WO2022195803A1 - セルロースアセテート及びその製造方法 - Google Patents

セルロースアセテート及びその製造方法 Download PDF

Info

Publication number
WO2022195803A1
WO2022195803A1 PCT/JP2021/011086 JP2021011086W WO2022195803A1 WO 2022195803 A1 WO2022195803 A1 WO 2022195803A1 JP 2021011086 W JP2021011086 W JP 2021011086W WO 2022195803 A1 WO2022195803 A1 WO 2022195803A1
Authority
WO
WIPO (PCT)
Prior art keywords
cellulose acetate
foreign matter
dope
less
area
Prior art date
Application number
PCT/JP2021/011086
Other languages
English (en)
French (fr)
Inventor
直広 小山田
光輝 保坂
Original Assignee
株式会社ダイセル
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ダイセル filed Critical 株式会社ダイセル
Priority to PCT/JP2021/011086 priority Critical patent/WO2022195803A1/ja
Priority to TW110136216A priority patent/TW202238101A/zh
Publication of WO2022195803A1 publication Critical patent/WO2022195803A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08BPOLYSACCHARIDES; DERIVATIVES THEREOF
    • C08B3/00Preparation of cellulose esters of organic acids
    • C08B3/06Cellulose acetate, e.g. mono-acetate, di-acetate or tri-acetate

Definitions

  • the present invention relates to cellulose acetate. Specifically, the present invention relates to cellulose acetate suitable for optical applications and a method for producing the same.
  • Cellulose derivatives such as cellulose acetate have been used as materials for various optical films used in image display devices due to their excellent optical properties. In recent years, especially with the improvement of image quality and definition of flat panel displays, reduction of foreign substances contained in optical films has been demanded.
  • Contaminants contained in optical films include bright spot contaminants.
  • Bright spot foreign matter is observed with a microscope from the outside of the other polarizer by placing a cellulose ester film between two polarizers arranged in an orthogonal state (crossed Nicols), exposing the film to light from the outside of one of the polarizers. Then, light leaks from the foreign matter portion, and the foreign matter appears as a bright spot. It is believed that this bright spot foreign matter is caused by unreacted cellulose in cellulose acetate, low acetylation degree cellulose acetate, and the like.
  • cellulose acetate consists of a pretreatment step of sprinkling and mixing pulp raw material (dissolving pulp) with a relatively high ⁇ -cellulose content (dissolving pulp) after disintegration and crushing, acetic anhydride, acetic acid, and an acetic acid catalyst.
  • An acetylation step of reacting pretreated pulp with a mixed acid to obtain cellulose triacetate an aging step of hydrolyzing cellulose triacetate to obtain cellulose acetate having a desired degree of acetylation, and a step of obtaining cellulose acetate having a desired degree of acetylation. It is produced by a post-treatment step of precipitating and separating from the reaction solution, purifying, stabilizing, and drying.
  • the unreacted cellulose and the low acetylation degree cellulose acetate are removed, for example, by filtration of the cellulose triacetate solution after the acetylation step, filtration of the reaction solution after the aging step, or filtration of the cellulose acetate solution before film formation.
  • the solution viscosity of cellulose acetate is usually high, there are problems such as an increase in filtration pressure and clogging of the filter.
  • Patent Document 1 cellulose having a filtration constant K measured by a specific method of 30 mL ⁇ 1 or less is produced by acetylating pulp raw material after crushing in a primary crushing step and a secondary crushing step.
  • a technique for producing acetate is disclosed.
  • Also disclosed is a technique for confirming the amount and shape of insoluble foreign matter in cellulose acetate by FlowCAM (registered trademark) analysis. It is said that by using this cellulose acetate, it is possible to obtain an optical film with less luminescent spots.
  • An object of the present disclosure is to provide a cellulose acetate from which an optical film with extremely few bright spots can be obtained.
  • the cellulose acetate of the present disclosure has a dope foreign matter area ratio of 1.0% or less as measured by the following method.
  • Method for measuring dope foreign matter area ratio After completely dissolving 7.4 g of dried cellulose acetate (sample) in 37.8 g of dichloromethane/methanol (weight ratio of 9:1), defoaming for 2 hours or more to prepare a cellulose acetate solution (dope).
  • a polarizing microscope is set with a 20-cm LED light whose illuminance is adjusted to 1,000 lx, and an image of the cellulose acetate solution is obtained in a crossed Nicols state sandwiched between two polarizing plates.
  • Dope foreign matter area ratio (%) foreign matter area (cm 2 )/background area (cm 2 ) x 100
  • the total degree of acetyl substitution of the cellulose acetate is preferably 2.70 or more and 2.96 or less.
  • the total sulfuric acid content of the cellulose acetate exceeds 0 ppm and is 200 ppm or less.
  • the molar ratio (Ca+Mg)/H 2 SO 4 of the total amount of calcium and magnesium contained in the cellulose acetate to the total amount of sulfuric acid is 0.25 or more and 3.0 or less.
  • the optical film of the present disclosure is obtained using the cellulose acetate described above.
  • FlowCAM registered trademark
  • the doped foreign matter area ratio of the present disclosure is for analysis of the amount of foreign matter that becomes a bright spot in the crossed Nicols state, so it is possible to confirm the amount and shape of the bright spot foreign matter itself, which is a problem when used as an optical film. That is, this dope foreign matter area ratio is a direct index of the number of bright spot foreign matter in the optical film made of cellulose acetate of the present disclosure. According to the cellulose acetate of the present disclosure having a dope foreign matter area ratio of 1.0% or less, it is possible to obtain an optical film with extremely few bright spot foreign matter.
  • FIG. 1 is a schematic diagram showing an example of a cellulose acetate manufacturing apparatus of the present disclosure
  • X to Y indicating a range means “X or more and Y or less”.
  • ppm means "ppm by weight”.
  • the cellulose acetate of the present disclosure has a dope foreign matter area ratio of 1.0% or less measured by the following method. (Method for measuring dope foreign matter area ratio) After completely dissolving 7.4 g of dried cellulose acetate (sample) in 37.8 g of dichloromethane/methanol (weight ratio of 9:1), defoaming for 2 hours or more to prepare a cellulose acetate solution (dope). Next, a polarizing microscope is set with a 20-cm LED light whose illuminance is adjusted to 1,000 lx, and an image of the cellulose acetate solution is obtained in a crossed Nicols state sandwiched between two polarizing plates.
  • Dope foreign matter area ratio (%) foreign matter area (cm 2 )/background area (cm 2 ) x 100
  • the dope foreign matter area ratio is preferably 0.80% or less, more preferably 0.60% or less.
  • the lower the dope foreign matter area ratio, the better, and the lower limit is not particularly limited.
  • the total amount of sulfuric acid contained in the cellulose acetate of the present disclosure is preferably over 0 ppm and 200 ppm or less.
  • Cellulose acetate having a total sulfuric acid content within this range has high thermal stability and excellent storage stability as a product such as an optical film.
  • the total sulfuric acid content is more preferably over 0 ppm and 180 ppm or less, and particularly preferably 10 ppm or more and 150 ppm or less.
  • the total amount of sulfuric acid in cellulose acetate can be obtained by the following method.
  • the dried cellulose acetate is baked in an electric furnace at 1300°C, the sublimated sulfurous acid gas is trapped in 10% hydrogen peroxide solution, and then titrated with a normal sodium hydroxide aqueous solution, and the obtained titration value is converted to SO 2 2- .
  • the amount obtained is calculated as the total amount of sulfuric acid.
  • the total sulfuric acid content in the present disclosure is expressed in units of ppm as the total sulfuric acid content in 1 g of absolutely dry cellulose acetate.
  • Most of the calcium (Ca) and magnesium (Mg) contained in the cellulose acetate of the present disclosure are derived from the neutralizing agent, stabilizer, washing water, etc. used during the production of cellulose acetate. For example, it exists due to adhesion to the surface of cellulose acetate, electrostatic interaction with carboxyl groups contained in the raw material cellulose fibers, and sulfate ester sites formed during production.
  • the molar ratio (Ca+Mg)/H 2 SO 4 of the total content of calcium and magnesium to the total amount of sulfuric acid is preferably 0.25 or more and 3.0 or less.
  • the molar ratio (Ca+Mg)/H 2 SO 4 is within this range, the thermal stability of the cellulose acetate is improved, and the number of bright spots in the resulting optical film is reduced, thereby achieving high transparency.
  • the molar ratio (Ca+Mg)/H 2 SO 4 is more preferably 0.30 or more and 2.80 or less, and particularly preferably 0.50 or more and 2.50 or less.
  • the molar ratio (Ca+Mg)/H 2 SO 4 is calculated as a ratio of the calcium content, magnesium content, and the above-mentioned total sulfuric acid amount (amount converted to SO 4 2 ⁇ ) converted to molar units.
  • the calcium content and magnesium content of cellulose acetate can each be measured by the following methods.
  • the water content in the sample can be measured using, for example, a METTLER TOLEDO HB43.
  • About 2.0 g of a sample in a water-containing state is placed on the aluminum tray of a ket moisture meter and heated at 120°C until the weight stops changing. From the change in weight before and after heating, the moisture content (% by weight) in the sample can be calculated.
  • the calcium content in the cellulose acetate of the present disclosure is preferably 10 ppm or more and 100 ppm or less, more preferably 20 ppm or more and 80 ppm or less.
  • the magnesium content in the cellulose acetate of the present disclosure is preferably 0.5 ppm or more and 5.0 ppm or less, more preferably 1.0 ppm or more and 4.5 ppm or less.
  • the total degree of acetyl substitution (DS) of the cellulose acetate of the present disclosure is not particularly limited, it is preferably 2.70 to 2.96, more preferably 2.75 to 2.92, from the viewpoint of excellent optical properties. 0.80 to 2.90 is particularly preferred.
  • the total degree of acetyl substitution (DS) of the present disclosure may be from 2.70 to 2.92, may be from 2.70 to 2.90, may be from 2.75 to 2.96;2. It may be from 75 to 2.90, it may be from 2.80 to 2.96, it may be from 2.80 to 2.92.
  • the method for measuring the degree of acetylation (AV) is as follows.
