WO2022195865A1 - 四面冷却パワーモジュール - Google Patents

四面冷却パワーモジュール Download PDF

Info

Publication number
WO2022195865A1
WO2022195865A1 PCT/JP2021/011449 JP2021011449W WO2022195865A1 WO 2022195865 A1 WO2022195865 A1 WO 2022195865A1 JP 2021011449 W JP2021011449 W JP 2021011449W WO 2022195865 A1 WO2022195865 A1 WO 2022195865A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
region
power module
metal layer
sided cooling
Prior art date
Application number
PCT/JP2021/011449
Other languages
English (en)
French (fr)
Inventor
パク・チャンヨン
イム・べヨン
Original Assignee
サンケン電気株式会社
サンケンエレクトリックコリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by サンケン電気株式会社, サンケンエレクトリックコリア株式会社 filed Critical サンケン電気株式会社
Priority to PCT/JP2021/011449 priority Critical patent/WO2022195865A1/ja
Publication of WO2022195865A1 publication Critical patent/WO2022195865A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks

Definitions

  • the present invention relates to a Four Sided Cooling (FSC) power module of a power semiconductor package.
  • FSC Four Sided Cooling
  • the present invention relates to a module structure that radiates heat generated inside to the outside.
  • Patent Literature 1 discloses a double-sided cooling power module that is composed of a lower terminal, a power semiconductor chip, a horizontal spacer, an upper terminal, and a vertical spacer, and uses a DBC substrate in which these members are laminated inside. This structure improves the heat dissipation of the power module.
  • heat sinks are provided mainly in the vertical direction of the product, and heat paths are limited on both sides (vertical direction). Also, the module package implementation limits the heat sink design to a two-sided cooling method in the top-bottom direction.
  • the four-sided cooling power module of the present invention includes a first substrate on which electronic components are mounted, a second substrate positioned opposite the first substrate, and a portion of each of the first substrate and the second substrate.
  • the first substrate includes a first area, a second area, and a third area, and the first area has an electronic component mounted thereon. and the third region are positioned perpendicular to the first region, the second substrate is bonded to a portion of the electronic component mounted on the first region, and the first substrate and It is characterized in that four surfaces on the outside side of the second substrate are exposed from the sealing resin.
  • the four-sided cooling power module structure of the present invention is a package structure in which a second substrate is bonded to the upper surface of an electronic component generally used in a semiconductor device or a first substrate.
  • the first substrate has three areas (left, right, center), electronic components (chips, spacers, leads, wires, etc.) are attached, and both ends (left and right areas) of the first substrate are bent to It can also be used for thermal cooling as right and left sidewalls.
  • it is a package structure of a four-sided cooling module in which a second substrate is bonded to the upper surface and molded with resin. As a result, the structure is such that heat can be dissipated from the top, bottom, right, and left sides of the package.
  • the heat dissipation performance of the power module can be improved. Also, by mounting the components inside the side wall, the assembly density can be increased and the product package size can be reduced.
  • FIG. 4 is a state diagram showing the state in which the external terminals are connected to the first substrate for explaining the manufacturing of the four-sided cooling power module according to the first embodiment of the present invention
  • FIG. 10 is a state diagram of joining the second substrate for explaining the manufacturing of the four-sided cooling power module according to the first embodiment of the present invention
  • FIG. 4 is a perspective front view for explaining the manufacture of the four-sided cooling power module according to Example 1 of the present invention
  • 1 is a perspective plan view illustrating the structure of a four-sided cooling power module according to Example 1 of the present invention
  • FIG. 1 is a perspective front view illustrating the structure of a four-sided cooling power module according to Example 1 of the present invention
  • FIG. 1 is a perspective plan view illustrating the structure of a four-sided cooling power module according to Example 1 of the present invention
  • FIG. 1 is a perspective plan view illustrating the structure of a four-sided cooling power module according to Example 1 of the present invention
  • FIG. 1 is a perspective plan view illustrating the structure of
  • Embodiment 1 A method of manufacturing a four-side cooled power module according to Embodiment 1 of the present invention will be described with reference to FIGS. 1 to 5.
  • FIG. Also, the structure of the four-sided cooling power module according to the first embodiment of the present invention will be described with reference to FIGS. 6 and 7.
  • FIG. The drawings are schematic diagrams for explanation.
  • FIG. 1 is a plan view and a front view of electronic components (4, 5, 6) mounted on the first substrate 2.
  • FIG. 1 is a plan view and a front view of electronic components (4, 5, 6) mounted on the first substrate 2.
  • the first substrate 2 is composed of three parts in the vertical (thickness) direction, comprising a first metal layer 21 , an insulating layer 22 and a second metal layer 23 .
  • the first metal layer 21 is made of metal such as copper or aluminum
  • the insulating layer 22 is made of dielectric material such as ceramic
  • the second metal layer 23 is made of metal such as copper or aluminum.
  • semiconductor circuit wiring is patterned on the second metal layer 23, and electronic components are mounted thereon.
  • the electronic components are a first die 4 and a second die 7 which are semiconductor chips, and a first spacer 5 and a second spacer 6 of conductive metal. These mounted electronic components are common ones used in double-sided cooling power modules.
  • FIG. 2 is a plan view showing the arrangement of the external terminals after the electronic components (4, 5, 6) are mounted on the first substrate 2.
  • the first die 4 and the external terminal (control side) 11 are connected via wire bonding wiring.
  • the second metal layer 23 and the external terminal (power side) 12 are directly bonded.
  • Each external terminal can use a lead frame made of copper material. The arrangement can be designed as appropriate to fit the die (chip).
  • the first substrate 2 is divided into three regions, a first region 24, a second region 25, and a third region 26, in the planar direction.
  • the first metal layer 21 of the first substrate 2 is integrated over the entire area.
  • FIG. 3 is a front view for explaining bonding of the second substrate 3.
  • the second substrate 3 has the same structure as the first substrate 2 and consists of three parts in the vertical (thickness) direction: a first metal layer 31, an insulating layer 32 and a second metal layer 32. A metal layer 33 is provided. The bonding brings the second metal layer 33 of the second substrate 3 and the electronic component 5 into contact.
  • the second area and the third area are positioned in the vertical direction with respect to the first area.
  • the first metal layer 21 of the first substrate 2 may be bent upward at the bend region 27 so that the second region 25 and the third region 26 are perpendicular to each other.
  • a second die 7 is mounted in each of the second region 25 and the third region 26 of the first substrate 2 .
  • the first substrate 2 is bent until the second dies 7 mounted on both ends of the first substrate 2 come into contact with the sidewalls of the first spacers 5 .
  • FIG. 4 is a front view of the state after the bonding of the second substrate 3 and the bending of the first substrate 2 are completed.
  • FIG. 5 is a plan view showing the completed bonding of the second substrate 3 and the bending of the first substrate 2. As shown in FIG. However, the second substrate 3 is in a see-through state.
  • FIGS. 6 and 7 show a state in which a part of each of the first substrate 2 and the second substrate 3 is exposed and sealed with a sealing resin 10.
  • the bonding material used for bonding is first using the first bonding material (high melting point bonding material) 8 to attach the electronic component (die 4, 7, spacers 5 and 6) are attached, and the first reflow (or sintering) is performed to bond them.
  • both ends of the first substrate 2 are positioned vertically, the second substrate 3 and the upper surfaces of the electronic components 5 and 6 mounted on the first substrate 2 are joined, and the second region 25 or The second metal layer 23 in the third region 26 and the side surface of the electronic component 5 mounted on the first substrate are joined.
  • the second bonding material (low-melting point bonding material) 9 is used as the bonding material used for bonding here. After that, a second reflow (or sintering) is performed for bonding.
  • the melting point of the second bonding material 9 is set lower than that of the first bonding material 8 .
  • solder or sintered material can be used as the material of the bonding material.
  • various bonding materials such as conductive tapes can be appropriately used for attaching electronic parts such as spacers.
  • the bending area 27 of the first substrate 2 (part of the first metal layer 21) is provided with slots (through-holes) or dimples (indentations). This reduces the strength of the metal and makes it easier to bend.
  • the shapes of slots and dimples may be appropriately designed according to the dimensions of the substrate.
  • the first metal layer 21 of the first substrate 2 is not limited to being integrated over the entire area, and may be appropriately designed in combination with the second metal layer 23 .
  • the encapsulating resin 10 is transfer molded with an epoxy molding compound using a mold to fill in the module.
  • a frame or the like may be used for potting sealing with epoxy resin.
  • the first spacer 5 and the second spacer 6 of the electronic component can be made of aluminum, aluminum silicon carbide, copper, copper molybdenum alloy, multi-layer structure, or powder compression structure in order to adjust the thermal expansion coefficient of the material. can.
  • the volume of the first spacer 5 is large, it is possible to form a through hole, so that a resin type tube can be inserted into the through hole. This allows the junction temperature of the die to be directly cooled by the coolant using the tube path. Furthermore, heat dissipation can be improved.
  • first substrate 3, second substrate 4, first die (chip) (electronic component) 5, first spacer (electronic component) 6, second spacer (electronic component) 7, second die (chip) 8, first bonding material (high melting point bonding material) 9, second bonding material (low melting point bonding material) 10, sealing resin 11, external terminal (control side) 12, external terminal (power side) 21, 31, first metal layer 22, 32, insulating layer 23, 33, second metal layer 24, first region 25, second region 26, third region 27, bending region

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

【課題】パワーモジュールでは、高い熱冷却性能が必要とされ、パッケージ構造として熱冷却性能を高めることができる四面冷却パワーモジュールを提供することである。 【解決手段】電子部品が搭載された第1の基板と第1の基板に対向して位置する第2の基板と第1の基板と第2の基板のそれぞれの一部を露出させて封止する封止樹脂とを備え、第1の基板は、第1の領域、第2の領域、第3の領域からなり、第1の領域は、電子部品が搭載され、第2の領域と第3の領域は、第1の領域に対して垂直方向へ位置させ、第2の基板は、第1の領域に搭載された電子部品の一部と接合され、第1の基板と第2の基板の外部側の四面が封止樹脂から露出している構造の四面冷却パワーモジュールとすることである。

Description

四面冷却パワーモジュール
 本発明は、パワー半導体パッケージの四面冷却(フォーサイドクーリング:Four Sided Cooling:FSC)パワーモジュールに関する。特に、内部から発生する熱を外部に放熱するモジュール構造に関する。
 現在のパワー半導体市場において、高電圧および高電流を使用するハイエンドパワーモジュールは、より効率的な放熱を必要とされている。特に、パワー半導体パッケージの両面冷却モジュールでは、高い電力密度と高速による半導体チップ(Si、GaN、SiC等)の高い動作温度に応じて、より高い熱性能を必要とされている。
 この両面冷却モジュールでは、アナログ、ディスクリート、高電圧部品等をひとつのモジュールに統合し、セラミックをベースに両面側に銅を備えたDBC基板(Directly Bonded Copper substrate)とリードフレームを組み合わせる構造がIPM(Intelligent Power Module:インテリジェントパワーモジュール)と呼ばれ知られている。
 例えば、特許文献1には、下端ターミナル、パワー半導体チップ、水平スペーサ、上端端子、垂直スペーサで構成され、これら部材が内部に積層されDBC基板を使用した両面冷却パワーモジュールが開示されている。この構造により、パワーモジュールの放熱性を向上させている。
米国特許第9390996B2号
 従来構造の両面冷却パワーモジュールの場合は、放熱板が主に製品の上下方向に備えられ、熱経路は両側(上下方向)に制限されている。また、モジュールパッケージの実装では、ヒートシンク設計が上下方向の二面の冷却方法に制限される。
 パワーモジュールではさらに高い熱冷却性能が必要とされ、両面冷却パワーモジュールでは放熱不足が懸念される。よって、このためには、モジュールの側壁も熱冷却に使用し、四面冷却とすることで、熱冷却性能をさらに高めることができ、それに応じて、部品内蔵密度を上げて、製品サイズを縮小することができる四面冷却パワーモジュールを提供するものである。
 
 本発明の四面冷却パワーモジュールは、電子部品が搭載された第1の基板と第1の基板に対向して位置する第2の基板と第1の基板と第2の基板のそれぞれの一部を露出させて封止する封止樹脂とを備え、第1の基板は、第1の領域、第2の領域、第3の領域からなり、第1の領域は、電子部品が搭載され、第2の領域と第3の領域は、第1の領域に対して垂直方向へ位置させ、第2の基板は、第1の領域に搭載された電子部品の一部と接合され、第1の基板と第2の基板の外部側の四面が封止樹脂から露出していることを特徴とする。
 本発明の四面冷却パワーモジュール構造において、半導体装置で一般的に使用されている電子部品や第1の基板と上面に第2の基板を接合するパッケージ構造である。
 ここでは、第1の基板は、三つの領域(左、右、中央)があり、電子部品(チップ、スペーサ、リード、ワイヤ等)を取り付け、第1の基板の両端(左右の領域)を上に曲げている。右側面と左側面の側壁として熱冷却にも使用できる。さらに上面に第2の基板を接合し、樹脂モールドした四面冷却モジュールのパッケージ構造である。これにより、パッケージの上面、下面、右面、左面の四面から放熱できる構造とすることである。
 このように、パワーモジュールに側壁を追加して放熱に使用することで、パワーモジュールの放熱性能を高めることができる。また、側壁内部に部品を搭載することで、組み立て密度が上がり、製品パッケージサイズを縮小することができる。
本発明の実施例1に係る四面冷却パワーモジュールの製造を説明する第1の基板に電子部品が搭載された状態図である。 本発明の実施例1に係る四面冷却パワーモジュールの製造を説明する第1の基板に外部端子が接続された状態図である。 本発明の実施例1に係る四面冷却パワーモジュールの製造を説明する第2の基板を接合する状態図である。 本発明の実施例1に係る四面冷却パワーモジュールの製造を説明する正面透視図である。 本発明の実施例1に係る四面冷却パワーモジュールの構造を説明する平面透視図である。 本発明の実施例1に係る四面冷却パワーモジュールの構造を説明する正面透視図である。 本発明の実施例1に係る四面冷却パワーモジュールの構造を説明する平面透視図である。
 以下、本発明を実施するための形態について、図を参照して詳細に説明する。ただし、本発明は以下の記載に何ら限定されるものではない。
 本発明の実施例1に係る四面冷却パワーモジュールの製造方法を図1から図5で説明する。また、本発明の実施例1に係る四面冷却パワーモジュールの構造を図6、図7で説明する。なお、図面は説明用の概略図である。
 図1は、第1の基板2上に電子部品(4、5、6)を搭載した平面と正面の状態図である。
 第1の基板2は、垂直(厚さ)方向に3つの部分で構成され、第1の金属層21、絶縁層22、第2の金属層23を備えている。第1の金属層21は銅またはアルミ等の金属、絶縁層22はセラミック等の誘電体材料、第2の金属層23は銅またはアルミ等の金属からなっている。
 ここでは、第2の金属層23には半導体回路配線がパターン化されており、電子部品が搭載されている。電子部品は、半導体チップである第1ダイ4、第2ダイ7、導電性金属の第1スペーサ5、第2スペーサ6である。これら搭載される電子部品は、両面冷却パワーモジュールで使用される一般的なものである。
 図2は、第1の基板2上に電子部品(4、5、6)を搭載した後、外部端子を配置した平面の状態図である。ここでは、第1ダイ4と外部端子(コントロール側)11とをワイヤボンディング配線を介して接合している。また、第2の金属層23と外部端子(パワー側)12とを直接接合している。各外部端子は銅材料で作られたリードフレームを使用することができる。配置はダイ(チップ)に適合するように適宜設計できる。
 また、第1の基板2は、平面方向で第1の領域24、第2の領域25、第3の領域26の3つの領域に区分されている。ただし、ここでは、第1の基板2の第1の金属層21は全領域で一体化されている。
 図3は、第2の基板3の接合を説明する正面の状態図である。第2の基 板3は、第1の基板2と同様の構造をしており、垂直(厚さ)方向に3つの部分で構成され、第1の金属層31、絶縁層32、第2の金属層33を備えている。接合は、第2の基板3の第2の金属層33と電子部品5を接触させている。
 また、第2の領域と第3の領域は、第1の領域に対して垂直方向へ位置 させている。例えば、第1の基板2の第1の金属層21を曲げ領域27において、第2の領域25と第3の領域26が垂直になるよう上方向へ折り曲げるとよい。
 また、第1の基板2の第2の領域25、第3の領域26の領域には、それぞれ第2ダイ7が搭載されている。第1の基板2を折り曲げるとき、第1の基板2の両端部に搭載された第2ダイ7が第1スペーサ5の側壁に接触するまで第1基板2を曲げている。
 図4は、第2の基板3の接合と第1の基板2の折り曲げが完了した正面の状態図である。
 図5は、第2の基板3の接合と第1の基板2の折り曲げが完了した平面の状態図である。ただし、第2の基板3は透視している状態である。
 図6、図7は、第1の基板2と第2の基板3のそれぞれの一部を露出させ、封止樹脂10で封止した状態である。これで四面冷却モジュールが完成する。これは六面直方体構造であり、うち四側面(上、下、および左右方向)を熱放散経路に使用し、残り二面を外部端子導出面として使用するものである。
 製造過程において、接合に使用する接合材は、最初に第1の接合材(高融点接合材)8を使用して、第1の基板2の第2の金属層23に電子部品(ダイ4,7、スペーサ5,6)を取り付け、1回目のリフロー(または焼結)をおこない接合する。
 次に、第1の基板2の両端を垂直方向に位置させ、第2の基板3と第1の基板2に搭載された電子部品5,6の上面とを接合し、第2の領域25または第3の領域26の第2の金属層23と第1の基板に搭載された電子部品5の側面とを接合する。ここで接合に使用する接合材は、第2の接合材(低融点接合材)9を使用する。その後、2回目のリフロー(または焼結)をおこない接合する。
 第2の接合材9は第1の接合材8よりも融点を低く設定している。これ により、2回目のリフロー中に1回目のリフローで接合した接合材8の再溶融を防ぐことができる。例えば、接合材の材料は、はんだや焼結材が使用できる。また、スペーサ等電子部品の取り付けには、はんだや焼結材の他、導電性テープなどのさまざまな接合材を適宜使用することができる。
 その他の実施例として、第1の基板2(第1の金属層21部)の曲げ領域27はスロット(貫通孔)またはディンプル(くぼみ)を備えている。これにより、金属強度を低下させ容易に曲げることができる。スロットやディンプルの形状は基板寸法に準じて適宜設計すればよい。また、第1の基板2の第1の金属層21は全領域で一体化に限らず、第2の金属層23と組み合わせて適宜設計してもよい。
 封止樹脂10は、モジュール内に充填するため、金型を使用してエポキシ成形コンパウンドでトランスファー成形される。または、枠等を使用してエポキシ樹脂でポッティング封止してもよい。
 電子部品のうち第1スペーサ5と第2スペーサ6は、素材の熱膨張係数を調整するために、アルミニウム、アルミニウムシリコンカーバイド、銅、銅モリブデン合金、多層構造、または、粉末圧縮構造でつくることができる。
 また、第1スペーサ5の体積が大きい場合は、貫通孔をつくることが可能なので、樹脂タイプのチューブを貫通孔に挿入することができる。これにより、チューブ経路を使用して、クーラント(放熱溶液)によってダイの接合部温度を直接冷却することができる。さらに放熱性が向上できる。
 1、四面冷却パワーモジュール
 2、第1の基板
 3、第2の基板
 4、第1ダイ(チップ)(電子部品)
 5、第1スペーサ(電子部品)
 6、第2スペーサ(電子部品)
 7、第2ダイ(チップ)
 8、第1の接合材(高融点接合材)
 9、第2の接合材(低融点接合材)
 10、封止樹脂
 11、外部端子(コントロール側)
 12、外部端子(パワー側)
 21、31、第1の金属層
 22、32、絶縁層
 23、33、第2の金属層
 24、第1の領域
 25、第2の領域
 26、第3の領域
 27、曲げ領域

Claims (4)

  1.  電子部品が搭載された第1の基板と前記第1の基板に対向して位置する第2の基板と前記第1の基板と前記第2の基板のそれぞれの一部を露出させて封止する封止樹脂とを備え、前記第1の基板は、第1の領域、第2の領域、第3の領域からなり、前記第1の領域は、前記電子部品が搭載され、前記第2の領域と前記第3の領域は、前記第1の領域に対して垂直方向へ位置させ、前記第2の基板は、前記第1の領域に搭載された前記電子部品の一部と接合され、前記第1の基板と前記第2の基板の外部側の四面が前記封止樹脂から露出していることを特徴とする四面冷却パワーモジュール。
  2.  前記第1の基板と前記第2の基板は、第1の金属層と絶縁層と第2の金属層からなり、前記第1の基板の前記第1の金属層または前記第2の金属層のそれぞれの曲げ領域にスロットまたはディンプルを備えて折り曲げることを特徴とする請求項1に記載の四面冷却パワーモジュール。
  3.  前記第1の基板の前記第2の領域または前記第3の領域は、前記第1の金属層または前記第2の金属層が前記第1の領域に搭載された前記電子部品の一部と接触されるまで前記第1の基板を折り曲げることを特徴とする請求項1または請求項2に記載の四面冷却パワーモジュール。
  4.  前記第1の基板と前記電子部品とを高融点接合材を使用して接合し、前記第2の基板と前記第1の基板に搭載された前記電子部品の上面とを低融点接合材を使用して接合し、前記第2の領域または前記第3の領域の前記第2の金属層と前記第1の基板に搭載された前記電子部品の側面とを低融点接合材を使用して接合したことを特徴とする請求項1から請求項3に記載の四面冷却パワーモジュール。
PCT/JP2021/011449 2021-03-19 2021-03-19 四面冷却パワーモジュール WO2022195865A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/011449 WO2022195865A1 (ja) 2021-03-19 2021-03-19 四面冷却パワーモジュール

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/011449 WO2022195865A1 (ja) 2021-03-19 2021-03-19 四面冷却パワーモジュール

Publications (1)

Publication Number Publication Date
WO2022195865A1 true WO2022195865A1 (ja) 2022-09-22

Family

ID=83322091

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011449 WO2022195865A1 (ja) 2021-03-19 2021-03-19 四面冷却パワーモジュール

Country Status (1)

Country Link
WO (1) WO2022195865A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205344A (ja) * 2007-02-22 2008-09-04 Matsushita Electric Ind Co Ltd 熱伝導基板とその製造方法及びこれを用いた回路モジュール
JP2016152234A (ja) * 2015-02-16 2016-08-22 古河電気工業株式会社 電子モジュール
JP2017103366A (ja) * 2015-12-02 2017-06-08 株式会社デンソー 電子部品モジュールおよびその製造方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008205344A (ja) * 2007-02-22 2008-09-04 Matsushita Electric Ind Co Ltd 熱伝導基板とその製造方法及びこれを用いた回路モジュール
JP2016152234A (ja) * 2015-02-16 2016-08-22 古河電気工業株式会社 電子モジュール
JP2017103366A (ja) * 2015-12-02 2017-06-08 株式会社デンソー 電子部品モジュールおよびその製造方法

Similar Documents

Publication Publication Date Title
JP4634497B2 (ja) 電力用半導体モジュール
JP4438489B2 (ja) 半導体装置
KR101208332B1 (ko) 반도체 패키지용 클립 구조 및 이를 이용한 반도체 패키지
CN109585392A (zh) 包括设置在两个基底之间的半导体芯片和引线框的半导体芯片封装件
US20100134979A1 (en) Power semiconductor apparatus
JP2002203942A (ja) パワー半導体モジュール
JP5971333B2 (ja) 電力変換器
JP2007184501A (ja) 外部に露出する放熱体を上部に有する樹脂封止型半導体装置及びその製法
WO2013171946A1 (ja) 半導体装置の製造方法および半導体装置
JP4926033B2 (ja) 回路基板及びこれを用いたパッケージ並びに電子装置
US8450842B2 (en) Structure and electronics device using the structure
JP3816821B2 (ja) 高周波用パワーモジュール基板及びその製造方法
US20060220188A1 (en) Package structure having mixed circuit and composite substrate
JP2021082714A (ja) 半導体装置
WO2022195865A1 (ja) 四面冷却パワーモジュール
JP5800716B2 (ja) 電力用半導体装置
JP2010225952A (ja) 半導体モジュール
JP4556732B2 (ja) 半導体装置及びその製造方法
JP7160940B2 (ja) 電子部品収納用パッケージおよび電子装置
JP2004048084A (ja) 半導体パワーモジュール
KR102684858B1 (ko) 열방출 포스트 접합 반도체 패키지 및 이의 제조방법
JP7520273B1 (ja) パワーモジュール
JP6887476B2 (ja) 半導体パワーモジュール
US12027436B2 (en) Package with clip having through hole accommodating component-related structure
JP4249366B2 (ja) 金属ベース回路基板と電子モジュールの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931611

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP