WO2022193555A1 - 磷酸酯类电解液添加剂、电解液及锂离子电池 - Google Patents

磷酸酯类电解液添加剂、电解液及锂离子电池 Download PDF

Info

Publication number
WO2022193555A1
WO2022193555A1 PCT/CN2021/115038 CN2021115038W WO2022193555A1 WO 2022193555 A1 WO2022193555 A1 WO 2022193555A1 CN 2021115038 W CN2021115038 W CN 2021115038W WO 2022193555 A1 WO2022193555 A1 WO 2022193555A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
lithium
alkyl
phenyl
methyl
Prior art date
Application number
PCT/CN2021/115038
Other languages
English (en)
French (fr)
Inventor
曹哥尽
范伟贞
范超君
信勇
赵经纬
Original Assignee
广州天赐高新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州天赐高新材料股份有限公司 filed Critical 广州天赐高新材料股份有限公司
Publication of WO2022193555A1 publication Critical patent/WO2022193555A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the technical field of batteries, in particular to a phosphate ester electrolyte additive, an electrolyte containing the additive, and a lithium ion battery.
  • Lithium-ion batteries due to their advantages of high energy density, high charging efficiency, long cycle life, etc., and the growing market demand and policy orientation in recent years, have made lithium-ion batteries vigorously promoted.
  • DC internal resistance direct -current internal resistance, referred to as DCIR
  • the phosphate ester electrolyte additive reduces the DCIR of the battery and improves the high and low temperature performance of the battery.
  • a kind of electrolyte additive has the structure shown in formula (I):
  • R a is selected from: H, C 1-8 alkyl, phenyl, heteroaryl having 5-6 ring atoms, C 2-8 alkenyl or C 0-8 alkylsilyl;
  • R 1 , R 2 are each independently selected from: H, C 1-8 alkyl, phenyl, heteroaryl having 5-6 ring atoms, C 2-8 alkenyl, C 0-8 alkylsilyl , halogen substituted C 1-8 alkyl, halogen substituted C 2-8 alkenyl, halogen substituted C 0-8 alkylsilyl, R 0 substituted phenyl or R 0 substituted heteroaryl with 5-6 ring atoms ;
  • R 0 is selected from: C 1-6 alkyl, C 1-6 alkoxy, halogen, or halogenated C 1-6 alkyl.
  • An electrolyte solution comprising the above-mentioned electrolyte solution additive.
  • a lithium ion battery includes a positive electrode material, a negative electrode material and the above-mentioned electrolyte.
  • the above electrolyte additive can make the electrolyte have an excellent initial impedance suppression effect, and maintain the impedance suppression effect after a high temperature storage test and at a low temperature, and at the same time have excellent high temperature storage capacity retention rate and low temperature discharge capacity retention rate, the present invention
  • the principle is as follows, and it should be noted that the present invention is not limited by the action/principle described below.
  • the compound represented by the formula (I) has a PX (X is a single bond or -CR a R b , where the single bond is equivalent to connecting with P) bond that is not easily broken, and the phosphate compound coordinated with the positive electrode is removed from the surface.
  • the possibility of deterioration of characteristics due to detachment is low, and therefore, the battery exhibits the effect of suppressing storage resistance even after high-temperature storage and cycling.
  • the above-mentioned phosphate compounds have a certain surface activity, which has a certain effect on reducing the surface tension of the electrolyte, so that the electrolyte can better infiltrate the positive and negative electrodes of the battery. Good intercalation/deintercalation, thus showing the effect of maintaining impedance suppression at low temperature, thereby improving the output characteristics of the battery at high and low temperatures.
  • Fig. 1 is the initial AC impedance curve diagram of Example 1, Example 4, Comparative Example 1 and Comparative Example 3;
  • FIG. 2 is an AC impedance curve diagram of Example 1, Example 4, Comparative Example 1 and Comparative Example 3 after high temperature storage for 14 days.
  • alkyl refers to a saturated hydrocarbon containing primary (normal) carbon atoms, or secondary carbon atoms, or tertiary carbon atoms, or quaternary carbon atoms, or a combination thereof. Phrases containing this term, for example, "C1-8 alkyl” refers to an alkyl group containing 1 to 8 carbon atoms.
  • Suitable examples include, but are not limited to: methyl (Me, -CH3 ), ethyl (Et, -CH2CH3), 1 -propyl (n-Pr, n - propyl, -CH2CH2CH ) 3 ), 2-propyl (i-Pr, i-propyl, -CH(CH 3 ) 2 ), 1-butyl (n-Bu, n-butyl, -CH 2 CH 2 CH 2 CH 3 ) , 2-methyl-1-propyl (i-Bu, i-butyl, -CH 2 CH(CH 3 ) 2 ), 2-butyl (s-Bu, s-butyl, -CH(CH 3 ) )CH 2 CH 3 ), 2-methyl-2-propyl (t-Bu, t-butyl, -C(CH 3 ) 3 ), 1-pentyl (n-pentyl, -CH 2 CH 2 ) CH 2 CH 2 CH 3 ), 2-p
  • Heteroaryl means that on the basis of an aryl group, at least one carbon atom is replaced by a non-carbon atom, and the non-carbon atom can be N atom, O atom, S atom and the like. Suitable examples include, but are not limited to: furan, benzofuran, thiophene, benzothiophene, pyrrole, pyrazole, triazole, imidazole, oxazole, oxadiazole, thiazole, tetrazole, indole, carbazole, pyrrolo imidazole, pyrrolopyrrole, thienopyrrole, thienothiophene, furopyrrole, furanofuran, thienofuran, benzisoxazole, benziisothiazole, benzimidazole, pyridine, pyrazine, pyridazine, pyrimidine , triazine, quinoline,
  • Halogen or "halogen atom” refers to F, Cl, Br or I.
  • Halo-substituted means that an optional number of H at any selected position on the corresponding group is substituted with a halogen, eg, fluoromethyl, including monofluoromethyl, difluoromethyl, trifluoromethyl.
  • a halogen eg, fluoromethyl, including monofluoromethyl, difluoromethyl, trifluoromethyl.
  • R can be an art-accepted group, such as: C 1-8 alkyl (preferably C 1-6 alkyl, more preferably C 1-4 alkyl), H or halogen (preferably F); wherein , multiple Rs can be the same or different from each other.
  • C 0-8 alkylsilyl means In, R is C 0-8 alkyl, understandably, when R is C 0 alkyl, it means R does not contain carbon atoms, that is, R is H, which is equivalent to
  • Halogen substituted C 0-8 alkylsilyl means wherein R is halogen substituted C 0-8 alkyl, when R is C 0 alkyl, it means R does not contain carbon atoms, R is H or halogen, and at least one halogen, such as fluoro-C 0 alkylsilyl, is equivalent to
  • One embodiment of the present invention provides an electrolyte additive, which has the structure shown in formula (I):
  • R a is selected from: H, C 1-8 alkyl, phenyl, heteroaryl having 5-6 ring atoms, C 2-8 alkenyl or C 0-8 alkylsilyl;
  • R 1 , R 2 are each independently selected from: H, C 1-8 alkyl, phenyl, heteroaryl having 5-6 ring atoms, C 2-8 alkenyl, C 0-8 alkylsilyl , halogen substituted C 1-8 alkyl, halogen substituted C 2-8 alkenyl, halogen substituted C 0-8 alkylsilyl, R 0 substituted phenyl or R 0 substituted heteroaryl with 5-6 ring atoms ;
  • R 0 is selected from: C 1-6 alkyl, C 1-6 alkoxy, halogen, or halogenated C 1-6 alkyl.
  • X is a single bond
  • m is 0, and n is 2.
  • X is carbon, n is 2, and m is 2. In one embodiment, X is carbon, n is 3, and m is 1. In one embodiment, X is carbon, n is 4, and m is 0.
  • each R is independently selected from: H, C 1-6 alkyl, phenyl, heteroaryl having 5 ring atoms, C 2-6 alkenyl, or C 0-6 alkyl Silicon based.
  • each R is independently selected from: H, C 1-4 alkyl, phenyl, heteroaryl having 5 ring atoms, C 2-4 alkenyl, or C 0-4 alkyl Silicon based.
  • R a is independently selected from: H, C 1-6 alkyl or C 0-6 alkylsilyl; further, R a is independently selected from: H or C 1-6 alkyl.
  • each R a is independently selected from: H, C 1-4 alkyl or C 0-4 alkylsilyl.
  • R a is each independently selected from: hydrogen atom, methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-methyl-1-propyl, 2 -butyl, silyl or trisilyl.
  • each R a is independently selected from: a hydrogen atom or a methyl group.
  • Y is a single bond or -CR b R c ;
  • R b , R c are each independently selected from: H, C 1-8 alkyl, phenyl, heteroaryl having 5-6 ring atoms, C 2-8 alkenyl, C 0-8 alkylsilyl Or the structure shown in formula A;
  • R b and R c are each independently selected from: H, C 1-6 alkyl, phenyl, heteroaryl with 5 ring atoms, C 2-6 alkenyl, C 0- 6 alkylsilyl group or the structure shown in formula A.
  • R b and R c are each independently selected from: H, C 1-4 alkyl, phenyl, heteroaryl with 5 ring atoms, C 2-4 alkenyl, C 0- 4 alkylsilyl group or the structure shown in formula A.
  • R b and R c are each independently selected from: H, C 1-6 alkyl or C 0-6 alkylsilyl.
  • R b and R c are each independently selected from: H, C 1-4 alkyl or C 0-4 alkylsilyl.
  • R b and R c are each independently selected from: hydrogen atom, methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-methyl-1-propyl group, 2-butyl, silyl or trisilyl.
  • R b and R c are each independently selected from: a hydrogen atom or a methyl group.
  • R 1 and R 2 are each independently selected from: H, C 1-6 alkyl, phenyl, heteroaryl with 5-6 ring atoms, C 2-6 alkenyl, C 0-6 alkylsilyl, halogen substituted C 1-6 alkyl, halogen substituted C 2-6 alkenyl, halogen substituted C 0-6 alkylsilyl, R 0 substituted phenyl or R 0 substituted with 5-6 Heteroaryl with ring atoms;
  • R 0 is selected from: C 1-4 alkyl, C 1-4 alkoxy, halogen, or halogenated C 1-4 alkyl.
  • R 1 , R 2 are each independently selected from: H, C 1-4 alkyl, phenyl, heteroaryl with 5-6 ring atoms, C 2-4 alkenyl, C 0-4 alkylsilyl, halogen substituted C 1-4 alkyl, halogen substituted C 2-4 alkenyl, halogen substituted C 0-4 alkylsilyl, R 0 substituted phenyl or R 0 substituted with 5-6 Heteroaryl with ring atoms.
  • R 0 is selected from: C 1-4 alkyl, C 1-4 alkoxy, fluorine atom, or fluoro C 1-4 alkyl.
  • R 1 and R 2 are each independently selected from: hydrogen atom, phenyl, pyridyl, pyrimidinyl, triazinyl, pyrazolyl, pyrrolyl, imidazolyl, triazolyl, methyl , ethyl, 1-propyl, 2-propyl, 1-butyl, 2-methyl-1-propyl, 2-butyl, fluoromethyl, fluoroethyl, fluoropropyl, ethylene base, propenyl, butenyl, fluorovinyl, fluoropropenyl, fluorobutenyl, trimethylsilyl, triethylsilyl, trifluorosilyl, (trifluoromethyl)di Methylsilyl, bis(trifluoromethyl)methylsilyl, or tris(trifluoromethyl)silyl.
  • R 1 and R 2 are each independently selected from: hydrogen atom, phenyl, methyl, ethyl, 1-propyl, 2-propyl, 1-butyl, 2-methyl- 1-propyl, 2-butyl, trifluoromethyl, trifluoroethyl, trimethylsilyl, or trifluorosilyl.
  • the above electrolyte additives can be obtained by existing methods, such as WO1990015806A1.
  • An embodiment of the present invention provides the application of the phosphate compound with the structure represented by formula (I) as an electrolyte additive
  • An embodiment of the present invention provides the application of the phosphate compound of formula (I) in the preparation of electrolyte
  • An embodiment of the present invention also provides an electrolyte solution, including the above-mentioned electrolyte solution additive.
  • the electrolyte is a non-aqueous electrolyte.
  • the above-mentioned electrolyte further includes lithium salt and a solvent; in one embodiment, in the electrolyte, in terms of mass percentage, the electrolyte additive is 0.01%-30%.
  • the mass percentage of the electrolyte additive is 0.01% to 15%; further, the mass percentage of the electrolyte additive is 0.01% to 10%; further, the mass percentage of the electrolyte additive is 0.03% to 8 %; in one embodiment, the lithium salt is 5%-20%, and the solvent is 50%-94.9%.
  • the additive content of the electrolyte solution is too low, the improvement effect on the DCIR and high and low temperature performance of the energy storage device is not good. If the additive content is too high, the relationship between the gain effect and the cost will be out of balance. In this case, the cost of the electrolyte solution will be increased. It is not conducive to promotion; therefore, the comprehensive performance and cost of the electrolyte can be guaranteed by controlling the content of the electrolyte additive within the above range.
  • the lithium salt is selected from at least one of lithium hexafluorophosphate, lithium tetrafluoroborate, lithium bis-oxalate borate, lithium difluorophosphate, lithium difluorooxalate phosphate and lithium bisfluorosulfonimide.
  • the solvent includes a cyclic solvent and/or a linear solvent; wherein, the cyclic solvent is selected from: ethylene carbonate, propylene carbonate, ⁇ -butyrolactone, phenyl acetate, 1,4-butyl sulfonic acid At least one of ester and 3,3,3-trifluoropropylene carbonate; linear solvent is selected from dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, ethyl acetate, methyl propyl carbonate, propionic acid Propyl ester, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether, 2,2-difluoroethyl acetate, 2,2-difluoroethyl At least one of propionate and 2,2-difluoroethyl methyl carbonate.
  • the cyclic solvent is selected from: ethylene carbonate, propylene carbonate, ⁇ -butyrol
  • An embodiment of the present invention provides an energy storage device, including the above-mentioned electrolyte.
  • the electrolyte is as described above, and details are not described herein again.
  • the energy storage device is a lithium-ion battery.
  • the positive electrode material of the lithium ion battery includes Li 1+a (Nix Co y M 1-xy ) O 2 , Li(Ni p Mn q Co 2-pq )O 4 and LiM h (PO 4 ) One or more of m ; wherein 0 ⁇ a ⁇ 0.3, 0 ⁇ x ⁇ 1, 0 ⁇ y ⁇ 1, 0 ⁇ x+y ⁇ 1; 0 ⁇ p ⁇ 2, 0 ⁇ q ⁇ 2, 0 ⁇ p+q ⁇ 2;0 ⁇ h ⁇ 5,0 ⁇ m ⁇ 5; M is Fe, Ni, Co, Mn, Al or V.
  • the negative electrode material of the lithium ion battery includes at least one of metal lithium, lithium alloy, carbon, silicon-based negative electrode material and tin-based negative electrode material.