  • AV (%) (AB) ⁇ F ⁇ 1.201 / sample mass (g)
  • the cellulose acetate of the present disclosure preferably has a total degree of substitution at the 2- and 3-positions of the glucose ring (DS2+DS3) of 1.8 or more and 2.0 or less, and a degree of substitution at the 6-position (DS6) of 0 0.85 or higher.
  • the degree of acetyl substitution DS6 at the 6-position is more preferably 0.86 or more, more preferably 0.88 or more.
  • the total degree of substitution at the 2nd and 3rd positions (DS2+DS3) is more preferably 1.8 or more and 1.95 or less, and more preferably 1.85 or more and 1.95 or less.
  • the ratio (DS6/DS) of the 6-position substitution degree DS6 to the total of the 2-, 3- and 6-position substitution degrees is preferably 0.305 or more, and 0.310 or more. more preferred.
  • Each degree of acetyl substitution at positions 2, 3 and 6 of the glucose ring can also be measured by NMR according to the method of Tezuka (Carbonydr. Res. 273, 83 (1995)). That is, free hydroxyl groups of cellulose acetate are propionylated with propionic anhydride in pyridine. The obtained sample is dissolved in deuterated chloroform, and the carbon-13 spectrum is measured. The carbon signals of the acetyl group appear in the region from 169 ppm to 171 ppm in the order of 2nd, 3rd and 6th positions from the high magnetic field side. Carbon signals of propionyl groups appear in the same order in the region from 172 ppm to 174 ppm.
  • the degree of substitution in the original cellulose acetate can be determined from the abundance ratio of the acetyl group and the propionyl group at the corresponding positions.
  • the total degree of substitution at the 2, 3 and 6 positions thus obtained can also be determined as the total degree of acetyl substitution DS.
  • the weight average molecular weight (Mw) of the cellulose acetate of the present disclosure is not particularly limited, but is preferably 240,000 to 300,000, more preferably 250,000 to 290,000, and even more preferably 260,000 to 280,000. .
  • Cellulose acetate having a weight-average molecular weight within this range provides an optical film with excellent physical properties.
  • the weight average molecular weight of the cellulose acetate of the present disclosure may be from 240,000 to 280,000, may be from 240,000 to 290,000, may be from 250,000 to 280,000, may be from 250,000 ⁇ 300,000, may be between 260,000 and 290,000, may be between 260,000 and 300,000.
  • the molecular weight distribution (molecular weight distribution Mw/Mn obtained by dividing the weight average molecular weight Mw by the number average molecular weight Mn) of the cellulose acetate of the present disclosure is preferably 2.1 to 2.9, more preferably 2.1 to 2.8. .1 to 2.7 are particularly preferred. When the molecular weight distribution is within this range, film formation is facilitated and excellent optical properties are achieved.
  • the weight average molecular weight Mw and the molecular weight distribution Mw/Mn can be measured by a high performance liquid chromatography system in which a gel filtration column is connected to a detector for detecting refractive index and light scattering.
  • a high performance liquid chromatography system for example, Shodex GPC SYSTEM-21H can be used.
  • a detector for example, a differential refractive index detector (RI) can be used.
  • the measurement conditions are as follows.
  • YI Yellowness Index
  • YI Yellowness Index
  • YI of the cellulose acetate of the present disclosure may be from 1.0 to 8.0, may be from 1.0 to 7.0, may be from 1.0 to 6.0, may be from 2.0 to 6 .0.
  • the Haze value of the cellulose acetate of the present disclosure is preferably 2.0 or less, more preferably 1.5 or less, and even more preferably 1.0 or less. Cellulose acetate with a low Haze value provides an optical film with high transparency.
  • the Haze value of the cellulose acetate of the present disclosure may be greater than 0 and 2.0 or less, may be 0.1 or more and 2.0 or less, may be 0.1 or more and 1.5 or less, and may be 0 .1 or more and 1.0 or less.
  • the haze value of cellulose acetate is measured using a turbidity meter (manufactured by Nippon Denshoku Industries) using a glass cell (width 45 mm, height 45 mm, optical path length 10 mm). Specifically, first, the solvent described above in the YI measurement method is placed in a glass cell, set in the turbidity meter, and zero point adjustment and standard adjustment are performed. Next, a sample solution having a concentration of 12% by weight prepared by the method described above is placed in a washed glass cell and set in a turbidity meter to read the turbidity (Haze value).
  • the transparency of the cellulose acetate of the present disclosure is preferably 90% or higher, more preferably 95% or higher.
  • the higher the numerical value, the higher the transparency, and the upper limit is 100%.
  • the transparency of cellulose acetate is measured using UV-1280 (manufactured by Shimadzu Corporation).
  • this mixed solvent is placed in a glass cell with an optical path length of 100 mm, and the transmittance is measured to obtain a blank.
  • the test solution having an adjusted concentration of 6% by mass/volume was placed in a washed glass cell and the transmittance was measured. do.
  • the method for producing cellulose acetate of the present disclosure includes at least a crushing step of crushing raw material pulp, an activation step of activating cellulose in the crushed pulp, and an acetylation step of acetylating the activated cellulose. include. It may further include a series of steps including saponification ripening, purification and drying to prepare for a given degree of acetyl substitution.
  • the manufacturing apparatus 1 shown in FIG. 1 can be used for manufacturing the cellulose acetate of the present disclosure.
  • this manufacturing apparatus 1 includes a base unit 2, a reaction unit 3, a cover unit 4, a first drive unit 5, a tilting mechanism 6, a rotor (stirring member) 7, a second drive unit 8, and a stripping member 9.
  • the manufacturing apparatus 1 has an integrated structure provided with these components.
  • the base unit 2 is provided below the manufacturing apparatus 1 and supports the reaction unit 3 from below.
  • the reaction unit 3 has a container 11 and a casing 12 that accommodates the container 11 .
  • the container 11 is formed in a cylindrical shape with a bottom, and is arranged with the opening 11a facing upward.
  • the casing 12 covers the outer circumference of the container 11 .
  • a gap is provided between the container 11 and the casing 12 to avoid interference between the container 11 and the casing 12 .
  • the container 11 is arranged so as to be rotatable about its cylindrical axis by a first drive unit 5, which will be described later.
  • the cover unit 4 is provided above the container 11 and closes the opening 11a of the container 11 .
  • a cover unit 4 is supported by the reaction unit 3 .
  • the first drive unit 5 has a motor, and rotates the container 11 around the cylinder axis at a predetermined number of rotations by the rotational driving force of the motor.
  • the first drive unit 5 is arranged below the container 11 and supported by the reaction unit 3 .
  • the tilt mechanism 6 adjusts the cylinder axis direction of the container 11 between the vertical direction and the direction crossing the vertical direction.
  • the manufacturing apparatus 1 is configured such that the cylinder axis direction of the container 11 can be adjusted between the vertical direction and the direction crossing the vertical direction.
  • the tilt mechanism 6 is supported by the base unit 2 .
  • FIG. 1 shows how the tilting mechanism 6 is set so that the cylinder axis CL of the container 11 is aligned with the vertical line VL.
  • the rotor 7 When the cover unit 4 is closed, the rotor 7 extends in the direction of the cylindrical axis of the container 11 and is rotatable around the cylindrical axis.
  • the rotor 7 is arranged in the container 11 at one end and connected to the second drive unit 8 at the other end.
  • the rotor 7 is supported by the second drive unit 8 .
  • the second drive unit 8 has a motor, and rotates the rotor 7 at a predetermined number of revolutions by the rotational driving force of the motor.
  • the second drive unit 8 is arranged above the container 11 and supported by the cover unit 4 .
  • the peeling member 9 is arranged so as to come into contact with the portion of the inner wall 11b around the cylinder axis of the container 11, peel the pulp adhering to the inner wall 11b from the inner wall 11b, and return it to the liquid mixture. Since the peeling member 9 is supported by the cover unit 4 , the position of the peeling member 9 within the manufacturing apparatus 1 is held even while the container 11 and the rotor 7 are rotating.
  • the manufacturing apparatus 1 having the above configuration includes a mixing device that prepares a mixed liquid containing crushed pulp, an activation device that activates cellulose in the pulp, and a cellulose acetate that acetylates the activated cellulose. It also serves as a reactor for production. Specifically, the manufacturing apparatus 1 prepares a mixed liquid containing cellulose in the container 11, activates the cellulose, and then initiates a reaction of the mixed liquid containing the activated cellulose in the container 11. An agent (acid catalyst) is added to acetylate cellulose in the presence of acetic anhydride.
  • crushing process In the crushing step, the raw material pulp is crushed using a known crushing device such as a disc refiner.
  • cellulose with a high degree of polymerization such as linter pulp, particularly cotton linter pulp, can be used. Two or more types of linter pulp may be used in combination.
  • the ⁇ -cellulose content (weight basis) of the raw pulp is preferably 97.0% or more and 100% or less, more preferably 97.5% or more and 100% or less, further preferably 98.0% or more and 100% or less, and 98 0.5% or more and 100% or less is particularly preferable.
  • the activation step first, the crushed raw material pulp and acetic acid are put into the container 11 of the apparatus 1 and mixed to prepare a mixed liquid containing the crushed raw material pulp.
  • the solid content concentration of the mixed liquid is preferably 3.0% by weight or less, more preferably 2.5% by weight or less.
  • the acetylation of cellulose in the acetylation step described later is a solid-liquid heterogeneous reaction and is a diffusion rate-controlled reaction. By eliminating it as much as possible, the dope foreign matter area ratio of the obtained cellulose acetate is reduced.
  • the moisture concentration in the pulp fed to the activation step is preferably 6.0% by weight or more and 11.0% by weight or less.
  • the mixed liquid thus prepared is stirred in the container 11 and held for a certain period of time as necessary to further crush the raw material pulp after crushing and to activate the cellulose in the pulp. .
  • the mixture is stirred by rotating the container 11 and rotating the rotor 7 .
  • the rotation speed of the container 11 is preferably 10 rpm or more and 300 rpm or less, more preferably 50 rpm or more and 200 rpm or less. From the same point of view, the rotation speed of the rotor 7 is preferably 50 rpm or more and 500 rpm or less, more preferably 100 rpm or more and 400 rpm or less.
  • the directions of rotation of the container 11 and the rotor 7 may be the same or opposite.
  • the container 11 in the activation step, it is preferable to arrange the container 11 so that the cylinder axis direction is along the vertical direction.
  • This arrangement suppresses uneven distribution of the components in the mixed liquid due to the influence of gravity, and facilitates stirring of the mixed liquid.
  • the pulp crushing efficiency is improved, and cellulose acetate with a low dope foreign matter area ratio can be obtained.
  • the peeling member 9 peels off the pulp adhering to the inner wall 11b of the container 11 and returns it to the mixed liquid while stirring the mixed liquid. As a result, even if the pulp in the liquid mixture tends to adhere to the inner wall 11b of the container 11, the pulp can be easily stirred in the liquid mixture.
  • acetylation step In the acetylation step, a reaction initiator (acid catalyst) is added to the mixed solution containing the activated cellulose in the container 11 and stirred to acetylate the cellulose in the presence of acetic anhydride.
  • a preferred acid catalyst includes sulfuric acid.
  • Acetic anhydride may be added to the mixed liquid containing raw pulp and acetic acid after crushing in the activation process, or may be added to the mixed liquid after the activation process.
  • the liquid volume of the mixed liquid is increased and a high shearing force is applied to the pulp. Addition of acetic anhydride in the activation step is preferred because this further promotes the disintegration of the pulp.
  • the amount of acetic anhydride to be added is preferably 1,000 to 4,000 parts by weight, more preferably 1,500 to 3,000 parts by weight, based on 100 parts by weight of raw material pulp.
  • the amount of acetic anhydride to be added may be from 1,000 parts by weight to 3,000 parts by weight, and may be from 1,500 parts by weight to 4,000 parts by weight.
  • the amount of sulfuric acid to be added is preferably 80 to 170 parts by weight, more preferably 100 to 150 parts by weight, of concentrated sulfuric acid with respect to 100 parts by weight of raw material pulp.
  • the mixture is stirred at 25-35° C. to proceed the acetylation reaction.
  • the time required for acetylation is preferably 60 to 180 minutes.
  • the time required for acetylation (also referred to as acetylation time) refers to the time from when sulfuric acid is added to the mixture containing raw pulp and acetic anhydride until when the neutralizing agent is added.
  • the container 11 may be arranged so that the cylinder axis direction of the container 11 intersects the vertical direction. Thereby, in the acetylation step, the mixed liquid in the container 11 can be easily kneaded.
  • the angle between the cylinder axis direction of the container 11 and the vertical direction can be set as appropriate, but may be, for example, greater than 0° and 45° or less, preferably 10° or more and 40° or less, and 25° or more and 35° or less. more preferred.
  • a neutralizing agent is added to the mixed solution after the acetylation step to stop the acetylation reaction, and the sulfate bound to the cellulose is removed by the acetylation reaction.
  • the neutralizing agent include water, an aqueous acetic acid solution, an aqueous magnesium acetate solution, and the like.
  • the saponification and ripening temperature is preferably 40-75°C, more preferably 45-65°C.
  • the saponification and ripening time is appropriately set depending on the temperature, and is preferably 50 to 120 minutes, for example.
  • the degree of acetyl substitution of the obtained cellulose acetate can be adjusted by the saponification ripening temperature and time.
  • a method for purifying cellulose acetate is not particularly limited, and a known method can be used. For example, methods such as precipitation, filtration, washing, drying, extraction, concentration, and column chromatography can be used alone or in combination of two or more. From the viewpoint of high operability and purification efficiency, a method of solid-liquid separation of cellulose acetate by a precipitation (reprecipitation) operation is preferred.
  • the precipitation operation is performed by mixing a solution containing cellulose acetate with a poor solvent, such as adding a solution containing cellulose acetate to a poor solvent for cellulose acetate, or adding a poor solvent to a solution containing cellulose acetate.
  • the drying method is not particularly limited, and known methods can be used. For example, it can be dried under conditions such as ventilation or reduced pressure.
  • test temperature is room temperature (20° C. ⁇ 5° C.) unless otherwise specified.
  • Example 1 Cellulose acetate of Example 1 was produced by sequentially carrying out a crushing step, an activation step, and an acetylation step using an apparatus 1 having the basic configuration shown in FIG.
  • the raw material, sheet-like cotton linter pulp with an ⁇ -cellulose content of 99% by weight or more was treated with a disc refiner to obtain cotton-like cellulose (water content: 8.0% by weight).
  • a 24 wt% acetic acid-water mixed solution of magnesium acetate was added to the mixed solution after acetylation until the water concentration in the solution reached 15 mol% and the sulfate ion concentration reached 0.012 mol%.
  • Acetic anhydride was decomposed to terminate the acetylation reaction. After that, aging was performed at 50° C. for 80 minutes.
  • Example 1 The reaction solution after saponification and aging was put into dilute acetic acid with stirring to precipitate the product.
  • Cellulose acetate flakes of Example 1 were obtained by immersing the precipitate in a dilute aqueous calcium hydroxide solution, filtering and drying.
  • Comparative Example 1 cellulose acetate was produced by a conventional method without using the apparatus shown in FIG.
  • sheet-like cotton linter pulp ( ⁇ -cellulose content of 99% by weight or more) was treated with a disc refiner to obtain cotton-like cellulose (water content of 8.0% by weight).
  • the first activation treatment step 110 parts by weight of acetic acid was sprayed onto 100 parts by weight of flocculent cellulose, stirred and mixed, and allowed to stand at a temperature of 24°C for 60 minutes.
  • 70 parts by weight of acetic acid containing sulfuric acid (2 parts by weight of sulfuric acid content) is added to the cellulose after the first activation treatment, and the mixture is left at a temperature of 25° C. for 60 minutes. placed.
  • acetylation step 430 parts by weight of acetic acid, 310 parts by weight of acetic anhydride and 10 parts by weight of sulfuric acid were added to the cellulose after the second activation treatment, mixed, and held at 15° C. or lower for about 20 minutes. After that, the temperature of the reaction system was raised to about 38° C. and acetylation was carried out for 160 minutes.
  • the total amount of acetic acid, acetic anhydride and sulfuric acid added and the acetylation time are shown in Table 1 below.
  • a 24 wt% acetic acid-water mixed solution of magnesium acetate was added to the reaction solution after acetylation until the water concentration in the solution reached 14 mol% and the sulfate ion concentration reached 13.3 mol%.
  • Acetic anhydride was decomposed to terminate the acetylation reaction. After that, aging was performed at 50° C. for 80 minutes.
  • Comparative Example 2 Cellulose acetate of Comparative Example 2 was obtained in the same manner as in Example 1, except that the solid content concentration of the mixed solution in the activation step was 6.2% by weight.
  • YI Yellowness Index
  • Example 1 As shown in Table 1, according to Example 1 in which the dope foreign matter area ratio of the cellulose acetate obtained in the acetylation step is 1.0% or less, Comparative Example 1-2 in which the dope foreign matter area ratio exceeds 1.0% It is possible to manufacture an optical film with an extremely small number of bright spot foreign matter as compared with . From this evaluation result, the superiority of the present disclosure is clear.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Materials Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Polysaccharides And Polysaccharide Derivatives (AREA)

Abstract

下記方法で測定したドープ異物面積率が1.0%以下である、セルロースアセテート。 (ドープ異物面積率の測定方法) 乾燥したセルロースアセテート(試料)7.4gをジクロロメタン/メタノール(重量比9:1)37.8gに完全に溶解した後、2時間以上脱泡して、セルロースアセテート溶液(ドープ)を作成する。次に、偏光顕微鏡に20cm照度を1,000lxに調整したLEDライトをセットして、偏光板2枚で挟んだクロスニコル状態でセルロースアセテート溶液の画像を取得する。得られた画像をモノクロ化処理した後、無作為に選択した領域の異物面積を測定し、選択した領域全体の面積を背景面積として、下記式に従ってドープ異物面積率を算出する。 ドープ異物面積率(%)=異物面積(cm)/背景面積(cm)×100

Description

セルロースアセテート及びその製造方法
 本発明は、セルロースアセテートに関する。詳細には、本発明は、光学用途に適したセルロースアセテート及びその製造方法に関する。
 セルロースアセテート等のセルロース誘導体は、優れた光学的特性を有していることから、従来、画像表示装置に用いられる各種光学フィルムの材料として適用されてきた。近年、特にフラットパネルディスプレイの高画質化及び高精細化に伴って、光学フィルムに含まれる異物の低減が求められている。
 光学フィルムに含まれる異物として、輝点異物が挙げられる。輝点異物とは、直交状態(クロスニコル)で配置した2枚の偏光子の間にセルロースエステルフィルムを置き、一方の偏光子の外側から光を当て、他方の偏光子の外側から顕微鏡で観察すると、異物部分で光が漏れ、輝点となって見える異物である。この輝点異物は、セルロースアセテート中の未反応セルロース、低酢化度セルロースアセテート等に起因すると考えられている。
 一般的に、セルロースアセテートは、α-セルロース含有率の比較的高いパルプ原料(溶解パルプ)を、離解・解砕後、酢酸を散布混合する前処理工程、無水酢酸、酢酸及び酢化触媒よりなる混酸で、前処理したパルプを反応させて、セルローストリアセテートを得る酢化工程、セルローストリアセテートを加水分解して、所望の酢化度のセルロースアセテートを得る熟成工程、及び、加水分解後のセルロースアセテートを反応溶液から沈殿分離して、精製、安定化、乾燥する後処理工程により製造される。この製造方法において、未反応セルロース及び低酢化度セルロースアセテートは、例えば、酢化工程後のセルローストリアセテート溶液のろ過、熟成工程後の反応溶液のろ過、又は製膜前のセルロースアセテート溶液のろ過等により除去されうる。しかし、通常、セルロースアセテートの溶液粘度が高いことから、ろ過圧の上昇やフィルターの閉塞といった問題がある。
 特許文献1には、パルプ原料を一次解砕工程及び二次解砕工程で解砕した後に、酢化することにより、特定の方法で測定されるろ過恒数Kが30mL-1以下であるセルロースアセテートを製造する技術が開示されている。また、FlowCAM(登録商標)分析によりセルロースアセテート中の不溶解異物の量や形状を確認する技術も開示されている。このセルロースアセテートを用いることにより、輝点異物の少ない光学フィルムが得られるとされている。
特開2018-30911号公報
 セルロースアセテートからなる光学フィルムには、さらなる高品質化が求められている。本開示の目的は、輝点異物が極めて少ない光学フィルムを得ることができるセルロースアセテートの提供である。
 本開示のセルロースアセテートは、下記方法で測定したドープ異物面積率が1.0%以下である、セルロースアセテート。
(ドープ異物面積率の測定方法)
 乾燥したセルロースアセテート(試料)7.4gをジクロロメタン/メタノール(重量比9:1)37.8gに完全に溶解した後、2時間以上脱泡して、セルロースアセテート溶液(ドープ)を作成する。次に、偏光顕微鏡に20cm照度を1,000lxに調整したLEDライトをセットして、偏光板2枚で挟んだクロスニコル状態でセルロースアセテート溶液の画像を取得する。得られた画像をモノクロ化処理した後、無作為に選択した領域の異物面積を測定し、選択した領域全体の面積を背景面積として、下記式に従ってドープ異物面積率を算出する。
  ドープ異物面積率(%)=異物面積(cm)/背景面積(cm)×100
 好ましくは、前記セルロースアセテートのアセチル総置換度は2.70以上、2.96以下である。
 好ましくは、前記セルロースアセテートの総硫酸量は0ppmを超えて200ppm以下である。
 好ましくは、前記セルロースアセテートに含まれるカルシウム及びマグネシウムの合計量の、総硫酸量に対するモル比(Ca+Mg)/HSOは0.25以上3.0以下である。
 本開示の光学フィルムは、前述のセルロースアセテートを用いて得られる。
 特許文献1では、FlowCAM(登録商標)分析により不溶解異物の量や形状が確認されているが、この不溶解異物は、クロスニコル状態で観察される輝点異物と直接対応するものではない。本開示のドープ異物面積率は、クロスニコル状態で輝点となる異物量を解析対象としているため、光学フィルムとした場合に問題となる輝点異物そのものの量や形状を確認することができる。即ち、このドープ異物面積率は、本開示のセルロースアセテートからなる光学フィルム中の輝点異物数の直接的な指標である。このドープ異物面積率が1.0%以下である本開示のセルロースアセテートによれば、輝点異物が極めて少ない光学フィルムを得ることができる。
本開示のセルロースアセテートの製造装置の一例を示す概要図である。
 以下、好ましい実施形態に基づいて本開示が具体的に説明される。なお、本願明細書において、範囲を示す「X~Y」は「X以上Y以下」を意味する。また、特に注釈のない限り、「ppm」は「重量ppm」を意味する。
 <セルロースアセテート>
 本開示のセルロースアセテートは、以下の方法により測定されるドープ異物面積率が1.0%以下である。
(ドープ異物面積率の測定方法)
 乾燥したセルロースアセテート(試料)7.4gをジクロロメタン/メタノール(重量比9:1)37.8gに完全に溶解した後、2時間以上脱泡して、セルロースアセテート溶液(ドープ)を作成する。次に、偏光顕微鏡に20cm照度を1,000lxに調整したLEDライトをセットして、偏光板2枚で挟んだクロスニコル状態でセルロースアセテート溶液の画像を取得する。得られた画像をモノクロ化処理した後、無作為に選択した領域の異物面積を測定し、選択した領域全体の面積を背景面積として、下記式に従ってドープ異物面積率を算出する。
  ドープ異物面積率(%)=異物面積(cm)/背景面積(cm)×100
 ドープ異物面積率が1.0%以下のセルロースアセテートを用いることにより、輝点異物が極めて少ない光学フィルムが得られる。ドープ異物面積率は0.80%以下が好ましく、0.60%以下がより好ましい。ドープ異物面積率は低いほど好ましく、その下限値は特に限定されない。
 本開示のセルロースアセテートに含まれる総硫酸量は、0ppmを超えて200ppm以下が好ましい。総硫酸量がこの範囲にあるセルロースアセテートは、熱安定性が高く、光学フィルム等の製品としての保存安定性に優れる。熱安定性が向上するとの観点から、総硫酸量は0ppmを超えて180ppm以下がより好ましく、10ppm以上150ppm以下が特に好ましい。
 セルロースアセテート中の総硫酸量は、以下の方法により求めることができる。乾燥したセルロースアセテートを1300℃の電気炉で焼き、昇華した亜硫酸ガスを10%過酸化水素水にトラップした後、規定水酸化ナトリウム水溶液で滴定し、得られた滴定値をSO 2-に換算した量を総硫酸量として求める。本開示における総硫酸量は、絶乾状態のセルロースアセテート1g中の総硫酸量として、ppm単位で表される。
 本開示のセルロースアセテートに含まれるカルシウム(Ca)及びマグネシウム(Mg)の多くは、セルロースアセテート製造時に使用される中和剤、安定剤、洗浄水等に由来する。例えば、セルロースアセテート表面への付着、原料であるセルロース繊維に含まれるカルボキシル基や製造時に形成される硫酸エステル部位との静電相互作用により存在している。
 本開示のセルロースアセテートでは、カルシウム及びマグネシウムの総含有量の、総硫酸量に対するモル比(Ca+Mg)/HSOは0.25以上3.0以下が好ましい。モル比(Ca+Mg)/HSOがこの範囲にあることにより、セルロースアセテートの熱安定性が向上するとともに、得られる光学フィルムの輝点異物の数が減少して、高い透明性が達成される。輝点異物減少の観点から、モル比(Ca+Mg)/HSOは、0.30以上2.80以下がより好ましく、0.50以上2.50以下が特に好ましい。
 モル比(Ca+Mg)/HSOは、カルシウム含量及びマグネシウム含量と、前述の総硫酸量(SO 2-に換算した量)と、をそれぞれモル単位に換算したものの比として算出される。セルロースアセテートのカルシウム含量及びマグネシウム含量は、それぞれ以下の方法により測定することができる。
 乾燥試料3.0gをルツボに計量し、電熱器上で炭化させた後、750~850℃の電気炉で2時間程度灰化させる。約30分放冷した後、0.07%の塩酸溶液25mLを添加して、220~230℃で加熱溶解させる。放冷後、溶解液を200mLまで蒸留水でメスアップし、これを検液として標準液とともに原子吸光光度計を用いて吸光度を測定する。検液のカルシウム(Ca)含量及びマグネシウム(Mg)含量をそれぞれ求めて、以下の式で換算することにより、試料中のカルシウム(Ca)含量及びマグネシウム(Mg)含量を求める。
Figure JPOXMLDOC01-appb-M000001
 
 なお、試料中の水分は、例えばケット水分計(METTLER TOLEDO HB43)を用いて測定することができる。ケット水分計のアルミ受け皿に含水状態の試料約2.0gを乗せ、重量が変化しなくなるまで120℃で加熱することで加熱前後の重量変化から試料中の水分(重量%)が算出できる。
 本開示のセルロースアセテート中のカルシウム含量は、10ppm以上100ppm以下が好ましく、20ppm以上80ppm以下がより好ましい。本開示のセルロースアセテート中のマグネシウム含量は、0.5ppm以上5.0ppm以下が好ましく、1.0ppm以上4.5ppm以下がより好ましい。
 本開示のセルロースアセテートのアセチル総置換度(DS)は特に限定されないが、光学特性に優れるとの観点から、2.70~2.96が好ましく、2.75~2.92がより好ましく、2.80~2.90が特に好ましい。本開示のアセチル総置換度(DS)は、2.70~2.92であってよく、2.70~2.90であってよく、2.75~2.96であってよく、2.75~2.90であってよく、2.80~2.96であってよく、2.80~2.92であってよい。
 セルロースアセテートのアセチル総置換度(DS)は、ASTM:D-871-96(セルロースアセテート等の試験方法)における酢化度の測定法に準じて求めた酢化度AVを、次式で換算することにより求められる。
 DS=162.14×AV×0.01/(60.052-42.037×AV×0.01)
 DS:アセチル総置換度
 AV:酢化度(%)
 酢化度(AV)の測定方法は、以下の通りである。
 まず、乾燥したセルロースアセテート(試料)500mgを精秤し、超純水とアセトンとの混合溶媒(容量比4:1)50mlに溶解した後、0.2N-水酸化ナトリウム水溶液50mlを添加し、25℃で2時間ケン化する。次に、0.2N-塩酸50mlを添加し、フェノールフタレインを指示薬として、0.2N-水酸化ナトリウム水溶液(0.2N-水酸化ナトリウム規定液)で、脱離した酢酸量を滴定する。また、同様の方法によりブランク試験(試料を用いない試験)を行う。そして、下記式に従ってAV(酢化度)(%)を算出する。
 AV(%)=(A-B)×F×1.201/試料質量(g)
 A:0.2N-水酸化ナトリウム規定液の滴定量(ml)
 B:ブランクテストにおける0.2N-水酸化ナトリウム規定液の滴定量(ml)
 F:0.2N-水酸化ナトリウム規定液のファクター
 本開示のセルロースアセテートは、好ましくは、グルコース環の2位及び3位の置換度の合計(DS2+DS3)が1.8以上2.0以下であり、かつ、6位の置換度(DS6)が0.85以上である。セルロースアセテートの総置換度に対する6位の置換度の割合が高くなることにより、得られる光学フィルムのレタデーションが向上する。
 得られる光学フィルムの高品質化の観点から、6位のアセチル置換度DS6は0.86以上がより好ましく、0.88以上がさらに好ましい。同様の観点から、2位及び3位の置換度の合計(DS2+DS3)は、1.8以上1.95以下がより好ましく、1.85以上1.95以下がより好ましい。また、6位置換度DS6の、2,3及び6位の置換度の合計(即ち、アセチル総置換度DS)に対する割合(DS6/DS)は、0.305以上が好ましく、0.310以上がより好ましい。
 グルコース環の2、3及び6位の各アセチル置換度は、手塚(Tezuka, Carbonydr. Res. 273, 83(1995))の方法に従い、NMRにより測定することもできる。即ち、セルロースアセテートの遊離水酸基をピリジン中で無水プロピオン酸によりプロピオニル化する。得られた試料を重クロロホルムに溶解し、炭素13のスペクトルを測定する。アセチル基の炭素シグナルは169ppmから171ppmの領域に、高磁場側から2位、3位、6位の順序で現れる。プロピオニル基の炭素シグナルは172ppmから174ppmの領域に同じ順序で現れる。それぞれ対応する位置でのアセチル基とプロピオニル基との存在比から、元のセルロースアセテートにおける置換度を求めることができる。得られた2,3及び6位における置換度の合計を、アセチル総置換度DSとして求めることもできる。
 本開示のセルロースアセテートの重量平均分子量(Mw)は、特に限定されないが、240,000~300,000が好ましく、250,000~290,000がより好ましく、260,000~280,000がさらに好ましい。重量平均分子量が当該範囲であるセルロースアセテートにより、物性に優れた光学フィルムが得られる。本開示のセルロースアセテートの重量平均分子量は、240,000~280,000であってよく、240,000~290,000であってよく、250,000~280,000であってよく、250,000~300,000であってよく、260,000~290,000であってよく、260,000~300,000であってよい。
本開示のセルロースアセテートの分子量分布(重量平均分子量Mwを数平均分子量Mnで除した分子量分布Mw/Mn)は2.1~2.9が好ましく、2.1~2.8がより好ましく、2.1~2.7が特に好ましい。分子量分布が当該範囲であることにより、フィルム成形が容易になるともに、優れた光学特性が達成される。
 重量平均分子量Mw及び分子量分布Mw/Mnは、ゲルろ過カラムに屈折率及び光散乱を検出する検出器を接続した高速液体クロマトグラフィーシステムにより測定することができる。高速液体クロマトグラフィーシステムとしては、例えば、Shodex GPC SYSTEM-21Hを用いることができる。検出器としては、例えば、示差屈折率検出器(RI)を用いることができる。測定条件は以下の通りである。
溶媒:ジクロロメタン
カラム:TSKgel GMHXL(7.8×300mm)二本
ガードカラム:TSKgel guardcolumn HXL-H
試料濃度:2000ppm
流量:0.8mL/min
試料注入量:100μL
標準試料:PMMA(分子量1850、7360、29960、79500、201800、509000、625500)
カラム温度:28℃
 本開示のセルロースアセテートにおいて、黄色度の指標となるYI(Yellowness Index)は、8.0以下が好ましく、7.0以下がより好ましく、6.0以下がさらに好ましい。YIが低いセルロースアセテートにより、色相が良好な光学フィルムが得られる。本開示のセルロースアセテートのYIは、1.0~8.0であってよく、1.0~7.0であってよく、1.0~6.0であってよく、2.0~6.0であってよい。
 セルロースアセテートのYIは以下の方法により求められる。まず、乾燥したセルロースアセテート12.0gを正確に秤量し、溶媒(メチレンクロライド/メタノール=9/1(重量比)の混合溶媒やアセトン等)88.0gを添加して完全に溶解させ、濃度12重量%の試料溶液を作成する。この試料溶液を、色差計(日本電色工業製、色差計Σ90)とガラスセル(横幅45mm、高さ45mm、光路長10mm)を使用して測定し、下記式によりYIを求める。
  YI=YI2-YI1
(式中、YI1は溶媒のYI値、YI2は濃度12重量%の試料溶液のYI値である。)
 本開示のセルロースアセテートのHaze値は、2.0以下が好ましく、1.5以下がより好ましく、1.0以下がさらに好ましい。Haze値が低いセルロースアセテートにより、透明性の高い光学フィルムが得られる。本開示のセルロースアセテートのHaze値は、0を超えて2.0以下であってよく、0.1以上2.0以下であってよく、0.1以上1.5以下であってよく、0.1以上1.0以下であってよい。
 セルロースアセテートのHaze値は、濁度計(日本電色工業製)を用い、ガラスセル(横幅45mm、高さ45mm、光路長10mm)を使用して測定する。具体的には、まず、YIの測定方法で前述した溶媒をガラスセルに入れて濁度計にセットし、0点合わせ及び標準合わせをおこなう。次に、前述した方法で作成した濃度12重量%の試料溶液を、洗浄したガラスセルに入れて濁度計にセットして、濁度(Haze値)を読みとる。
 本開示のセルロースアセテートの透明度は、90%以上が好ましく、95%以上がより好ましい。数値が大きいほど透明度が高く、その上限値は100%である。セルロースアセテートの透明度は、UV-1280(島津製作所製)を使用して測定する。始めに、乾燥した試料6.0gを正確に秤量し、メチレンクロライド/メタノール=9/1(重量比)の混合溶媒100mLを添加して完全に溶解させて、濃度6質量/体積%の検液を調整する。次に、この混合溶媒を光路長100mmのガラスセルに入れて透過率を測定してブランクとする。続いて、調整した濃度6質量/体積%の検液を洗浄したガラスセルに入れて透過率を測定し、ブランクを100%とした時の検液の透過率を求めて、セルロースアセテートの透明度とする。
 [セルロースアセテートの製造]
 本開示のセルロースアセテートの製造方法は、原料パルプを解砕する解砕工程、解砕後のパルプ中のセルロースを活性化する活性化工程及び活性化後のセルロースをアセチル化するアセチル化工程を少なくとも含む。所定のアセチル置換度に調製するケン化熟成工程、精製及び乾燥処理を含む一連の工程をさらに含んでもよい。
 本開示のセルロースアセテートの製造には、例えば、図1に示される製造装置1を用いることができる。図示される通り、この製造装置1は、ベースユニット2、反応ユニット3、カバーユニット4、第1駆動ユニット5、傾斜機構6、ロータ(撹拌部材)7、第2駆動ユニット8、及び剥離部材9を有する。製造装置1は、これらの構成要素が備わった一体的構成を有する。
 ベースユニット2は、製造装置1の下側に設けられ、反応ユニット3を下方から支持する。反応ユニット3は、容器11と、容器11を収容するケーシング12とを有する。容器11は有底筒状に形成され、開口11aを上方に向けて配置されている。ケーシング12は、容器11の外周を覆っている。容器11とケーシング12との間には隙間が設けられ、容器11とケーシング12との干渉が回避されている。容器11は、後述する第1駆動ユニット5により、その筒軸周りに回転自在に配置されている。
 カバーユニット4は、容器11の上方に設けられ、容器11の開口11aを閉塞する。カバーユニット4は、反応ユニット3に支持されている。
 第1駆動ユニット5は、モータを有し、当該モータの回転駆動力により所定の回転数で容器11を筒軸周りに回転させる。第1駆動ユニット5は、容器11の下方に配置され、反応ユニット3に支持されている。
 傾斜機構6は、容器11の筒軸方向を、鉛直方向と、鉛直方向に対して交差する方向との間で調整する。これにより製造装置1は、容器11の筒軸方向が、鉛直方向と、鉛直方向に対して交差する方向との間で調整可能に構成されている。傾斜機構6は、ベースユニット2に支持されている。図1では、傾斜機構6を設定することにより、容器11の筒軸線CLが鉛直線VLと一致するように配置された様子を示している。
 ロータ7は、カバーユニット4が閉じられた状態において、容器11の筒軸方向に延び且つ筒軸周りに回転可能に配置されている。ロータ7は、一端が容器11内に配置され、他端が第2駆動ユニット8に接続されている。ロータ7は、第2駆動ユニット8に支持されている。
 第2駆動ユニット8は、モータを有し、当該モータの回転駆動力により所定の回転数でロータ7を回転させる。第2駆動ユニット8は、容器11の上方に配置され、カバーユニット4に支持されている。
 剥離部材9は、容器11の筒軸周りの内壁11bの部分と接触して、内壁11bに付着したパルプを内壁11bから剥離して混合液中に戻すように配置されている。剥離部材9がカバーユニット4に支持されることにより、容器11及びロータ7の回転中でも、製造装置1内での剥離部材9の位置は保持される。
 上記構成を有する製造装置1は、解砕後のパルプを含む混合液を調製する混合装置と、パルプ中のセルロースを活性化する活性化装置と、活性化後のセルロースをアセチル化してセルロースアセテートを生成する反応装置とを兼ねている。詳細には、この製造装置1は、容器11内でセルロースを含む混合液を調製して、セルロースを活性化処理した後、容器11内の活性化処理されたセルロースを含有する混合液に反応開始剤(酸触媒)を添加して、無水酢酸の存在下でセルロースをアセチル化するように構成されている。
 以下に、図1の製造装置1を用いたセルロースアセテートの製造方法の各工程について、より具体的に説明する。
 (解砕工程)
 解砕工程では、ディスクリファイナー等既知の解砕装置を用いて、原料パルプを解砕する。
 (原料パルプ)
 本開示のセルロースアセテートの原料となるパルプとしては、重合度の高いセルロース、例えば、リンターパルプ、特にコットンリンターパルプを使用できる。二種以上のリンターパルプを併用してもよい。
 原料パルプのα-セルロース含有量(重量基準)は、97.0%以上100%以下が好ましく、97.5%以上100%以下がより好ましく、98.0%以上100%以下がさらに好ましく、98.5%以上100%以下が特に好ましい。
 (活性化工程)
 活性化工程では、始めに、装置1の容器11に、解砕後の原料パルプと酢酸とを投入して混合することにより、解砕後の原料パルプを含む混合液を調整する。混合液の固形分濃度は3.0重量%以下が好ましく、2.5重量%以下がより好ましい。後述するアセチル化工程におけるセルロースのアセチル化は固液不均一反応であり、拡散律速の反応であるが、固形分濃度3.0重量%以下の混合液を用いて、希薄条件下で拡散律速を可能な限り解消することにより、得られるセルロースアセテートのドープ異物面積率が低減される。活性化工程に投入されるパルプ中の水分濃度は6.0重量%以上11.0重量%以下が好ましい。
 次に、調整された混合液を容器11内で撹拌し、必要に応じて一定時間保持することにより、解砕後の原料パルプをさらに解砕するとともに、このパルプ中のセルロースを活性化処理する。製造装置1において、混合液の撹拌は、容器11の回転及びロータ7の回転によってなされる。
 解砕後の原料パルプがより均一に解砕されるとの観点から、容器11の回転速度は、10rpm以上300rpm以下が好ましく、50rpm以上200rpm以下がより好ましい。同様の観点から、ロータ7の回転速度は、50rpm以上500rpm以下が好ましく、100rpm以上400rpm以下がより好ましい。容器11及びロータ7の各回転方向は、同方向でもよく、逆方向でもよい。
 また活性化工程では、容器11を筒軸方向が鉛直方向に沿うように配置することが好ましい。この配置により、重力の影響で混合液中の成分の偏在が抑制され、混合液の撹拌が容易になる。特に、固形分濃度3.0重量%以下の混合液をこの配置で撹拌することにより、パルプの解砕効率が向上して、ドープ異物面積率の少ないセルロースアセテートが得られうる。
 この活性化工程では、剥離部材9が、容器11の内壁11bに付着したパルプを剥離して混合液中に戻しながら混合液を撹拌する。これにより、混合液中のパルプが容器11の内壁11bに付着し易い場合であっても、パルプを混合液中で撹拌し易くすることができる。
 (アセチル化工程)
 アセチル化工程では、容器11内の活性化処理されたセルロースを含有する混合液に反応開始剤(酸触媒)を添加して撹拌することにより、無水酢酸の存在下でセルロースをアセチル化する。好ましい酸触媒として、硫酸が挙げられる。これにより、セルロースと無水酢酸を反応させて、所望の置換度のセルロースアセテートを生成させる。
 無水酢酸は、活性化工程において、解砕後の原料パルプ及び酢酸を含む混合液に添加してもよく、活性化工程後の混合液に添加してもよい。活性化工程で無水酢酸を添加することにより、混合液の液量が増大して、パルプに高い剪断力が与えられる。これによりパルプの解砕がより促進されるため、活性化工程での無水酢酸の添加が好ましい。
 無水酢酸の添加量は、原料パルプ100重量部に対して1,000重量部以上4,000重量部以下が好ましく、1,500重量部以上3,000重量部以下がより好ましい。無水酢酸の添加量は、1,000重量部以上3,000重量部以下であってよく、1,500重量部以上4,000重量部以下であってよい。
 硫酸の添加量は、原料パルプ100重量部に対して、濃硫酸80~170重量部が好ましく、100~150重量部がより好ましい。硫酸添加後、25~35℃で混合液を撹拌することにより、アセチル化反応が進行する。アセチル化に要する時間は60~180分であることが好ましい。アセチル化に要する時間(酢化時間とも称する)とは、原料パルプ及び無水酢酸を含む混合液に硫酸を投入した時点から中和剤投入までの時間をいう。
 このアセチル化工程では、容器11の筒軸方向が鉛直方向と交差するように、容器11を配置してもよい。これによりアセチル化工程では、容器11内の混合液を捏ね易くすることができる。容器11の筒軸方向と鉛直方向とのなす角度は適宜設定可能であるが、例えば0°より大きく45°以下であってよく、10°以上40°以下が好ましく、25°以上35°以下がより好ましい。
 (ケン化熟成工程)
 ケン化熟成工程では、アセチル化工程後の混合液に中和剤を添加してアセチル化反応を停止するとともに、アセチル化反応によりセルロースに結合した硫酸エステルを除去する。中和剤としては、水、酢酸水溶液、酢酸マグネシウム水溶液等が例示される。
 ケン化熟成温度は40~75℃が好ましく、45~65℃がより好ましい。ケン化熟成時間は、温度に応じて適宜設定されるが、例えば50~120分が好ましい。ケン化熟成温度及び時間により、得られるセルロースアセテートのアセチル置換度を調整することができる。
 (精製及び乾燥処理)
 セルロースアセテートの精製方法としては、特に限定されず、公知のものを用いることができる。例えば沈殿、ろ過、洗浄、乾燥、抽出、濃縮、カラムクロマトグラフィーなどの方法を単独で、又は2以上を適宜組み合わせて使用できる。操作性及び精製効率が高いとの観点から、沈殿(再沈殿)操作によりセルロースアセテートを固液分離する方法が好ましい。沈殿操作は、セルロースアセテートを含む溶液をセルロースアセテートの貧溶媒中に投入する、又はセルロースアセテートを含む溶液に貧溶媒を投入する等、セルロースアセテートを含む溶液を貧溶媒と混合することにより行われる。
 乾燥方法は特に限定されず、公知のものを用いることができる。例えば、送風や減圧等の条件下で乾燥することができる。
 [用途]
 本開示のセルロースアセテートによれば、輝点異物の極めて少ない光学フィルムが得られるため、フラットパネルディスプレイ等種々の表示装置用の光学フィルムに適用することができる。
 以下、実施例によって本開示の効果が明らかにされる。各実施形態における各構成及びそれらの組み合わせ等は、一例であって、本開示の主旨から逸脱しない範囲内で、適宜、構成の付加、省略、置換、及びその他の変更が可能である。本開示は、実施形態によって限定されることはなく、クレームの範囲によってのみ限定される。なお、特に言及しない限り、試験温度は全て室温(20℃±5℃)である。
 [実施例1]
 図1に示された基本構成を備えた装置1を用いて、解砕工程、活性化工程、アセチル化工程を順次実施することにより、実施例1のセルロースアセテートを製造した。
 解砕工程では、原料であるシート状のコットンリンターパルプ、α-セルロース含量99重量%以上をディスクリファイナーで処理して、綿状セルロース(含水率8.0重量%)を得た。
 活性化工程では、図1に示された基本構成を備えた装置を用いて、100質量部の綿状セルロースに、下表1に示された量の酢酸を添加して混合液(固形分濃度1.3重量%)を調整した。この混合液を60分間撹拌した。
 アセチル化工程では、活性化処理後のセルロースに、下表1に示された量の無水酢酸及び硫酸を添加して混合し、温度30℃で120分間保持させた。保持時間が酢化時間として下表1に示されている。
 ケン化熟成工程では、アセチル化後の混合液に、酢酸マグネシウム24重量%酢酸-水混合溶液を、溶液中の水の濃度が15mol%、硫酸イオン濃度が0.012mol%になるまで添加して無水酢酸を分解させ、酢化反応を停止した。その後、50℃で80分間熟成をおこなった。
 ケン化熟成後の反応液を攪拌下希酢酸中に投入し、生成物を沈殿させた。その沈殿物を希水酸化カルシウム水溶液に浸漬した後、濾別し乾燥することにより、実施例1のセルロースアセテートフレークを得た。
 [比較例1]
 比較例1では、図1に示された装置を使用せず、従来法によりセルロースアセテートを製造した。
 始めに、原料として、シート状のコットンリンターパルプ(α-セルロース含量99重量%以上)をディスクリファイナーで処理し、綿状セルロース(含水率8.0重量%)を得た。
 次に、第一の活性化処理工程として、100重量部の綿状セルロースに、酢酸110重量部を噴霧して、撹拌混合後、温度24℃で60分間静置した。続いて、第二の活性化処理工程として、第一の活性化処理後のセルロースに、硫酸を含む酢酸70重量部(内硫酸含量2重量部)を添加して、温度25℃で60分間静置した。
 アセチル化工程では、第二の活性化処理後のセルロースに、430重量部の酢酸、310重量部の無水酢酸及び10重量部の硫酸を添加して混合し、15℃以下で約20分保持した後、反応系の温度を約38℃まで昇温して160分間アセチル化をおこなった。酢酸、無水酢酸及び硫酸の総添加量と、酢化時間とが下表1に示されている。
 ケン化熟成工程では、アセチル化後の反応液に、酢酸マグネシウム24重量%酢酸-水混合溶液を、溶液中の水の濃度が14mol%、硫酸イオン濃度が13.3mol%になるまで添加して無水酢酸を分解させ、酢化反応を停止した。その後、50℃で80分間熟成をおこなった。
 ケン化熟成後の反応液を攪拌下希酢酸中に投入し、生成物を沈殿させた。その沈殿物を希水酸化カルシウム水溶液に浸漬した後、濾別し乾燥することにより、比較例1のセルロースアセテートフレークを得た。
 [比較例2]
 活性化工程における混合液の固形分濃度を6.2重量%とした以外は、実施例1と同様にして比較例2のセルロースアセテートを得た。
 <ドープ異物面積率の測定>
 乾燥した各セルロースアセテート(試料)7.4gをジクロロメタン/メタノール(重量比9:1)37.8gに完全に溶解した後、2時間以上脱泡して、セルロースアセテート溶液(ドープ)を作成した。次に、偏光顕微鏡に20cm照度を1,000lx(ルクス)に調整したLEDライトをセットして、偏光板2枚で挟んだクロスニコル状態でセルロースアセテート溶液の画像を取得した。得られた画像をモノクロ化処理した後、無作為に選択した領域の異物面積を測定し、選択した領域全体の面積を背景面積として、下記式に従ってドープ異物面積率を算出した。
  ドープ異物面積率(%)=異物面積(cm)/背景面積(cm)×100
得られた結果が下表1に示されている。比較例2のセルロースアセテートでは、異物数が多すぎるため測定できなかった。
 <アセチル総置換度並びに2,3及び6位の置換度の測定>
 実施例1及び比較例1-2のセルロースアセテートのアセチル総置換度DS並びに2,3及び6位の置換度(DS2、DS3及びDS6)を、前述した方法に従って、重クロロホルム中で13C-NMRスペクトルを測定することにより定量した。得られた結果が下表1に示されている。
 <重量平均分子量及び分子量分布の測定>
 実施例1及び比較例1-2のセルロースアセテートの重量平均分子量Mw及び分子量分布Mw/Mnを、前述した方法に従って、高速液体クロマトグラフィーにより測定した。得られた結果が下表1に示されている。
 <総硫酸量の測定>
 実施例1及び比較例1-2のセルロースアセテートの総硫酸量を、前述した方法に従って、SO 2-に換算した量として求めた。得られた結果が下表1に示されている。
 <カルシウム及びマグネシウム含量の測定>
 実施例1及び比較例1-2のセルロースアセテート中のカルシウム含量及びマグネシウム含量を、前述した方法に従って、原子吸光光度法により測定した。得られた結果が下表1に示されている。
 <Yellowness Index(YI)の測定>
 実施例1及び比較例1-2のセルロースアセテートのYIを、前述した方法に従って、色差計(日本電色工業製、色差計Σ90)を使用して測定した。得られた結果が下表1に示されている。
 
 <Haze値の測定>
実施例1及び比較例1-2のセルロースアセテートのHaze値を、前述した方法に従って、濁度計(日本電色工業製)を使用して測定した。得られた結果が下表1に示されている。
 <透明度の測定>
実施例1及び比較例1-2のセルロースアセテートの透明度を、前述した方法に従って、AKA光電比色計を使用して測定した。得られた結果が下表1に示されている。
Figure JPOXMLDOC01-appb-T000002
 表1に示すようにアセチル化工程において得られるセルロースアセテートのドープ異物面積率が1.0%以下である実施例1によれば、ドープ異物面積率が1.0%を超える比較例1-2と比較して、輝点異物数が極めて少ない光学フィルムを製造することが可能である。この評価結果から、本開示の優位性は明らかである。
 1  セルロースアセテート製造装置
 6  傾斜機構
 7  ロータ(撹拌部材)
 9  剥離部材
 11  容器

Claims (5)

  1.  下記方法で測定したドープ異物面積率が1.0%以下である、セルロースアセテート。
    (ドープ異物面積率の測定方法)
     乾燥したセルロースアセテート(試料)7.4gをジクロロメタン/メタノール(重量比9:1)37.8gに完全に溶解した後、2時間以上脱泡して、セルロースアセテート溶液(ドープ)を作成する。次に、偏光顕微鏡に20cm照度を1,000lxに調整したLEDライトをセットして、偏光板2枚で挟んだクロスニコル状態でセルロースアセテート溶液の画像を取得する。得られた画像をモノクロ化処理した後、無作為に選択した領域の異物面積を測定し、選択した領域全体の面積を背景面積として、下記式に従ってドープ異物面積率を算出する。
      ドープ異物面積率(%)=異物面積(cm)/背景面積(cm)×100
  2.  アセチル総置換度が2.70以上、2.96以下である、請求項1に記載のセルロースアセテート。
  3.  総硫酸量が0ppmを超えて200ppm以下である、請求項1又は2に記載のセルロースアセテート。
  4.  カルシウム及びマグネシウムの総含有量の、総硫酸量に対するモル比(Ca+Mg)/HSOが、0.25以上3.0以下である、請求項1から3のいずれかに記載のセルロースアセテート。
  5.  請求項1から4のいずれかに記載のセルロースアセテートにより得られる、光学フィルム。
PCT/JP2021/011086 2021-03-18 2021-03-18 セルロースアセテート及びその製造方法 WO2022195803A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/011086 WO2022195803A1 (ja) 2021-03-18 2021-03-18 セルロースアセテート及びその製造方法
TW110136216A TW202238101A (zh) 2021-03-18 2021-09-29 乙酸纖維素及其製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/011086 WO2022195803A1 (ja) 2021-03-18 2021-03-18 セルロースアセテート及びその製造方法

Publications (1)

Publication Number Publication Date
WO2022195803A1 true WO2022195803A1 (ja) 2022-09-22

Family

ID=83322056

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/011086 WO2022195803A1 (ja) 2021-03-18 2021-03-18 セルロースアセテート及びその製造方法

Country Status (2)

Country Link
TW (1) TW202238101A (ja)
WO (1) WO2022195803A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004155191A (ja) * 2002-10-18 2004-06-03 Fuji Photo Film Co Ltd ポリマー溶液の濾過方法及び製造方法,溶媒の調製方法,ポリマーフイルムの製造方法並びに溶媒の水素イオン濃度測定方法
JP2005530865A (ja) * 2002-05-08 2005-10-13 イーストマン ケミカル カンパニー 低溶液粘度セルローストリアセテート及びその用途
JP2008056768A (ja) * 2006-08-30 2008-03-13 Daicel Chem Ind Ltd セルロースアセテート及びその製造方法
JP2008221564A (ja) * 2007-03-12 2008-09-25 Fujifilm Corp セルロースアシレートフィルムの製造方法
WO2016076058A1 (ja) * 2014-11-12 2016-05-19 コニカミノルタ株式会社 光学フィルムの製造方法及び光学フィルム
JP2018030911A (ja) * 2016-08-22 2018-03-01 株式会社ダイセル セルロースアセテート及びその製造方法
JP2020139047A (ja) * 2019-02-28 2020-09-03 国立大学法人北海道大学 セルロースアセテートフィルム

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005530865A (ja) * 2002-05-08 2005-10-13 イーストマン ケミカル カンパニー 低溶液粘度セルローストリアセテート及びその用途
JP2004155191A (ja) * 2002-10-18 2004-06-03 Fuji Photo Film Co Ltd ポリマー溶液の濾過方法及び製造方法,溶媒の調製方法,ポリマーフイルムの製造方法並びに溶媒の水素イオン濃度測定方法
JP2008056768A (ja) * 2006-08-30 2008-03-13 Daicel Chem Ind Ltd セルロースアセテート及びその製造方法
JP2008221564A (ja) * 2007-03-12 2008-09-25 Fujifilm Corp セルロースアシレートフィルムの製造方法
WO2016076058A1 (ja) * 2014-11-12 2016-05-19 コニカミノルタ株式会社 光学フィルムの製造方法及び光学フィルム
JP2018030911A (ja) * 2016-08-22 2018-03-01 株式会社ダイセル セルロースアセテート及びその製造方法
JP2020139047A (ja) * 2019-02-28 2020-09-03 国立大学法人北海道大学 セルロースアセテートフィルム

Also Published As

Publication number Publication date
TW202238101A (zh) 2022-10-01

Similar Documents

Publication Publication Date Title
EP1619209B1 (en) Cellulose ester having improved stability to wet heat
JP4774121B2 (ja) 位相差フィルム用セルロースジアセテート
WO2018139319A1 (ja) セルロースアセテートフレークの製造方法
JP7143055B2 (ja) セルロースアセテート及びその製造方法
JP3655960B2 (ja) セルロースエステル溶液およびセルロースエステルフイルムの製造方法
JP5517409B2 (ja) セルロースアセテート及びその製造方法
JP4390117B2 (ja) セルロースエステルフィルム、光学フィルム、偏光板
WO2022195803A1 (ja) セルロースアセテート及びその製造方法
US11773239B2 (en) Cellulose acetate and molded article
WO2010023707A1 (ja) セルロースエステル及びその製造方法
JP5543118B2 (ja) セルロースエステル及びその製造方法
JP5425369B2 (ja) セルロース誘導体及びその製造方法
KR102001796B1 (ko) 셀룰로오스아세테이트 및 셀룰로오스아세테이트의 제조 방법
CN109195995B (zh) 乙酸纤维素
JP5272050B2 (ja) 位相差フィルム用セルロースジアセテートの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930618

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP