WO2022193575A1 - 永磁体、转子组件和电机 - Google Patents

永磁体、转子组件和电机 Download PDF

Info

Publication number
WO2022193575A1
WO2022193575A1 PCT/CN2021/117941 CN2021117941W WO2022193575A1 WO 2022193575 A1 WO2022193575 A1 WO 2022193575A1 CN 2021117941 W CN2021117941 W CN 2021117941W WO 2022193575 A1 WO2022193575 A1 WO 2022193575A1
Authority
WO
WIPO (PCT)
Prior art keywords
permanent magnet
transition
face
permanent magnets
rotor
Prior art date
Application number
PCT/CN2021/117941
Other languages
English (en)
French (fr)
Inventor
武谷雨
Original Assignee
广东威灵电机制造有限公司
美的威灵电机技术(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110287614.2A external-priority patent/CN112865371A/zh
Priority claimed from CN202120550103.0U external-priority patent/CN214281072U/zh
Application filed by 广东威灵电机制造有限公司, 美的威灵电机技术(上海)有限公司 filed Critical 广东威灵电机制造有限公司
Publication of WO2022193575A1 publication Critical patent/WO2022193575A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/02Permanent magnets [PM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets

Definitions

  • the present application relates to the technical field of electric motors, and in particular, to a permanent magnet, a rotor assembly and an electric motor.
  • the rotor component of the motor includes a rotor iron core and a plurality of permanent magnets.
  • the structure of the permanent magnets is unreasonable, and the back EMF harmonics, cogging torque and torque ripple of the motor are large, and the magnetic leakage is serious, which causes the rotor. Local saturation of components is severe.
  • the present application aims to solve at least one of the technical problems existing in the prior art or related technologies.
  • a first aspect of the present application proposes a permanent magnet.
  • a second aspect of the present application proposes a rotor assembly.
  • a third aspect of the present application proposes a motor.
  • a first aspect of the present application proposes a permanent magnet for a motor, the permanent magnet includes: a first end face; a second end face, the first end face and the second end face being opposite and arranged at intervals; a first side face; Two side surfaces, the first side surface and the second side surface are both located between the first end surface and the second end surface, the first side surface and the second side surface are arranged opposite to each other, and both the first side surface and the second side surface are suitable for the direction of the rotor core of the motor.
  • the middle part extends in the direction of the edge; the transition surface, the transition surface is located between the first side surface and the second end surface, and/or the transition surface is located between the second side surface and the second end surface; wherein, the distance from the transition surface to the first end surface is less than The distance from the first end face to the second end face.
  • a permanent magnet provided by the present application includes a first end surface, a second end surface, a first side surface, a second side surface and a transition surface.
  • the first side surface and the second side surface are opposite and spaced side surfaces of the permanent magnet.
  • the first side surface of one permanent magnet in the two adjacent permanent magnets is set corresponding to the transition surface of the other permanent magnet, so that on the one hand, the distance between the inner side ends of the two adjacent permanent magnets is increased. distance between two adjacent permanent magnets, thereby reducing the magnetic flux leakage between two adjacent permanent magnets, improving the utilization rate of permanent magnets and reducing production costs on the basis of less permanent magnet consumption; on the other hand, the structure of the transition surface is conducive to The sinusoidal air-gap magnetic field is beneficial to reduce back-EMF harmonics, cogging torque and torque ripple.
  • the second side of one of the two adjacent permanent magnets is set corresponding to the transition surface of the other permanent magnet, so that the distance between the inner ends of the two adjacent permanent magnets is increased, Therefore, the magnetic flux leakage at the inner corners of the permanent magnet can be reduced, the utilization rate of the magnetic steel can be improved, the air gap can be sinusoidal, and the back-EMF harmonics, cogging torque and torque ripple can be reduced.
  • transition surface of one permanent magnet in the adjacent two permanent magnets is set corresponding to the transition surface of the other permanent magnet.
  • the transition in the middle of the magnet increases the distance between the two adjacent permanent magnets, so it can reduce the magnetic flux leakage between the two adjacent permanent magnets, and make the air gap sinusoidal, reducing the back EMF harmonics, tooth Slot torque and torque ripple.
  • the transition surface includes any one or a combination of the following: a plane, a curved surface and a folded surface.
  • the structure of the transition surface can be set according to the actual situation, for example, the transition surface includes a plane, for example, the transition surface includes a curved surface, such as the transition surface includes a folded surface, for example, the transition surface is one of a plane, a curved surface, and a folded surface.
  • the transition surface is a combination of plane, curved and folded surfaces.
  • the distance from the connection between the transition surface and the first side surface to the first end surface is less than or equal to the distance from the first end surface to the second end surface.
  • the included angle between the transition surface and the first side surface is greater than 90° and less than 180°.
  • the distance from the connection between the transition surface and the second side surface to the first end surface is less than or equal to the distance from the first end surface to the second end surface.
  • the included angle between the transition surface and the second side surface is greater than 90° and less than 180°.
  • the permanent magnet further includes a third side surface and a fourth side surface, and the first side surface, the fourth side surface, the second side surface and the third side surface are connected end to end in order to enclose the side peripheral surface of the permanent magnet.
  • the permanent magnet is cross-sectioned in the direction perpendicular to the axis of the rotor core.
  • the outline of the first side and the outline of the second side are axisymmetric structures, and the midpoint of the outline of the third side and the The line connecting the midpoints of the contour lines of the four sides forms the axis of symmetry of the axisymmetric structure.
  • the side peripheral surface of the permanent magnet includes a first side surface, a fourth side surface, a second side surface and a third side surface which are connected end to end in sequence.
  • the third side and the fourth side are two sides of the permanent magnets that are opposite to each other and arranged at intervals, that is to say, the third side is connected with one end of the first side and one end of the second side, and the fourth side is connected with the other side of the first side. One end is connected to the other end of the second side.
  • the permanent magnet is cross-sectioned in the direction perpendicular to the axis of the rotor core, on this section, the outline of the first side and the outline of the second side are at the midpoint of the outline of the third side and the outline of the fourth side.
  • the lines connecting the midpoints of the lines are arranged symmetrically about the axis of symmetry.
  • the arrangement can ensure the balance and consistency of the gaps between the plurality of permanent magnets, and has the advantages of regular structure, low processing difficulty and low production cost.
  • the distance from any one of the first side and the second side to the symmetry axis gradually decreases.
  • this arrangement reduces the material input of the permanent magnets under the condition of ensuring the reduction of the magnetic flux leakage between the two adjacent permanent magnets, thereby helping to reduce the production cost.
  • the angle a formed between the first side surface and the second side surface satisfies: p is the number of pole pairs of the rotor assembly of the motor.
  • the angle a formed between the first side and the second side satisfies: where p is the number of pole pairs of the rotor assembly.
  • the number of pole pairs of the rotor assembly is p and the number of permanent magnets is 2p.
  • the transition surface extends from the third side surface to the fourth side surface.
  • the transition surface extends from the third side surface to the fourth side surface, that is, one end of the transition surface is connected to the third side surface, and the other end of the transition surface is connected to the fourth side surface. That is to say, by reasonably setting the matching structure of the third side, the fourth side, the first side, the second side and the transition surface, the distance between the two adjacent permanent magnets in the radial direction of the rotor core is equal, so that it is possible to The magnetic flux leakage between two adjacent permanent magnets is effectively reduced, and the utilization rate of the permanent magnets is improved on the basis of less permanent magnet consumption.
  • the arrangement of the structure is beneficial to the sinusoidalization of the air gap magnetic field, and is beneficial to reduce the harmonics of the back EMF, the cogging torque and the torque ripple.
  • connection between any two adjacent side surfaces of the first side surface, the fourth side surface, the second side surface and the third side surface is smoothly transitioned.
  • the junction of any two adjacent sides among the first side, the fourth side, the second side and the third side can be smoothly transitioned.
  • the processing and production costs are low, and the structure arrangement can avoid the occurrence of scratching the operator or other components of the rotor assembly when assembling the rotor assembly.
  • a second aspect of the present application provides a rotor assembly, comprising: a rotor iron core; and a plurality of permanent magnets according to any one of the technical solutions of the first aspect, wherein the plurality of permanent magnets are arranged on the rotor iron core, and the plurality of permanent magnets are wound around the rotor iron core.
  • the axes of the rotor iron core are arranged at intervals, and the first end face of the permanent magnet is connected with the rotor iron core.
  • the rotor assembly includes the permanent magnet according to any one of the technical solutions in the first aspect, it has all the beneficial effects of the above permanent magnet, which will not be described one by one here.
  • the rotor assembly further includes: a plastic-covered body, the permanent magnets and the rotor core are connected together by the plastic-covered body, and the plastic-covered body covers at least a part of the rotor core and at least a part of the permanent magnet, So that the rotor core and the permanent magnets form an integrated structure.
  • the permanent magnet and the rotor iron core are formed into an integrated structure by setting the plastic wrapping body, which can ensure the stability and reliability of the assembly of the rotor iron core and the permanent magnet, and can ensure the rotor.
  • the relative positional relationship between the iron core and the permanent magnet provides a stable and reliable structural support for the normal operation of the motor including the rotor assembly.
  • the overmolded form effectively enhances the connection strength between the rotor core and the permanent magnet, and the overmolded body also plays a role in fixing and limiting the permanent magnet, and increases the size of the permanent magnet.
  • connection area between the permanent magnet and other structures thus avoiding the risk of the permanent magnet falling off as a whole or partially due to the weak surface bonding method in the related art, effectively preventing the permanent magnet from falling off, thereby improving the axial flux of the permanent magnet motor (or called disc motor) reliability of operation.
  • a third aspect of the present application provides a motor, including: a stator assembly; and a rotor assembly according to any one of the technical solutions of the second aspect, wherein the rotor assembly is rotatably connected to the stator assembly.
  • the motor provided by the present application includes the rotor assembly according to any one of the technical solutions in the second aspect, it has all the beneficial effects of the above-mentioned rotor assembly, which will not be described one by one here.
  • FIG. 1 shows a schematic structural diagram of a permanent magnet of a first embodiment of the present application from a first perspective
  • FIG. 2 shows a schematic structural diagram of the permanent magnet of the first embodiment of the present application from a second perspective
  • Fig. 3 shows the structural schematic diagram of the permanent magnet of the second embodiment of the present application
  • FIG. 4 shows a schematic structural diagram of the permanent magnet of the third embodiment of the present application from a first perspective
  • FIG. 5 shows a schematic structural diagram of the permanent magnet of the third embodiment of the present application from a second perspective
  • FIG. 6 shows a schematic structural diagram of a rotor assembly according to an embodiment of the present application
  • FIG. 7 shows a partial structural schematic diagram of a rotor assembly according to an embodiment of the present application.
  • FIG. 8 shows a schematic block diagram of a motor according to an embodiment of the present application.
  • FIG. 9 shows a schematic block diagram of a refrigeration device according to an embodiment of the present application.
  • FIG. 10 is a diagram showing the relationship between time and reverse potential of the motor of an embodiment of the present application and the motor in the related art
  • FIG. 11 is a graph showing the relationship between the opposite-potential harmonic components and the opposite-potential harmonic amplitudes of a motor according to an embodiment of the present application and a motor in the related art.
  • Permanent magnets, rotor assemblies, motors, compressors, and refrigeration apparatuses according to some embodiments of the present application are described below with reference to FIGS. 1 to 11 .
  • the permanent magnet 120 includes a first One end face 122 , the second end face 124 , the first side face 126 , the second side face 128 and the transition face 130 , the first end face 122 and the second end face 124 are opposite to and spaced apart, and both the first side face 126 and the second side face 128 are located at the first Between the end surface 122 and the second end surface 124 , the first side surface 126 and the second side surface 128 are disposed opposite to each other, and both the first side surface 126 and the second side surface 128 are adapted to extend along the direction from the middle to the edge of the rotor core 110 of the motor 200 , the transition surface 130 is located between the first side surface 126 and the second end surface 124, and/or the transition surface 130 is located between the
  • the permanent magnet 120 includes a first end surface 122 , a second end surface 124 , a first side surface 126 , a second side surface 128 and a transition surface 130 .
  • the first side surface 126 and the second side surface 128 are two opposite and spaced apart permanent magnets 120 .
  • the transition surface 130 is located between the first side 126 and the second end surface 124, or the transition surface 130 is located between the first side 126 and the second end surface 124.
  • the distance from any point on the transition surface 130 to the first end surface 122 is smaller than the distance between the first end surface 122 and the second end surface 124 .
  • the first side surface 126 of one permanent magnet 120 of the two adjacent permanent magnets 120 is disposed corresponding to the transition surface 130 of the other permanent magnet 120 , so that on the one hand, the inner side of the two adjacent permanent magnets 120 is enlarged.
  • the distance between the ends thereby reducing the magnetic flux leakage between the two adjacent permanent magnets 120, on the basis of less permanent magnet 120 consumption, improving the utilization rate of the permanent magnet 120 and reducing the production cost;
  • the structural arrangement of the transition surface 130 is beneficial to sinusoidal air gap magnetic field, and is beneficial to reduce back EMF harmonics, cogging torque and torque ripple.
  • the second side surface 128 of one permanent magnet 120 of the two adjacent permanent magnets 120 is disposed correspondingly to the transition surface 130 of the other permanent magnet 120 , so that the inner ends of the two adjacent permanent magnets 120 are enlarged. Therefore, the magnetic leakage at the inner corners of the permanent magnet 120 can be reduced, the utilization rate of the magnetic steel can be improved, the air gap can be sinusoidal, and the back EMF harmonics, cogging torque and torque ripple can be reduced.
  • the transition surface 130 of one permanent magnet 120 in the adjacent two permanent magnets 120 is set corresponding to the transition surface 130 of the other permanent magnet 120 , and the corners of the side parts of the permanent magnets 120 are more curved, resulting in the side part
  • the corners of the two adjacent permanent magnets 120 transition to the middle of the permanent magnet 120, thereby increasing the distance between the two adjacent permanent magnets 120, thereby reducing the magnetic flux leakage between the two adjacent permanent magnets 120 and making the air gap sinusoidal.
  • the permanent magnet 120 may be a magnetic steel or a permanent magnet 120 made of other permanent magnet materials.
  • Embodiment 2 provides a permanent magnet 120 for use in the motor 200 .
  • the permanent magnet 120 includes a first end surface 122 , a second end surface 124 , a first side surface 126 , a second side surface 128 and a transition surface 130, the first end face 122 and the second end face 124 are opposite and arranged at intervals, the first side face 126 and the second side face 128 are both located between the first end face 122 and the second end face 124, and the first side face 126 and the second side face 128 are arranged oppositely , and both the first side surface 126 and the second side surface 128 are adapted to extend along the direction from the middle to the edge of the rotor core 110 of the motor 200, and the transition surface 130 is located between the first side surface 126 and the second end surface 124, and/or the transition surface
  • the surface 130 is located between the second side surface 128 and the second end surface 124 , and the distance from the transition surface 130 to the first end surface 122 is smaller
  • the transition surface 130 includes a flat surface.
  • the transition surface 130 includes an arc surface.
  • the transition surface 130 includes a folded surface.
  • the transition surface 130 is a combination of a part of a plane, a curved surface and a folded surface.
  • the transition surface 130 is a combination of a plane, a curved surface and a folded surface.
  • the distance from the connection between the transition surface 130 and the first side surface 126 to the first end surface 122 is less than or equal to the distance from the first end surface 122 to the second end surface 124 .
  • the included angle between the transition surface 130 and the first side surface 126 is greater than 90° and less than 180°.
  • the distance from the connection between the transition surface 130 and the second side surface 128 to the first end surface 122 is less than or equal to the distance from the first end surface 122 to the second end surface 124 .
  • the included angle between the transition surface 130 and the second side surface 128 is greater than 90° and less than 180°.
  • Embodiment 3 provides a permanent magnet 120 for use in a motor 200
  • the permanent magnet 120 includes a first end face 122, a second end face 124, a first side face 126, a second side face 128 and a transition face 130, the first end face 122 and the second end face 124 are opposite and arranged at intervals, the first side face 126 and the
  • the two side surfaces 128 are both located between the first end surface 122 and the second end surface 124 , the first side surface 126 and the second side surface 128 are disposed opposite to each other, and both the first side surface 126 and the second side surface 128 are suitable for extending along the rotor core 110 of the motor 200 .
  • the middle of the 130 extends in the direction of the edge, the transition surface 130 is located between the first side surface 126 and the second end surface 124, and/or the transition surface 130 is located between the second side surface 128 and the second end surface 124, and the transition surface 130 to the first end surface
  • the distance of 122 is smaller than the distance from the first end surface 122 to the second end surface 124 .
  • the permanent magnet 120 also includes a third side surface 132 and a fourth side surface 134 .
  • the first side surface 126 , the fourth side surface 134 , the second side surface 128 and the third side surface 132 are connected end to end in order to enclose the side peripheral surface of the permanent magnet 120
  • the permanent magnet 120 is cross-sectioned in the direction perpendicular to the axis of the rotor core 110.
  • the outline of the first side 126 and the outline of the second side 128 are axisymmetric structures
  • the outline of the third side 132 is an axisymmetric structure.
  • the line connecting the midpoint of the fourth side surface 134 and the midpoint of the contour line of the fourth side surface 134 forms the axis of symmetry of the axisymmetric structure.
  • the side peripheral surface of the permanent magnet 120 includes a first side surface 126 , a fourth side surface 134 , a second side surface 128 and a third side surface 132 which are connected end to end in sequence.
  • the third side 132 and the fourth side 134 are two sides of the permanent magnet 120 that are opposite to each other and are arranged at intervals, that is, the third side 132 is connected to one end of the first side 126 and one end of the second side 128 , and the fourth side 134 is connected to the other end of the first side surface 126 and the other end of the second side surface 128 .
  • the permanent magnet 120 is cross-sectioned in a direction perpendicular to the axis of the rotor core 110, and on this cross-section, the outline of the first side 126 and the outline of the second side 128 are at the midpoint of the outline of the third side 132.
  • the line connecting the midpoints of the contour lines of the fourth side surface 134 is arranged symmetrically with respect to the axis of symmetry.
  • This arrangement can ensure the balance and consistency of the gaps between the plurality of permanent magnets 120, and has the advantages of regular structure, low processing difficulty and low production cost.
  • this setting reduces the material input of the permanent magnets 120 under the condition that the magnetic flux leakage between the two adjacent permanent magnets 120 is guaranteed to be reduced, thereby helping to reduce the production cost.
  • the permanent magnet 120 is cross-sectioned in the direction perpendicular to the axis of the rotor core 110 .
  • the contour line of the first side surface 126 is a straight line
  • the contour line of the second side surface 128 is a straight line.
  • the shape enclosed by the contour lines of the permanent magnet 120 is a fan shape.
  • the permanent magnet 120 is cross-sectioned in a direction perpendicular to the axis of the rotor core 110 .
  • the outline of the first side surface 126 is a straight line
  • the outline of the second side surface 128 is a straight line.
  • the shape enclosed by the outline of the permanent magnet 120 is a trapezoid, a square or a rectangle.
  • the permanent magnet 120 is cross-sectioned in a direction perpendicular to the axis of the rotor core 110 , and on the cross-section, the contour of the first side 126 is an arc, and the contour of the second side 128 is an arc Wire.
  • the permanent magnet 120 is cross-sectioned in a direction perpendicular to the axis of the rotor core 110 .
  • the outline of the first side surface 126 is a broken line
  • the outline of the second side surface 128 is a broken line.
  • the permanent magnet 120 is cross-sectioned in a direction perpendicular to the axis of the rotor core 110 , and on the cross-section, the outline of the first side surface 126 is partially linear among arcs, straight lines, and broken lines.
  • the contour line of the second side surface 128 is a combination of arcs, straight lines and partial lines of folded lines.
  • the permanent magnet 120 is cross-sectioned in a direction perpendicular to the axis of the rotor core 110 .
  • the contour of the first side 126 is a combination of arcs, straight lines and broken lines
  • the outline of 128 is a combination of arcs, straight lines and polylines.
  • Embodiment 4 provides a permanent magnet 120 for use in the motor 200.
  • the permanent magnet 120 includes a first end surface 122, a second end surface 124, a first side surface 126, a second side surface 128 and a transition surface 130, the first end face 122 and the second end face 124 are opposite and arranged at intervals, the first side face 126 and the second side face 128 are both located between the first end face 122 and the second end face 124, and the first side face 126 and the second side face 128 are arranged oppositely , and both the first side surface 126 and the second side surface 128 are adapted to extend along the direction from the middle to the edge of the rotor core 110 of the motor 200, and the transition surface 130 is located between the first side surface 126 and the second end surface 124, and/or the transition surface The surface 130 is located between the second side surface 128 and the second end surface 124.
  • the distance from the transition surface 130 to the first end surface 122 is smaller than the distance from the first end surface 122 to the second end surface 124.
  • the permanent magnet 120 further includes a third side surface 132 and a fourth side surface 122.
  • the side surface 134, the first side surface 126, the fourth side surface 134, the second side surface 128 and the third side surface 132 are connected end to end to enclose the side peripheral surface of the permanent magnet 120; 120 conducts a cross-section, on the cross-section, the contour of the first side 126 and the contour of the second side 128 are axisymmetric structures, and the midpoint of the contour of the third side 132 and the midpoint of the contour of the fourth side 134 are the same.
  • the connecting lines form the axis of symmetry of the axisymmetric structure.
  • transition surface 130 extends from the third side surface 132 to the fourth side surface 134 .
  • the transition surface 130 extends from the third side surface 132 to the fourth side surface 134 , that is, one end of the transition surface 130 is connected with the third side surface 132 , and the other end of the transition surface 130 is connected with the fourth side surface 134 .
  • the matching structure of the third side surface 132 , the fourth side surface 134 , the first side surface 126 , the second side surface 128 and the transition surface 130 , along the radial direction of the rotor core 110 two adjacent permanent magnets
  • the distances between the permanent magnets 120 are equal, so that the magnetic flux leakage between two adjacent permanent magnets 120 can be effectively reduced, and the utilization rate of the permanent magnets 120 can be improved on the basis of less amount of the permanent magnets 120 .
  • the arrangement of the structure is beneficial to the sinusoidalization of the air gap magnetic field, and is beneficial to reduce the harmonics of the back EMF, the cogging torque and the torque ripple.
  • Embodiment 5 provides a permanent magnet 120 for the motor 200 .
  • the permanent magnet 120 includes a first end surface 122 , a second end surface 124 , a first side surface 126 , and a second side surface 128 and transition surface 130, the first end surface 122 and the second end surface 124 are opposite and spaced apart, the first side surface 126 and the second side surface 128 are both located between the first end surface 122 and the second end surface 124, the first side surface 126 and the second end surface 124
  • the side surfaces 128 are arranged opposite to each other, and the first side surfaces 126 and the second side surfaces 128 are both adapted to extend in the direction from the middle to the edge of the rotor core 110 of the motor 200 , and the transition surface 130 is located between the first side surface 126 and the second end surface 124 , And/or the transition surface 130 is located between the second side surface 128 and the second end surface 124, the distance from the transition surface 130 to the first end surface
  • the outline of the first side 126 and the outline of the second side 128 are axisymmetric structures, the midpoint of the outline of the third side 132 and the outline of the fourth side 134.
  • the line connecting the midpoints of forms the axis of symmetry of the axisymmetric structure.
  • connection of any two adjacent side surfaces among the first side surface 126 , the fourth side surface 134 , the second side surface 128 and the third side surface 132 has a smooth transition.
  • the junction of any two adjacent sides among the first side 126, the fourth side 134, the second side 128 and the third side 132 has a smooth transition, which is convenient for permanent magnets.
  • the production cost of the magnet 120 is low, and the structure arrangement can avoid scratching the operator or other components of the rotor assembly 100 when assembling the rotor assembly 100 .
  • Embodiment 6 provides a permanent magnet 120 for the motor 200 , the permanent magnet 120 includes a first end surface 122 , a second end surface 124 , a first side surface 126 , a second side surface 128 and The transition surface 130, the first end surface 122 and the second end surface 124 are opposite and spaced apart, the first side surface 126 and the second side surface 128 are both located between the first end surface 122 and the second end surface 124, the first side surface 126 and the second side surface 128 The first side surface 126 and the second side surface 128 are both adapted to extend along the direction of the middle of the rotor core 110 of the motor 200 to the edge, and the transition surface 130 is located between the first side surface 126 and the second end surface 124, and/ Or the transition surface 130 is located between the second side surface 128 and the second end surface 124 , and the distance from the transition surface 130 to the first end surface 122 is smaller than the distance from the first end surface 122 to the
  • angle a formed between the first side surface 126 and the second side surface 128 satisfies: p is the number of pole pairs of the rotor assembly 100 of the electric machine.
  • the angle a formed between the first side surface 126 and the second side surface 128 satisfies:
  • p is the number of pole pairs of the rotor assembly 100 .
  • the number of pole pairs of the rotor assembly 100 is p
  • the number of permanent magnets 120 is 2p.
  • the plurality of permanent magnets 120 can be uniformly arranged along the axis of the rotor core 110 .
  • an embodiment of the second aspect of the present application provides a rotor assembly, including: a rotor core; and a plurality of permanent magnets according to any embodiment of the first aspect, wherein the plurality of permanent magnets are provided On the rotor iron core, a plurality of permanent magnets are arranged at intervals around the axis of the rotor iron core, and the first end faces of the permanent magnets are connected with the rotor iron core.
  • the rotor assembly provided by the present application includes the permanent magnet according to any one of the embodiments of the first aspect, it has all the beneficial effects of the above permanent magnet, which will not be described one by one here.
  • the rotor assembly 100 further includes an overmolding body 140 , the permanent magnets 120 and the rotor core 110 are connected together by the overmolding body 140 , and the overmolding body 140 covers at least a part of the rotor core 110 and the rotor core 110 . At least a part of the permanent magnets 120 so that the rotor core 110 and the permanent magnets 120 form an integrated structure.
  • the overmolding body 140 by arranging the overmolding body 140, the permanent magnet 120 and the rotor core 110 are formed into an integrated structure by using the overmolding body 140, which can ensure the stability and reliability of the assembly of the rotor core 110 and the permanent magnet 120, and The relative positional relationship between the rotor iron core 110 and the permanent magnet 120 can be guaranteed, and a stable and reliable structural support is provided for the normal operation of the motor 200 including the rotor assembly 100 .
  • the overmolded form effectively enhances the connection strength between the rotor core 110 and the permanent magnet 120
  • the overmolded body 140 also plays a role in fixing and limiting the position of the permanent magnet 120 .
  • connection area between the permanent magnet 120 and other structures is increased, thereby avoiding the risk of the permanent magnet 120 falling off as a whole or partially due to the weak surface bonding method in the related art, effectively preventing the permanent magnet 120 from falling off, thereby improving the axial direction.
  • an embodiment of the third aspect of the present application provides a motor 200 , including: a stator assembly 210 ; and the rotor assembly 100 according to any embodiment of the second aspect, where the rotor assembly 100 is rotatably connected to the stator assembly 210 .
  • the motor 200 includes a stator assembly 210 and a rotor assembly 100 .
  • the rotor assembly 100 includes a rotor core 110 and a plurality of permanent magnets 120 , wherein the plurality of permanent magnets 120 are arranged at intervals around the axis of the rotor core 110 .
  • the permanent magnet 120 includes a first end surface 122 , a second end surface 124 , a first side surface 126 , a second side surface 128 and a transition surface 130 .
  • the first side surface 126 and the second side surface 128 are two opposite and spaced apart permanent magnets 120 .
  • the transition surface 130 is located between the first side 126 and the second end surface 124, or the transition surface 130 is located on the first side.
  • the transition surface 130 is located between the two side surfaces 128 and the second end surface 124, or a part of the transition surface 130 is located between the first side surface 126 and the second end surface 124, and the other part of the transition surface 130 is located between the second side surface 128 and the second end surface 124, and makes the transition
  • the distance from any point on the surface 130 to the first end surface 122 is smaller than the distance between the first end surface 122 and the second end surface 124 .
  • the first side surface 126 of one permanent magnet 120 of the two adjacent permanent magnets 120 is disposed corresponding to the transition surface 130 of the other permanent magnet 120 , so that on the one hand, the inner side of the two adjacent permanent magnets 120 is enlarged.
  • the distance between the ends thereby reducing the magnetic flux leakage between the two adjacent permanent magnets 120, on the basis of less permanent magnet 120 consumption, improving the utilization rate of the permanent magnet 120 and reducing the production cost;
  • the structural arrangement of the transition surface 130 is beneficial to sinusoidal air gap magnetic field, and is beneficial to reduce back EMF harmonics, cogging torque and torque ripple.
  • the second side surface 128 of one permanent magnet 120 of the two adjacent permanent magnets 120 is disposed correspondingly to the transition surface 130 of the other permanent magnet 120 , so that the inner ends of the two adjacent permanent magnets 120 are enlarged. Therefore, the magnetic leakage at the inner corners of the permanent magnet 120 can be reduced, the utilization rate of the magnetic steel can be improved, the air gap can be sinusoidal, and the back EMF harmonics, cogging torque and torque ripple can be reduced.
  • the transition surface 130 of one permanent magnet 120 in the adjacent two permanent magnets 120 is set corresponding to the transition surface 130 of the other permanent magnet 120 , and the corners of the side parts of the permanent magnets 120 are more curved, resulting in the side part
  • the corners of the two adjacent permanent magnets 120 transition to the middle of the permanent magnet 120, thereby increasing the distance between the two adjacent permanent magnets 120, thereby reducing the magnetic flux leakage between the two adjacent permanent magnets 120 and making the air gap sinusoidal.
  • the motor 200 is an axial flux motor.
  • an embodiment of the fourth aspect of the present application provides a compressor 300, including: the rotor assembly 100 of any embodiment of the second aspect; or the motor 200 of the third aspect.
  • the compressor 300 includes a rotor assembly 100 including a rotor core 110 and a plurality of permanent magnets 120 , wherein the plurality of permanent magnets 120 are arranged at intervals around the axis of the rotor core 110 .
  • the permanent magnet 120 includes a first end surface 122 , a second end surface 124 , a first side surface 126 , a second side surface 128 and a transition surface 130 .
  • the first side surface 126 and the second side surface 128 are two opposite and spaced apart permanent magnets 120 .
  • the transition surface 130 is located between the first side 126 and the second end surface 124, or the transition surface 130 is located on the first side.
  • the transition surface 130 is located between the two side surfaces 128 and the second end surface 124, or a part of the transition surface 130 is located between the first side surface 126 and the second end surface 124, and the other part of the transition surface 130 is located between the second side surface 128 and the second end surface 124, and makes the transition
  • the distance from any point on the surface 130 to the first end surface 122 is smaller than the distance between the first end surface 122 and the second end surface 124 .
  • the first side surface 126 of one permanent magnet 120 of the two adjacent permanent magnets 120 is disposed corresponding to the transition surface 130 of the other permanent magnet 120 , so that on the one hand, the inner side of the two adjacent permanent magnets 120 is enlarged.
  • the distance between the ends thereby reducing the magnetic flux leakage between the two adjacent permanent magnets 120, on the basis of less permanent magnet 120 consumption, improving the utilization rate of the permanent magnet 120 and reducing the production cost;
  • the structural arrangement of the transition surface 130 is beneficial to sinusoidal air gap magnetic field, and is beneficial to reduce back EMF harmonics, cogging torque and torque ripple.
  • the second side surface 128 of one permanent magnet 120 of the two adjacent permanent magnets 120 is disposed correspondingly to the transition surface 130 of the other permanent magnet 120 , so that the inner ends of the two adjacent permanent magnets 120 are enlarged. Therefore, the magnetic leakage at the inner corners of the permanent magnet 120 can be reduced, the utilization rate of the magnetic steel can be improved, the air gap can be sinusoidal, and the back EMF harmonics, cogging torque and torque ripple can be reduced.
  • the transition surface 130 of one permanent magnet 120 in the adjacent two permanent magnets 120 is set corresponding to the transition surface 130 of the other permanent magnet 120 , and the corners of the side parts of the permanent magnets 120 are more curved, resulting in the side part
  • the corners of the two adjacent permanent magnets 120 transition to the middle of the permanent magnet 120, thereby increasing the distance between the two adjacent permanent magnets 120, thereby reducing the magnetic flux leakage between the two adjacent permanent magnets 120 and making the air gap sinusoidal.
  • an embodiment of the fifth aspect of the present application provides a refrigeration device 400, including: the rotor assembly 100 of any embodiment of the second aspect; or the motor 200 of the third aspect; or the fourth aspect The compressor 300 of the aspect.
  • the refrigeration apparatus 400 includes a rotor assembly 100 including a rotor core 110 and a plurality of permanent magnets 120 , wherein the plurality of permanent magnets 120 are arranged at intervals around the axis of the rotor core 110 .
  • the permanent magnet 120 includes a first end surface 122 , a second end surface 124 , a first side surface 126 , a second side surface 128 and a transition surface 130 .
  • the first side surface 126 and the second side surface 128 are two opposite and spaced apart permanent magnets 120 .
  • the transition surface 130 is located between the first side 126 and the second end surface 124, or the transition surface 130 is located on the first side.
  • the transition surface 130 is located between the two side surfaces 128 and the second end surface 124, or a part of the transition surface 130 is located between the first side surface 126 and the second end surface 124, and the other part of the transition surface 130 is located between the second side surface 128 and the second end surface 124, and makes the transition
  • the distance from any point on the surface 130 to the first end surface 122 is smaller than the distance between the first end surface 122 and the second end surface 124 .
  • the first side surface 126 of one permanent magnet 120 of the two adjacent permanent magnets 120 is disposed corresponding to the transition surface 130 of the other permanent magnet 120 , so that on the one hand, the inner side of the two adjacent permanent magnets 120 is enlarged.
  • the distance between the ends thereby reducing the magnetic flux leakage between the two adjacent permanent magnets 120, on the basis of less permanent magnet 120 consumption, improving the utilization rate of the permanent magnet 120 and reducing the production cost;
  • the structural arrangement of the transition surface 130 is beneficial to sinusoidal air gap magnetic field, and is beneficial to reduce back EMF harmonics, cogging torque and torque ripple.
  • the second side surface 128 of one permanent magnet 120 of the two adjacent permanent magnets 120 is disposed correspondingly to the transition surface 130 of the other permanent magnet 120 , so that the inner ends of the two adjacent permanent magnets 120 are enlarged. Therefore, the magnetic leakage at the inner corners of the permanent magnet 120 can be reduced, the utilization rate of the magnetic steel can be improved, the air gap can be sinusoidal, and the back EMF harmonics, cogging torque and torque ripple can be reduced.
  • the transition surface 130 of one permanent magnet 120 in the adjacent two permanent magnets 120 is set corresponding to the transition surface 130 of the other permanent magnet 120 , and the corners of the side parts of the permanent magnets 120 are more curved, resulting in the side part
  • the corners of the two adjacent permanent magnets 120 transition to the middle of the permanent magnet 120, thereby increasing the distance between the two adjacent permanent magnets 120, thereby reducing the magnetic flux leakage between the two adjacent permanent magnets 120 and making the air gap sinusoidal.
  • the permanent magnet 120 is used for an axial flux motor, and the permanent magnet 120 includes a first end surface 122, a second end surface 124, and a first side surface 126, a second side surface 128, a third side surface 132, and a fourth side surface 134 that are connected end to end in sequence, wherein , the first end surface 122 is in contact with the rotor core 110 , and the remaining end surfaces are opposite to the stator core tooth surface with an air gap therebetween.
  • a transition surface 130 transitions where the end surface opposite to the tooth surface of the stator iron core intersects with the first side surface 126 and the second side surface 128 .
  • the projection of the first side surface 126 , the fourth side surface 134 , the second side surface 128 and the third side surface 132 connected end to end on the first end surface 122 or the second end surface 124 is an axisymmetric structure
  • the third side surface 132 is on the first end surface 122 or
  • the line connecting the midpoint of the third line projected on the second end surface 124 and the midpoint of the fourth line projected by the fourth side surface 134 on the first end surface 122 or the second end surface 124 forms the axis of symmetry of the axisymmetric structure
  • the axis of symmetry is configured to be adapted to intersect perpendicularly with the central axis of the rotor assembly 100 of the electric machine 200 .
  • Two transition surfaces 130 are used for transition optimization at the intersection of the end surface of the permanent magnet 120 opposite to the tooth surface of the stator core and the first side surface 126 and the second side surface 128 .
  • the optimized camber design is beneficial to sinusoidal air gap magnetic field, which is beneficial to reduce back EMF harmonics, cogging torque and torque ripple.
  • the transition surface 130 is a plane, the transition surface 130 is mainly defined by the cutting thickness L and the cutting angle A, and the cutting thickness L does not exceed the first end surface 122 and the second end surface 124 . Between the thickness H of the permanent magnets 120, the cutting angle A does not exceed 90°.
  • the two transition surfaces 130 are symmetrical about the axis of symmetry. This setting improves the proportion of harmonic components of the back EMF.
  • the transition surface 130 is an arc surface, and viewed from the projection of the fourth side surface 134 , the transition surface 130 is defined by the cutting radius R and the position of the center of the circle.
  • the two transition surfaces 130 are symmetrical about the axis of symmetry, the cutting radius R and the position of the center of the circle. This setting improves the proportion of harmonic components of the back EMF.
  • the arrangement of the two transition surfaces 130 is beneficial to increase the distance between the adjacent permanent magnets 120, thereby reducing the magnetic flux leakage at the outer corners of the permanent magnets 120.
  • the air gap between the stator tooth surfaces changes regularly, which makes the air gap magnetic density sinusoidal and reduces the back EMF harmonics, cogging torque and torque ripple, as shown in Figure 10 and Figure 11.
  • the permanent magnet 120 of the present application has a symmetrical structure and regular shape, which is convenient for processing.
  • the extension lines of the two transition surfaces 130 intersect to form an included angle a, and the relationship between a and the number of pole pairs P of the rotor assembly 100 satisfies: If the number of pole pairs of the rotor assembly 100 is P, the number of permanent magnets 120 included in the rotor assembly 100 is twice as large as P. This design facilitates the uniform arrangement of the plurality of permanent magnets 120 along the circumferential direction of the rotor assembly 100 .
  • intersections of the third side surface 132 with the first side surface 126 and the second side surface 128 and the fourth side surface 134 with the first side surface 126 and the second side surface 128 are arc-shaped transitions, which is convenient for manufacturing.
  • the permanent magnet 120 may be a ferrite, a NdFeB, or a permanent magnet 120 made of other permanent magnet materials.
  • the motor 200 is an axial flux permanent magnet motor, or a disc motor.
  • the rotor assembly 100 includes: a rotor iron core 110 and a permanent magnet 120 , and the permanent magnet 120 is connected to an end surface of the rotor iron core 110 .
  • the first end surface 122 of the permanent magnet 120 is connected with one side plane of the rotor core 110 by gluing. This method has a simple manufacturing process and fewer steps, and is suitable for low-speed applications.
  • the permanent magnets 120 are connected with the rotor core 110 through the overmolding body 140, and the overmolding body 140 covers at least a part of the rotor core 110 and at least a part of the permanent magnets 120, so that the rotor core 110 and the permanent magnets 120 form an integrated structure .
  • the rotor iron core 110 and the permanent magnets 120 are formed into an integrated structure in the form of integral overmolding, and the fixed connection between the rotor iron core 110 and the permanent magnets 120 is realized.
  • the overmolded form effectively enhances the connection strength between the rotor core 110 and the permanent magnet 120
  • the overmolded body 140 also plays a role in fixing and limiting the position of the permanent magnet 120, and increases the The connection area between the permanent magnet 120 and other structures is reduced, thereby avoiding the risk of the permanent magnet 120 falling off as a whole or in part due to the weak surface bonding method in the related art, effectively preventing the permanent magnet 120 from falling off, thereby improving the permanent magnetic flux in the axial direction.
  • the reliability of magneto (or disc motor) operation is provided.
  • the refrigeration equipment 400 includes: a fan, a pump, a refrigerator, an air conditioner, etc., which are not listed one by one here. At the same time, the refrigeration equipment 400 also includes industrial equipment such as vehicles and multi-line.
  • the term “plurality” refers to two or more, unless expressly defined otherwise.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense.
  • “connected” can be a fixed connection, a detachable connection, or an integral connection;
  • “connected” can be It is directly connected or indirectly connected through an intermediary.
  • the specific meanings of the above terms in this application can be understood according to specific situations.

Abstract

本申请提供了一种永磁体、转子组件和电机。其中,永磁体用于电机,永磁体包括:第一端面;第二端面,第一端面与第二端面相对且间隔布置;第一侧面;第二侧面,第一侧面和第二侧面均位于第一端面和第二端面之间,第一侧面和第二侧面相对设置,且第一侧面和第二侧面均适于沿电机转子铁芯的中部向边缘的方向延伸;过渡面,过渡面位于第一侧面和第二端面之间,和/或过渡面位于第二侧面和第二端面之间;其中,过渡面至第一端面的距离小于第一端面至第二端面的距离。本申请有利于减小反电势谐波、齿槽转矩和转矩脉动。

Description

永磁体、转子组件和电机
本申请要求于2021年03月17日提交中国国家知识产权局、申请号为“202110287614.2”、发明名称为“永磁体、转子组件和电机”及2021年03月17日提交中国国家知识产权局、申请号为“202120550103.0”、发明名称为“永磁体、转子组件和电机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及电机技术领域,具体而言,涉及一种永磁体、一种转子组件和一种电机。
背景技术
相关技术中,电机的转子组件包括转子铁芯和多个永磁体,永磁体结构设置不合理,电机的反电势谐波、齿槽转矩和转矩脉动较大,且漏磁严重,造成转子组件的局部饱和严重。
发明内容
本申请旨在至少解决现有技术或相关技术中存在的技术问题之一。
为此,本申请的第一方面提出了一种永磁体。
本申请的第二方面提出了一种转子组件。
本申请的第三方面提出了一种电机。
有鉴于此,本申请的第一方面提出了一种永磁体,用于电机,永磁体包括:第一端面;第二端面,第一端面与第二端面相对且间隔布置;第一侧面;第二侧面,第一侧面和第二侧面均位于第一端面和第二端面之间,第一侧面和第二侧面相对设置,且第一侧面和第二侧面均适于沿电机的转子铁芯的中部向边缘的方向延伸;过渡面,过渡面位于第一侧面和第二端面之间,和/或过渡面位于第二侧面和第二端面之间;其中,过渡面至第一端面的距离小于第一端面至第二端面的距离。
本申请提供的一种永磁体包括第一端面、第二端面、第一侧面、第二侧面和过渡面,第一侧面和第二侧面为永磁体相对且间隔设置的两个侧面,通过合理设置第一侧面、第二侧面、第二端面和过渡面的配合结构,使得过渡面位于第一侧面和第二端面之间,或过渡面位于第二侧面和第二端面之间,或一部分过渡面位于第一侧面和第二端面之间,另一部分过渡面位于第二侧面和第二端面之间,且使过渡面上的任一点至第一端面的距离小于第一端面与第二端面之间的间距。
具体地,相邻两个永磁体中的一个永磁体的第一侧面与另一个永磁体的过渡面对应设置,这样,一方面增大了相邻两个永磁体的内侧端部之间的距离,从而减小相邻两个永磁体之间的漏磁,在较少永磁体用量的基础上,提高永磁体的利用率,降低了生产成本;另一方面,过渡面的结构设置有利于气隙磁场的正弦化,有利于减小反电势谐波、齿槽转矩和转矩脉动。
同理,相邻两个永磁体中的一个永磁体的第二侧面与另一个永磁体的过渡面对应设置,这样,增大了相邻两个永磁体的内侧端部之间的距离,从而能够减小永磁体内侧边角的漏磁,提高磁钢的利用率,并使得气隙正弦化,减小反电势谐波、齿槽转矩和转矩脉动。
同理,相邻两个永磁体中的一个永磁体的过渡面与另一个永磁体的过渡面对应设置,永磁体侧部的边角处弯曲程度较大,导致侧部的边角向永磁体中部过渡,从而增大了相邻两个永磁体之间的间距,故而能够减小相邻两个永磁体之间的漏磁,并使得气隙正弦化,减小反电势谐波、齿槽转矩和转矩脉动。
根据本申请上述的转子组件,还可以具有以下附加技术特征:
在上述技术方案中,进一步地,过渡面包括以下任一种或其组合:平面、曲面及折面。
在该技术方案中,可根据实际情况来设置过渡面的结构,如过渡面包括平面,如,过渡面包括曲面,如过渡面包括折面,如,过渡面为平面、曲面及折面中的一部分的结合,如,过渡面为平面、曲面及折面的结合。
具体地,过渡面为平面时,过渡面与第一侧面的连接处至第一端面的 距离小于等于第一端面至第二端面的距离。过渡面与第一侧面的夹角大于90°,且小于180°。
具体地,过渡面为平面时,过渡面与第二侧面的连接处至第一端面的距离小于等于第一端面至第二端面的距离。过渡面与第二侧面的夹角大于90°,且小于180°。
在上述任一技术方案中,进一步地,永磁体还包括第三侧面和第四侧面,第一侧面、第四侧面、第二侧面和第三侧面首尾依次相连以围合成永磁体的侧周面;以垂直于转子铁芯的轴线的方向对永磁体进行截面,在截面上,第一侧面的轮廓线与第二侧面的轮廓线为轴对称结构,第三侧面的轮廓线的中点和第四侧面的轮廓线的中点的连线形成轴对称结构的对称轴。
在该技术方案中,永磁体的侧周面包括首尾依次连接的第一侧面、第四侧面、第二侧面和第三侧面。第三侧面和第四侧面为永磁体相对且间隔布置的两个侧面,也就是说,第三侧面与第一侧面的一端和第二侧面的一端相连接,第四侧面与第一侧面的另一端和第二侧面的另一端相连接。以垂直于转子铁芯的轴线的方向对永磁体进行截面,在该截面上,第一侧面的轮廓线与第二侧面的轮廓线以第三侧面的轮廓线的中点和第四侧面的轮廓线的中点的连线为对称轴对称布置。
该设置可保证多个永磁体之间间隙的均衡性及一致性,且具有结构规整,加工难度低,生产成本低的优点。
在上述任一技术方案中,进一步地,自第四侧面向第三侧面,第一侧面和第二侧面中的任一个至对称轴的距离逐渐减小。
在该技术方案中,通过合理设置第三侧面和第四侧面的配合结构,使得沿第四侧面至第三侧面的方向,第一侧面和第二侧面中的任一个至对称轴的距离逐渐减小,该设置在保证减小相邻两个永磁体之间的漏磁的情况下,减小了永磁体的材料投入,进而有利于降低生产成本。
在上述任一技术方案中,进一步地,第一侧面和第二侧面之间形成的夹角a满足:
Figure PCTCN2021117941-appb-000001
p为电机的转子组件的极对数。
在该技术方案中,通过合理设置第一侧面和第二侧面的配合结构,使 得第一侧面和第二侧面之间形成的夹角a满足:
Figure PCTCN2021117941-appb-000002
其中,p为转子组件的极对数。转子组件的极对数是p,永磁体的数量为2p。这样,通过限定第一侧面和第二侧面形成的夹角与转子组件的极对数的关系,可保证多个永磁体沿转子铁芯的轴线均匀布置。
在上述任一技术方案中,进一步地,过渡面自第三侧面延伸至第四侧面。
在该技术方案中,过渡面自第三侧面延伸至第四侧面,即,过渡面的一端与第三侧面相连接,过渡面的另一端与第四侧面相连接。也就是说,通过合理设置第三侧面、第四侧面、第一侧面、第二侧面和过渡面的配合结构,使得沿转子铁芯的径向,相邻两个永磁体的间距均等,从而可以有效减小相邻两个永磁体之间的漏磁,在较少永磁体用量的基础上,提高永磁体的利用率。且该结构设置有利于气隙磁场的正弦化,有利于减小反电势谐波、齿槽转矩和转矩脉动。
在上述任一技术方案中,进一步地,第一侧面、第四侧面、第二侧面和第三侧面中的任意相邻两个侧面的连接处圆滑过渡。
在该技术方案中,通过合理设置永磁体的结构,使得第一侧面、第四侧面、第二侧面和第三侧面中的任意相邻两个侧面的连接处圆滑过渡,该设置便于永磁体的加工,生产成本低,且该结构设置可避免组装转子组件时划伤操作者,或是划伤转子组件的其他组成器件的情况发生。
本申请的第二方面提出了一种转子组件,包括:转子铁芯;及多个第一方面中任一技术方案的永磁体,多个永磁体设于转子铁芯上,多个永磁体绕转子铁芯的轴线间隔布置,永磁体的第一端面与转子铁芯相连接。
本申请提供的转子组件,因包括如第一方面中的任一技术方案的永磁体,因此,具有上述永磁体的全部有益效果,在此不做一一陈述。在上述技术方案中,进一步地,转子组件还包括:包塑体,永磁体和转子铁芯通过包塑体连接在一起,包塑体包覆转子铁芯的至少一部分和永磁体的至少一部分,以使转子铁芯和永磁体形成一体式结构。
在该技术方案中,通过设置包塑体,利用包塑体将永磁体和转子铁芯形成一体式结构,该设置可保证转子铁芯与永磁体装配的稳固性及可靠性, 且可保证转子铁芯与永磁体的相对位置关系,为包括转子组件的电机正常运转提供了稳定且可靠的结构支撑。另外,相较于相关技术中的粘接方式,包塑形式有效增强了转子铁芯与永磁体的连接强度,且包塑体也对永磁体起到了固定作用和限位作用,并增大了永磁体与其他结构的连接面积,从而避免了相关技术中表面粘接方式不牢固造成永磁体整块或局部脱落的风险,有效防止永磁体脱落,进而提高了轴向磁通永磁电机(或者叫盘式电机)运行的可靠性。
本申请的第三方面提出了一种电机,包括:定子组件;及第二方面中任一技术方案的转子组件,转子组件与定子组件转动连接。
本申请提供的电机,因包括如第二方面中的任一技术方案的转子组件,因此,具有上述转子组件的全部有益效果,在此不做一一陈述。
本申请的附加方面和优点将在下面的描述部分中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1示出了本申请的第一个实施例的永磁体的第一视角的结构示意图;
图2示出了本申请的第一个实施例的永磁体的第二视角的结构示意图;
图3示出了本申请的第二个实施例的永磁体的结构示意图;
图4示出了本申请的第三个实施例的永磁体的第一视角的结构示意图;
图5示出了本申请的第三个实施例的永磁体的第二视角的结构示意图;
图6示出了本申请的一个实施例的转子组件的结构示意图;
图7示出了本申请的一个实施例的转子组件的部分结构示意图;
图8示出了本申请的一个实施例的电机的示意框图;
图9示出了本申请的一个实施例的制冷设备的示意框图;
图10示出了本申请的一个实施例的电机和相关技术中的电机的时间和相反电势的关系图;
图11示出了本申请的一个实施例的电机和相关技术中的电机的相反电 势谐波分量和相反电势谐波幅值的关系图。
其中,图1至图9中的附图标记与部件名称之间的对应关系为:
100转子组件,110转子铁芯,120永磁体,122第一端面,124第二端面,126第一侧面,128第二侧面,130过渡面,132第三侧面,134第四侧面,140包塑体,200电机,210定子组件,300压缩机,400制冷设备。
具体实施方式
为了能够更清楚地理解本申请的上述目的、特征和优点,下面结合附图和具体实施方式对本申请进行进一步的详细描述。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
下面参照图1至图11描述根据本申请一些实施例的永磁体、转子组件、电机、压缩机和制冷设备。
实施例1:
如图1、图2、图3、图4、图5、图6和图7所示,本申请第一方面的实施例提出了一种永磁体120,用于电机200,永磁体120包括第一端面122、第二端面124、第一侧面126、第二侧面128和过渡面130,第一端面122与第二端面124相对且间隔布置,第一侧面126和第二侧面128均位于第一端面122和第二端面124之间,第一侧面126和第二侧面128相对设置,且第一侧面126和第二侧面128均适于沿电机200的转子铁芯110的中部向边缘的方向延伸,过渡面130位于第一侧面126和第二端面124之间,和/或过渡面130位于第二侧面128和第二端面124之间,过渡面130至第一端面122的距离小于第一端面122至第二端面124的距离。
详细地,永磁体120包括第一端面122、第二端面124、第一侧面126、第二侧面128和过渡面130,第一侧面126和第二侧面128为永磁体120相对且间隔设置的两个侧面,通过合理设置第一侧面126、第二侧面128、 第二端面124和过渡面130的配合结构,使得过渡面130位于第一侧面126和第二端面124之间,或过渡面130位于第二侧面128和第二端面124之间,或一部分过渡面130位于第一侧面126和第二端面124之间,另一部分过渡面130位于第二侧面128和第二端面124之间,且使过渡面130上的任一点至第一端面122的距离小于第一端面122与第二端面124之间的间距。
具体地,相邻两个永磁体120中的一个永磁体120的第一侧面126与另一个永磁体120的过渡面130对应设置,这样,一方面增大了相邻两个永磁体120的内侧端部之间的距离,从而减小相邻两个永磁体120之间的漏磁,在较少永磁体120用量的基础上,提高永磁体120的利用率,降低了生产成本;另一方面,过渡面130的结构设置有利于气隙磁场的正弦化,有利于减小反电势谐波、齿槽转矩和转矩脉动。
同理,相邻两个永磁体120中的一个永磁体120的第二侧面128与另一个永磁体120的过渡面130对应设置,这样,增大了相邻两个永磁体120的内侧端部之间的距离,从而能够减小永磁体120内侧边角的漏磁,提高磁钢的利用率,并使得气隙正弦化,减小反电势谐波、齿槽转矩和转矩脉动。
同理,相邻两个永磁体120中的一个永磁体120的过渡面130与另一个永磁体120的过渡面130对应设置,永磁体120侧部的边角处弯曲程度较大,导致侧部的边角向永磁体120中部过渡,从而增大了相邻两个永磁体120之间的间距,故而能够减小相邻两个永磁体120之间的漏磁,并使得气隙正弦化,减小反电势谐波、齿槽转矩和转矩脉动。
具体地,永磁体120可以是磁钢,也可以是其他永磁材料制成的永磁体120。
实施例2:
在实施例1的基础上,实施例2提供了一种永磁体120,用于电机200,永磁体120包括第一端面122、第二端面124、第一侧面126、第二侧面128和过渡面130,第一端面122与第二端面124相对且间隔布置,第一侧面126和第二侧面128均位于第一端面122和第二端面124之间,第一侧面 126和第二侧面128相对设置,且第一侧面126和第二侧面128均适于沿电机200的转子铁芯110的中部向边缘的方向延伸,过渡面130位于第一侧面126和第二端面124之间,和/或过渡面130位于第二侧面128和第二端面124之间,过渡面130至第一端面122的距离小于第一端面122至第二端面124的距离。
具体地,如图1和图2所示,过渡面130包括平面。
具体地,如图3、图4和图5所示,过渡面130包括弧面。
具体地,过渡面130包括折面。
具体地,过渡面130为平面、曲面及折面中的一部分的结合。
具体地,过渡面130为平面、曲面及折面的结合。
其中,过渡面130为平面时,过渡面130与第一侧面126的连接处至第一端面122的距离小于等于第一端面122至第二端面124的距离。过渡面130与第一侧面126的夹角大于90°,且小于180°。
其中,过渡面130为平面时,过渡面130与第二侧面128的连接处至第一端面122的距离小于等于第一端面122至第二端面124的距离。过渡面130与第二侧面128的夹角大于90°,且小于180°。
实施例3:
如图1、图2、图3、图4、图5、图6和图7所示,在实施例1或实施例2的基础上,实施例3提供了一种永磁体120,用于电机200,永磁体120包括第一端面122、第二端面124、第一侧面126、第二侧面128和过渡面130,第一端面122与第二端面124相对且间隔布置,第一侧面126和第二侧面128均位于第一端面122和第二端面124之间,第一侧面126和第二侧面128相对设置,且第一侧面126和第二侧面128均适于沿电机200的转子铁芯110的中部向边缘的方向延伸,过渡面130位于第一侧面126和第二端面124之间,和/或过渡面130位于第二侧面128和第二端面124之间,过渡面130至第一端面122的距离小于第一端面122至第二端面124的距离。
进一步地,永磁体120还包括第三侧面132和第四侧面134,第一侧面126、第四侧面134、第二侧面128和第三侧面132首尾依次相连以围合 成永磁体120的侧周面;以垂直于转子铁芯110的轴线的方向对永磁体120进行截面,在截面上,第一侧面126的轮廓线与第二侧面128的轮廓线为轴对称结构,第三侧面132的轮廓线的中点和第四侧面134的轮廓线的中点的连线形成轴对称结构的对称轴。
详细地,永磁体120的侧周面包括首尾依次连接的第一侧面126、第四侧面134、第二侧面128和第三侧面132。第三侧面132和第四侧面134为永磁体120相对且间隔布置的两个侧面,也就是说,第三侧面132与第一侧面126的一端和第二侧面128的一端相连接,第四侧面134与第一侧面126的另一端和第二侧面128的另一端相连接。以垂直于转子铁芯110的轴线的方向对永磁体120进行截面,在该截面上,第一侧面126的轮廓线与第二侧面128的轮廓线以第三侧面132的轮廓线的中点和第四侧面134的轮廓线的中点的连线为对称轴对称布置。
该设置可保证多个永磁体120之间间隙的均衡性及一致性,且具有结构规整,加工难度低,生产成本低的优点。
进一步地,如图1、图2、图3、图4、图5、图6和图7所示,自第四侧面134向第三侧面132,第一侧面126和第二侧面128中的任一个至对称轴的距离逐渐减小。
其中,通过合理设置第三侧面132和第四侧面134的配合结构,使得沿第四侧面134至第三侧面132的方向,第一侧面126和第二侧面128中的任一个至对称轴的距离逐渐减小,该设置在保证减小相邻两个永磁体120之间的漏磁的情况下,减小了永磁体120的材料投入,进而有利于降低生产成本。
本实施例中,如图1、图2、图3、图4、图5、图6和图7所示,以垂直于转子铁芯110的轴线的方向对永磁体120进行截面,在该截面上,第一侧面126的轮廓线为直线,第二侧面128的轮廓线为直线。如,永磁体120的轮廓线合围出的形状为扇形。
在其他一些实施例中,以垂直于转子铁芯110的轴线的方向对永磁体120进行截面,在该截面上,第一侧面126的轮廓线为直线,第二侧面128的轮廓线为直线。如,永磁体120的轮廓线合围出的形状为梯形、正方形 或长方形。
在另外一些实施例中,以垂直于转子铁芯110的轴线的方向对永磁体120进行截面,在该截面上,第一侧面126的轮廓线为弧线,第二侧面128的轮廓线为弧线。
在另外一些实施例中,以垂直于转子铁芯110的轴线的方向对永磁体120进行截面,在该截面上,第一侧面126的轮廓线为折线,第二侧面128的轮廓线为折线。
在另外一些实施例中,以垂直于转子铁芯110的轴线的方向对永磁体120进行截面,在该截面上,第一侧面126的轮廓线为弧线、直线及折线中的部分线型的结合,第二侧面128的轮廓线为弧线、直线及折线中的部分线型的结合。
在另外一些实施例中,以垂直于转子铁芯110的轴线的方向对永磁体120进行截面,在该截面上,第一侧面126的轮廓线为弧线、直线及折线的结合,第二侧面128的轮廓线为弧线、直线及折线的结合。
实施例4:
在实施例3的基础上,实施例4提供了一种永磁体120,用于电机200,永磁体120包括第一端面122、第二端面124、第一侧面126、第二侧面128和过渡面130,第一端面122与第二端面124相对且间隔布置,第一侧面126和第二侧面128均位于第一端面122和第二端面124之间,第一侧面126和第二侧面128相对设置,且第一侧面126和第二侧面128均适于沿电机200的转子铁芯110的中部向边缘的方向延伸,过渡面130位于第一侧面126和第二端面124之间,和/或过渡面130位于第二侧面128和第二端面124之间,过渡面130至第一端面122的距离小于第一端面122至第二端面124的距离,永磁体120还包括第三侧面132和第四侧面134,第一侧面126、第四侧面134、第二侧面128和第三侧面132首尾依次相连以围合成永磁体120的侧周面;以垂直于转子铁芯110的轴线的方向对永磁体120进行截面,在截面上,第一侧面126的轮廓线与第二侧面128的轮廓线为轴对称结构,第三侧面132的轮廓线的中点和第四侧面134的轮廓线的中点的连线形成轴对称结构的对称轴。
进一步地,过渡面130自第三侧面132延伸至第四侧面134。
详细地,过渡面130自第三侧面132延伸至第四侧面134,即,过渡面130的一端与第三侧面132相连接,过渡面130的另一端与第四侧面134相连接。也就是说,通过合理设置第三侧面132、第四侧面134、第一侧面126、第二侧面128和过渡面130的配合结构,使得沿转子铁芯110的径向,相邻两个永磁体120的间距均等,从而可以有效减小相邻两个永磁体120之间的漏磁,在较少永磁体120用量的基础上,提高永磁体120的利用率。且该结构设置有利于气隙磁场的正弦化,有利于减小反电势谐波、齿槽转矩和转矩脉动。
实施例5:
在实施例3或实施例4的基础上,实施例5提供了一种永磁体120,用于电机200,永磁体120包括第一端面122、第二端面124、第一侧面126、第二侧面128和过渡面130,第一端面122与第二端面124相对且间隔布置,第一侧面126和第二侧面128均位于第一端面122和第二端面124之间,第一侧面126和第二侧面128相对设置,且第一侧面126和第二侧面128均适于沿电机200的转子铁芯110的中部向边缘的方向延伸,过渡面130位于第一侧面126和第二端面124之间,和/或过渡面130位于第二侧面128和第二端面124之间,过渡面130至第一端面122的距离小于第一端面122至第二端面124的距离,永磁体120还包括第三侧面132和第四侧面134,第一侧面126、第四侧面134、第二侧面128和第三侧面132首尾依次相连以围合成永磁体120的侧周面;以垂直于转子铁芯110的轴线的方向对永磁体120进行截面,在截面上,第一侧面126的轮廓线与第二侧面128的轮廓线为轴对称结构,第三侧面132的轮廓线的中点和第四侧面134的轮廓线的中点的连线形成轴对称结构的对称轴。
进一步地,第一侧面126、第四侧面134、第二侧面128和第三侧面132中的任意相邻两个侧面的连接处圆滑过渡。
详细地,通过合理设置永磁体120的结构,使得第一侧面126、第四侧面134、第二侧面128和第三侧面132中的任意相邻两个侧面的连接处圆滑过渡,该设置便于永磁体120的加工,生产成本低,且该结构设置可 避免组装转子组件100时划伤操作者,或是划伤转子组件100的其他组成器件的情况发生。
实施例6:
在上述任一实施例的基础上,实施例6提供了一种永磁体120,用于电机200,永磁体120包括第一端面122、第二端面124、第一侧面126、第二侧面128和过渡面130,第一端面122与第二端面124相对且间隔布置,第一侧面126和第二侧面128均位于第一端面122和第二端面124之间,第一侧面126和第二侧面128相对设置,且第一侧面126和第二侧面128均适于沿电机200的转子铁芯110的中部向边缘的方向延伸,过渡面130位于第一侧面126和第二端面124之间,和/或过渡面130位于第二侧面128和第二端面124之间,过渡面130至第一端面122的距离小于第一端面122至第二端面124的距离。
进一步地,第一侧面126和第二侧面128之间形成的夹角a满足:
Figure PCTCN2021117941-appb-000003
p为电机的转子组件100的极对数。
详细地,通过合理设置第一侧面126和第二侧面128的配合结构,使得第一侧面126和第二侧面128之间形成的夹角a满足:
Figure PCTCN2021117941-appb-000004
其中,p为转子组件100的极对数。转子组件100的极对数是p,永磁体120的数量为2p。这样,通过限定第一侧面126和第二侧面128形成的夹角与转子组件100的极对数的关系,可保证多个永磁体120沿转子铁芯110的轴线均匀布置。
实施例7:
如图6和图7所示,本申请第二方面的实施例提出了一种转子组件,包括:转子铁芯;及多个第一方面中任一实施例的永磁体,多个永磁体设于转子铁芯上,多个永磁体绕转子铁芯的轴线间隔布置,永磁体的第一端面与转子铁芯相连接。
本申请提供的转子组件,因包括如第一方面中任一实施例的永磁体,因此,具有上述永磁体的全部有益效果,在此不做一一陈述。
进一步地,如图6所示,转子组件100还包括包塑体140,永磁体120和转子铁芯110通过包塑体140连接在一起,包塑体140包覆转子铁芯110 的至少一部分和永磁体120的至少一部分,以使转子铁芯110和永磁体120形成一体式结构。
详细地,通过设置包塑体140,利用包塑体140将永磁体120和转子铁芯110形成一体式结构,该设置可保证转子铁芯110与永磁体120装配的稳固性及可靠性,且可保证转子铁芯110与永磁体120的相对位置关系,为包括转子组件100的电机200正常运转提供了稳定且可靠的结构支撑。另外,相较于相关技术中的粘接方式,包塑形式有效增强了转子铁芯110与永磁体120的连接强度,且包塑体140也对永磁体120起到了固定作用和限位作用,并增大了永磁体120与其他结构的连接面积,从而避免了相关技术中表面粘接方式不牢固造成永磁体120整块或局部脱落的风险,有效防止永磁体120脱落,进而提高了轴向磁通永磁电机(或者叫盘式电机)运行的可靠性。
实施例8:
如图8所示,本申请第三方面的实施例提出了一种电机200,包括:定子组件210;及第二方面中任一实施例的转子组件100,转子组件100与定子组件210转动连接。
详细地,电机200包括定子组件210和转子组件100,转子组件100包括转子铁芯110和多个永磁体120,其中,多个永磁体120绕转子铁芯110的轴线间隔布置。其中,永磁体120包括第一端面122、第二端面124、第一侧面126、第二侧面128和过渡面130,第一侧面126和第二侧面128为永磁体120相对且间隔设置的两个侧面,通过合理设置第一侧面126、第二侧面128、第二端面124和过渡面130的配合结构,使得过渡面130位于第一侧面126和第二端面124之间,或过渡面130位于第二侧面128和第二端面124之间,或一部分过渡面130位于第一侧面126和第二端面124之间,另一部分过渡面130位于第二侧面128和第二端面124之间,且使过渡面130上的任一点至第一端面122的距离小于第一端面122与第二端面124之间的间距。
具体地,相邻两个永磁体120中的一个永磁体120的第一侧面126与另一个永磁体120的过渡面130对应设置,这样,一方面增大了相邻两个 永磁体120的内侧端部之间的距离,从而减小相邻两个永磁体120之间的漏磁,在较少永磁体120用量的基础上,提高永磁体120的利用率,降低了生产成本;另一方面,过渡面130的结构设置有利于气隙磁场的正弦化,有利于减小反电势谐波、齿槽转矩和转矩脉动。
同理,相邻两个永磁体120中的一个永磁体120的第二侧面128与另一个永磁体120的过渡面130对应设置,这样,增大了相邻两个永磁体120的内侧端部之间的距离,从而能够减小永磁体120内侧边角的漏磁,提高磁钢的利用率,并使得气隙正弦化,减小反电势谐波、齿槽转矩和转矩脉动。
同理,相邻两个永磁体120中的一个永磁体120的过渡面130与另一个永磁体120的过渡面130对应设置,永磁体120侧部的边角处弯曲程度较大,导致侧部的边角向永磁体120中部过渡,从而增大了相邻两个永磁体120之间的间距,故而能够减小相邻两个永磁体120之间的漏磁,并使得气隙正弦化,减小反电势谐波、齿槽转矩和转矩脉动。
具体地,电机200为轴向磁通电机。
实施例9:
如图9所示,本申请第四方面的实施例提出了一种压缩机300,包括:第二方面中的任一实施例的转子组件100;或第三方面中的电机200。
详细地,压缩机300包括转子组件100,转子组件100包括转子铁芯110和多个永磁体120,其中,多个永磁体120绕转子铁芯110的轴线间隔布置。其中,永磁体120包括第一端面122、第二端面124、第一侧面126、第二侧面128和过渡面130,第一侧面126和第二侧面128为永磁体120相对且间隔设置的两个侧面,通过合理设置第一侧面126、第二侧面128、第二端面124和过渡面130的配合结构,使得过渡面130位于第一侧面126和第二端面124之间,或过渡面130位于第二侧面128和第二端面124之间,或一部分过渡面130位于第一侧面126和第二端面124之间,另一部分过渡面130位于第二侧面128和第二端面124之间,且使过渡面130上的任一点至第一端面122的距离小于第一端面122与第二端面124之间的间距。
具体地,相邻两个永磁体120中的一个永磁体120的第一侧面126与另一个永磁体120的过渡面130对应设置,这样,一方面增大了相邻两个永磁体120的内侧端部之间的距离,从而减小相邻两个永磁体120之间的漏磁,在较少永磁体120用量的基础上,提高永磁体120的利用率,降低了生产成本;另一方面,过渡面130的结构设置有利于气隙磁场的正弦化,有利于减小反电势谐波、齿槽转矩和转矩脉动。
同理,相邻两个永磁体120中的一个永磁体120的第二侧面128与另一个永磁体120的过渡面130对应设置,这样,增大了相邻两个永磁体120的内侧端部之间的距离,从而能够减小永磁体120内侧边角的漏磁,提高磁钢的利用率,并使得气隙正弦化,减小反电势谐波、齿槽转矩和转矩脉动。
同理,相邻两个永磁体120中的一个永磁体120的过渡面130与另一个永磁体120的过渡面130对应设置,永磁体120侧部的边角处弯曲程度较大,导致侧部的边角向永磁体120中部过渡,从而增大了相邻两个永磁体120之间的间距,故而能够减小相邻两个永磁体120之间的漏磁,并使得气隙正弦化,减小反电势谐波、齿槽转矩和转矩脉动。
实施例10:
如图9所示,本申请第五方面的实施例提出了一种制冷设备400,包括:第二方面中的任一实施例的转子组件100;或第三方面中的电机200;或第四方面中的压缩机300。
详细地,制冷设备400包括转子组件100,转子组件100包括转子铁芯110和多个永磁体120,其中,多个永磁体120绕转子铁芯110的轴线间隔布置。其中,永磁体120包括第一端面122、第二端面124、第一侧面126、第二侧面128和过渡面130,第一侧面126和第二侧面128为永磁体120相对且间隔设置的两个侧面,通过合理设置第一侧面126、第二侧面128、第二端面124和过渡面130的配合结构,使得过渡面130位于第一侧面126和第二端面124之间,或过渡面130位于第二侧面128和第二端面124之间,或一部分过渡面130位于第一侧面126和第二端面124之间,另一部分过渡面130位于第二侧面128和第二端面124之间,且使过渡面 130上的任一点至第一端面122的距离小于第一端面122与第二端面124之间的间距。
具体地,相邻两个永磁体120中的一个永磁体120的第一侧面126与另一个永磁体120的过渡面130对应设置,这样,一方面增大了相邻两个永磁体120的内侧端部之间的距离,从而减小相邻两个永磁体120之间的漏磁,在较少永磁体120用量的基础上,提高永磁体120的利用率,降低了生产成本;另一方面,过渡面130的结构设置有利于气隙磁场的正弦化,有利于减小反电势谐波、齿槽转矩和转矩脉动。
同理,相邻两个永磁体120中的一个永磁体120的第二侧面128与另一个永磁体120的过渡面130对应设置,这样,增大了相邻两个永磁体120的内侧端部之间的距离,从而能够减小永磁体120内侧边角的漏磁,提高磁钢的利用率,并使得气隙正弦化,减小反电势谐波、齿槽转矩和转矩脉动。
同理,相邻两个永磁体120中的一个永磁体120的过渡面130与另一个永磁体120的过渡面130对应设置,永磁体120侧部的边角处弯曲程度较大,导致侧部的边角向永磁体120中部过渡,从而增大了相邻两个永磁体120之间的间距,故而能够减小相邻两个永磁体120之间的漏磁,并使得气隙正弦化,减小反电势谐波、齿槽转矩和转矩脉动。
实施例11:
永磁体120用于轴向磁通电机,永磁体120包括第一端面122、第二端面124以及依次首尾相连的第一侧面126、第二侧面128、第三侧面132和第四侧面134,其中,第一端面122与转子铁芯110相贴合,剩余端面与定子铁芯齿面相对,中间以气隙间隔。与定子铁芯齿面相对的端面与第一侧面126及第二侧面128相交处以过渡面130过渡。
首尾相连的第一侧面126、第四侧面134、第二侧面128和第三侧面132在第一端面122或第二端面124上的投影为轴对称结构,第三侧面132在第一端面122或第二端面124上投影所得的第三线条的中点和第四侧面134在第一端面122或第二端面124上投影所得的第四线条的中点的连线形成轴对称结构的对称轴,且对称轴被配置为适于与电机200的转子组件 100的中心轴线垂直相交。
对永磁体120与定子铁芯齿面相对的端面与第一侧面126及第二侧面128相交处以两个过渡面130进行过渡优化。一方面有利于增大相邻两个永磁体120的端部距离,从而减小二者边角之间的漏磁,在较少永磁体120用量的基础上,提高永磁体120的利用率;另一方面,优化的弧面设计有利于气隙磁场的正弦化,有利于减小反电势谐波、齿槽转矩和转矩脉动。
具体而言,在一些实施例中,如图2所示,过渡面130呈平面,过渡面130主要由切削厚度L和切削角度A定义,切削厚度L不超过第一端面122和第二端面124之间的永磁体120厚度H,切削角度A不超过90°。两个过渡面130关于对称轴对称。该设置可改善反电势谐波分量占比。
在一些实施例中,过渡面130呈弧面,从第四侧面134投影看,过渡面130由切削半径R和圆心位置定义。两个过渡面130关于对称轴对称,切削半径R和圆心位置。该设置可改善反电势谐波分量占比。
可以理解的是,两个过渡面130地设置,有利于增加相邻的永磁体120之间的距离,从而能够减小永磁体120外侧边角的漏磁,另一方面使得永磁体120与定子齿面之间的气隙呈一定规律变化,使得气隙磁密正弦化,减小反电势谐波、齿槽转矩和转矩脉动,如图10和图11所示。同时,本申请的永磁体120为对称结构,形状规整,便于加工。
两个过渡面130的延长线相交形成夹角a,a与转子组件100的极对数P之间满足:
Figure PCTCN2021117941-appb-000005
转子组件100的极对数为P,则转子组件100包括的永磁体120的数量为P的2倍。这样设计,便于多个永磁体120沿转子组件100的周向均匀排布。
第三侧面132与第一侧面126、第二侧面128,第四侧面134与第一侧面126、第二侧面128相交处以圆弧面过渡,便于加工制造。
永磁体120可以是铁氧体、钕铁硼,也可以是其他永磁材料制成的永磁体120。电机200为轴向磁通永磁电机,或者叫盘式电机。
转子组件100包括:转子铁芯110和永磁体120,永磁体120与转子铁芯110的端面相连。
永磁体120的第一端面122与转子铁芯110的一侧平面通过胶粘连接, 该方法制作工艺简单、工序较少,适用于低转速的应用场合。
永磁体120与转子铁芯110通过包塑体140相连,包塑体140包覆转子铁芯110的至少一部分和永磁体120的至少一部分,以使转子铁芯110和永磁体120形成一体式结构。
利用一体包塑的形式,使转子铁芯110和永磁体120形成一体式结构,实现了转子铁芯110与永磁体120的固定连接。相较于相关技术中的粘接方式,包塑形式有效增强了转子铁芯110与永磁体120的连接强度,且包塑体140也对永磁体120起到了固定作用和限位作用,并增加了永磁体120与其他结构的连接面积,从而避免了相关技术中表面粘接方式不牢固造成永磁体120整块或局部脱落的风险,有效防止永磁体120脱落,进而提高了轴向磁通永磁电机(或者叫盘式电机)运行的可靠性。
制冷设备400包括:风机、泵、冰箱、空调等等,在此不一一列举。同时,制冷设备400还包括车辆,多联机等工业设备。
在本申请中,术语“多个”则指两个或两个以上,除非另有明确的限定。术语“安装”、“相连”、“连接”、“固定”等术语均应做广义理解,例如,“连接”可以是固定连接,也可以是可拆卸连接,或一体地连接;“相连”可以是直接相连,也可以通过中间媒介间接相连。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,术语“一个实施例”、“一些实施例”、“具体实施例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或特点包含于本申请的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或实例。而且,描述的具体特征、结构、材料或特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上所述仅为本申请的优选实施例而已,并不用于限制本申请,对于本领域的技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (10)

  1. 一种永磁体,用于电机,其中,所述永磁体包括:
    第一端面;
    第二端面,所述第一端面与所述第二端面相对且间隔布置;
    第一侧面;
    第二侧面,所述第一侧面和所述第二侧面均位于所述第一端面和所述第二端面之间,所述第一侧面和所述第二侧面相对设置,且所述第一侧面和所述第二侧面均适于沿所述电机的转子铁芯的中部向边缘的方向延伸;
    过渡面,所述过渡面位于所述第一侧面和所述第二端面之间,和/或所述过渡面位于所述第二侧面和所述第二端面之间;
    其中,所述过渡面至所述第一端面的距离小于所述第一端面至所述第二端面的距离。
  2. 根据权利要求1所述的永磁体,其中,
    所述过渡面包括以下任一种或其组合:平面、曲面及折面。
  3. 根据权利要求1或2所述的永磁体,其中,
    所述永磁体还包括第三侧面和第四侧面,所述第一侧面、所述第四侧面、所述第二侧面和所述第三侧面首尾依次相连以围合成所述永磁体的侧周面;
    以垂直于所述转子铁芯的轴线的方向对所述永磁体进行截面,在截面上,所述第一侧面的轮廓线与所述第二侧面的轮廓线为轴对称结构,所述第三侧面的轮廓线的中点和所述第四侧面的轮廓线的中点的连线形成所述轴对称结构的对称轴。
  4. 根据权利要求3所述的永磁体,其中,
    自所述第四侧面向所述第三侧面,所述第一侧面和所述第二侧面中的任一个至所述对称轴的距离逐渐减小。
  5. 根据权利要求3所述的永磁体,其中,
    所述过渡面自所述第三侧面延伸至所述第四侧面。
  6. 根据权利要求3所述的永磁体,其中,
    所述第一侧面、所述第四侧面、所述第二侧面和所述第三侧面中的任意相邻两个侧面的连接处圆滑过渡。
  7. 根据权利要求1或2所述的永磁体,其中,
    所述第一侧面和所述第二侧面之间形成的夹角a满足:
    Figure PCTCN2021117941-appb-100001
    p为所述电机的转子组件的极对数。
  8. 一种转子组件,其中,包括:
    转子铁芯;及
    多个如权利要求1至7中任一项所述的永磁体,多个所述永磁体设于所述转子铁芯上,多个所述永磁体绕所述转子铁芯的轴线间隔布置,所述永磁体的第一端面与所述转子铁芯相连接。
  9. 根据权利要求8所述的转子组件,其中,还包括:
    包塑体,所述永磁体和所述转子铁芯通过所述包塑体连接在一起,所述包塑体包覆所述转子铁芯的至少一部分和所述永磁体的至少一部分,以使所述转子铁芯和所述永磁体形成一体式结构。
  10. 一种电机,其中,包括:
    定子组件;及
    如权利要求8或9所述的转子组件,所述转子组件与所述定子组件转动连接。
PCT/CN2021/117941 2021-03-17 2021-09-13 永磁体、转子组件和电机 WO2022193575A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202120550103.0 2021-03-17
CN202110287614.2A CN112865371A (zh) 2021-03-17 2021-03-17 永磁体、转子组件和电机
CN202120550103.0U CN214281072U (zh) 2021-03-17 2021-03-17 永磁体、转子组件和电机
CN202110287614.2 2021-03-17

Publications (1)

Publication Number Publication Date
WO2022193575A1 true WO2022193575A1 (zh) 2022-09-22

Family

ID=83321947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/117941 WO2022193575A1 (zh) 2021-03-17 2021-09-13 永磁体、转子组件和电机

Country Status (1)

Country Link
WO (1) WO2022193575A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1700562A (zh) * 2004-05-18 2005-11-23 山洋电气株式会社 永磁体旋转电机
JP2006304532A (ja) * 2005-04-22 2006-11-02 Nissan Motor Co Ltd アキシャルギャップ型回転電機のロータ構造
EP2378633A1 (en) * 2010-04-13 2011-10-19 Siemens Aktiengesellschaft Electrical machine and permanent-magnet
CN102222985A (zh) * 2010-04-13 2011-10-19 西门子公司 电机和永磁体
CN205753703U (zh) * 2016-05-17 2016-11-30 浙江绿源电动车有限公司 磁钢片、转子、电机及电动车
CN211351859U (zh) * 2020-03-10 2020-08-25 广东威灵电机制造有限公司 永磁体、转子组件、电机和电器设备
CN112865371A (zh) * 2021-03-17 2021-05-28 广东威灵电机制造有限公司 永磁体、转子组件和电机

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1700562A (zh) * 2004-05-18 2005-11-23 山洋电气株式会社 永磁体旋转电机
JP2006304532A (ja) * 2005-04-22 2006-11-02 Nissan Motor Co Ltd アキシャルギャップ型回転電機のロータ構造
EP2378633A1 (en) * 2010-04-13 2011-10-19 Siemens Aktiengesellschaft Electrical machine and permanent-magnet
CN102222985A (zh) * 2010-04-13 2011-10-19 西门子公司 电机和永磁体
CN205753703U (zh) * 2016-05-17 2016-11-30 浙江绿源电动车有限公司 磁钢片、转子、电机及电动车
CN211351859U (zh) * 2020-03-10 2020-08-25 广东威灵电机制造有限公司 永磁体、转子组件、电机和电器设备
CN112865371A (zh) * 2021-03-17 2021-05-28 广东威灵电机制造有限公司 永磁体、转子组件和电机

Similar Documents

Publication Publication Date Title
JP5332082B2 (ja) モータ
JP2006254619A (ja) コアと、電機子、モータ及び圧縮機並びにそれらの製造方法
JP2007295708A (ja) 永久磁石埋め込み型モータ
JP2008029078A (ja) 永久磁石形同期電動機
CN113224878A (zh) 一种驱动电机和电动汽车
JP3586804B2 (ja) プラスチックマグネットロータ
JP5066863B2 (ja) 回転電機
JP3210043U (ja) ブラシレスモータ
WO2022193575A1 (zh) 永磁体、转子组件和电机
JP2010035254A (ja) 電動機
WO2023184972A1 (zh) 一种电机转子、电机、压缩机及空调器
CN112865371A (zh) 永磁体、转子组件和电机
JP2008054489A (ja) アキシャルギャップ型回転機、及びこれを搭載した空調用圧縮機、送風機、及び自動車
JP5134935B2 (ja) 電動機
JP2024509433A (ja) 電気モータ回転子及び電気モータ
CN214281072U (zh) 永磁体、转子组件和电机
JP2021087352A (ja) ロータ積層板、ロータ積層コア、ロータ、電気機械、及び車両
JP2012100530A (ja) 界磁子及び回転電機
JP2000209795A (ja) ステ―タコア及びその製造方法
JP2001298882A (ja) 電動機のステータ
CN113381535A (zh) 转子组件、电机和电器设备
JP2000197319A (ja) ステ―タコアの製造方法
CN214506682U (zh) 定子冲片、电机、压缩机及家用电器
WO2023108922A1 (zh) 定子结构、电机和电器设备
CN220401508U (zh) 一种定子组件、磁悬浮电机及磁悬浮设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931150

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE