(PVC)、聚丙烯腈(PAN)或聚甲基丙烯酸甲酯(PMMA)中的一种或两种以上的组合。
  6. 根据权利要求4或5所述的多层锂金属电池负极,其特征在于,保护物质与聚合物固态电解质的质量比为1:(0.9~1.5),优选 为1:(1.0~1.5)。
  7. 根据权利要求1-6中任一项所述的多层锂金属电池负极,其特征在于,多层锂金属电池负极的厚度为14.0~45.0μm,优选为15.3~36.7μm,其中,集流体的厚度为10.0~18μm,优选为10.0~15μm;锂金属层的厚度为1.0~18.0μm,优选为1.5~15.0μm,更优选为1.7~14.4μm;快离子导体层的厚度为1.5~4.5μm,优选为2.3~3.8μm;功能保护层的厚度为1.5~4.5μm,优选为1.5~2.9μm。
  8. 根据权利要求1-7中任一项所述的多层锂金属电池负极的制备方法,其特征在于,包含以下步骤:
    (1)锂金属蒸镀步骤;
    (2)快离子导体蒸镀步骤;以及
    (3)保护物质和聚合物固态电解质涂布步骤。
  9. 根据权利要求8所述的制备方法,其特征在于,所述步骤(1)和(2)是连续一体化的。
  10. 根据权利要求8或9所述的制备方法,其特征在于,步骤(1)包括:在惰性气氛中在真空下加热锂源,使锂金属蒸气沉积到集流体上,从而形成含锂金属层的集流体;或者
    步骤(2)包括:在惰性气氛中在真空下加热快离子导体,使快离子导体蒸气沉积到含锂金属层的集流体上,从而形成镀有快离子导体层的含锂金属层的集流体;或者
    步骤(3)包括:将保护物质加入到有机溶液中,依次进行超声分散与磁力搅拌,获得均匀的浆料;将该浆料涂布在步骤(2)所获得的镀有快离子导体层的含锂金属层的集流体上,随后进行烘干,得到多层锂金属电池负极;
    优选地,在步骤(1)-(2)中,惰性气氛为氩气气氛;
    优选地,在步骤(3)中,有机溶液为聚合物固态电解质与二甲基甲酰胺或N-甲基吡咯烷酮的混合溶液,且所述聚合物固态电解质与所述二甲基甲酰胺或N-甲基吡咯烷酮的质量比为1:(8~10);
    优选地,在步骤(3)中,超声分散的时间为1~3h,优选地,磁 力搅拌的时间为15~20h,优选地,磁力搅拌的转速为800~1000rpm,优选地,烘干温度为60~90℃,优选地,烘干时间为10~30min。
  11. 根据权利要求8-10中任一项所述的制备方法,其特征在于,在步骤(1)中,锂源的加热温度为550~750℃,优选600~750℃;或者在步骤(2)中,快离子导体的加热温度为700~1000℃,优选800~1000℃。
  12. 根据权利要求10或11所述的制备方法,其特征在于,在步骤(1)和(2)中,真空度为1×10 -4~1×10 -2Pa。
  13. 根据权利要求8-12中任一项所述的制备方法,其特征在于,
    在步骤(1)中,锂源为金属锂锭或金属锂熔液;
    在步骤(2)中,快离子导体为氯化锂、硫化锂、碘化锂、氟化锂、氟化镁、氧化铜、氧化锂、氮化镁、磷化锂、溴化锂或过氧化锂中的一种或两种以上的组合,优选为氯化锂、硫化锂、碘化锂、氟化锂、氟化镁或氧化铜中的一种或两种以上的组合。
  14. 一种制备权利要求1-7中任一项所述的多层锂金属电池负极的设备,其特征在于,其用于实施权利要求8-13中任一项所述的制备方法,其包括位于同一个真空仓内的第一真空蒸镀装置、第二真空蒸镀装置和输送装置;
    其中,第一真空蒸镀装置和第二真空蒸镀装置分别包括蒸镀槽和控温单元;
    所述两个真空蒸镀装置均配有膜厚检测装置;
    所述输送装置包括卷绕收集装置,优选地,所述卷绕收集装置包含放卷辊、导向辊、控温辊、保温辊、降温辊以及收卷辊。
  15. 根据权利要求14所述的多层锂金属电池负极的设备,其特征在于,所述第一真空蒸镀装置和第二真空蒸镀装置分别包括一个蒸镀槽和一个控温单元;优选地,所述卷绕收集装置包含一个放卷辊、3-5个导向辊、3-5个控温辊、一个保温辊、一个降温辊以及一个收卷辊。
PCT/CN2021/129086 2021-03-26 2021-11-05 一种多层锂金属电池负极及其制备方法和制备设备 WO2022199039A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US18/552,585 US20240186480A1 (en) 2021-03-26 2021-11-05 Multi-layer lithium metal battery negative electrode, and preparation method and preparation device therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110323725.4A CN114583092B (zh) 2021-03-26 2021-03-26 一种多层锂金属电池负极及其制备方法和制备设备
CN202110323725.4 2021-03-26

Publications (1)

Publication Number Publication Date
WO2022199039A1 true WO2022199039A1 (zh) 2022-09-29

Family

ID=81769785

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/129086 WO2022199039A1 (zh) 2021-03-26 2021-11-05 一种多层锂金属电池负极及其制备方法和制备设备

Country Status (3)

Country Link
US (1) US20240186480A1 (zh)
CN (1) CN114583092B (zh)
WO (1) WO2022199039A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115986201A (zh) * 2023-03-15 2023-04-18 中国铁塔股份有限公司 一种电池和电池制备方法
CN116742107A (zh) * 2023-07-31 2023-09-12 武汉中科先进材料科技有限公司 一种用于锂金属负极的复合固态电解质膜及其制备方法
CN116819344A (zh) * 2023-08-25 2023-09-29 宁德时代新能源科技股份有限公司 锂电池形核过电位预测方法、装置、车辆及介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105489845A (zh) * 2015-12-30 2016-04-13 哈尔滨工业大学 一种基于pvd制备全固态锂离子电池用薄层金属锂基负极的方法
US20170301920A1 (en) * 2016-04-19 2017-10-19 Ningde Amperex Technology Limited Polymer protecting layer, lithium metal negative electrode, lithium secondary battery
CN108365169A (zh) * 2017-12-19 2018-08-03 成都亦道科技合伙企业(有限合伙) 一种锂金属负极结构组合及其制备方法、锂电池电芯
CN109155396A (zh) * 2016-09-21 2019-01-04 株式会社Lg化学 包含多重保护层的负极和包含该负极的锂二次电池
CN111712949A (zh) * 2018-10-31 2020-09-25 株式会社Lg化学 锂电极以及包含该锂电极的锂二次电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009179856A (ja) * 2008-01-31 2009-08-13 Panasonic Corp 真空蒸着装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105489845A (zh) * 2015-12-30 2016-04-13 哈尔滨工业大学 一种基于pvd制备全固态锂离子电池用薄层金属锂基负极的方法
US20170301920A1 (en) * 2016-04-19 2017-10-19 Ningde Amperex Technology Limited Polymer protecting layer, lithium metal negative electrode, lithium secondary battery
CN109155396A (zh) * 2016-09-21 2019-01-04 株式会社Lg化学 包含多重保护层的负极和包含该负极的锂二次电池
CN108365169A (zh) * 2017-12-19 2018-08-03 成都亦道科技合伙企业(有限合伙) 一种锂金属负极结构组合及其制备方法、锂电池电芯
CN111712949A (zh) * 2018-10-31 2020-09-25 株式会社Lg化学 锂电极以及包含该锂电极的锂二次电池

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115986201A (zh) * 2023-03-15 2023-04-18 中国铁塔股份有限公司 一种电池和电池制备方法
CN115986201B (zh) * 2023-03-15 2023-05-23 中国铁塔股份有限公司 一种电池和电池制备方法
CN116742107A (zh) * 2023-07-31 2023-09-12 武汉中科先进材料科技有限公司 一种用于锂金属负极的复合固态电解质膜及其制备方法
CN116742107B (zh) * 2023-07-31 2024-03-26 武汉中科先进材料科技有限公司 一种用于锂金属负极的复合固态电解质膜及其制备方法
CN116819344A (zh) * 2023-08-25 2023-09-29 宁德时代新能源科技股份有限公司 锂电池形核过电位预测方法、装置、车辆及介质
CN116819344B (zh) * 2023-08-25 2024-01-23 宁德时代新能源科技股份有限公司 锂电池形核过电位预测方法、装置、车辆及介质

Also Published As

Publication number Publication date
CN114583092B (zh) 2023-12-05
CN114583092A (zh) 2022-06-03
US20240186480A1 (en) 2024-06-06

Similar Documents

Publication Publication Date Title
WO2022199039A1 (zh) 一种多层锂金属电池负极及其制备方法和制备设备
Wu et al. Electrochemical behaviors of a Li3N modified Li metal electrode in secondary lithium batteries
WO2020134780A1 (zh) 一种正极材料及其制备方法和用途
CN106910860B (zh) 锂电池隔膜涂层、隔膜及隔膜制备方法
WO2022100661A1 (zh) 一种负极片及其应用
CN110311130B (zh) 一种铌酸钛负极材料及其制备方法
CN110854380A (zh) 一种锂碳复合材料、锂电池及其制备方法
WO2022110227A1 (zh) 一种隔离膜、其制备方法及其相关的二次电池、电池模块、电池包和装置
CN108682833A (zh) 一种磷酸铁锂基改性正极材料制备方法
Wu et al. The formation of LiAl5O8 nanowires from bulk Li-Al alloy enables dendrite-free Li metal batteries
CN115377353A (zh) 一种负极片及应用其的电池
Zhang et al. Enhanced thermostability and electrochemical performance of separators based on an organic-inorganic composite binder composed of polyvinyl alcohol and inorganic phosphate for lithium ion batteries
WO2020143413A1 (zh) 用于提高电池性能的包括具有支架结构的复合层和保护层的电极以及电池
WO2023087209A1 (zh) 电化学装置及电子装置
CN111224068A (zh) 一种用于锂电池的金属锂负极和锂电池
CN108054385A (zh) 一种纳米金属氧化物包覆 LiFePO4微晶及其制备方法
WO2023078047A1 (zh) 正极活性材料、其制备方法、包括其的锂离子电池、电池模块、电池包和用电装置
WO2023125023A1 (zh) 负极集流体及其制备方法、具备其的负极极片、锂二次电池
WO2023082924A1 (zh) 极片、锂离子电池、电池模块、电池包及用电装置
WO2020119431A1 (zh) 一种锂离子电池
WO2023050842A1 (zh) 复合隔离膜、电化学储能装置及用电装置
WO2023206405A1 (zh) 正极极片、二次电池、电池模块、电池包和用电装置
Zhang et al. Study on the electrochemical performance of all-solid-state lithium battery based on Li3BO3 gradient coated LiCoO2 cathode
WO2022110224A1 (zh) 隔离膜、其制备方法及其相关的二次电池、电池模块、电池包和装置
CN112670449B (zh) 一种硅碳复合极片、其制备方法及用途

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932647

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18552585

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/02/2024)