  • the compound has a certain surface activity, the deterioration of the positive electrode surface of the lithium ion battery is suppressed, and the wettability of the electrolyte is enhanced, so that the increase of the DC internal resistance can be suppressed, so that the above-mentioned lithium ion battery has a lower initial resistance, and after high temperature storage and Impedance suppression effect is maintained at low temperature.
  • the energy storage device has good high-temperature performance and low-temperature performance, and has a good capacity retention rate when stored or used under high-temperature and low-temperature conditions.
  • the phosphate compound accounts for 1% of the weight of the electrolyte;
  • the lithium salt is lithium hexafluorophosphate, and the lithium salt accounts for 13% of the weight of the electrolyte;
  • the solvent is ethylene carbonate and ethyl methyl carbonate in a weight ratio of 1:2
  • the mixed solvent the positive electrode material is LiNi 0.8 Co 0.1 Mn 0.1 O 2 ;
  • the negative electrode material is artificial graphite;
  • the diaphragm is a polyethylene film.
  • the pouch battery is assembled according to the conventional method.
  • the phosphate compound accounts for 1% of the weight of the electrolyte;
  • the lithium salt is lithium hexafluorophosphate, and the lithium salt accounts for 13% of the weight of the electrolyte;
  • the solvent is ethylene carbonate and ethyl methyl carbonate in a weight ratio of 1:2
  • the mixed solvent the positive electrode material is LiNi 0.8 Co 0.1 Mn 0.1 O 2 ;
  • the negative electrode material is artificial graphite;
  • the diaphragm is a polyethylene film. Assemble the pouch battery according to the conventional method.
  • the phosphate compound accounts for 1% of the weight of the electrolyte;
  • the lithium salt is lithium hexafluorophosphate, and the lithium salt accounts for 13% of the weight of the electrolyte;
  • the solvent is ethylene carbonate and ethyl methyl carbonate in a weight ratio of 1:2
  • the mixed solvent the positive electrode material is LiNi 0.8 Co 0.1 Mn 0.1 O 2 ;
  • the negative electrode material is artificial graphite;
  • the diaphragm is a polyethylene film.
  • the pouch battery is assembled according to the conventional method.
  • the phosphate compound accounts for 0.3% of the weight of the electrolyte
  • the lithium salt is lithium hexafluorophosphate
  • the lithium salt accounts for 13% of the weight of the electrolyte
  • the solvent is ethylene carbonate and ethyl methyl carbonate in a weight ratio of 1:2
  • the mixed solvent the positive electrode material is LiNi 0.8 Co 0.1 Mn 0.1 O 2
  • the negative electrode material is artificial graphite
  • the diaphragm is a polyethylene film.
  • the pouch battery is assembled according to the conventional method.
  • the phosphate compound accounts for 10% of the weight of the electrolyte;
  • the lithium salt is lithium hexafluorophosphate, and the lithium salt accounts for 13% of the weight of the electrolyte;
  • the solvent is ethylene carbonate and ethyl methyl carbonate in a weight ratio of 1:2
  • the mixed solvent the positive electrode material is LiNi 0.8 Co 0.1 Mn 0.1 O 2 ;
  • the negative electrode material is artificial graphite;
  • the diaphragm is a polyethylene film.
  • the pouch battery is assembled according to the conventional method.
  • the phosphate compound accounts for 1% of the weight of the electrolyte
  • the lithium salts are lithium hexafluorophosphate and lithium bisfluorosulfonimide, and lithium hexafluorophosphate and lithium bisfluorosulfonimide account for 12% and 1% of the weight of the electrolyte, respectively.
  • the solvent is a mixture of ethylene carbonate and ethyl methyl carbonate in a weight ratio of 1:2
  • the positive electrode material is LiNi 0.8 Co 0.1 Mn 0.1 O 2
  • the negative electrode material is artificial graphite
  • the diaphragm is a polyethylene film.
  • the phosphate compound accounts for 1% of the weight of the electrolyte
  • the lithium salts are lithium hexafluorophosphate and lithium bisfluorosulfonimide, and lithium hexafluorophosphate and lithium bisfluorosulfonimide account for 12% and 1% of the weight of the electrolyte, respectively.
  • the solvent is a mixture of ethylene carbonate and 2,2-difluoroethyl acetate in a weight ratio of 1:2
  • the positive electrode material is LiNi 0.8 Co 0.1 Mn 0.1 O 2
  • the negative electrode material is artificial graphite
  • the diaphragm is a polyethylene film.
  • the pouch battery is assembled according to the conventional method.
  • Comparative Example 1 Compared with Example 1, the difference of Comparative Example 1 is that the electrolytic solution does not contain a phosphate compound.
  • Example 2 Compared with Example 1, the difference of Comparative Example 2 is that the phosphoric acid ester compound of Example 1 is replaced with a lithium difluorophosphate additive of 0.5% by weight of the electrolyte.
  • Example 3 Compared with Example 1, the difference of Comparative Example 3 is that the phosphoric acid ester compound of Example 1 is replaced with a vinyl sulfate additive of 1% by weight of the electrolyte.
  • Comparative Example 4 is different in that the phosphoric acid ester compound of Example 2 is replaced with an additive of formula (IV1) at 1% by weight of the electrolyte.
  • High temperature storage performance The formed lithium-ion battery is charged to 4.2V with 1C current and constant voltage at room temperature, and the initial capacity of the battery is measured; then after 14 days of storage at 60 °C, it is discharged at room temperature at 1C to 3V, Recharge to 4.2V and measure the capacity retention of Li-ion batteries.
  • DCIR performance after high-temperature storage The battery that has completed the high-temperature storage performance test at 60°C for 14 days is charged to 4.2V at 1C at room temperature, left for 5 minutes, then discharged at 1C for 30 minutes, and then discharged at 2C for 10s after 1 hour of storage. Calculate DCIR at 50% SOC of battery.
  • Low temperature DCIR performance Charge the battery after capacity separation at -20°C at 1C to 4.2V, leave it for 5min, then discharge at 1C for 30min, leave it for 1h, then discharge at 2C for 10s, calculate the DCIR of the battery under 50% SOC .
  • Low-temperature discharge performance Charge the formed lithium-ion battery to 4.2V with 1C constant current and constant voltage at room temperature, and measure the initial capacity of the battery; V, to measure the capacity retention of lithium-ion batteries.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及磷酸酯类电解液添加剂、包含该添加剂的电解液及锂离子电池,其中电解液添加剂具有式(I)所示结构:本发明的电解液添加剂能够有效的抑制电池初始阻抗、高温存储后阻抗以及低温下阻抗增加,进一步有效改善锂离子电池的高温存储性能和低温放电性能。

Description

磷酸酯类电解液添加剂、电解液及锂离子电池 技术领域
本发明涉及电池技术领域,特别涉及磷酸酯类电解液添加剂、包含该添加剂的电解液及锂离子电池。
背景技术
锂离子电池,由于其本身具有能量密度高、充电效率高、循环寿命长等优点,加上近年来日益增长的市场需求与政策导向,使得锂离子电池得到大力推广。随着锂离子电池被广泛应用于无人机、手机、新能源汽车、汽车启停等领域,人们对电池的高倍率性能的需求不断提高,作为评测电池性能的重要指标的直流内阻(direct-current internal resistance,简称DCIR),越来越被电池厂商所关注。二氟磷酸锂作为一个锂盐类添加剂,能有效的降低电池高温和低温下的DCIR,但由于其溶解度较低,使得其应用受到一定局限性。
因此,具有降低锂离子电池高温和低温下DCIR的低阻抗添加剂仍有待开发。
发明内容
基于此,有必要提供一种磷酸酯类电解液添加剂、包含该添加剂的电解液及锂离子电池。该磷酸酯类电解液添加剂降低电池DCIR,改善电池高低温性能。
一种电解液添加剂,具有式(I)所示结构:
Figure PCTCN2021115038-appb-000001
X为单键或碳;n为1、2、3或4;m为0、1、2或3;
m大于1时,多个R a彼此相同或不同;n大于1时,多个R 1彼此相同或不同,多个R 2彼此相同或不同;
R a选自:H、C 1-8烷基、苯基、具有5-6个环原子的杂芳基、C 2-8烯基或C 0-8烷基硅基;
R 1、R 2各自独立地选自:H、C 1-8烷基、苯基、具有5-6个环原子的杂芳基、C 2-8烯基、C 0-8烷基硅基、卤素取代C 1-8烷基、卤素取代C 2-8烯基、卤素取代C 0-8烷基硅基、R 0取代苯基或R 0取代具有5-6个环原子的杂芳基;
R 0选自:C 1-6烷基、C 1-6烷氧基、卤素、或卤代C 1-6烷基。
一种电解液,包括上述电解液添加剂。
一种锂离子电池,包括正极材料、负极材料和上述电解液。
有益效果:
上述电解液添加剂能够使电解液具有优异的初始的阻抗抑制效果、并且在高温保存试验后以及低温下具有保持阻抗抑制效果,同时具有优异的高温存储容量保持率和低温放电容量保持率,本发明技术人员推测原理如下,需要说明的是,本发明并不受到以下记载的作用/原理的限定。
通过采用式(I)所示的化合物作为电解液添加剂,由于-OR 1等极性基团直接与磷元素结合,该骨架和P=O骨架而更容易与正极金属配位,在初次充电时,正极的劣化在初始即受到所吸附的式(I)所示的化合物的抑制,并且不会阻碍Li的嵌入/脱嵌反应,因此从初始即可显示出抑制阻抗升高的效果。另外,式(I)所示的化合物中具有不容易断裂的P-X(X为单键或-CR aR b,其中单键相当于与P相连)键,与正极配位的磷酸酯化合物从表面脱离而使特性劣化的可能性低,因此,电池在经过高温存储和循环后,仍显示着保存阻抗抑制效果。此外,上述磷酸酯类化合物具有一定的表面活性,对降低电解液表面张力有一定作用,使得电解液能更好的浸润电池正负极极片,即使在低温环境下,Li+也能在负极很好的嵌入/脱嵌,因而表现出低温下具有保持阻抗抑制效果,进而达到改善电 池高温和低温下输出特性。
附图说明
图1为实施例1、实施例4、对比例1和对比例3初始交流阻抗曲线图;
图2为实施例1、实施例4、对比例1和对比例3高温存储14天后交流阻抗曲线图。
具体实施方式
为了便于理解本发明,下面将对本发明进行更全面的描述,并给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
术语解释
术语“烷基”是指包含伯(正)碳原子、或仲碳原子、或叔碳原子、或季碳原子、或其组合的饱和烃。包含该术语的短语,例如,“C 1- 8烷基”是指包含1~8个碳原子的烷基。合适的实例包括但不限于:甲基(Me、-CH 3)、乙基(Et、-CH 2CH 3)、1-丙基(n-Pr、n-丙基、-CH 2CH 2CH 3)、2-丙基(i-Pr、i-丙基、-CH(CH 3) 2)、1-丁基(n-Bu、n-丁基、-CH 2CH 2CH 2CH 3)、2-甲基-1-丙基(i-Bu、i-丁基、-CH 2CH(CH 3) 2)、2-丁基(s-Bu、s-丁基、-CH(CH 3)CH 2CH 3)、2-甲基-2-丙基(t-Bu、t-丁基、-C(CH 3) 3)、1-戊基(n-戊基、-CH 2CH 2CH 2CH 2CH 3)、2-戊基(-CH(CH3)CH2CH2CH3)、3-戊基(-CH(CH 2CH 3) 2)、2-甲基-2-丁基(-C(CH 3) 2CH 2CH 3)、3-甲基-2-丁基(-CH(CH 3)CH(CH 3) 2)、3-甲基-1-丁基(-CH 2CH 2CH(CH 3) 2)、2-甲基-1-丁基(-CH 2CH(CH 3)CH 2CH 3)、1-己基(-CH 2CH 2CH 2CH 2CH 2CH 3)、2-己基(-CH(CH 3)CH 2CH 2CH 2CH 3)、3-己基(-CH(CH 2CH 3)(CH 2CH 2CH 3))、2-甲基-2-戊基 (-C(CH 3) 2CH 2CH 2CH 3)、3-甲基-2-戊基(-CH(CH 3)CH(CH 3)CH 2CH 3)、4-甲基-2-戊基(-CH(CH 3)CH 2CH(CH 3) 2)、3-甲基-3-戊基(-C(CH 3)(CH 2CH 3) 2)、2-甲基-3-戊基(-CH(CH 2CH 3)CH(CH 3) 2)、2,3-二甲基-2-丁基(-C(CH 3) 2CH(CH 3) 2)、3,3-二甲基-2-丁基(-CH(CH 3)C(CH 3) 3和辛基(-(CH 2) 7CH 3)。
“烯基”是指包含具有至少一个不饱和部位,即碳-碳sp 2双键的正碳原子、仲碳原子、叔碳原子或环碳原子的烃。包含该术语的短语,例如,“C 2- 8烯基”是指包含2~8个碳原子的烯基。合适的实例包括但不限于:乙烯基(-CH=CH 2)、丙烯基(-CH 2CH=CH 2)、环戊烯基(-C 5H 7)和5-己烯基(-CH 2CH 2CH 2CH 2CH=CH 2)。
“杂芳基”是指在芳基的基础上至少一个碳原子被非碳原子所替代,非碳原子可以为N原子、O原子、S原子等。合适的实例包括但不限于:呋喃、苯并呋喃、噻吩、苯并噻吩、吡咯、吡唑、三唑、咪唑、噁唑、噁二唑、噻唑、四唑、吲哚、咔唑、吡咯并咪唑、吡咯并吡咯、噻吩并吡咯、噻吩并噻吩、呋喃并吡咯、呋喃并呋喃、噻吩并呋喃、苯并异噁唑、苯并异噻唑、苯并咪唑、吡啶、吡嗪、哒嗪、嘧啶、三嗪、喹啉、异喹啉、邻二氮萘、喹喔啉、菲啶、伯啶、喹唑啉和喹唑啉酮。
“卤素”或“卤原子”是指F、Cl、Br或I。
“卤素取代”表述相应基团上任意选位置任选数量的H被卤素取代,例如氟代甲基,包括一氟甲基、二氟甲基、三氟甲基。
“硅基”或“硅烷基”是指
Figure PCTCN2021115038-appb-000002
R可以为本领域可接受的基团,例如:C 1-8烷基(优选为C 1-6烷基,更优选为C 1-4烷基)、H或卤素(优选为F);其中,多个R可以彼此相同或不同。
“C 0-8烷基硅基”是指
Figure PCTCN2021115038-appb-000003
中,R为C 0-8烷基,可理解的,当R为C 0烷 基时,表示
Figure PCTCN2021115038-appb-000004
中R不含有碳原子,即R均为H,相当于为
Figure PCTCN2021115038-appb-000005
“卤素取代C 0-8烷基硅基”是指
Figure PCTCN2021115038-appb-000006
中R为卤素取代C 0-8烷基,当R为C 0烷基时,表示
Figure PCTCN2021115038-appb-000007
中R不含有碳原子,R为H或卤素,且至少有一个卤素,例如氟代C 0烷基硅基,相当于为
Figure PCTCN2021115038-appb-000008
详细解释
本发明一实施方式提供了一种电解液添加剂,具有式(I)所示结构:
Figure PCTCN2021115038-appb-000009
X为单键或碳;n为1、2、3或4;m为0、1、2或3;
m大于1时,多个R a彼此相同或不同;n大于1时,多个R 1彼此相同或不同,多个R 2彼此相同或不同;
R a选自:H、C 1-8烷基、苯基、具有5-6个环原子的杂芳基、C 2-8烯基或C 0-8烷基硅基;
R 1、R 2各自独立地选自:H、C 1-8烷基、苯基、具有5-6个环原子的杂芳基、C 2-8烯基、C 0-8烷基硅基、卤素取代C 1-8烷基、卤素取代C 2-8烯基、卤素取代C 0-8 烷基硅基、R 0取代苯基或R 0取代具有5-6个环原子的杂芳基;
R 0选自:C 1-6烷基、C 1-6烷氧基、卤素、或卤代C 1-6烷基。
在其中一实施例中,X为单键,m为0,n为2。
在其中一实施例中,X为碳,n+m=4。
在其中一实施例中,X为碳,n为2,m为2。在其中一实施例中,X为碳,n为3,m为1。在其中一实施例中,X为碳,n为4,m为0。
在其中一实施例中,R a各自独立地选自:H、C 1-6烷基、苯基、具有5个环原子的杂芳基、C 2-6烯基或C 0-6烷基硅基。
在其中一实施例中,R a各自独立地选自:H、C 1-4烷基、苯基、具有5个环原子的杂芳基、C 2-4烯基或C 0-4烷基硅基。
在其中一实施例中,R a各自独立地选自:H、C 1-6烷基或C 0-6烷基硅基;进一步地,R a各自独立地选自:H或C 1-6烷基。
在其中一实施例中,R a各自独立地选自:H、C 1-4烷基或C 0-4烷基硅基。
在其中一实施例中,R a各自独立地选自:氢原子、甲基、乙基、1-丙基、2-丙基、1-丁基、2-甲基-1-丙基、2-丁基、硅烷基或三甲硅烷基。
在其中一实施例中,R a各自独立地选自:氢原子或甲基。
在其中一实施例中,具有式(I-1)所示结构:
Figure PCTCN2021115038-appb-000010
Y为单键或-CR bR c
R b、R c各自独立地选自:H、C 1-8烷基、苯基、具有5-6个环原子的杂芳基、C 2-8烯基、C 0-8烷基硅基或式A所示结构;
Figure PCTCN2021115038-appb-000011
在其中一实施例中,具有式(II)-式(V)所示结构;
Figure PCTCN2021115038-appb-000012
在其中一实施例中,R b、R c各自独立地选自:H、C 1-6烷基、苯基、具有5个环原子的杂芳基、C 2-6烯基、C 0-6烷基硅基或式A所示结构。
在其中一实施例中,R b、R c各自独立地选自:H、C 1-4烷基、苯基、具有5个环原子的杂芳基、C 2-4烯基、C 0-4烷基硅基或式A所示结构。
在其中一实施例中,R b、R c各自独立地选自:H、C 1-6烷基或C 0-6烷基硅基。
在其中一实施例中,R b、R c各自独立地选自:H、C 1-4烷基或C 0-4烷基硅基。
在其中一实施例中,R b、R c各自独立地选自:氢原子、甲基、乙基、1-丙基、2-丙基、1-丁基、2-甲基-1-丙基、2-丁基、硅烷基或三甲硅烷基。
在其中一实施例中,R b、R c各自独立地选自:氢原子或甲基。
在其中一实施例中,R 1、R 2各自独立地选自:H、C 1-6烷基、苯基、具有5-6个环原子的杂芳基、C 2-6烯基、C 0-6烷基硅基、卤素取代C 1-6烷基、卤素取代C 2-6烯基、卤素取代C 0-6烷基硅基、R 0取代苯基或R 0取代具有5-6个环原子的杂芳基;
R 0选自:C 1-4烷基、C 1-4烷氧基、卤素、或卤代C 1-4烷基。
在其中一实施例中,R 1、R 2各自独立地选自:H、C 1-4烷基、苯基、具有5-6个环原子的杂芳基、C 2-4烯基、C 0-4烷基硅基、卤素取代C 1-4烷基、卤素取代C 2-4烯基、卤素取代C 0-4烷基硅基、R 0取代苯基或R 0取代具有5-6个环原子的杂芳基。
在其中一实施例中,R 0选自:C 1-4烷基、C 1-4烷氧基、氟原子、或氟代C 1-4烷基。
在其中一实施例中,R 1、R 2各自独立地选自:氢原子、苯基、吡啶基、嘧啶基、三嗪基、吡唑基、吡咯基、咪唑基、三唑基、甲基、乙基、1-丙基、2-丙基、1-丁基、2-甲基-1-丙基、2-丁基、氟代甲基、氟代乙基、氟代丙基、乙烯基、丙烯基、丁烯基、氟代乙烯基、氟代丙烯基、氟代丁烯基、三甲基硅基、三乙基硅基、三氟代硅基、(三氟甲基)二甲基硅基、二(三氟甲基)甲基硅基、或三(三氟甲基)硅基。
在其中一实施例中,R 1、R 2各自独立地选自:氢原子、苯基、甲基、乙基、1-丙基、2-丙基、1-丁基、2-甲基-1-丙基、2-丁基、三氟甲基、三氟乙基、三甲基硅基、或三氟代硅基。
在其中一实施例中,选自以下任一化合物:
Figure PCTCN2021115038-appb-000013
Figure PCTCN2021115038-appb-000014
上述电解液添加剂可以采用现有的方法获得,例如WO1990015806A1。
本发明一实施方式提供了式(I)所示结构磷酸酯化合物作为电解液添加剂的应用
Figure PCTCN2021115038-appb-000015
各基团定义如上所述,在此不再进行赘述。
本发明一实施方式提供了式(I)所示结构磷酸酯化合物在制备电解液中的应用
Figure PCTCN2021115038-appb-000016
各基团定义如上所述,在此不再进行赘述。
本发明一实施方式还提供了一种电解液,包括上述电解液添加剂。
在其中一实施例中,电解液为非水电解液。
在其中一实施例中,上述电解液还包括锂盐和溶剂;在其中一实施例中,在电解液中,以质量百分含量计,电解液添加剂为0.01%-30%,进一步地,电解液添加剂的质量百分含量为0.01%~15%;更进一步地,电解液添加剂的质量百分含量为0.01%~10%;更进一步地,电解液添加剂的质量百分含量为0.03%~8%;在其中一实施例中,锂盐为5%-20%,溶剂为50%-94.9%。
电解液添加剂含量太低则对储能装置的DCIR与高低温性能的改善效果欠佳,添加剂含量过高会使增益效果与成本之间关系失调,在此情况下反而会增大电解液成本,不利于推广;故通过将电解液添加剂含量控制在上述范围内,能够保证电解液的综合性能与成本。
进一步地,锂盐选自六氟磷酸锂、四氟硼酸锂、双草酸硼酸锂、二氟磷酸锂、二氟草酸磷酸锂及双氟磺酰亚胺锂中的至少一种。
进一步地,溶剂包括环型溶剂和/或线型溶剂;其中,环型溶剂选自:碳酸乙烯酯、碳酸丙烯酯、γ-丁内酯、乙酸苯酯、1,4-丁基磺酸内酯及3,3,3-三氟碳酸丙烯酯中的至少一种;线型溶剂选自碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、乙酸乙酯、碳酸甲丙酯、丙酸丙酯、1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚、2,2-二氟乙基乙酸酯、2,2-二氟乙基丙酸酯及2,2-二氟乙基碳酸甲酯中的至少一种。
本发明一实施方式提供了一种储能装置,包括上述电解液,电解液具体如上所述,在此不再进行赘述。进一步地,储能装置为锂离子电池。
在一实施例中,锂离子电池的正极材料包括Li 1+a(Ni xCo yM 1-x-y)O 2、Li(Ni pMn qCo 2-p-q)O 4及LiM h(PO 4) m中的一种或几种;其中0≤a≤0.3,0≤x≤1,0≤y≤1,0<x+y≤1;0≤p≤2,0≤q≤2,0<p+q≤2;0<h<5,0<m<5;M为Fe、Ni、Co、Mn、Al或V。
在一实施例中,锂离子电池的负极材料包括金属锂、锂合金、碳、硅基负极材料及锡基负极材料中的至少一种。
上述锂离子电池的通过采用包含上述磷酸酯化合物的电解液,由于烷氧基等极性基团直接与磷元素结合,该骨架和P=O骨架而更容易与正极金属配位,以及磷酸酯化合物具有一定的表面活性,锂离子电池正极表面劣化受到抑制,电解液的浸润性得到增强,使得能够抑制直流内阻的增加,从而使上述锂离子电池具有较低初始阻抗,以及高温储存后和低温下保持阻抗抑制效果。该储能装置具有良好的高温性能和低温性能,在高温和低温条件下,存储或使用,均具有良好的容量保持率。
下面列举具体实施例来对本发明进行说明,但本发明并不局限于以下实施例。以下实施例中,所使用的试剂、材料以及仪器,若无特殊说明,均可以市售获得。
实施例1
(1)本实施例中的磷酸酯化合物的结构式如式(II1)所示。
Figure PCTCN2021115038-appb-000017
(2)组装锂离子电池:
本实施例中,磷酸酯化合物占电解液的重量的1%;锂盐为六氟磷酸锂,锂盐占电解液的重量的13%;溶剂为碳酸乙烯酯和碳酸甲乙酯按重量比为1:2混合而成的溶剂;正极材料为LiNi 0.8Co 0.1Mn 0.1O 2;负极材料为人造石墨;隔膜为聚乙烯膜。按照常规方法组装成软包电池。
实施例2
(1)本实施例中的磷酸酯化合物的结构式如式(II5)所示。
Figure PCTCN2021115038-appb-000018
(2)组装锂离子电池:
本实施例中,磷酸酯化合物占电解液的重量的1%;锂盐为六氟磷酸锂,锂盐占电解液的重量的13%;溶剂为碳酸乙烯酯和碳酸甲乙酯按重量比为1:2混合而成的溶剂;正极材料为LiNi 0.8Co 0.1Mn 0.1O 2;负极材料为人造石墨;隔膜为聚乙烯膜。按照常规方法组装成软包电池。
实施例3
(1)本实施例中的磷酸酯化合物的结构式如式(III1)所示。
Figure PCTCN2021115038-appb-000019
(2)组装锂离子电池:
本实施例中,磷酸酯化合物占电解液的重量的1%;锂盐为六氟磷酸锂,锂盐占电解液的重量的13%;溶剂为碳酸乙烯酯和碳酸甲乙酯按重量比为1:2混合而成的溶剂;正极材料为LiNi 0.8Co 0.1Mn 0.1O 2;负极材料为人造石墨;隔膜为聚乙烯膜。按照常规方法组装成软包电池。
实施例4
(1)本实施例中的磷酸酯化合物的结构式如式(II1)所示。
Figure PCTCN2021115038-appb-000020
(2)组装锂离子电池:
本实施例中,磷酸酯化合物占电解液的重量的0.3%;锂盐为六氟磷酸锂,锂盐占电解液的重量的13%;溶剂为碳酸乙烯酯和碳酸甲乙酯按重量比为1:2 混合而成的溶剂;正极材料为LiNi 0.8Co 0.1Mn 0.1O 2;负极材料为人造石墨;隔膜为聚乙烯膜。按照常规方法组装成软包电池。
实施例5
(1)本实施例中的磷酸酯化合物的结构式如式(II1)所示。
Figure PCTCN2021115038-appb-000021
(2)组装锂离子电池:
本实施例中,磷酸酯化合物占电解液的重量的10%;锂盐为六氟磷酸锂,锂盐占电解液的重量的13%;溶剂为碳酸乙烯酯和碳酸甲乙酯按重量比为1:2混合而成的溶剂;正极材料为LiNi 0.8Co 0.1Mn 0.1O 2;负极材料为人造石墨;隔膜为聚乙烯膜。按照常规方法组装成软包电池。
实施例6
(1)本实施例中的磷酸酯化合物的结构式如式(II1)所示。
Figure PCTCN2021115038-appb-000022
(2)组装锂离子电池:
本实施例中,磷酸酯化合物占电解液的重量的1%;锂盐为六氟磷酸锂和双氟磺酰亚胺锂,六氟磷酸锂和双氟磺酰亚胺锂分别占电解液的重量的12%和1%;溶剂为碳酸乙烯酯和碳酸甲乙酯按重量比为1:2混合而成的溶剂;正极材料为LiNi 0.8Co 0.1Mn 0.1O 2;负极材料为人造石墨;隔膜为聚乙烯膜。按照常规方法组装成软包电池。
实施例7
(1)本实施例中的磷酸酯化合物的结构式如式(II1)所示。
Figure PCTCN2021115038-appb-000023
(2)组装锂离子电池:
本实施例中,磷酸酯化合物占电解液的重量的1%;锂盐为六氟磷酸锂和双氟磺酰亚胺锂,六氟磷酸锂和双氟磺酰亚胺锂分别占电解液的重量的12%和1%;溶剂为碳酸乙烯酯和2,2-二氟乙基乙酸酯按重量比为1:2混合而成的溶剂;正极材料为LiNi 0.8Co 0.1Mn 0.1O 2;负极材料为人造石墨;隔膜为聚乙烯膜。按照常规方法组装成软包电池。
对比例1
与实施例1相比,对比例1的不同之处在于,电解液中不含磷酸酯化合物。
对比例2
与实施例1相比,对比例2的不同之处在于,将实施例1的磷酸酯化合物替换为占电解液重量的0.5%的二氟磷酸锂添加剂。
对比例3
与实施例1相比,对比例3的不同之处在于,将实施例1的磷酸酯化合物替换为占电解液重量的1%的硫酸乙烯酯添加剂。
对比例4
与对实施2相比,对比例4的不同之处在于,将实施例2的磷酸酯化合物替换为占电解液重量的1%的式(IV1)添加剂。
Figure PCTCN2021115038-appb-000024
锂离子电池高低温性能测试
对实施例1~7、对比例1~4中的锂离子电池进行阻抗以及高低温性能测试,测试方法为:
初始DCIR性能:将分容后的电池在室温下以1C充电至4.2V,搁置5min后,然后以1C放电30min,搁置1h后,接着以2C放电10s,计算电池50%SOC下的DCIR。
高温存储性能:将化成后的锂离子电池在常温下用1C电流恒流恒压充至4.2V,测量电池初始容量;然后在60℃环境中储存14天后,在室温下以1C放电至3V,再充电至4.2V,测量锂离子电池的容量保持率。
高温存储后DCIR性能:将完成60℃14天高温存储性能测试的电池,在室温下以1C充电至4.2V,搁置5min后,然后以1C放电30min,搁置1h后,接着以2C放电10s,计算电池50%SOC下的DCIR。
低温DCIR性能:将分容后的电池在-20℃下以1C充电至4.2V,搁置5min后,然后以1C放电30min,搁置1h后,接着以2C放电10s,计算电池50%SOC下的DCIR。
低温放电性能:将化成后的锂离子电池在常温下用1C恒流恒压充至4.2V,测量电池初始容量;然后将电池置于恒温-20℃的恒温箱中,以0.5C放电至2.5V,测量锂离子电池的容量保持率。
测试结果如表1所示:
表1
Figure PCTCN2021115038-appb-000025
由表1、图1和图2可知,实施例1~7中的锂离子电池的初始DCIR、低温DCIR、高温存储后DCIR、高温存储容量保持率、低温放电容量保持率性能优于对比例1~4。说明实施例1~7中的电解液添加剂能够有效的抑制电池初始阻抗、高温存储后阻抗以及低温下阻抗增加,进一步有效改善锂离子电池的高温存储性能和低温放电性能。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种电解液添加剂,其特征在于,具有式(I)所示结构:
    Figure PCTCN2021115038-appb-100001
    X为单键或碳;n为1、2、3或4;m为0、1、2或3;
    m大于1时,多个R a彼此相同或不同;n大于1时,多个R 1彼此相同或不同,多个R 2彼此相同或不同;
    R a选自:H、C 1-8烷基、苯基、具有5-6个环原子的杂芳基、C 2-8烯基或C 0-8烷基硅基;
    R 1、R 2各自独立地选自:H、C 1-8烷基、苯基、具有5-6个环原子的杂芳基、C 2-8烯基、C 0-8烷基硅基、卤素取代C 1-8烷基、卤素取代C 2-8烯基、卤素取代C 0-8烷基硅基、R 0取代苯基或R 0取代具有5-6个环原子的杂芳基;
    R 0选自:C 1-6烷基、C 1-6烷氧基、卤素、或卤代C 1-6烷基。
  2. 根据权利要求1所述的电解液添加剂,其特征在于,具有式(I-1)所示结构:
    Figure PCTCN2021115038-appb-100002
    Y为单键或-CR bR c
    R b、R c各自独立地选自:H、C 1-8烷基、苯基、具有5-6个环原子的杂芳基、 C 2-8烯基、C 0-8烷基硅基或式A所示结构;
    Figure PCTCN2021115038-appb-100003
  3. 根据权利要求1所述的电解液添加剂,其特征在于,具有式(II)或式(III)所示结构;
    Figure PCTCN2021115038-appb-100004
  4. 根据权利要求2或3所述的电解液添加剂,其特征在于,R 1、R 2各自独立地选自:H、C 1-6烷基、苯基、具有5-6个环原子的杂芳基、C 2-6烯基、C 0-6烷基硅基、卤素取代C 1-6烷基、卤素取代C 2-6烯基、卤素取代C 0-6烷基硅基、卤素取代苯基或卤素取代具有5-6个环原子的杂芳基;
    R b、R c各自独立地选自:氢原子或C 1-6烷基。
  5. 根据权利要求2或3所述的电解液添加剂,其特征在于,R 1、R 2各自独立地选自:氢原子、苯基、甲基、乙基、1-丙基、2-丙基、1-丁基、2-甲基-1-丙基、2-丁基、三氟甲基、三氟乙基、三氟丙基、乙烯基、丙烯基、丁烯基、三甲基硅基、三乙基硅基、三氟代硅基、(三氟甲基)二甲基硅基、二(三氟甲基)甲基硅基、或三(三氟甲基)硅基;
    R b、R c各自独立地选自:氢原子或甲基。
  6. 根据权利要求1所述的电解液添加剂,其特征在于,选自以下任一化合物:
    Figure PCTCN2021115038-appb-100005
  7. 一种电解液,其特征在于,包括权利要求1-6任一项所述的电解液添加剂。
  8. 根据权利要求7所述的电解液,其特征在于,还包括锂盐和溶剂,在所述电解液中,以质量百分含量计,所述电解液添加剂为0.01%-30%,所述锂盐为5%-20%,所述溶剂为50%-94.9%。
  9. 根据权利要求8所述的电解液,其特征在于,所述锂盐选自六氟磷酸锂、四氟硼酸锂、双草酸硼酸锂、二氟磷酸锂、二氟草酸磷酸锂及双氟磺酰亚胺锂中的至少一种;和/或
    所述溶剂包括环型溶剂和/或线型溶剂;其中,所述环型溶剂选自:碳酸乙烯酯、碳酸丙烯酯、γ-丁内酯、乙酸苯酯、1,4-丁基磺酸内酯及3,3,3-三氟碳酸丙烯酯中的至少一种;所述线型溶剂选自碳酸二甲酯、碳酸甲乙酯、碳酸二乙酯、乙酸乙酯、碳酸甲丙酯、丙酸丙酯、1,1,2,2-四氟乙基-2,2,3,3- 四氟丙基醚、2,2-二氟乙基乙酸酯、2,2-二氟乙基丙酸酯及2,2-二氟乙基碳酸甲酯中的至少一种。
  10. 一种锂离子电池,其特征在于,包括正极材料、负极材料和权利要求7-9任一项所述的电解液。
PCT/CN2021/115038 2021-03-16 2021-08-27 磷酸酯类电解液添加剂、电解液及锂离子电池 WO2022193555A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110279423.1 2021-03-16
CN202110279423.1A CN113054257A (zh) 2021-03-16 2021-03-16 磷酸酯类电解液添加剂、电解液及锂离子电池

Publications (1)

Publication Number Publication Date
WO2022193555A1 true WO2022193555A1 (zh) 2022-09-22

Family

ID=76512695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/115038 WO2022193555A1 (zh) 2021-03-16 2021-08-27 磷酸酯类电解液添加剂、电解液及锂离子电池

Country Status (2)

Country Link
CN (1) CN113054257A (zh)
WO (1) WO2022193555A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113054257A (zh) * 2021-03-16 2021-06-29 广州天赐高新材料股份有限公司 磷酸酯类电解液添加剂、电解液及锂离子电池

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4689123A (en) * 1986-12-23 1987-08-25 The Dow Chemical Company Novel tetraphosphonic acid compounds, intermediates and a process for their production
US20160319451A1 (en) * 2013-12-19 2016-11-03 Schlenk Metallfolien Gmbh & Co. Kg Electrically conductive liquids based on metal-diphosphonate complexes
CN110085906A (zh) * 2018-01-25 2019-08-02 比亚迪股份有限公司 非水电解液、含有该非水电解液的锂离子电池
CN112038698A (zh) * 2020-09-15 2020-12-04 厦门首能科技有限公司 一种耐高压锂离子电池及其电解液
CN112310467A (zh) * 2019-07-31 2021-02-02 深圳新宙邦科技股份有限公司 一种锂离子电池
CN113054257A (zh) * 2021-03-16 2021-06-29 广州天赐高新材料股份有限公司 磷酸酯类电解液添加剂、电解液及锂离子电池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8993158B2 (en) * 2010-05-21 2015-03-31 Mitsui Chemicals, Inc. Nonaqueous electrolyte solution containing silyl ester group-containing phosphonic acid derivative, and lithium secondary battery
JP2016154080A (ja) * 2015-02-20 2016-08-25 ソニー株式会社 電解質、電池、電池パック、電子機器、電動車両、蓄電装置および電力システム
CN108470938B (zh) * 2017-02-23 2020-08-28 宁德时代新能源科技股份有限公司 锂离子电池及其电解液
JP7051422B2 (ja) * 2017-12-22 2022-04-11 Muアイオニックソリューションズ株式会社 非水電解液およびそれを用いた蓄電デバイス

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4689123A (en) * 1986-12-23 1987-08-25 The Dow Chemical Company Novel tetraphosphonic acid compounds, intermediates and a process for their production
US20160319451A1 (en) * 2013-12-19 2016-11-03 Schlenk Metallfolien Gmbh & Co. Kg Electrically conductive liquids based on metal-diphosphonate complexes
CN110085906A (zh) * 2018-01-25 2019-08-02 比亚迪股份有限公司 非水电解液、含有该非水电解液的锂离子电池
CN112310467A (zh) * 2019-07-31 2021-02-02 深圳新宙邦科技股份有限公司 一种锂离子电池
CN112038698A (zh) * 2020-09-15 2020-12-04 厦门首能科技有限公司 一种耐高压锂离子电池及其电解液
CN113054257A (zh) * 2021-03-16 2021-06-29 广州天赐高新材料股份有限公司 磷酸酯类电解液添加剂、电解液及锂离子电池

Also Published As

Publication number Publication date
CN113054257A (zh) 2021-06-29

Similar Documents

Publication Publication Date Title
WO2021110165A1 (zh) 一种低内阻的锂二次电池电解液及锂二次电池
CN112271330B (zh) 电解液添加剂、电解液及储能装置
WO2021057597A1 (zh) 双磺酸酯化合物及其制备方法以及电解液和储能装置
WO2018196146A1 (zh) 锂离子电池非水电解液和锂离子电池
WO2022193554A1 (zh) 电解液添加剂、电解液及锂离子电池
WO2018103335A1 (zh) 一种二次电池及注液方法
WO2022110709A1 (zh) 组合物、包含该组合物的电解液及锂离子电池
WO2021128539A1 (zh) 原位开环聚合制备的聚甲醛类全固态聚合物电解质及应用
US11764402B2 (en) Electrolytic solution for lithium secondary battery, and lithium secondary battery comprising same
WO2018099091A1 (zh) 一种电解液及二次电池
CN103762334B (zh) 锂离子二次电池及其正极
WO2021047500A1 (zh) 电解液、包含该电解液的锂离子电池、电池模块、电池包及装置
WO2021073465A1 (zh) 用于锂离子电池的电解液、锂离子电池、电池模块、电池包及装置
CN105470571B (zh) 锂离子二次电池及其电解液
WO2020238191A1 (zh) 一种降低电池阻抗的锂二次电池电解液及锂二次电池
WO2018099092A1 (zh) 一种非水电解液及锂离子电池
KR20210080560A (ko) 전해액, 전기화학장치 및 전자장치
WO2022193555A1 (zh) 磷酸酯类电解液添加剂、电解液及锂离子电池
CN113488697A (zh) 一种钠离子电池电解液添加剂、电解液及钠离子电池
WO2024104061A1 (zh) 一种用于磷酸铁锂电池的电解液及磷酸铁锂电池
CN112490504A (zh) 成膜添加剂、电解液及包含其的锂二次电池
CN111883841A (zh) 一种锂离子电池非水电解液及锂离子电池
WO2023087536A1 (zh) 电解液添加剂组合物、电解液及锂二次电池
CN115621555A (zh) 一种非水电解液及锂离子电池
CN109004279A (zh) 环状硅酸酯化合物于电池电解液中的应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21931130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE