WO2022195765A1 - 推定装置、推定システム、推定方法、及び記録媒体 - Google Patents

推定装置、推定システム、推定方法、及び記録媒体 Download PDF

Info

Publication number
WO2022195765A1
WO2022195765A1 PCT/JP2021/010836 JP2021010836W WO2022195765A1 WO 2022195765 A1 WO2022195765 A1 WO 2022195765A1 JP 2021010836 W JP2021010836 W JP 2021010836W WO 2022195765 A1 WO2022195765 A1 WO 2022195765A1
Authority
WO
WIPO (PCT)
Prior art keywords
illumination light
wavefront information
light
estimation
wavefront
Prior art date
Application number
PCT/JP2021/010836
Other languages
English (en)
French (fr)
Inventor
渡部智史
Original Assignee
株式会社エビデント
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社エビデント filed Critical 株式会社エビデント
Priority to PCT/JP2021/010836 priority Critical patent/WO2022195765A1/ja
Priority to JP2023506591A priority patent/JPWO2022195765A1/ja
Publication of WO2022195765A1 publication Critical patent/WO2022195765A1/ja
Priority to US18/464,211 priority patent/US20230417664A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/45Refractivity; Phase-affecting properties, e.g. optical path length using interferometric methods; using Schlieren methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/59Transmissivity
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements

Definitions

  • the present invention relates to an estimation device, an estimation system, an estimation method, and a recording medium.
  • Non-Patent Document 1 A method for reconstructing an object is proposed in Non-Patent Document 1. This approach uses an estimator with an array of LEDs. The LED array is arranged at the pupil position of the illumination optical system. By changing the lighting position of the LED, the sample is illuminated at various angles. Since an image of the specimen is acquired at each irradiation angle, multiple images of the specimen are acquired.
  • a three-dimensional optical property is, for example, a refractive index distribution or an absorptance distribution.
  • the three-dimensional optical properties of the object can be obtained with high accuracy both in the direction orthogonal to the optical axis and in the direction parallel to the optical axis.
  • Non-Patent Document 1 When the thickness of the object is large, it is difficult in Non-Patent Document 1 to reconstruct the object with high accuracy and high spatial resolution.
  • the present invention has been made in view of such problems, and an estimation device and an estimation system that can acquire the three-dimensional optical characteristics of an object with high accuracy and high spatial resolution even when the thickness of the object is large. , an estimation method, and a recording medium.
  • an estimating device includes: comprising a memory, a processor, and the memory stores first wavefront information and second wavefront information;
  • the first wavefront information is wavefront information acquired based on the first illumination light that has passed through the object,
  • the second wavefront information is wavefront information acquired based on the second illumination light that has passed through the object,
  • the wavelength of maximum intensity in the second illumination light is located on the shorter wavelength side than the wavelength of maximum intensity in the first illumination light
  • the processor performs an estimation process to estimate the three-dimensional optical properties of the object;
  • the three-dimensional optical property is a refractive index distribution or an absorptance distribution,
  • the estimation process is characterized by using both the first wavefront information and the second wavefront information.
  • An estimation system comprises: the estimating device described above; a light source unit that emits first illumination light and second illumination light; a photodetector; a stage on which an object is placed; and an angle changing mechanism, The stage is arranged on the optical path between the light source unit and the photodetector, The angle changing mechanism is characterized by changing the incident angle of the first illumination light to the object and the incident angle of the second illumination light to the object.
  • An estimation system comprises: the estimating device described above; a light source unit that emits first illumination light and second illumination light; an imaging optical system that forms an optical image of an object; a photodetector for obtaining an image of an object from an optical image of the object; a driving mechanism for changing the distance between the focal position of the imaging optical system and the position of the object in the optical axis direction of the imaging optical system;
  • the illumination by the first illumination light and the illumination by the second illumination light are characterized by forming partially coherent illumination with respect to the object.
  • An estimation method comprises: an estimation process for estimating three-dimensional optical properties of the object;
  • the three-dimensional optical property is a refractive index distribution or an absorptance distribution
  • the first wavefront information is wavefront information acquired based on the first illumination light that has passed through the object
  • the second wavefront information is wavefront information acquired based on the second illumination light that has passed through the object
  • the wavelength of maximum intensity in the second illumination light is located on the shorter wavelength side than the wavelength of maximum intensity in the first illumination light
  • the estimation process is performed using both the first wavefront information and the second wavefront information.
  • a recording medium comprises: A computer-readable recording medium recording a program for causing a computer having a memory and a processor to perform estimation processing,
  • the first wavefront information is wavefront information acquired based on the first illumination light that has passed through the object
  • the second wavefront information is wavefront information acquired based on the second illumination light that has passed through the object
  • the wavelength of maximum intensity in the second illumination light is located on the shorter wavelength side than the wavelength of maximum intensity in the first illumination light
  • the estimation process estimates the three-dimensional optical properties of the object,
  • the three-dimensional optical property is a refractive index distribution or an absorptance distribution, causing a processor to read the first wavefront information and the second wavefront information from memory;
  • the method is characterized in that estimation processing is performed using both the first wavefront information and the second wavefront information.
  • an estimating device an estimating system, an estimating method, and a recording medium that can acquire the three-dimensional optical characteristics of an object with high accuracy and high spatial resolution even when the thickness of the object is large. can.
  • FIG. 4 is a flow chart in a first acquisition method; It is a figure which shows a mode that 1st illumination light passes through an object. It is a figure which shows a mode that a 2nd illumination light passes through an object.
  • 10 is a flow chart in a second acquisition method; 4 is a flowchart of first estimation processing; FIG. 10 is a diagram showing a measured image and an estimated image; 4 is a flowchart for calculating estimated wavefront information; 9 is a flowchart of second estimation processing; It is a figure which shows the estimation system of this embodiment. It is a figure which shows the estimation system of this embodiment. It is a figure which shows the estimation system of this embodiment. It is a figure which shows the switching method of illumination light.
  • FIG. 4 is a diagram showing an image of an object
  • FIG. 4 is a diagram showing an image of an object
  • FIG. 11 shows an image of an aperture member and an object
  • the estimation device of this embodiment includes a memory and a processor, and the memory stores first wavefront information and second wavefront information.
  • the first wavefront information is wavefront information acquired based on the first illumination light that has passed through the object
  • the second wavefront information is wavefront information acquired based on the second illumination light that has passed through the object.
  • the wavelength of maximum intensity in the second illumination light is located on the shorter wavelength side than the wavelength of maximum intensity in the first illumination light.
  • a processor performs an estimation process to estimate a three-dimensional optical property of the object, where the three-dimensional optical property is a refractive index distribution or an absorptance distribution. The estimation process uses both the first wavefront information and the second wavefront information.
  • FIG. 1 is a diagram showing the estimation device of this embodiment.
  • the estimating device 1 comprises a memory 2 and a processor 3 .
  • the memory 2 stores first wavefront information and second wavefront information.
  • Processor 3 performs an estimation process to estimate the three-dimensional optical properties of the object.
  • a three-dimensional optical property is a refractive index distribution or an absorptance distribution.
  • the first wavefront information and the second wavefront information can be used for the estimation process.
  • the processor may be implemented as an ASIC or FPGA, or may be a CPU.
  • the CPU reads a program from memory and executes processing.
  • the first wavefront information is wavefront information acquired based on the first illumination light that has passed through the object.
  • the second wavefront information is wavefront information acquired based on the second illumination light that has passed through the object.
  • Wavefront information is used in the estimation process. The more wavefront information, the better. With a lot of wavefront information, the three-dimensional optical properties of an object can be estimated with high accuracy.
  • the wavefront information is wavefront information acquired based on the illumination light that has passed through the object. Therefore, the amount of wavefront information is affected by the wavelength of the illumination light.
  • Wavefront information includes any of amplitude, phase, optical intensity, and complex amplitude.
  • the wavefront information is information on the wavefront on the imaging plane.
  • the imaging plane is a plane on which light is detected by the photodetector, and is also called an imaging plane.
  • lateral direction the direction orthogonal to the optical axis
  • axial direction the direction parallel to the optical axis
  • the optical axis is, for example, the optical axis of a device that measures wavefront information.
  • the optical axis is the optical axis of the detection optics.
  • the change that occurs when the illumination light passes through the object becomes large, and the phase information is folded into the range of - ⁇ to ⁇ , so it has an uncertain value that is an integral multiple of 2 ⁇ . , limiting the amount of wavefront information. Since the phase variation due to passage through an object is wavelength dependent, this limit on the amount of wavefront information is also wavelength dependent.
  • Illumination light with a long wavelength has lower resolution than illumination light with a short wavelength. Therefore, the amount of wavefront information that can be acquired in the lateral direction and the axial direction is small compared to illumination light with a short wavelength. However, in the axial direction, the illumination light reaches deeper inside the object than illumination light with a short wavelength.
  • illumination light with a long wavelength is less likely to cause uncertainties of integral multiples of 2 ⁇ in phase information than illumination light with a short wavelength, and is less likely to be subject to restrictions on the amount of wavefront information. Therefore, the amount of wavefront information that can be acquired in the axial direction is large compared to illumination light with a short wavelength.
  • the amount of wavefront information is small in terms of resolution, but the amount of wavefront information is large in terms of the arrival position of illumination light. Overall, the amount of wavefront information in the axial direction is greater for longer wavelength illumination than for shorter wavelength illumination.
  • Illumination light with a short wavelength has a higher resolution than illumination light with a long wavelength. Therefore, the amount of wavefront information that can be obtained in the lateral direction and the axial direction is large compared to illumination light with a long wavelength. However, in the axial direction, the illumination light does not reach deep inside the object compared to illumination light with a long wavelength. Therefore, the amount of wavefront information that can be acquired in the axial direction is small compared to illumination light with a long wavelength.
  • the amount of wavefront information is large in terms of resolution, but the amount of wavefront information is small in terms of the arrival position of illumination light.
  • short wavelength illumination provides less wavefront information in the axial direction than longer wavelength illumination.
  • the wavefront information acquired with illumination light having a long wavelength In order to prevent the deterioration of the estimation accuracy in the axial direction, it is sufficient to use the wavefront information acquired with illumination light having a long wavelength. However, the longer the wavelength of the illumination light, the larger the diffraction angle. Therefore, the resolution is lowered.
  • the numerical aperture of the optical system should be increased.
  • increasing the numerical aperture reduces the field of view and working distance. Therefore, when the thickness of the object is large, it becomes difficult to obtain wavefront information necessary for estimation in the horizontal direction.
  • the estimation device 1 estimates the three-dimensional optical characteristics of an object using wavefront information obtained based on two wavelengths.
  • the wavelength band of the first illumination light is different from the wavelength band of the second illumination light.
  • the wavelength of maximum intensity in the second illumination light is located on the shorter wavelength side than the wavelength of maximum intensity in the first illumination light. Therefore, the amount of wavefront information can be increased. As a result, the three-dimensional optical properties of the object can be obtained with high precision and high spatial resolution.
  • the maximum intensity is the maximum value of the peak (maximum value). There may be multiple peaks.
  • a laser or a quasi-monochromatic light LED can be used as the light source for the first illumination light and the light source for the second illumination light.
  • light with a single wavelength or light with a wavelength that can be regarded as a monochromatic wavelength can be used for the optical calculation.
  • Light with a narrow wavelength band can be used for the first illumination light and the second illumination light.
  • the half width of the first illumination light and the second illumination light is desirably 50 nm or less.
  • Wavefront information can be obtained, for example, from interference fringes.
  • Interference fringes are formed by the measurement light and the reference light.
  • the measurement light is the illumination light that has passed through the object.
  • Reference light is illumination light that does not pass through the object.
  • Parallel light is used as illumination light.
  • the image When estimating the wavefront with light intensity, the image can be used as wavefront information. When using an image as wavefront information, it is not necessary to acquire wavefront information by analyzing the image.
  • Wavefront information can be obtained by analyzing the image of the interference fringes. Therefore, it is necessary to acquire interference fringes. A method of obtaining an image of interference fringes will be described.
  • FIG. 2 is a flowchart of the first acquisition method.
  • the wavelength of illumination light is changed.
  • step S10 the number of wavelength changes N ⁇ is set. For example, when changing the wavelength of illumination light three times, 3 is set as the value of the number of wavelength changes N ⁇ . Although the number of times N ⁇ of wavelength changes has been described as 3, any value of 2 or more will suffice.
  • step S20 the wavelength ⁇ (n) is set.
  • the value of the wavelength ⁇ (n) is set such that the wavelength becomes shorter as the value of the variable n increases. In this case, the value of ⁇ (1) is set to the longest wavelength.
  • the value of ⁇ (1) is set to 1500 nm
  • the value of ⁇ (2) is set to 650 nm
  • the value of ⁇ (3) is set to 480 nm.
  • 1500 nm, 650 nm and 480 nm are the wavelengths at maximum intensity. Wavelengths are described with units attached to numerical values. Actually, only numeric values are set.
  • the setting of the wavelength ⁇ (n) may be such that the wavelength becomes longer as the variable n increases. Also, the setting of (n) may be such that the magnitude of the variable n and the length of the wavelength are random. Random setting can be realized by predefining in the table.
  • step S30 1 is set to the value of variable n.
  • step S40 illumination light is selected based on the value of wavelength ⁇ (n). If the light emitted from the light source has a single wavelength, then a light source that emits light with a wavelength matching the value of the wavelength ⁇ (n) is selected.
  • a laser can be used as the light source.
  • the optical filter can select light of one wavelength.
  • an optical filter is chosen that transmits light of a wavelength that matches the value of wavelength ⁇ (n).
  • step S50 an image of interference fringes I(n) is acquired.
  • Interference fringes I(n) are formed by irradiating an object with illumination light.
  • An image of the interference fringes I(n) can be obtained by imaging the interference fringes I(n) with a photodetector.
  • variable n represents an ordinal number related to wavelength.
  • fringes I(n) represent the fringes formed at the nth wavelength.
  • the wavelength is set so that the wavelength becomes shorter as the value of the variable n increases. Therefore, in the interference fringes I(n), the wavelength of the illumination light used to form the interference fringes decreases as the value of the variable n increases.
  • step S60 it is determined whether or not the value of the variable n matches the value of the number of changes N ⁇ . If the determination result is NO, step S70 is executed. If the determination result is YES, the process ends.
  • Step S70 is executed.
  • step S70 1 is added to the value of the variable n.
  • step S70 ends, the process returns to step S40.
  • step S70 the value of variable n is incremented by one. Therefore, step S50 is executed using another illumination light. Step S50 is repeated until all illumination lights are used.
  • Wavefront information can be obtained from interference fringes.
  • the wavefront information acquired from the interference fringes I(n) is assumed to be wavefront information W(n).
  • the wavelength of the second illumination light is shorter than the wavelength of the first illumination light.
  • the longest wavelength in the wavelength band of the second illumination light is located on the shorter wavelength side than the shortest wavelength in the wavelength band of the first illumination light.
  • the value of ⁇ (1) is set to 1500 nm
  • the value of ⁇ (2) is set to 650 nm
  • the value of ⁇ (3) is set to 480 nm. Therefore, illumination light having a value of ⁇ (1) corresponds to the first illumination light.
  • the second illumination light corresponds to illumination light having a value of ⁇ (2) or illumination light having a value of ⁇ (3).
  • ⁇ (2) corresponds to the first illumination light
  • ⁇ (3) corresponds to the second illumination light.
  • the N ⁇ interference fringe images include the first image and the second image.
  • the first image is an image of interference fringes formed by the first illumination light.
  • the second image is an image of interference fringes formed by the second illumination light.
  • the wavefront information W(n) includes first wavefront information and second wavefront information. Therefore, the wavefront information W(n) is stored in the memory 2 . At this time, the value of wavelength ⁇ (n) is also stored in memory 2 .
  • the processor 3 performs an estimation process of estimating the three-dimensional optical properties of the object.
  • estimation process estimation of the three-dimensional optical properties of the object is performed using both the first wavefront information and the second wavefront information.
  • the memory stores a plurality of first wavefront information and a plurality of second wavefront information, and in the plurality of first wavefront information, the incident angle of the first illumination light with respect to the object is The angle of incidence of the second illumination light on the object differs for each piece of second wavefront information, and the estimation process includes a plurality of pieces of first wavefront information and a plurality of pieces of second wavefront information. It is preferred to use both.
  • a plurality of first wavefront information and a plurality of second wavefront information are used for estimation processing. Therefore, the memory stores a plurality of first wavefront information and a plurality of second wavefront information.
  • the first wavefront information is wavefront information acquired based on the first illumination light that has passed through the object.
  • the incident angle of the first illumination light with respect to the object differs for each first wavefront information.
  • FIG. 3 is a diagram showing how the first illumination light passes through an object.
  • FIGS. 3A, 3B, and 3C are diagrams showing how the direction of the first illumination light changes.
  • FIGS. 3(d), 3(e), and 3(f) are diagrams showing how the orientation of the object changes.
  • FIGS. 3(a), 3(b), and 3(c) the direction of the first illumination light L ⁇ 1 is changed without changing the direction of the object 10.
  • FIG. Therefore, the incident angle of the first illumination light L ⁇ 1 with respect to the object 10 changes.
  • the second wavefront information is wavefront information acquired based on the second illumination light that has passed through the object.
  • the incident angle of the second illumination light with respect to the object differs for each second wavefront information.
  • FIG. 4 is a diagram showing how the second illumination light passes through the object.
  • FIGS. 4A, 4B, and 4C are diagrams showing how the direction of the second illumination light changes.
  • FIGS. 4(d), 4(e), and 4(f) are diagrams showing how the orientation of the object changes.
  • the direction of the second illumination light L ⁇ 2 does not change. Therefore, apparently, the angle of incidence of the second illumination light L ⁇ 2 on the object 10 does not change. However, since the orientation of the object 10 changes, the incident angle of the second illumination light L ⁇ 2 with respect to the object 10 substantially changes.
  • the angle of incidence of the illumination light on the object can be replaced with the relative direction of the illumination light and the object (hereinafter referred to as "relative direction").
  • wavefront information is wavefront information acquired based on illumination light that has passed through an object.
  • the amount of wavefront information is affected by relative orientation.
  • wavefront information By changing the relative angle, wavefront information can be acquired as many times as the number of changes. Therefore, the amount of wavefront information can be increased. Also, when the relative angles are different, the passage area of the illumination light inside the object is different. Wavefront information in one relative direction contains information that is not present in wavefront information in another relative direction. Therefore, the amount of wavefront information can be increased.
  • the incident angle of the first illumination light to the object differs for each second wavefront information.
  • the incident angle of the second illumination light with respect to the object differs for each second wavefront information. Therefore, the amount of wavefront information can be increased. As a result, the three-dimensional optical properties of the object can be obtained with high precision and high spatial resolution.
  • FIG. 5 is a flowchart of the second acquisition method. The same steps as those in FIG. 2 are assigned the same numbers, and the description thereof is omitted.
  • a second acquisition method changes the wavelength and relative direction of the illumination light.
  • step S21 the angle change count N ⁇ is set.
  • the angle to change is the relative direction. For example, when the relative direction is changed five times, 5 is set as the value of the angle change count N ⁇ .
  • the deviation in the relative direction can be expressed as an angle.
  • the displacement in the relative direction is represented by the relative angle ⁇ (m).
  • the relative orientation deviation is 0°.
  • the value of the relative angle ⁇ (m) is set to 0°.
  • the relative angle ⁇ (m) is set.
  • the value of ⁇ (1) is set to 0°
  • the value of ⁇ (2) is set to 4°
  • the value of ⁇ (3) is set to 7°.
  • step S31 1 is set to the value of variable m and the value of variable n.
  • step S32 positioning is performed based on the relative angle ⁇ (m).
  • the object to be positioned is illumination light or an object.
  • the direction of the illumination light is changed so that the angle formed by the illumination light and the optical axis matches the value of the relative angle ⁇ (m).
  • the object is rotated so that the orientation of the object with respect to the illumination light matches the value of the relative angle ⁇ (m).
  • step S51 an image of interference fringes I(m,n) is acquired.
  • Interference fringes I(m,n) are formed by irradiating the object with illumination light.
  • An image of the interference fringes I(m, n) can be obtained by imaging the interference fringes I(m, n) with a photodetector.
  • variable m represents the ordinal number for the relative angle.
  • variable n represents an ordinal number with respect to wavelength.
  • the interference fringes I(m,n) represent the interference fringes formed at the mth relative angle and the nth wavelength.
  • the wavelength in setting the wavelength ⁇ (n), for example, the wavelength can be set to become shorter as the value of the variable n increases.
  • the wavelength of the illumination light used to form the interference fringes decreases as the value of variable n increases.
  • the wavelength of the illumination light used to form the interference fringes increases as the value of the variable n increases.
  • step S60 it is determined whether or not the value of the variable n matches the value of the number of changes N ⁇ . If the determination result is NO, step S40 is executed. If the determination result is YES, step S80 is executed.
  • Step S80 is executed. In step S80, it is determined whether or not the value of the variable m matches the value of the number of angle changes N ⁇ . If the determination result is NO, step S90 is executed. If the determination result is YES, the process ends.
  • Step S90 is executed.
  • 1 is added to the value of variable m.
  • step S90 ends, the process returns to step S32.
  • step S90 the value of variable m is incremented by one. Therefore, steps S40 and S51 are executed at another relative angle. Steps S40 and S51 are repeated until all relative angles are positioned.
  • Wavefront information can be obtained from interference fringes.
  • the wavefront information acquired from the interference fringes I(m,n) is assumed to be wavefront information W(m,n).
  • the wavelength of the second illumination light is shorter than the wavelength of the first illumination light.
  • the value of ⁇ (1) is set to 1500 nm
  • the value of ⁇ (2) is set to 650 nm
  • the value of ⁇ (3) is set to 480 nm. Therefore, illumination light having a value of ⁇ (1) corresponds to the first illumination light.
  • the second illumination light corresponds to illumination light having a value of ⁇ (2) or illumination light having a value of ⁇ (3). Further, when illumination light having a value of ⁇ (2) corresponds to the first illumination light, illumination light having a value of ⁇ (3) corresponds to the second illumination light.
  • the (N ⁇ N ⁇ ) interference fringe images include a plurality of first images and a plurality of second images.
  • the first image is an image of interference fringes formed by the first illumination light.
  • the second image is an image of interference fringes formed by the second illumination light.
  • the plurality of first images include images of interference fringes having different angles of incidence of the first illumination light on the object. Therefore, it is possible to obtain a plurality of pieces of first wavefront information from a plurality of first images.
  • the plurality of second images include images of interference fringes having different incident angles of the second illumination light to the object. Therefore, it is possible to obtain a plurality of pieces of second wavefront information from a plurality of second images.
  • the wavefront information W(m, n) includes a plurality of first wavefront information and a plurality of second wavefront information. Therefore, the wavefront information W(m, n) is stored in the memory 2 . At this time, the value of the angle change count N ⁇ , the value of the relative angle ⁇ (m), and the value of the wavelength ⁇ (n) are also stored in the memory 2 .
  • the processor 3 performs an estimation process of estimating the three-dimensional optical properties of the object.
  • estimation of the three-dimensional optical properties of the object is performed using both the plurality of first wavefront information and the plurality of second wavefront information.
  • the interference fringes formed by the first illumination light and the interference fringes formed by the second illumination light are acquired at one relative angle.
  • the interference fringes formed by the second illumination light may be acquired at all relative angles.
  • the estimation process includes a first optimization process in which the first wavefront information is a constraint condition, and a second optimization process in which the second wavefront information is a constraint condition. It is preferable to continuously perform the second optimization process on the three-dimensional optical characteristics updated by the continuous execution of the first optimization process.
  • Wavefront information is used to estimate the three-dimensional optical properties of an object. In order to obtain wavefront information, it is necessary to obtain the wavefront that has passed through the object.
  • the estimation apparatus of this embodiment obtains the wavefront using the beam propagation method.
  • FDTD Finite Difference Time Domain
  • FDTD Finite Difference Time Domain
  • the second wavefront information is information when the second illumination light is used.
  • the wavelength band of the second illumination light is located on the shorter wavelength side than the wavelength band of the first illumination light. Therefore, by using the second wavefront information, it is possible to accurately estimate the three-dimensional optical characteristics in the lateral direction, but it is not possible to roughly estimate the three-dimensional optical characteristics in the axial direction.
  • the first wavefront information is information when the first illumination light is used.
  • the wavelength band of the first illumination light is positioned on the longer wavelength side than the wavelength band of the second illumination light. Therefore, by using the first wavefront information, it is possible to roughly estimate the three-dimensional optical characteristics not only in the lateral direction but also in the axial direction.
  • the first wavefront information is used to roughly estimate the three-dimensional optical properties in all directions.
  • the second wavefront information is used to accurately estimate the three-dimensional optical characteristics.
  • FIG. 6 is a flowchart of the first estimation process.
  • the first estimation process has steps S100, S200, S300, S400, and S500.
  • step S100 various settings are made.
  • Step S100 includes step S110, step S120, step S130, and step S140.
  • Step S150 may be provided as required.
  • step S110 the angle change count N ⁇ is set.
  • the memory 2 stores the value of the angle change count N ⁇ . Therefore, the value stored in the memory 2 may be set as the value of the angle change count N ⁇ . For example, if 5 is stored in the memory 2, 5 is set as the value of the angle change count N ⁇ .
  • step S120 the wavelength ⁇ (n) is set.
  • the memory 2 stores the value of the wavelength ⁇ (n).
  • All the values of the wavelength ⁇ (n) may be read out from the memory 2 and displayed. For example, if 1500 nm, 650 nm, and 480 nm are stored in the memory 2, these values should be displayed. The displayed values represent wavelengths. Therefore, a plurality of wavelengths to be used for estimation can be selected from the displayed wavelengths.
  • ⁇ (n) for example, a selected value is set for the wavelength ⁇ (n) so that the wavelength becomes shorter as the value of n increases.
  • the value of ⁇ (1) is set to the wavelength of maximum intensity.
  • the value of wavelength ⁇ (n) is set as follows. ⁇ (1) value: 1500 nm ⁇ (2) value: 650 nm ⁇ (3) value: 480 nm
  • step S130 the number of variable N ⁇ ' wavelengths is set.
  • the number of wavelengths is the number of selected wavelengths. By selecting wavelengths to be used for estimation, the number of selected wavelengths can be obtained. Set the value of the number of wavelengths N ⁇ ' to the number of selected wavelengths. In the above example, the number of wavelengths selected is 3, so the value of the number of wavelengths N ⁇ ' is set to 3. The number of selected wavelengths should be two or more.
  • step S140 the number of iterations N(n) is set.
  • the number of iterations N(n) is the number of times the optimization process is performed.
  • Optimization processing includes first optimization processing and second optimization processing. The first optimization process and the second optimization process will be described later.
  • a variable n is used for the number of repetitions N(n) and the wavelength ⁇ (n). Therefore, in setting the repetition number N(n), the repetition number is set with respect to the value (wavelength) set for the wavelength ⁇ (n).
  • the number of selected wavelengths is three.
  • the value of the number of iterations N(n) is set as follows. N(1) value: 3 times N(2) value: 2 times N(3) value: 2 times
  • the estimated value is set to an initial value in step S150.
  • the estimated value is the value of the three-dimensional optical properties of the estimated object. Estimation of three-dimensional optical properties is performed by simulation. A simulation is performed using the estimated object. A simulation can be performed by setting an initial value for the estimated value.
  • step S200 various initializations are performed.
  • Step S200 includes steps S210, S220, and S230.
  • step S210 1 is set to the value of variable n.
  • step S220 1 is set to the value of variable m.
  • step S230 1 is set to the value of variable m.
  • step S300 estimation processing is performed.
  • the estimation process estimates the three-dimensional optical properties of the object.
  • Step S300 includes steps S400, S410, S420, S430, S440, and S450.
  • an evaluation value is used in the estimation process.
  • the evaluation value is represented by the difference between the wavefront information of the measurement light and the wavefront information obtained by the simulation, or the ratio of the wavefront information of the measurement light and the wavefront information obtained by the simulation.
  • Wavefront information is information including, for example, any of amplitude, phase, light intensity, and complex amplitude.
  • the simulated wavefront information (hereinafter referred to as “estimated wavefront information”) is calculated from the estimated image.
  • the estimated image is an image obtained by light transmitted through the estimated object.
  • the light transmitted through the putative object is the simulated light.
  • Wavefront information of the measurement light (hereinafter referred to as “measurement wavefront information”) is calculated from the measurement image.
  • a measurement image is an image of an object acquired by an optical device.
  • the estimated image is an image of the estimated object obtained by simulation.
  • FIG. 7 is a diagram showing a measured image and an estimated image.
  • FIG. 7A is a diagram showing how a measurement image is obtained.
  • 7(b) and 7(c) are diagrams showing how the estimated image is obtained.
  • an object 20 and a measurement optical system 21 are used to acquire a measurement image.
  • the measurement optical system 21 has a lens 22 .
  • the position Zfo indicates the focal position of the measurement optical system 21.
  • Position Z s indicates the position of the image side of object 20 .
  • an optical image of the object 20 at the position Z fo is formed on the imaging plane IM.
  • the inside of the object 20 ⁇ Z away from the position Z s coincides with the position Z fo .
  • a CCD 23 is arranged on the imaging plane IM.
  • An optical image of the object 20 is picked up by the CCD 23 .
  • an image of an optical image of the object 20 (hereinafter referred to as "measurement image Imea ”) can be acquired.
  • Measured wavefront information is calculated from the measured image Imea .
  • the measurement image I mea is also an image of light intensity. Since the measurement image I mea is an image of light intensity, the measurement wavefront information calculated from the measurement image I mea is light intensity. When using light intensity, the measured image can also be used as wavefront information.
  • the estimated wavefront information is calculated from an optical image of the estimated object 24 (hereinafter referred to as “estimated image I est ”).
  • the measurement optical system 21 is illustrated in FIG. 7(c). Since the calculation of the estimated image I est is performed by simulation, the measurement optical system 21 does not physically exist. Therefore, the pupil function of the measurement optical system 21 is used in calculating the estimated image I est .
  • the estimated image I est is obtained from the image of the estimated object 24 on the imaging plane IM. Since the measured image I mea is a light intensity image, the estimated image I est is also preferably a light intensity image. Therefore, it is necessary to calculate the light intensity of the estimated object 24 on the imaging plane IM.
  • step S400 estimated wavefront information is calculated.
  • FIG. 8 is a flowchart for calculating estimated wavefront information.
  • Step S400 includes steps S401, S402, S403, S404, and S405.
  • the estimated wavefront information is calculated based on the forward propagation of the wavefront. This is the propagation of the wavefront in the direction in which the illumination light travels. Back propagation is propagation of a wavefront in a direction opposite to the direction in which illumination light travels. In forward propagation, the wavefront propagates from the estimated object 24 toward the imaging plane IM, as shown in FIGS. 7(b) and 7(c).
  • step S401 the wavefront incident on the estimated object is calculated.
  • the position Z in is the position of the surface of the estimated object 24 corresponding to the surface of the object 20 on the light source (illumination) side.
  • the position Z in is the position of the surface on which the simulated light enters the estimated object 24 . Therefore, the wavefront U in at the position Z in is calculated.
  • the same wavefront as the wavefront of the measurement light with which the object 20 is irradiated can be used for the wavefront Uin .
  • step S402 the wavefront emitted from the estimated object is calculated.
  • the position Z out is the position of the surface of the estimated object 24 corresponding to the imaging side (lens side, CCD side) surface of the object 20 .
  • the position Z out is the position of the surface from which the simulated light exits from the estimated object 24 . Therefore, the wavefront U out at the position Z out is calculated.
  • the wavefront Uout can be calculated from the wavefront Uin , for example, using the beam propagation method.
  • step S403 the wavefront at a predetermined acquisition position is calculated.
  • the predetermined acquisition position is the position on the object side when the measurement image was acquired.
