WO2022195655A1 - 接着剤、回転電機、電子部品及び航空機 - Google Patents

接着剤、回転電機、電子部品及び航空機 Download PDF

Info

Publication number
WO2022195655A1
WO2022195655A1 PCT/JP2021/010324 JP2021010324W WO2022195655A1 WO 2022195655 A1 WO2022195655 A1 WO 2022195655A1 JP 2021010324 W JP2021010324 W JP 2021010324W WO 2022195655 A1 WO2022195655 A1 WO 2022195655A1
Authority
WO
WIPO (PCT)
Prior art keywords
adhesive
stress relaxation
agent
ethylene
stress
Prior art date
Application number
PCT/JP2021/010324
Other languages
English (en)
French (fr)
Inventor
芳幸 加茂
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023506383A priority Critical patent/JP7479564B2/ja
Priority to US18/269,952 priority patent/US20230392057A1/en
Priority to CN202180092535.4A priority patent/CN116888233A/zh
Priority to PCT/JP2021/010324 priority patent/WO2022195655A1/ja
Publication of WO2022195655A1 publication Critical patent/WO2022195655A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins
    • C09J163/10Epoxy resins modified by unsaturated compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/04Non-macromolecular additives inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/02Non-macromolecular additives
    • C09J11/06Non-macromolecular additives organic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J11/00Features of adhesives not provided for in group C09J9/00, e.g. additives
    • C09J11/08Macromolecular additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J163/00Adhesives based on epoxy resins; Adhesives based on derivatives of epoxy resins

Definitions

  • This application relates to adhesives, rotating electric machines, electronic components, and aircraft.
  • the epoxy adhesive described in Patent Document 1 constitutes a base containing at least 50% by mass of liquid epoxy having three or more functionalities, and the core-shell toughening agent added as a stress relaxation agent also has a glass transition temperature Tg of Since it includes a low temperature (-110 to -30°C), it cannot be said that the structure has sufficient heat resistance, and the resistance to temperature cycles (thermal shock resistance) is not described and unknown.
  • the cured product composition described in Patent Document 2 has high heat resistance for application to various films such as optical materials, display elements, and electronic components, which are the application destinations described in the document (paragraph 0099). It may be said that it has sex. However, the glass transition temperature Tg is about 80 to 100 ° C. (Tables 1 to 3), and it cannot be said that it has sufficiently high heat resistance, and there is no description about the resistance to temperature cycles (thermal shock resistance). is unknown.
  • the present application discloses a technique for solving the above problems, and aims to provide a stress-relaxing adhesive that has high heat resistance and resistance to stress during temperature cycles. do.
  • the adhesive disclosed in the present application uses an epoxy compound having two or more functional allyl groups as a main component, and an epoxy-based base adhesive using an amine-based curing agent having a bisphenol A type resin skeleton, and a stress relaxation agent. At least one of an ethylene-acrylic copolymer and an ethylene-propylene copolymer having an average particle size of 10 ⁇ m or less is contained in an amount of 20 wt % or less based on the base adhesive.
  • the combination of the base adhesive and the stress relaxation agent added thereto can reduce the Young's modulus on the low temperature side and does not change the glass transition temperature. While maintaining the high heat resistance of the base adhesive, it has a structure that has resistance so as to relax the stress at the time of temperature change, and using this adhesive improves the reliability of the bonded portion.
  • FIG. 1 is a schematic diagram showing the structure of a stress relaxation adhesive according to Embodiment 1.
  • FIG. FIG. 4 is a diagram illustrating a method for evaluating the adhesive strength of the stress relaxation adhesive according to Embodiment 1; 4 is a diagram showing the relationship between the amount of stress relaxation agent added to the stress relaxation adhesive and the adhesive strength according to Embodiment 1.
  • FIG. FIG. 3 is a schematic diagram showing the rupture mode after the shear test according to FIG. 2;
  • FIG. 3 is a schematic diagram showing another failure mode after the shear test according to FIG. 2;
  • FIG. 4 is a diagram showing changes in adhesive strength when different stress relaxation agents are added to three types of base adhesives; 5 is a diagram showing temperature dependence of tan ⁇ when the amount of stress relaxation agent added is changed in the stress relaxation adhesive according to Embodiment 1.
  • FIG. 4 is a diagram showing temperature dependence of Young's modulus when the amount of stress relaxation agent added is changed in the stress relaxation adhesive according to Embodiment 1.
  • FIG. 4 is a diagram showing changes in adhesive strength of the stress relaxation adhesive according to Embodiment 1 before and after a temperature cycle test;
  • FIG. FIG. 5 is a schematic diagram showing the structure of a stress relaxation adhesive according to Embodiment 2; FIG.
  • FIG. 11 is a partial cross-sectional view showing the structure of an IPM motor, which is an example of a rotating electrical machine according to Embodiment 3;
  • FIG. 11 is a partial cross-sectional view showing the structure of an SPM motor, which is an example of a rotating electric machine according to Embodiment 3;
  • FIG. 11 is a cross-sectional view showing the structure of a semiconductor device as an example of an electronic component according to a fourth embodiment;
  • FIG. 12 is a block diagram showing the flow of air relating to the in-flight air conditioning of an aircraft according to Embodiment 5;
  • the adhesive according to Embodiment 1 will be described below.
  • the adhesive according to the first embodiment is a thermosetting epoxy adhesive.
  • Epoxy which is the main component, is a thermosetting component, and the main ingredient is an epoxy compound having two or more allyl groups.
  • the main agent may be one type or a combination of two or more types of compounds.
  • An amine-based curing agent having a bisphenol A type resin skeleton is used as the curing agent.
  • the one with the main agent and hardener constitutes the base adhesive.
  • At least one of an ethylene-acrylic copolymer and an ethylene propylene copolymer is added as a stress relaxation agent to the epoxy adhesive, which is the base adhesive having the principal epoxy compound and the amine curing agent. added to form a stress-relieving adhesive.
  • the ethylene-acrylic copolymer used as the stress relaxation agent includes ethylene dimethacrylate, hexamethylene diacrylate, tetramethylene dimethacrylate, diethylene glycol dimethacrylate, triethylene glycol dimethacrylate, tetraethylene glycol diacrylate, 1,3- butylene glycol diacrylate and the like.
  • Ethylene-propylene copolymers used as stress relaxation agents include dipropylene glycol diacrylate, tripropylene glycol diacrylate, 2-hydroxypropyl methacrylate, dipropylene glycol diacrylate, tripropylene diacrylate and the like.
  • the melting points of the materials used for these stress relaxation agents are characterized by being about 40 to 100.degree.
  • An example of the adhesive according to the first embodiment is shown in Table 1 below.
  • 4,4'-Isopropylidenediphenol and p-phenylene dicyanate which are epoxy compounds with two or more functionalities of two types of allyl groups, as the main agent, and N, an amine-based curing agent with a bisphenol A-type resin skeleton, as an additive.
  • N-bis(2,3-epoxypropyl)-4-(2,3-epoxypropoxy)aniline is used to constitute the base epoxy adhesive, and triethylene glycol dimethacrylate, which is an ethylene-acrylic copolymer.
  • Add less than 20 wt% of three types of stress relaxation agents including, add less than 5 wt% of amorphous silica as a viscosity adjustment and adhesive film thickness adjustment material, and adjust so that the total is 100 wt%.
  • the main agent, additive, curing agent, and the like are examples, and are not limited to these.
  • an epoxy compound having two or more functional allyl groups may be used as the main agent.
  • FIG. 1 shows a schematic diagram showing the structure of the stress relaxation adhesive according to the first embodiment.
  • the stress relieving adhesive 101 after adjustment and curing has a structure in which the stress relieving agent 2 is dispersed in the base epoxy adhesive 1 as shown in FIG.
  • a shear strength test piece was prepared to evaluate the adhesive strength.
  • Fig. 2 shows the method of preparing the shear test piece and the shear test.
  • the test piece is a set of two SPCC plates 102 (steel plates).
  • a stress relaxation type adhesive 101 is applied to the edge of one surface of one SPCC plate 102 and sandwiched between the two SPCC plates 102 .
  • a shear test is performed as an evaluation of adhesive strength by pulling it up and down as shown in FIG.
  • the surface treatment of the SPCC plate 102 which is the test piece, was atmospheric plasma treatment, deep ultraviolet light treatment, corona discharge treatment, roughening treatment (laser roughening, polishing, sandblasting, ) and other physical treatments can be expected to improve adhesion or bonding strength.
  • a similar effect can be obtained by applying a silane coupling agent as a primer as a chemical treatment.
  • 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycid Xypropylmethyldiethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-aminopropyltrimethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine , N-phenyl-3-aminopropyltrimethoxysilane, N-(benylbenzyl)-2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, etc. may be used as primers.
  • Adhesive strength improved when the average particle diameter was reduced to several micrometers below 10 micrometers. That is, the average particle size is preferably in the range of 1 ⁇ m or more and 10 ⁇ m or less.
  • FIG. 3 is a diagram showing the relationship between the amount of stress relaxation agent added and the adhesive strength.
  • the conditions of Comparative Example 1 and Example 1 are as follows. The pretreatment conditions were the same. ⁇ Comparative Example 1> ⁇ Test piece: SPCC/SPCC ⁇ Pretreatment of test piece: acetone degreasing, polishing with No. 400 buff ⁇ Adhesive thickness: 80 to 100 ⁇ m Adhesive: Main agent: Bisphenol A type epoxy Curing agent: Polyamidoamine Stress relaxation agent: Urethane ⁇ Example 1> ⁇ Test piece: SPCC/SPCC ⁇ Pretreatment of test piece: acetone degreasing, polishing with No.
  • Fig. 3 shows changes in adhesive strength when the adhesive strength when no stress relaxation agent is added is set to 1.
  • the stress relaxation type adhesive according to Example 1 is indicated by a solid line, and the addition amount of the stress relaxation agent was increased, and no decrease in strength was observed up to the addition concentration of 20 wt %.
  • the adhesive of Comparative Example 1 the strength gradually decreased due to the addition of the stress relaxation agent, and the strength significantly decreased when the additive concentration exceeded 10 wt %.
  • the epoxy adhesive (base adhesive, equivalent to 0 wt% of the stress relaxation agent in FIG. 3) before adding the stress relaxation agent of Example 1 had an adhesive strength of 16 to 18 MPa in the shear test described above. be.
  • FIG. 4A and 4B are schematic diagrams for explaining the breaking mode of the adhesive after the shear test.
  • FIG. 4A shows an interfacial debonding mode 104 in which the adhesive remains on one test piece, the SPCC plate 102, and delaminates at the interface between the other test piece, the SPCC plate 102, and the adhesive.
  • FIG. 4B shows the state before and after the test of the adhesive to which the stress relaxation agent 2 according to this embodiment is added.
  • FIG. 4B is a cohesive failure mode 103 where the adhesive breaks inside and the adhesive remains on both specimens, the SPCC plate 102 .
  • Example 1 of FIG. 3 when the amount of stress relaxation agent added was 0, the fracture mode after the test was interfacial peeling, but as the stress relaxation agent was added, the fracture mode was cohesive failure. increased and confirmed that the mode changed. At a stress relaxation agent concentration of 20 wt %, the failure mode was cohesive failure. This indicates that when the additive concentration is 20 wt % or less, the effect of stress relaxation is exhibited without reducing the adhesive strength, and cohesive failure occurs. From the observation results of the fracture mode and FIG. 3, it was found that the addition concentration of the stress relaxation agent is desirably 10 to 20 wt % and is effective in stress relaxation.
  • the epoxy-based adhesive (base adhesive) before adding the stress relaxation agent of Example 1 described above has an adhesive strength of 16 to 18 MPa after curing, and has a high heat resistance with a glass transition temperature of 200 ° C. or higher. It is a flexible epoxy adhesive. According to FIG. 3, the adhesive strength of the stress relaxation adhesive of Example 1 did not decrease until the addition concentration of 20 wt%, and the adhesive strength was maintained at 10 MPa even at 30 wt%. Turned out to be glue.
  • Example 1 one type of stress relaxation agent was added, but two or more of the same type may be added at the same time.
  • the smaller the average particle diameter (size) of the stress relaxation agent to be added the finer the dispersion in the entire adhesive and the higher the stress relaxation effect.
  • the added amount is the same, the smaller the average particle size of the stress relaxation agent to be added, the higher the cohesive failure resistance.
  • Base adhesive B1 Highly heat-resistant epoxy-based Main agent: Epoxy compound with bifunctional allyl group Curing agent: Amine-based with a bisphenol A-type resin skeleton
  • Base adhesive B2 One-liquid thermosetting epoxy ⁇ TB2237J manufactured by ThreeBond Co., Ltd.
  • Base adhesive B3 Two-liquid acrylic Y612Black manufactured by Cemedine Stress relaxation agent SL1: urethane-based stress relaxation agent SL2: ethylene-acrylic copolymer stress relaxation agent SL3: ethylene-propylene copolymer
  • FIG. 5 shows changes in adhesive strength before and after adding 10 wt % of stress relaxation agents (SL1, SL2, SL3) to each base adhesive (B1, B2, B3).
  • the six bar graphs on the left side of the figure are obtained by adding the urethane-based stress relaxation agent SL1 as a comparative example, and the adhesive strength of all the base adhesives decreased after the addition.
  • the six bars in the middle of the figure are obtained by adding the ethylene-acrylic copolymer stress relaxation agent SL2, which is one example of the present embodiment.
  • the adhesive strength was slightly improved, but when added to other base adhesives B2 and B3, which are comparative examples, the adhesive strength decreased. did.
  • the six bar graphs on the right side of the figure are obtained by adding the ethylene-propylene copolymer stress relaxation agent SL3, which is one example of the present embodiment.
  • the adhesive strength was slightly improved, but when added to other base adhesives B2 and B3, which are comparative examples, the adhesive strength decreased. did.
  • the stress relaxation agent of the ethylene-acrylic copolymer and the stress relaxation agent of the ethylene-propylene copolymer according to the first embodiment are added to the highly heat-resistant epoxy base adhesive according to the first embodiment. It was found that adding at least one of these is a good combination.
  • the glass transition temperature Tg is a physical property value that serves as an index of heat resistance.
  • a stress relaxation agent is a soft material and has a low glass transition temperature. Therefore, when added to a base adhesive, the glass transition temperature of the adhesive is lowered according to the amount added.
  • FIG. 6 is a tan ⁇ curve showing the temperature dependence of tan ⁇ when the horizontal axis is temperature and the vertical axis is tan ⁇ when the addition amounts of the base adhesive B1 and the stress relaxation agent SL2 are changed.
  • DMA Dynamic mechanical analysis
  • the glass transition temperature of the base adhesive B1 and the stress relaxation agent SL2 added up to 20 wt% are both about 240°C from the tan ⁇ peak, and the glass transition temperature of the base adhesive is 40 to 100°C. No change was seen with the addition of the stress relaxant SL2, which has a lower glass transition temperature.
  • the high heat resistance of the base adhesive is maintained even when the stress relaxation agent is added within a range in which the adhesive strength is not lowered. Recognize.
  • FIG. 7 is a diagram showing the temperature dependence of Young's modulus when the addition amounts of the base adhesive B1 and the stress relaxation agent SL2 are changed.
  • the Young's modulus decreases according to the amount added.
  • the addition of 20 wt % of the stress relaxation agent SL2 makes it possible to reduce the stress from several GPa to 1 GPa or less, about 1 ⁇ 5.
  • a decrease in Young's modulus in a low-temperature region means that the adhesive is capable of relieving stress during thermosetting and has durability capable of being used in an environment with a large temperature difference.
  • Fig. 8 is a diagram showing the change in adhesive strength before and after the temperature cycle test, with the base adhesive B1 and 20 wt% of the stress relaxation agent SL2 added to the base adhesive B1.
  • the temperature cycle test was performed in the range of -10°C to 130°C for 100 cycles.
  • the adhesive strength indicates a change when the value before the test is set to 1. Addition of 20 wt % of the stress relaxation agent SL2 suppresses a decrease in adhesive strength after the temperature cycle test, and it can be seen that there is resistance to stress during temperature cycles.
  • the cohesive failure mode is maintained even after the temperature cycle test of the stress relaxation type adhesive to which 20 wt % of the stress relaxation agent SL2 is added, and an improvement in reliability can be expected.
  • an epoxy-based base adhesive is composed of an epoxy compound having two or more functional allyl groups as a main component and an amine-based curing agent having a bisphenol A-type resin skeleton. At least one of an ethylene-acrylic copolymer and an ethylene propylene copolymer having an average particle size of 10 ⁇ m or less and an ethylene propylene copolymer was added as a stress relaxation agent in a range of 20 wt% or less to the base adhesive. , while maintaining the high heat resistance and adhesive strength of epoxy-based base adhesives with a glass transition temperature of 200°C or higher, by reducing the Young's modulus, it is possible to provide a stress-relieving adhesive that has resistance to temperature cycles. became.
  • the adhesive according to Embodiment 2 will be described below.
  • Adjustment of viscosity The stress relaxation type adhesive according to the first embodiment can adjust the viscosity by controlling the particle size of the stress relaxation agent to be added in the range of 1 ⁇ m to 10 ⁇ m. Obtainable. If the viscosity is within this range, it is possible to maintain a level of viscosity that does not drip when applied to a wall surface. In addition, when it is used by injecting it into a narrow gap, it may be adjusted such as by reducing the viscosity. At this time, the smaller the particle size, the more thixotropic adhesive can be produced.
  • the viscosity of the adhesive is adjusted not only by the particle size of the stress relaxation agent, but also by the material of the main agent of the base adhesive, the type and particle size of the stress relaxation agent, and the presence or absence and method of surface treatment when applying to the adherend. etc. is also possible. Furthermore, a filler may be added for adjustment.
  • filler In order to adjust the viscosity in the range of 3 Pas to 300 Pas, as fillers, fused silica, amorphous silica, glass such as hollow glass, mineral species consisting of silicates such as mica and talc, engineering high grade materials such as polyethylene and polypropylene. A material selected from molecular materials and the like may be added. It may be selected from among these according to the purpose such as cost and weight reduction.
  • fused silica when applied to electronic parts such as semiconductors, fused silica is added as a filler to ensure insulation.
  • powders flaky , spherical, needles and special shapes
  • silver or carbon (C) material may be added.
  • the thermal conductivity of the stress-relaxing adhesive according to Embodiment 1, for example, to which no filler is added is about 0.2 W/k ⁇ m. ⁇ It was confirmed that improvement is possible up to about m.
  • the amount of these fillers to be added varies depending on the purpose, but when added in the range of 20 to 85 wt % relative to the base adhesive, the purpose can be achieved and the effect can be exhibited. Also, the thickness of the adhesive after curing can be controlled by the size of the filler to be added. In this case, a material that does not collapse when adhered and that has the largest particle size may be added.
  • FIG. 9 is a schematic diagram showing the structure of the stress relaxation adhesive 101 according to the second embodiment.
  • the stress relaxation adhesive 101 after adjustment and curing has a structure in which the stress relaxation agent 2 and the filler 3 are dispersed in the base epoxy adhesive 1, as shown in FIG.
  • the filler 3 added to the adhesive 1 may be subjected to surface treatment in order to improve adhesion between the adhesive 1 and the filler 3 .
  • Embodiment 2 in addition to the same effects as those of Embodiment 1, since the filler is added to the stress relaxation adhesive, it is possible to adjust the viscosity. Also, by adjusting the type and amount of the filler to be added, it is possible to improve the function according to the purpose of the adhesive.
  • the filler may be selected from glass, silicate minerals, engineering polymer materials, ceramics, silver and carbon. good. In other words, at least one selected from glass, mineral species composed of silicate, engineering polymer materials, ceramics, silver and carbon may be selected.
  • Embodiment 3 A rotating electric machine according to Embodiment 3 will be described below with reference to the drawings.
  • the rotating electric machine according to the third embodiment uses the stress-relaxing adhesive described in the first or second embodiment for bonding the constituent members.
  • FIG. 10A shows an example of an IPM (Inter Permanent Magnet) motor
  • FIG. 10B shows an example of an SPM (Surface Permanent Magnet) motor.
  • IPM Inter Permanent Magnet
  • SPM Surface Permanent Magnet
  • Each figure is a partial cross-sectional view in the axial direction, and a magnet 202 is adhered to a rotor core 203 with a shaft 204 as a rotation axis using a stress relaxation type adhesive 101 .
  • the magnets 202 used here may be ferrite magnets, neodymium magnets, samarium-cobalt magnets, alnico magnets, bond magnets, or the like, and their alloy composition is not critical.
  • the magnets 202 are adhered to the rotor core 203, and are composed of, for example, die-cast moldings or electromagnetic steel plates in which thin iron plates are laminated.
  • the IPM motor in FIG. 10A has a magnet 202 embedded in the rotor core 203, and the SPM motor in FIG. may be bonded using the stress relaxation adhesive 101 shown in the first or second embodiment.
  • the adhesive strength of the stress relaxation adhesive 101 is reduced even in an environment with severe temperature changes such as an engine room. Therefore, it is possible to maintain the reliability of the motor.
  • the same adhesive can be used as the base adhesive or the base adhesive to which the stress relaxation agent is added.
  • Embodiment 4 An electronic component according to Embodiment 4 will be described below with reference to the drawings.
  • the electronic component according to the fourth embodiment is required to have high heat resistance, and is a power device through which a large current reaching several hundred amperes flows, for example. Such electronic devices are required to have heat resistance of about 200°C.
  • power semiconductor devices made of SiC or GaN which are wide bandgap semiconductors, can operate at temperatures of 300° C. or higher, module materials such as connecting materials and sealing materials are also used to exhibit their operating capabilities. is also required to have high heat resistance.
  • FIG. 11 shows a cross-sectional structure of a semiconductor device as an electronic component according to this embodiment.
  • the stress relaxation type adhesive described in the first or second embodiment is used for bonding the components.
  • the semiconductor device has a semiconductor component 303 on a substrate 302, and electrodes (not shown) of the semiconductor component 303 and electrodes (not shown) on the substrate 302 are connected by wiring members 304 such as wires.
  • the semiconductor component 303 is sealed with a sealing material 305 .
  • a semiconductor component 303 is mounted on a substrate 302 by bonding with a stress relieving adhesive 101 .
  • the stress relaxation type adhesive 101 is not limited to the above. You may make it improve thermal conductivity.
  • the substrate 302 may be a printed wiring board laminated with glass prepreg material using epoxy, a ceramic substrate laminated with ceramic layers and sintered, a lead frame punched from a thin pure copper plate, or the like.
  • the electronic component has a member adhered with the stress relaxation adhesive according to Embodiment 1 or 2, and is therefore excellent in high heat resistance.
  • stress relaxation adhesive according to Embodiment 1 or 2
  • stress is relieved even when placed in an environment with severe temperature changes such as an engine room.
  • the adhesive strength of the mold adhesive 101 does not decrease, and the reliability of the electronic component can be maintained.
  • FIG. 12 is a block diagram showing the flow of air relating to the in-flight air conditioning of an aircraft according to the fifth embodiment.
  • a general jet engine 401 has a structure in which outside air is taken in, compressed air is produced by a compressor, mixed with fuel in a combustion chamber, and burned intermittently. The air coming out of the combustion chamber is lowered to an arbitrary temperature by the heat exchanger 402 of each unit. A part of the compressed air produced by the compressor 403 is taken in, sent to the air conditioning system of the aircraft, cooled in the air conditioning system, and sent to the cabin. Also, air is taken into the compressor 403 directly from the outside air via the heat exchanger 404 .
  • the air outside the aircraft is 0-40°C on the ground and -40-0°C at an altitude of 10,000m or more. Therefore, it is assumed that the heat exchangers 402, 404 and the parts and sensors mounted on the compressor 403 used here are exposed to a high temperature range of 100 to 200°C to a low temperature of -40°C due to the operation of the engine 401. be. Heat resistance of about 200° C. is required for the heat exchanger 402 near the heat source near the engine.
  • the adhesive according to Embodiment 1 or 2 has high-temperature heat resistance and can be used in a place such as the heat exchanger 402, and mounted in the heat exchanger 404 and the compressor 403 if it is about -10°C to 130°C. It is possible to use it for bonding sensor parts to be bonded.
  • components such as heat exchangers, compressors, and other components, sensors, and the like are bonded with the stress relaxation adhesive 101 of the first or second embodiment. Therefore, not only high heat resistance but also adhesive strength can be maintained even in an environment of -40 to 200°C. Therefore, it is possible to realize an aircraft equipped with a device having a highly reliable bonding portion between constituent members.
  • the stress-relieving agent is an ethylene-propylene copolymer
  • it is selected from propylene glycol diacrylate, tripropylene glycol diacrylate, 2-hydroxypropyl methacrylate, dipropylene glycol diacrylate, and tripropylene diacrylate. at least one.
  • a plurality of stress relaxation agents may be selected from both the ethylene-acrylic copolymer and the ethylene-propylene copolymer described above.
  • 2-(3,4-epoxycyclohexyl)ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycid Xypropylmethyldiethoxysilane, N-2-(aminoethyl)-3-aminopropylmethyldimethoxysilane, 3-aminopropyltrimethoxysilane, 3-triethoxysilyl-N-(1,3-dimethyl-butylidene)propylamine , N-phenyl-3-aminopropyltrimethoxysilane, N-(benylbenzyl)-2-aminoethyl-3-aminopropyltrimethoxysilane hydrochloride, etc. may be used as primers.
  • Epoxy adhesive base adhesive
  • 2 Stress relaxation agent
  • 3 Filler
  • 101 Stress relaxation adhesive
  • 102 SPCC plate
  • 103 Cohesive failure mode
  • 104 Interfacial peeling mode
  • 202 Magnet 203: rotor core
  • 204 shaft
  • 302 substrate
  • 303 semiconductor component
  • 304 wiring material
  • 305 sealing material
  • 401 engine
  • 402 heat exchanger
  • 403 compressor.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

アリル基を2官能以上もつエポキシ化合物を主剤とし、ビスフェノールA型の樹脂骨格をもつアミン系硬化剤を用いてエポキシ系のベース接着剤を構成し、応力緩和剤として平均粒子径が10μm以下であるエチレン-アクリル共重合体およびエチレンプロピレン共重合体のうち少なくともいずれか一方を、ベース接着剤に対し20wt%以下の範囲で含むように応力緩和型の接着剤(101)を構成した。

Description

接着剤、回転電機、電子部品及び航空機
 本願は、接着剤、回転電機、電子部品及び航空機に関するものである。
 一般的に耐熱性の高い接着剤は硬化されると脆くなる、接着力が高くないなどの課題がある。加えて、温度サイクルなどで熱応力が加わると接着力が低下しクラックが生じる、または被着体から剥がれるといった課題があった。耐熱性を有するといわれているエポキシ系接着剤であっても180℃程度の耐熱性しか有していなかったが、近年、耐熱性が200℃を越えるものが上市され始めている。
 これに対し、自動車用部材等に用いることを目的に、耐熱性に優れ、オーバラップせん断接着強さ及び剥離強さを両立するエポキシ接着剤が開示されている(例えば、特許文献1参照)。さらに、ガラス転移温度が高い、すなわち高耐熱性で密着性に優れ、接着剤に有用な硬化物組成物が開示されている(例えば、特許文献2参照)。
特許第6612498号公報 国際公開第2017/170881号
 一方、電子材料及びモータなどの駆動部品の高温耐熱化が検討されており、構成部品を接着する接着剤に対してもさらなる耐熱性及び広い環境温度変化(温度サイクル)に対する安定性が求められている。
 特許文献1に記載されたエポキシ接着剤は、エポキシが3官能以上の液状エポキシを少なくとも50質量%含むベースを構成しており、応力緩和剤として添加されるコアシェル強靭化剤もガラス転移温度Tgが低い(―110~―30℃)ものを含むことから、十分な耐熱性を有する構成とは言えず、また温度サイクルへの耐力(耐熱衝撃性)について記載されておらず不明である。
 特許文献2に記載された硬化物組成物は、文献中(段落0099)に記載された適用先である光学材料、表示素子、電子部品用当の各種膜等への適用に対しては高耐熱性を有するといえるのかもしれない。しかし、ガラス転移温度Tgが80~100℃程度であり(表1~表3)、十分に高耐熱性を有するとは言えず、また温度サイクルへの耐力(耐熱衝撃性)について記載されておらず不明である。
 本願は、上記の課題を解決するための技術を開示するものであり、高耐熱性を有するとともに温度サイクル時の応力に対しても耐性を有する応力緩和型の接着剤を提供することを目的とする。
 本願に開示される接着剤は、アリル基を2官能以上もつエポキシ化合物を主剤とし、ビスフェノールA型の樹脂骨格をもつアミン系硬化剤を用いてエポキシ系のベース接着剤を構成し、応力緩和剤として平均粒子径が10μm以下であるエチレン-アクリル共重合体およびエチレンプロピレン共重合体のうち少なくともいずれか一方を、前記ベース接着剤に対し20wt%以下の範囲で含んでいる。
 本願に開示される接着剤によれば、ベースの接着剤とそれに添加される応力緩和剤との組み合わせにおいて、低温側でのヤング率を低減させることができるともに、ガラス転移温度が変化しないので、ベース接着剤の高耐熱性を維持しつつ温度変化時の応力を緩和するように耐性を有する構成となり、この接着剤を用いることで接着部の信頼性が向上する。
実施の形態1に係る応力緩和型接着剤の構造を示す模式図である。 実施の形態1に係る応力緩和型接着剤の接着強度を評価する方法を説明する図である。 実施の形態1に係る応力緩和型接着剤の応力緩和剤の添加量と接着強度との関係を示す図である。 図2によるせん断試験後の破断モードを示す模式図である。 図2によるせん断試験後の別の破断モードを示す模式図である。 3種類のベース接着剤に異なる応力緩和剤を添加したときの接着強度の変化を示す図である。 実施の形態1に係る応力緩和型接着剤において応力緩和剤の添加量を変化させた時のtanδの温度依存性を示す図である。 実施の形態1に係る応力緩和型接着剤において応力緩和剤の添加量を変化させた時のヤング率の温度依存性を示す図である。 実施の形態1に係る応力緩和型接着剤の温度サイクル試験前後の接着強度の変化を示す図である。 実施の形態2に係る応力緩和型接着剤の構造を示す模式図である。 実施の形態3に係る回転電機の例であるIPMモータの構造を示す一部断面図である。 実施の形態3に係る回転電機の例であるSPMモータの構造を示す一部断面図である。 実施の形態4に係る電子部品の例である半導体デバイスの構造を示す断面図である。 実施の形態5に係る航空機の機内空調に関する空気の流れを示すブロック図である。
 以下、本実施の形態について図を参照して説明する。なお、各図中、同一符号は、同一または相当部分を示すものとする。
実施の形態1.
 以下、実施の形態1に係る接着剤について説明する。
[接着剤の調整]
 本実施の形態1に係る接着剤は熱硬化型のエポキシ系の接着剤である。主成分のエポキシは熱硬化成分であり、アリル基を2官能以上もつエポキシ化合物を主剤とする。主剤は1種類または2種類以上の化合物の組み合わせであってもよい。硬化剤はビスフェノールA型の樹脂骨格をもつアミン系硬化剤を用いる。主剤及び硬化剤を有するものがベースの接着剤を構成する。さらに、このエポキシ化合物の主剤及びアミン系硬化剤を有するベースの接着剤であるエポキシ系接着剤に対し、応力緩和剤としてエチレン-アクリル共重合体及びエチレンプロピレン共重合体のうち少なくともいずれか一方を添加し、応力緩和型の接着剤を構成する。
 ここで、応力緩和剤として用いられるエチレン-アクリル共重合体はエチレンジメタクリレート、ヘキサメチレンジアクリレート、テトラメチレンジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジアクリレート、1,3-ブチレングリコールジアクリレート等である。
 また、応力緩和剤として用いられるエチレン-プロピレン共重合体はジプロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、メタクリル酸2-ヒドロキシプロピル、ジプロピレングリコールジアクリレート、トリプロピレンジアクリレート等である。
 なお、これらの応力緩和剤に用いられる材料の融点は40~100℃程度であることを特徴とする。
 下記表1に本実施の形態1に係る接着剤の一例を示す。主剤として2種類のアリル基を2官能以上もつエポキシ化合物である4,4’-イソプロピリジデンジフェノール、p-フェニレンジシアネート、添加剤にビスフェノールA型の樹脂骨格をもつアミン系硬化剤であるN,N-ビス(2,3-エポキシプロピル)-4-(2,3-エポキシプロポキシ)アニリンを用い、ベースのエポキシ系接着剤を構成し、エチレン-アクリル共重合体であるトリエチレングリコールジメタクリレートを含む3種類の応力緩和剤を20wt%未満添加し、粘度調整及び接着膜厚調整材として非晶質シリカを5wt%未満の範囲で添加し、トータル100wt%になるように調整して作成した。なお、主剤、添加剤、硬化剤などは例示であり、これに限るものではない。例えば、主剤であればアリル基を2官能以上もつエポキシ化合物であればよい。
Figure JPOXMLDOC01-appb-T000001
 図1に本実施の形態1に係る応力緩和型接着剤の構造を示す模式図を示す。調整され、硬化後の応力緩和型接着剤101は、図1のように、ベースのエポキシ系接着剤1に応力緩和剤2が分散された構造を有している。
[せん断試験片の作成]
 次に、接着強度を評価するために、せん断強度試験片を作成した。
 図2にせん断試験片の作成方法およびせん断試験について示す。試験片は2枚1組のSPCC板102(鋼板)であり、1枚のSPCC板102の一方の面の端部に応力緩和型接着剤101を塗布し、2枚のSPCC板102で挟み込む。この試験片を160~200℃で硬化させた後、図2に示すように上下に引っ張ることで接着強度の評価としてせん断試験を行う。
 接着強度を評価する本試験片の作成においては、試験片であるSPCC板102の表面処理として、大気プラズマ処理、深紫外光処理、コロナ放電処理、疎化処理(レーザー疎化、研磨、サンドブラスト処理)等の物理的処理を行うことで密着性あるいは接着強度の向上が期待できる。また、化学処理としてシランカップリング剤をプライマーとして塗布することでも同様の効果が得られる。例えば、エポキシ系接着剤に対しては2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ベニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩等をプライマーとして用いてもよい。
[接着強度の評価1]
 応力緩和剤は図1に示したように応力緩和型接着剤101中に分散して存在するが、この応力緩和剤は平均粒径50μm以下であれば用いることができる。平均粒径を小さくしていき10μm以下の数μmにすると接着強度が向上した。すなわち、平均粒径は1μm以上10μm以下の範囲が望ましい。
 図3は、応力緩和剤の添加量と接着強度との関係を示す図である。比較例1及び実施例1の条件はそれぞれ以下のとおりである。なお、前処理条件は同じである。
<比較例1>
・試験片:SPCC/SPCC
・試験片の前処理:アセトン脱脂、400番バフによる研磨
・接着剤の厚さ:80~100μm
・接着剤:主剤・・・・・ビスフェノールA型エポキシ
     硬化剤・・・・ポリアミドアミン
     応力緩和剤・・ウレタン系
<実施例1>
・試験片:SPCC/SPCC
・試験片の前処理:アセトン脱脂、400番バフによる研磨
・接着剤の厚さ:80~100μm
・接着剤:主剤・・・・・アリル基を2官能もつエポキシ化合物
     硬化剤・・・・ビスフェノールA型の樹脂骨格をもつアミン系
     応力緩和剤・・エチレン-アクリル共重合体
     応力緩和剤の平均粒径・・・10μm
 図3は、応力緩和剤を添加しないときの接着強度を1とした時の接着強度の変化を示している。図において、実施例1による応力緩和型接着剤を実線で示しているが、応力緩和剤の添加量を増やし、20wt%の添加濃度までは強度の低下は見られなかった。一方で、比較例1による接着剤では応力緩和剤の添加により徐々に強度は低下し、添加濃度10wt%を超えると強度は著しく低下した。なお、実施例1の応力緩和剤を添加する前のエポキシ系接着剤(ベースの接着剤であり、図3の応力緩和剤0wt%に相当)は上述のせん断試験において接着強度が16~18MPaである。
 次に、実施例1の試験片のせん断試験後の破断モードを確認した。
 図4A及び図4Bは、せん断試験後の接着剤の破断モードを説明するための模式図である。図4Aは、接着剤が一方の試験片であるSPCC板102に残り、他方の試験片であるSPCC板102と接着剤との界面で剥離する界面剥離モード104を示している。図4Bは、本実施の形態に係る応力緩和剤2を添加した接着剤の試験前後の状態を示している。図4Bでは接着剤の内部で破断し、接着剤が両方の試験片であるSPCC板102に残る凝集破壊モード103である。
 図3の実施例1において、応力緩和剤の添加量が0の時は試験後の破断モードは界面剥離であったが、応力緩和剤を添加していくと、破断モードは凝集破壊の割合が増加し、モードが変化することを確認した。応力緩和剤の添加濃度20wt%では、ほぼ破断モードは凝集破壊であった。このことは、添加濃度20wt%以下では接着強度を低下させることなく応力緩和の効果を奏し、凝集破壊していることを示している。破断モードの観察結果と図3から応力緩和剤の添加濃度は10~20wt%が望ましく、応力緩和に効果を奏することがわかった。
 上述の実施例1の応力緩和剤を添加する前のエポキシ系接着剤(ベースの接着剤)は硬化後の接着強度が16~18MPaを有し、ガラス転移温度200℃以上の物性を有する高耐熱性エポキシ系接着剤である。図3によれば、実施例1の応力緩和型接着剤は20wt%の添加濃度まで接着強度が低下せず、30wt%であっても接着強度は10MPaを維持している、有用な応力緩和型接着剤であることがわかった。
 実施例1では、添加する応力緩和剤が1種類の例を示したが同種類であれば2種または2種以上同時に添加してもよい。添加する応力緩和剤の平均粒径(サイズ)は小さいほど接着剤全体に細かく分散し、応力緩和効果が高くなる。添加量が同じ場合には添加する応力緩和剤の平均粒径が小さいほうが凝集破壊性は高くなる。
[接着強度の評価2]
 次に、応力緩和剤を添加する前の接着剤に対し異なる種類のものを準備し、本実施の形態1に係る応力緩和剤の効果を確認した。
 使用したベース接着剤と応力緩和剤は以下のとおりである。
  ベース接着剤B1:高耐熱エポキシ系
      主剤・・・・アリル基を2官能もつエポキシ化合物
      硬化剤・・・ビスフェノールA型の樹脂骨格をもつアミン系
  ベース接着剤B2:1液熱硬化型エポキシ系
            ・・・スリーボンド社製 TB2237J
  ベース接着剤B3:2液アクリル系
            ・・・セメダイン社製 Y612Black
  応力緩和剤SL1:ウレタン系
  応力緩和剤SL2:エチレン―アクリル共重合体
  応力緩和剤SL3:エチレン―プロピレン共重合体
 図5は、各ベース接着剤(B1,B2,B3)に対し、応力緩和剤(SL1,SL2,SL3)をそれぞれ10wt%添加したときの添加前後での接着強度の変化を示したものである。
 図中左の6本の棒グラフは、比較例としてウレタン系の応力緩和剤SL1を添加してものであり、いずれのベース接着剤に対しても添加後は接着強度が低下している。
 図中中央の6本の棒グラフは、本実施の形態の1例であるエチレン―アクリル共重合体の応力緩和剤SL2を添加したものである。本実施の形態に係るベース接着剤B1である高耐熱エポキシ系に添加した場合、接着強度は若干向上したものの、比較例である他のベース接着剤B2、B3に添加したところ、接着強度は低下した。
 図中右の6本の棒グラフは、本実施の形態の1例であるエチレン―プロピレン共重合体の応力緩和剤SL3を添加したものである。本実施の形態に係るベース接着剤B1である高耐熱エポキシ系に添加した場合、接着強度は若干向上したものの、比較例である他のベース接着剤B2、B3に添加したところ、接着強度は低下した。
 以上のことから、本実施の形態1に係るベース接着剤である高耐熱エポキシ系に本実施の形態1に係るエチレン―アクリル共重合体の応力緩和剤及びエチレン―プロピレン共重合体の応力緩和剤のうち少なくともいずれか一方を添加することがよい組み合わせであることが判明した。
[ガラス転移温度の変化]
 次に、応力緩和剤の添加によるガラス転移温度の変化について説明する。ガラス転移温度Tgは耐熱性の指標となる物性値である。一般に、応力緩和剤は柔らかい素材であり、ガラス転移温度が低いため、ベースの接着剤に添加することにより添加量に応じて接着剤のガラス転移温度は低下していた。
 本実施の形態1に係るベースの接着剤及び応力緩和剤の組み合わせにおいて、上述で述べた応力緩和剤を添加しても接着強度が低下しない添加濃度範囲において、動的粘弾性試験(DMA:Dynamic mechanical Analysis)を行った。ここで、ベース接着剤B1と、応力緩和剤SL2との組み合わせで評価した。以下にその測定結果として、tanδ(損失正接)の温度依存性及びヤング率(E’)の温度依存性を示す。
 図6は、横軸を温度、縦軸をtanδとし、ベース接着剤B1及び応力緩和剤SL2の添加量を変化させた時のtanδの温度依存性を示すtanδ曲線である。図6において、tanδのピークからベース接着剤B1及びそれに20wt%まで応力緩和剤SL2を添加したものではガラス転移温度はいずれも約240℃であり、ガラス転移温度が40~100℃とベース接着剤よりも低いガラス転移温度を有する応力緩和剤SL2を添加しても変化は見られなかった。
 すなわち、実施の形態1に係るベースの接着剤及び応力緩和剤の組み合わせにおいては、接着強度が低下しない範囲で応力緩和剤を添加してもベース接着剤の高耐熱性は維持していることがわかる。
[ヤング率の変化]
 図7は、ベース接着剤B1及び応力緩和剤SL2の添加量を変化させた時のヤング率の温度依存性を示す図である。図7において、ベース接着剤B1に対して、応力緩和剤SL2を添加していくと、添加量に応じて、ヤング率は低下する。特に、150℃以下においては、応力緩和剤SL2を20wt%添加すると数GPaから1GPa以下まで、1/5程度まで低下させることが可能となる。低温域でのヤング率の低下は、熱硬化時の応力の緩和を図れ、また温度差の激しい環境下での使用に対応可能な耐性を有する接着剤であることを意味している。
 図8は、ベース接着剤B1とベース接着剤B1に応力緩和剤SL2を20wt%添加したものの、温度サイクル試験前後での接着強度の変化を示す図である。ここで温度サイクル試験は-10℃から130℃の範囲で100サイクル行われた。また、接着強度はそれぞれ試験前を1とした時の変化を示している。応力緩和剤SL2を20wt%添加すると温度サイクル試験後の接着強度の低下が抑制されており、温度サイクル時の応力に対しても耐性を有することが分かる。また、応力緩和剤SL2を20wt%添加した応力緩和型の接着剤の温度サイクル試験後も凝集破壊モードを維持しており、信頼性の向上を見込むことができる。
 以上のように、実施の形態1によれば、アリル基を2官能以上もつエポキシ化合物を主剤とし、ビスフェノールA型の樹脂骨格をもつアミン系硬化剤を用いてエポキシ系のベース接着剤を構成し、応力緩和剤として平均粒子径が10μm以下の数μmであるエチレン-アクリル共重合体およびエチレンプロピレン共重合体のうち少なくともいずれか一方をベース接着剤に対し、20wt%以下の範囲で添加したので、ガラス転移温度200℃以上のエポキシ系のベース接着剤の有する高耐熱性及び接着強度を維持しつつ、ヤング率を低下させることで温度サイクルに対する耐性を持つ応力緩和型の接着剤を提供可能となった。
実施の形態2.
 以下、実施の形態2に係る接着剤について説明する。
[粘度の調整]
 上記実施の形態1に係る応力緩和型接着剤は添加する応力緩和剤の粒径を1μm~10μmの範囲でコントロールすることで、粘度を調整することができ、粘度として3Pas~300Pasの接着剤を得ることができる。粘度がこの範囲であれば、壁面に塗布する場合には垂れないレベルの粘度を維持することができる。また、狭い間隙に注入して用いる場合には粘度を小さくするなど、調整すればよい。このとき粒径が小さい程、チクソ性の高い接着剤を作製することが可能である。
 接着剤の粘度の調整は、応力緩和剤の粒径だけでなく、ベース接着剤の主剤の材料、応力緩和剤の種類及び粒径、及び被接着体に塗布する際の表面処理の有無及び方法等によっても可能である。さらに、フィラーを添加して調整してもよい。
[フィラーの添加]
 粘度を3Pas~300Pasの範囲に調整するために、フィラーとして、溶融シリカ、非晶質シリカ、中空ガラス等のガラス、マイカ及びタルク等のケイ酸塩からなる鉱物種、ポリエチレン及びポリプロピレン等のエンジニアリング高分子材等から選択されたものを添加してもよい。これらの中からコスト、軽量化等の目的に応じて選択すればよい。
 例えば、半導体等の電子部品に適用する場合は、絶縁性を担保するために、溶融シリカをフィラーとして添加する。熱伝導性の向上を図る場合は、高熱伝導性を有する窒化ホウ素(BN)、酸化アルミニウム(Al)、窒化アルミニウム(AlN)、銀(Ag)等の粉末(鱗片状、真球状、針状、及び特殊形状)をフィラーとして添加すればよい。添加量を調整することで、目標とする熱伝導率を付与した接着剤を製造することが可能となる。また、電気伝導率を向上させる場合は、銀あるいは炭素(C)材を添加すればよい。
 フィラーを添加していない例えば本実施の形態1に係る応力緩和型の接着剤の熱伝導率は0.2W/k・m程度であるが、フィラーとして銀の粉末を添加することで100W/k・m程度まで改善が可能となることを確認した。
 これらのフィラーの添加量はその目的によって異なるが、ベース接着剤に対して20~85wt%の範囲で添加することで目的を達成し、効力を発揮することができる。
 また、添加するフィラーの大きさにより硬化後の接着剤の厚みをコントロールすることができる。この場合、接着させたときにつぶれない材料で最大粒径のものを添加すればよい。
 図9は、実施の形態2に係る応力緩和型接着剤101の構造を示す模式図である。調整され、硬化後の応力緩和型接着剤101は、図9のように、ベースのエポキシ系接着剤1に応力緩和剤2及びフィラー3が分散された構造を有している。ここで、接着剤1に添加するフィラー3に対して接着剤1とフィラー3との間の密着性を向上させるためにフィラー3に表面処理を施してもよい。具体的には2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシジルオキシプロピルトリメトキシシラン、3-グリシドキシプロピルトリエトキシシランなどのシランカップリング剤を用いる。
 以上のように実施の形態2によれば、実施の形態1と同様の効果に加え、応力緩和型の接着剤にフィラーを添加したので、粘度を調整することが可能となる。また、添加するフィラーの種類と量とを調整すれば、接着剤の目的に応じ、機能を向上させることが可能となる。
 なお、上記実施の形態において、フィラーは、ガラス、ケイ酸塩からなる鉱物種、エンジニアリング高分子材、セラミックス,銀及び炭素の中から選択されればよいことを示したが、複数選択してもよい。すなわち、ガラス、ケイ酸塩からなる鉱物種、エンジニアリング高分子材、セラミックス、銀及び炭素の中から選ばれた少なくとも1つ選択されればよい。
実施の形態3.
 以下、実施の形態3に係る回転電機について図を用いて説明する。本実施の形態3にかかわる回転電機は構成する部材の接着に上記実施の形態1または2で説明した応力緩和型の接着剤を用いている。
 回転電機への適用の一例として、図10AにIPM(Inter Permanent Magnet)モータ、図10BにSPM(Surface Permanent Magnet)モータの例を示す。各図は軸方向の一部断面図であり、シャフト204を回転軸とした回転子鉄心203に磁石202が応力緩和型の接着剤101を用いて接着されている。ここで用いられる磁石202はフェライト磁石、ネオジム磁石、サマリウムコバルト磁石、アルニコ磁石、ボンド磁石等のいずれかのものでよく、その合金組成は問わない。磁石202は回転子鉄心203に接着されているが、例えばダイキャスト成形品あるいは薄い鉄板を積層した電磁鋼板で構成されている。
 図10AのIPMモータは磁石202が回転子鉄心203に埋め込まれ、図10BのSPMモータは磁石202が回転子鉄心203の周囲に接着される構成であり、要求される接着強度、粘度等は異なるが、上記実施の形態1または2で示した応力緩和型接着剤101を用いて接着されていればよい。
 このように構成部材が応力緩和型接着剤101を用いて接着されたモータを自動車用に用いた場合、エンジンルームのような温度変化の厳しい環境においても応力緩和型接着剤101の接着強度は低下することはなく、モータの信頼性を維持することが可能となる。また、添加するフィラーを調整するだけで、物性の調整が可能なため、ベースの接着剤または応力緩和剤を添加したベースの接着剤は同一のものを用いることができる。
実施の形態4.
 以下、実施の形態4に係る電子部品について図を用いて説明する。
 実施の形態4に係る電子部品は、高耐熱性が要求されるもので、例えば数100アンペアに達する大電流が流れるパワーデバイスである。このような電子デバイスは200℃程度の耐熱性が要求される。また、ワイドバンドギャップ半導体であるSiCまたはGaNからなるパワー半導体デバイスでは、300℃以上でも動作可能であるので、その動作能力を発揮させるためにも使用される接続材、封止材等のモジュール材料にも高耐熱性が要求される。
 図11は、本実施の形態に係る電子部品として半導体デバイスの断面構造を示している。この半導体デバイスには、構成部品の接着に上記実施の形態1または2で説明した応力緩和型の接着剤を用いている。
 図において、半導体デバイスは基板302上に半導体部品303を有し、半導体部品303の電極(図示せず)と基板302上の電極(図示せず)とはワイヤのような配線材304で接続され、半導体部品303は封止材305により封止されている。半導体部品303は基板302に応力緩和型接着剤101により接着されて搭載されている。
 応力緩和型接着剤101は上記に限らず、必要に応じて窒化ホウ素、酸化アルミニウム、窒化アルミニウム、銀等の粉末(鱗片状、真球状、針状、及び特殊形状)を任意量添加して、熱伝導率を向上させるようにしてもよい。
 また、基板302はエポキシを用いたガラスプリプレグ材を積層したプリント配線板あるいはセラミック層を積層させて焼結したセラミック基板、薄い純銅板を打ち抜き成型したリードフレーム等を用いてもよい。
 以上のように実施の形態4によれば、電子部品は、上記実施の形態1または2に係る応力緩和型接着剤により接着された部材を有するので、高耐熱性に優れている。また、このような電子部品を搭載した装置、例えば電力変換装置等に組み込んで自動車用各装置の駆動または制御に用いた場合、エンジンルームのような温度変化の厳しい環境に配置されても応力緩和型接着剤101の接着強度は低下することはなく、電子部品の信頼性を維持することが可能となる。
実施の形態5.
 以下、実施の形態5に係る航空機について図を用いて説明する。
 図12は、実施の形態5に係る航空機の機内空調に関する空気の流れを示すブロック図である。一般的なジェットエンジン401は、外気を取り込み圧縮機により圧縮空気を作り、燃焼室で燃料と混合し断続的に燃焼させる構造となっている。燃焼室から出た空気は各ユニットの熱交換器402で任意の温度まで下げられる。これに圧縮機403で作られた一部の圧縮空気を取り入れ、これを航空機のエアコンシステムに送り、エアコンシステム内でこの空気が冷却され、客室に送風される仕組みとなっている。また、直接外気から熱交換器404を介して圧縮機403に空気が取り込まれる。
 ここで航空機外の外気は地上で0~40℃、高度1万m以上では-40~0℃となる。そのため、ここで用いられる熱交換器402,404、圧縮機403に搭載されている部品及びセンサはエンジン401の動作による100~200℃という高温領域から-40℃という低温まで晒されることが想定される。ここでエンジンに近い熱源付近である熱交換器402では約200℃の耐熱性が求められるが、熱交換器404及び圧縮機403は200℃よりも低い温度であるものの、やはり高温と低温の両方の温度下で使用可能であることが求められる。本実施の形態1または2に係る接着剤は高温耐熱性があり熱交換器402のような場所での使用及び、-10℃~130℃程度であれば熱交換器404、圧縮機403に搭載されるセンサ部品の接着に用いることが可能である。
 このように、実施の形態5に係る航空機は、熱交換器及び圧縮機等の装置を構成する構成部品及びセンサ等が上記実施の形態1または2の応力緩和型接着剤101により接着されているため、耐高熱性だけでなく、-40~200℃における環境下であっても接着強度を維持することができる。そのため、信頼性の高い構成部材間の接着部を有する装置の搭載された航空機を実現できる。
その他の実施の形態.
 (1)応力緩和剤
 上記実施の形態1から5において、添加される応力緩和剤が1種類である例を示したが、応力緩和剤がエチレン-アクリル共重合体の場合は、エチレンジメタクリレート、ヘキサメチレンジアクリレート、テトラメチレンジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジアクリレート及び1,3-ブチレングリコールジアクリレートの中から選ばれた少なくとも1つであればよい。
 また、応力緩和剤がエチレン-プロピレン共重合体の場合は、プロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、メタクリル酸2-ヒドロキシプロピル、ジプロピレングリコールジアクリレート、及びトリプロピレンジアクリレートの中から選ばれた少なくとも1つであればよい。
 応力緩和剤として上述したエチレン-アクリル共重合体及びエチレン-プロピレン共重合体の両方から複数選ばれてもよい。
 (2)表面処理
 なお、実施の形態1の試験片の表面処理について述べたが、実施の形態3から5に示された構成部品の接着に際し、表面処理を行えば、接着強度の向上を図ることができる、すなわち、前処理として、大気プラズマ処理、深紫外光処理、コロナ放電処理、疎化処理(レーザー疎化、研磨、サンドブラスト処理)等の物理的処理を行う。また、化学処理としてシランカップリング剤をプライマーとして塗布することでも同様の効果が得られる。例えば、エポキシ系接着剤に対しては2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3アミノプロピルトリメトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ベニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩等をプライマーとして用いてもよい。
 本開示は、様々な例示的な実施の形態及び実施例が記載されているが、1つ、または複数の実施の形態に記載された様々な特徴、態様、及び機能は特定の実施の形態の適用に限られるのではなく、単独で、または様々な組み合わせで実施の形態に適用可能である。
 従って、例示されていない無数の変形例が、本願明細書に開示される技術の範囲内において想定される。例えば、少なくとも1つの構成要素を変形する場合、追加する場合または省略する場合、さらには、少なくとも1つの構成要素を抽出し、他の実施の形態の構成要素と組み合わせる場合が含まれるものとする。
 1:エポキシ系接着剤(ベース接着剤)、 2:応力緩和剤、 3:フィラー、 101:応力緩和型接着剤、 102:SPCC板、 103:凝集破壊モード、 104:界面剥離モード、 202:磁石、 203:回転子鉄心、 204:シャフト、 302:基板、 303:半導体部品、 304:配線材、 305:封止材、 401:エンジン、 402、404:熱交換器、 403:圧縮機。

Claims (7)

  1.  アリル基を2官能以上もつエポキシ化合物を主剤とし、
    ビスフェノールA型の樹脂骨格をもつアミン系硬化剤を用いてエポキシ系のベース接着剤を構成し、
    応力緩和剤として平均粒子径が10μm以下であるエチレン-アクリル共重合体およびエチレンプロピレン共重合体のうち少なくともいずれか一方を、前記ベース接着剤に対し20wt%以下の範囲で含む、接着剤。
  2.  前記応力緩和剤がエチレン-アクリル共重合体の場合は、エチレンジメタクリレート、ヘキサメチレンジアクリレート、テトラメチレンジメタクリレート、ジエチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、テトラエチレングリコールジアクリレート及び1,3-ブチレングリコールジアクリレートの中から選ばれた少なくとも1つであり、
    前記応力緩和剤がエチレン-プロピレン共重合体の場合は、プロピレングリコールジアクリレート、トリプロピレングリコールジアクリレート、メタクリル酸2-ヒドロキシプロピル、ジプロピレングリコールジアクリレート、及びトリプロピレンジアクリレートの中から選ばれた少なくとも1つである、請求項1に記載の接着剤。
  3.  前記ベース接着剤に対し20wt%以上85wt%以下の割合でフィラーを含む、請求項1または2に記載の接着剤。
  4.  前記フィラーは、ガラス、ケイ酸塩からなる鉱物種、エンジニアリング高分子材、セラミックス、銀及び炭素の中から選ばれた少なくとも1つである請求項3に記載の接着剤。
  5.  請求項1から4のいずれか1項に記載の接着剤により接着された構成部材を備えた回転電機。
  6.  請求項1から4のいずれか1項に記載の接着剤により接着された構成部材を備えた電子部品。
  7.  請求項1から4のいずれか1項に記載の接着剤により接着された構成部材を備えた航空機。
PCT/JP2021/010324 2021-03-15 2021-03-15 接着剤、回転電機、電子部品及び航空機 WO2022195655A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023506383A JP7479564B2 (ja) 2021-03-15 2021-03-15 接着剤、回転電機、電子部品及び航空機
US18/269,952 US20230392057A1 (en) 2021-03-15 2021-03-15 Adhesive, rotary electric machine, electronic component, and aircraft
CN202180092535.4A CN116888233A (zh) 2021-03-15 2021-03-15 粘接剂、旋转电机、电子部件及飞机
PCT/JP2021/010324 WO2022195655A1 (ja) 2021-03-15 2021-03-15 接着剤、回転電機、電子部品及び航空機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/010324 WO2022195655A1 (ja) 2021-03-15 2021-03-15 接着剤、回転電機、電子部品及び航空機

Publications (1)

Publication Number Publication Date
WO2022195655A1 true WO2022195655A1 (ja) 2022-09-22

Family

ID=83320071

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010324 WO2022195655A1 (ja) 2021-03-15 2021-03-15 接着剤、回転電機、電子部品及び航空機

Country Status (4)

Country Link
US (1) US20230392057A1 (ja)
JP (1) JP7479564B2 (ja)
CN (1) CN116888233A (ja)
WO (1) WO2022195655A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164047A (ja) * 1999-12-06 2001-06-19 Denki Kagaku Kogyo Kk ハロゲン含有ゴム組成物
JP2008088279A (ja) * 2006-09-30 2008-04-17 Sumitomo Bakelite Co Ltd アンダーフィル用液状樹脂組成物および半導体装置
JP2017506285A (ja) * 2014-02-19 2017-03-02 コリア インスティチュート オブ インダストリアル テクノロジー 新規のエポキシ化合物、それを含む混合物、組成物、硬化物、その製造方法、及びその用途
JP2018095780A (ja) * 2016-12-15 2018-06-21 ユニマテック株式会社 カルボキシル基含有アクリルゴム組成物

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001164047A (ja) * 1999-12-06 2001-06-19 Denki Kagaku Kogyo Kk ハロゲン含有ゴム組成物
JP2008088279A (ja) * 2006-09-30 2008-04-17 Sumitomo Bakelite Co Ltd アンダーフィル用液状樹脂組成物および半導体装置
JP2017506285A (ja) * 2014-02-19 2017-03-02 コリア インスティチュート オブ インダストリアル テクノロジー 新規のエポキシ化合物、それを含む混合物、組成物、硬化物、その製造方法、及びその用途
JP2018095780A (ja) * 2016-12-15 2018-06-21 ユニマテック株式会社 カルボキシル基含有アクリルゴム組成物

Also Published As

Publication number Publication date
JP7479564B2 (ja) 2024-05-08
US20230392057A1 (en) 2023-12-07
CN116888233A (zh) 2023-10-13
JPWO2022195655A1 (ja) 2022-09-22

Similar Documents

Publication Publication Date Title
US10351728B2 (en) Thermosetting resin composition, method of producing thermal conductive sheet, and power module
EP2832792A1 (en) Curable resin composition, method for producing same, highly thermally conductive resin composition, and highly thermally conductive multilayer substrate
JP6675155B2 (ja) 半導体用ダイアタッチペースト及び半導体装置
KR20070116552A (ko) 접착제 조성물 및 접착 필름
US9355943B2 (en) Manufacturing and evaluation method of a semiconductor device
JPWO2018173945A1 (ja) 回路基板用樹脂組成物とそれを用いた金属ベース回路基板
KR102504140B1 (ko) 밀봉용 액상 에폭시 수지 조성물 및 전자 부품 장치
JP2016004841A (ja) 金属箔張基板、回路基板および発熱体搭載基板
KR101612596B1 (ko) 적층체 및 파워 반도체 모듈용 부품의 제조 방법
KR20150136471A (ko) 전자 디바이스 봉지용 수지 시트 및 전자 디바이스 패키지의 제조 방법
JP2017098376A (ja) 樹脂組成物、回路基板、発熱体搭載基板および回路基板の製造方法
JPWO2016158268A1 (ja) 接着組成物シートおよびその製造方法ならびに半導体装置
JP2010059241A (ja) 半導体装置封止用組成物
WO2022195655A1 (ja) 接着剤、回転電機、電子部品及び航空機
JP6575321B2 (ja) 樹脂組成物、回路基板、発熱体搭載基板および回路基板の製造方法
JP6646360B2 (ja) 封止用樹脂シート、及び、電子デバイス装置
JP2020117619A (ja) 絶縁性樹脂組成物、絶縁性樹脂硬化体、積層体及び回路基板
CN113710747B (zh) 绝缘性树脂组合物、绝缘性树脂固化体、层叠体及电路基板
KR102679622B1 (ko) 고온 전도성 열경화성 수지 조성물
US8709201B2 (en) Method for gluing components, forming a temperature-resistant adhesive layer
JP4914284B2 (ja) 回路基板用組成物とそれを用いた回路基板
JP2016117869A (ja) 半導体接着用樹脂組成物及び半導体装置
JP2017197698A (ja) コアシェル構造を有する粒子及びその製造方法
WO2024202009A1 (ja) 接着構造体、半導体装置、モータ、飛翔体及び接着構造体の製造方法
JP6821550B2 (ja) 中空デバイス封止フィルム用熱硬化性エポキシ樹脂組成物及び中空デバイス封止用熱硬化性エポキシ樹脂フィルム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931411

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023506383

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180092535.4

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21931411

Country of ref document: EP

Kind code of ref document: A1