WO2022195655A1 - 接着剤、回転電機、電子部品及び航空機 - Google Patents
接着剤、回転電機、電子部品及び航空機 Download PDFInfo
- Publication number
- WO2022195655A1 WO2022195655A1 PCT/JP2021/010324 JP2021010324W WO2022195655A1 WO 2022195655 A1 WO2022195655 A1 WO 2022195655A1 JP 2021010324 W JP2021010324 W JP 2021010324W WO 2022195655 A1 WO2022195655 A1 WO 2022195655A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- adhesive
- stress relaxation
- agent
- ethylene
- stress
- Prior art date
Links
- 239000000853 adhesive Substances 0.000 title claims abstract description 161
- 230000001070 adhesive effect Effects 0.000 title claims abstract description 161
- 239000003795 chemical substances by application Substances 0.000 claims abstract description 95
- 239000004593 Epoxy Substances 0.000 claims abstract description 27
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical compound C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229920006243 acrylic copolymer Polymers 0.000 claims abstract description 14
- 239000002245 particle Substances 0.000 claims abstract description 14
- 229920001577 copolymer Polymers 0.000 claims abstract description 13
- 150000001875 compounds Chemical class 0.000 claims abstract description 11
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 claims abstract description 9
- 150000001412 amines Chemical class 0.000 claims abstract description 9
- 229920005989 resin Polymers 0.000 claims abstract description 8
- 239000011347 resin Substances 0.000 claims abstract description 8
- 239000000945 filler Substances 0.000 claims description 18
- XFCMNSHQOZQILR-UHFFFAOYSA-N 2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOC(=O)C(C)=C XFCMNSHQOZQILR-UHFFFAOYSA-N 0.000 claims description 6
- HCLJOFJIQIJXHS-UHFFFAOYSA-N 2-[2-[2-(2-prop-2-enoyloxyethoxy)ethoxy]ethoxy]ethyl prop-2-enoate Chemical compound C=CC(=O)OCCOCCOCCOCCOC(=O)C=C HCLJOFJIQIJXHS-UHFFFAOYSA-N 0.000 claims description 6
- 239000011521 glass Substances 0.000 claims description 6
- 239000000919 ceramic Substances 0.000 claims description 5
- -1 1,3-butylene Chemical group 0.000 claims description 4
- HWSSEYVMGDIFMH-UHFFFAOYSA-N 2-[2-[2-(2-methylprop-2-enoyloxy)ethoxy]ethoxy]ethyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCOCCOCCOC(=O)C(C)=C HWSSEYVMGDIFMH-UHFFFAOYSA-N 0.000 claims description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- FSDNTQSJGHSJBG-UHFFFAOYSA-N piperidine-4-carbonitrile Chemical compound N#CC1CCNCC1 FSDNTQSJGHSJBG-UHFFFAOYSA-N 0.000 claims description 4
- 229910052709 silver Inorganic materials 0.000 claims description 4
- 239000004332 silver Substances 0.000 claims description 4
- ZDQNWDNMNKSMHI-UHFFFAOYSA-N 1-[2-(2-prop-2-enoyloxypropoxy)propoxy]propan-2-yl prop-2-enoate Chemical compound C=CC(=O)OC(C)COC(C)COCC(C)OC(=O)C=C ZDQNWDNMNKSMHI-UHFFFAOYSA-N 0.000 claims description 3
- VHSHLMUCYSAUQU-UHFFFAOYSA-N 2-hydroxypropyl methacrylate Chemical compound CC(O)COC(=O)C(C)=C VHSHLMUCYSAUQU-UHFFFAOYSA-N 0.000 claims description 3
- XOJWAAUYNWGQAU-UHFFFAOYSA-N 4-(2-methylprop-2-enoyloxy)butyl 2-methylprop-2-enoate Chemical compound CC(=C)C(=O)OCCCCOC(=O)C(C)=C XOJWAAUYNWGQAU-UHFFFAOYSA-N 0.000 claims description 3
- FIHBHSQYSYVZQE-UHFFFAOYSA-N 6-prop-2-enoyloxyhexyl prop-2-enoate Chemical compound C=CC(=O)OCCCCCCOC(=O)C=C FIHBHSQYSYVZQE-UHFFFAOYSA-N 0.000 claims description 3
- GBCCVKDQBQGZHX-UHFFFAOYSA-N CC=C.CC=C.CC=C.OC(=O)C=C.OC(=O)C=C Chemical compound CC=C.CC=C.CC=C.OC(=O)C=C.OC(=O)C=C GBCCVKDQBQGZHX-UHFFFAOYSA-N 0.000 claims description 3
- 239000002861 polymer material Substances 0.000 claims description 3
- VFZKVQVQOMDJEG-UHFFFAOYSA-N 2-prop-2-enoyloxypropyl prop-2-enoate Chemical group C=CC(=O)OC(C)COC(=O)C=C VFZKVQVQOMDJEG-UHFFFAOYSA-N 0.000 claims description 2
- STVZJERGLQHEKB-UHFFFAOYSA-N ethylene glycol dimethacrylate Chemical compound CC(=C)C(=O)OCCOC(=O)C(C)=C STVZJERGLQHEKB-UHFFFAOYSA-N 0.000 claims description 2
- 229910052604 silicate mineral Inorganic materials 0.000 claims description 2
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 claims 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 claims 1
- 239000002075 main ingredient Substances 0.000 abstract description 2
- 239000004848 polyfunctional curative Substances 0.000 abstract description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 abstract 1
- 239000005977 Ethylene Substances 0.000 abstract 1
- 229920001038 ethylene copolymer Polymers 0.000 abstract 1
- 125000000524 functional group Chemical group 0.000 abstract 1
- 230000035882 stress Effects 0.000 description 107
- 238000012360 testing method Methods 0.000 description 31
- 238000010586 diagram Methods 0.000 description 18
- 230000009477 glass transition Effects 0.000 description 14
- 239000000463 material Substances 0.000 description 13
- 229920006332 epoxy adhesive Polymers 0.000 description 12
- 239000004065 semiconductor Substances 0.000 description 12
- 230000008859 change Effects 0.000 description 8
- 238000011282 treatment Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 6
- 230000007423 decrease Effects 0.000 description 6
- 239000000758 substrate Substances 0.000 description 6
- 238000004381 surface treatment Methods 0.000 description 6
- 230000003247 decreasing effect Effects 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 230000000996 additive effect Effects 0.000 description 4
- 238000004378 air conditioning Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000005498 polishing Methods 0.000 description 4
- 238000007788 roughening Methods 0.000 description 4
- 229920001187 thermosetting polymer Polymers 0.000 description 4
- BPSIOYPQMFLKFR-UHFFFAOYSA-N trimethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](OC)(OC)CCCOCC1CO1 BPSIOYPQMFLKFR-UHFFFAOYSA-N 0.000 description 4
- 229930185605 Bisphenol Natural products 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 3
- 239000006087 Silane Coupling Agent Substances 0.000 description 3
- WHGNXNCOTZPEEK-UHFFFAOYSA-N dimethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CO[Si](C)(OC)CCCOCC1CO1 WHGNXNCOTZPEEK-UHFFFAOYSA-N 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000003566 sealing material Substances 0.000 description 3
- DQZNLOXENNXVAD-UHFFFAOYSA-N trimethoxy-[2-(7-oxabicyclo[4.1.0]heptan-4-yl)ethyl]silane Chemical compound C1C(CC[Si](OC)(OC)OC)CCC2OC21 DQZNLOXENNXVAD-UHFFFAOYSA-N 0.000 description 3
- FQMIAEWUVYWVNB-UHFFFAOYSA-N 3-prop-2-enoyloxybutyl prop-2-enoate Chemical compound C=CC(=O)OC(C)CCOC(=O)C=C FQMIAEWUVYWVNB-UHFFFAOYSA-N 0.000 description 2
- SJECZPVISLOESU-UHFFFAOYSA-N 3-trimethoxysilylpropan-1-amine Chemical compound CO[Si](OC)(OC)CCCN SJECZPVISLOESU-UHFFFAOYSA-N 0.000 description 2
- PRKPGWQEKNEVEU-UHFFFAOYSA-N 4-methyl-n-(3-triethoxysilylpropyl)pentan-2-imine Chemical compound CCO[Si](OCC)(OCC)CCCN=C(C)CC(C)C PRKPGWQEKNEVEU-UHFFFAOYSA-N 0.000 description 2
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 2
- 230000001588 bifunctional effect Effects 0.000 description 2
- 238000002485 combustion reaction Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 238000003851 corona treatment Methods 0.000 description 2
- 238000005238 degreasing Methods 0.000 description 2
- 239000005350 fused silica glass Substances 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- MQWFLKHKWJMCEN-UHFFFAOYSA-N n'-[3-[dimethoxy(methyl)silyl]propyl]ethane-1,2-diamine Chemical compound CO[Si](C)(OC)CCCNCCN MQWFLKHKWJMCEN-UHFFFAOYSA-N 0.000 description 2
- KBJFYLLAMSZSOG-UHFFFAOYSA-N n-(3-trimethoxysilylpropyl)aniline Chemical compound CO[Si](OC)(OC)CCCNC1=CC=CC=C1 KBJFYLLAMSZSOG-UHFFFAOYSA-N 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 238000009832 plasma treatment Methods 0.000 description 2
- 238000005488 sandblasting Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 239000010959 steel Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- GUGZCSAPOLLKNG-UHFFFAOYSA-N (4-cyanatophenyl) cyanate Chemical compound N#COC1=CC=C(OC#N)C=C1 GUGZCSAPOLLKNG-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000002313 adhesive film Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910000828 alnico Inorganic materials 0.000 description 1
- 239000002249 anxiolytic agent Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011258 core-shell material Substances 0.000 description 1
- OTARVPUIYXHRRB-UHFFFAOYSA-N diethoxy-methyl-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](C)(OCC)CCCOCC1CO1 OTARVPUIYXHRRB-UHFFFAOYSA-N 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000010445 mica Substances 0.000 description 1
- 229910052618 mica group Inorganic materials 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 229920000962 poly(amidoamine) Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 229910000938 samarium–cobalt magnet Inorganic materials 0.000 description 1
- 150000004760 silicates Chemical class 0.000 description 1
- 239000007779 soft material Substances 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 230000009974 thixotropic effect Effects 0.000 description 1
- 239000012745 toughening agent Substances 0.000 description 1
- JXUKBNICSRJFAP-UHFFFAOYSA-N triethoxy-[3-(oxiran-2-ylmethoxy)propyl]silane Chemical compound CCO[Si](OCC)(OCC)CCCOCC1CO1 JXUKBNICSRJFAP-UHFFFAOYSA-N 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J163/00—Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
- C09J163/10—Epoxy resins modified by unsaturated compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64D—EQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
- B64D33/00—Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/02—Non-macromolecular additives
- C09J11/04—Non-macromolecular additives inorganic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/02—Non-macromolecular additives
- C09J11/06—Non-macromolecular additives organic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J11/00—Features of adhesives not provided for in group C09J9/00, e.g. additives
- C09J11/08—Macromolecular additives
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J163/00—Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
Definitions
- This application relates to adhesives, rotating electric machines, electronic components, and aircraft.
- the epoxy adhesive described in Patent Document 1 constitutes a base containing at least 50% by mass of liquid epoxy having three or more functionalities, and the core-shell toughening agent added as a stress relaxation agent also has a glass transition temperature Tg of Since it includes a low temperature (-110 to -30°C), it cannot be said that the structure has sufficient heat resistance, and the resistance to temperature cycles (thermal shock resistance) is not described and unknown.
- the cured product composition described in Patent Document 2 has high heat resistance for application to various films such as optical materials, display elements, and electronic components, which are the application destinations described in the document (paragraph 0099). It may be said that it has sex. However, the glass transition temperature Tg is about 80 to 100 ° C. (Tables 1 to 3), and it cannot be said that it has sufficiently high heat resistance, and there is no description about the resistance to temperature cycles (thermal shock resistance). is unknown.
- the present application discloses a technique for solving the above problems, and aims to provide a stress-relaxing adhesive that has high heat resistance and resistance to stress during temperature cycles. do.
- the adhesive disclosed in the present application uses an epoxy compound having two or more functional allyl groups as a main component, and an epoxy-based base adhesive using an amine-based curing agent having a bisphenol A type resin skeleton, and a stress relaxation agent. At least one of an ethylene-acrylic copolymer and an ethylene-propylene copolymer having an average particle size of 10 ⁇ m or less is contained in an amount of 20 wt % or less based on the base adhesive.
- the combination of the base adhesive and the stress relaxation agent added thereto can reduce the Young's modulus on the low temperature side and does not change the glass transition temperature. While maintaining the high heat resistance of the base adhesive, it has a structure that has resistance so as to relax the stress at the time of temperature change, and using this adhesive improves the reliability of the bonded portion.
- FIG. 1 is a schematic diagram showing the structure of a stress relaxation adhesive according to Embodiment 1.
- FIG. FIG. 4 is a diagram illustrating a method for evaluating the adhesive strength of the stress relaxation adhesive according to Embodiment 1; 4 is a diagram showing the relationship between the amount of stress relaxation agent added to the stress relaxation adhesive and the adhesive strength according to Embodiment 1.
- FIG. FIG. 3 is a schematic diagram showing the rupture mode after the shear test according to FIG. 2;
- FIG. 3 is a schematic diagram showing another failure mode after the shear test according to FIG. 2;
- FIG. 4 is a diagram showing changes in adhesive strength when different stress relaxation agents are added to three types of base adhesives; 5 is a diagram showing temperature dependence of tan ⁇ when the amount of stress relaxation agent added is changed in the stress relaxation adhesive according to Embodiment 1.
- FIG. 4 is a diagram showing temperature dependence of Young's modulus when the amount of stress relaxation agent added is changed in the stress relaxation adhesive according to Embodiment 1.
- FIG. 4 is a diagram showing changes in adhesive strength of the stress relaxation adhesive according to Embodiment 1 before and after a temperature cycle test;
- FIG. FIG. 5 is a schematic diagram showing the structure of a stress relaxation adhesive according to Embodiment 2; FIG.
- FIG. 11 is a partial cross-sectional view showing the structure of an IPM motor, which is an example of a rotating electrical machine according to Embodiment 3;
- FIG. 11 is a partial cross-sectional view showing the structure of an SPM motor, which is an example of a rotating electric machine according to Embodiment 3;
- FIG. 11 is a cross-sectional view showing the structure of a semiconductor device as an example of an electronic component according to a fourth embodiment;
- FIG. 12 is a block diagram showing the flow of air relating to the in-flight air conditioning of an aircraft according to Embodiment 5;
- the adhesive according to Embodiment 1 will be described below.
- the adhesive according to the first embodiment is a thermosetting epoxy adhesive.
- Epoxy which is the main component, is a thermosetting component, and the main ingredient is an epoxy compound having two or more allyl groups.
- the main agent may be one type or a combination of two or more types of compounds.
- An amine-based curing agent having a bisphenol A type resin skeleton is used as the curing agent.
- the one with the main agent and hardener constitutes the base adhesive.
- At least one of an ethylene-acrylic copolymer and an ethylene propylene copolymer is added as a stress relaxation agent to the epoxy adhesive, which is the base adhesive having the principal epoxy compound and the amine curing agent. added to form a stress-relieving adhesive.
- the ethylene-acrylic copolymer used as the stress relaxation agent includes ethylene dimethacrylate, hexamethylene diacrylate, tetramethylene dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol diacrylate, 1,3- butylene glycol diacrylate and the like.
- Ethylene-propylene copolymers used as stress relaxation agents include dipropylene glycol diacrylate, tripropylene glycol diacrylate, 2-hydroxypropyl methacrylate, dipropylene glycol diacrylate, tripropylene diacrylate and the like.
- the melting points of the materials used for these stress relaxation agents are characterized by being about 40 to 100.degree.
- An example of the adhesive according to the first embodiment is shown in Table 1 below.
- 4,4'-Isopropylidenediphenol and p-phenylene dicyanate which are epoxy compounds with two or more functionalities of two types of allyl groups, as the main agent, and N, an amine-based curing agent with a bisphenol A-type resin skeleton, as an additive.
- N-bis(2,3-epoxypropyl)-4-(2,3-epoxypropoxy)aniline is used to constitute the base epoxy adhesive, and triethylene glycol dimethacrylate, which is an ethylene-acrylic copolymer.
- Add less than 20 wt% of three types of stress relaxation agents including, add less than 5 wt% of amorphous silica as a viscosity adjustment and adhesive film thickness adjustment material, and adjust so that the total is 100 wt%.
- the main agent, additive, curing agent, and the like are examples, and are not limited to these.
- an epoxy compound having two or more functional allyl groups may be used as the main agent.
- FIG. 1 shows a schematic diagram showing the structure of the stress relaxation adhesive according to the first embodiment.
- the stress relieving adhesive 101 after adjustment and curing has a structure in which the stress relieving agent 2 is dispersed in the base epoxy adhesive 1 as shown in FIG.
- a shear strength test piece was prepared to evaluate the adhesive strength.
- Fig. 2 shows the method of preparing the shear test piece and the shear test.
- the test piece is a set of two SPCC plates 102 (steel plates).
- a stress relaxation type adhesive 101 is applied to the edge of one surface of one SPCC plate 102 and sandwiched between the two SPCC plates 102 .
- a shear test is performed as an evaluation of adhesive strength by pulling it up and down as shown in FIG.
- the surface treatment of the SPCC plate 102 which is the test piece, was atmospheric plasma treatment, deep ultraviolet light treatment, corona discharge treatment, roughening treatment (laser roughening, polishing, sandblasting, ) and other physical treatments can be expected to improve adhesion or bonding strength.
- a similar effect can be obtained by applying a silane coupling agent as a primer as a chemical treatment.
- 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycid Xypropylmethyldiethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-aminopropyltrimethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine , N-phenyl-3-aminopropyltrimethoxysilane, N-(benylbenzyl)-2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, etc. may be used as primers.
- Adhesive strength improved when the average particle diameter was reduced to several micrometers below 10 micrometers. That is, the average particle size is preferably in the range of 1 ⁇ m or more and 10 ⁇ m or less.
- FIG. 3 is a diagram showing the relationship between the amount of stress relaxation agent added and the adhesive strength.
- the conditions of Comparative Example 1 and Example 1 are as follows. The pretreatment conditions were the same. ⁇ Comparative Example 1> ⁇ Test piece: SPCC/SPCC ⁇ Pretreatment of test piece: acetone degreasing, polishing with No. 400 buff ⁇ Adhesive thickness: 80 to 100 ⁇ m Adhesive: Main agent: Bisphenol A type epoxy Curing agent: Polyamidoamine Stress relaxation agent: Urethane ⁇ Example 1> ⁇ Test piece: SPCC/SPCC ⁇ Pretreatment of test piece: acetone degreasing, polishing with No.
- Fig. 3 shows changes in adhesive strength when the adhesive strength when no stress relaxation agent is added is set to 1.
- the stress relaxation type adhesive according to Example 1 is indicated by a solid line, and the addition amount of the stress relaxation agent was increased, and no decrease in strength was observed up to the addition concentration of 20 wt %.
- the adhesive of Comparative Example 1 the strength gradually decreased due to the addition of the stress relaxation agent, and the strength significantly decreased when the additive concentration exceeded 10 wt %.
- the epoxy adhesive (base adhesive, equivalent to 0 wt% of the stress relaxation agent in FIG. 3) before adding the stress relaxation agent of Example 1 had an adhesive strength of 16 to 18 MPa in the shear test described above. be.
- FIG. 4A and 4B are schematic diagrams for explaining the breaking mode of the adhesive after the shear test.
- FIG. 4A shows an interfacial debonding mode 104 in which the adhesive remains on one test piece, the SPCC plate 102, and delaminates at the interface between the other test piece, the SPCC plate 102, and the adhesive.
- FIG. 4B shows the state before and after the test of the adhesive to which the stress relaxation agent 2 according to this embodiment is added.
- FIG. 4B is a cohesive failure mode 103 where the adhesive breaks inside and the adhesive remains on both specimens, the SPCC plate 102 .
- Example 1 of FIG. 3 when the amount of stress relaxation agent added was 0, the fracture mode after the test was interfacial peeling, but as the stress relaxation agent was added, the fracture mode was cohesive failure. increased and confirmed that the mode changed. At a stress relaxation agent concentration of 20 wt %, the failure mode was cohesive failure. This indicates that when the additive concentration is 20 wt % or less, the effect of stress relaxation is exhibited without reducing the adhesive strength, and cohesive failure occurs. From the observation results of the fracture mode and FIG. 3, it was found that the addition concentration of the stress relaxation agent is desirably 10 to 20 wt % and is effective in stress relaxation.
- the epoxy-based adhesive (base adhesive) before adding the stress relaxation agent of Example 1 described above has an adhesive strength of 16 to 18 MPa after curing, and has a high heat resistance with a glass transition temperature of 200 ° C. or higher. It is a flexible epoxy adhesive. According to FIG. 3, the adhesive strength of the stress relaxation adhesive of Example 1 did not decrease until the addition concentration of 20 wt%, and the adhesive strength was maintained at 10 MPa even at 30 wt%. Turned out to be glue.
- Example 1 one type of stress relaxation agent was added, but two or more of the same type may be added at the same time.
- the smaller the average particle diameter (size) of the stress relaxation agent to be added the finer the dispersion in the entire adhesive and the higher the stress relaxation effect.
- the added amount is the same, the smaller the average particle size of the stress relaxation agent to be added, the higher the cohesive failure resistance.
- Base adhesive B1 Highly heat-resistant epoxy-based Main agent: Epoxy compound with bifunctional allyl group Curing agent: Amine-based with a bisphenol A-type resin skeleton
- Base adhesive B2 One-liquid thermosetting epoxy ⁇ TB2237J manufactured by ThreeBond Co., Ltd.
- Base adhesive B3 Two-liquid acrylic Y612Black manufactured by Cemedine Stress relaxation agent SL1: urethane-based stress relaxation agent SL2: ethylene-acrylic copolymer stress relaxation agent SL3: ethylene-propylene copolymer
- FIG. 5 shows changes in adhesive strength before and after adding 10 wt % of stress relaxation agents (SL1, SL2, SL3) to each base adhesive (B1, B2, B3).
- the six bar graphs on the left side of the figure are obtained by adding the urethane-based stress relaxation agent SL1 as a comparative example, and the adhesive strength of all the base adhesives decreased after the addition.
- the six bars in the middle of the figure are obtained by adding the ethylene-acrylic copolymer stress relaxation agent SL2, which is one example of the present embodiment.
- the adhesive strength was slightly improved, but when added to other base adhesives B2 and B3, which are comparative examples, the adhesive strength decreased. did.
- the six bar graphs on the right side of the figure are obtained by adding the ethylene-propylene copolymer stress relaxation agent SL3, which is one example of the present embodiment.
- the adhesive strength was slightly improved, but when added to other base adhesives B2 and B3, which are comparative examples, the adhesive strength decreased. did.
- the stress relaxation agent of the ethylene-acrylic copolymer and the stress relaxation agent of the ethylene-propylene copolymer according to the first embodiment are added to the highly heat-resistant epoxy base adhesive according to the first embodiment. It was found that adding at least one of these is a good combination.
- the glass transition temperature Tg is a physical property value that serves as an index of heat resistance.
- a stress relaxation agent is a soft material and has a low glass transition temperature. Therefore, when added to a base adhesive, the glass transition temperature of the adhesive is lowered according to the amount added.
- FIG. 6 is a tan ⁇ curve showing the temperature dependence of tan ⁇ when the horizontal axis is temperature and the vertical axis is tan ⁇ when the addition amounts of the base adhesive B1 and the stress relaxation agent SL2 are changed.
- DMA Dynamic mechanical analysis
- the glass transition temperature of the base adhesive B1 and the stress relaxation agent SL2 added up to 20 wt% are both about 240°C from the tan ⁇ peak, and the glass transition temperature of the base adhesive is 40 to 100°C. No change was seen with the addition of the stress relaxant SL2, which has a lower glass transition temperature.
- the high heat resistance of the base adhesive is maintained even when the stress relaxation agent is added within a range in which the adhesive strength is not lowered. Recognize.
- FIG. 7 is a diagram showing the temperature dependence of Young's modulus when the addition amounts of the base adhesive B1 and the stress relaxation agent SL2 are changed.
- the Young's modulus decreases according to the amount added.
- the addition of 20 wt % of the stress relaxation agent SL2 makes it possible to reduce the stress from several GPa to 1 GPa or less, about 1 ⁇ 5.
- a decrease in Young's modulus in a low-temperature region means that the adhesive is capable of relieving stress during thermosetting and has durability capable of being used in an environment with a large temperature difference.
- Fig. 8 is a diagram showing the change in adhesive strength before and after the temperature cycle test, with the base adhesive B1 and 20 wt% of the stress relaxation agent SL2 added to the base adhesive B1.
- the temperature cycle test was performed in the range of -10°C to 130°C for 100 cycles.
- the adhesive strength indicates a change when the value before the test is set to 1. Addition of 20 wt % of the stress relaxation agent SL2 suppresses a decrease in adhesive strength after the temperature cycle test, and it can be seen that there is resistance to stress during temperature cycles.
- the cohesive failure mode is maintained even after the temperature cycle test of the stress relaxation type adhesive to which 20 wt % of the stress relaxation agent SL2 is added, and an improvement in reliability can be expected.
- an epoxy-based base adhesive is composed of an epoxy compound having two or more functional allyl groups as a main component and an amine-based curing agent having a bisphenol A-type resin skeleton. At least one of an ethylene-acrylic copolymer and an ethylene propylene copolymer having an average particle size of 10 ⁇ m or less and an ethylene propylene copolymer was added as a stress relaxation agent in a range of 20 wt% or less to the base adhesive. , while maintaining the high heat resistance and adhesive strength of epoxy-based base adhesives with a glass transition temperature of 200°C or higher, by reducing the Young's modulus, it is possible to provide a stress-relieving adhesive that has resistance to temperature cycles. became.
- the adhesive according to Embodiment 2 will be described below.
- Adjustment of viscosity The stress relaxation type adhesive according to the first embodiment can adjust the viscosity by controlling the particle size of the stress relaxation agent to be added in the range of 1 ⁇ m to 10 ⁇ m. Obtainable. If the viscosity is within this range, it is possible to maintain a level of viscosity that does not drip when applied to a wall surface. In addition, when it is used by injecting it into a narrow gap, it may be adjusted such as by reducing the viscosity. At this time, the smaller the particle size, the more thixotropic adhesive can be produced.
- the viscosity of the adhesive is adjusted not only by the particle size of the stress relaxation agent, but also by the material of the main agent of the base adhesive, the type and particle size of the stress relaxation agent, and the presence or absence and method of surface treatment when applying to the adherend. etc. is also possible. Furthermore, a filler may be added for adjustment.
- filler In order to adjust the viscosity in the range of 3 Pas to 300 Pas, as fillers, fused silica, amorphous silica, glass such as hollow glass, mineral species consisting of silicates such as mica and talc, engineering high grade materials such as polyethylene and polypropylene. A material selected from molecular materials and the like may be added. It may be selected from among these according to the purpose such as cost and weight reduction.
- fused silica when applied to electronic parts such as semiconductors, fused silica is added as a filler to ensure insulation.
- powders flaky , spherical, needles and special shapes
- silver or carbon (C) material may be added.
- the thermal conductivity of the stress-relaxing adhesive according to Embodiment 1, for example, to which no filler is added is about 0.2 W/k ⁇ m. ⁇ It was confirmed that improvement is possible up to about m.
- the amount of these fillers to be added varies depending on the purpose, but when added in the range of 20 to 85 wt % relative to the base adhesive, the purpose can be achieved and the effect can be exhibited. Also, the thickness of the adhesive after curing can be controlled by the size of the filler to be added. In this case, a material that does not collapse when adhered and that has the largest particle size may be added.
- FIG. 9 is a schematic diagram showing the structure of the stress relaxation adhesive 101 according to the second embodiment.
- the stress relaxation adhesive 101 after adjustment and curing has a structure in which the stress relaxation agent 2 and the filler 3 are dispersed in the base epoxy adhesive 1, as shown in FIG.
- the filler 3 added to the adhesive 1 may be subjected to surface treatment in order to improve adhesion between the adhesive 1 and the filler 3 .
- Embodiment 2 in addition to the same effects as those of Embodiment 1, since the filler is added to the stress relaxation adhesive, it is possible to adjust the viscosity. Also, by adjusting the type and amount of the filler to be added, it is possible to improve the function according to the purpose of the adhesive.
- the filler may be selected from glass, silicate minerals, engineering polymer materials, ceramics, silver and carbon. good. In other words, at least one selected from glass, mineral species composed of silicate, engineering polymer materials, ceramics, silver and carbon may be selected.
- Embodiment 3 A rotating electric machine according to Embodiment 3 will be described below with reference to the drawings.
- the rotating electric machine according to the third embodiment uses the stress-relaxing adhesive described in the first or second embodiment for bonding the constituent members.
- FIG. 10A shows an example of an IPM (Inter Permanent Magnet) motor
- FIG. 10B shows an example of an SPM (Surface Permanent Magnet) motor.
- IPM Inter Permanent Magnet
- SPM Surface Permanent Magnet
- Each figure is a partial cross-sectional view in the axial direction, and a magnet 202 is adhered to a rotor core 203 with a shaft 204 as a rotation axis using a stress relaxation type adhesive 101 .
- the magnets 202 used here may be ferrite magnets, neodymium magnets, samarium-cobalt magnets, alnico magnets, bond magnets, or the like, and their alloy composition is not critical.
- the magnets 202 are adhered to the rotor core 203, and are composed of, for example, die-cast moldings or electromagnetic steel plates in which thin iron plates are laminated.
- the IPM motor in FIG. 10A has a magnet 202 embedded in the rotor core 203, and the SPM motor in FIG. may be bonded using the stress relaxation adhesive 101 shown in the first or second embodiment.
- the adhesive strength of the stress relaxation adhesive 101 is reduced even in an environment with severe temperature changes such as an engine room. Therefore, it is possible to maintain the reliability of the motor.
- the same adhesive can be used as the base adhesive or the base adhesive to which the stress relaxation agent is added.
- Embodiment 4 An electronic component according to Embodiment 4 will be described below with reference to the drawings.
- the electronic component according to the fourth embodiment is required to have high heat resistance, and is a power device through which a large current reaching several hundred amperes flows, for example. Such electronic devices are required to have heat resistance of about 200°C.
- power semiconductor devices made of SiC or GaN which are wide bandgap semiconductors, can operate at temperatures of 300° C. or higher, module materials such as connecting materials and sealing materials are also used to exhibit their operating capabilities. is also required to have high heat resistance.
- FIG. 11 shows a cross-sectional structure of a semiconductor device as an electronic component according to this embodiment.
- the stress relaxation type adhesive described in the first or second embodiment is used for bonding the components.
- the semiconductor device has a semiconductor component 303 on a substrate 302, and electrodes (not shown) of the semiconductor component 303 and electrodes (not shown) on the substrate 302 are connected by wiring members 304 such as wires.
- the semiconductor component 303 is sealed with a sealing material 305 .
- a semiconductor component 303 is mounted on a substrate 302 by bonding with a stress relieving adhesive 101 .
- the stress relaxation type adhesive 101 is not limited to the above. You may make it improve thermal conductivity.
- the substrate 302 may be a printed wiring board laminated with glass prepreg material using epoxy, a ceramic substrate laminated with ceramic layers and sintered, a lead frame punched from a thin pure copper plate, or the like.
- the electronic component has a member adhered with the stress relaxation adhesive according to Embodiment 1 or 2, and is therefore excellent in high heat resistance.
- stress relaxation adhesive according to Embodiment 1 or 2
- stress is relieved even when placed in an environment with severe temperature changes such as an engine room.
- the adhesive strength of the mold adhesive 101 does not decrease, and the reliability of the electronic component can be maintained.
- FIG. 12 is a block diagram showing the flow of air relating to the in-flight air conditioning of an aircraft according to the fifth embodiment.
- a general jet engine 401 has a structure in which outside air is taken in, compressed air is produced by a compressor, mixed with fuel in a combustion chamber, and burned intermittently. The air coming out of the combustion chamber is lowered to an arbitrary temperature by the heat exchanger 402 of each unit. A part of the compressed air produced by the compressor 403 is taken in, sent to the air conditioning system of the aircraft, cooled in the air conditioning system, and sent to the cabin. Also, air is taken into the compressor 403 directly from the outside air via the heat exchanger 404 .
- the air outside the aircraft is 0-40°C on the ground and -40-0°C at an altitude of 10,000m or more. Therefore, it is assumed that the heat exchangers 402, 404 and the parts and sensors mounted on the compressor 403 used here are exposed to a high temperature range of 100 to 200°C to a low temperature of -40°C due to the operation of the engine 401. be. Heat resistance of about 200° C. is required for the heat exchanger 402 near the heat source near the engine.
- the adhesive according to Embodiment 1 or 2 has high-temperature heat resistance and can be used in a place such as the heat exchanger 402, and mounted in the heat exchanger 404 and the compressor 403 if it is about -10°C to 130°C. It is possible to use it for bonding sensor parts to be bonded.
- components such as heat exchangers, compressors, and other components, sensors, and the like are bonded with the stress relaxation adhesive 101 of the first or second embodiment. Therefore, not only high heat resistance but also adhesive strength can be maintained even in an environment of -40 to 200°C. Therefore, it is possible to realize an aircraft equipped with a device having a highly reliable bonding portion between constituent members.
- the stress-relieving agent is an ethylene-propylene copolymer
- it is selected from propylene glycol diacrylate, tripropylene glycol diacrylate, 2-hydroxypropyl methacrylate, dipropylene glycol diacrylate, and tripropylene diacrylate. at least one.
- a plurality of stress relaxation agents may be selected from both the ethylene-acrylic copolymer and the ethylene-propylene copolymer described above.
- 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycid Xypropylmethyldiethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-aminopropyltrimethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine , N-phenyl-3-aminopropyltrimethoxysilane, N-(benylbenzyl)-2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, etc. may be used as primers.
- Epoxy adhesive base adhesive
- 2 Stress relaxation agent
- 3 Filler
- 101 Stress relaxation adhesive
- 102 SPCC plate
- 103 Cohesive failure mode
- 104 Interfacial peeling mode
- 202 Magnet 203: rotor core
- 204 shaft
- 302 substrate
- 303 semiconductor component
- 304 wiring material
- 305 sealing material
- 401 engine
- 402 heat exchanger
- 403 compressor.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Adhesives Or Adhesive Processes (AREA)
Abstract
Description
以下、実施の形態1に係る接着剤について説明する。
[接着剤の調整]
本実施の形態1に係る接着剤は熱硬化型のエポキシ系の接着剤である。主成分のエポキシは熱硬化成分であり、アリル基を2官能以上もつエポキシ化合物を主剤とする。主剤は1種類または2種類以上の化合物の組み合わせであってもよい。硬化剤はビスフェノールA型の樹脂骨格をもつアミン系硬化剤を用いる。主剤及び硬化剤を有するものがベースの接着剤を構成する。さらに、このエポキシ化合物の主剤及びアミン系硬化剤を有するベースの接着剤であるエポキシ系接着剤に対し、応力緩和剤としてエチレン-アクリル共重合体及びエチレンプロピレン共重合体のうち少なくともいずれか一方を添加し、応力緩和型の接着剤を構成する。
また、応力緩和剤として用いられるエチレン-プロピレン共重合体はジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、メタクリル酸2-ヒドロキシプロピル、ジプロピレングリコールジアクリレート、トリプロピレンジアクリレート等である。
なお、これらの応力緩和剤に用いられる材料の融点は40~100℃程度であることを特徴とする。
次に、接着強度を評価するために、せん断強度試験片を作成した。
図2にせん断試験片の作成方法およびせん断試験について示す。試験片は2枚1組のSPCC板102(鋼板)であり、1枚のSPCC板102の一方の面の端部に応力緩和型接着剤101を塗布し、2枚のSPCC板102で挟み込む。この試験片を160~200℃で硬化させた後、図2に示すように上下に引っ張ることで接着強度の評価としてせん断試験を行う。
応力緩和剤は図1に示したように応力緩和型接着剤101中に分散して存在するが、この応力緩和剤は平均粒径50μm以下であれば用いることができる。平均粒径を小さくしていき10μm以下の数μmにすると接着強度が向上した。すなわち、平均粒径は1μm以上10μm以下の範囲が望ましい。
<比較例1>
・試験片:SPCC/SPCC
・試験片の前処理:アセトン脱脂、400番バフによる研磨
・接着剤の厚さ:80~100μm
・接着剤:主剤・・・・・ビスフェノールA型エポキシ
硬化剤・・・・ポリアミドアミン
応力緩和剤・・ウレタン系
<実施例1>
・試験片:SPCC/SPCC
・試験片の前処理:アセトン脱脂、400番バフによる研磨
・接着剤の厚さ:80~100μm
・接着剤:主剤・・・・・アリル基を2官能もつエポキシ化合物
硬化剤・・・・ビスフェノールA型の樹脂骨格をもつアミン系
応力緩和剤・・エチレン-アクリル共重合体
応力緩和剤の平均粒径・・・10μm
図4A及び図4Bは、せん断試験後の接着剤の破断モードを説明するための模式図である。図4Aは、接着剤が一方の試験片であるSPCC板102に残り、他方の試験片であるSPCC板102と接着剤との界面で剥離する界面剥離モード104を示している。図4Bは、本実施の形態に係る応力緩和剤2を添加した接着剤の試験前後の状態を示している。図4Bでは接着剤の内部で破断し、接着剤が両方の試験片であるSPCC板102に残る凝集破壊モード103である。
次に、応力緩和剤を添加する前の接着剤に対し異なる種類のものを準備し、本実施の形態1に係る応力緩和剤の効果を確認した。
使用したベース接着剤と応力緩和剤は以下のとおりである。
ベース接着剤B1:高耐熱エポキシ系
主剤・・・・アリル基を2官能もつエポキシ化合物
硬化剤・・・ビスフェノールA型の樹脂骨格をもつアミン系
ベース接着剤B2:1液熱硬化型エポキシ系
・・・スリーボンド社製 TB2237J
ベース接着剤B3:2液アクリル系
・・・セメダイン社製 Y612Black
応力緩和剤SL1:ウレタン系
応力緩和剤SL2:エチレン―アクリル共重合体
応力緩和剤SL3:エチレン―プロピレン共重合体
図中左の6本の棒グラフは、比較例としてウレタン系の応力緩和剤SL1を添加してものであり、いずれのベース接着剤に対しても添加後は接着強度が低下している。
図中中央の6本の棒グラフは、本実施の形態の1例であるエチレン―アクリル共重合体の応力緩和剤SL2を添加したものである。本実施の形態に係るベース接着剤B1である高耐熱エポキシ系に添加した場合、接着強度は若干向上したものの、比較例である他のベース接着剤B2、B3に添加したところ、接着強度は低下した。
図中右の6本の棒グラフは、本実施の形態の1例であるエチレン―プロピレン共重合体の応力緩和剤SL3を添加したものである。本実施の形態に係るベース接着剤B1である高耐熱エポキシ系に添加した場合、接着強度は若干向上したものの、比較例である他のベース接着剤B2、B3に添加したところ、接着強度は低下した。
次に、応力緩和剤の添加によるガラス転移温度の変化について説明する。ガラス転移温度Tgは耐熱性の指標となる物性値である。一般に、応力緩和剤は柔らかい素材であり、ガラス転移温度が低いため、ベースの接着剤に添加することにより添加量に応じて接着剤のガラス転移温度は低下していた。
図6は、横軸を温度、縦軸をtanδとし、ベース接着剤B1及び応力緩和剤SL2の添加量を変化させた時のtanδの温度依存性を示すtanδ曲線である。図6において、tanδのピークからベース接着剤B1及びそれに20wt%まで応力緩和剤SL2を添加したものではガラス転移温度はいずれも約240℃であり、ガラス転移温度が40~100℃とベース接着剤よりも低いガラス転移温度を有する応力緩和剤SL2を添加しても変化は見られなかった。
図7は、ベース接着剤B1及び応力緩和剤SL2の添加量を変化させた時のヤング率の温度依存性を示す図である。図7において、ベース接着剤B1に対して、応力緩和剤SL2を添加していくと、添加量に応じて、ヤング率は低下する。特に、150℃以下においては、応力緩和剤SL2を20wt%添加すると数GPaから1GPa以下まで、1/5程度まで低下させることが可能となる。低温域でのヤング率の低下は、熱硬化時の応力の緩和を図れ、また温度差の激しい環境下での使用に対応可能な耐性を有する接着剤であることを意味している。
以下、実施の形態2に係る接着剤について説明する。
[粘度の調整]
上記実施の形態1に係る応力緩和型接着剤は添加する応力緩和剤の粒径を1μm~10μmの範囲でコントロールすることで、粘度を調整することができ、粘度として3Pas~300Pasの接着剤を得ることができる。粘度がこの範囲であれば、壁面に塗布する場合には垂れないレベルの粘度を維持することができる。また、狭い間隙に注入して用いる場合には粘度を小さくするなど、調整すればよい。このとき粒径が小さい程、チクソ性の高い接着剤を作製することが可能である。
接着剤の粘度の調整は、応力緩和剤の粒径だけでなく、ベース接着剤の主剤の材料、応力緩和剤の種類及び粒径、及び被接着体に塗布する際の表面処理の有無及び方法等によっても可能である。さらに、フィラーを添加して調整してもよい。
粘度を3Pas~300Pasの範囲に調整するために、フィラーとして、溶融シリカ、非晶質シリカ、中空ガラス等のガラス、マイカ及びタルク等のケイ酸塩からなる鉱物種、ポリエチレン及びポリプロピレン等のエンジニアリング高分子材等から選択されたものを添加してもよい。これらの中からコスト、軽量化等の目的に応じて選択すればよい。
フィラーを添加していない例えば本実施の形態1に係る応力緩和型の接着剤の熱伝導率は0.2W/k・m程度であるが、フィラーとして銀の粉末を添加することで100W/k・m程度まで改善が可能となることを確認した。
また、添加するフィラーの大きさにより硬化後の接着剤の厚みをコントロールすることができる。この場合、接着させたときにつぶれない材料で最大粒径のものを添加すればよい。
以下、実施の形態3に係る回転電機について図を用いて説明する。本実施の形態3にかかわる回転電機は構成する部材の接着に上記実施の形態1または2で説明した応力緩和型の接着剤を用いている。
以下、実施の形態4に係る電子部品について図を用いて説明する。
実施の形態4に係る電子部品は、高耐熱性が要求されるもので、例えば数100アンペアに達する大電流が流れるパワーデバイスである。このような電子デバイスは200℃程度の耐熱性が要求される。また、ワイドバンドギャップ半導体であるSiCまたはGaNからなるパワー半導体デバイスでは、300℃以上でも動作可能であるので、その動作能力を発揮させるためにも使用される接続材、封止材等のモジュール材料にも高耐熱性が要求される。
図において、半導体デバイスは基板302上に半導体部品303を有し、半導体部品303の電極(図示せず)と基板302上の電極(図示せず)とはワイヤのような配線材304で接続され、半導体部品303は封止材305により封止されている。半導体部品303は基板302に応力緩和型接着剤101により接着されて搭載されている。
また、基板302はエポキシを用いたガラスプリプレグ材を積層したプリント配線板あるいはセラミック層を積層させて焼結したセラミック基板、薄い純銅板を打ち抜き成型したリードフレーム等を用いてもよい。
以下、実施の形態5に係る航空機について図を用いて説明する。
図12は、実施の形態5に係る航空機の機内空調に関する空気の流れを示すブロック図である。一般的なジェットエンジン401は、外気を取り込み圧縮機により圧縮空気を作り、燃焼室で燃料と混合し断続的に燃焼させる構造となっている。燃焼室から出た空気は各ユニットの熱交換器402で任意の温度まで下げられる。これに圧縮機403で作られた一部の圧縮空気を取り入れ、これを航空機のエアコンシステムに送り、エアコンシステム内でこの空気が冷却され、客室に送風される仕組みとなっている。また、直接外気から熱交換器404を介して圧縮機403に空気が取り込まれる。
(1)応力緩和剤
上記実施の形態1から5において、添加される応力緩和剤が1種類である例を示したが、応力緩和剤がエチレン-アクリル共重合体の場合は、エチレンジメタクリレート、ヘキサメチレンジアクリレート、テトラメチレンジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジアクリレート及び1,3-ブチレングリコールジアクリレートの中から選ばれた少なくとも1つであればよい。
また、応力緩和剤がエチレン-プロピレン共重合体の場合は、プロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、メタクリル酸2-ヒドロキシプロピル、ジプロピレングリコールジアクリレート、及びトリプロピレンジアクリレートの中から選ばれた少なくとも1つであればよい。
応力緩和剤として上述したエチレン-アクリル共重合体及びエチレン-プロピレン共重合体の両方から複数選ばれてもよい。
なお、実施の形態1の試験片の表面処理について述べたが、実施の形態3から5に示された構成部品の接着に際し、表面処理を行えば、接着強度の向上を図ることができる、すなわち、前処理として、大気プラズマ処理、深紫外光処理、コロナ放電処理、疎化処理(レーザー疎化、研磨、サンドブラスト処理)等の物理的処理を行う。また、化学処理としてシランカップリング剤をプライマーとして塗布することでも同様の効果が得られる。例えば、エポキシ系接着剤に対しては2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ベニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩等をプライマーとして用いてもよい。
従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
Claims (7)
- アリル基を2官能以上もつエポキシ化合物を主剤とし、
ビスフェノールA型の樹脂骨格をもつアミン系硬化剤を用いてエポキシ系のベース接着剤を構成し、
応力緩和剤として平均粒子径が10μm以下であるエチレン-アクリル共重合体およびエチレンプロピレン共重合体のうち少なくともいずれか一方を、前記ベース接着剤に対し20wt%以下の範囲で含む、接着剤。 - 前記応力緩和剤がエチレン-アクリル共重合体の場合は、エチレンジメタクリレート、ヘキサメチレンジアクリレート、テトラメチレンジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジアクリレート及び1,3-ブチレングリコールジアクリレートの中から選ばれた少なくとも1つであり、
前記応力緩和剤がエチレン-プロピレン共重合体の場合は、プロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、メタクリル酸2-ヒドロキシプロピル、ジプロピレングリコールジアクリレート、及びトリプロピレンジアクリレートの中から選ばれた少なくとも1つである、請求項1に記載の接着剤。 - 前記ベース接着剤に対し20wt%以上85wt%以下の割合でフィラーを含む、請求項1または2に記載の接着剤。
- 前記フィラーは、ガラス、ケイ酸塩からなる鉱物種、エンジニアリング高分子材、セラミックス、銀及び炭素の中から選ばれた少なくとも1つである請求項3に記載の接着剤。
- 請求項1から4のいずれか1項に記載の接着剤により接着された構成部材を備えた回転電機。
- 請求項1から4のいずれか1項に記載の接着剤により接着された構成部材を備えた電子部品。
- 請求項1から4のいずれか1項に記載の接着剤により接着された構成部材を備えた航空機。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023506383A JP7479564B2 (ja) | 2021-03-15 | 2021-03-15 | 接着剤、回転電機、電子部品及び航空機 |
US18/269,952 US20230392057A1 (en) | 2021-03-15 | 2021-03-15 | Adhesive, rotary electric machine, electronic component, and aircraft |
CN202180092535.4A CN116888233A (zh) | 2021-03-15 | 2021-03-15 | 粘接剂、旋转电机、电子部件及飞机 |
PCT/JP2021/010324 WO2022195655A1 (ja) | 2021-03-15 | 2021-03-15 | 接着剤、回転電機、電子部品及び航空機 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/010324 WO2022195655A1 (ja) | 2021-03-15 | 2021-03-15 | 接着剤、回転電機、電子部品及び航空機 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022195655A1 true WO2022195655A1 (ja) | 2022-09-22 |
Family
ID=83320071
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/010324 WO2022195655A1 (ja) | 2021-03-15 | 2021-03-15 | 接着剤、回転電機、電子部品及び航空機 |
Country Status (4)
Country | Link |
---|---|
US (1) | US20230392057A1 (ja) |
JP (1) | JP7479564B2 (ja) |
CN (1) | CN116888233A (ja) |
WO (1) | WO2022195655A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001164047A (ja) * | 1999-12-06 | 2001-06-19 | Denki Kagaku Kogyo Kk | ハロゲン含有ゴム組成物 |
JP2008088279A (ja) * | 2006-09-30 | 2008-04-17 | Sumitomo Bakelite Co Ltd | アンダーフィル用液状樹脂組成物および半導体装置 |
JP2017506285A (ja) * | 2014-02-19 | 2017-03-02 | コリア インスティチュート オブ インダストリアル テクノロジー | 新規のエポキシ化合物、それを含む混合物、組成物、硬化物、その製造方法、及びその用途 |
JP2018095780A (ja) * | 2016-12-15 | 2018-06-21 | ユニマテック株式会社 | カルボキシル基含有アクリルゴム組成物 |
-
2021
- 2021-03-15 US US18/269,952 patent/US20230392057A1/en active Pending
- 2021-03-15 WO PCT/JP2021/010324 patent/WO2022195655A1/ja active Application Filing
- 2021-03-15 JP JP2023506383A patent/JP7479564B2/ja active Active
- 2021-03-15 CN CN202180092535.4A patent/CN116888233A/zh active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001164047A (ja) * | 1999-12-06 | 2001-06-19 | Denki Kagaku Kogyo Kk | ハロゲン含有ゴム組成物 |
JP2008088279A (ja) * | 2006-09-30 | 2008-04-17 | Sumitomo Bakelite Co Ltd | アンダーフィル用液状樹脂組成物および半導体装置 |
JP2017506285A (ja) * | 2014-02-19 | 2017-03-02 | コリア インスティチュート オブ インダストリアル テクノロジー | 新規のエポキシ化合物、それを含む混合物、組成物、硬化物、その製造方法、及びその用途 |
JP2018095780A (ja) * | 2016-12-15 | 2018-06-21 | ユニマテック株式会社 | カルボキシル基含有アクリルゴム組成物 |
Also Published As
Publication number | Publication date |
---|---|
JP7479564B2 (ja) | 2024-05-08 |
US20230392057A1 (en) | 2023-12-07 |
CN116888233A (zh) | 2023-10-13 |
JPWO2022195655A1 (ja) | 2022-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10351728B2 (en) | Thermosetting resin composition, method of producing thermal conductive sheet, and power module | |
EP2832792A1 (en) | Curable resin composition, method for producing same, highly thermally conductive resin composition, and highly thermally conductive multilayer substrate | |
JP6675155B2 (ja) | 半導体用ダイアタッチペースト及び半導体装置 | |
KR20070116552A (ko) | 접착제 조성물 및 접착 필름 | |
US9355943B2 (en) | Manufacturing and evaluation method of a semiconductor device | |
JPWO2018173945A1 (ja) | 回路基板用樹脂組成物とそれを用いた金属ベース回路基板 | |
KR102504140B1 (ko) | 밀봉용 액상 에폭시 수지 조성물 및 전자 부품 장치 | |
JP2016004841A (ja) | 金属箔張基板、回路基板および発熱体搭載基板 | |
KR101612596B1 (ko) | 적층체 및 파워 반도체 모듈용 부품의 제조 방법 | |
KR20150136471A (ko) | 전자 디바이스 봉지용 수지 시트 및 전자 디바이스 패키지의 제조 방법 | |
JP2017098376A (ja) | 樹脂組成物、回路基板、発熱体搭載基板および回路基板の製造方法 | |
JPWO2016158268A1 (ja) | 接着組成物シートおよびその製造方法ならびに半導体装置 | |
JP2010059241A (ja) | 半導体装置封止用組成物 | |
WO2022195655A1 (ja) | 接着剤、回転電機、電子部品及び航空機 | |
JP6575321B2 (ja) | 樹脂組成物、回路基板、発熱体搭載基板および回路基板の製造方法 | |
JP6646360B2 (ja) | 封止用樹脂シート、及び、電子デバイス装置 | |
JP2020117619A (ja) | 絶縁性樹脂組成物、絶縁性樹脂硬化体、積層体及び回路基板 | |
CN113710747B (zh) | 绝缘性树脂组合物、绝缘性树脂固化体、层叠体及电路基板 | |
KR102679622B1 (ko) | 고온 전도성 열경화성 수지 조성물 | |
US8709201B2 (en) | Method for gluing components, forming a temperature-resistant adhesive layer | |
JP4914284B2 (ja) | 回路基板用組成物とそれを用いた回路基板 | |
JP2016117869A (ja) | 半導体接着用樹脂組成物及び半導体装置 | |
JP2017197698A (ja) | コアシェル構造を有する粒子及びその製造方法 | |
WO2024202009A1 (ja) | 接着構造体、半導体装置、モータ、飛翔体及び接着構造体の製造方法 | |
JP6821550B2 (ja) | 中空デバイス封止フィルム用熱硬化性エポキシ樹脂組成物及び中空デバイス封止用熱硬化性エポキシ樹脂フィルム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21931411 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023506383 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180092535.4 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21931411 Country of ref document: EP Kind code of ref document: A1 |