WO2022195662A1 - プラズマ処理装置およびプラズマ処理方法 - Google Patents

プラズマ処理装置およびプラズマ処理方法 Download PDF

Info

Publication number
WO2022195662A1
WO2022195662A1 PCT/JP2021/010341 JP2021010341W WO2022195662A1 WO 2022195662 A1 WO2022195662 A1 WO 2022195662A1 JP 2021010341 W JP2021010341 W JP 2021010341W WO 2022195662 A1 WO2022195662 A1 WO 2022195662A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
data
processing
light
wafers
Prior art date
Application number
PCT/JP2021/010341
Other languages
English (en)
French (fr)
Inventor
宗一郎 江藤
翔 岡本
茂 中元
建人 臼井
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to US17/911,779 priority Critical patent/US20240213004A1/en
Priority to JP2022508859A priority patent/JP7253668B2/ja
Priority to PCT/JP2021/010341 priority patent/WO2022195662A1/ja
Priority to KR1020227007944A priority patent/KR102671263B1/ko
Priority to CN202180005331.2A priority patent/CN115349164A/zh
Priority to TW111109185A priority patent/TW202238719A/zh
Publication of WO2022195662A1 publication Critical patent/WO2022195662A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32917Plasma diagnostics
    • H01J37/32935Monitoring and controlling tubes by information coming from the object and/or discharge
    • H01J37/32972Spectral analysis
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/3065Plasma etching; Reactive-ion etching
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/0006Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature
    • H05H1/0012Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature using electromagnetic or particle radiation, e.g. interferometry
    • H05H1/0025Investigating plasma, e.g. measuring the degree of ionisation or the electron temperature using electromagnetic or particle radiation, e.g. interferometry by using photoelectric means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2237/00Discharge tubes exposing object to beam, e.g. for analysis treatment, etching, imaging
    • H01J2237/32Processing objects by plasma generation
    • H01J2237/33Processing objects by plasma generation characterised by the type of processing
    • H01J2237/334Etching

Definitions

  • the present invention relates to a plasma processing apparatus or a plasma processing method.
  • the process of forming components as a collection of circuits that perform various functions and wiring that interconnects multiple components is performed on the surface of a semiconductor wafer.
  • the formation of these components and wiring involves the formation of film layers of various materials including conductors, semiconductors, or insulators that have been previously formed on the surface of a substrate-like sample such as a semiconductor wafer, and the removal of unnecessary portions of these film layers. etc. are repeated.
  • a dry etching process using plasma is widely used in the process of removing such unnecessary portions.
  • etching using plasma also called plasma etching
  • a processing gas is introduced into a processing chamber provided inside a vacuum vessel of a processing apparatus, and high-frequency power supplied from a high-frequency power source into the processing chamber is used.
  • a high-frequency electric field is supplied to excite the atoms or molecules of the introduced gas to ionize or dissociate them into plasma, and the surface of the sample is exposed to the plasma and brought into contact with the particles in the plasma and the film layer to be processed. is performed by causing a reaction of
  • physical reactions such as sputtering by charged particles such as ions in the plasma and chemical reactions by radicals (particles having reaction activity, active species) cause anisotropic or isotropic changes in the film layer to be processed.
  • a chemical etch is performed. Appropriately selected processes having different characteristics are applied to the wafer surface to form components and wiring having circuit structures that perform the above-described various functions.
  • a process monitor that measures the thickness of a film deposited on a wafer and the depth of grooves and holes formed on the wafer by measuring the light reflected from the wafer during processing It is called a depth monitor and has been used to determine the end point of etching processing.
  • Patent Document 1 describes a method for improving processing accuracy using this film thickness/depth monitor.
  • a film thickness/depth monitor using a plasma light as a light source is used to detect just before the film to be processed is completely removed, and the etching process is terminated. After that, by switching the conditions to selectively etch the part to be processed and the part not to be processed, the etching process is performed, thereby shortening the overall processing time and eliminating variations in processing within the wafer surface. removal.
  • Patent Document 2 describes a technique for improving the measurement accuracy of the film thickness and depth of the film thickness/depth monitor.
  • an external light source is used instead of the plasma light as the light source for irradiating the wafer.
  • fluctuations in the amount of light emitted from the light source are reduced, and highly accurate measurement of film thickness and depth is realized.
  • These film thickness/depth monitors obtain in advance the pattern of the reflected light from the wafer during etching as a database (called DB), and compare the reflected light from the wafer measured during etching with the DB. , the processing state of the wafer is estimated.
  • DB database
  • the reflected light pattern of the DB and the reflected light pattern to be evaluated will not match, enabling accurate film thickness and depth measurement. I have a problem that I can't.
  • Patent Document 3 discloses a film thickness/depth measurement method that copes with the variations in device structure between wafers as described above.
  • the wafer reflected light patterns when the base film is thick and when the base film is thin are acquired in advance as DBs, and by using these two DBs, various Accurate measurement of film thickness and depth is realized for wafers with an appropriate base film thickness.
  • Patent Document 3 has the following problems. That is, in Patent Document 3, in the case where the structure of the film on the upper surface of the wafer is known, a pattern is created using, as a parameter, the wavelength of the intensity of the interference light due to the reflected light from a plurality of wafers having different thicknesses of the underlying film of the film to be etched. Although the data is used as a database (DB), accurate measurement of film thickness and depth cannot be realized when the film structure of the wafer is unknown.
  • DB database
  • a plurality of test wafers having the same film structure as such wafers are processed in advance.
  • Data of interference light of reflected light is obtained as reference data, and from these data, the depth of processing and the remaining film thickness during processing of wafers used for manufacturing semiconductor devices are used for determining the end point.
  • a plurality of data are selected as appropriate.
  • the film structure of the wafer is unknown, it is difficult to select appropriate data based on the difference in structure between wafers. For example, in the case of detecting the remaining film thickness during processing or the depth of processing using a plurality of arbitrarily selected data, the accuracy of wafers having a structure different from that of the corresponding film structure is significantly degraded. put away.
  • Such variations in the film structure include not only the thickness of the underlying film of the film to be etched, but also the dimensions such as the thickness and width of the mask layer constituting the film structure, the shape and dimensions of the underlying film of the film to be etched, It also includes structures such as the width and pitch of grooves and trenches, the shape and dimensions of the film layer surrounding the film to be etched, and the relationship between the remaining film thickness and depth of the film to be etched and the intensity of the interference light of the reflected light from the wafer. All factors that affect relationships are included.
  • the structure of the film that causes the reflected light may differ depending on the detection position and range of the reflected light on the wafer.
  • the reflected light from the wafer cannot be used to detect the remaining film thickness and the processing depth with high accuracy.
  • the intensity of the interference light due to the reflected light also varies. If reflected light data corresponding to a plurality of film structures having such variations in selectivity ratio is not used, the accuracy of detection of remaining film thickness and depth of processing during processing is impaired in the same manner as described above. put away.
  • the film structure on the wafer, the position and range where the reflected light is detected, the variation in the selection ratio between the etching target and other materials, the spectrum of the light source, and the magnitude of the variation in the plasma light time change If sufficient information cannot be obtained, it is not possible to appropriately select reflected light data from the wafer surface corresponding to these variations and fluctuations, and the reflected light during wafer processing can be used to determine the remaining film thickness. There is a problem that the accuracy of detection of the amount of processing such as sheath processing depth is impaired.
  • An object of the present invention is to provide a plasma processing apparatus or a plasma processing method capable of detecting with high accuracy the amount of processing, such as the remaining film thickness of a film layer to be processed during wafer processing.
  • one of the typical plasma processing apparatuses of the present invention is A plasma processing apparatus for processing a wafer to be processed placed in a processing chamber inside a vacuum vessel using plasma generated in the processing chamber, a light receiver that receives light of a plurality of wavelengths from the surface of the wafer at a plurality of predetermined times during processing of the wafer to be processed; Processing of the wafer to be processed during processing using a result of comparison between the data indicating the intensity of the received light of the plurality of wavelengths and comparison data indicating the intensity of the light of the plurality of wavelengths obtained in advance.
  • the detector determines the degree of similarity between the wafers based on data indicating the intensity of the light of the plurality of wavelengths of the light from the surface of each of the wafers obtained in advance during processing of each of the wafers.
  • digitizing selecting at least one piece of data based on the digitized degree of similarity as comparison data, and comparing it with the data indicating the intensity of the light of the plurality of wavelengths obtained during the processing of the wafer to be processed; is achieved by detecting the amount of said processing as
  • One of the representative plasma processing methods of the present invention is A plasma processing method for processing using plasma formed in a processing chamber in which a wafer to be processed is placed in a processing chamber inside a vacuum vessel, a measurement step of receiving light of a plurality of wavelengths from the surface of the wafer at a plurality of predetermined times during processing of the wafer to be processed; Processing of the wafer to be processed during processing using a result of comparison between the data indicating the intensity of the received light of the plurality of wavelengths and comparison data indicating the intensity of the light of the plurality of wavelengths obtained in advance.
  • the degree of similarity between the wafers is determined based on data indicating the intensity of the light of the plurality of wavelengths of the light from the surface of each of the wafers obtained in advance during the processing of each of the wafers.
  • digitizing selecting at least one piece of data based on the digitized degree of similarity as comparison data, and comparing it with the data indicating the intensity of the light of the plurality of wavelengths obtained during the processing of the wafer to be processed; is achieved by detecting the amount of said processing as
  • the present invention it is possible to provide a plasma processing apparatus or a plasma processing method capable of detecting with high accuracy the amount of processing, such as the remaining film thickness of a film layer to be processed during wafer processing.
  • FIG. 1 is a diagram schematically showing the outline of the configuration of a plasma processing apparatus according to an embodiment of the present invention. showing configuration.
  • FIG. 2 is a longitudinal section schematically showing the outline of the configuration of a film structure in which a plurality of layers of films including a film layer to be processed are laminated in advance on the upper surface of a semiconductor wafer to be processed in the embodiment shown in FIG. It is a figure, (a) shows the state before and behind a process, (b) has shown the state in which the film thickness varied.
  • FIG. 3 is a graph schematically showing an example of variations in reflected light obtained when a plurality of wafers to be processed having the film structure shown in FIG.
  • FIG. 4 shows the remaining film thickness after the wafer having the film structure shown in FIG. 2 is etched in the embodiment shown in FIG. 1, and the intensity of reflected light from the wafer with multiple wavelengths as parameters.
  • 2 is a graph showing a pattern of values, where (a) shows a map and (b) shows a film thickness spectrum.
  • FIG. 5 is a graph showing an example of the spectrum of reflected light detected during processing of each of a plurality of wafers processed by the plasma processing apparatus according to the present embodiment shown in FIG. 1 and the sum of differences between the spectra.
  • FIG. 6 is a graph showing the sum of errors in the spectra of reflected light detected during processing of each of a plurality of wafers processed by the plasma processing apparatus according to the present embodiment shown in FIG. The relationship between the total error and the wafer number is shown, and (b) shows the relationship between the processed film thickness and the number of processed wafers.
  • FIG. 7 is a graph showing the amount of light from the wafer surface obtained when the modified example of the plasma processing apparatus according to the embodiment shown in FIG. 1 processes the film structure shown in FIG.
  • FIG. 8 shows, for each wafer number, the sum of errors in reflected light data obtained during the processing of a plurality of wafers having the film structure shown in FIG. 2 by the modified example shown in FIG. graph.
  • FIG. 9 shows the remaining film thickness during etching processing performed on the wafer having the film structure shown in FIG. 2 by another modification of the plasma processing apparatus according to the embodiment shown in FIG. 2 is a graph showing, as a map, the relationship between the value of the intensity of the reflected light from the wafer and the pattern, with .
  • FIG. 10 shows the film to be processed obtained during the etching process performed on the wafer having the film structure shown in FIG.
  • FIG. 7 is a graph showing an example of change in the value of the first derivative of the intensity of light of a specific wavelength with respect to change in remaining film thickness.
  • FIG. 11 shows a film to be processed obtained during the etching process performed on the wafer having the film structure shown in FIG. 2 by still another modification of the plasma processing apparatus according to the embodiment shown in FIG. is a predetermined remaining film thickness, and is a graph showing an example of the intensity of reflected light of a plurality of wavelengths.
  • FIG. 12 shows wafer surfaces obtained during the etching process performed on a plurality of wafers having the film structure shown in FIG. 2 by still another modification of the plasma processing apparatus according to the embodiment shown in FIG.
  • FIG. 13 shows wafer surfaces obtained during the etching process performed on a plurality of wafers having the film structure shown in FIG. 2 by still another modification of the plasma processing apparatus according to the embodiment shown in FIG.
  • FIG. 14 shows wafers obtained during the etching process of a plurality of wafers having the film structure shown in FIG. 2 by still another modification of the plasma processing apparatus according to the embodiment shown in FIG.
  • FIG. 10 is a table showing an example of a data table whose components are error values of predetermined residual film thicknesses of other wafers detected using each of a plurality of data on the light intensity of reflected light from the film structure on the surface;
  • FIG. 15 is a table showing combinations of database wafers capable of detecting remaining film thicknesses of n wafers selected from the data table according to another modification of the embodiment of the present invention shown in FIG.
  • FIG. 16 shows detection of reflected light from wafers when the plasma processing apparatus according to still another modification of the embodiment shown in FIG. 1 performs etching processing on a plurality of wafers having the film structure shown in FIG.
  • FIG. 4 is a top view schematically showing the position of the wafer surface where the wafer surface is exposed.
  • FIG. 17 shows wafers obtained during the etching process of each of a plurality of wafers having the film structure shown in FIG. 2 by a plurality of plasma processing apparatuses according to still another modification of the embodiment shown in FIG.
  • FIG. 4 is a graph showing the sum of errors in predetermined remaining film thicknesses of other wafers detected using a plurality of light intensity data of reflected light from the surface film structure for each of a plurality of plasma processing apparatuses;
  • FIG. 18 is a graph of the on-wafer detected using reflected light from the wafer during the process of etching the wafer having the film structure shown in FIG. 2 by the plasma processing apparatus according to still another modification of the embodiment shown in FIG. 3 is a graph showing an example of change over time in remaining film thickness of a film layer to be processed.
  • FIG. 19 is a block diagram schematically showing the outline of the configuration of the system for monitoring the plasma processing apparatus according to the embodiment shown in FIG. 1. As shown in FIG.
  • a plurality of wafers from which data of reflected light from the surface is acquired may be a plurality (two or more) of wafers in the same processing step, for example, a step of mass-producing semiconductor devices to be products.
  • Wafers wafers for products
  • test wafers processed under the same conditions as the product wafers may be used for the purpose of obtaining the reflected light data. good.
  • data based on a simulation that reproduces reflected light during a process step in particular that reproduces variations in wafer reflected light that occur during processing, may be used.
  • reflected light data a collection of a plurality of data (data sets) that indicate values over time of the intensity of reflected light from the wafer surface during processing is used. For example, light reflected from a wafer being etched is separated into a plurality of predetermined wavelengths at each time, and a signal indicating the intensity of the light detected at each wavelength is related as that at each time.
  • the attached so-called time-series data may be used as reflected light data.
  • data indicating temporal changes in light intensity values for predetermined wavelengths or wavelengths within a predetermined range obtained at each time may be used as reflected light data.
  • the data used to calculate the degree of similarity between wafers should indicate at least the intensity of light reflecting the remaining film thickness or depth of the film to be etched as an index.
  • the data the value of the amount of light reflected from the surface of the wafer including the target film layer to be detected, or the noise and offset superimposed by performing digital signal processing on the amount of light are removed or reduced. It is also possible to use the corrected one. If there are variations in the magnification of the light amount or variations in the etching speed for each wafer, the data may be the result of normalizing the light amount obtained based on the specific light amount. good.
  • the index indicating the intensity of light may be data shaped into a format that allows comparison of differences among a plurality of wafers. For example, if a plurality of wafers differ in the value range of the remaining film thickness or the etching speed during each etching process, each time at which the light amount of each wafer is detected is converted into the remaining film thickness. However, in the range in which the remaining film thickness is the same between the wafers, the data of the amount of light may be used as an index indicating the intensity of the light. If the number of pieces of film thickness data detected during processing of each wafer (the number of points at the time during processing where detection is performed) is different, data obtained by interpolation processing such as spline interpolation is used. It is also possible to perform interpolation and resampling processing of the points by using the number of points equalized as an index indicating the intensity of light.
  • the same processing as in the case of different film thicknesses can be performed.
  • an index indicating the light intensity not only the so-called two-dimensional data having the film thickness and the wavelength as parameters, but also the one-dimensional data obtained by extracting data at a specific remaining film thickness or a specific wavelength. It may be data.
  • Calculation of the degree of similarity between wafers using the intensity of light reflected from the surface obtained during processing of each wafer is performed by calculating the value of the difference in light intensity between the wafers. For example, the average value of the light intensity indicated by the two-dimensional or one-dimensional data obtained for all the wafers whose similarity is to be calculated is calculated, and the absolute error value of the light intensity data of each wafer and the average light intensity is calculated. Alternatively, an error square or the like may be calculated and the sum of these values may be used as an index of similarity. Alternatively, the cosine similarity of the light intensity of the reflected light obtained from each wafer with respect to the average light intensity value may be used.
  • a principal component value calculated by principal component analysis of light intensity data of all wafers may be used as an index of similarity.
  • a value obtained by applying a dimension reduction method to the light intensity data of all wafers may be used.
  • Isomap, LLE, Laplacian eigenmap, Hessian eigenmap, spectrum clustering, diffusion map, kernel PCA, etc. can be used.
  • the plurality of data selected or calculated based on the calculated numerical value indicating the degree of similarity is obtained from a plurality (two or more) of wafers having different numerical values of similarity, and the quantification result is specified.
  • the range of wafers where the film thickness and depth can be measured by the DB of each wafer is calculated, and the film thickness and depth of all wafers are calculated. It is also possible to determine a combination of wafers that enables the thickness measurement, and select a plurality of DBs using a combination that minimizes the number of wafers among the determined combinations of wafers.
  • whether or not the film thickness/depth can be measured may be determined based on whether the error between the film thickness/depth estimation result and the actual measurement result falls within an arbitrary target error. Further, the selection of a plurality of DBs from the determined wafer combination should be made so that the number of wafers is minimized and the total number of wafers whose film thickness and depth can be measured is maximized. Furthermore, if clearly abnormal wafer data is included, the wafer may be excluded from the decision as to whether the film thickness and depth can be measured.
  • the film thickness/depth specifying method using multiple DBs set by these methods may be performed by comparing the reflected light data obtained from the wafer to be evaluated with multiple DBs. For example, the reflected light of the wafer to be evaluated is compared with each DB, the estimated value of the film thickness and depth in each DB is calculated, and the film thickness and depth of the DB having the smallest matching error of the reflected light with each DB is determined. should be used as the value of film thickness and depth at the current time.
  • the matching error is not limited to the error at the current time, but may be the total including the past time.
  • reflected light data obtained when a plurality of wafers are etched is obtained, the degree of similarity between wafers is quantified based on the light intensity of the reflected light data of each wafer, and the degree of similarity is quantified.
  • a plurality of DBs can be selected using the results, and film thickness and depth can be measured using the selected DBs.
  • a plasma processing apparatus and a plasma processing method for processing a wafer to be processed while detecting the remaining film thickness or the processing depth will be described with reference to the drawings.
  • a semiconductor manufacturing apparatus for etching a wafer arranged in a processing chamber inside a vacuum vessel and provided with means for detecting the remaining film thickness and processing depth during processing.
  • a process of detecting the remaining film thickness or the processing depth during the etching process performed by the manufacturing apparatus will be described.
  • FIG. 1 is a diagram schematically showing the outline of the configuration of a plasma processing apparatus according to an embodiment of the present invention.
  • FIG. 1(a) schematically shows a longitudinal sectional view of the plasma processing apparatus according to this embodiment.
  • the etching gas introduced into the interior of the vacuum processing chamber 10 from the gas introducing means (not shown) is excited and excited by electric power and microwaves generated by using a high frequency power supply (not shown) or the like. It is decomposed into plasma 12 , and an object 16 to be processed such as a semiconductor wafer placed on a sample stage 14 is etched (plasma processed) by this plasma 12 .
  • the introduction of gas into the vacuum processing chamber 10, the generation and control of the plasma 12, and the application of voltage to the object to be processed by a high-frequency power source (not shown) are performed by the controller 40 so that the desired etching process can be achieved. Synchronization and timing adjustment are performed between each device.
  • the control of pulsing is also performed by the controller 40 .
  • the plasma 12 is turned on/off by modulation such as voltage application by a high frequency power supply for turning the etching gas into plasma, microwave irradiation, etc., and the plasma is pulsed.
  • Plasma pulsing is also achieved by time-modulating the introduction of the etching gas.
  • the plasma processing apparatus is equipped with a mechanism for measuring the film thickness and depth of the processing target 16.
  • Light emitted from the light source 18 is introduced into the vacuum processing chamber 10 via the optical system 50 and the introduction lens 20 and is irradiated onto the processing target 16 as irradiation light 22 .
  • the light source unit 18 uses continuous spectrum light with continuous wavelengths from ultraviolet to infrared. Reflected light 24 from the processing target 16 is introduced into the detection section 28 via the detection lens 26 and the optical system 50 .
  • the detection unit 28 is composed of a spectroscope, separates the introduced light, and detects the amount of light for each wavelength.
  • the detector is not limited to a spectroscope, and a photodetector or the like may be used.
  • a photodetector may be used directly, and when continuous spectrum light is introduced, only the specific wavelength is selected by a monochromator or the like in front of the photodetector. What is necessary is just to provide the mechanism which does.
  • the introduction lens 20 for introducing light into the vacuum processing chamber 10 and the detection lens 26 for detecting reflected light are installed at offset positions.
  • the configuration of the introduction lens 20 and the detection lens 26 is not limited to that shown in FIG. 1(a), and a single introduction lens 20 and detection lens 26 may be shared as a complete coaxial configuration. In this case, it is desirable that the direction of the light beam of the lens is perpendicular to the object 16 to be processed, and that the vertically reflected light obtained as a result of the vertical irradiation can be detected.
  • FIG. 1A shows a pair of external light introduction systems and a reflected light 24 detection system. A plurality of systems may be provided.
  • FIG. 1(a) describes the case where light is incident from the external light source unit 18 as the light source
  • the light source unit 18 may not be used when the light of the plasma 12 is used as the light source. Even when the plasma 12 is used as the light source, the light emitted from the plasma 12 is reflected by the processing target 16 and the reflected light 24 is detected in the same manner as when the light source unit 18 is used.
  • the data of the detection unit 28 is introduced into the film thickness/depth calculation unit 30 to determine the film thickness/depth.
  • the film thickness/depth calculation unit 30 is provided with a database used for film thickness/depth determination from the database selection unit 60 .
  • the database selection unit 60 quantifies the similarity of each candidate by comparing the light intensity of the wafer data. For example, the error absolute value from the average value of light intensity, the sum of error squares, cosine similarity, principal component analysis, Isomap, LLE, Laplacian eigenmap, Hessian eigenmap, spectral clustering, diffusion map, kernel PCA, etc. The similarity is quantified. Database selection is performed using the numerically expressed similarity of each wafer.
  • FIG. 1(b) The configuration of the film thickness/depth calculation unit 30 will be described with reference to FIG. 1(b). This figure divides the configuration of the film thickness/depth calculation unit 30 shown in FIG. It is a block diagram indicated by an arrow.
  • the time-series data D1 of the amount of light for each wavelength introduced from the detection unit 28 to the film thickness/depth calculation unit 30 has various noises and fluctuations removed and corrected by the digital signal processing unit 100, and It is supplied to the waveform comparator 102 as series data D2.
  • a low-pass filter is used to remove noise on the time axis of each wavelength.
  • a secondary Butterworth low-pass filter for example, can be used as the low-pass filter, and the time-series data D2 is obtained by the following equation.
  • D2(i) b1 ⁇ D1(i) + b2 ⁇ D1(i-1) + b3 ⁇ D1(i-2) - [ a2 ⁇ D2(i-1) + a3 ⁇ D2(i-2)]
  • Dk(i) indicates data at an arbitrary sampling time i of each data Dk
  • coefficients a and b have different numerical values depending on the sampling frequency and cutoff frequency.
  • filtering may be performed by passing the data Dk through a low-pass filter, or the SG method (Savitzky-Golay-Method) may be used. Further, in the case of removing the light intensity offset of each wavelength for the data Dk and detecting the change in the light intensity over time (time change), the light intensity (light intensity) between the data Dk(i) at a plurality of times i intensity) or the rate of change (differential value) of the light intensity at each time i can be used.
  • time-series data D2(i) of the differential value for each sampling time i can be obtained.
  • This kind of data processing can be called a polynomial-fit smoothing differential method, and is given by the following equation.
  • the light intensity value of each wavelength is It is possible to apply processing for normalization by the average value or the sum of the absolute values of the light intensities of all the wavelengths.
  • the time-series data D2(i) output from the digital signal processing unit 100 is received by the waveform comparator 102 and stored in the waveform pattern database 122 by the waveform comparator 102.
  • At least one piece of pattern data indicating the correlation between the film thickness/depth and the amount of light of each wavelength obtained in advance is compared with an arithmetic unit.
  • pattern means spectral pattern.
  • a plurality of values of film thickness, depth of processing, or time after the start of processing in the waveform pattern database 122 are associated with light intensity values of a plurality of wavelengths as parameters. is compared with the data D2(i) at each sampling time i in the time-series data D2, and the amount of light of a plurality of wavelengths (light ), the pattern data having the smallest difference from the pattern of data D2(i) is detected as the closest pattern data.
  • the data of the pattern with the smallest difference for example, the data with the smallest standard deviation between data of a plurality of wavelengths can be used.
  • the film thickness or processing depth corresponding to the closest pattern data is calculated as the remaining film thickness or processing depth at the sampling time i.
  • the value of the remaining film thickness or the processing depth at each sampling time i calculated by the waveform comparator 102 is transmitted to the film thickness/depth storage unit 104, and the film thickness/depth is stored as time-series data D3(i).
  • the data is stored in a storage device such as a hard disk, a semiconductor RAM, or a ROM that is communicably connected to the storage unit 104 .
  • the light intensity data for each wavelength in the waveform pattern database 122 is data processed by signal processing performed by the digital signal processing unit 100 .
  • the waveform pattern database 122 has a plurality of databases of pattern data of film thickness/depth and light amount of each wavelength
  • the film thickness/depth D3 determined using each database is stored in the film thickness/depth storage. It may be supplied to the unit 104 .
  • the film thickness/depth storage unit 104 supplies the film thickness/depth time-series data D4 to the optimum film thickness/depth determiner 106 .
  • the optimal film thickness/depth determiner 106 determines the optimal film thickness/depth using the data supplied from the optimal database determiner 124 , and outputs it to the outside of the film thickness/depth calculator 30 .
  • the film thickness/depth determined by the database number supplied from the optimum database determiner 124 is output from the optimum film thickness/depth determiner 106 .
  • the optimal database determiner 124 determines the optimal database using the data supplied from the waveform comparator 102 and/or the film thickness/depth storage unit 104 .
  • the closest pattern in each database supplied from the waveform comparator 102 and the data of the pattern with the smallest mutual difference as a result of pattern matching with the current pattern are determined as "optimal" data. This is selected as pattern data to be used for detection of remaining film thickness and processing depth. Pattern data is selected using not only the light intensity data obtained at the current time i during processing, but also the total difference obtained as a result of pattern matching with respect to the light intensity data at past times. may In this case, the pattern data having the smallest difference with respect to the pattern data of the light intensity having the wavelength as a parameter at a plurality of times including past times is selected.
  • the database with the smallest correlation coefficient between time and film thickness and depth is selected as the optimum database. may be determined.
  • the waveform pattern database 122 may include a plurality of data supplied from the matching database calculator 120 as a database.
  • the adaptive database calculator 120 uses the time-series data D1 and/or the time-series data D2 and the data supplied from the waveform pattern database 122 to determine the pattern of data indicating the light intensity obtained at the current time i. or the difference value of the pattern matching result is within a predetermined allowable range, and is transmitted and supplied to the waveform pattern database 122 .
  • a database generated based on predetermined calculations in the adaptive database calculator 120 may be supplied to the waveform pattern database 122 .
  • a method of linearly interpolating two databases or an arithmetic process of interpolating two or more databases with a polynomial can be used as a predetermined operation for calculating the database.
  • the film thickness/depth calculation unit 30 of FIG. 1B not only when a plurality of databases exist in the waveform pattern database 122 but also when using only one database, at an arbitrary time i during processing, The remaining film thickness or the depth of processing is detected from the detected intensity of the reflected light from the processing object 16, and data indicating this is output.
  • the waveform pattern database 122 stores only one database
  • the suitable database calculator 120 and the optimum database determiner 124 are not used, and the film thickness/depth detected or calculated in the film thickness/depth storage unit 104 is used.
  • the data indicating the depth value is output from the film thickness/depth calculator 30 as it is.
  • the plasma processing apparatus shown in FIG. 1(a) uses the signal indicating the film thickness/depth output from the film thickness/depth calculation unit 30 to determine the end point. That is, in the end point determiner that receives the signal from the film thickness/depth calculation unit 30, the value of the remaining film thickness or the processing depth indicated by the signal is the predetermined target film thickness or processing depth. If the value is within a predetermined allowable range, it is determined that the process has reached the end point, and if it is outside the allowable range, it is determined that the process has not reached the end point.
  • the arrival is notified by an alarm device such as a monitor, a lamp, or a traffic light (not shown), and the control unit receives a signal indicating the arrival. 40 sends a signal to the plasma processing system to stop the etching process or change the conditions of the process.
  • an alarm device such as a monitor, a lamp, or a traffic light (not shown)
  • the control unit receives a signal indicating the arrival. 40 sends a signal to the plasma processing system to stop the etching process or change the conditions of the process.
  • the plasma processing apparatus based on the received etching stop signal, the etching process of the target film layer on the surface of the processing target 16 whose film thickness or processing depth is detected is stopped, or after changing the processing conditions, the next step is performed. , the processing steps for the processing target 16 are performed.
  • the plasma processing apparatus of this embodiment can determine the end point using the results of detecting the film thickness and depth.
  • FIG. 2 schematically shows an outline of a configuration of a film structure in which a plurality of layers of films including a film layer to be processed which are arranged in advance on the upper surface of a semiconductor wafer to be processed by the embodiment shown in FIG. 1 are stacked. It is a longitudinal cross-sectional view.
  • the base film 2 and the processing target film 3 are formed on the upper surface of the Si substrate 1 as lower and upper layers in the vertical direction.
  • the films are stacked on top of each other. It has a high selection ratio from the resin for forming a predetermined circuit pattern or the material of the film to be processed in the film layer to be processed in the area not covered above the upper surface of the film to be processed 3.
  • a mask 4 made of material is arranged.
  • the film thickness of the mask 4 varies as shown in FIG. 2(b). That is, the film thickness of the mask layer before processing (in the initial stage of processing) of the wafers to be processed 16 may be thinner (smaller) than the average thickness or thicker (larger) than the average thickness. exist.
  • FIG. 3 is a graph schematically showing an example of variations in reflected light obtained when a plurality of wafers to be processed having the film structure shown in FIG. be.
  • FIG. 3A is a graph showing the amount of reflected light from a plurality of wafers when the remaining film thickness of the film to be processed on the surface of the wafer to be processed 16 is the same and the initial film thickness of the mask is different. is.
  • the vertical axis is the value when the amount of reflected light is converted into the wafer reflectance.
  • FIG. 3A it can be seen that even if the value of the remaining film thickness of the film to be processed is the same, the magnitude of the reflectance differs due to the variation in the film thickness of the mask. That is, it can be seen that the distribution and profile (spectrum) of the intensity of the reflected light of a plurality of wavelengths indicating the remaining film thickness differ according to the thickness of the mask.
  • one wafer having a film structure provided with a mask having an average value of the initial film thickness is selected.
  • Correlation between pattern of values of reflected light of multiple wavelengths from wafer obtained at each sampling time during processing and residual film thickness or processing depth at each time detected from these patterns is obtained in advance, and only this single data is used to detect the film thickness and depth during the processing of a plurality of wafers to be processed 16 to determine the end point. The results are shown in FIG. b).
  • a plurality of wafers having mask film thickness variations are subjected to etching processing, and the target remaining film thickness for end point determination is set to 130 nm.
  • the vertical axis represents the thickness of the remaining film, and the values obtained by measuring the thickness of the remaining film using an electron microscope by destructive inspection or the like after each wafer has been etched are shown as dots in the figure.
  • each wafer 2 when the end point is determined using the remaining film thickness or the processing depth detected using one pattern data obtained from processing one wafer obtained in advance, each wafer 2, the actual thickness of the film to be processed after processing varies with respect to the target film thickness (130 nm), and it can be seen that the accuracy of processing the film structure by the etching process is impaired.
  • the film thickness/depth is detected using a plurality of pattern data from the reflected light obtained during the processing of the wafer of each processing target 16, and the detected remaining film thickness or processing Determine the end point of the process based on the depth.
  • a plurality of wafers to be processed 16 having the same type of film structure in which film layers of the same material are stacked vertically are etched in the same manner as shown in the example of FIG. 3B.
  • Intensity data of reflected light of multiple wavelengths obtained from the wafer surface at multiple times during processing and the remaining film thickness (or the time after the processing step was started) were correlated.
  • similarities between wafers are calculated in advance as numerical values.
  • FIG. 4A shows the relationship between the pattern and the value of the intensity of the reflected light from the wafer, with parameters being the remaining film thickness and a plurality of wavelengths during the etching process performed on the wafer to be processed 16 .
  • the data indicating the intensity of the reflected light detected during processing is not detected in association with the remaining film thickness, but at each sampling time during processing after the processing step has started. It is acquired as a spectrum of reflected light of multiple wavelengths.
  • the value of the film thickness at each time is assigned by linear interpolation from the values of the initial (time 0) and final (final time) film thicknesses. .
  • Map data as shown in FIG. 4(a) is obtained for each wafer processed. There is a possibility that the range and the score will be different.
  • a common film thickness range is set for all the wafers using the reflected light data obtained in advance for a plurality of wafers to be processed 16 .
  • pattern data representing the intensity of light of a plurality of predetermined wavelengths for each 1 nm film thickness within the film thickness range is created. If the value of data obtained in advance for an arbitrary film thickness value can be used, the value of the data is used, and if the film thickness is not in the data obtained in advance, data about the film thickness before and after A value calculated by interpolation processing is used. Spline interpolation, for example, is used for interpolation processing.
  • the pattern data of the reflected light with the wavelength being processed as a parameter is created using the interpolation process as necessary for the plurality of wafers in which the initial film thickness of the mask having the film structure varies. be. From these created pattern data, the data corresponding to the wafer with the smallest actual remaining film thickness after processing when the end point is determined using any one same pattern data as described above is extracted. be done. Using this data as a reference, pattern data corresponding to other wafers are compared, and the degree of similarity between wafers is calculated based on the pattern data.
  • FIG. 4(b) shows an example of the light intensity data (film thickness spectrum) calculated in this manner with the wavelength as a parameter for a certain remaining film thickness.
  • the film thickness spectrum of FIG. 4(b) is the spectrum of one specific film thickness in FIG. 4(a).
  • FIG. 5 shows the film thickness spectrum obtained based on the reflected light detected during the processing of each of a plurality of wafers processed by the plasma processing apparatus according to the present embodiment shown in FIG. 1, and the difference between the spectra. is a graph showing an example of the sum of Spectra of predetermined film thicknesses obtained from each of a plurality of wafers are superimposed on FIG. 5(a).
  • the film thickness spectrum corresponding to each wafer shows different values at a plurality of wavelengths.
  • FIG. 5B shows the value of the difference (error amount) between the spectral value of each film thickness and the average value thereof at each wavelength.
  • the degree of similarity between wafers is shown as a numerical value as the magnitude of the error amount.
  • FIG. 5(c) the sum of the absolute values of the errors of all wavelengths was calculated for each wafer, and the result of correlating these values with the initial film thickness of the mask of each wafer is shown in FIG. 5(c).
  • the vertical axis in the drawing represents the value indicating the amount of error summation, and the horizontal axis represents the mask film thickness (initial residual film thickness) before starting the etching process for each wafer.
  • the multiple wafers are rearranged in a predetermined order and assigned a code or number to rank them. For example, a plurality of wafers are ranked in ascending order of the sum of errors calculated from each wafer.
  • FIG. 6A shows the relationship between the number of each of the plurality of wafers rearranged and ranked in this way and the total error. As described above, the total error has a high correlation with the initial mask thickness. Therefore, in this example, the smaller the wafer number, the thicker the initial mask thickness, and the larger the wafer number, the smaller the initial mask thickness. are ordered sequentially.
  • the wafer with the largest number, the wafer with the smallest number, and the wafers with numbers between these wafers with the largest number of the sum of their errors and A wafer having an equal difference from the sum of the errors of the lowest numbered wafer is selected, and the pattern of the intensity of the reflected light with the wavelength as a parameter calculated using interpolation as necessary corresponding to these three selected wafers. are used as a database.
  • the spectral pattern data of reflected light to be used as a database in this way, it is possible to use the reflected light data corresponding to the minimum and maximum initial film thicknesses of the mask having variations as the database. It becomes possible.
  • comparison data was selected, and the film thickness and depth of the wafer were detected by comparing this comparison data with the measured data, and the end point was determined based on the results.
  • the results are shown in FIG. 6(b).
  • the optimum database determiner 124 shown in FIG. 1A selects the pattern data that minimizes the matching residual with each database.
  • a plurality of wafers having variations in the initial film thickness of the mask are used.
  • the residual film thickness of all the wafers after processing is around the target of 130 nm, and the magnitude of the error is 0.5 nm or less, which is within the predetermined allowable range. It can be seen that the target film layer to be processed can be processed with high accuracy. From this result, according to the above-described present embodiment, even when variations in the size, shape, material, etc. of the film structure on the wafer including the film layer to be processed are unknown, the residual film thickness, processing depth, etc. during processing can be obtained. (hereinafter referred to as the amount of processing) can be detected with high accuracy, and it is possible to determine the end point of the processing with high accuracy using this.
  • the amount of processing can be detected with high accuracy, and it is possible to determine the end point of the processing with high accuracy using this.
  • Variations in the shape, size, material, etc. of the film structure among the plurality of wafers are one of the stress factors in detecting the amount of processing during processing. It is not limited to the variation, but the film structure such as the base film thickness of the film to be etched, the width and depth of the trench, the structure of the film below the film to be processed, and the surrounding structure, etc. between a plurality of wafers. Fluctuations in processing conditions such as variations in characteristics, variations in the position and range where reflected light is detected, variations in the selectivity ratio between the etching target film and other films, variations in the light source spectrum, and variations in the time change of the plasma light. It can also be applied to the case where it occurs.
  • the light intensity index, the data shaping and signal processing of each wafer, the wafer similarity quantifying method, and the multiple database selection method of the present embodiment are not limited to those described above.
  • data of three wafers selected from a plurality of ordered wafers are used as databases, but the number of databases is not limited to three.
  • the present invention can be achieved. It is clear that the same effect as the embodiment can be obtained.
  • the end point of processing is determined based on the amount of processing detected during wafer processing using a plurality of data.
  • the configuration is the same as that of the first embodiment.
  • FIG. 7 is a graph showing the amount of light from the wafer surface obtained when the modified example of the plasma processing apparatus according to the embodiment shown in FIG. 1 processes the film structure shown in FIG.
  • FIG. 7A is a graph showing an example of temporal changes in the intensity of light of a specific wavelength reflected from the wafer surface during wafer processing.
  • the remaining film thickness during processing is taken as the horizontal axis as a parameter showing the time change, and the change in light intensity is shown.
  • FIG. 7(a) shows an example of the change in the light intensity due to the film thickness at the specific wavelength of the obtained interpolation processing data. It can be seen that the light intensity fluctuates depending on the film thickness.
  • FIG. 7(b) is a graph showing an example of the correlation between the error of each wafer and the mask film thickness with respect to the average of all wafers of the time variation of the intensity of the reflected light of the specific wavelength shown in FIG. 7(a). . Similar to the spectral comparison between wafers at specific film thicknesses in the above embodiment, the change in the amount of light at the same wavelength for each wafer is extracted, and the sum of the squared errors from the average value is calculated for each wafer. 7(b). From this figure, it can be seen that the sum of errors in each wafer shows a high correlation with the mask film thickness even when the time change of the light intensity is used, and the difference in structure can be clarified from the similarity of the spectra of each wafer.
  • FIG. 8 shows the result of plotting the relationship between the wafer number and the total error value by assigning numbers to each of the plurality of wafers in ascending order of the total error value.
  • the value of the sum of the errors has a high correlation with the mask film thickness. Small thickness. For this reason, FIG. 8 shows that the value of the sum of errors uniformly increases in the order of the wafer number.
  • the values of the sum of the errors are equal to each other, or three wafers whose intervals are similar to each other, and the data of these selected wafers are used as the data of the waveform pattern database 122 .
  • FIG. 6B of Embodiment 1 As a result of performing end point determination based on the result of detecting the throughput during processing using a database configured including a plurality of data selected and determined in this way, FIG. 6B of Embodiment 1 and Similarly, the film thickness after the treatment was near the target of 130 nm for all wafers, and the error was 0.5 nm or less. Therefore, even in the detection of the processing amount using a plurality of data of the present embodiment, it is possible to accurately detect the processing amount even when the structural variation is unknown, and it is clear that highly accurate end point determination can be realized. .
  • FIG. 9 shows an example of interpolation processing data of .
  • FIG. 9 shows the remaining film thickness during etching processing performed on the wafer having the film structure shown in FIG. 2 by another modification of the plasma processing apparatus according to the embodiment shown in FIG. 2 is a graph showing, as a map, the relationship between the value of the intensity of the reflected light from the wafer and the pattern, with .
  • the data shown in this figure is a graph similar to a part of the map shown in FIG. 4(a). From the data in this figure, similar to the spectrum comparison between wafers at a specific film thickness in the above-described embodiment according to FIG. A correlation between the mask film thickness and the amount of error similar to that of FIG. 5(c) was obtained.
  • signal processing such as low-pass filtering, differential value calculation, and light amount normalization is applied to the pre-processed reflected light data of each of the wafers, and the degree of similarity of each wafer is numerically calculated based on the signal-processed data.
  • signal processing such as low-pass filtering, differential value calculation, and light amount normalization is applied to the pre-processed reflected light data of each of the wafers, and the degree of similarity of each wafer is numerically calculated based on the signal-processed data.
  • An example will be described in which the end point determination is performed based on the result of detecting the amount of processing during processing using the data indicating the light intensity of the reflected light obtained by expressing as .
  • the configuration is the same as that of the embodiment or modification shown in FIGS.
  • the remaining film thickness is associated, the remaining film thickness range is determined, and the spectrum data is interpolated.
  • the amount of light of multiple wavelengths was normalized by the average value of the amount of light of multiple wavelengths of the reflected light.
  • the change in the intensity of light of a specific wavelength with respect to the change in the remaining film thickness is extracted from the data obtained by the normalization, and the time change in the amount of light of each extracted wafer is measured in the time direction.
  • a first derivative value was calculated by the LPF, SG method. An example of the results is shown in FIG.
  • FIG. 10 shows the film to be processed obtained during the etching process performed on the wafer having the film structure shown in FIG. 2 by another modification of the plasma processing apparatus according to the embodiment shown in FIG.
  • FIG. 10 is a graph showing an example of change in the value of the first derivative of the intensity of light of a specific wavelength with respect to change in remaining film thickness;
  • the change in the amount of light intensity with respect to light of a specific wavelength of the reflected light shown in FIG. 10 has a shape obtained by differentiating FIG. 7A in the film thickness direction.
  • the residual film thickness is associated with the reflected light spectrum data obtained at each sampling time during the processing of each of a plurality of wafers processed in the same manner as in the above example. Determination of the thickness range and interpolation processing in the time axis (film thickness axis) direction of the spectrum data were performed. Furthermore, with respect to the wavelength axis, the data in the wavelength direction was interpolated so that the wavelength increments were 5 nm from 240 nm to 840 nm, and the data was reduced.
  • FIG. 11 shows an example of spectral data corresponding to the thinnest residual film thickness of any one of the plurality of wafers obtained as a result.
  • FIG. 11 shows a film to be processed obtained during the etching process performed on the wafer having the film structure shown in FIG. 2 by still another modification of the plasma processing apparatus according to the embodiment shown in FIG. is a predetermined remaining film thickness.
  • FIG. This spectrum has a shape obtained by cutting out a part of the spectrum in FIG. 4(b).
  • data is selected by ranking the structural similarity between each of a plurality of wafers in the same manner as in the above-described embodiment, and the selected data is used to select data during processing.
  • the remaining film thickness of the wafer was detected to determine the end point.
  • the variation in the remaining film thickness of the wafer after processing was obtained as in the above embodiment. Therefore, even in this example, it is possible to accurately measure the amount of processing even when the structural variation is unknown, and it is clear that highly accurate end point determination can be realized.
  • the data representing the spectrum of the reflected light obtained at a plurality of sampling times during the processing of each of the plurality of wafers is associated with the remaining film thickness of the processing target and the range of the remaining film thickness.
  • spectral data interpolation processing was performed, and reflected light spectral data corresponding to the same residual film thickness was extracted from each wafer.
  • Principal component analysis was performed using the extracted spectrum of each wafer, and the relationship between the initial film thickness of the mask film layer of each wafer and the first and second principal components is shown in FIGS. show.
  • FIG. 12 shows wafer surfaces obtained during the etching process performed on a plurality of wafers having the film structure shown in FIG. 2 by still another modification of the plasma processing apparatus according to the embodiment shown in FIG. Graph showing an example of the relationship between the initial thickness of the mask layer of each wafer and the first and second principal component values obtained by principal component analysis of a plurality of light intensity data in the reflected light from the film structure of is.
  • both the first principal component value shown in FIG. 12(a) and the second principal component value shown in FIG. 12(b) are highly correlated with the initial film thickness of the mask layer.
  • the first principal component value changes like a quadratic function that increases and decreases, including the minimum value, with respect to the initial film thickness value of the mask. For this reason, the initial film thickness of the mask layer cannot be uniquely determined from the first principal component values of the data representing the spectra of reflected light from a plurality of wafers having a correlation as shown in FIG. 12(a).
  • the second principal component value shown in FIG. 12(b) changes with a substantially constant slope like a linear function with respect to the change in the initial film thickness of the mask. . From this, using the correspondence between the second principal component value and the initial film thickness of the mask layer shown in this figure, the initial film thickness of the mask layer for each of a plurality of wafers and the similarity of the wafer based on this. can be detected. Therefore, in this example, the second principal component value is calculated from the data of the reflected light obtained at each sampling time during processing of each of the plurality of wafers, and the similarity between the wafers obtained based on this is was used to rank the wafers. Further, based on the ordered result, data representing the light intensity pattern of a plurality of wavelengths of the reflected light was selected, and the selected wafer data was used as the data of the waveform pattern database 122 .
  • the processing amount at each sampling time during processing is calculated from the data indicating the light intensity of the reflected light from the wafer obtained during the processing of an arbitrary wafer. was detected and the end point of the process was determined.
  • the remaining film thickness after processing was near the target of 130 nm for all wafers, and the error was 0.5 nm or less. Therefore, in this example as well, even when the variation in the characteristics of the film structure is unknown, it is possible to accurately detect the amount of processing, and it is clear that highly accurate end point determination can be realized.
  • the data representing the spectrum of the reflected light obtained at a plurality of sampling times during the processing of each of the plurality of pre-processed wafers is compared with the remaining film thickness of the processing target. Correlation, determination of the remaining film thickness range, and interpolation processing of the spectrum data were performed, and spectrum data of the same remaining film thickness was extracted from each wafer.
  • the similarity of each wafer was quantified using Isometric Mapping, which is a nonlinear dimension reduction technique for manifold learning.
  • Isometric Mapping the spectrum of each wafer is used as each data point, and the data points are used to calculate the neighborhood relation of each data point as a value by the K-nearest neighbor algorithm.
  • each data point is projected onto a low-dimensional space by multidimensional scaling (MDS) for the created geodesic distance matrix.
  • MDS multidimensional scaling
  • spectral data of reflected light from each of a plurality of wafers preprocessed using Isometric Mapping is mapped based on the degree of similarity. Furthermore, the result of plotting the correlation between the first component that maximizes the dispersion of the plurality of data corresponding to each wafer on the mapped low-dimensional space and the initial film thickness of the mask layer of each wafer is shown in FIG. shown in
  • FIG. 13 shows wafer surfaces obtained during the etching process performed on a plurality of wafers having the film structure shown in FIG. 2 by still another modification of the plasma processing apparatus according to the embodiment shown in FIG.
  • the wafers are further ranked according to the similarity value between the wafers based on the obtained first component value, and based on the result, the reflected light spectrum database is stored as data in the waveform pattern database 122. selected as Using these multiple data, the throughput was detected at multiple sampling times during the processing of an arbitrary wafer, and the results were used to determine the end point.
  • the film thickness was close to the target of 130 nm for all wafers, and the error was 0.5 nm or less. Therefore, even in this example, even when the amount of variation in the characteristics of the film structure is unknown, it is possible to accurately detect the amount of processing, and it is clear that highly accurate end point determination can be realized.
  • a parameter indicating the degree of similarity between data of reflected light from each of a plurality of pre-processed wafers obtained during processing The plurality of wafers are numbered and ranked according to the magnitude of the value, and each parameter value that changes according to the number for the plurality of wafers and the average value and difference (error) of the parameter value, or Data of the reflected light of the wafer corresponding to the maximum value and the minimum value of the sum of the errors and the parameter values that substantially equally divide the difference between them are obtained at a plurality of sampling times during the processing of any wafer. It was used to detect the amount of processing in
  • a predetermined Data in the waveform pattern database 122 may be selected using information on the range of wafers that allows detection of the amount of processing with an error within the allowable range of . An example of selecting such data and detecting the amount of processing will be described below.
  • light intensity data of reflected light of multiple wavelengths obtained during the processing of multiple wafers that are candidates for the database are applied to any one wafer.
  • the other wafers remaining are subject to detection, and a predetermined amount of processing (for example, a specific remaining film thickness such as the end point) during the processing is assumed to be the estimated film thickness, and a method such as a simulation is performed. calculate. Further, the error between the actual value of the particular remaining film thickness and the estimated film thickness is calculated for each of the other wafers to be detected.
  • each of the plurality of wafers is detected as a reference.
  • a table or matrix is obtained whose components are the values of the error of the predetermined residual film thickness. An example of such a table is shown in FIG.
  • FIG. 14 shows wafers obtained during the etching process of a plurality of wafers having the film structure shown in FIG. 2 by still another modification of the plasma processing apparatus according to the embodiment shown in FIG.
  • FIG. 10 is a table showing an example of a data table whose components are error values of predetermined residual film thicknesses of other wafers detected using each of a plurality of light intensity data of reflected light from the film structure on the surface; FIG. In this example, the data of the waveform pattern database 122 are selected using the table shown in FIG.
  • the error of the estimated film thickness in the table shown in FIG. 14 is within a predetermined allowable range (for example, 1 nm or less), it is determined that the remaining film thickness can be detected. . That is, the other (n-1) wafers detected using the reflected light data corresponding to any one of the n wafers each assigned a number (database wafer number)
  • the above arbitrary one wafer out of the other (n-1) wafers is used to obtain a combination of wafers determined to be capable of detecting the remaining film thickness.
  • FIG. 15 is a table showing combinations of database wafers capable of detecting remaining film thicknesses of n wafers selected from the data table according to another modification of the embodiment of the present invention shown in FIG.
  • the table in FIG. 15 is arranged in descending order of the number of database wafers used among the plurality of combinations. For example, if the top combination in FIG. 15 with the smallest number of database wafers is selected, the reflected light data corresponding to the database wafers is selected as the data of the waveform pattern database 122 .
  • the amount of processing during processing of an arbitrary wafer was detected and the end point was determined. All the wafers were close to the target of 130 nm, and the error was 0.5 nm or less. Therefore, in this example as well, it is possible to accurately detect the amount of processing even when variations in the characteristics of the film structure are unknown, and it is clear that highly accurate end point determination can be achieved.
  • a database was selected in the same manner as in Embodiment 1, and the data of the selected wafer was determined as the database of the waveform pattern database 122 . End point determination is performed by a throughput monitor using a plurality of determined databases. A database was calculated and used for film thickness estimation. Specific procedures are described below.
  • a spectrum of one time measured from a wafer whose film thickness is to be estimated is acquired, and data D2 obtained by signal processing the spectrum by the digital signal processing unit 100 is supplied to the matching database calculator 120 .
  • the matching database calculator 120 compares the data D2 and the mixture database DBnm( ⁇ ), and determines the combination of the data D2 and the database numbers n and m with the smallest error, and the mixture ratio ⁇ .
  • the determined mixed database DBnm( ⁇ ) is supplied to the waveform pattern database 122, and the waveform comparator 102 uses the database of the waveform pattern database 122 including the mixed database DBnm( ⁇ ) to determine the current film thickness. Also, the mixture database DBnm( ⁇ ) used at the current time is supplied to the optimum database determiner 124 together with the combination of the database numbers n and m and the mixture ratio ⁇ .
  • the database that minimizes the error from the measured spectrum may be selected as in the first embodiment. Further, in the present embodiment, a mixed database having a spectrum similar to the measured spectrum at each time is generated, so the mixed database at each time may be determined as the optimum database.
  • the film thickness at each time is determined by the optimal film thickness/depth determiner 106 based on the determined optimal database.
  • the mixed database at each time is used as the optimum database to estimate the film thickness.
  • the film thickness estimation error is reduced as compared with the first embodiment.
  • film thickness estimation can be performed with higher accuracy than setting pre-processed wafer data in the database. It is possible. From the above, it is clear that even in the processing amount monitor using a plurality of databases of this embodiment, it is possible to accurately measure the processing amount even when the structural variation is unknown, and it is possible to realize highly accurate end point determination. .
  • the information on the initial film thickness of the mask layer is obtained. is used to determine the data stored in the waveform pattern database 122 and used for detecting the amount of processing.
  • the wafers are ranked according to the value of the initial film thickness of the mask layer of each wafer. A wafer number similar to is determined.
  • the data of the reflected light from the wafer with the numbers corresponding to the maximum and minimum values of the initial film thickness of the mask layer and the values dividing these values at substantially equal intervals are used as waveform patterns. It is selected as data for database 122 .
  • the target wafer is processed, the throughput during processing is detected, and the end point determination is performed based on the result.
  • the same processing as in FIG. The subsequent film thickness was near the target of 130 nm for all wafers, and the error was 0.5 nm or less. Therefore, even in the throughput monitor using a plurality of databases of the present embodiment, it is possible to accurately measure the throughput even when the structural variation is unknown, and it is clear that highly accurate end point determination can be realized.
  • FIG. 19 shows an example of the configuration of a monitoring system that manages information between processing apparatuses when information on the wafer, particularly information on the characteristics of the film structure, can be obtained before processing as in this embodiment.
  • FIG. 19 is a block diagram schematically showing the outline of the configuration of the system for monitoring the plasma processing apparatus according to the embodiment shown in FIG. 1. As shown in FIG.
  • a detector (not shown) in the processing apparatus A detects the characteristics such as the dimensions of the film structure including the initial film thickness of the mask before processing the wafer in the processing state 1.
  • Data indicating the result obtained is supplied to the processing apparatus A, and the wafer is processed in the processing apparatus A using the data.
  • Information on the characteristics of the film structure of the wafer in the processing state 1 and information on the processing state including the processing amount of the film layer to be processed during the processing are provided by a monitoring system communicably connected to each processing apparatus, For example, by being supplied to the monitoring device A or B, it can be used by other processing devices, such as processing devices B, C, and D, which are communicably connected to these monitoring devices.
  • each processing equipment can select a database similar to that in this example based on information on processing and measurement prior to the processing in question. It is possible to realize highly accurate machining by performing the above.
  • FIG. 16 shows detection of reflected light from wafers when the plasma processing apparatus according to still another modification of the embodiment shown in FIG. 1 performs etching processing on a plurality of wafers having the film structure shown in FIG.
  • FIG. 4 is a top view schematically showing the position of the wafer surface where the wafer surface is exposed. In particular, this figure shows positions on one virtual wafer at which two different plasma processing apparatuses detect the reflected light on the wafer.
  • the initial film thickness of the mask to be detected is as shown in FIG. , and this variation changes the correlation between the film thickness of the film to be etched and the spectrum of the reflected light from this in each apparatus.
  • the ratio of the pattern shown in FIG. and the spectrum of the reflected light may vary depending on the wafer.
  • the inventors used ten plasma processing apparatuses having the same configuration as the plasma processing apparatus according to the embodiment shown in FIG. Correlating the residual film thickness with respect to the reflected light spectrum data obtained during the processing of each of the plurality of wafers processed in advance by the processing apparatus, determining the range of the remaining film thickness, and interpolating the spectrum data, Spectral data of the reflected light corresponding to the same residual film thickness was extracted from a plurality of wafers. Using the extracted data, the amount of error in the spectrum of the wafer processed by each plasma processing apparatus is calculated by the same method as in the embodiment, and the relationship between the amount of error and the amount of error is plotted for each identification number of the plasma processing apparatus. is shown in FIG.
  • FIG. 17 shows wafers obtained during the etching process of each of a plurality of wafers having the film structure shown in FIG. 2 by a plurality of plasma processing apparatuses according to still another modification of the embodiment shown in FIG. 5 is a graph showing the total error of predetermined remaining film thicknesses of other wafers detected using a plurality of light intensity data of reflected light from the surface film structure for each of a plurality of plasma processing apparatuses; It can be seen that the value of the sum of errors is different for each plasma processing apparatus, and the reflected light spectrum corresponding to the same residual film thickness is different for each apparatus.
  • the data of reflected light from the wafer of the plasma processing apparatus corresponding to the maximum value, minimum value, and intermediate values of the amount of error are stored in the waveform pattern database 122 and used to detect the amount of processing. was selected as
  • the amount of processing at a plurality of sampling times during processing of an arbitrary wafer was detected, and the detection results were used to perform endpoint determination.
  • the film thickness after the treatment was near the target of 130 nm for all wafers, and the error was 0.5 nm or less. Therefore, even if the relationship between the film thickness and the spectrum differs between apparatuses, it is clear that the present example can accurately measure the throughput and realize highly accurate end point determination.
  • the film structure including the film layer to be etched on the wafer is similar to that shown in FIG. 2(a), and the initial film thickness of the mask layer is substantially are identical.
  • the selection ratio between the mask layer and the film layer to be processed varies during the processing of each wafer. Therefore, when the remaining film thickness of the film layer to be processed is the same for each wafer, the amount of scraping of the mask layer may differ among the wafers, and the remaining mask film thickness of each wafer may differ. In this case, even if the remaining film thickness of the film layer to be processed is the same for a plurality of wafers, the spectral data of the reflected light from the surfaces of these wafers will be different. A problem similar to that in the case where the film thickness varies occurs.
  • the wafers were rearranged and ranked based on the amount of error, and based on the rearranged results, reflected light spectrum data corresponding to a plurality of wafers were selected as data for the waveform pattern database 122 in the same manner as in the embodiment.
  • the film thickness after processing for all wafers was near the target of 130 nm, and the error was 0.5 nm or less, as in FIG. 6B of the embodiment. rice field. Therefore, even if the relationship between the film thickness and the spectrum differs between apparatuses, it is clear that the present example can accurately measure the throughput and realize highly accurate end point determination.
  • the time change of the remaining film thickness at each sampling time during etching detected using the database in the film thickness/depth calculation unit 30 shown in FIG. 1 is data 1 and 2 in FIG. 18, for example.
  • FIG. 18 is a graph of the on-wafer detected using reflected light from the wafer during the process of etching the wafer having the film structure shown in FIG. 2 by the plasma processing apparatus according to still another modification of the embodiment shown in FIG. 3 is a graph showing an example of change over time in the remaining film thickness of the film layer to be processed.
  • the remaining film thickness is estimated based on the first-order linear correlation between the detected remaining film thickness indicated by each data and the time during processing.
  • a correlation coefficient is calculated from a plurality of remaining film thickness values detected at a plurality of past times during processing up to that time and the past time, and the correlation coefficient Select data with a large value as data for the optimal database. For example, when a mutual relationship that can be expressed as a substantially linear line as shown in two data 1 and 2 shown in FIG. 18 is obtained, the absolute value of the correlation coefficient of data 1 is 0.99 However, the absolute value of the correlation coefficient of data 2 is 0.95. Therefore, in this example, data 1 with a large correlation coefficient is selected as data of the optimum database.
  • the amount of processing is detected at a plurality of sampling times during arbitrary processing, and the result is used to determine the end point. Similar to FIG. 6B, the post-process film thicknesses of all wafers were close to the target of 130 nm, and the error was 0.5 nm or less. Therefore, even in this example, it is possible to accurately measure the amount of processing even when the structural variation is unknown, and it is clear that highly accurate end point determination can be realized.
  • Control unit 50 Optical system 60 --- Database selection unit 100 --- Digital signal processing unit 102 --- Waveform comparator 104 --- Film thickness/depth storage unit 106 --- Optimum film thickness/depth determining unit 120 --- Suitable database calculator 122 --- Waveform Pattern database 124 Optimal database determiner D1 Time series data supplied from detector D2 Time series data supplied from digital signal processor D3 Film thickness/depth data supplied from waveform comparator D4 Film Film thickness/depth data supplied from the thickness/depth storage unit

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Health & Medical Sciences (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Drying Of Semiconductors (AREA)
  • Length Measuring Devices By Optical Means (AREA)
  • Treatment Of Fiber Materials (AREA)

Abstract

真空容器内部の処理室内に処理対象のウエハを配置された当該処理室内に形成したプラズマを用いて処理するプラズマ処理装置および方法であって、前記処理対象のウエハの処理中の所定の複数の時刻に前記ウエハ表面から複数の波長の光を受光し、当該受光した複数の波長の光の強度を示す情報と、予め取得された前記複数の波長の光の強度を示すデータとを比較した結果を用いて、前記処理対象のウエハの処理中の処理の量を検出する場合に、前記予め複数のウエハ各々の処理中に取得された当該各々ウエハの表面からの光の前記複数の波長の光の強度を示すデータに基づいて各ウエハ同士の間の類似度を数値し、数値化された前記類似度に応じて選択された少なくとも1つのデータを前記処理対象のウエハの処理中に得られた前記複数の波長の光の強度を示すデータとを比較して前記処理の量を検出する。

Description

プラズマ処理装置およびプラズマ処理方法
 本発明は、プラズマ処理装置またはプラズマ処理方法に関する。
 半導体デバイスの製造では、半導体ウエハの表面上に、様々な機能を奏する回路の一纏まりとしてのコンポーネントや、複数のコンポーネントを相互接続する配線を形成する工程が行われる。これらコンポーネントや配線の形成は、半導体ウエハ等の基板状の試料表面に予め形成された導体あるいは半導体または絶縁体を含む種々の材料の膜層の形成と、これらの膜層の不要な部分の除去等の処理とを繰り返すことで行われる。このような不要な部分の除去の処理では、プラズマを用いたドライエッチングの処理(プロセス)が広く使用されている。
 このようなプラズマを用いたエッチング(プラズマエッチングともいう)において、処理装置の真空容器内部に備えられた処理室内に処理用のガスを導入すると共に、処理室内に高周波電源から供給された高周波電力による高周波電界を供給して、導入したガスの原子または分子を励起して電離または解離させてプラズマ化し、試料表面をプラズマに暴露してこれに接触させてプラズマ中の粒子と処理対象の膜層との反応を生起して行われる。この際、プラズマ中のイオン等荷電粒子によるスパッタリング等の物理的反応や、ラジカル(反応活性を有した粒子、活性種)による化学的反応などによって、処理対象の膜層の異方性または等方性のエッチングが行われる。ウエハ表面上には、このような各々に異なる特性を有した処理が適切に選択されて適用され、上記種々の機能を発揮する回路の構造を有したコンポーネントや配線が形成される。
 プラズマエッチングによる加工形状が設計と異なる場合、形成される各種コンポーネントは、その機能を実現できないおそれがある。そのため、エッチング処理を監視・安定化するプロセスモニタ技術が多数提案されてきた。例えば処理中のウエハからの反射光を計測することにより、ウエハ上に成膜された膜の膜厚や、ウエハ上に形成された溝や穴の深さを測定するプロセスモニタは、膜厚・深さモニタと呼ばれ、エッチング処理の終点判定などに利用されてきた。
 特許文献1には、この膜厚・深さモニタを用いた加工精度高精度化方法が記載されている。この方法では、プラズマ光を光源とした膜厚・深さモニタを用いて処理対象の膜が完全に除去される直前を検知し、当該エッチング処理を終了する。その後、処理対象部分と処理非対象部分を選択的にエッチングする条件に切り替えてエッチング処理を行うことで、全体の処理時間を短く抑えつつ、ウエハ面内での処理ばらつき無く、処理対象膜の完全な除去を実現する。
 また特許文献2には、膜厚・深さモニタの膜厚や深さの測定精度の高精度化技術が記載されている。この方法では、ウエハに照射する光源としてプラズマ光の代わりに外部光源を使用する。これにより、光源の光量変動が小さくなり高精度な膜厚・深さの測定を実現する。これら膜厚・深さモニタは、予めエッチング中に得られるウエハからの反射光のパターンをデータベース(DBという)として取得しておき、エッチング中に測定されるウエハの反射光をDBと比較することで、当該ウエハの加工状態を推定する。そのため、DB取得時におけるウエハのデバイス構造と、評価対象のウエハのデバイス構造が異なる場合、DBの反射光パターンと評価対象の反射光パターンに不一致が起き、正確な膜厚・深さ測定が実現できないという問題がある。
 かかる問題に対し、上記のようなウエハ間でのデバイス構造ばらつきに対応する膜厚・深さの計測方法が、特許文献3に開示されている。この従来技術では、エッチング対象膜の下地膜の膜厚がウエハ毎で異なる場合、下地膜が厚い場合と薄い場合のウエハ反射光パターンをあらかじめDBとして取得し、これら2つのDBを用いることで様々な下地膜の膜厚のウエハに対して正確な膜厚・深さの測定を実現する。
特開平11-260799号公報 特表2004-507070号公報 特開2014-195005号公報
 しかしながら、特許文献3の従来技術では、次に示す課題があった。
 すなわち、特許文献3では、ウエハ上面の膜の構造が既知の場合において、エッチング対象膜の下地膜の厚さが各々異なる複数のウエハの反射光による干渉光の強度の波長をパラメータとするパターンのデータをデータベース(DB)として用いるものであるが、ウエハの膜構造が未知の場合には正確な膜厚・深さの測定を実現できない。
 例えば、複数のウエハの間で膜構造のエッチング対象膜以外の膜の厚さや形状にばらつきがある場合には、このようなウエハと同等の膜構造を有する複数の試験用のウエハを予め処理して反射光の干渉光のデータを基準データとして得ておき、これらデータの中から半導体デバイスを製造に用いられるウエハの処理中の処理の深さや残り膜厚さについて、終点の判定に利用するDBとして複数のデータが適宜選択される。
 一方、ウエハの膜の構造が未知である場合には、ウエハ間の構造の違いに基づいて適切なデータを選択することが困難となる。例えば、任意に選択した複数のデータを用いて処理中の残り膜厚さや処理の深さの検出をする場合には、対応する膜構造と異なる構造を有したウエハにおいて、精度が著しく低下してしまう。
 このため、発生するウエハの膜構造の形状や寸法、材質等のばらつき全てに対応した反射光の干渉光の強度のデータを予め得ていなければ、このようなデータを有するDBを用いて残り膜厚さや処理深さを高い精度で検出することが出来なという問題があった。このような膜構造のばらつきとしては、エッチング対象膜の下地膜の厚さだけでなく、膜構造を構成するマスク層の厚さや幅等の寸法、エッチング対象膜の下層の膜の形状や寸法、溝やトレンチの幅やピッチ、エッチング対象の膜の周囲の膜層の形状、寸法等の構造も含まれ、エッチング対象膜の残り膜厚さや深さとウエハからの反射光の干渉光の強度との関係に変動を及ぼす全ての要因が含まれる。
 また、ウエハ上での反射光の検出位置や範囲によって反射光を生起する膜の構造が異なる場合があり、この際にも上記同様に、DBに含まれる反射光の干渉光のデータに対応する膜構造と異なるものを有するウエハの処理中には、当該ウエハからの反射光を用いて高い精度の残り膜厚さや処理の深さの検出を実現することができないという問題があった。また、複数のウエハの各々でエッチング対象膜と、周辺材料のエッチング処理の選択比がばらつく場合においても、反射光による干渉光の強度にもばらつきが発生する。このような選択比のばらつきを有する複数の膜構造に対応した反射光のデータを用いない場合には、上記と同様に処理中の残り膜厚さや処理の深さの検出の精度が損なわれてしまう。
 さらに、ウエハからの反射光を得るため処理容器の外部に配置された光源からウエハに光を照射する場合には、光源のスペクトルのばらつきや処理中に処理容器内に形成されるプラズマ光の強度の時間の経過に伴う変化がある場合においても、上記と同様の問題が生じてしまう。この問題の原因はウエハ表面の膜ではなく光を変動させるものであり、予めこうした変動のパターンを取得することは困難である。このため、予めウエハを実際に処理して反射光のデータを取得したとしても、光の変動と複数のウエハの各々との間に相関は小さいため、適切に反射光に係るデータを選択することができずこれら変動に対応して残り膜厚さや処理深さを検出する精度が損なわれてしまっていた。
 以上述べてきたように、従来技術では、ウエハ上の膜構造や反射光の検出する位置や範囲、エッチング対象と他材料の選択比のばらつきや光源のスペクトル、プラズマ光時間変化の変動の大きさの情報を十分に得られない場合には、これらばらつき・変動に対応したウエハ表面から反射光のデータを適切に選択することができず、ウエハの処理中の当該反射光を用いて残り膜厚さや処理深さ等の処理の量の検出の精度が損なわれてしまうという問題が生じていた。
 本発明の目的は、ウエハ処理中の処理対象の膜層の残り膜厚さ等の処理の量を高い精度で検出できるプラズマ処理装置またはプラズマ処理方法を提供することにある。
 上記課題を解決するために、代表的な本発明のプラズマ処理装置の一つは、
 真空容器内部の処理室内に配置された処理対象のウエハを当該処理室内に形成したプラズマを用いて処理するプラズマ処理装置であって、
 前記処理対象のウエハの処理中の所定の複数の時刻に前記ウエハ表面から複数の波長の光を受光する受光器と、
 前記受光した複数の波長の光の強度を示すデータと、予め取得された前記複数の波長の光の強度を示す比較データとを比較した結果を用いて、前記処理対象のウエハの処理中の処理の量を検出する検出器とを備え、
 前記検出器は、前記予め複数のウエハ各々の処理中に取得された当該各々ウエハの表面からの光の前記複数の波長の光の強度を示すデータに基づいて各ウエハ同士の間の類似度を数値化し、数値化された前記類似度に基づいて少なくとも1つのデータを選択して比較データとし、前記処理対象のウエハの処理中に得られた前記複数の波長の光の強度を示すデータと比較して前記処理の量を検出することにより達成される。
 代表的な本発明のプラズマ処理方法の一つは、
 真空容器内部の処理室内に処理対象のウエハを配置された当該処理室内に形成したプラズマを用いて処理するプラズマ処理方法であって、
 前記処理対象のウエハの処理中の所定の複数の時刻に前記ウエハ表面から複数の波長の光を受光する測定工程と、
 当該受光した複数の波長の光の強度を示すデータと、予め取得された前記複数の波長の光の強度を示す比較データとを比較した結果を用いて、前記処理対象のウエハの処理中の処理の量を検出する検出工程とを有し、
 前記検出工程において、前記予め複数のウエハ各々の処理中に取得された当該各々ウエハの表面からの光の前記複数の波長の光の強度を示すデータに基づいて各ウエハ同士の間の類似度を数値化し、数値化された前記類似度に基づいて少なくとも1つのデータを選択して比較データとし、前記処理対象のウエハの処理中に得られた前記複数の波長の光の強度を示すデータと比較して前記処理の量を検出することにより達成される。
 本発明によれば、ウエハ処理中の処理対象の膜層の残り膜厚さ等の処理の量を高い精度で検出できるプラズマ処理装置またはプラズマ処理方法を提供することができる。
 上記した以外の課題、構成及び効果は、以下の実施形態の説明により明らかにされる。
図1は、本発明の実施形態に係るプラズマ処理装置の構成の概略を模式的に示す図であり、(a)は、その全体図であり、(b)は膜厚・深さ算出部の構成を示している。 図2は、図1に示す実施形態の処理対象である半導体ウエハ上面に予め配置され処理対象の膜層を含む複数層の膜が積層された膜構造の構成の概略を模式的に示す縦断面図であり、(a)は、処理前後の状態を示し、(b)は膜厚がばらついた状態を示している。 図3は、図2に示す膜構造を有する処理対象のウエハ複数枚をエッチング処理した場合に得られる反射光およびこれから検出される残り膜厚さの値の変動の例を模式的に示すグラフであり、り、(a)は、波長と反射強度の関係を示し、(b)は、複数枚のウエハを処理中に膜厚・深さを検出して終点判定を実施した結果を示している。 図4は、図1に示す実施形態が図2に示す膜構造を備えたウエハにエッチング処理を実施した処理中の残り膜厚さと、複数の波長をパラメータとするウエハからの反射光の強度の値のパターンとを示したグラフであり、(a)は、マップを示し、(b)は膜厚スペクトルを示している。 図5は、図1に示す本実施形態に係るプラズマ処理装置が処理した複数のウエハの各々の処理中に検出された反射光のスペクトルと、各スペクトル間の差の総和の例を示すグラフであり、(a)は、光強度と波長との関係を示し、(b)は、誤差と波長との関係を示し、(c)は、誤差総和とマスク膜厚との関係を示している。 図6は、図1に示す本実施形態に係るプラズマ処理装置が処理した複数のウエハの各々の処理中に検出された反射光のスペクトルの誤差の総和を示すグラフであり、(a)は、誤差総和とウエハ番号との関係を示し、(b)は、処理後膜厚と処理ウエハ枚数との関係を示している。 図7は、図1に示す実施形態に係るプラズマ処理装置の変形例が図2に示す膜構造を処理した際に得られるウエハ表面からの光に関する量を示すグラフであり、(a)は、光強度と厚さとの関係を示し、(b)は、誤差総和とマスク膜厚との関係を示している。 図8は、図7に示す変形例が図2に示す膜構造を有する複数のウエハを処理した処理中に得られた反射光のデータの誤差の総和の値を各ウエハの番号毎に示したグラフである。 図9は、図1に示す実施形態に係るプラズマ処理装置の別の変形例が図2に示す膜構造を備えたウエハに対して行ったエッチング処理の処理中の残り膜厚さと、複数の波長をパラメータとするウエハからの反射光の強度の値とパターンとの関係をマップとして示したグラフである。 図10は、図1に示す実施形態に係るプラズマ処理装置の別の変形例が図2に示す膜構造を備えたウエハに対して行ったエッチング処理の処理中に得られた処理対象の膜の残り膜厚さの変化に対する特定の波長の光の強度における1次微分の値の変化の一例を示したグラフである。 図11は、図1に示す実施形態に係るプラズマ処理装置のさらに別の変形例が図2に示す膜構造を備えたウエハに対して行ったエッチング処理の処理中に得られた処理対象の膜が所定の残り膜厚さである場合の複数の波長の反射光の強度の一例を示したグラフである。 図12は、図1に示す実施形態に係るプラズマ処理装置のさらに別の変形例が図2に示す膜構造を備えた複数のウエハに対して行ったエッチング処理の処理中に得られたウエハ表面の膜構造からの反射光の光の強度のデータ複数を主成分分析して得られた第1及び第2の主成分値の各ウエハのマスク層の初期の厚さとの関係の一例を示すグラフであり、(a)は、第1主成分とマスク膜厚との関係を示し、(b)は、第2主成分とマスク膜厚との関係を示している。 図13は、図1に示す実施形態に係るプラズマ処理装置のさらに別の変形例が図2に示す膜構造を備えた複数のウエハに対して行ったエッチング処理の処理中に得られたウエハ表面の膜構造からの反射光の光の強度のデータ複数について、Isometric Mappingを用いて得られた各データ同士の距離の分散の最大値と各ウエハのマスク層の初期の厚さとの関係の一例を示すグラフである。 図14は、図1に示す実施形態に係るプラズマ処理装置のさらに別の変形例が図2に示す膜構造を備えた複数のウエハに対してエッチング処理を行って、処理中に得られたウエハ表面の膜構造からの反射光の光の強度におけるデータ複数の各々を用いて検出した他のウエハの所定の残り膜厚さの誤差の値を成分とするデータテーブルの一例を示す表である。 図15は、図14に示す本発明の実施形態の別の変形例に係るデータテーブルから選択されるn個のウエハの残り膜厚さを検出可能なデータベースウエハの組み合わせを示す表である。 図16は、図1に示す実施形態のさらに別の変形例に係るプラズマ処理装置が図2に示す膜構造を備えた複数のウエハに対してエッチング処理を行う際のウエハからの反射光を検出するウエハ表面の位置を模式的に示す上面図である。 図17は、図1に示す実施形態のさらに別の変形例に係るプラズマ処理装置複数が図2に示す膜構造を備えた複数のウエハ各々にエッチング処理を行って、処理中に得られたウエハ表面の膜構造からの反射光の光の強度のデータ複数の各々を用いて検出した他のウエハの所定の残り膜厚さの誤差の総和を複数のプラズマ処理装置毎に示したグラフである 図18は、図1に示す実施形態のさらに別の変形例に係るプラズマ処理装置が図2に示す膜構造を備えたウエハをエッチングする処理中にウエハからの反射光を用いて検出したウエハ上の処理対象の膜層における残り膜厚の時間の経過に伴う変化の例を示すグラフである。 図19は、図1に示す実施形態に係るプラズマ処理装置を監視するシステムの構成の概略を模式的に示すブロック図である。
(実施形態の概要)
 以下に述べる本発明のプラズマ処理方法またはプラズマ処理装置の実施の形態では、複数のウエハにエッチング等の処理を施した際のウエハ表面から反射光の強度またはその変化を示すデータが取得され、当該各ウエハの反射光の強度のデータに基づいて各ウエハ同士の間の類似度が数値として算出される。さらに、算出されたこれらの類似度の数値を用いて、ウエハからの光の波長をパラメータとした光の強度と残り膜厚さ又は処理の深さとの関係付けられた複数のデータが選択または算出され、これらのデータを用いて処理中の残り膜厚さ或いは深さの検出が行われる。
 その表面からの反射光のデータが取得される複数のウエハは、同一の処理の工程における複数(2枚以上)のウエハであればよく、例えば、製品となる半導体デバイスを量産する工程が施されるウエハ(製品用ウエハ)が好適に用いられる。また、これらの製品用ウエハの使用に代えて、上記反射光のデータを取得する目的のために製品用ウエハの処理の際の条件と同等の条件で処理されるテスト用ウエハを使用してもよい。あるいは、処理の工程が実施中の反射光が再現された、特に処理中に生じるウエハ反射光のばらつきが再現されたシミュレーションに基づいたデータを使用してもよい。
 反射光のデータとして、処理中のウエハ表面からの反射光の強度の時間の経過に伴う値を示す一纏まりの複数のデータ(データセット)が用いられる。例えば、エッチング中のウエハからの反射光が各時刻毎に予め定められた複数の波長の各々に分光されて、各波長毎に検出された光の強度を示す信号が各時刻毎のものとして関係付けされた、所謂、時系列データを、反射光のデータとして用いてもよい。また、各時間毎に得られる予め定められた波長または所定の範囲の波長毎の光の強度の値の時間変化を示すデータを、反射光のデータとして用いてもよい。
 各ウエハ間の類似度の算出に用いられるデータは、少なくともエッチング処理の対象となる膜の残りの膜厚さあるいは深さを反映する光の強度を指標として示すものであればよい。例えば、当該データとして、検出した対象の膜層を含むウエハの表面からの反射光の光量の値や、当該光量に対してデジタル信号処理が実施されて重畳されているノイズやオフセットが除去又は低減されて補正されたものを用いてもよい。複数のウエハ毎に光量の倍率の変動やエッチング速度の変動等が発生している場合には、当該データは、特定の光の量を基準として得られた光量を規格化した結果であってもよい。
 光の強度を示す指標は、複数のウエハ各々の間での違いを比較できる形式に整形されたデータであってもよい。例えば、複数のウエハ同士の間で、各々のエッチング処理中の残り膜厚さの値の範囲やエッチングの速度が異なる場合には、各ウエハの光量を検出する各時刻を残り膜厚さに換算し当該ウエハ同士間で同じ残り膜厚さとなる範囲において、光の強度を示す指標として光量のデータを用いればよい。また、各ウエハの処理中に検出される膜厚さのデータの数(検出が行われる処理中の時刻の点数)が異なる場合には、スプライン補完などの補間の処理によって得られたデータを用いて点数の補間・リサンプリング処理を行い、データ点数を等しくしたものを光の強度を示す指標として用いてもよい。
 得られる反射光の波長の範囲あるいは波長の個数がウエハで差異のある場合には、上記膜厚さが異なる場合と同様な処理を行うことができる。なお、光の強度を示す指標としては、膜厚と波長とをパラメータとする所謂2次元のデータのみでなく、特定の残り膜厚さにおけるもの或いは特定の波長におけるデータが抽出された1次元のデータであっても良い。
 各ウエハの処理中に得られる表面から反射された光の強度を用いたウエハ間の類似度の算出は、ウエハ同士の光強度の差の値を算出して行われる。例えば、類似度を算出する対象の全てウエハについて得られる2次元または1次元のデータが示す光の強度の平均値を算出し、各ウエハの光強度データについて当該平均の光強度との誤差絶対値あるいは誤差二乗等を計算して、これらの総和の値を類似度の指標として用いてもよい。あるいは、平均の光強度の値に対する各ウエハから得られる反射光の光強度のコサイン類似度を用いても良い。
 また、全ウエハの光強度データの主成分分析によって算出される主成分値を類似度の指標としてもよい。更には、全ウエハの光強度データに対して次元縮約手法を適用して得られた値を用いてもよい。具体的にはIsomap,LLE、ラプラシアン固有マップ、ヘシアン固有マップ、スペクトルクラスタリング、拡散マップ、カーネルPCAなどを用いることができる。
 算出された類似度を示す数値に基づいて選択または算出される複数のデータは、類似度の数値が異なる複数(2つ以上)のウエハから得られたものであって、且つ数値化結果の特定軸の最小および最大またはそれらの近傍のウエハを含むように選択する。例えば、数値化軸の最小および最大を含み、それらに挟まれる数値を持つウエハから数値化軸上で略等間隔に抽出すればよい。
 また、各ウエハをDBに設定して他のウエハに対して膜厚推定を実施することにより各ウエハのDBで膜厚・深さ測定可能なウエハ範囲を算出し、全ウエハの膜厚・深さ測定を可能とするウエハ組合せを決定し、決定したウエハ組合せの内ウエハ数が最小となる組み合わせを用いて複数DBを選択してもよい。
 ここで、膜厚・深さの測定可否は、膜厚・深さの推定結果と実測結果との誤差が、任意の目標誤差内に収まるかを基準に決定すればよい。また、決定したウエハ組合せからの複数DBの選択は、ウエハ枚数が最小であり且つ膜厚・深さの測定可能なウエハの延べ枚数が最大となるように選択すればよい。更に、明らかな異常なウエハデータが含まれている場合、当該ウエハは膜厚・深さの測定可否の判断から除外すればよい。
 これら方法によって設定される複数のDBを用いた膜厚・深さの特定方法は、評価対象ウエハから得られる反射光データを複数のDBと比較することで行えばよい。例えば、評価対象ウエハの反射光を各DBと比較して、各DBにおける膜厚・深さの推定値を算出し、各DBとの反射光のマッチング誤差が最も小さいDBの膜厚・深さの推定値を現時刻の膜厚・深さの値とすればよい。マッチング誤差は当該時刻の誤差だけに限らず、過去時刻を含めた総和としてもよい。
 本発明の実施形態によれば、複数のウエハをエッチングした際の反射光データを取得し、各ウエハの反射光データの光強度に基づき各ウエハ間の類似度を数値化し、類似度の数値化結果を用いて複数のDBを選択し、選択したDBを用いて膜厚・深さの計測を実施することができる。
 以下、本発明の実施形態に係る残り膜厚さまたは処理深さを検出しつつ処理対象のウエハを処理するプラズマ処理装置及びプラズマ処理方法を、図面を参照しながら説明する。本実施形態では、真空容器内部の処理室内に配置されたウエハをエッチング処理するものであって処理中に残り膜厚・処理深さを検出する手段を備えた半導体製造装置が示され、この半導体製造装置の実施するエッチング処理中に残り膜厚さまたは処理深さが検出される工程が説明される。
[実施形態1]
 以下、図1乃至図6を用いて、本発明の実施形態を具体的に説明する。図1は、本発明の実施形態に係るプラズマ処理装置の構成の概略を模式的に示す図である。特に、図1(a)は、本実施形態に係るプラズマ処理装置の縦断面図の概略が示されている。
 図に示すプラズマ処理装置において、真空処理室10の内部にガス導入手段(不図示)から導入されたエッチングガスが、高周波電源(不図示)等を用いて発生させた電力やマイクロ波によって励起・分解しプラズマ12となり、このプラズマ12により試料台14に設置された半導体ウエハ等の処理対象16がエッチング処理(プラズマ処理)される。
 真空処理室10内へのガスの導入、プラズマ12の生成及び制御、図示しない高周波電源等によって行われる処理対象への電圧印加などは制御部40によって行われ、所望のエッチング処理が実現されるように各機器間での同期・タイミング調整が実施される。プラズマ12をパルス化する場合、パルス化の制御も制御部40によって行われる。この時、プラズマ12はエッチングガスをプラズマ化する高周波電源等による電圧印加、マイクロ波照射などの変調によって、これらのオン/オフが切り替わりプラズマはパルス化される。また、エッチングガスの導入を時間変調することによっても、プラズマのパルス化は実施される。
 プラズマ処理装置は、処理対象16の膜厚・深さを測定する機構を備えている。光源18から射出された光は、光学系50及び導入レンズ20を介して真空処理室10内に導入され、照射光22として処理対象16に照射される。光源部18は紫外から赤外まで波長が連続した連続スペクトル光を用いるが、特定の波長を用いて膜厚・深さ測定を実施する場合には、特定波長の光源を用いれば良い。処理対象16からの反射光24は、検出レンズ26及び光学系50を介して検出部28に導入される。
 検出部28は、分光器で構成され、導入された光を分光し、波長毎の光量を検出する。特定波長を用いて膜厚・深さ測定を行う場合、検出器は分光器に限らずフォトディテクタ等を用いてもよい。このとき、検出部28に導入される光が所望の特定波長のみであれば直接フォトディテクタを用いればよく、連続スペクトル光が導入される場合には、フォトディテクタ前段にモノクロメータなどで特定波長のみを選択する機構を設ければよい。
 ここで、図1(a)では、真空処理室10に光を導入する導入レンズ20と反射光を検出する検出レンズ26はずらした位置に設置している。この構成の場合、反射光24を最も効率よく検出するためには、導入レンズ20と検出レンズ26を、処理対象16を反射面とした同一光線上に向くように傾斜させて設置することが望ましい。
 導入レンズ20と検出レンズ26の構成は、図1(a)に限ったものではなく、完全同軸構成として、導入レンズ20と検出レンズ26を1つで共用してもよい。この場合、レンズの光線方向は処理対象16に垂直とし、垂直照射した結果得られる垂直反射光を検出できる構成にすることが望ましい。また、図1(a)では1対の外部光の導入系統と反射光24の検出系統を記載しているが、処理対象16の複数の位置で膜厚・深さを測定する場合には測定系を複数設ければよい。
 図1(a)では光源として外部の光源部18からの光入射した場合について説明したが、光源としてプラズマ12の光を用いる場合には光源部18は使用しなくてもよい。プラズマ12を光源として用いる場合もプラズマ12から放出された光は処理対象16により反射し、反射光24が光源部18を用いた場合と同様に検出される。検出部28のデータは膜厚・深さ算出部30に導入され膜厚・深さが決定される。
 膜厚・深さ算出部30には、データベース選択部60から膜厚・深さの決定で用いられるデータベースが提供される。データベース選択部60は、複数のデータベース候補となるウエハのデータがある場合、それらウエハデータの光強度を比較することで各候補の類似度を数値化する。例えば、光強度の平均値からの誤差絶対値や誤差二乗の総和、コサイン類似度、主成分分析、Isomap,LLE、ラプラシアン固有マップ、ヘシアン固有マップ、スペクトルクラスタリング、拡散マップ、カーネルPCAなどを用いて類似度の数値化は行われる。数値化した各ウエハの類似度を用いてデータベースの選択は行われる。
 膜厚・深さ算出部30の構成を、図1(b)を用いて説明する。本図は、図1(a)に示す膜厚・深さ算出部30の構成を、各機能を奏する部分毎にブロックとして分けて、これら同士の間のデータや情報のやり取りや流れを線または矢印で示したブロック図である。
 図に示すように、検出部28から膜厚・深さ算出部30に導入された各波長の光量の時系列データD1は、デジタル信号処理部100により各種ノイズや変動が除去・補正され、時系列データD2として波形比較器102に供給される。デジタル信号処理部100における信号処理は、各波長の時間軸におけるノイズの除去にはローパスフィルタが使用される。ローパスフィルタは、例えば2次バタワース型のローパスフィルタを用いることができ、時系列データD2は次式により求められる。
 D2(i) = b1・D1(i) + b2・D1(i-1) + b3・D1(i-2) - [ a2・D2(i-1) + a3・D2(i-2)]
 ここで、Dk(i)は各データDkの任意のサンプリング時刻iのデータを示し、係数a,bはサンプリング周波数およびカットオフ周波数により数値が異なる。またデジタルフィルタの係数値は、例えば、a2=-1.143,a3=0.4218,b1=0.067455,b2=-0.013491,b3=0.067455(サンプリング周波数10Hz、カットオフ周波数1Hz)である。
 各サンプリング時刻に得られた光の強度を示すデータDkの特定の波長域でのノイズの除去を行う場合は、データDkをローパスフィルタに通してフィルタリングを実施しても良いし、S-G法(Savitzky-Golay-Method)を用いても良い。また、データDkについて各波長の光量オフセットを除去し、時間の経過に対する光量の変化(時間変化)を検出する場合においては、複数の時刻iのデータDk(i)同士の間の光量(光の強度)の差分や各時刻i毎の光強度の変化率(微分値)を算出する信号処理を用いることができる。例えば、各サンプリング時刻iにおいて得られたデータDk(i)と前後の所定の点数のサンプリング時刻でのデータとを用いてS-G法を適用して、データDk(i)を多項式化且つ平滑化して微分値を算出することで、各サンプリング時刻iごとの微分値の時系列データD2(i)が得られる。
 このようなデータの処理は多項式適合平滑化微分法と呼べるもので、次式により与えられる。
Figure JPOXMLDOC01-appb-M000001
 ここで重み係数wjに関して、1次微分計算では、例えばw-2=-2,w-1=-1,w0=0,w1=1,w2=2が用いられる。また、2次微分計算では、例えばw-2=2,w-1=-1,w0=-2,w1=-1,w2=2が用いられる。
 また、何れかのサンプリング時刻のデータDk(i)において、そのデータのうち検出する対象の全ての波長の光量の値が同じ割合で時間変化している場合には、各波長の光量の値を当該全ての波長の光量の平均値や絶対値の総和の値により規格化する処理を適用することができる。
 本実施形態において、デジタル信号処理部100から出力された時系列データD2(i)は波形比較器102で受信されて、当該波形比較器102において、波形パターンデータベース122内に格納されたデータであって予め取得された膜厚・深さと各波長の光量との相関を示す少なくとも1つのパターンデータとの比較が演算器を用いて行われる。ここでは、パターンとはスペクトルパターンを意味する。
 波形比較器102では、波形パターンデータベース122内の膜厚あるいは処理の深さまたは処理の開始後の時間の複数の値と、複数の波長の光の強度の値とが対応付けられた波長をパラメータとするパターンデータと、時系列データD2の各サンプリング時刻iのデータD2(i)とが比較され、各膜厚あるいは処理の深さまたは処理の開始後の時間毎の複数の波長の光量(光の強度)のパターンデータのうちでデータD2(i)のパターンとの差が最も小さいものが、最も近いパターンデータとして検出される。
 差が最も小さいパターンのデータとしては、例えば、複数の波長のデータ同士の間の標準偏差が最小となるものを用いることができる。この最も近いパターンのデータの対応する膜厚あるいは処理の深さが当該サンプリング時刻iの残り膜厚または処理の深さとして算出される。波形比較器102において算出された各サンプリング時刻iの残り膜厚または処理の深さの値は、膜厚・深さ記憶部104に送信され、時系列データD3(i)として、膜厚・深さ記憶部104とデータを通信可能に接続されたハードディスクや半導体製のRAMやROM等の記憶装置内に格納される。
 波形パターンデータベース122における各波長の光量データは、デジタル信号処理部100で実施される信号処理で処理されたデータである。ここで、波形パターンデータベース122に膜厚・深さと各波長の光量のパターンデータのデータベースが複数存在する場合、各データベースを用いて決定される膜厚・深さD3が、膜厚・深さ記憶部104に供給される場合がある。
 膜厚・深さ記憶部104は、膜厚・深さの時系列データD4を最適膜厚・深さ決定器106に供給する。
 最適膜厚・深さ決定器106では、最適データベース決定器124から供給されるデータを用いて最適な膜厚・深さを決定し、膜厚・深さ算出部30の外部に出力する。例えば、最適データベース決定器124から供給されたデータベース番号により決定された膜厚・深さを、最適膜厚・深さ決定器106から出力する。
 ここで、最適データベース決定器124では、波形比較器102及び/又は膜厚・深さ記憶部104から供給されるデータを用いて最適データベースを決定する。例えば、波形比較器102から供給される各データベースの最も近いパターンと、現在のパターンとパターンマッチングを行った結果としての相互の差が最も小さいパターンのデータを、「最適な」データとして判定してこれを残り膜厚さ・処理深さの検出に用いるパターンデータとして選択する。パターンデータの選択には、処理中の現在の時刻iに得られた光強度のデータだけでなく、過去の時刻における当該光強度のデータに対してパターンマッチングの結果得られた差の合計を用いてもよい。この場合には、過去の時刻も含めた複数の時刻での波長をパラメータとする光強度のパターンデータに対して差が最小となるパターンデータが選択される。
 また、例えば、膜厚・深さ記憶部104から供給される各データベースの膜厚・深さの時系列データを用いて、時間と膜厚・深さの相関係数が最も小さいデータベースを最適データベースと決定してもよい。
 波形パターンデータベース122は、適合データベース算出器120から供給される複数のデータ含むものをデータベースとして用いてもよい。例えば、適合データベース算出器120では、時系列データD1及び/又は時系列データD2、及び波形パターンデータベース122から供給されたデータを用いて、現在の時刻iで得られた光強度を示すデータのパターンと一致するまたはパターンマッチングの結果の差の値が所定の許容範囲内となるパターンデータを含むデータベースが生成され、波形パターンデータベース122に送信され供給される。また、例えば、適合データベース算出器120において予め決められた演算に基づいて生成されたデータベースが、波形パターンデータベース122に供給されてもよい。データベースを算出する予め決められた演算として、2つのデータベースを線形補間する方法や、2つ以上のデータベースを多項式で補間する演算処理を使用可能である。
 図1(b)の膜厚・深さ算出部30では、波形パターンデータベース122に複数のデータベースが存在する場合だけでなく、1つのデータベースのみを用いる場合においても、処理中の任意の時刻iで検出された処理対象16からの反射光の強度から、残り膜厚あるいは処理の深さを検出してこれを示すデータが出力される。波形パターンデータベース122に格納されているデータベースが1つの場合には、適合データベース算出器120、最適データベース決定器124は使用されず、膜厚・深さ記憶部104で検出あるいは算出された膜厚・深さの値を示すデータは、そのまま膜厚・深さ算出部30から出力される。
 図1(a)に示すプラズマ処理装置は、膜厚・深さ算出部30から出力された膜厚・深さを示す信号を用いて終点判定を実施する。すなわち、膜厚・深さ算出部30からの信号を受信した終点判定器において、当該信号の示す残り膜厚さまたは処理深さの値が予め定められた目標の膜厚さまたは処理深さの値とが比較されて、所定の許容範囲内であると判定された場合には、処理が終点へ到達したと判定され、また許容範囲外である場合には到達していないと判定される。目標の残り膜厚さまたは処理深さへの到達が判定された場合には、図示しないモニタやランプ、信号機等の報知器によって上記到達が報知されるとともに、到達を示す信号を受信した制御部40によって、エッチング処理の停止または処理の条件を変更する信号をプラズマ処理装置に発信する。
 プラズマ処理装置では、受信したエッチング停止信号に基づいて当該膜厚さまたは処理深さを検出した処理対象16の表面の対象膜層のエッチング処理を停止させ、あるいは、処理の条件を変更した後に次の処理対象16に対する処理の工程を実施する。この動作により、本実施形態のプラズマ処理装置は膜厚・深さを検出した結果を用いて終点判定が可能である。
 上記実施形態に係るプラズマ処理装置を用いた膜厚・深さを検出しつつ実施されるエッチング処理の対象である処理対象16の表面に予め形成された複数層の膜が積層された膜の構造を、図2を用いて説明する。図2は、図1に示す実施形態が処理する処理対象である半導体ウエハ上面に予め配置され処理対象の膜層を含む複数層の膜が積層された膜構造の構成の概略を模式的に示す縦断面図である。
 図2(a)の左図に示す通り、当該処理対象16の表面の処理前の膜構造において、Si製の基板1の上面上に下地膜2、処理対象膜3が下層及び上層として上下方向に積み重ねられて製膜されている。処理対象膜3の上面上方には覆われていない箇所、領域の処理対象の膜層に、予め定められた回路のパターンを形成するための樹脂または処理対象の膜の材料から高い選択比を有する材料で構成されたマスク4が配置されている。
 このような膜構造をエッチング処理した結果として図2(a)の右図に示されるように、処理後の膜構造では処理対象膜3の一部が除去された構造が形成される。一方、このようなエッチング処理の対象となる実際の膜構造では、図2(b)に示されるようにマスク4の膜厚さの大きさにバラつきを有する。すなわち、複数の処理対象16であるウエハについて処理前の(処理の初期の)マスク層の膜層さは、平均厚さより薄い(厚さが小さい)場合や、平均厚さより厚い(大きい)場合が存在する。
 このようなマスク膜厚のばらつきが処理対象16の処理の残り膜厚・深さ或いは終点の判定に与える影響を、図3を用いて説明する。図3は、図2に示す膜構造を有する処理対象のウエハ複数枚をエッチング処理した場合に得られる反射光およびこれから検出される残り膜厚さの値の変動の例を模式的に示すグラフである。
 図3(a)は、処理対象16のウエハ表面の処理対象膜の残り膜厚さが同じであって、マスクの初期の膜厚さが異なる場合のウエハ複数からの反射光の量を示すグラフである。本図において、縦軸は反射光の量をウエハ反射率に変換した際の値である。図3(a)によれば、マスクの膜厚さが変動することにより処理対象膜の残り膜厚さの値が同一であっても反射率の大きさが異なることが看取される。すなわち、残り膜厚さを示す複数の波長の反射光の強度の分布、プロファイル(スペクトル)がマスクの厚さに応じて異なることが分かる。
 上記膜構造のマスクの初期の膜厚さにバラつきを有する複数枚の処理対象16のウエハに対して、初期の膜厚さの平均値を有したマスクを備えた膜構造を有するウエハ1枚を処理した際に、処理中の各サンプリング時刻毎に得られる、ウエハからの複数波長の反射光の量の値のパターンとこれらから検出される各時刻の残り膜厚さまたは処理深さとの相関関係を示すパターンのデータを予め取得して、このデータ1つのみを用いて複数枚の処理対象16のウエハを処理中に膜厚・深さを検出して終点判定を実施した結果を図3(b)に示す。
 本例では、マスクの膜厚さのばらつきを有する複数枚のウエハをエッチング処理した場合であって、終点判定の目標となる残り膜厚さを130nmとしたものである。図中では縦軸を残り膜厚さとして採り、各ウエハのエッチング処理後に破壊検査等により電子顕微鏡を用いて残り膜厚さを測定した結果の値を図中のドットとして示している。
 本図に示す通り、予め取得した1枚のウエハに対する処理から得られた1つのパターンデータを用いて検出された残り膜厚または処理深さを用いて終点の判定した場合には、各ウエハ毎に処理後の実際の処理対象の膜の厚さが目標膜厚(130nm)に対してばらついており、エッチング処理による膜構造の加工の精度が損なわれていることが判る。
 このように、処理対象16毎にマスクの初期の膜厚さに大きな変動がある場合には、特定のウエハの処理から1例として得られたデータを用いて膜厚・深さを検出すると、終点判定の精度と加工の精度ひいては処理の歩留まりが損なわれ、高い集積度の半導体デバイスの製造が実現できない虞がある。
 そこで、本実施形態に係るプラズマ処理装置では、各処理対象16のウエハの処理中に得られる反射光から複数のパターンデータを用いて膜厚・深さを検出し、検出した残り膜厚または処理深さに基づいて処理の終点を判定する。本実施形態では、図3(b)の例で示したものと同等に、同じ材料の膜層が上下方向に積層された同じ種類の膜構造を有する複数枚の処理対象16のウエハをエッチング処理した際の、処理中の複数の時刻にウエハ表面から得られた複数の波長の反射光の強度のデータと残り膜厚(または処理の工程が開始された後の時間)とが相関付けられた複数のパターンデータについて、予めウエハ相互の類似度が数値として算出される。
 図4(a)は、処理対象16のウエハに対して施されたエッチング処理の処理中の残り膜厚さと複数の波長をパラメータとするウエハからの反射光の強度の値と、パターンとの関係をマップで示したグラフである。
 この図において、処理中に検出される反射光の強度を示すデータは、残り膜厚さと対応付けられて検出されるのではなく、処理の工程が開始された後の処理中の各サンプリング時刻で複数の波長の反射光のスペクトルとして取得される。各サンプリング時刻を残り膜厚さに換算する処理では、初期(時刻0)の膜厚と最終(最終の時刻)の膜厚との値から線形内挿により各時刻の膜厚の値が割り当てられる。各ウエハの処理毎に、図4(a)で示すようなマップのデータが得られるが、各ウエハで処理後膜厚やエッチング速度が異なるため、図上横軸に取られた膜厚さの範囲やその点数が異なる虞がある。
 そこで、本実施形態では、予め得られた複数の処理対象16のウエハについての上記反射光のデータを用いて、これら全てのウエハで共通した膜厚範囲を設定する。これにより、その膜厚範囲内において膜厚1nm毎の所定の複数の波長の光の強度を示すパターンデータが作成される。任意の膜厚の値について予め得られたデータの値を利用できる場合には当該データの値が利用され、当該膜厚さが予め得られたデータに無い場合には前後の膜厚についてのデータから補間処理によって算出される値が用いられる。補間処理には、例えばスプライン補完が使用される。
 このように、膜構造のマスクの初期の膜厚さがバラついているこれら複数枚のウエハについて、処理中の波長をパラメータとする反射光のパターンデータが、必要に応じ補間処理を用いて作成される。作成されたこれらのパターンデータの中から、上記のように任意の1つの同じパターンデータを用いて終点判定した際の、処理後の実際の残り膜厚さが最も小さいウエハに対応するデータが抽出される。このデータを基準として他のウエハに対応するパターンデータが比較され、パターンデータに基づいたウエハ間の類似度が算出される。
 このように算出された、或る1つの残り膜厚における波長をパラメータとする光の強度のデータ(膜厚のスペクトル)の例を図4(b)に示す。図4(b)の膜厚スペクトルは図4(a)における特定の1つの膜厚のスペクトルである。
 図5は、図1に示す本実施形態に係るプラズマ処理装置が処理した複数のウエハの各々の処理中に検出された反射光に基づいて得られた膜厚のスペクトルと、各スペクトル間の差の総和の例を示すグラフである。図5(a)には、複数のウエハ各々から得られた所定の膜厚のスペクトルが重ねて表示されている。本図のように、各々のウエハに対応した膜厚のスペクトルは複数の波長において異なる値を示している。図5(b)には、各波長において各々の膜厚のスペクトルの値とこれらの平均値との差の値(誤差量)とが示されている。この図において、誤差量の大きさとして各ウエハ同士の間の類似度が数値として示される。
 さらに、各ウエハについて全波長の誤差の絶対値の総和を算出し、これらの値と各ウエハのマスクの初期の膜厚さと対応付けた結果が図5(c)に示されている。図上の縦軸は誤差総和の量を示す値であり、横軸は各ウエハのエッチング処理工程の開始前のマスクの膜厚(初期の残り膜厚さ)の値である。
 本例では、各ウエハの膜構造を構成する各膜層の仕様のバラつき、例えばマスクの初期の膜厚のバラつきの大きさは未知であることを前提としているが、上記算出されたウエハ毎の類似度の値がマスクの初期の膜厚と対応していることが、図5(c)において示されている。本図では、便宜上各ウエハのマスクの初期の膜厚の値と当該各ウエハの任意の膜厚のスペクトルにおける複数の波長毎の誤差の総和の値とが対応付けられてプロットされており、各ウエハの膜厚のスペクトルにおける所定の複数の波長の誤差の総和は、当該ウエハ各々のマスクの初期の膜厚を高い相関があることが示されている。本図により、各ウエハの膜厚のスペクトルの類似度を用いて各ウエハの膜構造間の構造上の差異の大きさを検出できることが判る。
 次に、複数のウエハを所定の順に並べ替えて符号または番号をつけて序列化する。例えば、複数のウエハを各ウエハから算出された誤差の総和の値が小さい順に序列化する。このように並べ替えて序列化した複数のウエハの各ウエハの番号と誤差の総和との関係を、図6(a)に示す。上述したように、誤差の総和はマスクの初期の膜厚と高い相関があるため、本例ではウエハの番号が小さいほどマスクの初期の膜厚が厚く、大きいほどマスクの初期の膜厚が小さい順に順序付けられている。
 本実施形態では、このように序列化された複数のウエハの最大番号が付けられたウエハと、最小番号のウエハと、これらウエハの間の番号のウエハであってその誤差の総和の最大番号および最小番号のウエハの誤差の総和との差が等しいウエハとが選択され、これら3つの選択したウエハに対応する上記必要に応じて補間を用いて算出した波長をパラメータとする反射光の強度のパターンの3つのデータを、データベースとして用いる。このようにデータベースとして用いる反射光におけるスペクトルのパターンのデータを選択することで、ばらつきを有するマスクの初期の膜厚さの最小および最大のものに対応する反射光のデータをデータベースとして使用することが可能となる。
 このように選択され得られたデータベースを用いて比較データを選択し、この比較データを実測データと比較することによってウエハの膜厚・深さを検出し、その結果に基づいて終点判定を実施した結果を、図6(b)に示す。本例では、図1(a)に示す、最適データベース決定器124により、各データベースとのマッチング残差が最小となるパターンデータが選択される。さらに、本例では、図3(b)と同様に、マスクの初期の膜厚にばらつきを有する複数のウエハを用いる。
 本図に示すように、全てのウエハで処理後の残り膜厚は、その目標の130nmの前後であって、その誤差の大きさも所定の許容範囲内である0.5nm以下となっており、高い精度で目標の処理対象の膜層の加工が実現できていることが分かる。この結果から、上記本実施形態により、処理対象の膜層を含むウエハ上の膜構造の寸法や形状、材質等のばらつきが未知である場合においても、処理中の残り膜厚さや処理深さ等の処理に関する量(以下、処理量)を高い精度で検出することが出来、これを用いて高い精度で処理の終点の判定を行えることが明らかとなった。
 上記複数のウエハ同士の間での膜構造の形状、寸法や材質等のばらつきは、処理中に処理の量を検出する上でのストレス要因の一つであり、本実施形態は上記の種類のばらつきに限ったものではなく、複数のウエハ同士の間で、エッチング処理対象膜の下地膜厚さ、トレンチ幅や深さ、処理対象膜の下方の膜の構造や周辺の構造等といった膜構造の特性のばらつき、反射光を検出する位置や範囲の変動、エッチング対象膜と他の膜の材料の選択比の変動、光源スペクトルの変動、プラズマ光の時間変化の変動等の処理の条件の変動が生じる場合に対しても適用することが可能である。また、本実施形態の光強度の指標、各ウエハのデータ整形や信号処理、ウエハ類似度の数値化方法、複数データベースの選択方法も上記に限ったものではないことは明らかである。
 本実施形態では序列化した複数のウエハから選択した3つのウエハのデータをデータベースとして用いたが、データベース数は3つに限ったものではない。例えば、序列化したウエハ番号の最大、最小およびこれらの番号を略等間隔に分割する番号のウエハの反射光の強度のパターンの3つ以上のデータをデータベースとして用いることによっても、本実施形態と同様な効果が得られることは明らかである。また、序列化したウエハの誤差の総和の最大値、最小値及びこれらの値を実質的に等間隔に分割する誤差の総和の値を持つ複数のウエハのデータをデータベースに用いることによっても、本実施形態と同様な効果が得られることは明らかである。
 以下に、各ウエハの類似度の数値として、ウエハからの特定波長の反射光の強度の時間経過に対する変化(時間変化)の値を用いた場合の例を述べる。本例でも、複数のデータを用いて検出したウエハの処理中の処理の量に基づいた処理の終点の判定が行われる。これら以外の条件に関しては、上記の実施形態1と同じ構成とした。
 図7は、図1に示す実施形態に係るプラズマ処理装置の変形例が図2に示す膜構造を処理した際に得られるウエハ表面からの光に関する量を示すグラフである。図7(a)は、ウエハの処理中にウエハ表面からの反射光の特定波長の光の強度の時間変化の一例を示すグラフである。本図では、時間変化を示すパラメータとして処理中の残り膜厚さを横軸とし光の強度の変化を表している。
 上記の実施形態と同様に、複数のウエハの処理中に得られた各々のウエハの反射光のスペクトルを示すデータに対し、膜厚の割り当て、膜厚範囲の決定、スペクトルデータを補間処理し、得られた補間処理データの特定波長における膜厚による光強度の変化の一例を、図7(a)に示す。光強度は膜厚により振動するように変化することが分かる。
 図7(b)は、図7(a)に示す特定の波長の反射光の光における強度の時間変化の全ウエハの平均に対する各ウエハの誤差とマスク膜厚の相関を示す一例のグラフである。上記実施形態の特定膜厚におけるウエハ間のスペクトル比較と同様に、各ウエハの同一波長における光量の時間変化を抽出し、その平均値からの二乗誤差の総和を各ウエハに関して算出した結果が、図7(b)に示されている。この図から、光量の時間変化を用いた場合でも各ウエハにおける誤差の総和はマスク膜厚と高い相関を示しており、各ウエハのスペクトルの類似度から構造の違いを明確化できることが分かる。
 複数のウエハの各々に誤差の総和の値が小さい順に番号付けして序列化し、当該ウエハの番号と誤差の総和値との関係をプロットした結果を、図8に示す。図7(b)に示されているように、誤差の総和の値はマスクの膜厚さと高い相関があり、ウエハの番号が小さい程マスクの膜厚さが大きく、番号が大きい程マスクの膜厚さが小さい。このことから、図8ではウエハの番号の順に誤差の総和の値が一様に増大していることが示されている。
 本例では、このように序列化した結果を用いて、複数のウエハからそれらの番号の最大および最小のものと、これらの間のウエハで誤差の総和の値(図8の縦軸の値)が等しいか、またはこれとみなせる程度に近似した間隔になるウエハの3つを選択し、これら選択されたウエハのデータを波形パターンデータベース122のデータとして用いるものとした。このようなデータを用いることで、値がばらつく初期のマスク膜厚さの最小値および最大値に対応して、ウエハからの反射光を用いる処理量の検出を高い精度で行うことが可能となる。
 このように選択され決定された複数のデータを含んで構成されたデータベースを用いて処理中に処理量を検出した結果を基づいて終点判定を実施した結果、実施形態1の図6(b)と同様に処理後の膜厚は全てのウエハで目標130nm近傍であり、誤差も0.5nm以下であった。従って、本実施形態の複数のデータを用いた処理量の検出においても、構造ばらつきが未知の場合においても正確な処理量の検出が可能であり、高精度な終点判定が実現できることが明らかである。
 次に、予め処理された各ウエハの類似度を数値として表すためのパラメータとして、ウエハ上の膜構造に含まれる処理対象の残り膜厚さと当該膜構造からの反射光の複数の波長の2次元データ(マップ)との相関を用いた場合の例を説明する。複数のウエハについてそれらの類似度を算出するパラメータを除いた条件に関しては、上記実施形態や図7,8に示す実施形態と同じ構成とした。
 上記の実施形態と同様に、処理された複数のウエハ各々のスペクトルのデータに対し、膜厚の割り当て、膜厚範囲の決定、スペクトルデータを補間処理することによって得られた膜厚と波長と強度の補間処理データの一例を図9に示す。図9は、図1に示す実施形態に係るプラズマ処理装置の別の変形例が図2に示す膜構造を備えたウエハに対して行ったエッチング処理の処理中の残り膜厚さと、複数の波長をパラメータとするウエハからの反射光の強度の値とパターンとの関係をマップとして示したグラフである。
 本図に示されるデータは、図4(a)のマップの一部を切り出したものと同様なグラフである。本図のデータからは、図4に係る上記実施形態の特定膜厚におけるウエハ間のスペクトル比較と同様に、補間処理データの全ウエハ平均値と各ウエハの誤差絶対値の総和を算出した結果、図5(c)と同様なマスク膜厚と誤差量の相関が得られた。
 そのため、このような誤差量を用いることによっても図6(a)と同様な波形パターンデータベース122のデータベースを決定することが可能であり、その結果、図6(b)と同様にマスクばらつきに対しても高精度な膜厚推定が実現できることが分かった。従って、本例においても、処理対象の膜を含む膜構造の特性のばらつきが未知の場合においても正確な処理量の検出が可能であり、高精度な終点判定が実現できることが明らかである。
 次に、予め処理した複数のウエハ各々の反射光のデータにローパスフィルタリングや、微分値算出、光量規格化などの信号処理を施して、当該信号処理をしたデータに基づき各ウエハの類似度を数値として表して得られた反射光の光の強度を示すデータを用いて処理中の処理の量を検出した結果により終点判定を行った例について説明する。本例では、上記の信号処理を施した以外の条件に関しては、図1乃至9に示した実施形態または変形例と同じ構成とした。
 実施形態と同様に各ウエハの処理中の複数のサンプリング時刻において得られたスペクトルデータに対し、残り膜厚さの対応付け、残り膜厚さ範囲の決定、スペクトルデータを補間処理して得られたデータの各時刻において、反射光の複数の波長の光の量の平均値で複数の各波長の光の量を規格化した。さらに、各ウエハについて、当該規格化して得られたデータから残り膜厚さの変化に対する特定の波長の光の強度の変化を抽出し、抽出した各ウエハの光の量の時間変化について時間方向にLPF,S-G法による1次微分値を算出した。その結果の例を図10に示す。
 図10は、図1に示す実施形態に係るプラズマ処理装置の別の変形例が図2に示す膜構造を備えたウエハに対して行ったエッチング処理の処理中に得られた処理対象の膜の残り膜厚さの変化に対する特定の波長の光における強度の1次微分の値の変化の一例を示したグラフである。図10に示す反射光の特定の波長の光に関する光の強度の量の時間変化は、図7(a)を膜厚さ方向について微分した形状をしている。この光の量の時間変化の微分値の全ウエハ平均値と各ウエハの誤差二乗和の総和を算出した結果、図7(b)と同じ誤差総和とマスク膜厚の相関が得られた。
 そのため、この誤差量を用いることによっても図8と同様な波形パターンデータベース122のデータを選択することが可能であり、その結果、図6(b)と同様にマスクばらつきに対しても高精度な膜厚推定が実現できることが分かった。従って、本例においても、構造ばらつきが未知の場合においても正確な処理量の検出が可能であり、高精度な終点判定が実現できることが明らかである。
 次に、波長軸に関するデータ整形を施したウエハからの反射光のデータを用いて予め処理した複数のウエハ同士の類似度を数値として表して得られた反射光の光の強度を示すデータを用いて処理中の処理の量を検出し、その結果を用いて終点判定を行った例について説明する。本例では、上記の信号処理を施した以外の条件に関しては、図1乃至9に示した実施形態または変形例と同じ構成とした。
 本例では、上記の例と同様に処理を行った複数のウエハ各々の処理中の各々のサンプリング時刻に得られた反射光のスペクトルのデータに対し、残り膜厚さを対応付けし、残り膜厚さの範囲の決定、スペクトルデータの時間軸(膜厚軸)方向の補間処理を実施した。さらに、波長軸に関しても波長240~840nmで波長刻みが5nmとなるように波長方向のデータを補間処理し、データを削減した。その結果として得られる、複数のウエハのうちで任意の1つのウエハの最も薄い残り膜厚さに対応するスペクトルのデータの一例を図11に示す。
 図11は、図1に示す実施形態に係るプラズマ処理装置のさらに別の変形例が図2に示す膜構造を備えたウエハに対して行ったエッチング処理の処理中に得られた処理対象の膜が、所定の残り膜厚さである場合の複数の波長の反射光の強度の一例を示したグラフである。このスペクトルは図4(b)におけるスペクトルの一部分を切り出した形状をしている。
 本例においても、このスペクトルのデータを用いて、上記実施形態と同様に複数のウエハの各々同士の間の構造の類似度を序列化してデータ選択し、当該選択したデータを用いて処理中のウエハの残り膜厚さを検出し終点の判定を行った。その結果、上記実施形態と同様なウエハの処理後の残り膜厚さのばらつきが得られた。従って、本例においても、構造ばらつきが未知の場合においても正確な処理量の計測が可能であり、高精度な終点判定が実現できることが明らかである。
 次に、予め処理した各ウエハの類似度を数値として表すためのパラメータとして、主成分分析の主成分値を用いた場合の例を説明する。ウエハ間の類似度を示すため主成分分析を用いた点以外は、上記の図1乃至12に示した実施形態や変形例と同じ構成とした。
 上記実施形態と同様に、複数のウエハ各々の処理中の複数のサンプリング時刻に得られた反射光のスペクトルを示すデータに対し、処理対象の残り膜厚さの対応付け、残り膜厚さの範囲の決定、スペクトルデータの補間処理を行い、同一の残り膜厚さに対応する反射光のスペクトルのデータを各ウエハから抽出した。抽出した各ウエハのスペクトルを用いて主成分分析を実施し、各ウエハのマスク膜層の初期の膜厚さと第1主成分、第2主成分の関係を図12(a),(b)に示す。
 図12は、図1に示す実施形態に係るプラズマ処理装置のさらに別の変形例が図2に示す膜構造を備えた複数のウエハに対して行ったエッチング処理の処理中に得られたウエハ表面の膜構造からの反射光における光の強度のデータ複数を主成分分析して得られた第1及び第2の主成分値の各ウエハのマスク層の初期の厚さとの関係の一例を示すグラフである。
 これらの図において、図12(a)に示される第1主成分値、図12(b)の第2主成分値は、何れもマスク層の初期の膜厚さと高い相関を示していることが分かる。さらに、第1主成分値はマスクの初期の膜厚さの値に対して極小値を含んで増減する2次関数のように変化している。このため、図12(a)のような相関を有する複数のウエハの反射光のスペクトルを示すデータの第1主成分値からは、マスク層の初期の膜厚は一意に定められない。
 一方、図12(b)に示される第2主成分値は、マスクの初期の膜厚さの変化に対して、1次関数のように実質的に一定の傾きを有して変化している。このことから、本図に示される第2主成分値とマスク層の初期の膜厚さとの対応付けを用いて、複数のウエハ各々マスク層の初期の膜厚さと、これに基づいたウエハの類似度とを検出することができる。そこで、本例では、複数のウエハ各々の処理中の各サンプリング時刻に得られた反射光のデータから第2主成分値を算出し、これに基づいて得られた各ウエハ同士の間の類似度を用いて複数のウエハを序列化した。さらに、当該序列化した結果に基づいて反射光の複数の波長の光の強度のパターンを示すデータを選択し、当該選択したウエハのデータを波形パターンデータベース122のデータとして用いた。
 本例において、これらの波形パターンデータベース122の複数のデータを用いて、任意のウエハの処理中に得られたウエハからの反射光の光の強度を示すデータから処理中の各サンプリング時刻の処理量を検出し処理の終点の判定を実施した。この結果、図6(b)と同様に、処理後の残り膜厚さは全てのウエハで目標130nm近傍であり、誤差も0.5nm以下であった。従って、本例においても、膜構造の特性のばらつきが未知の場合においても、正確な処理量の検出が可能であり、高精度な終点判定が実現できることが明らかである。
 次に、ウエハの膜構造を構成するマスク層の初期の膜厚さと、処理対象膜の下方に配置された下地の膜厚さにばらつきを有している場合において、予め処理した複数のウエハからの干渉光のデータの類似度を多様体学習を用いて数値化した場合の例を説明する。本例においても、類似度を多様体学習を用いて数値化した点以外の条件に関しては、図1乃至12に示した実施形態および変形例と同じ構成とした。
 本例においても、上記の例と同様に、予め処理された複数のウエハ各々の処理中の複数のサンプリング時刻に得られた反射光のスペクトルを示すデータに対し、処理対象の残り膜厚さの対応付け、残り膜厚さの範囲の決定、スペクトルデータの補間処理を行い、同一の残り膜厚さのスペクトルのデータを各ウエハから抽出した。
 さらに本例では、当該抽出したスペクトルのデータを用いて各ウエハの類似度を多様体学習の非線形次元縮約手法であるIsometric Mappingを使用して数値化した。Isometric Mappingでは、各ウエハのスペクトルを各データ点とし、このデータ点を用いてK近傍法(K-nearest neighbor algorithm)による各データ点の近傍関係を値として算出する。
 次に、算出した近傍関係の値を用い、K近傍グラフ上での各データ点間の測地線距離(Geodesic Distance)を算出して、これらの測地線距離の値を成分とする測地線距離行列を作成する。作成した測地線距離行列に対して多次元尺度構成法(MDS:Multi Dimensional Scaling)により各データ点を低次元の空間に射影する。以上の手順により、各ウエハは対応するスペクトルのデータの類似度に基づいて低次元の空間にマッピングされることとなり、マッピング結果を用いて残り膜厚さ等の処理の量を推定するために用いられるデータベースの複数のデータを選択することが可能となる。
 本例では、Isometric Mappingを用いて予め処理した複数のウエハ各々の反射光のスペクトルのデータが類似度に基づいてマッピングされる。さらに、マッピングされた低次元の空間上で各ウエハに対応する複数のデータの分散が最大となる第1成分と各ウエハのマスク層の初期の膜厚さとの相関をプロットした結果を、図13に示す。
 図13は、図1に示す実施形態に係るプラズマ処理装置のさらに別の変形例が図2に示す膜構造を備えた複数のウエハに対して行ったエッチング処理の処理中に得られたウエハ表面の膜構造からの反射光における光の強度のデータ複数について、Isometric Mappingを用いて得られた各データ同士の距離の分散の最大値と各ウエハのマスク層の初期の厚さとの関係の一例を示すグラフである。Isometric Mappingによる第1成分はマスク膜厚と高い相関を示していることが確認できる。
 本例ではさらに、得られた第1成分値に基づきウエハ各々の間の類似度の値に応じてこれらウエハを序列化し、その結果に基づいて反射光のスペクトルのデータベースを波形パターンデータベース122のデータとして選択した。これら複数のデータを用いて、任意のウエハの処理中の複数のサンプリング時刻に処理量を検出し、その結果を用いて終点判定を実施した結果、図6(b)と同様に処理後の残り膜厚さは全てのウエハで目標130nm近傍であり、誤差も0.5nm以下であった。従って、本例においても、膜構造の特性のばらつきの量が未知の場合においても、正確な処理量の検出が可能であり、高精度な終点判定が実現できることが明らかである。
 上記した実施形態あるいは変形例では、図6または図8に示されたように、予め処理した複数のウエハ各々の処理中に得られたウエハからの反射光のデータの間の類似度を示すパラメータの値の大きさに応じて当該複数のウエハに番号付けして序列化し、複数のウエハについての当該番号に応じて変化するパラメータの値各々と当該パラメータの値の平均値と差(誤差)或いは誤差の総和の値のうち、最大値および最小値とこれらの間の差を実質的に等分するパラメータ値に対応するウエハの反射光のデータを、任意のウエハの処理中の複数のサンプリング時刻での処理の量の検出に用いていた。
 このようなデータの選択に代えて、上記予め処理された複数のウエハに係るデータのうちから或るウエハに対応する反射光のデータを処理の量の検出に用いるものとして選択した場合に、所定の許容範囲内の誤差で処理の量を検出することの可能なウエハの範囲の情報を用いて、波形パターンデータベース122のデータを選択しても良い。以下に、このようなデータを選択して処理の量を検出する例を説明する。
 本例では、波形パターンデータベース122のデータを選択するに先立ち、データベースの候補となる複数のウエハの処理中に得られた複数波長の反射光の光の強度データに対し、任意の1つのウエハに対応するデータを基準データとして残る他のウエハを検出する対象として、その処理中の所定の処理の量(例えば、終点等の特定の残り膜厚さ)を推定膜厚さとしてシミュレーション等の手法により算出する。さらに、検出の対象である他のウエハの各々について特定の残り膜厚さの実際の値と推定膜厚さとの誤差を算出する。
 上記の誤差の算出を、複数のウエハの各々を基準データ用のウエハとし、他のウエハを検出の対象のウエハとして繰り返すことで、複数のウエハ各々についてこれを基準として検出した他のウエハ各々の所定の残り膜厚さの誤差の値を成分とするテーブルまたは行列が得られる。このようなテーブルの例を図14に示す。
 図14は、図1に示す実施形態に係るプラズマ処理装置のさらに別の変形例が図2に示す膜構造を備えた複数のウエハに対してエッチング処理を行って、処理中に得られたウエハ表面の膜構造からの反射光の光の強度のデータ複数の各々を用いて検出した他のウエハの所定の残り膜厚さの誤差の値を成分とするデータテーブルの一例を示す表である。本例では、図14に示すテーブルを用いて波形パターンデータベース122のデータを選択する。
 さらに、本例では、図14に示すテーブルの推定膜厚さの誤差が所定の許容範囲(例えば1nm以下)である場合には、残り膜厚さを検出することが可能であると判定される。すなわち、各々に1つの番号(データベースウエハ番号)が付されたn個のウエハのうちの任意の1つのウエハに対応する反射光のデータを用いて検出した他の(n-1)個のウエハの推定膜厚さの誤差と、許容範囲の上限値である1nmとを比較することで、上記任意の1つのウエハに対して他の(n-1)個のウエハのうちで当該1つのウエハのデータ(比較データ)を用いて残り膜厚さを検出することが可能と判定されるウエハの組み合わせが得られる。言い換えれば、n個の膜厚推定対象のウエハについて、上記の許容範囲内の誤差で膜厚の検出を可能とするデータベースウエハの組み合わせを選択することができる。
 このようなデータベースウエハの組み合わせは複数存在し、これらの組合せは図15に示すデータテーブルとなる。図15は、図14に示す本発明の実施形態の別の変形例に係るデータテーブルから選択されるn個のウエハの残り膜厚さを検出可能なデータベースウエハの組み合わせを示す表である。ここで、図15の表(テーブル)は、複数の組合せのうちで用いられるデータベースウエハの数が少ないものから順に並べられている。例えば、最もデータベースウエハの数が少ない図15の1番目上の組み合わせが選択されると、データベースウエハに対応する反射光のデータが波形パターンデータベース122のデータとして選択される。
 このように選択された波形パターンデータベース122のデータを用いて、任意のウエハの処理中の処理の量を検出し終点判定を実施した結果、図6(b)と同様に処理後の膜厚は全てのウエハで目標130nm近傍であり、誤差も0.5nm以下であった。従って、本例においても、膜構造の特性のばらつきが未知の場合においても正確な処理量の検出が可能であり、高精度な終点判定が実現できることが明らかである。
 次に、図1(b)の適合データベース算出器120を用いて、ウエハの処理中の複数のサンプリング時刻において処理の量を検出して処理の終点判定を行う例について説明する。本例においても、適合データベース1算出器20を用いること以外の条件に関しては、上記図1乃至15に示した実施形態または変形例と同じ構成とした。
 実施形態1と同様にデータベースを選択して、選択したウエハのデータを波形パターンデータベース122のデータベースとして決定した。決定した複数のデータベースを用いて処理量モニタによる終点判定を実施するが、本実施形態では、図1(b)の適合データベース算出器120を用いて膜厚推定で使用される波形パターンデータベース122のデータベースを算出し、膜厚推定に使用した。具体的な手順を以下に述べる。
 膜厚推定対象のウエハから測定される1時刻のスペクトルを取得し、そのスペクトルをデジタル信号処理部100で信号処理したデータD2が、適合データベース算出器120に供給される。適合データベース算出器120では波形パターンデータベース122からも複数のデータベースが供給されており、例えば各2組のデータベースDBnとDBmを任意の混合率αで混合した混合データベースDBnm(α)(=α×DBn+(1-α)×DBm)が生成される。適合データベース算出器120ではデータD2と混合データベースDBnm(α)を比較し、データD2と誤差が最も小さいデータベース番号nとmの組み合わせ、及び混合率αを決定する。
 決定した混合データベースDBnm(α)は波形パターンデータベース122に供給され、波形比較器102では混合データベースDBnm(α)を含む波形パターンデータベース122のデータベースを用いて現時刻の膜厚を決定する。また、現時刻で使用した混合データベースDBnm(α)はデータベース番号nとmの組み合わせ、及び混合率αと共に最適データベース決定器124に供給される。
 最適データベース決定器124における最適データベースの決定は、実施形態1と同様に測定スペクトルとの誤差が最小となるデータベースを選択してもよい。また、本実施形態では各時刻の測定スペクトルと近いスペクトルを有する混合データベースを生成しているため、各時刻の混合データベースを最適データベースと決定してもよい。
 決定した最適データベースに基づき最適膜厚・深さ決定器106から各時刻の膜厚が決定される。本実施形態では各時刻の混合データベースを最適データベースとして膜厚推定を実施した結果、実施形態1の図6(b)と同様に、処理後の膜厚は全てのウエハで目標130nm近傍であり、膜厚推定誤差は実施形態1よりも低減された。
 本実施形態のように、膜厚推定対象のウエハのスペクトルに近いデータベースを適合データベース算出器120により生成することで、予め処理したウエハのデータをデータベースに設定するよりも高精度な膜厚推定が可能である。以上から、本実施形態の複数のデータベースを用いた処理量モニタにおいても、構造ばらつきが未知の場合においても正確な処理量の計測が可能であり、高精度な終点判定が実現できることが明らかである。
 上記の例では、ウエハの膜構造の特性の情報が未知の場合において、ウエハの処理中の処理量を検出する技術について説明した。次に、ウエハの処理対象膜以外の膜構造の特性についての情報が当該ウエハの処理の開始前に取得できる場合について説明する。本例では、この点以外の条件に関しては、実施形態1と同じ構成とした。
 本例は、処理対象膜以外の膜構造の特性の情報として、例えば各ウエハのマスク層の初期膜厚が処理開始前に得られている場合に、当該マスク層の初期膜厚さの情報を用いて波形パターンデータベース122に格納され処理量の検出に用いられるデータが決定される。まず、各ウエハのマスク層の初期の膜厚さの値の大きさに応じてウエハを序列化し、膜厚さが大きい順にウエハ番号が付与され複数のウエハ各々に図6(a)における横軸と同様なウエハ番号が決定される。上記実施形態と同様に、マスク層の初期の膜厚さの最大、最小値およびこれらの間を実質的に等間隔に分割する値の各々に対応する番号のウエハの反射光のデータが波形パターンデータベース122のデータとして選択される。
 選択された複数のデータを用いて、対象のウエハを処理し処理中の処理量を検出し、その結果に基づいて終点判定を実施した結果、上記実施形態の図6(b)と同様に処理後の膜厚は全てのウエハで目標130nm近傍であり、誤差も0.5nm以下であった。従って、本実施形態の複数のデータベースを用いた処理量モニタにおいても、構造ばらつきが未知の場合においても正確な処理量の計測が可能であり、高精度な終点判定が実現できることが明らかである。
 本実施形態のように、処理前に当該ウエハの情報、特に膜構造の特性に関する情報が取得できる場合の処理装置及び処理装置間の情報を管理する監視システムの構成の例を図19に示す。図19は、図1に示す実施形態に係るプラズマ処理装置を監視するシステムの構成の概略を模式的に示すブロック図である。
 この図に示す例では、処理装置Aにおいて図示しない検出器により、加工状態1にあるウエハの処理前におけるマスクの初期の膜厚さを含む膜構造の寸法等の特性が検出され、当該検出された結果を示すデータが処理装置Aに供給され、当該データを用いて処理装置Aにおいてウエハが処理される。この加工状態1にあるウエハの膜構造の特性の情報や、処理中の処理対象の膜層の処理量を含む処理の状態の情報は、各処理装置に通信可能に接続されている監視システム、例えば監視装置AまたはBに供給されることにより、これらの監視装置と通信可能に接続された他の処理装置、例えば処理装置B,C,Dなどでも利用することが可能である。
 また、各処理装置における各ウエハの処理の条件などの情報も監視システムを経由して、続く処理装置で利用することが可能である。そのため、各処理装置では当該処理よりも前の処理や計測の情報に基づき、本例と同様なデータベースの選択が可能であり、各処理装置で当該ウエハの加工状態の情報を利用したデータベースの選択などを実施することにより、高精度な加工を実現することが可能となる。
 次に、処理中のウエハの反射光を検出するウエハ上の位置や範囲が変動する場合に処理量の検出に用いる反射光のデータを選択する例を説明する。この点以外の条件に関しては、図1乃至15に示す実施形態または変形例と同じ構成とした。
 図16は、図1に示す実施形態のさらに別の変形例に係るプラズマ処理装置が図2に示す膜構造を備えた複数のウエハに対してエッチング処理を行う際のウエハからの反射光を検出するウエハ表面の位置を模式的に示す上面図である。特に、本図は異なる2つのプラズマ処理装置がウエハ上の反射光を検出する位置を1つの仮想のウエハ上に示したものである。
 本例のように複数のプラズマ処理装置の各々で反射光を検出する位置や検出する波長や光強度の範囲が異なる場合には、検出されるマスクの初期の膜厚さは図2(b)に示すようなばらつきが生じる虞があり、このばらつきにより各装置におけるエッチング対象膜の膜厚さとこれからの反射光のスペクトルとの相関が変化する。また、反射光のスペクトルの波長や強度の範囲が異なることで、検出可能な範囲内に入る図2(a)に示すパターンの割合、その他パターンの割合が変化するため、エッチング対象膜の膜厚と反射光のスペクトルとの関係がウエハによって変動する虞がある。
 発明者らは、図1に示す実施形態に係るプラズマ処理装置と同等の構成を備え且つ各々で反射光を検出する位置が異なる10台のプラズマ処理装置において、実施形態と同様に、各々のプラズマ処理装置が予め処理した複数のウエハ各々の処理中に得られた反射光のスペクトルのデータに対し残り膜厚さの対応付け、残り膜厚さの範囲の決定、スペクトルデータの補間処理を行い、複数のウエハのもので同じ残り膜厚さに対応する反射光のスペクトルのデータを抽出した。抽出したデータを用いて実施形態と同様な方法で各プラズマ処理装置が処理したウエハのスペクトルの誤差量を算出し、プラズマ処理装置の識別用の番号ごとに当該誤差量との関係をプロットした結果を図17に示す。
 図17は、図1に示す実施形態のさらに別の変形例に係るプラズマ処理装置複数が図2に示す膜構造を備えた複数のウエハ各々にエッチング処理を行って、処理中に得られたウエハ表面の膜構造からの反射光の光の強度のデータ複数の各々を用いて検出した他のウエハの所定の残り膜厚さの誤差の総和を複数のプラズマ処理装置毎に示したグラフである。誤差の総和の値は各プラズマ処理装置で異なっており、同一の残り膜厚さに対応する反射光スペクトルが装置毎に異なっていることが分かる。本例では、このような誤差量の最大値および最小値並びにその中間の値に対応するプラズマ処理装置のウエハの反射光のデータが、波形パターンデータベース122に格納され処理量の検出に用いられるデータとして選択された。
 選択した複数のデータを用いて、任意のウエハの処理中の複数のサンプリング時刻での処理の量を検出し、検出結果を用いて終点判定を実施した結果、実施形態の図6(b)と同様に処理後の膜厚は全てのウエハで目標130nm近傍であり、誤差も0.5nm以下であった。従って、装置間において膜厚とスペクトルの関係が異なる場合においても、本例において正確な処理量の計測が可能であり、高精度な終点判定が実現できることが明らかである。
 次に、ウエハ上の膜構造の処理対象の膜層と他の膜層の材料の選択比が変動する場合に、処理量の検出に用いる反射光のデータを選択する例を説明する。この点以外の条件に関しては、図1乃至17に示す実施形態または変形例と同じ構成とした。
 本例においても、ウエハ上のエッチング対象の膜層を含む膜構造は図2(a)に示されたものと同様であり、マスク層の初期の膜厚さは複数のウエハ間で実質的に同一である。一方、本例では、各ウエハの処理において、マスク層と処理対象の膜層との選択比が変動する。このため、各ウエハで処理対象の膜層の残り膜厚さが同じとき、マスク層の削れ量がこれらウエハの間で異なって各ウエハのマスクの残り膜厚さが異なる場合がある。この場合には、複数のウエハで処理対象の膜層の残り膜厚さが同じであってもこれらウエハ表面からの反射光のスペクトルのデータは異なるものとなり、上記実施形態におけるマスク層の初期の膜厚さに変動が有る場合と同様な課題が生じる。
 本例では、図1の実施形態と同様に予め処理された複数のウエハ各々の処理中に得られた反射光のスペクトルのデータについて、残り膜厚さの対応付け、膜厚さ範囲の決定、スペクトルデータの補間処理を行い、複数のウエハ各々の処理中のデータから同一の残り膜厚さのスペクトルのデータを抽出した。抽出したスペクトルのデータについて全てのウエハの平均との誤差の値を算出し、算出した誤差と各ウエハのマスクの膜厚さとを対応付けた結果、図5(c)と同様に誤差とマスクの残り膜厚さは高い相関が得られた。誤差量に基づきウエハを並び替えて序列化して、並び替えた結果に基づき実施形態と同様に複数のウエハに対応する反射光のスペクトルのデータを波形パターンデータベース122のデータとして選択した。
 選択した複数のデータを用いて終点判定を実施した結果、実施形態の図6(b)と同様に処理後の膜厚は全てのウエハで目標130nm近傍であり、誤差も0.5nm以下であった。従って、装置間において膜厚とスペクトルの関係が異なる場合においても、本例において正確な処理量の計測が可能であり、高精度な終点判定が実現できることが明らかである。
 次に、図1(b)に示した最適データベース決定器124の最適データベース決定に検出した残り膜厚さの時間推移を用いた例について説明する。この点以外の条件に関しては、実施形態1と同じ構成とした。
 図1に示す膜厚・深さ算出部30においてデータベースを用いて検出されるエッチング中の各サンプリング時刻の残り膜厚さの時間変化は、例えば図18のデータ1および2となる。図18は、図1に示す実施形態のさらに別の変形例に係るプラズマ処理装置が図2に示す膜構造を備えたウエハをエッチングする処理中にウエハからの反射光を用いて検出したウエハ上の処理対象の膜層の残り膜厚の時間の経過に伴う変化の例を示すグラフである。本例では、各データで示される検出した残り膜厚さと処理中の時刻との間の一次直線的に示される相関性に基づいて残り膜膜厚さを推定する。
 例えば、処理中の各サンプリング時刻において、当該時刻までの処理中の過去の複数の時刻に検出された複数の残り膜さの値と当該過去の時刻とから相関係数を算出し、相関係数が大きいデータを最適データベースのデータとして選択する。例えば、図18に示した2つのデータ1,2に示されるような実質的に一次直線として表され得る相互の関係が得られた場合では、データ1の相関係数の絶対値は0.99であるが、データ2の相関係数の絶対値は0.95である。したがって、本例では相関係数の大きいデータ1を最適データベースのデータとして選択する。
 このように最適データベースのデータとして選択された反射光のスペクトルのデータを用いて、任意の処理中の複数のサンプリング時刻で処理の量を検出しその結果を用いて終点判定を実施した結果、実施形態の図6(b)と同様に処理後の膜厚は全てのウエハで目標130nm近傍であり、誤差も0.5nm以下であった。従って、本例においても、構造ばらつきが未知の場合においても正確な処理量の計測が可能であり、高精度な終点判定が実現できることが明らかである。
10…処理室
12…プラズマ
14…試料台
16…処理対象
18…光源部
20…導入レンズ
22…照射光
24…反射光
26…検出レンズ
28…検出部
30…膜厚・深さ算出部
40…制御部
50…光学系
60…データベース選択部
100…デジタル信号処理部
102…波形比較器
104…膜厚・深さ記憶部
106…最適膜厚・深さ決定器
120…適合データベース算出器
122…波形パターンデータベース
124…最適データベース決定器
D1…検出部から供給される時系列データ
D2…デジタル信号処理部から供給される時系列データ
D3…波形比較器から供給される膜厚・深さデータ
D4…膜厚・深さ記憶部から供給される膜厚・深さデータ

Claims (12)

  1.  真空容器内部の処理室内に配置された処理対象のウエハを当該処理室内に形成したプラズマを用いて処理するプラズマ処理装置であって、
     前記処理対象のウエハの処理中の所定の複数の時刻に前記ウエハ表面から複数の波長の光を受光する受光器と、
     前記受光した複数の波長の光の強度を示すデータと、予め取得された前記複数の波長の光の強度を示す比較データとを比較した結果を用いて、前記処理対象のウエハの処理中の処理の量を検出する検出器とを備え、
     前記検出器は、前記予め複数のウエハ各々の処理中に取得された当該各々ウエハの表面からの光の前記複数の波長の光の強度を示すデータに基づいて各ウエハ同士の間の類似度を数値化し、数値化された前記類似度に基づいて少なくとも1つのデータを選択して比較データとし、前記処理対象のウエハの処理中に得られた前記複数の波長の光の強度を示すデータと比較して前記処理の量を検出することを特徴とするプラズマ処理装置。
  2.  請求項1記載のプラズマ処理装置であって、
     前記検出器は、前記予め前記複数のウエハ各々の処理中に取得された前記複数の波長の光の強度を示す複数のデータから、各波長における各々の膜厚のスペクトルの値と、前記スペクトルの平均値との差を誤差として前記類似度を数値化し、前記誤差の総和が最大となるウエハ、最小となるウエハ及びこれらの間の差を実質的に等分するウエハのスペクトルのパターンをデータベースとし、前記データベースに基づいて前記比較データとするデータを選択することを特徴とするプラズマ処理装置。
  3.  請求項1記載のプラズマ処理装置であって、
     前記予め前記複数のウエハ各々の処理中に取得された前記複数の波長の光の強度を示す複数のデータの当該光の強度と、これらの光の強度の平均値との差またはその差の二乗の値を、前記類似度を示す指標として用いることを特徴とするプラズマ処理装置。
  4.  請求項1記載のプラズマ処理装置であって、
     前記予め前記複数のウエハ各々の処理中に取得された前記複数の波長の光の強度を示す複数のデータを主成分分析して得られた主成分値を、前記類似度を示す指標として用いることを特徴とするプラズマ処理装置。
  5.  請求項1記載のプラズマ処理装置であって、
     前記予め前記複数のウエハ各々の処理中に取得された前記複数の波長の光の強度を示す複数のデータに対して次元縮約手法を実施した結果として得られる次元縮約成分の値を、前記類似度を示す指標として用いることを特徴とするプラズマ処理装置。
  6.  請求項1記載のプラズマ処理装置であって、
     前記予め前記複数のウエハ各々の処理中に取得された前記複数の波長の光の強度を示す複数のデータから選択される少なくとも1つのデータは、当該少なくとも1つのデータと他のデータとの間の類似度が予め定められた所定の許容範囲内であることを特徴とするプラズマ処理装置。
  7.  真空容器内部の処理室内に処理対象のウエハを配置された当該処理室内に形成したプラズマを用いて処理するプラズマ処理方法であって、
     前記処理対象のウエハの処理中の所定の複数の時刻に前記ウエハ表面から複数の波長の光を受光する測定工程と、
     当該受光した複数の波長の光の強度を示すデータと、予め取得された前記複数の波長の光の強度を示す比較データとを比較した結果を用いて、前記処理対象のウエハの処理中の処理の量を検出する検出工程とを有し、
     前記検出工程において、前記予め複数のウエハ各々の処理中に取得された当該各々ウエハの表面からの光の前記複数の波長の光の強度を示すデータに基づいて各ウエハ同士の間の類似度を数値化し、数値化された前記類似度に基づいて少なくとも1つのデータを選択して比較データとし、前記処理対象のウエハの処理中に得られた前記複数の波長の光の強度を示すデータと比較して前記処理の量を検出することを特徴とするプラズマ処理方法。
  8.  請求項7記載のプラズマ処理方法であって、
     前記予め前記複数のウエハ各々の処理中に取得された前記複数の波長の光の強度を示す複数のデータから、各波長における各々の膜厚のスペクトルの値と、前記スペクトルの平均値との差を誤差として前記類似度を数値化し、前記誤差の総和が最大となるウエハ、最小となるウエハ及びこれらの間の差を実質的に等分するウエハのスペクトルのパターンをデータベースとし、前記データベースに基づいて前記選択データとするデータを選択することを特徴とするプラズマ処理方法。
  9.  請求項7記載のプラズマ処理方法であって、
     前記予め前記複数のウエハ各々の処理中に取得された前記複数の波長の光の強度を示す複数のデータの当該光の強度と、これらの光の強度の平均値との差またはその差の二乗の値を、前記類似度を示す指標として用いることを特徴とするプラズマ処理方法。
  10.  請求項7記載のプラズマ処理方法であって、
     前記予め前記複数のウエハ各々の処理中に取得された前記複数の波長の光の強度を示す複数のデータを主成分分析して得られた主成分値を、前記類似度を示す指標として用いることを特徴とするプラズマ処理方法。
  11.  請求項7記載のプラズマ処理方法であって、
     前記予め前記複数のウエハ各々の処理中に取得された前記複数の波長の光の強度を示す複数のデータに対して次元縮約手法を実施した結果として得られる次元縮約成分の値を、前記類似度を示す指標として用いることを特徴とするプラズマ処理方法。
  12.  請求項7記載のプラズマ処理方法であって、
     前記予め前記複数のウエハ各々の処理中に取得された前記複数の波長の光の強度を示す複数のデータから選択される少なくとも1つのデータは、当該少なくとも1つのデータと他のデータとの間の類似度が予め定められた所定の許容範囲内であることを特徴とするプラズマ処理方法。
PCT/JP2021/010341 2021-03-15 2021-03-15 プラズマ処理装置およびプラズマ処理方法 WO2022195662A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
US17/911,779 US20240213004A1 (en) 2021-03-15 2021-03-15 Plasma processing apparatus and plasma processing method
JP2022508859A JP7253668B2 (ja) 2021-03-15 2021-03-15 プラズマ処理装置およびプラズマ処理方法
PCT/JP2021/010341 WO2022195662A1 (ja) 2021-03-15 2021-03-15 プラズマ処理装置およびプラズマ処理方法
KR1020227007944A KR102671263B1 (ko) 2021-03-15 2021-03-15 플라스마 처리 장치 및 플라스마 처리 방법
CN202180005331.2A CN115349164A (zh) 2021-03-15 2021-03-15 等离子处理装置以及等离子处理方法
TW111109185A TW202238719A (zh) 2021-03-15 2022-03-14 電漿處理裝置及電漿處理方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/010341 WO2022195662A1 (ja) 2021-03-15 2021-03-15 プラズマ処理装置およびプラズマ処理方法

Publications (1)

Publication Number Publication Date
WO2022195662A1 true WO2022195662A1 (ja) 2022-09-22

Family

ID=83320090

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010341 WO2022195662A1 (ja) 2021-03-15 2021-03-15 プラズマ処理装置およびプラズマ処理方法

Country Status (6)

Country Link
US (1) US20240213004A1 (ja)
JP (1) JP7253668B2 (ja)
KR (1) KR102671263B1 (ja)
CN (1) CN115349164A (ja)
TW (1) TW202238719A (ja)
WO (1) WO2022195662A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115896731A (zh) * 2022-12-06 2023-04-04 等离子体装备科技(广州)有限公司 电子设备金属外壳的制备工艺及其加工设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219263A (ja) * 2009-03-17 2010-09-30 Hitachi High-Technologies Corp エッチング装置、分析装置、エッチング処理方法、およびエッチング処理プログラム
JP2012238734A (ja) * 2011-05-12 2012-12-06 Fujitsu Semiconductor Ltd 半導体装置の製造方法及半導体製造装置
JP2014022621A (ja) * 2012-07-20 2014-02-03 Hitachi High-Technologies Corp 分析方法、分析装置、及びエッチング処理システム
JP2014179474A (ja) * 2013-03-15 2014-09-25 Hitachi High-Technologies Corp 半導体エッチング装置及び分析装置
JP2018157120A (ja) * 2017-03-21 2018-10-04 株式会社日立ハイテクノロジーズ プラズマ処理装置およびプラズマ処理方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11260799A (ja) 1998-03-13 1999-09-24 Hitachi Ltd 薄膜の微細加工方法
US6160621A (en) 1999-09-30 2000-12-12 Lam Research Corporation Method and apparatus for in-situ monitoring of plasma etch and deposition processes using a pulsed broadband light source
JP6186152B2 (ja) 2013-03-29 2017-08-23 株式会社日立ハイテクノロジーズ プラズマ処理装置およびプラズマ処理方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010219263A (ja) * 2009-03-17 2010-09-30 Hitachi High-Technologies Corp エッチング装置、分析装置、エッチング処理方法、およびエッチング処理プログラム
JP2012238734A (ja) * 2011-05-12 2012-12-06 Fujitsu Semiconductor Ltd 半導体装置の製造方法及半導体製造装置
JP2014022621A (ja) * 2012-07-20 2014-02-03 Hitachi High-Technologies Corp 分析方法、分析装置、及びエッチング処理システム
JP2014179474A (ja) * 2013-03-15 2014-09-25 Hitachi High-Technologies Corp 半導体エッチング装置及び分析装置
JP2018157120A (ja) * 2017-03-21 2018-10-04 株式会社日立ハイテクノロジーズ プラズマ処理装置およびプラズマ処理方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115896731A (zh) * 2022-12-06 2023-04-04 等离子体装备科技(广州)有限公司 电子设备金属外壳的制备工艺及其加工设备
CN115896731B (zh) * 2022-12-06 2024-01-12 等离子体装备科技(广州)有限公司 电子设备金属外壳的制备工艺及其加工设备

Also Published As

Publication number Publication date
JP7253668B2 (ja) 2023-04-06
CN115349164A (zh) 2022-11-15
KR102671263B1 (ko) 2024-06-03
TW202238719A (zh) 2022-10-01
US20240213004A1 (en) 2024-06-27
JPWO2022195662A1 (ja) 2022-09-22
KR20220130084A (ko) 2022-09-26

Similar Documents

Publication Publication Date Title
KR100798648B1 (ko) 주성분 분석을 이용한 공정 감시 방법 및 장치
US8173451B1 (en) Etch stage measurement system
JP6019043B2 (ja) 光学計測及びセンサ装置を用いるエッチングプロセス制御
US9190336B2 (en) Plasma processing apparatus and plasma processing method
JP6523732B2 (ja) プラズマ処理装置およびプラズマ処理方法
JP3694662B2 (ja) 半導体素子製造プロセスにおける膜の処理量測定方法と装置、及びそれを用いた被処理材の処理方法と装置、及びそれを用いたプロセスの終点判定方法と装置
WO2022195662A1 (ja) プラズマ処理装置およびプラズマ処理方法
US20220367298A1 (en) Plasma processing apparatus and plasma processing method
KR20200098472A (ko) 에칭 처리 장치, 에칭 처리 방법 및 검출기
TWI780618B (zh) 電漿處理裝置及電漿處理方法
US8173450B1 (en) Method of designing an etch stage measurement system
JP7423854B1 (ja) プラズマ処理方法およびプラズマ処理装置
JP7094377B2 (ja) プラズマ処理方法およびプラズマ処理に用いる波長選択方法
EP1095264A1 (en) Improved process monitor
WO2022059114A1 (ja) プラズマ処理装置およびプラズマ処理方法
KR100733120B1 (ko) 반도체 웨이퍼처리의 검출방법 및 검출장치
JP2005340547A (ja) プラズマ処理装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2022508859

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 17911779

Country of ref document: US

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931418

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931418

Country of ref document: EP

Kind code of ref document: A1