  • the predetermined acquisition position is any position between position Zin and position Zout .
  • Position Z p is one of the predetermined acquisition positions.
  • the position Z p is a position conjugate with the imaging plane IM.
  • the estimated image I est is calculated under the same conditions as the measured image I mea .
  • the measurement image I mea is obtained from an internal optical image of the object 20 ⁇ Z away from the position Z s . Therefore, the estimated image I est calculation requires a wavefront at a position ⁇ Z away from the position Z s .
  • position Z out corresponds to position Z s .
  • a position ⁇ Z away from the position Z out is a position Z p . Therefore, it suffices if the wavefront U p at the position Z p can be calculated.
  • Position Z p is ⁇ Z away from position Z out . Therefore, the wavefront Uout cannot be used as the wavefront Up .
  • the wavefront Up can be calculated from the wavefront Uout using, for example, the beam propagation method.
  • step S404 the wavefront on the imaging plane is calculated.
  • the wavefront Up passes through the measuring optical system 21 and reaches the imaging plane IM.
  • a wavefront U img on the imaging plane IM can be calculated from the wavefront Up and the pupil function of the measurement optical system 21 .
  • step S405 estimated wavefront information on the imaging plane is calculated.
  • a wavefront U img represents the amplitude of the light.
  • Light intensity is expressed as the square of the amplitude. Therefore, the light intensity of the estimated object 24 can be calculated by squaring the wavefront U img . As a result, the estimated image I est can be acquired. Estimated wavefront information is calculated from the estimated image I est .
  • Amplitude and phase may be used instead of light intensity. Amplitude and phase are represented using electric fields. Therefore, when amplitude and phase are used, values calculated from the electric field are used for the measurement location and the estimated value.
  • the electric field Emes based on the measurement and the electric field Eest based on the estimation are represented by the following equations.
  • Emes Ames x exp (i x Pmes)
  • Eest Aest x exp (i x Pest) here, Pmes is the measured phase; Ames is the measured amplitude; Pest is the estimated phase, Aest is the estimated amplitude, is.
  • the measurement light and the reference light are incident on the photodetector in a non-parallel state.
  • the measurement light and the reference light form interference fringes on the imaging surface of the photodetector.
  • the interference fringes are imaged by a photodetector. As a result, an image of interference fringes can be acquired.
  • the interference fringes are obtained with the measurement light and the reference light non-parallel. Therefore, by analyzing the interference fringes, it is possible to obtain the phase based on the measurement and the amplitude based on the measurement. The result is the measured electric field Emes.
  • the estimated electric field Eest can be obtained by simulation.
  • the complex amplitude can be obtained. Therefore, instead of light intensity, complex amplitude may be used for wavefront information.
  • step S410 the estimated wavefront information is constrained by the wavefront information W(m,n).
  • the wavefront information W(m,n) is obtained from the image of the interference fringes I(m,n).
  • the interference fringes I(m,n) are formed by the measuring light. Therefore, the wavefront information W(m,n) can be regarded as the measured wavefront information described in step S400.
  • variable m represents the ordinal number for the relative angle.
  • value of the variable n represents an ordinal number with respect to wavelength.
  • the wavefront information W(m,n) represents the measured wavefront information when using the m-th relative angle and the n-th wavelength.
  • step S210 1 is set to the value of the variable n.
  • the value of the wavelength ⁇ (n) is set such that the wavelength becomes shorter as the value of the variable n increases. Therefore, when the value of the variable n is 1, the value of ⁇ (n) is set to the value of the longest wavelength.
  • wavefront information W(m, n) is wavefront information when the longest wavelength is used.
  • the longest wavelength is the wavelength of the first illumination light. Therefore, when the value of the variable n is 1, the wavefront information W(m,n) is the wavefront information when the first illumination light is used.
  • the wavefront information when using the first illumination light is the first wavefront information. Therefore, when the value of the variable n is 1, the wavefront information W(m,n) becomes the first wavefront information.
  • the process in step S410 is a process of constraining the estimated wavefront information with the first wavefront information.
  • the first optimization process is a process that uses the first wavefront information as a constraint condition.
  • the value of the variable n is 1, in step S410, the estimated wavefront information is constrained by the first wavefront information. Therefore, in this case, the processing in step S410 is the first optimization processing.
  • variable n changes. Therefore, a value other than 1 is also set for the value of the variable n. In this case, the value of wavelength ⁇ (n) becomes the value of another wavelength.
  • Another wavelength is a wavelength shorter than the longest wavelength.
  • the longest wavelength is the wavelength of the first illumination light.
  • the wavelength of the second illumination light is shorter than the wavelength of the first illumination. Therefore, another wavelength is the wavelength of the second illumination light.
  • the wavefront information W(m, n) is wavefront information when another wavelength is used. Another wavelength is the wavelength of the second illumination light. Therefore, when the value of the variable n is other than 1, the wavefront information W(m,n) is the wavefront information when the second illumination light is used.
  • the wavefront information when using the second illumination light is the second wavefront information. Therefore, when the value of the variable n is 2, the wavefront information W(m,n) becomes the second wavefront information. In this case, the process in step S410 is a process of constraining the estimated wavefront information with the second wavefront information. When the value of the variable n is 3, the wavefront information W(m,n) becomes the third wavefront information. In this case, the process in step S410 is a process of constraining the estimated wavefront information with the third wavefront information.
  • the second optimization process is a process that uses the second wavefront information as a constraint condition.
  • the process in step S410 is the second optimization process.
  • the value of the variable n is 3
  • the estimated wavefront information is constrained by the third wavefront information. Therefore, in this case, the process in step S410 is the third optimization process.
  • Measured wavefront information is calculated from the measured image Imea .
  • Estimated wavefront information is calculated from the estimated image I est .
  • the difference between the measured image I mea and the estimated image I est or the ratio between the measured image I mea and the estimated image I est may be used as the evaluation value.
  • step S420 the evaluation value and the threshold are compared.
  • step S500 is executed. If the determination result is YES, step S430 is executed.
  • Step S500 is executed.
  • step S500 the three-dimensional optical characteristics of the estimated object are calculated.
  • the obtained three-dimensional optical properties of the estimated object 24 are the same or substantially the same as the three-dimensional optical properties of the object 20 .
  • a reconstructed estimated object can be obtained.
  • the reconstructed estimated object can be output to, for example, a display device.
  • the three-dimensional optical properties obtained in step S500 are the same or substantially the same as the three-dimensional optical properties of the object 20.
  • the reconstructed estimated object can be considered identical or nearly identical to the structure of object 20 .
  • Step S430 is executed.
  • the gradient is calculated.
  • Step S430 has steps S431 and S432.
  • Gradient calculation is based on back propagation of the wavefront. In counter-propagation, the wavefront propagates from position Z out towards position Z in .
  • step S431 the corrected wavefront is calculated.
  • Wavefront U′ p is the wavefront at position Z p .
  • the estimated image I est is calculated based on the wavefront U img . Also, the wavefront U img is calculated based on the wavefront Up .
  • step S150 the initial value set in step S150 is used to calculate the wavefront Up.
  • the initial values are values of the three-dimensional optical properties of the estimated object 24 .
  • step S430 is executed for the first time, the initial value is different from the value of the three-dimensional optical property of the object 20 (hereinafter referred to as "object property value").
  • the difference between the estimated image I est and the measured image I mea increases. Therefore, the difference between the estimated image I est and the measured image I mea can be regarded as reflecting the difference between the initial value and the object characteristic value.
  • the estimated image I est (r) and the measured image I mea (r) are used to correct the wavefront Up.
  • the wavefront after correction that is, the wavefront U'p is obtained.
  • the wavefront U' p is represented by the following equation (1), for example.
  • U' p U p ⁇ (I mea /I est ) (1)
  • step S432 the gradient is calculated.
  • the gradient can be calculated based on the back propagation of the wavefront.
  • Wavefront U' out a corrected wavefront
  • the wavefront U'p is a wavefront obtained by correcting the wavefront Up .
  • the wavefront U'p is the wavefront at the position Zp .
  • the wavefront U'p is shown at a position shifted from the position Zp for ease of viewing.
  • the wavefront U' out is shown at a position shifted from the position Z out .
  • position Z out is separated from position Z p by ⁇ Z. Therefore, the wavefront U'p cannot be used as the wavefront U'out .
  • the wavefront U'out can be calculated from the wavefront U'p , for example using the beam propagation method.
  • the wavefront calculation is performed based on the wavefront backpropagation.
  • backpropagation of the wavefront the wavefront propagating inside the estimated object 24 is calculated.
  • Wavefronts U out and U′ out are used in the wavefront calculation.
  • Wavefront U'p is different from wavefront Up . Therefore, the wavefront U'out is also different from the wavefront Uout .
  • the gradient can be calculated using the wavefront U' out and the wavefront U out .
  • the slope is the slope of the wavefront at any position within the object. Gradients contain new information about the values of the three-dimensional optical properties of estimated object 24 .
  • step S461 it is determined whether or not the value of the variable m matches the value of the angle change count N ⁇ . If the determination result is NO, step S462 is executed. If the determination result is YES, step S440 is executed.
  • Step S462 is executed. In step S462, 1 is added to the value of variable m. After step S462, the process returns to step S400.
  • step S462 the value of variable m is incremented by one. In this case, the value of m in the wavefront information W(m,n) changes. Therefore, steps S400 to S430 are executed using wavefront information of another relative angle. Steps S400 to S430 are repeated until all relative angles are positioned.
  • wavefront information A and wavefront information B have different relative angles
  • wavefront information A includes information that wavefront information B does not have
  • wavefront information B includes information that wavefront information A does not have. Therefore, the amount of information increases as the amount of wavefront information with different relative angles increases.
  • the wavefront after correction can be calculated more accurately in step S431.
  • the precision of the gradient is also increased.
  • Gradients contain information about the difference between the estimated value and the object property value. By increasing the accuracy of the gradient, it is possible to reduce the difference between the estimated value and the object property value. That is, the estimated value can be brought closer to the object characteristic value.
  • Step S440 is executed.
  • the estimated value is updated.
  • the gradient contains information about the difference between the estimated value and the object property value. So adding the gradient to the estimate gives an updated estimate.
  • the updated estimated value is closer to the object property value than the initial value. Accordingly, the values of the three-dimensional optical properties of the estimated object 24 can be updated using the updated estimated values.
  • step S450 TV regularization is performed.
  • step S450 may be omitted.
  • step S463 it is determined whether or not the value of variable i matches the value of the number of iterations N(n). If the determination result is NO, step S464 is executed. If the determination result is YES, step S465 is executed.
  • Step S464 is executed. In step S464, 1 is added to the value of variable i. After step S464 ends, the process returns to step S230.
  • step S464 the value of variable i is incremented by one. However, the value of the variable n in the wavefront information W(m,n) does not change. Since the value of the variable n is 1, step S300 is executed again with the first wavefront information. Step S300 is repeated until the value of variable i matches the value of the number of iterations N(n).
  • step S230 1 is set to the value of the variable m. Therefore, steps S400 to S430 are repeated until the value of the variable m matches the angle change count N ⁇ .
  • step S300 is executed three times.
  • the processing in step S410 is the first optimization processing. In the above example, step S300 is executed three times, so the first optimization process is executed three times.
  • the estimated value is updated in the first optimization process for the first time.
  • the updated estimates are closer to the object property values than the initial values.
  • a second first optimization process uses the updated estimates. As a result, in the second first optimization process, the estimated value can be brought closer to the object characteristic value. By executing the first optimization process multiple times, the estimated value can be brought closer to the object characteristic value.
  • Step S465 is executed. In step S465, it is determined whether or not the value of the variable n matches the value of the number N ⁇ ' of wavelengths. If the determination result is NO, step S466 is executed. If the determination result is YES, the process ends.
  • Step S466 is executed. In step S466, 1 is added to the value of the variable n. After step S466 ends, the process returns to step S220.
  • step S466 the value of variable n is incremented by one.
  • the value of the variable n in the wavefront information W(m, n) changes. Since the value of the variable n is other than 1, step S300 is executed with the second wavefront information. If the value of the variable n is 2, step S300 is executed with the second wavefront information. If the value of the variable n is 3, step S300 is executed with the third wavefront information.
  • step S220 1 is set to the value of the variable i. Therefore, step S300 is repeated until the value of the variable i matches the value of the number of iterations N(n).
  • step S230 the value of variable m is set to 1. Therefore, steps S400 to S430 are repeated until the value of the variable m matches the angle change count N ⁇ .
  • step S300 is executed twice.
  • the processing in step S410 is the second optimization processing. In the above example, step S300 is executed twice, so the second optimization process is executed twice.
  • the first optimization process is executed before executing the second optimization process. Therefore, the estimated value updated in the first optimization process is used as the initial value in the second optimization process.
  • the initial values in the second optimization process are closer to the object property values than the initial values in the first optimization process. Therefore, the estimated value can be brought closer to the object characteristic value.
  • the estimated value is updated in the first second optimization process.
  • the updated estimates are closer to the object property values than the initial values.
  • the second optimization process uses the updated estimates. As a result, the estimated value can be brought closer to the object characteristic value in the second optimization process performed for the second time. By executing the second optimization process multiple times, the estimated value can be brought closer to the object characteristic value.
  • Step S300 is repeated until the value of the variable n matches the value of the number of wavelengths N ⁇ '.
  • 3 is set as the value of the number N ⁇ ' of wavelengths. Therefore, the number of optimization processes is three.
  • variable n when the value of variable n is 1, the first optimization process is executed once, and when the value of variable n is 2, the second optimization process is executed once. Therefore, when the value of the variable n is 3, if the third optimization process is performed, the value of the variable n will match the value of the number of wavelengths N ⁇ '.
  • the value of ⁇ (1) is set to 1500 nm
  • the value of ⁇ (2) is set to 650 nm
  • the value of ⁇ (3) is set to 480 nm.
  • the illumination light with a wavelength of 1500 nm is the first illumination light.
  • This wavelength-related optimization process is the first optimization process when the value of the variable n is one.
  • the illumination light with a wavelength of 650 nm is the second illumination light.
  • This wavelength-related optimization process is the second optimization process when the value of the variable n is two.
  • a third optimization process is an optimization process for a wavelength of 480 nm.
  • the illumination light with a wavelength of 480 nm is the second illumination light. Therefore, the optimization process for the wavelength of 480 nm is the same as the second optimization process. Therefore, description is omitted.
  • the optimization process when the value of the variable n is 3 can be performed in the following order.
  • Example 1 The order of the first optimization process, the second optimization process, and the third optimization process.
  • Example 2 The order of the first optimization process, the third optimization process, and the second optimization process.
  • processing can be performed with the following combinations.
  • First optimization process illumination light with a wavelength of 1500 nm.
  • Second optimization process illumination light with a wavelength of 650 nm (example 2)
  • First optimization process illumination light with a wavelength of 1500 nm.
  • Second optimization process illumination light with a wavelength of 480 nm (example 3)
  • First optimization process illumination light with a wavelength of 650 nm.
  • Second optimization process illumination light with a wavelength of 480 nm
  • wavefront information a and wavefront information b have different wavelengths
  • wavefront information a includes information that wavefront information b does not have
  • wavefront information b includes information that wavefront information a does not. Therefore, the amount of information increases as the amount of wavefront information with different wavelengths increases.
  • the wavefront after correction can be calculated more accurately in step S431.
  • the precision of the gradient is also increased.
  • Gradients contain information about the difference between the estimated value and the object property value. By increasing the accuracy of the gradient, it is possible to reduce the difference between the estimated value and the object property value. That is, the estimated value can be brought closer to the object characteristic value. Therefore, it is preferable to execute each of the first optimization process and the second optimization process twice or more.
  • step S500 Since the predetermined number of iterations has been reached, the three-dimensional optical properties of the estimated object are calculated in step S500, and the process ends.
  • illumination light with a long wavelength can acquire a lot of wavefront information in the axial direction.
  • a certain amount of wavefront information can also be obtained in the lateral direction.
  • the wavelength of the illumination light used to acquire the first wavefront information is longer than the wavelength of the illumination light used to acquire the second wavefront information. Therefore, by using the first wavefront information, it is possible to roughly estimate the three-dimensional optical characteristics of the estimated object.
  • the first wavefront information is used in the first optimization process. Therefore, by executing the first optimization process, it is possible to roughly estimate the three-dimensional optical characteristics of the estimated object.
  • step S210 1 is set to the value of the variable n. Therefore, the process in step S410 that is executed first is the first optimization process.
  • a first optimization process can roughly estimate the three-dimensional optical properties of the estimated object. Therefore, by executing the first optimization process before the second optimization process, it is possible to efficiently estimate the three-dimensional optical characteristics of the estimated object.
  • the first optimization process and the second optimization process are each executed two or more times. Therefore, it is possible to prevent a decrease in resolution and a decrease in estimation accuracy. As a result, it is possible to realize an estimating device capable of obtaining the three-dimensional optical characteristics of an object with high accuracy and high resolution even when the object is thick.
  • the processor preferably continuously performs the first optimization process on the initial values set for the three-dimensional optical characteristics.
  • step S150 can be provided as necessary. If step S150 is provided, an initial value is set for the estimated value of the three-dimensional optical characteristic. In this case, the first optimization process is continuously executed for the initial values set for the three-dimensional optical characteristics.
  • the estimation process includes a first optimization process in which the first wavefront information is a constraint condition, and a second optimization process in which the second wavefront information is a constraint condition.
  • Composite processing consisting of a first optimization process and a second optimization process is executed two or more times, in the composite process the first optimization process is executed first, and in the composite process the second optimization process is executed Preferably, the first optimization process is not performed after the
  • FIG. 9 is a flowchart of the second estimation process. The same steps as those in the first estimation process are given the same numbers, and descriptions thereof are omitted.
  • the complex processing will be explained below. Therefore, it is explained that the compound processing is started from the beginning. However, the composite process may be started after executing specific optimization processes such as the first optimization process and the second optimization process a predetermined number of times.
  • the second estimation process has compound processing.
  • a composite process consists of a first optimization process and a second optimization process. Complex processing is executed more than once.
  • the second estimation process has steps S141, S142, S201, S467, S468, and S469.
  • the value of the wavelength ⁇ (n) is set as follows. ⁇ (1) value: 1500 nm ⁇ (2) value: 650 nm
  • the number of selected wavelengths is 2, so 2 is set as the value of the number of wavelengths N ⁇ '.
  • step S141 the first repetition number NS is set.
  • the first iteration number NS is the number of times the composite process is executed. For example, if the composite processing is to be executed twice, the value of the first number of iterations NS is set to 2.
  • step S142 the second repetition number N(n, j) is set.
  • the second iteration number N(n,j) is the number of times the optimization process is performed.
  • a variable n is used for the second repetition number N(n, j) and the wavelength ⁇ (n). Therefore, in setting the second number of repetitions N(n,j), the number of repetitions is set with respect to the value (wavelength) set for the wavelength ⁇ (n).
  • the number of times the optimization process is executed can be changed for each composite process. Therefore, in setting the second number of iterations N(n, j), the number of iterations is set for each composite process.
  • the number of selected wavelengths is two. Also, the number of times the compound processing is executed is four.
  • the value of the second repetition number N(n,j) is set as follows. Value of N(1,1): 5 times Value of N(2,1): 1 time Value of N(1,2): 5 times (continue as 5 times) N(2,2) value: 1 time N(1,3) value: 3 times (reduced from 5 times to 3 times) Value of N(2,3): 1 time Value of N(1,4): 3 times (continue as 3 times) N(2,4) value: 1 time N(1,4) value: 1 time (reduced from 3 times to 1 time) N(2,4) value: 1 time
  • the number of executions of the first optimization process is greater than or equal to the number of executions of the second optimization process.
  • the difference between the number of executions of the second optimization process and the number of executions of the first optimization process is reduced.
  • the difference between the number of times the second optimization process is executed and the number of times the first optimization process is executed decreases after the composite process is continuously executed.
  • the difference between the first optimization process and the second optimization process in the composite process may be reduced.
  • step S201 1 is set to the value of variable j.
  • step S210 Since the value of variable j is 1, the first combined process is executed. Also, in step S210, 1 is set to the value of the variable n. Therefore, the first optimization process is executed in the first step S300.
  • step S467 it is determined whether or not the value of the variable i matches the value of the second iteration number N(n, j). If the determination result is NO, step S464 is executed. If the determination result is YES, step S465 is executed.
  • Step S464 is executed. In step S464, 1 is added to the value of variable i. After step S464 ends, the process returns to step S230.
  • step S464 the value of variable i is incremented by one. However, since the value of the variable n does not change, the value of the variable n is 1. Therefore, in the processing in S300, the first optimization processing is executed again. The first optimization process is repeated until the value of variable i matches the value of number of iterations N(n).
  • variable j is 1 because it does not change.
  • 3 is set to the value of the second repetition number N(n,j). Therefore, the first optimization process is executed three times.
  • Step S465 is executed. In step S465, it is determined whether or not the value of the variable n matches the value of the number of wavelengths N ⁇ '. If the determination result is NO, step S466 is executed. If the determination result is YES, step S468 is executed.
  • Step S466 is executed. In step S466, 1 is added to the value of the variable n. After step S466 ends, the process returns to step S220.
  • step S466 the value of variable n is incremented by one. In this case, since the value of the variable n is other than 1, the second optimization process is executed in the process in S300.
  • step S220 1 is set to the value of the variable i. Therefore, the second optimization process is repeated until the value of the variable i matches the value of the second number of iterations N(n,j).
  • variable n changes from 1 to 2.
  • value of variable j is 1 because the value of variable j does not change.
  • 2 is set to the value of the second repetition number N(n,j). Therefore, the second optimization process is executed twice.
  • Step S468 is executed. In step S468, it is determined whether or not the value of the variable j matches the value of the first iteration number NS. If the determination result is NO, step S469 is executed. If the judgment result is YES, end
  • Step S469 is executed.
  • 1 is added to the value of variable j. After step S468, the process returns to step S210.
  • step S466 the value of variable j is incremented by one. Since the value of variable j is 2, the second composite process is executed.
  • step S210 1 is set to the value of the variable n. Therefore, the first optimization process is executed.
  • step S220 1 is set to the value of the variable i. Therefore, the second optimization process is repeated until the value of the variable i matches the value of the second number of iterations N(n,j).
  • variable n is 1 and the value of variable j is 2.
  • the value of variable n is 2 and the value of variable j is 1, 1 is set to the value of the second repetition number N(n,j). Therefore, the first optimization process is executed once.
  • variable n changes from 1 to 2 when the execution of the first optimization process is finished. Therefore, the second optimization process is executed.
  • 1 is set to the value of the variable i. Therefore, the second optimization process is repeated until the value of the variable i matches the value of the second number of iterations N(n,j).
  • variable n 2
  • the value of variable j 2
  • the value of the second iteration number N(n,j) is set to 4. Therefore, the second optimization process is executed four times.
  • step S500 Since the predetermined number of iterations has been reached, the three-dimensional optical properties of the estimated object are calculated in step S500, and the process ends.
  • the compound process is executed two or more times.
  • the first optimization process and the second optimization process are alternately executed. Therefore, it is possible to prevent a decrease in resolution and a decrease in estimation accuracy.
  • the processor preferably executes compound processing on the initial values set for the three-dimensional optical properties.
  • step S150 can be provided as required. If step S150 is provided, an initial value is set for the estimated value of the three-dimensional optical characteristic. In this case, composite processing is performed on the initial values set for the three-dimensional optical characteristics.
  • the number of times the first optimization process is executed is greater than or equal to the number of times the second optimization process is executed in the composite process.
  • the three-dimensional optical properties of the estimated object can be roughly estimated by executing the first optimization process. Therefore, by increasing the number of times of using the first wavefront information than the number of times of using the second wavefront information, it is possible to roughly estimate the three-dimensional optical characteristics of the estimated object efficiently.
  • step S150 an initial value is set to the estimated value in step S150 in the first estimation process and the second estimation process.
  • the initial value is different from the object property value. Therefore, by executing the first optimization process as soon as possible, the estimated value can be brought closer to the object characteristic value. As a result, efficient estimation is possible.
  • the estimating device of the present embodiment executes predetermined processing in composite processing.
  • the number of times the first optimization process is executed is greater than the number of times the second optimization process is executed.
  • the first optimization process is executed before the second optimization process. Therefore, it is possible to efficiently estimate the three-dimensional optical properties of the estimated object.
  • control continues in continuous composite processing.
  • control may be performed to reduce the difference between the number of executions of the second optimization processing and the number of executions of the first optimization processing. preferable.
  • the estimation device of this embodiment executes a predetermined process in the second combined process.
  • the predetermined process the number of times the first optimization process is executed is greater than the number of times the second optimization process is executed. Also, the first optimization process is executed before the second optimization process. Therefore, it is possible to efficiently estimate the three-dimensional optical properties of the estimated object.
  • the first illumination light is light in the infrared region and the second illumination light is light in the visible region.
  • the three-dimensional optical characteristics of an estimated object can be estimated efficiently.
  • the first illumination light is light in the infrared region, It is preferable to satisfy the following conditional expression (A). 2 ⁇ 2 ⁇ 1 (A) here, ⁇ 1 is the wavelength of the first illumination light; ⁇ 2 is the wavelength of the second illumination light; is.
  • the three-dimensional optical characteristics of an estimated object can be estimated efficiently.
  • the estimation system of this embodiment includes the estimation device of this embodiment, a light source unit that emits first illumination light and second illumination light, a photodetector, a stage on which an object is placed, an angle changing mechanism, Prepare.
  • the stage is arranged on the optical path from the light source unit to the photodetector, and the angle changing mechanism changes the incident angle of the first illumination light to the object and the incident angle of the second illumination light to the object.
  • FIG. 10 is a diagram showing the estimation system of this embodiment. The same numbers are assigned to the same configurations as in FIG. 1, and the description thereof is omitted.
  • the estimation system 30 includes a light source unit 31, a photodetector 34, a stage 35, and an estimation device 1.
  • the estimating device 1 has a memory 2 and a processor 3 .
  • the light source unit 31 emits first illumination light and second illumination light.
  • the light source unit 31 has a first light source 32 and a second light source 33 .
  • the first light source 32 emits first illumination light.
  • the second light source 33 emits second illumination light.
  • the longest wavelength in the wavelength band of the second illumination light is located on the shorter wavelength side than the shortest wavelength in the wavelength band of the first illumination light.
  • the first illumination light enters the dichroic mirror 36 from the first direction.
  • the second illumination light enters the dichroic mirror 36 from a direction perpendicular to the first direction.
  • the dichroic mirror 36 has a spectral characteristic of transmitting long wavelength light and reflecting short wavelength light. Therefore, the first illumination light passes through the dichroic mirror 36 and travels in the first direction. The second illumination light is reflected by the dichroic mirror 36 and travels in the first direction.
  • a beam splitter 37 is arranged in the first direction.
  • the first illumination light and the second illumination light enter the beam splitter 37 .
  • the beam splitter 37 has an optical surface on which an optical film is formed.
  • the optical film generates light that is transmitted in the first direction and light that is reflected in the second direction from the incident light.
  • the estimation system 30 forms a measurement optical path OP mea in a first direction and a reference optical path OP ref in a second direction.
  • the reference optical path OP ref may be formed in the first direction and the measurement optical path OP mea may be formed in the second direction.
  • the first illumination light and the second illumination light travel through the measurement optical path OP mea and the reference optical path OP ref , respectively.
  • a mirror 38 is arranged in the measuring optical path OP mea .
  • the measurement optical path OP mea is folded in a second direction by mirror 38 .
  • a mirror 39 is arranged in the reference optical path OP ref .
  • the reference optical path OP ref is folded in the first direction by mirror 39 .
  • the reference optical path OP ref intersects the measurement optical path OP mea .
  • a beam splitter 40 is arranged at the position where the two optical paths intersect.
  • a stage 35 is arranged between the mirror 38 and the beam splitter 40 in the measurement optical path OP mea .
  • An object S is placed on the stage 35 .
  • the object S is irradiated with the first illumination light and the second illumination light.
  • the object S When the object S is irradiated with the first illumination light, the object S emits the first measurement light Lmea1 .
  • the first measurement light Lmea1 is the first illumination light that has passed through the object S.
  • the object S When the object S is irradiated with the second illumination light, the object S emits the second measurement light Lmea2 .
  • the second measurement light Lmea2 is the second illumination light that has passed through the object S. As shown in FIG.
  • the first reference light L ref1 is the first illumination light that does not pass through the object S.
  • the second reference light L ref2 is the second illumination light that does not pass through the object S.
  • the first measurement light L mea1 , the second measurement light L mea2 , the first reference light L ref1 , and the second reference light L ref2 enter the beam splitter 40 .
  • the beam splitter 40 has an optical surface on which an optical film is formed. In the beam splitter 40, the optical film generates light that is transmitted in the first direction and light that is reflected in the second direction from the incident light.
  • a photodetector 34 is arranged in the first direction. When the first light source 32 and the second light source 33 are turned on, the photodetector 34 receives the first measurement light L mea1 , the second measurement light L mea2 , the first reference light L ref1 , and the second reference light L ref2 . is incident.
  • the first measurement light L mea1 and the first reference light L ref1 enter the photodetector 34 .
  • the second measurement light L mea2 and the second reference light L ref2 enter the photodetector 34 .
  • a first interference fringe is formed by the first measurement light L mea1 and the first reference light L ref1 .
  • a second interference fringe is formed by the second measurement light L mea2 and the second reference light L ref2 .
  • the image of the first interference fringes and the image of the second interference fringes are sent to the estimation device 1.
  • the estimation device 1 acquires the first wavefront information based on the image of the first interference fringes.
  • Second wavefront information is obtained based on the image of the second interference fringes.
  • the first wavefront information and the second wavefront information are stored in the memory 2 .
  • An estimation process is performed using the first wavefront information and the second wavefront information.
  • a plurality of first wavefront information and a plurality of second wavefront information are used.
  • the incident angle of the first illumination light to the object differs for each first wavefront information.
  • the angle of incidence of the second illumination light on the object differs for each second wavefront information.
  • the estimation system of this embodiment has an angle changing mechanism.
  • the angle changing mechanism changes the relative orientation. Therefore, the incident angle of the illumination light to the object can be changed. As a result, a plurality of pieces of first wavefront information and a plurality of pieces of second wavefront information can be acquired.
  • the angle changing mechanism has a driving device and a rotating member, the rotating member holds the stage, and the rotation axis of the rotating member intersects the object and the light in the optical path. It is preferably perpendicular to the axis.
  • estimation system 30 has angle changing mechanism 41 .
  • the angle changing mechanism 41 is arranged on the measurement optical path OP mea side.
  • the angle changing mechanism 41 has a driving device 42 and a rotating member 43.
  • the rotating member 43 holds the stage 35 .
  • Axis RX is the rotation axis of rotating member 43 .
  • the axis RX intersects the object S and is perpendicular to the optical axis AX.
  • the rotating member 43 is rotated by the drive device 42 . Since the rotating member 43 holds the stage 35, the stage 35 rotates. By rotating the stage 35, the object S can be rotated around the axis RX.
  • the first illumination light and the second illumination light are reflected by the mirror 38 and enter the object S.
  • the rotation of the object S changes the orientation of the object S with respect to the first illumination light and the orientation of the object S with the second illumination light. Therefore, the object S is irradiated with the first illumination light and the second illumination light from various directions.
  • the first measurement light L mea1 and the second measurement light L mea2 are emitted.
  • the first measurement light L mea1 and the second measurement light L mea2 enter the photodetector 34 .
  • the orientation of the object S changes without changing the orientation of the first illumination light and the orientation of the second illumination light. Therefore, the incident angle of the first illumination light to the object S and the incident angle of the second illumination light to the object S can be changed.
  • the angle changing mechanism has a driving device and a rotating member, the rotating member has a reflecting surface, and the direction of the reflecting surface changes by changing the arrangement angle of the rotating member Change is preferred.
  • FIG. 11 is a diagram showing the estimation system of this embodiment. The same numbers are assigned to the same configurations as in FIG. 10, and the description thereof is omitted.
  • the estimation system 50 has an angle changing mechanism 60 and an angle changing mechanism 70 .
  • the angle changing mechanism 60 and the angle changing mechanism 70 are arranged on the measurement optical path OP mea .
  • the angle changing mechanism 60 has a driving device 61 and a rotating member 62.
  • the rotating member 62 has a reflecting surface. Rotational or repetitive motion of the rotating member 62 changes the orientation of the reflective surface.
  • the angle changing mechanism 70 has a driving device 71 and a rotating member 72 .
  • the rotating member 72 has a reflecting surface. Rotational or repetitive motion of the rotating member 72 changes the orientation of the reflective surface.
  • the angle changing mechanism 60 is, for example, a galvanometer scanner or a polygon scanner.
  • a galvanometer scanner the repetitive motion of a plane mirror changes the orientation of the reflective surface.
  • a polygon scanner the rotation of the polygon mirror changes the orientation of the reflective surface.
  • Galvanometer scanners and polygon scanners are called optical deflectors.
  • An illumination optical system 51 , a stage 35 , and a detection optical system 52 are arranged between the angle changing mechanism 60 and the angle changing mechanism 70 .
  • Object S is positioned between illumination optical system 51 and detection optical system 52 .
  • the first illumination light and the second illumination light pass through the illumination optical system 51 and enter the object S.
  • the direction of the first illumination light with respect to the object S and the direction of the second illumination light with respect to the object S are changed by the rotational or repetitive motion of the rotary member 62 . Therefore, the object S is irradiated with the first illumination light and the second illumination light from various directions.
  • the first measurement light L mea1 and the second measurement light L mea2 are emitted.
  • the first measurement light L mea1 and the second measurement light L mea2 pass through the detection optical system 52 and enter the angle changing mechanism 70 .
  • the incident angle of the first measurement light L mea1 with respect to the angle changing mechanism 70 changes.
  • the incident angle of the second measurement light L mea2 with respect to the angle changing mechanism 70 also changes. Changes in the incident angle can be canceled with the angle changing mechanism 70 . Therefore, the first measurement light L mea1 and the second measurement light L mea2 enter the mirror 53 without moving.
  • the first measurement light L mea1 and the second measurement light L mea2 reflected by the mirror 53 enter the photodetector 34 .
  • the angle changing mechanism 60 changes the direction of the illumination light. In this case, the direction of the first illumination light and the direction of the second illumination light change without changing the direction of the object S. Therefore, the incident angle of the first illumination light to the object S and the incident angle of the second illumination light to the object S can be changed.
  • the rotating member rotates or repeats the rotating member in one axis.
  • the rotational movement of the rotating member or the repetitive movement of the rotating member may be performed in two orthogonal axes.
  • the number of illumination lights is two and the number of photodetectors is one. Therefore, it is necessary to switch the illumination light.
  • FIG. 12 is a diagram showing a method of switching illumination light. The same numbers are assigned to the same configurations as in FIG. 10, and the description thereof is omitted.
  • FIG. 12(a) is a diagram showing the first switching method.
  • FIG. 12(b) is a diagram showing a second switching method.
  • FIG. 12(c) is a diagram showing a third switching method.
  • a first light shielding plate 80 and a second light shielding plate 81 are used in the first method.
  • the first light source 32 and the second light source 33 are lit.
  • First illumination light is emitted from the first light source 32 and second illumination light is emitted from the second light source 33 .
  • a first light shielding plate 80 is arranged outside the optical path between the first light source 32 and the dichroic mirror 36 .
  • a second light shielding plate 81 is arranged outside the optical path between the second light source 33 and the dichroic mirror 36 .
  • the first light shielding plate 80 and the second light shielding plate 81 can be put in and taken out from the optical path.
  • the second light shielding plate 81 is inserted between the second light source 33 and the dichroic mirror 36 . With this arrangement, the first illumination light can be selected.
  • the first light shielding plate 80 With the second light shielding plate 81 positioned outside the optical path, the first light shielding plate 80 is inserted between the first light source 32 and the dichroic mirror 36 . With this arrangement, the second illumination light can be selected.
  • a first optical filter 82 and a second optical filter 83 are used.
  • the light source unit 31 is lit.
  • the light source unit 31 has one light source.
  • the first illumination light and the second illumination light are emitted from one light source.
  • a first optical filter 82 and a second optical filter 83 are arranged outside the optical path between the light source unit 31 and the beam splitter 37 .
  • the first optical filter 82 and the second optical filter 83 are removable with respect to the optical path.
  • the first optical filter 82 has spectral characteristics that transmit only the first illumination light.
  • the second optical filter 83 has spectral characteristics that transmit only the second illumination light.
  • the first optical filter 82 is inserted between the light source unit 31 and the beam splitter 37 with the second optical filter 83 positioned outside the optical path. With this arrangement, the first illumination light can be selected.
  • the second optical filter 83 is inserted between the light source unit 31 and the beam splitter 37 with the first optical filter 82 positioned outside the optical path. With this arrangement, the second illumination light can be selected.
  • the first optical filter 82 and the second optical filter 83 can be put in and out between the dichroic mirror 36 and the beam splitter 37.
  • a first optical filter 82 and a second optical filter 83 are used in the third method.
  • the first light source 32 and the second light source 33 are lit.
  • a first optical filter 82 and a second optical filter 83 are arranged outside the optical path between the beam splitter 40 and the photodetector 34 .
  • the first optical filter 82 and the second optical filter 83 are removable with respect to the optical path.
  • the first optical filter 82 is inserted between the beam splitter 40 and the photodetector 34 with the second optical filter 83 positioned outside the optical path. With such an arrangement, the first illumination light can be selected.
  • a second optical filter 83 is inserted between the beam splitter 40 and the photodetector 34 with the first optical filter 82 positioned outside the optical path. With such an arrangement, the second illumination light can be selected.
  • the estimation system of this embodiment includes a photodetector different from the photodetector, the photodetector has a sensitivity equal to or higher than a first threshold with respect to the wavelength band of the first illumination light, and The other photodetector has sensitivity equal to or greater than the first threshold for the wavelength band of the second illumination light, and has sensitivity equal to or greater than the second threshold for the wavelength band of the first illumination light. preferably does not have a sensitivity equal to or higher than the second threshold.
  • FIG. 13 is a diagram showing the estimation system of this embodiment. The same numbers are assigned to the same configurations as in FIG. 11, and the description thereof is omitted.
  • the estimation system 90 has a first photodetector 91 and a second photodetector 92 .
  • the first photodetector 91 and the second photodetector 92 receive the first measurement light L mea1 , the second measurement light L mea2 , and the first reference light. L ref1 and second reference light L ref2 are incident.
  • the first photodetector 91 has sensitivity equal to or higher than the first threshold for the wavelength band of the first illumination light, but does not have sensitivity equal to or higher than the first threshold for the wavelength band of the second illumination light. Therefore, the first photodetector 91 can image only the first interference fringes formed by the first measurement light Lmea1 and the first reference light Lref1 .
  • the first threshold may be determined appropriately.
  • the second photodetector 92 has sensitivity equal to or higher than the second threshold for the wavelength band of the second illumination light, but does not have sensitivity equal to or higher than the second threshold for the wavelength band of the first illumination light. Therefore, the second photodetector 92 can image only the second interference fringes formed by the second measurement light Lmea2 and the second reference light Lref2 .
  • the second threshold may be determined appropriately.
  • the estimation system of this embodiment includes a photodetector different from the photodetector, a first optical element used together with the photodetector, and a second optical element used together with the other photodetector,
  • the first optical element has characteristics of transmitting the first illumination light and blocking the second illumination light
  • the second optical element has characteristics of transmitting the second illumination light and blocking the first illumination light. is preferred.
  • FIG. 14 is a diagram showing the estimation system of this embodiment. The same numbers are assigned to the same configurations as in FIG. 11, and the description thereof is omitted.
  • the estimation system 100 has a first photodetector 101 , a second photodetector 102 , a first optical element 103 and a second optical element 104 .
  • the first optical element 103 is arranged between the beam splitter 40 and the first photodetector 101 .
  • a second optical element 104 is positioned between the beam splitter 40 and the second photodetector 102 .
  • the first measurement light L mea1 , the second measurement light L mea2 , and the first reference light L ref1 are emitted from the first optical element 103 and the second optical element 104 .
  • the second reference light L ref2 are incident.
  • the first optical element 103 has a property of transmitting the first illumination light and blocking the second illumination light. Therefore, the first measurement light L mea1 and the first reference light L ref1 enter the first photodetector 101 .
  • a first interference fringe is formed by the first measurement light L mea1 and the first reference light L ref1 .
  • the first optical element 104 has the property of transmitting the second illumination light and blocking the first illumination light. Therefore, the second measurement light L mea2 and the second reference light L ref2 enter the second photodetector 102 .
  • a second interference fringe is formed by the second measurement light L mea2 and the second reference light L ref2 .
  • FIG. 15 is a diagram showing the estimation system of this embodiment. The same numbers are assigned to the same configurations as in FIG. 10, and the description thereof is omitted.
  • Estimation system 110 has mirror 111 and beam splitter 112 .
  • a mirror 111 is arranged in the measurement optical path OP mea .
  • the beam splitter 112 is arranged at a position where the reference optical path OP ref and the measurement optical path OP mea intersect.
  • the beam splitter 40 bends the measurement optical path OP mea in the first direction, and the mirror 39 bends the reference optical path OP ref in the first direction.
  • the mirror 111 bends the measurement optical path OP mea in the opposite direction to the first direction, and the beam splitter 112 bends the reference optical path OP ref in the opposite direction to the first direction. Therefore, a difference occurs between the optical path length of the measurement optical path OP mea and the optical path length of the reference optical path OP ref .
  • interference fringes are formed. If the coherence length of the illumination light is shorter than the difference in optical path length, the optical path length adjuster 113 is arranged between the beam splitter 37 and the mirror 112 . With such an arrangement, interference fringes can be formed.
  • the optical path length adjusting section 113 has, for example, a piezo stage and four mirrors. Two mirrors are placed on the piezo stage. By moving the two mirrors, the optical path length in the reference optical path OP ref can be changed.
  • the wavefront information may be calculated by driving the piezo stage in steps equal to or less than the wavelength of the light source, and by performing imaging a plurality of times.
  • the estimation system of this embodiment includes the estimation device of this embodiment, and a light source unit that emits the first illumination light and the second illumination light, and the light source unit is composed of a plurality of independent light sources with different irradiation angles.
  • a processor of the estimating device or a processor different from the processor controls whether or not the illumination light is emitted to the light source, so that the angle of incidence of the first illumination light on the object and the angle of incidence of the second illumination light on the object It is characterized by changing the incident angle.
  • FIG. 16 is a diagram showing the estimation system of this embodiment. The same numbers are assigned to the same configurations as in FIG. 11, and the description thereof is omitted.
  • Estimation system 120 includes light source 121 , lens 122 , lens 123 and photodetector 124 .
  • the lens 123 is arranged in the illumination optical system 51 .
  • the measurement optical path OP mea is formed in the estimation system 120 .
  • the light source 121 has a first illumination section and a second illumination section.
  • the first lighting section and the second lighting section each have a plurality of light emitting sections.
  • a light emitting diode (LED) or a semiconductor laser (LD) can be arranged in the light emitting portion.
  • the light emitting parts are arranged in an array. Light emission and extinction can be independently controlled in the light emitting section.
  • the first illumination section emits first illumination light.
  • the second illumination section emits second illumination light.
  • the light exit part may be the exit surface of the fiber bundle.
  • the fiber bundles have a first fiber bundle and a second fiber bundle. By connecting the first fiber bundle to a first light source (not shown), the first illumination light is emitted from the emission surface of the first fiber bundle. By connecting the second fiber bundle to a second light source (not shown), the second illumination light is emitted from the emission surface of the second fiber bundle.
  • the object S is preferably illuminated with parallel light.
  • the area of the light emitting portion is small enough to be regarded as a point light source. Therefore, the light exit section is arranged at a position conjugate with the pupil position of the illumination optical system 51 .
  • the lens 122 is arranged between the light source 121 and the illumination optical system 51 .
  • the lens 122 and the lens 123 can make the position of the light source 121 and the pupil position of the illumination optical system 51 conjugate. If a sufficient space can be secured around the pupil position of the illumination optical system 51 , the light exit section may be arranged at the pupil position of the illumination optical system 51 .
  • the light source 121 controls the first lighting section and the second lighting section. In this control, the light emitting portion from which light is emitted is changed among the plurality of light emitting portions. By this control, it is possible to change the incident angle of the first illumination light with respect to the object and change the incident angle of the second illumination light with respect to the object.
  • the light source unit emits the first illumination light and the second illumination light.
  • the first lighting section and the second lighting section each have a plurality of light emitting sections. Therefore, the light source unit is composed of a plurality of independent light sources with different irradiation angles.
  • the estimating device 120 has a processor or a processor different from the processor. Therefore.
  • the processor can control the light source unit as to whether or not to emit illumination light. By this control, the incident angle of the first illumination light to the object and the incident angle of the second illumination light to the object can be changed.
  • the estimation system 120 measures the wavefront amplitude data.
  • the wavefront to be measured is the wavefront at the detection plane of photodetector 124 .
  • Wavefront amplitude data may be measured at multiple wavelengths or by changing the illumination angle. In the measurement by changing the illumination angle, the illumination angle is changed by a very small angle. By using these measurement methods, it is possible to measure the data set necessary for estimating the phase of the wavefront at the detection plane.
  • the configuration can be simplified.
  • FIG. 17 is a diagram showing an image of an object.
  • FIG. 17(a) is an image estimated by the first wavefront information.
  • FIG. 17B shows an image estimated by the second wavefront information.
  • FIG. 17(c) is an image estimated from the first wavefront information and the second wavefront information.
  • the images are images obtained by simulation.
  • a PCF using a photonic crystal fiber (hereinafter referred to as "PCF") as an object has a cylindrical member and a through hole.
  • a plurality of through holes are formed inside the cylindrical member.
  • the through hole is cylindrical and formed along the generatrix of the cylindrical member.
  • the outer diameter of the PCF is 230 ⁇ m and the refractive index of the medium is 1.47.
  • the perimeter of the through-hole and the cylindrical member is filled with a liquid having a refractive index of 1.44.
  • Wavefront information obtained with illumination light having a wavelength ⁇ of 633 nm is used for estimating the image shown in FIG. 17(a).
  • Wavefront information acquired with illumination light having a wavelength ⁇ of 1300 nm is used for estimating the image shown in FIG. 17(b).
  • the longest wavelength in the wavelength band of the second illumination light is located on the shorter wavelength side than the shortest wavelength in the wavelength band of the first illumination light. Therefore, the wavefront information acquired with the second illumination light, that is, the second wavefront information is used for estimating the image shown in FIG. 17(a).
  • the wavefront information acquired with the first illumination light, that is, the first wavefront information is used for estimating the image shown in FIG. 17(b).
  • the second wavefront information provides less wavefront information in the axial direction than the first wavefront information. Therefore, as shown in FIG. 17(a), the structure of PCF can hardly be estimated. In contrast, the amount of wavefront information in the axial direction is greater in the first wavefront information than in the second wavefront information. Therefore, as shown in FIG. 17(b), the structure of the PCF can be roughly estimated. Wavefront information obtained with illumination light having a wavelength ⁇ 1 of 1300 nm and wavefront information obtained with illumination light having a wavelength ⁇ 2 of 633 nm are used for estimating the image shown in FIG. 17C. Therefore, the first wavefront information and the second wavefront information are used to estimate the image shown in FIG. 17(c).
  • the amount of wavefront information in the lateral direction is greater in the second wavefront information than in the first wavefront information. Therefore, the accuracy of estimation can be improved by using the first wavefront information and the second wavefront information for estimation.
  • the structure of the PCF in the horizontal direction can be made clearer.
  • FIG. 18 is a diagram showing an image of an object.
  • FIGS. 18(a) and 18(b) are images estimated from the first wavefront information.
  • FIGS. 18(c) and 18(d) are images estimated from the first wavefront information and the second wavefront information.
  • the images are images obtained by simulation.
  • the estimation of the image shown in FIG. 18(a) and the estimation of the image shown in FIG. 18(c) use wavefront information acquired by a detection optical system with a numerical aperture NA of 0.1.
  • the estimation of the image shown in FIG. 18(b) and the estimation of the image shown in FIG. 18(d) use wavefront information acquired by a detection optical system with a numerical aperture NA of 0.2.
  • the numerical aperture NA of the optical system improves the resolution. As the resolution improves, the amount of wavefront information increases. With a lot of wavefront information, the three-dimensional optical properties of an object can be estimated with high accuracy.
  • wavefront information obtained with illumination light having a wavelength ⁇ of 1300 nm is used.
  • wavefront information obtained with illumination light having a wavelength ⁇ of 1300 nm is used.
  • the estimation of the image shown in FIG. 18(c) and the estimation of the image shown in FIG. 18(d) use wavefront information acquired at wavelengths shorter than the wavelength of 1300 nm.
  • Illumination light with a short wavelength has a higher resolution than illumination light with a long wavelength. Therefore, it can be estimated using more information than the wavefront information acquired with illumination light of 1300 nm. can be obtained.
  • the estimation system of this embodiment includes the estimation device of this embodiment, a light source unit that emits first illumination light and second illumination light, an imaging optical system that forms an optical image of an object, and an optical image of an object. It has a photodetector that acquires an image of an object, and a drive mechanism that changes the distance between the focal position of the imaging optical system and the position of the object in the optical axis direction of the imaging optical system.
  • the illumination by the first illumination light and the illumination by the second illumination light form spatial partially coherent illumination of the object.
  • FIG. 19 is a diagram showing the estimation system of this embodiment. The same numbers are assigned to the same configurations as in FIG. 11, and the description thereof is omitted.
  • the estimation system 130 includes a light source unit 31, an illumination optical system 133, an aperture member 134, an imaging optical system 135, a photodetector 136, a drive mechanism 137, and an estimation device 1.
  • the estimating device 1 has a memory 2 and a processor 3 .
  • the light source unit 31 emits first illumination light and second illumination light.
  • the light source unit 31 has a first light source 131 and a second light source 132 .
  • the first light source 131 emits first illumination light.
  • the second light source 132 emits second illumination light.
  • the first illumination light and the second illumination light are preferably quasi-monochromatic lights. Quasi-monochromatic light is light with a narrow wavelength band. LEDs (light emitting diodes), for example, can be used for the first light source 131 and the second light source 132 .
  • a light source that emits light with a wide wavelength band can be used instead of an LED.
  • two narrow-band optical filters may be inserted and removed.
  • a first optical filter 82 and a second optical filter 83 shown in FIG. 12(b) may be used as two narrow-band optical filters.
  • the precision of the spectral transmittance characteristics of the narrow-band optical filter does not have to be high.
  • the light emitted from the first light source 131 can be infrared light, and the light emitted from the second light source 132 can be visible light.
  • the first illumination light and the second illumination light enter the dichroic mirror 138 .
  • the dichroic mirror 138 has a spectral characteristic of transmitting long wavelength light and reflecting short wavelength light. Therefore, the first illumination light passes through the dichroic mirror 138 and the second illumination light is reflected by the dichroic mirror 138 .
  • the first illumination light and the second illumination light enter the illumination optical system 133 .
  • the illumination optical system 133 illuminates the object S.
  • An aperture member 134 is arranged in the illumination optical system 133 .
  • the opening member 134 has a circular light shielding portion 134a, an annular transmission portion 134b, and an annular light shielding portion 134c.
  • the transmissive portion 134b may be a light reducing portion.
  • An opening member different from the opening member 134 may be prepared and two opening members may be used.
  • the transmissive portion is identical to transmissive portion 134b and the two light shielding portions are identical to light shielding portion 134a and light shielding portion 134c.
  • the first optical filter 82 is provided in the transmitting portion 134b.
  • a second optical filter 83 is provided in the transmissive portion.
  • the first light source 131 and the second light source 132 are surface light sources.
  • the light emitting portion is formed by countless point light sources. It can be considered that a myriad of point light sources are positioned on the aperture member 134 .
  • the first illumination light and the second illumination light are emitted from the image of the point light source formed in the transmission portion 134b.
  • the first illumination light and the second illumination light are not emitted from the image of the point light source formed on the light shielding portion 134a and the light shielding portion 134c. Therefore, illumination by the first illumination light and illumination by the second illumination light are partially coherent illumination.
  • Partial coherent illumination is intermediate illumination between coherent illumination and incoherent illumination.
  • Coherent illumination is illumination by light emitted from a point light source, for example, illumination by laser light.
  • Incoherent illumination is illumination using light emitted from a surface light source, for example, illumination using light emitted from a halogen lamp.
  • a light source in partial coherent illumination is an intermediate light source between a surface light source and a point light source.
  • the aperture member 134 is arranged at the front focal position of the lens 133a. Therefore, a parallel light beam is emitted from the illumination optical system 133 . Object S is illuminated with parallel light.
  • the imaging optical system 135 forms an optical image of the object S.
  • An image of the object S can be acquired by capturing an optical image with the photodetector 136 .
  • Photodetector 136 can be a two-dimensional sensor, such as a CCD or CMOS.
  • Two photodetectors may be used as in the estimation system 100 shown in FIG.
  • a Si sensor can be used for one photodetector
  • an InGaAs sensor can be used for the other photodetector.
  • the drive mechanism 137 changes the distance between the focal position of the imaging optical system 135 and the position of the object S in a direction parallel to the optical axis AX.
  • the estimation system 130 uses a stage for the driving mechanism 137 . In this case, the stage is moved in a direction parallel to the optical axis AX while the imaging optical system 135 is fixed. As a result, the position of the object S can be changed with respect to the focal position of the imaging optical system 135 .
  • the imaging optical system 135 and the photodetector 136 may be moved in a direction parallel to the optical axis AX. This method can also change the position of the object S with respect to the focal position of the imaging optical system 135 .
  • an infinity-corrected microscope objective lens can be used for the lens 135a.
  • parallel light is emitted from the lens 135a. Therefore, only the lens 135a may be moved in a direction parallel to the optical axis AX.
  • An image of the object S is acquired while changing the distance between the focal position of the imaging optical system 135 and the position of the object S. As a result, multiple images can be acquired.
  • a plurality of pieces of wavefront information can be obtained from a plurality of images.
  • the plurality of wavefront information includes axial information for each of the first illumination light and the second illumination light.
  • the transmission portion 134b does not include the optical axis AX. Therefore, the object S is illuminated with parallel light from a direction intersecting the optical axis AX. As a result, an image of the object with contrast can be acquired. Furthermore, since partial coherent illumination is performed, an image of an object can be obtained with higher resolution than coherent illumination.
  • the estimation system 130 uses one aperture member. However, multiple aperture members can be used. Different wavefront information can be obtained by changing the size of the light shielding portion 134a and the width of the annular transmission portion 134. FIG.
  • FIG. 20 is a diagram showing an image of an aperture member and an object.
  • FIG. 20(a) is a diagram showing an image of the first aperture member and an object.
  • FIG. 20(b) is a diagram showing an image of the second aperture member and the object.
  • FIG. 20(c) is a diagram showing an image of the third aperture member and the object.
  • the images are images obtained by simulation.
  • the first aperture member, the second aperture member, and the third aperture member each have a ring-shaped transmitting portion.
  • the position of the transmitting portion and the width of the transmitting portion are different for each opening member. Therefore, the wavefront information is different for each aperture member.
  • the wavefront information obtained from the captured image contains information related to spatial frequency.
  • the angle of incidence of the illumination light on the object increases as the transmissive portion moves away from the center.
  • the information in the high frequency components becomes more than the information in the low frequency components.
  • the more information in the high frequency components the more detailed structure is emphasized in the image of the object.
  • the transmissive part moves away from the center in the order of the first opening member, the second opening member, and the third opening member. Therefore, in the image of the object, the detailed structure becomes sharper in the order of the image shown in FIG. 20(a), the image shown in FIG. 20(b), and the image shown in FIG. 20(c).
  • the estimation system 130 can acquire a large amount of wavefront information. Therefore, even if the thickness of the object is large, the three-dimensional optical characteristics of the object can be obtained with high accuracy and high spatial resolution.
  • the estimation method of this embodiment is an estimation method for estimating the three-dimensional optical characteristics of an object.
  • a three-dimensional optical property is a refractive index distribution or an absorptance distribution.
  • the first wavefront information is wavefront information acquired based on the first illumination light that has passed through the object
  • the second wavefront information is wavefront information acquired based on the second illumination light that has passed through the object.
  • the wavelength of maximum intensity in the second illumination light is located on the shorter wavelength side than the wavelength of maximum intensity in the first illumination light.
  • An estimation process is performed using both the first wavefront information and the second wavefront information.
  • the estimation process is executed by a computer.
  • the computer reads the first wavefront information and the second wavefront information stored in the memory and executes the estimation process.
  • the estimation process is performed using both the plurality of first wavefront information and the plurality of second wavefront information, and the plurality of first wavefront information indicates that the incident angle of the first illumination light with respect to the object is , differ for each piece of first wavefront information, and in a plurality of pieces of second wavefront information, it is preferable that the angle of incidence of the second illumination light on the object differs for each piece of second wavefront information.
  • the estimation process includes a first optimization process in which the first wavefront information is a constraint condition, and a second optimization process in which the second wavefront information is a constraint condition.
  • Each of the first optimization process and the second optimization process is executed twice or more.
  • the second optimization process is continuously performed on the three-dimensional optical characteristics updated by the continuous execution of the first optimization process.
  • the estimation process executes the second optimization process on the three-dimensional optical characteristics updated by executing the first optimization process.
  • the estimation process includes a first optimization process in which the first wavefront information is a constraint condition, and a second optimization process in which the second wavefront information is a constraint condition.
  • a composite process consisting of a first optimization process and a second optimization process is executed two or more times. In composite processing, the first optimization processing is performed first. In composite processing, the first optimization process is not executed after the second optimization process is executed.
  • the composite process executes the first optimization process on the initial values set for the three-dimensional optical characteristics.
  • control is performed so that the number of times the first optimization process is executed is greater than or equal to the number of times the second optimization process is executed.
  • control continues in continuous compound processing.
  • control is performed to reduce the difference between the number of times the second optimization process is executed and the number of times the first optimization process is executed.
  • the first illumination light is light in the infrared region
  • the second illumination light is light in the visible region
  • the first illumination light is light in the infrared region and satisfies the following conditional expression (A). 2 ⁇ 2 ⁇ 1 (A) here, ⁇ 1 is the wavelength of the first illumination light; ⁇ 2 is the wavelength of the second illumination light; is.
  • the recording medium of this embodiment is a computer-readable recording medium on which a program is recorded.
  • a recording medium records a program for causing a computer having a memory and a processor to perform estimation processing.
  • the memory stores first wavefront information and second wavefront information.
  • the first wavefront information is wavefront information acquired based on the first illumination light that has passed through the object
  • the second wavefront information is wavefront information acquired based on the second illumination light that has passed through the object.
  • the wavelength of maximum intensity in the second illumination light is located on the shorter wavelength side than the wavelength of maximum intensity in the first illumination light.
  • a three-dimensional optical property is a refractive index distribution or an absorptance distribution.
  • the computer causes the processor to perform a process of reading the first wavefront information and the second wavefront information from the memory and an estimation process using both the first wavefront information and the second wavefront information.
  • the memory stores a plurality of first wavefront information and a plurality of second wavefront information
  • the processor estimates using both the plurality of first wavefront information and the plurality of second wavefront information. It is preferable to let the process run.
  • the incident angle of the first illumination light to the object differs for each first wavefront information
  • the incident angle of the second illumination light to the object is different from the second wavefront information. different for each.
  • the present invention is suitable for an estimating device, an estimating system, an estimating method, and a recording medium that can acquire the three-dimensional optical characteristics of an object with high accuracy and high spatial resolution even when the thickness of the object is large. ing.

Landscapes

  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Optics & Photonics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

物体の厚みが大きい場合であっても、物体の3次元光学特性を高い精度と高い空間分解能で取得できる推定装置を提供する。 推定装置は、メモリと、プロセッサと、を備え、メモリは、第1波面情報と、第2波面情報と、を記憶する。第1波面情報は、物体を通過した第1照明光に基づいて取得した波面の情報であり、第2波面情報は、物体を通過した第2照明光に基づいて取得した波面の情報である。第2照明光における最大強度の波長は、第1照明光における最大強度の波長よりも短波長側に位置する。プロセッサは、物体の3次元光学特性を推定する推定処理を実行し、3次元光学特性は、屈折率分布又は吸収率分布である。推定処理は、第1波面情報と第2波面情報の両方を用いる。

Description

推定装置、推定システム、推定方法、及び記録媒体
 本発明は、推定装置、推定システム、推定方法、及び記録媒体に関する。
 実際の物体を計算機上の物体モデルで再現する再構成手法がある。この再構成手法では、測定した物体の画像と計算した物体モデルの画像が一致するように、最適化手法で計算機上の物体モデルを変更していく。最終的に、物体の画像と物体モデルの画像が一致した時に、計算機上の物体モデルは実際の物体を再現している。
 非特許文献1に、物体の再構成を行う手法が提案されている。この手法では、LEDアレイが配置された推定装置が用いられている。LEDアレイは、照明光学系の瞳位置に配置されている。LEDの点灯位置を変えることで、標本に対して様々な角度で照明が照射される。各照射角度で標本の画像を取得するので、複数の標本の画像が取得される。
 物体の再構成によって、物体の3次元光学特性が得られる。3次元光学特性は、例えば、屈折率分布又は吸収率分布である。
 物体の3次元光学特性を高い精度と高い空間分解能で取得するためには、物体を高い精度と高い空間分解能で再構成する必要がある。
 高い精度で再構成した物体では、光軸と直交する方向と光軸と平行な方向の両方で、物体の3次元光学特性を、高い確度で取得することができる。
 物体の厚みが大きい場合、非特許文献1では、物体を高い精度と高い空間分解能で再構成することが難しい。
 本発明は、このような課題に鑑みてなされたものであって、物体の厚みが大きい場合であっても、物体の3次元光学特性を高い精度と高い空間分解能で取得できる推定装置、推定システム、推定方法、及び記録媒体を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の少なくとも幾つかの実施形態に係る推定装置は、
 メモリと、プロセッサと、を備え、
 メモリは、第1波面情報と第2波面情報を記憶し、
 第1波面情報は、物体を通過した第1照明光に基づいて取得した波面の情報であり、
 第2波面情報は、物体を通過した第2照明光に基づいて取得した波面の情報であり、
 第2照明光における最大強度の波長は、第1照明光における最大強度の波長よりも短波長側に位置し、
 プロセッサは、物体の3次元光学特性を推定する推定処理を実行し、
 3次元光学特性は、屈折率分布又は吸収率分布であり、
 推定処理は、第1波面情報と第2波面情報の両方を用いることを特徴とする。
 本発明の少なくとも幾つかの実施形態に係る推定システムは、
 上述の推定装置と、
 第1照明光と第2照明光を射出する光源ユニットと、
 光検出器と、
 物体を載置するステージと、
 角度変更機構と、を備え、
 ステージは、光源ユニットから光検出器まで間の光路上に配置され、
 角度変更機構は、第1照明光の物体に対する入射角度と、第2照明光の物体への入射角度を変化させることを特徴とする。
 本発明の少なくとも幾つかの実施形態に係る推定システムは、
 上述の推定装置と、
 第1照明光と第2照明光を射出する光源ユニットと、
 物体の光学像を形成する結像光学系と、
 物体の光学像から物体の画像を取得する光検出器と、
 結像光学系の焦点位置と物体の位置との間隔を、結像光学系の光軸方向に変化させる駆動機構と、を有し、
 第1照明光による照明と第2照明光による照明は、物体に対してパーシャルコヒーレント照明を形成していることを特徴とする。
 本発明の少なくとも幾つかの実施形態に係る推定方法は、
 物体の3次元光学特性を推定する推定処理を有し、
 3次元光学特性は、屈折率分布又は吸収率分布であり、
 第1波面情報は、物体を通過した第1照明光に基づいて取得した波面の情報であり、
 第2波面情報は、物体を通過した第2照明光に基づいて取得した波面の情報であり、
 第2照明光における最大強度の波長は、第1照明光における最大強度の波長よりも短波長側に位置し、
 第1波面情報と第2波面情報の両方を用いて推定処理を実行することを特徴とする。
 本発明の少なくとも幾つかの実施形態に係る記録媒体は、
 メモリとプロセッサを備えたコンピュータに推定処理を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体であって、
 第1波面情報は、物体を通過した第1照明光に基づいて取得した波面の情報であり、
 第2波面情報は、物体を通過した第2照明光に基づいて取得した波面の情報であり、
 第2照明光における最大強度の波長は、第1照明光における最大強度の波長よりも短波長側に位置し、
 推定処理では、物体の3次元光学特性を推定し、
 3次元光学特性は、屈折率分布又は吸収率分布であり、
 プロセッサに、第1波面情報と第2波面情報をメモリから読み出させる処理と、
 第1波面情報と第2波面情報の両方を用いて、推定処理を実行させることを特徴とする。
 本発明によれば、物体の厚みが大きい場合であっても、物体の3次元光学特性を高い精度と高い空間分解能で取得できる推定装置、推定システム、推定方法、及び記録媒体を提供することができる。
本実施形態の推定装置を示す図である。 第1の取得方法におけるフローチャートである。 第1照明光が物体を通過する様子を示す図である。 第2照明光が物体を通過する様子を示す図である。 第2の取得方法におけるフローチャートである。 第1の推定処理におけるフローチャートである。 測定画像と推定画像を示す図である。 推定波面情報の算出におけるフローチャートである。 第2の推定処理におけるフローチャートである。 本実施形態の推定システムを示す図である。 本実施形態の推定システムを示す図である。 照明光の切替え方法を示す図である。 本実施形態の推定システムを示す図である。 本実施形態の推定システムを示す図である。 本実施形態の推定システムを示す図である。 本実施形態の推定システムを示す図である。 物体の画像を示す図である。 物体の画像を示す図である。 本実施形態の推定システムを示す図である。 開口部材と物体の画像を示す図である。
 実施例の説明に先立ち、本発明のある態様にかかる実施形態の作用効果を説明する。なお、本実施形態の作用効果を具体的に説明するに際しては、具体的な例を示して説明することになる。しかし、後述する実施例の場合と同様に、それらの例示される態様はあくまでも本発明に含まれる態様のうちの一部に過ぎず、その態様には数多くのバリエーションが存在する。したがって、本発明は例示される態様に限定されるものではない。
 本実施形態の推定装置は、メモリと、プロセッサと、を備え、メモリは、第1波面情報と第2波面情報を記憶する。第1波面情報は、物体を通過した第1照明光に基づいて取得した波面の情報であり、第2波面情報は、物体を通過した第2照明光に基づいて取得した波面の情報である。第2照明光における最大強度の波長は、第1照明光における最大強度の波長よりも短波長側に位置する。プロセッサは、物体の3次元光学特性を推定する推定処理を実行し、3次元光学特性は、屈折率分布又は吸収率分布である。推定処理は、第1波面情報と第2波面情報の両方を用いる。
 図1は、本実施形態の推定装置を示す図である。推定装置1は、メモリ2と、プロセッサ3と、を備える。メモリ2は、第1波面情報と第2波面情報を記憶している。プロセッサ3は、物体の3次元光学特性を推定する推定処理を実行する。3次元光学特性は、屈折率分布又は吸収率分布である。推定処理には、第1波面情報と第2波面情報を用いることができる。
 プロセッサはASICやFPGAで実現されても良いし、CPUであっても良い。CPUでプロセッサを実現する場合、CPUはプログラムをメモリから読み出して処理を実行する。
 第1波面情報は、物体を通過した第1照明光に基づいて取得した波面の情報である。第2波面情報は、物体を通過した第2照明光に基づいて取得した波面の情報である。
 推定処理では、波面情報が用いられる。波面情報は多い方が良い。波面情報が多いと、物体の3次元光学特性を高い精度で推定することができる。
 波面情報は、物体を通過した照明光に基づいて取得した波面情報である。よって、波面情報の量は、照明光の波長の影響を受ける。
 波面情報は、振幅、位相、光強度、複素振幅の何れかを含む。波面情報は、結像面における波面の情報である。結像面とは、光検出器が光を検出する面であり、撮像面とも言う。
 波長が異なると、空間分解能(以下、「分解能」という)が異なる。この場合、波面情報を抽出するのに必要な点の数に差が生じる。そのため、光軸と直交する方向(以下、「横方向」という)と、光軸と平行な方向(以下、「軸方向」という)の両方で、波面情報の量に差が生じ得る。
 光軸は、例えば、波面情報を測定する装置の光軸である。検出光学系が備わっている装置の場合、光軸は、検出光学系の光軸である。
 また、波長が異なると、照明光の散乱の度合いが異なる。この場合、軸方向では、物体内部における照明光の到達位置に差が生じる。そのため、軸方向で、波面情報の量に差が生じる。
 また、物体の厚みが大きい場合には、照明光が物体を通過する際に生じる変化が大きくなり、位相情報が-π~πの範囲に折り畳まれるため、2πの整数倍の不確定値を持つようになり、波面情報の量が制限されることが起こり得る。物体を通過することによる位相の変動は波長に依存するため、この波面情報の量の制限も波長に依存する。
 波長が長い照明光では、波長が短い照明光と比べて、分解能が低い。よって、横方向と軸方向で、波長が短い照明光と比べて、取得できる波面情報の量が少ない。ただし、軸方向では、波長が短い照明光と比べて、物体内部の深い位置まで照明光が到達する。
 また、物体の厚みが大きい場合には、波長が長い照明光では、波長が短い照明光と比べて位相情報の2πの整数倍の不確定を生じにくく、波面情報の量の制限も受けにくい。よって、軸方向で、波長が短い照明光と比べて、取得できる波面情報の量が多い。
 軸方向では、分解能の面では波面情報の量が少ないが、照明光の到達位置の面では波面情報の量は多い。全体としては、波長が長い照明光では、軸方向における波面情報の量は、波長が短い照明光と比べて多い。
 波長が短い照明光では、波長が長い照明光と比べて、分解能が高い。よって、横方向と軸方向で、波長が長い照明光と比べて、取得できる波面情報の量が多い。ただし、軸方向では、波長が長い照明光と比べて、物体内部の深い位置まで照明光は到達しない。よって、軸方向で、波長が長い照明光と比べて、取得できる波面情報の量が少ない。
 軸方向では、分解能の面では波面情報の量が多いが、照明光の到達位置の面では波面情報の量は少ない。全体としては、波長が短い照明光では、軸方向における波面情報の量は、波長が長い照明光と比べて少ない。
 波面情報の取得に使用する照明光の波長が短くなるほど、軸方向における情報が少なくなる。そのため、軸方向では、推定の精度が低下する。
 軸方向における推定の精度の低下を防ぐには、波長が長い照明光で取得した波面情報を用いれば良い。ただし、照明光の波長が長くなると、回折角度が大きくなる。そのため、分解能が低下する。
 分解能の低下を防ぐには、光学系の開口数を大きくすれば良い。しかしながら、開口数を大きくすると、視野が狭くなると共に、作動距離が減少する。よって、物体の厚みが大きい場合、水平方向の推定に必要な波面情報を取得することが困難になる。
 よって、物体の厚みが大きい場合、1つの波長に基づいて取得した波面情報だけで物体の3次元光学特性の推定を行うと、物体の3次元光学特性を高い精度と高い空間分解能で取得することが難しくなる。
 推定装置1では、2つの波長に基づいて取得した波面情報で、物体の3次元光学特性の推定を行う。第1照明光の波長帯域は、第2照明光の波長帯域と異なる。更に、第2照明光における最大強度の波長は、第1照明光における最大強度の波長よりも短波長側に位置する。そのため、波面情報の量を増やすことができる。その結果、物体の3次元光学特性を高い精度と高い空間分解能で取得することができる。
 最大強度は、ピーク(極大値)の最大値である。ピークが複数の場合もある。具体的には、第1照明光の光源と第2照明光の光源には、例えば、レーザー、又は準単色光LEDを用いることができる。第1照明光と第2照明光には、光学演算上、単一波長の光、又は単色波長とみなせる波長の光を用いることができる。第1照明光と第2照明光には、波長帯域が狭い光を用いることができる。第1照明光と第2照明光の半値幅は50nm以下が望ましい。
 波面情報は、例えば、干渉縞から取得することができる。干渉縞は、測定光と参照光で形成される。測定光は、物体を通過した照明光である。参照光は、物体を通過しない照明光である。照明光には、平行光が用いられる。
 波面を光強度で推定する場合、画像を波面情報として使用することができる。画像を波面情報として使用する場合、画像を解析して波面情報を取得しなくても良い。
 波面情報は、干渉縞の画像を解析することで取得することができる。よって、干渉縞を取得する必要がある。干渉縞の画像の取得方法について説明する。
 図2は、第1の取得方法におけるフローチャートである。第1の取得方法では、照明光の波長を変える。
 ステップS10では、波長変更回数Nλを設定する。例えば、照明光の波長を3回変更する場合、波長変更回数Nλの値に3を設定する。波長変更回数Nλを3として説明したが2以上の値であれば良い。
 ステップS20では、波長λ(n)を設定する。波長λ(n)の設定では、例えば、変数nの値が大きくなるにつれて波長が短くなるように、波長λ(n)の値を設定する。この場合、λ(1)の値に、最も長い波長が設定される。
 例えば、λ(1)の値に1500nmを設定し、λ(2)の値に650nmを設定し、λ(3)の値に480nmを設定する。1500nm、650nm、及び480nmは、最大強度における波長である。波長については、数値に単位を付けて説明している。実際には、数値のみを設定する。
 波長λ(n)の設定は、変数nが大きくなるにつれて波長が長くなるような設定でも良い。また、(n)の設定は、変数nの大きさと波長の長さとがランダムになるような設定でも良い。テーブルであらかじめ定義しておくことで、ランダムな設定が実現可能である。
 ステップS30では、変数nの値に1を設定する。
 ステップS40では、波長λ(n)の値に基づいて、照明光を選択する。光源から射出される光の波長が1つの場合、波長λ(n)の値と一致する波長の光を出射する光源を選択する。光源として、レーザーを用いることができる。
 光源から射出される光の波長が複数の場合、光学フィルタで1つの波長の光を選択することができる。この場合、波長λ(n)の値と一致する波長の光を透過する光学フィルタを選択する。
 ステップS50では、干渉縞I(n)の画像を取得する。照明光が物体に照射されることで、干渉縞I(n)が形成される。干渉縞I(n)を光検出器で撮像することで、干渉縞I(n)の画像を取得することができる。
 変数nの値は、波長に関する序数を表している。よって、干渉縞I(n)は、n番目の波長で形成された干渉縞を表している。
 上述のように、波長の設定では、変数nの値が大きくなるにつれて波長が短くなるように設定している。よって、干渉縞I(n)では、変数nの値が大きくなるにつれて、干渉縞の形成に使用された照明光の波長は短くなる。
 ステップS60では、変数nの値が変更回数Nλの値と一致したか否かを判断する。判断結果がNOの場合は、ステップS70を実行する。判断結果がYESの場合は、終了する。
(判断結果がNOの場合:n≠Nλ)
 ステップS70を実行する。ステップS70では、変数nの値に1を加算する。ステップS70が終ると、ステップS40に戻る。ステップS70で、変数nの値が1つ増えている。そのため、別の照明光を用いてステップS50を実行する。ステップS50を、全ての照明光が用いられるまで繰り返す。
(判断結果がYESの場合:n=Nλ)
 干渉縞の画像の取得を終了する。干渉縞の画像の取得は、Nλ回行われる。よって、Nλ枚の干渉縞の画像が取得される。上記の例では、波長変更回数Nλの値に3を設定している。よって、3枚の干渉縞の画像が取得される。
 干渉縞から波面情報を取得することができる。干渉縞I(n)から取得した波面情報を、波面情報W(n)とする。
 第2照明光の波長は、第1照明光の波長より短い。そして、第2照明光の波長帯域における最長波長は、第1照明光の波長帯域における最短波長よりも短波長側に位置する。
 上述の例では、λ(1)の値に1500nmを設定し、λ(2)の値に650nmを設定し、λ(3)の値に480nmを設定している。よって、第1照明光には、λ(1)の値の照明光が対応する。第2照明光には、λ(2)の値の照明光又はλ(3)の値の照明光が対応する。又は、第1照明光にはλ(2)が対応し、第2照明光にはλ(3)が対応する。
 Nλ枚の干渉縞の画像は、第1画像と第2画像を含む。第1画像は、第1照明光で形成された干渉縞の画像である。第2画像は、第2照明光で形成された干渉縞の画像である。
 波面情報W(n)は、第1波面情報と第2波面情報を含んでいる。よって、波面情報W(n)をメモリ2に記憶する。このとき、波長λ(n)の値もメモリ2に記憶する。
 上述のように、プロセッサ3は、物体の3次元光学特性を推定する推定処理を実行する。推定処理では、物体の3次元光学特性の推定を、第1波面情報と第2波面情報の両方を用いて実行する。
 本実施形態の推定装置では、メモリは、複数の第1波面情報と複数の第2波面情報を記憶し、複数の第1波面情報では、第1照明光の物体に対する入射角度が、第1波面情報毎に異なり、複数の第2波面情報では、第2照明光の物体に対する入射角度が、第2波面情報毎に異なり、推定処理は、複数の第1波面情報と複数の第2波面情報の両方を用いることが好ましい。
 推定処理には、複数の第1波面情報と複数の第2波面情報を用いる。そのため、メモリは、複数の第1波面情報と複数の第2波面情報を記憶している。
 第1波面情報は、物体を通過した第1照明光に基づいて取得した波面情報である。複数の第1波面情報では、第1照明光の物体に対する入射角度が、第1波面情報毎に異なる。
 図3は、第1照明光が物体を通過する様子を示す図である。図3(a)、図3(b)、図3(c)は、第1照明光の向きが変化する様子示す図である。図3(d)、図3(e)、図3(f)は、物体の向きが変化する様子示す図である。
 図3(a)、図3(b)、図3(c)では、物体10の向きを変えずに、第1照明光Lλ1の向きを変えている。そのため、物体10に対する第1照明光Lλ1の入射角度が、変化する。θLは、第1照明光Lλ1と光軸AXとのなす角度である。図3(a)ではθL=-20°、図3(b)ではθL=0°、図3(c)ではθL=+20°である。
 図3(d)、図3(e)、図3(f)では、第1照明光Lλ1の向きを変えずに、物体10の向きを変えている。そのため、第1照明光Lλ1に対する物体10の向きが、変化する。θSは、物体の傾き角である。図3(d)ではθS=-20°、図3(e)ではθS=0°、図3(f)ではθS=+20°である。
 図3(d)、図3(e)、図3(f)では、第1照明光Lλ1の向きは変化しない。よって、見かけ上、第1照明光Lλ1の物体10に対する入射角度は変化しない。しかしながら、物体10の向きが変化しているので、実質的には、第1照明光Lλ1の物体10に対する入射角度は変化している。
 第2波面情報は、物体を通過した第2照明光に基づいて取得した波面情報である。複数の第2波面情報では、第2照明光の物体に対する入射角度が、第2波面情報毎に異なる。
 図4は、第2照明光が物体を通過する様子を示す図である。図4(a)、図4(b)、図4(c)は、第2照明光の向きが変化する様子を示す図である。図4(d)、図4(e)、図4(f)は、物体の向きが変化する様子を示す図である。
 図4(a)、図4(b)、図4(c)では、物体10の向きを変えずに、第2照明光Lλ2の向きを変えている。そのため、物体10に対する第2照明光Lλ2の入射角度が、変化する。θLは、第2照明光Lλ2と光軸AXとのなす角度である。図4(a)ではθL=-20°、図4(b)ではθL=0°、図4(c)ではθL=+20°である。
 図4(d)、図4(e)、図4(f)では、第2照明光Lλ2の向きを変えずに、物体10の向きを変えている。そのため、第2照明光Lλ2に対する物体10の向きが、変化する。θSは、物体の傾き角である。図4(d)ではθS=-20°、図4(e)ではθS=0°、図4(f)ではθS=+20°である。
 図4(d)、図4(e)、図4(f)では、第2照明光Lλ2の向きは変化しない。よって、見かけ上、第2照明光Lλ2の物体10に対する入射角度は変化しない。しかしながら、物体10の向きが変化しているので、実質的には、第2照明光Lλ2の物体10に対する入射角度は変化している。
 照明光の物体に対する入射角度は、照明光と物体の相対的な向き(以下、「相対方向」という)に置き換えることができる。
 上述のように、波面情報は、物体を通過した照明光に基づいて取得した波面情報である。よって、波面情報の量は、相対方向の影響を受ける。
 相対角度を変化させると、変化させた回数だけ波面情報を取得できる。そのため、波面情報の量を増やすことができる。また、相対角度が異なると、物体内部における照明光の通過領域が異なる。1つの相対方向における波面情報は、他の相対方向における波面情報には無い情報を含んでいる。そのため、波面情報の量を増やすことができる。
 複数の第1波面情報では、第1照明光の物体に対する入射角度が、第2波面情報毎に異なる。複数の第2波面情報では、第2照明光の物体に対する入射角度が、第2波面情報毎に異なる。そのため、波面情報の量を増やすことができる。その結果、物体の3次元光学特性を高い精度と高い空間分解能で取得することができる。
 図5は、第2の取得方法におけるフローチャートである。図2と同じステップには同じ番号を付し、説明は省略する。第2の取得方法では、照明光の波長と相対方向を変える。
 ステップS21では、角度変更回数Nθを設定する。変更する角度は、相対方向である。例えば、相対方向を5回変更する場合、角度変更回数Nθの値に5を設定する。
 相対方向のずれは、角度で表わすことができる。以下では、相対方向のずれを、相対角度θ(m)で表わす。照明光と物体の相対的な向きが一致している場合、相対方向のずれは0°である。この場合、相対角度θ(m)の値に0°を設定する。
 ステップS22では、相対角度θ(m)を設定する。相対角度θ(m)の設定では、例えば、θ(1)の値に0°を設定し、θ(2)の値に4°を設定し、θ(3)の値に7°を設定し、θ(4)の値に10°を設定し、θ(5)の値に15°を設定する。
 また、初期値と増分を設定しても良い。この場合、θ(1)の値に初期値を設定し、θ(2)の値、θ(3)の値、θ(4)の値、及びθ(5)の値に、初期値に増分を加えた角度を設定すれば良い。
 角度については、数値に単位を付けて説明している。実際には、数値のみを設定する。
 ステップS31では、変数mの値と変数nの値に1を設定する。
 ステップS32では、相対角度θ(m)に基づいて位置決めする。位置決めする対象は、照明光又は物体である。位置決めでは、照明光と光軸とのなす角度が相対角度θ(m)の値と一致するように、照明光の向きを変化させる。又は、照明光に対する物体の向きが相対角度θ(m)の値と一致するように、物体を回転させる。
 ステップS51では、干渉縞I(m,n)の画像を取得する。照明光が物体に照射されることで、干渉縞I(m,n)が形成される。干渉縞I(m,n)を光検出器で撮像することで、干渉縞I(m,n)の画像を取得することができる。
 変数mの値は、相対角度に関する序数を表している。変数nの値は、波長に関する序数を表している。よって、干渉縞I(m,n)は、m番目の相対角度とn番目の波長で形成された干渉縞を表している。
 上述のように、波長λ(n)の設定では、例えば、変数nの値が大きくなるにつれて波長が短くなるように設定することができる。この場合、干渉縞I(m,n)では、変数nの値が大きくなるにつれて、干渉縞の形成に使用された照明光の波長は短くなる。
 変数nが大きくなるにつれて波長が長くなるような設定の場合、干渉縞I(m,n)では、変数nの値が大きくなるにつれて、干渉縞の形成に使用された照明光の波長は長くなる。
 ステップS60では、変数nの値が変更回数Nλの値と一致したか否かを判断する。判断結果がNOの場合は、ステップS40を実行する。判断結果がYESの場合は、ステップS80を実行する。
(判断結果がYESの場合:n=Nλ)
 ステップS80を実行する。ステップS80では、変数mの値が角度変更回数Nθの値と一致したか否かを判断する。判断結果がNOの場合は、ステップS90を実行する。判断結果がYESの場合は、終了する。
(判断結果がNOの場合:m≠Nθ)
 ステップS90を実行する。ステップS90では、変数mの値に1を加算する。ステップS90が終ると、ステップS32に戻る。ステップS90で、変数mの値が1つ増えている。そのため、別の相対角度で、ステップS40とステップS51を実行する。ステップS40とステップS51を、全ての相対角度で位置決めされるまで繰り返す。
(判断結果がYESの場合:m=Nθ)
 干渉縞の画像の取得を終了する。干渉縞の画像の取得は、(Nλ×Nθ)回行われる。よって、(Nλ×Nθ)枚の干渉縞の画像が取得される。上記の例では、角度変更回数Nθの値に5を設定し、波長変更回数Nλの値に3を設定している。よって、15枚の干渉縞の画像が取得される。
 干渉縞から波面情報を取得することができる。干渉縞I(m,n)から取得した波面情報を、波面情報W(m,n)とする。
 第2照明光の波長は、第1照明光の波長より短い。上述の例では、λ(1)の値に1500nmを設定し、λ(2)の値に650nmを設定し、λ(3)の値に480nmを設定している。よって、第1照明光には、λ(1)の値の照明光が対応する。第2照明光には、λ(2)の値の照明光又はλ(3)の値の照明光が対応する。また、第1照明光にλ(2)の値の照明光が対応する場合、第2照明光にはλ(3)の値の照明光が対応する。
 (Nλ×Nθ)枚の干渉縞の画像は、複数の第1画像と複数の第2画像を含む。第1画像は、第1照明光で形成された干渉縞の画像である。第2画像は、第2照明光で形成された干渉縞の画像である。
 複数の第1画像は、第1照明光の物体に対する入射角度が異なる干渉縞の画像を含む。よって、複数の第1画像から複数の第1波面情報を取得することができる。複数の第2画像は、第2照明光の物体に対する入射角度が異なる干渉縞の画像を含む。よって、複数の第2画像から複数の第2波面情報を取得することができる。
 波面情報W(m,n)は、複数の第1波面情報と複数の第2波面情報を含んでいる。よって、波面情報W(m,n)をメモリ2に記憶する。このとき、角度変更回数Nθの値、相対角度θ(m)の値、及び波長λ(n)の値も、メモリ2に記憶する。
 上述のように、プロセッサ3は、物体の3次元光学特性を推定する推定処理を実行する。推定処理では、物体の3次元光学特性の推定を、複数の第1波面情報と複数の第2波面情報の両方を用いて実行する。
 第2の取得方法では、1つの相対角度で、第1照明光で形成された干渉縞と第2照明光で形成された干渉縞を取得している。しかしながら、第1照明光で形成された干渉縞の取得を全ての相対角度で行った後に、第2照明光で形成された干渉縞の取得を全ての相対角度で取得しても良い。
 本実施形態の推定装置では、推定処理は、第1波面情報を拘束条件とする第1最適化処理と、第2波面情報を拘束条件とする第2最適化処理と、を含み、プロセッサは、第1最適化処理の連続実行によって更新された3次元光学特性に対して、第2最適化処理を連続実行することが好ましい。
 物体の3次元光学特性の推定では、波面情報を用いる。波面情報を取得するためには、物体を通過した波面を求める必要がある。本実施形態の推定装置では、ビーム伝搬法を用いて、波面を求めている。ビーム伝搬法の代わりに、FDTD(Finite Difference Time Domain)を用いても良い。
 第2波面情報は、第2照明光を用いたときの情報である。第2照明光の波長帯域は、第1照明光の波長帯域よりも短波長側に位置する。よって、第2波面情報を用いると、横方向では3次元光学特性を精度良く推定できるが、軸方向では3次元光学特性を大まかに推定することはできない。
 これに対して、第1波面情報は、第1照明光を用いたときの情報である。第1照明光の波長帯域は、第2照明光の波長帯域よりも長波長側に位置する。よって、第1波面情報を用いることで、横方向だけでなく、軸方向においても、3次元光学特性を大まかに推定することができる。
 そこで、最初に第1波面情報を用いて、全ての方向において、3次元光学特性を大まかに推定する。大まかな推定が終わった後で、第2波面情報を用いて、3次元光学特性を精度良く推定する。この順で推定することで、物体の3次元光学特性を効率よく、しかも高い精度と高い空間分解能で取得できる。
 図6は、第1の推定処理におけるフローチャートである。第1の推定処理は、ステップS100と、ステップS200と、ステップS300と、ステップS400と、ステップS500と、を有する。
 ステップS100では、各種の設定を行う。
 ステップS100は、ステップS110と、ステップS120と、ステップS130と、ステップS140と、を有する。ステップS150は、必要に応じて設ければ良い。
 ステップS110では、角度変更回数Nθを設定する。メモリ2には、角度変更回数Nθの値が記憶されている。よって、角度変更回数Nθの値に、メモリ2に記憶された値を設定すれば良い。例えば、メモリ2に5が記憶されている場合、角度変更回数Nθの値に5を設定する。
 ステップS120では、波長λ(n)を設定する。メモリ2には、波長λ(n)の値が記憶されている。使用する波長を予め設定しておくことで、表示せずに処理を進めることができる。
 波長λ(n)の値を全てメモリ2から読み出して、表示しても良い。例えば、メモリ2に、1500nm、650nm、480nmが記憶されている場合、これらの値を表示すれば良い。表示された値は、波長を表している。よって、表示された波長のなかから、推定に用いる波長を複数選択することができる。
 波長λ(n)の設定では、例えば、nの値が大きくなるにつれて波長が短くなるように、波長λ(n)の値に選択した値を設定する。この場合、λ(1)の値には、最大強度の波長の値が設定される。
 例えば、1500nm、650nm、及び480nmを選択した場合、波長λ(n)の値は以下のように設定する。
 λ(1)の値:1500nm
 λ(2)の値:650nm
 λ(3)の値:480nm
 ステップS130では、変数Nλ’波長の数を設定する。波長の数は、選択した波長の数である。推定に用いる波長を選択することで、選択した波長の数が求まる。波長の数Nλ’の値に、選択した波長の数を設定する。上記の例では、選択した波長の数は3なので、波長の数Nλ’の値に3を設定する。選択する波長の数は、2以上であれば良い。
 ステップS140では、反復数N(n)を設定する。反復数N(n)は、最適化処理を実行する回数である。最適化処理には、第1最適化処理と第2最適化処理がある。第1最適化処理と第2最適化処理については、後述する。
 反復数N(n)と波長λ(n)には、変数nが用いられている。よって、反復数N(n)の設定では、波長λ(n)に設定した値(波長)に対して反復数を設定することになる。
 上記の例では、選択した波長の数は3である。反復数N(n)の値は、例えば以下のように設定する。
 N(1)の値:3回
 N(2)の値:2回
 N(3)の値:2回
 ステップS150を設けた場合、ステップS150では、推定値に初期値を設定する。推定値は、推定物体の3次元光学特性の値である。3次元光学特性の推定は、シミュレーションによって行われる。シミュレーションは推定物体を用いて行われる。推定値に初期値を設定することで、シミュレーションを行うことができる。
 ステップS200では、各種の初期化を行う。
 ステップS200は、ステップS210と、ステップS220と、ステップS230と、を有する。
 ステップS210では、変数nの値に1を設定する。ステップS220では、変数mの値に1を設定する。ステップS230では、変数mの値に1を設定する。
 ステップS300では、推定処理を実施する。推定処理では、物体の3次元光学特性を推定する。
 ステップS300は、ステップS400と、ステップS410と、ステップS420と、ステップS430と、ステップS440と、ステップS450と、を有する。
 推定処理では、例えば、評価値が用いられる。評価値は、測定光の波面情報とシミュレーションによる波面情報との差、又は、測定光の波面情報とシミュレーションによる波面情報との比で表わされる。波面情報は、例えば、振幅、位相、光強度、複素振幅の何れかを含んでいる情報である。
 シミュレーションによる波面情報(以下、「推定波面情報」という)は、推定画像から算出される。推定画像は、推定物体を透過した光によって得られる画像である。推定物体を透過する光は、シミュレーションによる光である。測定光の波面情報(以下、「測定波面情報」という)は、測定画像から算出される。
 測定画像は、光学装置で取得した物体の画像である。推定画像は、シミュレーションで取得した推定物体の画像である。
 図7は、測定画像と推定画像を示す図である。図7(a)は、測定画像の取得の様子を示す図である。図7(b)と図7(c)は、推定画像の取得の様子を示す図である。
 図7(a)に示すように、測定画像の取得では、物体20と測定光学系21が用いられる。測定光学系21は、レンズ22を有する。
 図7(a)において、位置Zfoは、測定光学系21の焦点の位置を示している。位置Zsは、物体20の像側面の位置を示している。
 測定光学系21では、位置Zfoにおける物体20の光学像が、結像面IMに形成される。図7(a)では、位置ZsからΔZ離れた物体20の内部が、位置Zfoと一致している。
 結像面IMには、CCD23が配置されている。物体20の光学像は、CCD23によって撮像される。その結果、物体20の光学像の画像(以下、「測定画像Imea」という)を取得できる。測定画像Imeaから、測定波面情報が算出される。
 光学像の画像は光強度の画像なので、測定画像Imeaも光強度の画像である。測定画像Imeaは光強度の画像なので、測定画像Imeaから算出される測定波面情報は、光強度である。光強度を用いる場合、測定画像を波面情報として使用することもできる。
 推定波面情報は、推定物体24の光学像の画像(以下、「推定画像Iest」という)から算出される。
 図7(c)には測定光学系21が図示されている。推定画像Iestの算出はシミュレーションで行われるので、測定光学系21は物理的に存在しない。そのため、推定画像Iestの算出では、測定光学系21の瞳関数が用いられる。
 推定画像Iestは、結像面IMにおける推定物体24の像から得られる。測定画像Imeaは光強度の画像なので、推定画像Iestも光強度の画像であると良い。よって、結像面IMにおける推定物体24の光強度を算出する必要がある。
 ステップS400では、推定波面情報を算出する。
 図8は、推定波面情報の算出におけるフローチャートである。ステップS400は、ステップS401と、ステップS402と、ステップS403と、ステップS404と、ステップS405と、を有する。
 推定波面情報の算出は、波面の順伝搬に基づいて行う。照明光が進行する方向への波面の伝搬である。逆伝搬は、照明光が進行する方向と逆方向への波面の伝搬である。順伝搬では、図7(b)と図7(c)に示すように、波面は推定物体24から結像面IMに向かって伝搬する。
 ステップS401では、推定物体へ入射する波面を算出する。
 位置Zinは、物体20の光源(照明)側の面に対応する推定物体24の面の位置である。位置Zinは、シミュレーションによる光が推定物体24に入射する側の面の位置である。よって、位置Zinにおける波面Uinを算出する。波面Uinには、物体20に照射される測定光の波面と同じ波面を用いることができる。
 ステップS402では、推定物体から射出する波面を算出する。
 位置Zoutは、物体20の結像側(レンズ側、CCD側)の面に対応する推定物体24の面の位置である。位置Zoutは、推定物体24からシミュレーションによる光が射出する側の面の位置である。よって、位置Zoutにおける波面Uoutを算出する。波面Uoutは、例えば、ビーム伝搬法を用いて、波面Uinから算出することができる。
 ステップS403では、所定の取得位置における波面を算出する。
 所定の取得位置は、測定画像が取得されたときの物体側の位置である。所定の取得位置は、位置Zinから位置Zoutまでの間の任意の位置である。位置Zpは、所定の取得位置の一つである。位置Zpは、結像面IMと共役な位置である。
 推定画像Iestは、測定画像Imeaと同じ条件で算出される。測定画像Imeaは、位置ZsからΔZ離れた物体20の内部の光学像から取得されている。よって、推定画像Iest算出では、位置ZsからΔZ離れた位置における波面が必要である。
 図7(b)では、位置Zoutが位置Zsに対応している。位置ZoutからΔZ離れた位置は、位置Zpである。よって、位置Zpにおける波面Upが算出できれば良い。
 位置Zpは、位置ZoutからΔZ離れている。よって、波面Uoutを波面Upとして用いることはできない。波面Upは、例えば、ビーム伝搬法を用いて、波面Uoutから算出することができる。
 ステップS404では、結像面における波面を算出する。
 波面Upは、測定光学系21を通過して、結像面IMに到達する。結像面IMにおける波面Uimgは、波面Upと測定光学系21の瞳関数から算出することができる。
 ステップS405では、結像面における推定波面情報を算出する。
 波面Uimgは、光の振幅を表している。光強度は、振幅の二乗で表わされる。よって、波面Uimgを二乗することで、推定物体24の光強度を算出することができる。その結果、推定画像Iestを取得できる。推定画像Iestから、推定波面情報が算出される。
 光強度の代わりに、振幅と位相を用いても良い。振幅と位相は、電場を用いて表される。よって、振幅と位相を用いる場合、測定地と推定値には、電場から算出された値が用いられる。測定に基づく電場Emesと、推定に基づく電場Eestは、以下の式で表される。
 Emes=Ames×exp(i×Pmes)
 Eest=Aest×exp(i×Pest)
 ここで、
 Pmesは、測定に基づく位相、
 Amesは、測定に基づく振幅、
 Pestは、推定に基づく位相、
 Aestは、推定に基づく振幅、
である。
 測定に基づく電場Emesの取得では、測定光と参照光は非平行な状態で、光検出器に入射する。
 光検出器では、測定光と参照光によって、光検出器の撮像面に干渉縞が形成される。干渉縞は光検出器によって撮像される。その結果、干渉縞の画像を取得することができる。
 干渉縞は、測定光と参照光が非平行な状態で取得されている。よって、この干渉縞を解析することで、測定に基づく位相と、測定に基づく振幅と、を得ることができる。その結果、測定に基づく電場Emesが得られる。推定に基づく電場Eestは、シミュレーションで得ることができる。
 また、干渉縞を解析することで、複素振幅を得ることができる。よって、光強度の代わりに、複素振幅を波面情報に用いても良い。
 図6に戻って説明を続ける。ステップS410では、波面情報W(m,n)で推定波面情報を拘束する。
 波面情報W(m,n)は、干渉縞I(m,n)の画像から取得している。干渉縞I(m,n)は、測定光によって形成されている。よって、波面情報W(m,n)は、ステップS400で説明した測定波面情報と見なすことができる。
 変数mの値は、相対角度に関する序数を表している。変数nの値は、波長に関する序数を表している。波面情報W(m,n)は、m番目の相対角度とn番目の波長を用いたときの測定波面情報を表している。
 ステップS210で、変数nの値に1を設定している。ステップS120で説明したように、波長λ(n)の設定では、変数nの値が大きくなるにつれて波長が短くなるように、波長λ(n)の値を設定している。よって、変数nの値が1の場合、λ(n)の値には、最も長い波長の値が設定されている。
 変数nの値が1の場合、波面情報W(m,n)は、最も長い波長を用いたときの波面情報である。最も長い波長は、第1照明光の波長である。よって、変数nの値が1の場合、波面情報W(m,n)は、第1照明光を用いたときの波面情報である。
 第1照明光を用いたときの波面情報は、第1波面情報である。よって、変数nの値が1の場合、波面情報W(m,n)は、第1波面情報になる。この場合、ステップS410における処理は、第1波面情報で推定波面情報を拘束する処理になる。
 第1最適化処理は、第1波面情報を拘束条件とする処理である。変数nの値が1の場合、ステップS410では、第1波面情報で推定波面情報を拘束している。よって、この場合、ステップS410における処理は、第1最適化処理になる。
 後述のように、変数nの値は変化する。よって、変数nの値には、1以外の値も設定される。この場合、波長λ(n)の値は、別の波長の値になる。
 別の波長は、最も長い波長よりも短い波長である。最も長い波長は、第1照明光の波長である。第2照明光の波長は、第1照明の波長より短い。よって、別の波長は、第2照明光の波長である。
 変数nの値が1以外の場合、波面情報W(m,n)は、別の波長を用いたときの波面情報である。別の波長は、第2照明光の波長である。よって、変数nの値が1以外の場合、波面情報W(m,n)は、第2照明光を用いたときの波面情報である。
 第2照明光を用いたときの波面情報は、第2波面情報である。よって、変数nの値が2の場合、波面情報W(m,n)は、第2波面情報になる。この場合、ステップS410における処理は、第2波面情報で推定波面情報を拘束する処理になる。変数nの値が3の場合、波面情報W(m,n)は、第3波面情報になる。この場合、ステップS410における処理は、第3波面情報で推定波面情報を拘束する処理になる。
 第2最適化処理は、第2波面情報を拘束条件とする処理である。変数nの値が2の場合、ステップS410では、第2波面情報で推定波面情報を拘束している。よって、この場合、ステップS410における処理は、第2最適化処理になる。変数nの値が3の場合、ステップS410では、第3波面情報で推定波面情報を拘束している。よって、この場合、ステップS410における処理は、第3最適化処理になる。
 測定画像Imeaから、測定波面情報が算出される。推定画像Iestから、推定波面情報が算出される。測定波面情報と推定波面情報との差、又は測定波面情報と推定波面情報との比から評価値を算出することができる。測定波面情報による推定波面情報の拘束とは、測定波面情報を用いて推定波面情報を修正する、又は推定波面情報と測定波面情報との誤差を算出することであり、評価値を算出することとほぼ同義である。
 測定画像Imeaと推定画像Iestとの差、又は、測定画像Imeaと推定画像Iestとの比を、評価値に用いても良い。
 ステップS420では、評価値と閾値との比較を行う。
 評価値が測定波面情報と推定波面情報との差で表されている場合、測定波面情報と推定波面情報との差が、評価値として算出される。評価値は、閾値と比較される。判断結果がNOの場合は、ステップS500を実行する。判断結果がYESの場合は、ステップS430を実行する。
 (判断結果がNOの場合:閾値≧評価値)
 ステップS500を実行する。
 ステップS500では、推定物体の3次元光学特性を算出する。
 得られた推定物体24の3次元光学特性は、物体20の3次元光学特性と同一か、又は、略同一である。ステップS500で得られた3次元光学特性を用いることで、再構成された推定物体を得ることができる。
 再構成された推定物体は、例えば、表示装置に出力することができる。
 上述のように、ステップS500で得られた3次元光学特性は、物体20の3次元光学特性と同一か、又は、略同一である。よって、再構成された推定物体は、物体20の構造と同一か、又は、略同一と見なすことができる。
 (判断結果がYESの場合:閾値≦評価値の場合)
 ステップS430を実行する。ステップS430では、勾配を算出する。
 ステップS430は、ステップS431と、ステップS432と、を有する。
 勾配の算出は、波面の逆伝搬に基づいて行う。逆伝搬では、波面は位置Zoutから位置Zinに向かって伝搬する。
 ステップS431では、補正後の波面を算出する。
 光強度で算出する場合は、波面情報として画像を使用することができる。よって、補正後の波面U’pの算出では、測定画像Imeaと推定画像Iestが用いられる。波面U’pは、位置Zpにおける波面である。
 図7(c)に示すように、推定画像Iestは、波面Uimgに基づいて算出される。また、波面Uimgは、波面Upに基づいて算出される。
 ステップS150を設けた場合、波面Upの算出には、ステップS150で設定した初期値が用いられている。初期値は、推定物体24の3次元光学特性の値である。ステップS430の1回目の実行時、初期値は、物体20の3次元光学特性の値(以下、「物体特性値」という)と異なる。
 初期値と物体特性値との差が大きくなるほど、推定画像Iestと測定画像Imeaとの差も大きくなる。よって、推定画像Iestと測定画像Imeaとの差は、初期値と物体特性値との差を反映していると見なすことができる。
 光強度で算出する場合は、波面情報として画像を使用することができる。そこで、推定画像Iest(r)と測定画像Imea(r)とを用いて、波面Upを補正する。その結果、補正後の波面、すなわち、波面U’pが得られる。
 波面U’pは、例えば、以下の式(1)で表される。
 U’p=Up×√(Imea/Iest)   (1)
 ステップS432では、勾配を算出する。
 勾配の算出は、波面の逆伝搬に基づいて行うことができる。
 波面の逆伝搬では、位置Zoutから位置Zinに向かう波面が算出される。よって、勾配を算出するためには、位置Zoutにおける補正後の波面(以下「波面U’out」という)が必要である。
 波面U’pは波面Upを補正した波面なので、波面U’pは位置Zpにおける波面である。図7(c)では、見易さのために、波面U’pは、位置Zpからずれた位置に図示されている。また、図7(b)では、波面U’outは、位置Zoutからずれた位置に図示されている。
 図7(b)と図7(c)に示すように、位置Zoutは、位置ZpからΔZだけ離れている。よって、波面U’pを波面U’outとして用いることはできない。波面U’outは、例えば、ビーム伝搬法を用いて、波面U’pから算出することができる。
 波面U’outが算出されると、波面の逆伝搬に基づいて、波面の算出が行われる。波面の逆伝搬では、推定物体24の内部を伝搬する波面が算出される。波面の算出では、波面UoutとU’outとが用いられる。
 波面U’pは、波面Upと異なる。よって、波面U’outも、波面Uoutと異なる。波面U’outと波面Uoutを用いることで、勾配を算出することができる。勾配は、物体内の任意の位置の波面の勾配である。勾配には、推定物体24の3次元光学特性の値に関する新たな情報が含まれている。
 ステップS461では、変数mの値が角度変更回数Nθの値と一致したか否かを判断する。判断結果がNOの場合は、ステップS462を実行する。判断結果がYESの場合は、ステップS440を実行する。
(判断結果がNOの場合:m≠Nθ)
 ステップS462を実行する。ステップS462では、変数mの値に1を加算する。ステップS462が終ると、ステップS400に戻る。
 ステップS462で、変数mの値が1つ増えている。この場合、波面情報W(m,n)におけるmの値が変化する。よって、別の相対角度の波面情報で、ステップS400からステップS430までを実行する。ステップS400からステップS430までを、全ての相対角度で位置決めされるまで繰り返す。
 上記の例では、角度変更回数Nθの値に5を設定している。よって、ステップS400からステップS430までを、5回実行する。
 例えば、波面情報Aと波面情報Bで相対角度が異なる場合、波面情報Aは波面情報Bには無い情報を含み、波面情報Bは波面情報Aには無い情報を含む。よって、相対角度が異なる波面情報が多いほど、情報量が多くなる。
 情報量が多くなると、ステップS431で、より正確に、補正後の波面を算出することができる。その結果、勾配の精度も高まる。勾配には、推定値と物体特性値との差に関する情報が含まれている。勾配の精度を高めることで、推定値と物体特性値との差を小さくすることができる。すなわち、推定値を、より物体特性値に近づけることができる。
(判断結果がYESの場合:m=Nθ)
 ステップS440を実行する。ステップS440では、推定値を更新する。
 勾配には、推定値と物体特性値との差に関する情報が含まれている。よって推定値に勾配を加えることで、更新された推定値が得られる。
 更新された推定値は、初期値に比べて、物体特性値により近い。よって、更新された推定値を用いて、推定物体24の3次元光学特性の値を更新することができる。
 ステップS450では、TV正則化を行う。
 TV正則化を行うことで、ノイズ除去やぼけ画像の修正を行うことができる。TV正則化は、必要に応じて実行すれば良い。よって、ステップS450を省略しても良い。
 ステップS463では、変数iの値が反復数N(n)の値と一致したか否かを判断する。判断結果がNOの場合は、ステップS464を実行する。判断結果がYESの場合は、ステップS465を実行する。
(判断結果がNOの場合:i≠N(n))
 ステップS464を実行する。ステップS464では、変数iの値に1を加算する。ステップS464が終ると、ステップS230に戻る。
 ステップS464で、変数iの値が1つ増えている。但し、波面情報W(m,n)における変数nの値は変化しない。変数nの値は1なので、第1波面情報で、再びステップS300を実行する。ステップS300を、変数iの値が反復数N(n)の値と一致するまで繰り返す。
 ステップS230で、変数mの値に1を設定している。そのため、ステップS400からステップS430までを、変数mの値が角度変更回数Nθと一致するまで繰り返す。
 上記の例では、変数nの値が1のとき、反復数N(n)の値に3を設定している。よって、ステップS300を3回実行する。また、ステップS410における処理は、第1最適化処理である。上記の例では、ステップS300を3回実行するので、第1最適化処理が3回実行される。
 1回目の第1最適化処理で、推定値が更新されている。更新された推定値は、初期値に比べて、物体特性値により近い。2回目の第1最適化処理では、更新された推定値を使用する。その結果、2回目の第1最適化処理では、推定値を、物体特性値に近づけることができる。第1最適化処理を複数回実行することで、推定値を、物体特性値に近づけることができる。
(判断結果がYESの場合:i=N(n))
 ステップS465を実行する。ステップS465では、変数nの値が波長の数Nλ’の値と一致したか否かを判断する。判断結果がNOの場合は、ステップS466を実行する。判断結果がYESの場合は、終了する。
(判断結果がNOの場合:n≠Nλ’)
 ステップS466を実行する。ステップS466では、変数nの値に1を加算する。ステップS466が終ると、ステップS220に戻る。
 ステップS466で、変数nの値が1つ増えている。この場合、波面情報W(m,n)における変数nの値が変化する。変数nの値が1以外なので、第2波面情報で、ステップS300を実行する。変数nの値が2の場合は、第2波面情報で、ステップS300を実行する。変数nの値が3の場合は、第3波面情報で、ステップS300を実行する。
 ステップS220で、変数iの値に1を設定している。そのため、ステップS300を、変数iの値が反復数N(n)の値と一致するまで繰り返す。
 また、ステップS230で、変数mの値に1を設定している。そのため、ステップS400からステップS430までを、変数mの値が角度変更回数Nθと一致するまで繰り返す。
 上記の例では、変数nの値が2のとき、反復数N(n)の値に2を設定している。よって、ステップS300を2回実行する。また、ステップS410における処理は、第2最適化処理である。上記の例では、ステップS300を2回実行するので、第2最適化処理が2回実行される。
 第2最適化処理を実行する前に、第1最適化処理を実行している。よって、第2最適化処理における初期値には、第1最適化処理で更新された推定値が用いられる。第2最適化処理における初期値は、第1最適化処理における初期値よりも、物体特性値に近い。よって、推定値を、物体特性値に近づけることができる。
 1回目の第2最適化処理で、推定値が更新されている。更新された推定値は、初期値に比べて、物体特性値により近い。2回目の第2最適化処理では、更新された推定値を使用する。その結果、2回目の第2最適化処理では、推定値を、物体特性値に近づけることができる。第2最適化処理を複数回実行することで、推定値を、物体特性値に近づけることができる。
 ステップS300は、変数nの値が波長の数Nλ’の値と一致するまで繰り返す。上記の例では、波長の数Nλ’の値に3を設定している。よって、最適化処理の回数は3回である。
 上述のように、変数nの値が1のときに、第1最適化処理を1回実行し、変数nの値が2のときに、第2最適化処理を1回実行している。よって、変数nの値が3のとき、第3最適化処理を行えば、変数nの値が波長の数Nλ’の値と一致する。
 上記の例では、λ(1)の値に1500nmを設定し、λ(2)の値に650nmを設定し、λ(3)の値に480nmを設定している。
 波長が1500nmの照明光は、第1照明光である。この波長に関する最適化処理は、変数nの値が1のときの第1最適化処理である。波長が650nmの照明光は、第2照明光である。この波長に関する最適化処理は、変数nの値が2のときの第2最適化処理である。
 変数nの値が3のときの最適化処理は、第3最適化処理である。第3最適化処理は、480nmの波長に関する最適化処理である。波長が480nmの波長の照明光は、第2照明光である。よって、480nmの波長に関する最適化処理は、第2最適化処理と同じである。よって、説明は省略する。
 変数nの値が3のときの最適化処理は、以下の順番で行うことができる。
(例1)第1最適化処理、第2最適化処理、第3最適化処理の順。
(例2)第1最適化処理、第3最適化処理、第2最適化処理の順。
 変数nの値が3のときの最適化処理では、以下の組み合わせで処理を行うことができる。
(例1)
 第1最適化処理:波長が1500nmの照明光。
 第2最適化処理:波長が650nmの照明光
(例2)
 第1最適化処理:波長が1500nmの照明光。
 第2最適化処理:波長が480nmの照明光
(例3)
 第1最適化処理:波長が650nmの照明光。
 第2最適化処理:波長が480nmの照明光
 例えば、波面情報aと波面情報bで波長が異なる場合、波面情報aは波面情報bには無い情報を含み、波面情報bは波面情報aには無い情報を含む。よって、波長が異なる波面情報が多いほど、情報量が多くなる。
 情報量が多くなると、ステップS431で、より正確に、補正後の波面を算出することができる。その結果、勾配の精度も高まる。勾配には、推定値と物体特性値との差に関する情報が含まれている。勾配の精度を高めることで、推定値と物体特性値との差を小さくすることができる。すなわち、推定値を、より物体特性値に近づけることができる。よって、第1最適化処理と第2最適化処理を、各々2回以上実行することが好ましい。
(判断結果がYESの場合:n=Nλ’)
 既定の反復回数に達したため、ステップS500で推定物体の3次元光学特性を算出し、終了する。
 上述のように、波長が長い照明光では、軸方向で多くの波面情報を取得することができる。また、横方向でも、ある程度の量の波面情報を取得することができる。第1波面情報の取得に用いる照明光の波長は、第2波面情報の取得に用いる照明光の波長よりも長い。よって、第1波面情報を用いることで、推定物体の3次元光学特性を大まかに推定することができる。
 第1波面情報は、第1最適化処理で用いる。よって、第1最適化処理を実行することで、推定物体の3次元光学特性を大まかに推定することができる。
 ステップS210で、変数nの値に1を設定している。よって、最初に実行するステップS410における処理は、第1最適化処理である。第1最適化処理では、推定物体の3次元光学特性を大まかに推定することができる。よって、第1最適化処理を第2最適化処理よりも先に実行することで、効率良く推定物体の3次元光学特性を推定することができる。
 また、第1の推定処理では、第1最適化処理と第2最適化処理を、各々2回以上実行する。よって、分解能の低下と推定の精度の低下を防ぐことができる。その結果、物体の厚みが大きい場合であっても、物体の3次元光学特性を高い精度と高い分解能で取得できる推定装置を実現することができる。
 本実施形態の推定装置では、プロセッサは、3次元光学特性に設定された初期値に対して、第1最適化処理を連続で実行することが好ましい。
 上述のように、ステップS150は、必要に応じて設けることができる。ステップS150を設けた場合、3次元光学特性の推定値に初期値が設定される。この場合、3次元光学特性に設定された初期値に対して、第1最適化処理を連続で実行する。
 本実施形態の推定装置では、推定処理は、第1波面情報を拘束条件とする第1最適化処理と、第2波面情報を拘束条件とする第2最適化処理と、を含み、プロセッサは、第1最適化処理と第2最適化処理とからなる複合処理を、2回以上実行し、複合処理では、第1最適化処理が最初に実行され、複合処理では、第2最適化処理が実行された後に、第1最適化処理は実行されないことが好ましい。
 図9は、第2の推定処理におけるフローチャートである。第1の推定処理と同じステップには同じ番号を付し、説明は省略する。
 以下では、複合処理について説明する。そのため、最初から複合処理を開始する説明になっている。しかしながら、第1最適化処理や第2最適化処理など特定の最適化処理を所定回数実行した後に、複合処理を開始しても良い。
 第2の推定処理は、複合処理を有する。複合処理は、第1最適化処理と第2最適化処理とからなる。複合処理は、2回以上実行する。
 複合処理を繰り返すために、第2の推定処理は、ステップS141と、ステップS142と、ステップS201と、ステップS467と、ステップS468と、ステップS469と、を有する。
 波長λ(n)の設定で、例えば、1500nmと650nmを選択した場合、波長λ(n)の値は以下のように設定する。
 λ(1)の値:1500nm
 λ(2)の値:650nm
 上記の例では、選択した波長の数は2なので、波長の数Nλ’の値に2を設定する。
 ステップS141では、第1反復数NSを設定する。第1反復数NSは、複合処理を実行する回数である。例えば、複合処理を2回実行する場合、第1反復数NSの値に2を設定する。
 ステップS142では、第2反復数N(n,j)を設定する。第2反復数N(n,j)は、最適化処理を実行する回数である。
 第2反復数N(n,j)と波長λ(n)には、変数nが用いられている。よって、第2反復数N(n,j)の設定では、波長λ(n)に設定した値(波長)に対して反復数を設定することになる。
 最適化処理を実行する回数は、複合処理毎に変えることができる。よって、第2反復数N(n,j)の設定では、複合処理毎に反復数を設定することになる。
 上記の例では、選択した波長の数は2である。また、複合処理を実行する回数は4である。第2反復数N(n,j)の値は、例えば以下のように設定する。
 N(1,1)の値:5回
 N(2,1)の値:1回
 N(1,2)の値:5回(5回のまま継続)
 N(2,2)の値:1回
 N(1,3)の値:3回(5回から3回に減らす)
 N(2,3)の値:1回
 N(1,4)の値:3回(3回のまま継続)
 N(2,4)の値:1回
 N(1,4)の値:1回(3回から1回に減らす)
 N(2,4)の値:1回
 上記の例では、第1最適化処理の実行回数が、第2最適化処理の実行回数以上になっている。第2最適化処理の実行回数と第1最適化処理の実行回数との差は減っている。複合処理を連続実行した後に、第2最適化処理の実行回数と第1最適化処理の実行回数との差は減っている。
 第2最適化処理の数を増やすことで、複合処理における第1最適化処理と第2最適化処理との差を減らしても良い。
 ステップS201では、変数jの値に1を設定する。
 変数jの値が1なので、1回目の複合処理を実行する。また、ステップS210で、変数nの値に1を設定している。よって、最初のステップS300における処理では、第1最適化処理を実行する。
 ステップS467では、変数iの値が第2反復数N(n,j)の値と一致したか否かを判断する。判断結果がNOの場合は、ステップS464を実行する。判断結果がYESの場合は、ステップS465を実行する。
(判断結果がNOの場合:i≠N(n,j))
 ステップS464を実行する。ステップS464では、変数iの値に1を加算する。ステップS464が終ると、ステップS230に戻る。
 ステップS464で、変数iの値が1つ増えている。但し、変数nの値は変化しないので、変数nの値は1である。よって、S300における処理では、再び第1最適化処理を実行する。第1最適化処理を、変数iの値が反復数N(n)の値と一致するまで繰り返す。
 変数jの値は変化しないので、変数jの値は1である。上記の例では、変数nの値が1で、変数jの値は1のとき、第2反復数N(n,j)の値に3を設定している。よって、第1最適化処理を3回実行する。
(判断結果がYESの場合:i=N(n,j))
 ステップS465を実行する。ステップS465では、変数nの値が波長の数Nλ’の値と一致したか否かを判断する。判断結果がNOの場合は、ステップS466を実行する。判断結果がYESの場合は、ステップS468を実行する。
(判断結果がNOの場合:n≠Nλ’)
 ステップS466を実行する。ステップS466では、変数nの値に1を加算する。ステップS466が終ると、ステップS220に戻る。
 ステップS466で、変数nの値が1つ増えている。この場合、変数nの値が1以外なので、S300における処理では、第2最適化処理を実行する。
 ステップS220で、変数iの値に1を設定している。そのため、第2最適化処理を、変数iの値が第2反復数N(n,j)の値と一致するまで繰り返す。
 変数nの値は1から2に変化する。変数jの値は変化しないので、変数jの値は1である。上記の例では、変数nの値が2で、変数jの値は1のとき、第2反復数N(n,j)の値に2を設定している。よって、第2最適化処理を2回実行する。
(判断結果がYESの場合:n=Nλ’)
 ステップS468を実行する。ステップS468では、変数jの値が第1反復数NSの値と一致したか否かを判断する。判断結果がNOの場合は、ステップS469を実行する。判断結果がYESの場合は、終了する
(判断結果がNOの場合:n≠NS)
 ステップS469を実行する。ステップS468では、変数jの値に1を加算する。ステップS468が終ると、ステップS210に戻る。
 ステップS466で、変数jの値が1つ増えている。変数jの値が2なので、2回目の複合処理を実行する。
 ステップS210で変数nの値に1が設定されている。よって、第1最適化処理を実行する。ステップS220で、変数iの値に1を設定している。そのため、第2最適化処理を、変数iの値が第2反復数N(n,j)の値と一致するまで繰り返す。
 変数nの値は1で、変数jの値は2である。上記の例では、変数nの値が2で、変数jの値は1のとき、第2反復数N(n,j)の値に1を設定している。よって、第1最適化処理を1回実行する。
 第1最適化処理の実行が終わると、変数nの値は1から2に変化する。よって、第2最適化処理を実行する。ステップS220で、変数iの値に1を設定している。そのため、第2最適化処理を、変数iの値が第2反復数N(n,j)の値と一致するまで繰り返す。
 変数nの値は2で、変数jの値は2である。上記の例では、変数nの値が2で、変数jの値は2のとき、第2反復数N(n,j)の値に4を設定している。よって、第2最適化処理を4回実行する。
(判断結果がYESの場合:n=NS’)
 既定の反復回数に達したため、ステップS500で推定物体の3次元光学特性を算出し、終了する。
 以上のように、第2の推定処理では、複合処理を2回以上実行する。この場合、第1最適化処理と第2最適化処理が交互に実行される。よって、分解能の低下と推定の精度の低下を防ぐことができる。その結果、物体の厚みが大きい場合であっても、物体の3次元光学特性を高い精度と高い分解能で取得できる推定装置、推定システム、推定方法、及び記録媒体を提供することができる。
 本実施形態の推定装置では、プロセッサは、3次元光学特性に設定された初期値に対して、複合処理を実行することが好ましい。
 上述のように、ステップS150は、必要に応じて設けることができる。ステップS150を設けた場合、3次元光学特性の推定値に初期値が設定される。この場合、3次元光学特性に設定された初期値に対して、複合処理を実行する。
 本実施形態の推定装置では、複合処理において、第1最適化処理の実行回数が第2最適化処理の実行回数以上になる制御がされることが好ましい。
 上述のように、第1最適化処理を実行することで、推定物体の3次元光学特性を大まかに推定することができる。よって、第2波面情報を用いる回数よりも第1波面情報を用いる回数を多くすることで、効率良く推定物体の3次元光学特性を大まかに推定することができる。
 ステップS150を設けた場合、第1の推定処理と第2の推定処理では、ステップS150で、推定値に初期値が設定されている。初期値は、物体特性値と異なる。よって、できるだけ早く第1最適化処理を実行することで、推定値を物体特性値に近づけることができる。その結果、効率よく推定することができる。
 本実施形態の推定装置では、複合処理で、所定の処理を実行する。所定の処理では、第1最適化処理の実行回数が第2最適化処理の実行回数よりも多い。また、第1最適化処理を、第2最適化処理よりも先に実行する。よって、推定物体の3次元光学特性を、効率よく推定することができる。
 本実施形態の推定装置では、連続する複合処理において、制御が継続することが好ましい。
 本実施形態の推定装置では、複合処理が所定回数実行されたあと、複合処理において、第2最適化処理の実行回数と第1最適化処理の実行回数との差を減らす制御がされることが好ましい。
 本実施形態の推定装置では、2回目の複合処理で、所定の処理を実行する。所定の処理では、第1最適化処理の実行回数が第2最適化処理の実行回数よりも多い。また、第1最適化処理を、第2最適化処理よりも先に実行する。よって、推定物体の3次元光学特性を、効率よく推定することができる。
 本実施形態の推定装置では、第1照明光は、赤外領域の光であり、第2照明光は、可視領域の光であることが好ましい。
 本実施形態の推定装置によれば、推定物体の3次元光学特性を、効率よく推定することができる。
 本実施形態の推定装置では、第1照明光は、赤外領域の光であり、
 以下の条件式(A)を満足することが好ましい。
 2×λ2<λ1   (A)
 ここで、
 λ1は、第1照明光の波長、
 λ2は、第2照明光の波長、
である。
 本実施形態の推定装置によれば、推定物体の3次元光学特性を、効率よく推定することができる。
 本実施形態の推定システムは、本実施形態の推定装置と、第1照明光と第2照明光を射出する光源ユニットと、光検出器と、物体を載置するステージと、角度変更機構と、を備える。ステージは、光源ユニットから光検出器まで間の光路上に配置され、角度変更機構は、第1照明光の物体に対する入射角度と、第2照明光の物体への入射角度を変化させる。
 図10は、本実施形態の推定システムを示す図である。図1と同じ構成については同じ番号を付し、説明を省略する。
 推定システム30は、光源ユニット31と、光検出器34と、ステージ35と、推定装置1と、を備える。推定装置1は、メモリ2と、プロセッサ3と、を有する。
 光源ユニット31は、第1照明光と第2照明光を射出する。推定システム30では、光源ユニット31は、第1光源32と、第2光源33と、を有する。第1光源32は、第1照明光を射出する。第2光源33は、第2照明光を射出する。第2照明光の波長帯域における最長波長は、第1照明光の波長帯域における最短波長よりも短波長側に位置する。
 第1照明光は、第1の方向から、ダイクロイックミラー36に入射する。第2照明光は、第1の方向と直交する方向から、ダイクロイックミラー36に入射する。
 ダイクロイックミラー36は、波長の長い光を透過し、且つ波長の短い光を反射する分光特性を有する。よって、第1照明光は、ダイクロイックミラー36を透過して、第1の方向に進行する。第2照明光はダイクロイックミラー36で反射して、第1の方向に進行する。
 第1の方向には、ビームスプリッタ37が配置されている。第1照明光と第2照明光は、ビームスプリッタ37に入射する。ビームスプリッタ37は、光学膜が形成された光学面を有する。ビームスプリッタ37では、光学膜によって、入射した光から、第1の方向に透過する光と、第2の方向に反射する光と、が生成される。
 推定システム30では、第1の方向に測定光路OPmeaを形成し、第2の方向に参照光路OPrefを形成している。しかしながら、第1の方向に参照光路OPrefを形成し、第2の方向に測定光路OPmeaを形成しても良い。第1照明光と第2照明光は、各々、測定光路OPmeaと参照光路OPrefを進行する。
 測定光路OPmeaには、ミラー38が配置されている。測定光路OPmeaは、ミラー38で第2の方向に折り曲げられる。参照光路OPrefには、ミラー39が配置されている。参照光路OPrefは、ミラー39で第1の方向に折り曲げられる。その結果、参照光路OPrefは、測定光路OPmeaと交差する。2つの光路が交差する位置に、ビームスプリッタ40が配置されている。
 測定光路OPmeaでは、ミラー38とビームスプリッタ40の間に、ステージ35が配置されている。ステージ35上に、物体Sが載置されている。第1照明光と第2照明光は、物体Sに照射される。
 第1照明光を物体Sに照射すると、物体Sから第1測定光Lmea1が出射する。第1測定光Lmea1は、物体Sを通過した第1照明光である。第2照明光を物体Sに照射すると、物体Sから第2測定光Lmea2が出射する。第2測定光Lmea2は、物体Sを通過した第2照明光である。
 参照光路OPrefでは、第1参照光Lref1と第2参照光Lref2が進行する。第1参照光Lref1は、物体Sを通過しない第1照明光である。第2参照光Lref2は、物体Sを通過しない第2照明光である。
 第1測定光Lmea1、第2測定光Lmea2、第1参照光Lref1、及び第2参照光Lref2は、ビームスプリッタ40に入射する。ビームスプリッタ40は、光学膜が形成された光学面を有する。ビームスプリッタ40では、光学膜によって、入射した光から、第1の方向に透過する光と、第2の方向に反射する光と、が生成される。
 第1の方向には、光検出器34が配置されている。第1光源32と第2光源33が点灯している場合、光検出器34に、第1測定光Lmea1、第2測定光Lmea2、第1参照光Lref1、及び第2参照光Lref2が入射する。
 第1光源32を点灯し、第2光源33を消灯すると、第1測定光Lmea1と第1参照光Lref1が光検出器34に入射する。第1光源32を消灯し、第2光源33を点灯すると、第2測定光Lmea2と第2参照光Lref2が光検出器34に入射する。
 第1測定光Lmea1と第1参照光Lref1で、第1の干渉縞が形成される。第2測定光Lmea2と第2参照光Lref2で、第2の干渉縞が形成される。第1の干渉縞と第2の干渉縞を光検出器34で撮像することで、第1の干渉縞の画像と第2の干渉縞の画像を取得することができる。
 第1の干渉縞の画像と第2の干渉縞の画像は、推定装置1に送られる。推定装置1では、第1の干渉縞の画像に基づいて第1波面情報を取得する。第2の干渉縞の画像に基づいて第2波面情報を取得する。第1波面情報と第2波面情報を、メモリ2に記憶する。第1波面情報と第2波面情報を用いて、推定処理を実行する。
 推定処理では、複数の第1波面情報と複数の第2波面情報を用いる。複数の第1波面情報では、第1照明光の物体への入射角度が、第1波面情報毎に異なる。複数の第2波面情報では、第2照明光の物体への入射角度が、第2波面情報毎に異なる。
 本実施形態の推定システムは、角度変更機構を有する。角度変更機構は、相対方向を変える。そのため、照明光の物体に対する入射角度を変えることができる。その結果、複数の第1波面情報と複数の第2波面情報を取得することができる。
 本実施形態の推定システムでは、角度変更機構は、駆動装置と、回転部材と、を有し、回転部材は、ステージを保持し、回転部材の回転軸は、物体と交差すると共に、光路の光軸と直交することが好ましい。
 図10に示すように、推定システム30は、角度変更機構41を有する。角度変更機構41は、測定光路OPmea側に配置されている。
 角度変更機構41は、駆動装置42と、回転部材43と、を有する。回転部材43は、ステージ35を保持している。軸RXは、回転部材43の回転軸である。軸RXは、物体Sと交差すると共に、光軸AXと直交している。
 角度変更機構41では、駆動装置42によって回転部材43が回転する。回転部材43がステージ35を保持しているので、ステージ35が回転する。ステージ35を回転させることで、軸RXを中心に物体Sを回転させることができる。
 第1照明光と第2照明光は、ミラー38で反射して、物体Sに入射する。物体Sの回転によって、第1照明光に対する物体Sの向きと、第2照明光する物体Sの向きが変わる。よって、様々な方向から、第1照明光と第2照明光が物体Sに照射される。
 物体Sから、第1測定光Lmea1と第2測定光Lmea2が出射する。第1測定光Lmea1と第2測定光Lmea2は、光検出器34に入射する。
 推定システム30では、第1照明光の向きと第2照明光の向きは変わらずに、物体Sの向きが変わる。よって、第1照明光の物体Sに対する入射角度と、第2照明光の物体Sに対する入射角度を変えることができる。
 本実施形態の推定システムでは、角度変更機構は、駆動装置と、回転部材と、を有し、回転部材は、反射面を有し、回転部材の配置角度を変えることによって、反射面の向きが変化することが好ましい。
 図11は、本実施形態の推定システムを示す図である。図10と同じ構成については同じ番号を付し、説明を省略する。
 推定システム50は、角度変更機構60と、角度変更機構70と、を有する。角度変更機構60と、角度変更機構70は、測定光路OPmeaに配置されている。
 角度変更機構60は、駆動装置61と、回転部材62と、を有する。回転部材62は、反射面を有する。回転部材62の回転運動又は反復運動によって、反射面の向きが変化する。角度変更機構70は、駆動装置71と、回転部材72と、を有する。回転部材72は、反射面を有する。回転部材72の回転運動又は反復運動によって、反射面の向きが変化する。
 角度変更機構60は、例えば、ガルバノメータースキャナ、又はポリゴンスキャナーである。ガルバノメータースキャナでは、平面ミラーの反復運動によって、反射面の向きが変化する。ポリゴンスキャナーでは、ポリゴンミラーの回転運動によって、反射面の向きが変化する。ガルバノメータースキャナとポリゴンスキャナーは、光偏向器と呼ばれる。
 角度変更機構60から角度変更機構70までの間に、照明光学系51と、ステージ35と、検出光学系52と、が配置されている。物体Sは、照明光学系51と検出光学系52の間に位置している。
 第1照明光と第2照明光は、照明光学系51を通過して、物体Sに入射する。回転部材62の回転運動又は反復運動によって、物体Sに対する第1照明光の向きと、物体Sに対する第2照明光の向きが変わる。よって、様々な方向から、第1照明光と第2照明光が物体Sに照射される。
 物体Sから、第1測定光Lmea1と第2測定光Lmea2が出射する。第1測定光Lmea1と第2測定光Lmea2は、検出光学系52を通過して、角度変更機構70に入射する。
 角度変更機構70に対する第1測定光Lmea1の入射角度は、変化する。角度変更機構70に対する第2測定光Lmea2の入射角度も、変化する。入射角度の変化は、角度変更機構70で打ち消すことができる。よって、第1測定光Lmea1と第2測定光Lmea2は、動くこと無くミラー53に入射する。ミラー53で反射された第1測定光Lmea1と第2測定光Lmea2は、光検出器34に入射する。
 推定システム50では、角度変更機構60によって、照明光の向きが変わる。この場合、物体Sの向きは変わらずに、第1照明光の向きと第2照明光の向きが変わる。よって、第1照明光の物体Sに対する入射角度と、第2照明光の物体Sに対する入射角度を変えることができる。
 推定システム50では、1つの軸において、回転部材の回転運動、又は回転部材の反復運動を行っている。しかしながら、直交する2つの軸において、回転部材の回転運動、又は回転部材の反復運動を行っても良い。
 推定システム30と推定システム50では、照明光の数は2で、光検出器の数は1である。そのため、照明光の切替えが必要になる。
 図12は、照明光の切替え方法を示す図である。図10と同じ構成については同じ番号を付し、説明を省略する。図12(a)は、第1の切替え方法を示す図である。図12(b)は、第2の切替え方法を示す図である。図12(c)は、第3の切替え方法を示す図である。
(第1の方法)
 図12(a)に示すように、第1の方法では、第1遮光板80と第2遮光板81を用いる。第1光源32と第2光源33は、点灯している。第1光源32から第1照明光が出射し、第2光源33から第2照明光が出射する。
 第1光源32とダイクロイックミラー36の間の光路の外側に、第1遮光板80を配置する。第2光源33とダイクロイックミラー36の間の光路の外側に、第2遮光板81を配置する。第1遮光板80と第2遮光板81は、光路に対して出し入れが可能になっている。
 第1遮光板80を光路の外側に位置させた状態で、第2光源33とダイクロイックミラー36の間に第2遮光板81を挿入する。この配置にすることで、第1照明光を選択することができる。
 第2遮光板81を光路の外側に位置させた状態で、第1光源32とダイクロイックミラー36の間に第1遮光板80を挿入する。この配置にすることで、第2照明光を選択することができる。
(第2の方法)
 図12(b)に示すように、第2の方法では、第1光学フィルタ82と第2光学フィルタ83を用いる。光源ユニット31は、点灯している。光源ユニット31は、1つの光源を有する。1つの光源から第1照明光と第2照明光が出射する。
 光源ユニット31とビームスプリッタ37の間の光路の外側に、第1光学フィルタ82と第2光学フィルタ83を配置する。第1光学フィルタ82と第2光学フィルタ83は、光路に対して出し入れ可能になっている。
 第1光学フィルタ82は、第1照明光だけを透過する分光特性を有する。第2光学フィルタ83は、第2照明光だけを透過する分光特性を有する。
 第2光学フィルタ83を光路の外側に位置させた状態で、光源ユニット31とビームスプリッタ37の間に第1光学フィルタ82を挿入する。この配置にすることで、第1照明光を選択することができる。
 第1光学フィルタ82を光路の外側に位置させた状態で、光源ユニット31とビームスプリッタ37の間に第2光学フィルタ83を挿入する。この配置にすることで、第2照明光を選択することができる。
 図12(a)に示すように、光源ユニット3が2つの光源を有する場合、ダイクロイックミラー36とビームスプリッタ37の間で、第1光学フィルタ82と第2光学フィルタ83を出し入れすれば良い。
(第3の方法)
 図12(c)に示すように、第3の方法では、第1光学フィルタ82と第2光学フィルタ83を用いる。第1光源32と第2光源33は、点灯している。
 ビームスプリッタ40と光検出器34の間の光路の外側に、第1光学フィルタ82と第2光学フィルタ83を配置する。第1光学フィルタ82と第2光学フィルタ83は、光路に対して出し入れ可能になっている。
 第2光学フィルタ83を光路の外側に位置させた状態で、ビームスプリッタ40と光検出器34の間に第1光学フィルタ82を挿入する。このような配置にすることで、第1照明光を選択することができる。
 第1光学フィルタ82を光路の外側に位置させた状態で、ビームスプリッタ40と光検出器34の間に第2光学フィルタ83を挿入する。このような配置にすることで、第2照明光を選択することができる。
 本実施形態の推定システムは、光検出器とは別の光検出器を備え、光検出器は、第1照明光の波長帯域に対して第1閾値以上の感度を持ち、第2照明光の波長帯域に対して第1閾値以上の感度を持たず、別の光検出器は、第2照明光の波長帯域に対して第2閾値以上の感度を持ち、第1照明光の波長帯域に対して第2閾値以上の感度を持たないことが好ましい。
 図13は、本実施形態の推定システムを示す図である。図11と同じ構成については同じ番号を付し、説明を省略する。
 推定システム90は、第1光検出器91と、第2光検出器92と、を有する。第1光源32と第2光源33が点灯している場合、第1光検出器91と第2光検出器92には、第1測定光Lmea1、第2測定光Lmea2、第1参照光Lref1、及び第2参照光Lref2が入射する。
 第1光検出器91は、第1照明光の波長帯域に対して第1閾値以上の感度を持つが、第2照明光の波長帯域に対して第1閾値以上の感度を持たない。よって、第1光検出器91では、第1測定光Lmea1と第1参照光Lref1で形成された第1の干渉縞のだけを、撮像することができる。第1閾値は、適宜決めれば良い。
 第2光検出器92は、第2照明光の波長帯域に対して第2閾値以上の感度を持つが、第1照明光の波長帯域に対して第2閾値以上の感度を持たない。よって、第2光検出器92では、第2測定光Lmea2と第2参照光Lref2で形成された第2の干渉縞だけを、撮像することができる。第2閾値は、適宜決めれば良い。
 本実施形態の推定システムは、光検出器とは別の光検出器と、光検出器と共に用いられる第1光学素子と、別の光検出器と共に用いられる第2光学素子と、を備え、第1光学素子は、第1照明光を透過し、第2照明光を遮光する特性を有し、第2光学素子は、第2照明光を透過し、第1照明光を遮光する特性を有することが好ましい。
 図14は、本実施形態の推定システムを示す図である。図11と同じ構成については同じ番号を付し、説明を省略する。
 推定システム100は、第1光検出器101と、第2光検出器102と、第1光学素子103と、第2光学素子104と、を有する。
 第1光学素子103は、ビームスプリッタ40と第1光検出器101の間に配置されている。第2光学素子104は、ビームスプリッタ40と第2光検出器102の間に配置されている。
 第1光源32と第2光源33が点灯している場合、第1光学素子103と第2光学素子104には、第1測定光Lmea1、第2測定光Lmea2、第1参照光Lref1、及び第2参照光Lref2が入射する。
 第1光学素子103は、第1照明光を透過し、第2照明光を遮光する特性を有する。よって、第1測定光Lmea1と第1参照光Lref1が第1光検出器101に入射する。第1測定光Lmea1と第1参照光Lref1で、第1の干渉縞が形成される。第1の干渉縞を第1光検出器101で撮像することで、第1の干渉縞の画像を取得することができる。
 第1光学素子104は、第2照明光を透過し、第1照明光を遮光する特性を有する。よって、第2測定光Lmea2と第2参照光Lref2が第2光検出器102に入射する。第2測定光Lmea2と第2参照光Lref2で、第2の干渉縞が形成される。第2の干渉縞を第2光検出器102で撮像することで、第2の干渉縞の画像を取得することができる。
 図15は、本実施形態の推定システムを示す図である。図10と同じ構成については同じ番号を付し、説明を省略する。
 推定システム110は、ミラー111と、ビームスプリッタ112と、を有する。ミラー111は、測定光路OPmeaに配置されている。ビームスプリッタ112は、参照光路OPrefと測定光路OPmeaが交差する位置に配置されている。
 図10に示す推定システム30では、ビームスプリッタ40で測定光路OPmeaを第1の方向に折り曲げ、ミラー39で参照光路OPrefを第1の方向に折り曲げている。
 これに対して、推定システム110ではミラー111で測定光路OPmeaを第1の方向と逆方向に折り曲げ、ビームスプリッタ112で参照光路OPrefを第1の方向と逆方向に折り曲げている。そのため、測定光路OPmeaの光路長と参照光路OPrefの光路長と間で、差が生じる。
 照明光における可干渉距離が光路長の差よりも長い場合、干渉縞が形成される。照明光における可干渉距離が光路長の差よりも短い場合、光路長調整部113をビームスプリッタ37とミラー112の間に配置する。このような配置にすることで、干渉縞を形成することができる。
 光路長調整部113は、例えば、ピエゾステージと4枚のミラーを有する。ピエゾステージには、2枚のミラーが載置されている。2枚のミラーを移動させることで、参照光路OPrefにおける光路長を変化させることができる。このピエゾステージを光源波長以下のステップで駆動することにより、複数回撮影を行うことで波面情報を算出しても良い。
 本実施形態の推定システムは、本実施形態の推定装置と、第1照明光と第2照明光を射出する光源ユニットと、を備え、光源ユニットは、照射角度が異なる複数の独立した光源で構成されており、推定装置のプロセッサ若しくはプロセッサと異なるプロセッサが、光源に照明光を射出させるか否かを制御することで、第1照明光の物体に対する入射角度と、第2照明光の物体への入射角度を変化させることを特徴とする。
 図16は、本実施形態の推定システムを示す図である。図11と同じ構成については同じ番号を付し、説明を省略する。
 推定システム120は、光源121と、レンズ122と、レンズ123と、光検出器124と、を有する。レンズ123は、照明光学系51に配置されている。推定システム120では、測定光路OPmeaだけが形成されている。
 光源121は、第1照明部と、第2照明部と、を有する。第1照明部と第2照明部は、各々、複数の光射出部を有する。光射出部には、例えば、発光ダイオード(LED)、または、半導体レーザ(LD)を配置することができる。
 光射出部は、アレイ状に配置されている。光射出部では、発光と消光を独立に制御できる。第1照明部は、第1照明光を出射する。第2照明部は、第2照明光を出射する。
 光射出部は、ファイババンドルの出射面であっても良い。ファイババンドルは、第1ファイババンドルと、第2ファイババンドルを有する。第1ファイババンドルを第1光源(不図示)に接続することで、第1ファイババンドルの出射面から第1照明光が出射する。第2ファイババンドルを第2光源(不図示)に接続することで、第2ファイババンドルの出射面から第2照明光が出射する。
 物体Sは、平行光で照明されることが好ましい。光源121では、光射出部の面積は点光源と見なせる程度に小さい。そのため、光射出部は、照明光学系51の瞳位置と共役な位置に配置されている。
 レンズ122は、光源121と照明光学系51の間に配置されている。レンズ122とレンズ123とで、光源121の位置と照明光学系51の瞳位置を、共役にすることができる。照明光学系51の瞳位置の周囲に十分な空間が確保できる場合、光射出部は、照明光学系51の瞳位置に配置しても良い。
 光源121では、第1照明部の制御と第2照明部の制御が行われる。この制御では、複数の光射出部のうち光が射出される光射出部が変更される。この制御により、第1照明光の物体に対する入射角度の変更と、第2照明光の物体に対する入射角度の変更を行うことができる。
 光源121を光源ユニットと見なすと、光源ユニットから、第1照明光と第2照明光を射出される。第1照明部と第2照明部は、各々、複数の光射出部を有する。よって、光源ユニットは、照射角度が異なる複数の独立した光源で構成されていることになる。
 推定装置120は、プロセッサ若しくはプロセッサと異なるプロセッサを有する。よって。プロセッサで、照明光を射出させるか否かの制御を、光源ユニットに対して行うことができる。この制御により、第1照明光の物体に対する入射角度と、第2照明光の物体への入射角度を変化させることができる。
 推定システム120では、光路の数が1つしかないため、干渉縞から直接的に位相情報を得ることができない。
 そのため、推定システム120では、波面の振幅データを測定する。測定する波面は、光検出器124の検出面での波面である。波面の振幅データの測定では、複数の波長での測定、あるいは照明角度の変更による測定などを行えば良い。照明角度の変更による測定では、照明角度を、微小な角度で変化させる。これらの測定方法を用いることで、検出面での波面の位相推定に必要なデータセットを測定できる。
 推定システム120では、参照光路が不要となるため、構成をより簡易にすることができる。
 図17は、物体の画像を示す図である。図17(a)は、第1波面情報で推定した画像である。図17(b)は、第2波面情報で推定した画像したである。図17(c)は、第1波面情報と第2波面情報で推定した画像である。画像は、シミュレーションで得られた画像である。
 シミュレーションでは、物体として、フォトニッククリスタルファイバー(以下、「PCF」という)を用いているPCFは、円柱部材と、貫通孔と、を有する。
 PCFでは、貫通孔が複数、円柱部材の内部に形成されている。貫通孔は円筒形で、円柱部材の母線に沿って形成されている。PCFの外径は230μmで、媒質の屈折率は1.47である。貫通孔と円柱部材の周囲は、屈折率が1.44の液体で満たされている。
 図17(a)に示す画像の推定には、波長λが633nmの照明光で取得した波面情報を用いている。図17(b)に示す画像の推定には、波長λが1300nmの照明光で取得した波面情報を用いている。
 第2照明光の波長帯域における最長波長は、第1照明光の波長帯域における最短波長よりも短波長側に位置する。よって、図17(a)に示す画像の推定には、第2照明光で取得した波面情報、すなわち、第2波面情報が用いられている。図17(b)に示す画像の推定には、第1照明光で取得した波面情報、すなわち、第1波面情報が用いられている。
 上述のように、第2波面情報では、軸方向における波面情報の量が、第1波面情報よりも少ない。よって、図17(a)に示すように、PCFの構造はほとんど推定できていない。これに対して、第1波面情報では、軸方向における波面情報の量が、第2波面情報よりも多い。よって、図17(b)に示すように、PCFの構造を大まかに推定できている。
 図17(c)に示す画像の推定には、波長λ1が1300nmの照明光で取得した波面情報と、波長λ2が633nmの照明光で取得した波面情報を用いている。よって、図17(c)に示す画像の推定には、第1波面情報と第2波面情報が用いられている。
 第2波面情報では、横方向における波面情報の量が、第1波面情報よりも多い。よって、第1波面情報と第2波面情報を推定に用いることで、推定の精度を高めることができる。第1波面情報と第2波面情報で推定した画像では、図17(c)に示すように、横方向におけるPCFの構造をより鮮明にすることができる。
 図18は、物体の画像を示す図である。図18(a)と図18(b)は、第1波面情報で推定した画像である。図18(c)と図18(d)は、第1波面情報と第2波面情報で推定した画像である。画像は、シミュレーションで得られた画像である。
図18(a)に示す画像の推定と、図18(c)に示す画像の推定には、開口数NAが0.1の検出光学系で取得した波面情報を用いている。図18(b)に示す画像の推定と、図18(d)に示す画像の推定には、開口数NAが0.2の検出光学系で取得した波面情報を用いている。
 光学系の開口数NAを大きくすると、分解能が向上する。分解能が向上すると、波面情報の量が増える。波面情報が多いと、物体の3次元光学特性を高い精度で推定することができる。
 図18(b)に示す画像の推定では、図18(a)に示す画像の推定よりも、多くの波面情報を用いることができる。よって、図18(b)に示す画像では、図18(a)に示す画像に比べて、PCFの構造がより鮮明になっている。
 図18(d)に示す画像の推定では、図18(c)に示す画像の推定よりも、多くの波面情報を用いることができる。よって、図18(d)に示す画像では、図18(c)に示す画像に比べて、PCFの構造がより鮮明になっている。
 図18(a)に示す画像の推定と図18(b)に示す画像の推定には、波長λが1300nmの照明光で取得した波面情報を用いている。図18(c)に示す画像の推定と図18(d)に示す画像の推定には、波長λ1が1300nmの照明光で取得した波面情報と、波長λ2が633nmの照明光で取得した波面情報を用いている。
 波長の数を多くすると波面情報の量が増える。波面情報が多いと、物体の3次元光学特性を高い精度で推定することができる。図18(c)に示す画像の推定と図18(d)に示す画像の推定では、1300nmの波長よりも短い波長で取得した波面情報を用いている。
 波長が短い照明光では、波長が長い照明光と比べて、分解能が高い。よって、1300nmの照明光で取得した波面情報よりも多くの情報を使って、推定できる。取得することができる。
 図18(c)に示す画像の推定では、図18(a)に示す画像の推定よりも、多くの波面情報を用いることができる。よって、図18(c)に示す画像では、図18(a)に示す画像に比べて、PCFの構造がより鮮明になっている。
 図18(d)に示す画像の推定では、図18(b)に示す画像の推定よりも、多くの波面情報を用いることができる。よって、図18(d)に示す画像では、図18(b)に示す画像に比べて、PCFの構造がより鮮明になっている。
 本実施形態の推定システムは、本実施形態の推定装置と、第1照明光と第2照明光を射出する光源ユニットと、物体の光学像を形成する結像光学系と、物体の光学像から物体の画像を取得する光検出器と、結像光学系の焦点位置と物体の位置との間隔を、結像光学系の光軸方向に変化させる駆動機構と、を有する。第1照明光による照明と第2照明光による照明は、物体に対して空間的なパーシャルコヒーレント照明を形成している。
 図19は、本実施形態の推定システムを示す図である。図11と同じ構成については同じ番号を付し、説明を省略する。
 推定システム130は、光源ユニット31と、照明光学系133と、開口部材134と、結像光学系135と、光検出器136と、駆動機構137と、推定装置1と、を備える。推定装置1は、メモリ2と、プロセッサ3と、を有する。
 光源ユニット31は、第1照明光と第2照明光を射出する。推定システム130では、光源ユニット31は、第1光源131と、第2光源132と、を有する。第1光源131は、第1照明光を射出する。第2光源132は、第2照明光を射出する。第1照明光と第2照明光は、準単色光であると良い。準単色光は、波長帯域が狭い光である。第1光源131と第2光源132には、例えば、LED(発光ダイオード)を用いることができる。
 LEDの代わりに、波長帯域が広い光を出射する光源を用いることができる。この場合、ダイクロイックミラー138と照明光学系133の間で、2枚の狭帯域光学フィルタを出し入れすれば良い。例えば、2枚狭帯域光学フィルタには、図12(b)に示す第1光学フィルタ82と第2光学フィルタ83を用いれば良い。狭帯域光学フィルタの分光透過率特性の精度は高くなくても良い。
 第1光源131から出射する光を赤外光とし、第2光源132から出射する光を可視光にすることができる。
 第1照明光と第2照明光は、ダイクロイックミラー138に入射する。ダイクロイックミラー138は、波長の長い光を透過し、且つ波長の短い光を反射する分光特性を有する。よって、第1照明光は、ダイクロイックミラー138を透過し、第2照明光はダイクロイックミラー138で反射する。
 第1照明光と第2照明光は、照明光学系133に入射する。照明光学系133は、物体Sを照明する。
 照明光学系133には、開口部材134が配置されている。開口部材134は、円形の遮光部134aと、輪帯形状の透過部134bと、輪帯形状の遮光部134cと、を有する。透過部134bは、減光部でも良い。
 開口部材134とは別の開口部材を用意して、2つの開口部材を用いても良い。別の開口部材では、透過部は透過部134bと同一で、2つの遮光部は、遮光部134a及び遮光部134cと同一である。ただし、開口部材134では、透過部134bに第1光学フィルタ82を設ける。別の開口部材では、透過部に第2光学フィルタ83を設ける。
 2つの開口部材を用いる場合、ダイクロイックミラー138と照明光学系133の間で、2枚の狭帯域光学フィルタを出し入れする必要はない。
 開口部材134上に、第1光源131の発光部の像と、第2光源132の発光部の像が形成される。第1光源131と第2光源132は、面光源である。面光源では、発光部は無数の点光源で形成されている。開口部材134上には、無数の点光源が位置していると見なすことができる。
 開口部材134では、透過部134bに形成された点光源の像から、第1照明光と第2照明光が出射する。しかしながら、遮光部134aと遮光部134cに形成された点光源の像から、第1照明光と第2照明光は出射しない。よって、第1照明光による照明と第2照明光による照明は、パーシャルコヒーレント照明である。
 パーシャルコヒーレント照明は、コヒーレント照明とインコヒーレント照明の中間の照明である。コヒーレント照明は、点光源から出射した光による照明で、例えば、レーザー光による照明である。インコヒーレント照明は、面光源から、出射した光による照明で、例えば、ハロゲンランプから出射した光による照明である。
 面光源であっても、光が出射する領域を狭めることで点光源に近づく。パーシャルコヒーレント照明における光源は、面光源と点光源の中間の光源ということになる。
 開口部材134は、レンズ133aの前側焦点位置に配置されている。よって、照明光学系133から、平行光束が出射する。物体Sは、平行光で照明される。
 結像光学系135は、物体Sの光学像を形成する。光学像を光検出器136で撮像することで、物体Sの画像を取得することができる。光検出器136には、2次元センサー、例えば、CCD又はCMOSを用いることができる。
 図14に示す推定システム100のように、2つの光検出器を用いても良い。この場合、一方の光検出器にSiセンサーを用い、他方の光検出器に、InGaAsセンサーを用いることができる。
 駆動機構137は、結像光学系135の焦点位置と物体Sの位置の間隔を、光軸AXと平行な方向に変化させる。推定システム130では、駆動機構137にステージが用いられている。この場合、結像光学系135を固定したまま、ステージを光軸AXと平行な方向に移動する。その結果、結像光学系135の焦点位置に対して物体Sの位置を変えることができる。
 ステージを移動させる代わりに、結像光学系135と光検出器136を、光軸AXと平行な方向に移動させても良い。この方法でも、結像光学系135の焦点位置に対して物体Sの位置を変えることができる。
 結像光学系135では、レンズ135aに無限遠補正型の顕微鏡対物レンズを用いることができる。この場合、レンズ135aから平行光が出射する。よって、レンズ135aだけを、光軸AXと平行な方向に移動させても良い。
 結像光学系135の焦点位置と物体Sの位置の間隔を変化させながら、物体Sの画像を取得する。その結果、複数の画像を取得することができる。複数の画像から、複数の波面情報を取得することができる。複数の波面情報は、第1照明光と第2照明光の各々について、軸方向の情報を含んでいる。
 透過部134bは、光軸AXを含まない。よって、光軸AXと交差する方向から、物体Sは平行光で照明される。その結果、コントラストを有する物体の画像を取得することができる。更に、パーシャルコヒーレント照明を行っているので、コヒーレント照明と比べて、高い分解能で物体の画像を取得することができる。
 推定システム130は、1つの開口部材を用いている。しかしながら、複数の開口部材を用いることができる。遮光部134aの大きさ、輪帯形状の透過部134の幅を変えることで、異なる波面情報を取得することができる。
 図20は、開口部材と物体の画像を示す図である。図20(a)は、第1の開口部材と物体の画像を示す図である。図20(b)は、第2の開口部材と物体の画像を示す図である。図20(c)は、第3の開口部材と物体の画像を示す図である。画像は、シミュレーションで得られた画像である。
 第1の開口部材、第2の開口部材及び第3の開口部材は、輪帯形状の透過部を有する。透過部の位置、透過部の幅は、各々の開口部材で異なる。そのため、波面情報は、各開口部材で異なる。
 撮像した画像から取得した波面情報は、空間周波数に関連した情報を含んでいる。透過部が中心から離れるにつれて、物体に対する照明光の入射角が大きくなる。入射角が大きくなると、高周波数成分の情報が低周波成分の情報よりも多くなる。高周波数成分の情報が多いと、物体の画像では、細部の構造が強調される。
 透過部は、第1の開口部材、第2の開口部材、第3の開口部材の順で、中心から遠ざかっている。そのため、物体の画像では、細部の構造が、図20(a)に示す画像、図20(b)に示す画像、図20(c)に示す画像の順で、鮮明になっている。
 以上説明したように、推定システム130では、多くの波面情報を取得することができる。よって、物体の厚みが大きい場合であっても、物体の3次元光学特性を高い精度と高い空間分解能で取得できる。
 本実施形態の推定方法は、物体の3次元光学特性を推定する推定方法である。3次元光学特性は、屈折率分布又は吸収率分布である。第1波面情報は、物体を通過した第1照明光に基づいて取得した波面の情報であり、第2波面情報は、物体を通過した第2照明光に基づいて取得した波面の情報である。第2照明光における最大強度の波長は、第1照明光における最大強度の波長よりも短波長側に位置する。第1波面情報と第2波面情報の両方を用いて推定処理を実行する。
 推定処理は、コンピュータが実行する。コンピュータは、メモリに記憶されている第1波面情報と第2波面情報を読み出して推定処理を実行する。
 本実施形態の推定方法では、複数の第1波面情報と複数の第2波面情報の両方を用いて推定処理を実行し、複数の第1波面情報では、第1照明光の物体に対する入射角度が、第1波面情報毎に異なり、複数の第2波面情報では、第2照明光の物体に対する入射角度が、第2波面情報毎に異なることが好ましい。
 本実施形態の推定方法では、推定処理は、第1波面情報を拘束条件とする第1最適化処理と、第2波面情報を拘束条件とする第2最適化処理と、を含む。第1最適化処理と第2最適化処理の各々を、2回以上実行する。第1最適化処理の連続実行によって更新された3次元光学特性に対して、第2最適化処理を連続実行する。
 本実施形態の推定方法では、推定処理は、第1最適化処理の実行によって更新された3次元光学特性に対して、第2最適化処理を実行する。
 本実施形態の推定方法では、推定処理は、第1波面情報を拘束条件とする第1最適化処理と、第2波面情報を拘束条件とする第2最適化処理と、を含む。第1最適化処理と第2最適化処理とからなる複合処理を、2回以上実行する。複合処理では、第1最適化処理が最初に実行される。複合処理では、第2最適化処理が実行された後に、第1最適化処理は実行されない。
 本実施形態の推定方法では、複合処理は、3次元光学特性に設定された初期値に対して、第1最適化処理を実行する。
 本実施形態の推定方法では、第1最適化処理の実行回数が第2最適化処理の実行回数以上になる制御がされる。
 本実施形態の推定方法では、連続する複合処理において、制御が継続する。
 本実施形態の推定方法では、複合処理が所定回数実行されたあと、複合処理において、第2最適化処理の実行回数と第1最適化処理の実行回数との差を減らす制御がされる。
 本実施形態の推定方法では、第1照明光は、赤外領域の光であり、第2照明光は、可視領域の光である。
 本実施形態の推定方法では、第1照明光は、赤外領域の光であり、以下の条件式(A)を満足する。
 2×λ2<λ1   (A)
 ここで、
 λ1は、第1照明光の波長、
 λ2は、第2照明光の波長、
である。
 本実施形態の記録媒体は、プログラムを記録したコンピュータ読み取り可能な記録媒体である。記録媒体には、メモリとプロセッサを備えたコンピュータに推定処理を実行させるためのプログラムが記録されている。メモリは、第1波面情報と第2波面情報を記憶している。第1波面情報は、物体を通過した第1照明光に基づいて取得した波面の情報であり、第2波面情報は、物体通過した第2照明光に基づいて取得した波面の情報である。第2照明光における最大強度の波長は、第1照明光における最大強度の波長よりも短波長側に位置する。3次元光学特性は、屈折率分布又は吸収率分布である。コンピュータは、プロセッサに、第1波面情報と第2波面情報をメモリから読み出させる処理と、第1波面情報と第2波面情報の両方を用いて、推定処理を実行させる。
 本実施形態の記録媒体では、メモリに、複数の第1波面情報と複数の第2波面情報を記憶し、複数の第1波面情報と複数の第2波面情報の両方を用いて、プロセッサに推定処理を実行させることが好ましい。複数の第1波面情報では、第1照明光の物体に対する入射角度が、第1波面情報毎に異なり、複数の第2波面情報では、第2照明光の物体に対する入射角度が、第2波面情報毎に異なる。
 以上のように、本発明は、物体の厚みが大きい場合であっても、物体の3次元光学特性を高い精度と高い空間分解能で取得できる推定装置、推定システム、推定方法、及び記録媒体に適している。
 1 推定装置
 2 メモリ
 3 プロセッサ
 10、20 物体
 21 測定光学系
 22 レンズ
 23 CCD
 24 推定物体
 30 推定システム
 31 光源ユニット
 32 第1光源
 33 第2光源
 34 光検出器
 35 ステージ
 36 ダイクロイックミラー
 37、40 ビームスプリッタ
 38、39 ミラー
 41、60、70 角度変更機構
 42、61,71 駆動装置
 43、62,72 回転部材
 50 推定システム
 51 照明光学系
 52 検出光学系
 53 ミラー
 80 第1遮光板
 81 第2遮光板
 82 第1光学フィルタ
 83 第2光学フィルタ
 90、100、110、120 推定システム
 91、101 第1光検出器
 92、102 第2光検出器
 103 第1光学素子
 104 第2光学素子
 111 ミラー
 112 ビームスプリッタ
 113 光路長調整部
 121 光源
 122、123 レンズ
 124 光検出器
 130 推定システム
 131 第1光源
 132 第2光源
 133 照明光学系
 133a、135a レンズ
 134 開口部材
 134a、134c 遮光部
 134b 透過部
 135 結像光学系
 136 光検出器
 137 駆動機構
 138 ダイクロイックミラー
 AX 光軸
 Lλ1 第1照明光
 Lλ2 第2照明光
 Lmea1 第1測定光
 Lmea2 第2測定光
 Lref1 第1参照光
 Lref2 第2参照光
 OPmea 測定光路
 OPref 参照光路
 RX 軸
 S 物体

Claims (20)

  1.  メモリと、プロセッサと、を備え、
     前記メモリは、第1波面情報と第2波面情報を記憶し、
     前記第1波面情報は、物体を通過した第1照明光に基づいて取得した波面の情報であり、
     前記第2波面情報は、前記物体を通過した第2照明光に基づいて取得した波面の情報であり、
     前記第2照明光における最大強度の波長は、前記第1照明光における最大強度の波長よりも短波長側に位置し、
     前記プロセッサは、前記物体の3次元光学特性を推定する推定処理を実行し、
     前記3次元光学特性は、屈折率分布又は吸収率分布であり、
     前記推定処理は、前記第1波面情報と前記第2波面情報の両方を用いることを特徴とする推定装置。
  2.  前記メモリは、複数の前記第1波面情報と複数の前記第2波面情報を記憶し、
     複数の前記第1波面情報では、前記第1照明光の前記物体に対する入射角度が、前記第1波面情報毎に異なり、
     複数の前記第2波面情報では、前記第2照明光の前記物体に対する入射角度が、前記第2波面情報毎に異なり、
     前記推定処理は、複数の前記第1波面情報と複数の前記第2波面情報の両方を用いることを特徴とする請求項1に記載の推定装置。
  3.  前記推定処理は、前記第1波面情報を拘束条件とする第1最適化処理と、前記第2波面情報を拘束条件とする第2最適化処理と、を含み、
     前記プロセッサは、前記第1最適化処理の連続実行によって更新された前記3次元光学特性に対して、前記第2最適化処理を連続実行することを特徴とする請求項1に記載の推定装置。
  4.  前記プロセッサは、前記3次元光学特性に設定された初期値に対して、前記第1最適化処理を連続で実行することを特徴とする請求項3に記載の推定装置。
  5.  前記推定処理は、前記第1波面情報を拘束条件とする第1最適化処理と、前記第2波面情報を拘束条件とする第2最適化処理と、を含み、
     前記プロセッサは、前記第1最適化処理と前記第2最適化処理とからなる複合処理を、2回以上実行し、
     前記複合処理では、前記第1最適化処理が最初に実行され、
     前記複合処理では、前記第2最適化処理が実行された後に、前記第1最適化処理は実行されないことを特徴とする請求項1に記載の推定装置。
  6.  前記プロセッサは、前記3次元光学特性に設定された初期値に対して、前記複合処理を実行することを特徴とする請求項5に記載の推定装置。
  7.  前記複合処理では、前記第1最適化処理の実行回数が前記第2最適化処理の実行回数以上になる制御がされることを特徴とする請求項5に記載の推定装置。
  8.  連続する前記複合処理において、前記制御が継続することを特徴とする請求項7に記載の推定装置。
  9.  前記複合処理が所定回数実行されたあと、前記複合処理において、前記第2最適化処理の実行回数と前記第1最適化処理の実行回数との差を減らす制御がされることを特徴とする請求項8に記載の推定装置。
  10.  前記第1照明光は、赤外領域の光であり、
     前記第2照明光は、可視領域の光であることを特徴とする請求項1に記載の推定装置。
  11.  前記第1照明光は、赤外領域の光であり、
     以下の条件式(A)を満足することを特徴とする請求項1に記載の推定装置。
     2×λ2<λ1   (A)
     ここで、
     λ1は、前記第1照明光の波長、
     λ2は、前記第2照明光の波長、
    である。
  12.  請求項1から11のいずれか1項に記載の推定装置と、
     前記第1照明光と前記第2照明光を射出する光源ユニットと、
     光検出器と、
     前記物体を載置するステージと、
     角度変更機構と、を備え、
     前記ステージは、前記光源ユニットから前記光検出器まで間の光路上に配置され、
     前記角度変更機構は、前記第1照明光の前記物体に対する入射角度と、前記第2照明光の前記物体への入射角度を変化させることを特徴とする推定システム。
  13.  前記角度変更機構は、駆動装置と、回転部材と、を有し、
     前記回転部材は、前記ステージを保持し、
     前記回転部材の回転軸は、前記物体と交差すると共に、前記光路の光軸と直交することを特徴とする請求項12に記載の推定システム。
  14.  前記角度変更機構は、駆動装置と、回転部材と、を有し、
     前記回転部材は、反射面を有し、
     前記回転部材の配置角度を変えることによって、前記反射面の向きが変化することを特徴とする請求項12に記載の推定システム。
  15.  前記光検出器とは別の光検出器を備え、
     前記光検出器は、前記第1照明光の波長帯域に対して第1閾値以上の感度を持ち、前記第2照明光の波長帯域に対して前記第1閾値以上の感度を持たず、
     前記別の光検出器は、前記第2照明光の波長帯域に対して第2閾値以上の感度を持ち、前記第1照明光の波長帯域に対して前記第2閾値以上の感度を持たないことを特徴とする請求項11に記載の推定システム
  16.  前記光検出器とは別の光検出器と、
     前記光検出器と共に用いられる第1光学素子と、
     前記別の光検出器と共に用いられる第2光学素子と、を備え、
     前記第1光学素子は、前記第1照明光を透過し、前記第2照明光を遮光する特性を有し、
     前記第2光学素子は、前記第2照明光を透過し、前記第1照明光を遮光する特性を有することを特徴とする請求項12に記載の推定システム。
  17.  請求項1から11のいずれか1項に記載の推定装置と、
     前記第1照明光と前記第2照明光を射出する光源ユニットと、を備え、
     前記光源ユニットは、照射角度が異なる複数の独立した光源で構成されており、
     前記推定装置の前記プロセッサ若しくは前記プロセッサと異なるプロセッサが、前記光源に照明光を射出させるか否かを制御することで、前記第1照明光の前記物体に対する入射角度と、前記第2照明光の前記物体への入射角度を変化させることを特徴とする推定システム。
  18.  請求項1から11のいずれか1項に記載の推定装置と、
     前記第1照明光と前記第2照明光を射出する光源ユニットと、
     前記物体の光学像を形成する結像光学系と、
     前記物体の光学像から前記物体の画像を取得する光検出器と、
     前記結像光学系の焦点位置と前記物体の位置との間隔を、前記結像光学系の光軸方向に変化させる駆動機構と、を有し、
     前記第1照明光による照明と前記第2照明光による照明は、前記物体に対してパーシャルコヒーレント照明を形成していることを特徴とする推定システム。
  19.  物体の3次元光学特性を推定する推定方法であって、
     前記3次元光学特性は、屈折率分布又は吸収率分布であり、
     第1波面情報は、前記物体を通過した第1照明光に基づいて取得した波面の情報であり、
     第2波面情報は、前記物体を通過した第2照明光に基づいて取得した波面の情報であり、
     前記第2照明光における最大強度の波長は、前記第1照明光における最大強度の波長よりも短波長側に位置し、
     前記第1波面情報と前記第2波面情報の両方を用いて推定処理を実行することを特徴とする推定方法。
  20.  メモリとプロセッサを備えたコンピュータに推定処理を実行させるためのプログラムを記録したコンピュータ読み取り可能な記録媒体であって、
     第1波面情報は、物体を通過した第1照明光に基づいて取得した波面の情報であり、
     第2波面情報は、前記物体を通過した第2照明光に基づいて取得した波面の情報であり、
     前記第2照明光における最大強度の波長は、前記第1照明光における最大強度の波長よりも短波長側に位置し、
     前記推定処理では、前記物体の3次元光学特性を推定し、
     前記3次元光学特性は、屈折率分布又は吸収率分布であり、
     前記プロセッサに、前記第1波面情報と前記第2波面情報を前記メモリから読み出させる処理と、
     前記第1波面情報と前記第2波面情報の両方を用いて、前記推定処理を実行させることを特徴とするプログラムを記録したコンピュータ読み取り可能な記録媒体。
PCT/JP2021/010836 2021-03-17 2021-03-17 推定装置、推定システム、推定方法、及び記録媒体 WO2022195765A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/010836 WO2022195765A1 (ja) 2021-03-17 2021-03-17 推定装置、推定システム、推定方法、及び記録媒体
JP2023506591A JPWO2022195765A1 (ja) 2021-03-17 2021-03-17
US18/464,211 US20230417664A1 (en) 2021-03-17 2023-09-09 Estimation system, estimation method, and recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/010836 WO2022195765A1 (ja) 2021-03-17 2021-03-17 推定装置、推定システム、推定方法、及び記録媒体

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/464,211 Continuation US20230417664A1 (en) 2021-03-17 2023-09-09 Estimation system, estimation method, and recording medium

Publications (1)

Publication Number Publication Date
WO2022195765A1 true WO2022195765A1 (ja) 2022-09-22

Family

ID=83321998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010836 WO2022195765A1 (ja) 2021-03-17 2021-03-17 推定装置、推定システム、推定方法、及び記録媒体

Country Status (3)

Country Link
US (1) US20230417664A1 (ja)
JP (1) JPWO2022195765A1 (ja)
WO (1) WO2022195765A1 (ja)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080030742A1 (en) * 2006-07-25 2008-02-07 Zetetic Institute Apparatus and method for in situ and ex situ measurement of spatial impulse response of an optical system using phase-shiftin point-diffraction interferometry
JP2009058926A (ja) * 2007-08-31 2009-03-19 Akita Univ 微粒子光捕捉回転制御装置
JP2011247692A (ja) * 2010-05-25 2011-12-08 Canon Inc 屈折率分布計測方法および屈折率分布計測装置
JP2012088342A (ja) * 2012-02-10 2012-05-10 Canon Inc 屈折率分布計測方法および屈折率分布計測装置
JP2012117999A (ja) * 2010-12-03 2012-06-21 Canon Inc 屈折率分布計測方法、屈折率分布計測装置および光学素子の製造方法
JP2013037751A (ja) * 2011-08-10 2013-02-21 Utsunomiya Univ 光情報記録装置
JP2015219502A (ja) * 2014-05-21 2015-12-07 浜松ホトニクス株式会社 光刺激装置及び光刺激方法
JP2019078635A (ja) * 2017-10-25 2019-05-23 キヤノン株式会社 測定装置、データ処理装置、データ処理方法およびプログラム
WO2020013325A1 (ja) * 2018-07-13 2020-01-16 国立大学法人東京大学 画像生成装置及び画像生成方法
US20200182788A1 (en) * 2017-07-06 2020-06-11 Ramot At Tel-Aviv University System and method for three-dimensional label-free optical imaging of a biological cell sample in an environmental chamber

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080030742A1 (en) * 2006-07-25 2008-02-07 Zetetic Institute Apparatus and method for in situ and ex situ measurement of spatial impulse response of an optical system using phase-shiftin point-diffraction interferometry
JP2009058926A (ja) * 2007-08-31 2009-03-19 Akita Univ 微粒子光捕捉回転制御装置
JP2011247692A (ja) * 2010-05-25 2011-12-08 Canon Inc 屈折率分布計測方法および屈折率分布計測装置
JP2012117999A (ja) * 2010-12-03 2012-06-21 Canon Inc 屈折率分布計測方法、屈折率分布計測装置および光学素子の製造方法
JP2013037751A (ja) * 2011-08-10 2013-02-21 Utsunomiya Univ 光情報記録装置
JP2012088342A (ja) * 2012-02-10 2012-05-10 Canon Inc 屈折率分布計測方法および屈折率分布計測装置
JP2015219502A (ja) * 2014-05-21 2015-12-07 浜松ホトニクス株式会社 光刺激装置及び光刺激方法
US20200182788A1 (en) * 2017-07-06 2020-06-11 Ramot At Tel-Aviv University System and method for three-dimensional label-free optical imaging of a biological cell sample in an environmental chamber
JP2019078635A (ja) * 2017-10-25 2019-05-23 キヤノン株式会社 測定装置、データ処理装置、データ処理方法およびプログラム
WO2020013325A1 (ja) * 2018-07-13 2020-01-16 国立大学法人東京大学 画像生成装置及び画像生成方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
MOR HABAZA, MICHAEL KIRSCHBAUM, CHRISTIAN GUERNTH-MARSCHNER, GILI DARDIKMAN, ITAY BARNEA, RAFI KORENSTEIN, CLAUS DUSCHL, NATAN T. : "Rapid 3D Refractive-Index Imaging of Live Cells in Suspension without Labeling Using Dielectrophoretic Cell Rotation", ADVANCED SCIENCE, vol. 4, no. 2, 1 February 2017 (2017-02-01), pages 1600205, XP055563982, ISSN: 2198-3844, DOI: 10.1002/advs.201600205 *

Also Published As

Publication number Publication date
JPWO2022195765A1 (ja) 2022-09-22
US20230417664A1 (en) 2023-12-28

Similar Documents

Publication Publication Date Title
JP4062606B2 (ja) 低可干渉測定/高可干渉測定共用干渉計装置およびその測定方法
US7643155B2 (en) Partially coherent illumination for inverse scattering full-field interferometric synthetic aperture microscopy
US6268921B1 (en) Interferometric device for recording the depth optical reflection and/or transmission characteristics of an object
JP5371315B2 (ja) 光干渉断層撮像方法および光干渉断層撮像装置
JP4229472B2 (ja) 共焦干渉顕微鏡のための背景補償
US20060132790A1 (en) Optical coherence tomography with 3d coherence scanning
JP2004538451A (ja) 三次元顕微鏡検査法によってサンプルを得るための方法およびデバイス
JP5424143B2 (ja) 反射度分布曲線のモデリング方法及びこれを利用した厚さ測定方法、ならびに厚さ測定反射計
JP6018711B2 (ja) 光断層観察装置
US20190028641A1 (en) Systems and methods for high resolution imaging using a bundle of optical fibers
US9404857B2 (en) White light diffraction tomography of unlabeled live cells
JP2009505051A (ja) 液浸干渉顕微鏡による断層イメージング
KR102026742B1 (ko) 광학 측정 시스템 및 임계치수를 측정하는 방법
JP7038102B2 (ja) 全視野干渉撮像システム及び方法
US20200141715A1 (en) Methods and systems of holographic interferometry
WO2022195765A1 (ja) 推定装置、推定システム、推定方法、及び記録媒体
JP5282929B2 (ja) 多波長干渉計
CN114646613B (zh) 一种全息点阵相干成像方法与系统
KR20210044208A (ko) 이종 매체의 비침습적 광학 특성화를 위한 방법 및 시스템
JP7339447B2 (ja) ライン走査マイクロスコピー用の装置および方法
JP6700071B2 (ja) 円筒型光導波路の屈折率分布測定方法および屈折率分布測定装置
JP5740701B2 (ja) 干渉計
JP7149948B2 (ja) 波面の測定品質を評価する方法及びそのような方法を実現する装置
Mehta et al. Quantitative Phase Microscopy and Tomography: Techniques using partially spatially coherent monochromatic light
JP2001099624A (ja) 干渉縞測定解析方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931517

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023506591

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931517

Country of ref document: EP

Kind code of ref document: A1