WO2022193202A1 - 一种物体表面平整度检测方法及其检测设备 - Google Patents

一种物体表面平整度检测方法及其检测设备 Download PDF

Info

Publication number
WO2022193202A1
WO2022193202A1 PCT/CN2021/081416 CN2021081416W WO2022193202A1 WO 2022193202 A1 WO2022193202 A1 WO 2022193202A1 CN 2021081416 W CN2021081416 W CN 2021081416W WO 2022193202 A1 WO2022193202 A1 WO 2022193202A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser line
platform
measured
unit
Prior art date
Application number
PCT/CN2021/081416
Other languages
English (en)
French (fr)
Inventor
王振兴
Original Assignee
深圳市杜比激光有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市杜比激光有限公司 filed Critical 深圳市杜比激光有限公司
Publication of WO2022193202A1 publication Critical patent/WO2022193202A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/30Measuring arrangements characterised by the use of optical techniques for measuring roughness or irregularity of surfaces

Definitions

  • the invention relates to optical measurement technology, in particular to a method and equipment for detecting the flatness of the surface of an object.
  • the measurement of surface flatness of objects has a strong demand in the field of industrial manufacturing, especially the non-contact measurement method, which has a wide range of applications in precision manufacturing, aerospace, military and many other fields.
  • the measurement of surface flatness of objects can be divided into contact and non-contact measurement methods.
  • Contact measurement is the contact measurement between the measuring head and the surface of the workpiece, and the scanning motion is performed along the shape of the workpiece. Its disadvantage is that it is easy to cause different degrees of damage to the measured surface. Due to the development of laser measurement technology, non-contact measurement has become the mainstream.
  • the detection ruler In the field of measuring the flatness and inclination of the wall during construction, the detection ruler is mainly used at present. [0010] The principle of using the inspection ruler to measure the flatness is similar to the 3m ruler in the road surface inspection, which is to contact the measured surface and then observe and measure the gap. Instruments for measuring parameters such as slope, horizontality and verticality are also installed on the detection ruler, which can measure the degree of inclination. This method is almost the only method for measuring the flatness of vertical walls, ceilings, floors, etc. at present. It requires manual operation, time-consuming and laborious, and it is difficult to obtain comprehensive and intuitive results. Some hard-to-reach locations are not suitable for this method. method measurement.
  • the document with the patent number of 201610901267.7 discloses a method for optically measuring the flatness and inclination of an approximate plane, using the two intersection lines of the measurement plane laser and the measured surface and the intersection line with the artificially specified standard plane.
  • the deviation between the projections on the measured surface can be calculated to obtain the offset between the measured surface and the standard surface at each position, and then the flatness and inclination data of the entire measured surface can be obtained.
  • the laser transmitter of the laser emits laser light to the measured surface, so that there is a non-90° angle between the laser plane and the standard mathematical plane, then the area illuminated by the laser irradiation on the measured surface is located between the laser plane and the actual plane.
  • the measured surface does not completely coincide with the standard mathematical plane (that is, there is unevenness)
  • the area illuminated by the laser on the measured surface will be the same as the laser plane and the standard mathematical plane.
  • the intersection between the mathematical planes takes the normal of the standard plane as the projection line, and there is a deviation between the projections on the measured surface. Through the corresponding calculation of the deviation, the relative position of each position on the projection line relative to the standard mathematical plane can be obtained.
  • step 4 synchronously for many times until the concave-convex difference value of the position represented by any pixel point in the photo relative to the standard plane can be calculated, so as to obtain the overall flatness data of the measured surface; ( 6) After the difference between the entire measured surface and the standard plane is obtained, the overall inclination of the measured surface relative to the standard plane can be known at the same time. The overall inclination of the measuring surface in space.
  • the purpose of the present invention is to provide an object surface flatness detection device and method with simple operation, high precision, fast measurement speed and low equipment cost.
  • the technical scheme adopted in the present invention is: a method for detecting the flatness of an object surface, comprising the following steps:
  • a detachable fixing unit (15) is provided to fix the laser emission platform (21) on the surface of the object to be measured, and the detachable fixing unit (15) includes a battery (13), a vacuum pump (10), a connecting hose ( 12) and a sponge body (11); wherein, the sponge body is fixed and pasted on the working surface of the fixing unit; when the working surface is close to the surface (20) of the object to be measured, the working surface forming a closed cavity with the detected object surface (20) and the sponge body; the vacuum pump evacuates the closed cavity through the connecting hose to form a negative pressure adsorption cavity;
  • At least one group of laser line modules (1) capable of emitting linear lasers is arranged on the laser emission platform (21); laser lines are emitted to the surface of the object to be measured through the laser line modules (1), so that If there is a non-90° angle between the laser line and the surface of the object to be measured, an area irradiated and illuminated by the laser line appears on the surface of the object to be measured;
  • the shape of the area irradiated and illuminated by the laser line is a straight line
  • the shape of the area irradiated and illuminated by the laser line is a curve with concave and convex
  • a rotating platform is arranged so that the laser emission platform can rotate, so that the laser line emitted by the laser line module can irradiate a larger area of the surface of the detected object, and according to the shape of the area irradiated and illuminated by the laser line, Judge the flatness of the surface of a larger area of the object to be measured.
  • an angle adjustment unit is arranged on the laser emission platform (21), and the emission direction of the laser line module (1) is adjusted and changed by the angle adjustment unit;
  • a horizontal adjusting unit is arranged between the rotating platforms (16), and the position of the laser line module is adjusted and changed by the horizontal adjusting unit.
  • a horizontal observation unit is provided on the laser emission platform (21), and the horizontal observation unit is connected with the laser line module for observing whether the laser line is level.
  • An object surface flatness detection device comprising a laser emitting platform (21) and a detachable fixing unit (15); the detachable fixing unit (15) is used for fixing the laser emitting platform on the surface of a detected object (20) )superior;
  • At least one group of laser line modules (1) are installed on the laser emission platform, and the laser line modules are used to emit laser lines to the surface (20) of the object to be detected;
  • the detachable fixing unit (15) includes a battery (13), a vacuum pump (10), a connecting hose (12) and a sponge body (11); the sponge body is fixed and pasted on the working surface of the detachable fixing unit when the working surface is in close contact with the surface of the object to be detected (20), the working surface forms a closed cavity with the surface of the object to be detected (20) and the sponge; the vacuum pump passes through The connecting hose evacuates the closed cavity to form a negative pressure adsorption cavity.
  • a rotating platform (16) is arranged between the laser emitting platform and the detachable fixing unit, and the rotating platform is used to make the laser emitting platform rotate on the detachable fixing unit.
  • an angle adjustment unit is provided on the laser emission platform (21), and the emission direction of the laser line module (1) is adjusted and changed by the angle adjustment unit; (16) A horizontal adjustment unit is arranged between, and the position of the laser line module is adjusted and changed by the horizontal adjustment unit.
  • a horizontal observation unit is provided on the laser emission platform (21), and the horizontal observation unit is connected with the laser line module for observing whether the laser line is level.
  • the leveling unit comprises a first levelling wheel (5), a second levelling wheel (6) and a third levelling wheel (7).
  • the horizontal observation unit includes an X-axis horizontal observation module (8) and a Y-axis horizontal observation module (9) that are perpendicular to each other, and the X-axis horizontal observation module (8) and the Y-axis horizontal observation module are liquid horizontal bubbles or angle sensor.
  • the detection device is detachably installed directly on the surface of the object to be measured, and the deviation of the surface of the object to be measured in the vertical direction is converted into the deviation in the parallel direction by means of laser irradiation, This greatly reduces the difficulty of detecting deviations.
  • the deviation of the surface flatness of the measured object is all reflected on the measured surface, which only needs to be observed and analyzed by the human eye. It is not necessary to install complex measuring tools on the measuring equipment, and the cost is low and the operation is fast.
  • FIG. 1 is a schematic structural diagram of the object surface flatness detection device of the present invention during operation
  • Fig. 2 is the structural schematic diagram of the top view angle of the object surface flatness detection device of the present invention
  • FIG. 3 is a schematic cross-sectional structure diagram of the object surface flatness detection device of the present invention from a main viewing angle.
  • first”, “second” and “third” in the present invention are only used for description purposes, and should not be understood as indicating or implying relative importance or implying the number of indicated technical features. Thus, a feature defined as “first”, “second”, “third” may expressly or implicitly include at least one of that feature.
  • "a plurality of” means at least two, such as two, three, etc., unless otherwise expressly and specifically defined. All directional indications (such as up, down, left, right, front, back, etc.) in the embodiments of the present invention are only used to explain the relative positional relationship between various components under a certain posture (as shown in the accompanying drawings). , motion situation, etc., if the specific posture changes, the directional indication also changes accordingly.
  • the terms “comprising” and “having” and any variations thereof are intended to cover non-exclusive inclusion.
  • a method for detecting the surface flatness of an object includes the following steps:
  • a detachable fixing unit (15) is provided to fix the laser emission platform (21) on the surface of the object to be measured, and the detachable fixing unit (15) includes a battery (13), a vacuum pump (10), a connecting hose ( 12) and a sponge body (11); wherein, the sponge body is fixed and pasted on the working surface of the fixing unit; when the working surface is close to the surface (20) of the object to be measured, the working surface forming a closed cavity with the detected object surface (20) and the sponge body; the vacuum pump evacuates the closed cavity through the connecting hose to form a negative pressure adsorption cavity;
  • At least one group of laser line modules (1) capable of emitting linear lasers is arranged on the laser emission platform (21); laser lines are emitted to the surface of the object to be measured through the laser line modules (1), so that If there is a non-90° angle between the laser line and the surface of the object to be measured, an area irradiated and illuminated by the laser line appears on the surface of the object to be measured;
  • the shape of the area irradiated and illuminated by the laser line is a straight line
  • the shape of the area irradiated and illuminated by the laser line is a curve with concave and convex
  • a rotating platform is arranged so that the laser emission platform can rotate, so that the laser line emitted by the laser line module can irradiate a larger area of the surface of the detected object, and according to the shape of the area irradiated and illuminated by the laser line, Judge the flatness of the surface of a larger area of the object to be measured.
  • an angle adjustment unit is arranged on the laser emission platform (21), and the emission direction of the laser line module (1) is adjusted and changed by the angle adjustment unit;
  • a horizontal adjusting unit is arranged between the rotating platforms (16), and the position of the laser line module is adjusted and changed by the horizontal adjusting unit.
  • a horizontal observation unit is provided on the laser emission platform (21), and the horizontal observation unit is connected with the laser line module for observing whether the laser line is level.
  • An object surface flatness detection device comprising a laser emitting platform (21) and a detachable fixing unit (15); the detachable fixing unit (15) is used for fixing the laser emitting platform on the surface of a detected object (20) )superior;
  • a first laser line module (1) and a second laser line module (3) are installed on the laser emission platform; the first laser line module (1) and the second laser line module (3) for emitting laser lines to the surface (20) of the detected object;
  • the detachable fixing unit (15) includes a battery (13), a vacuum pump (10), a connecting hose (12) and a sponge body (11); the sponge body is fixed and pasted on the working surface of the detachable fixing unit when the working surface is in close contact with the surface of the object to be detected (20), the working surface forms a closed cavity with the surface of the object to be detected (20) and the sponge; the vacuum pump passes through The connecting hose evacuates the closed cavity to form a negative pressure adsorption cavity.
  • a rotating platform (16) is arranged between the laser emitting platform and the detachable fixing unit, and the rotating platform is used to make the laser emitting platform rotate on the detachable fixing unit.
  • an angle adjustment unit is provided on the laser emission platform (21), and the angle adjustment unit includes a first angle adjustment wheel (2) and a second angle adjustment wheel (4). (2) adjusting and changing the emission direction of the first laser line module (1) and the second laser line module (3) with the second angle adjustment wheel (4);
  • a leveling unit is provided between the laser emitting platform and the rotating platform (16), and the leveling unit includes a first levelling wheel (5), a second levelling wheel (6) and a third levelling wheel Wheel (7), through the first level adjustment wheel (5), the second level adjustment wheel (6) and the third level adjustment wheel (7) to adjust and change the first laser line module (1) and the second level adjustment wheel (7) The position of the laser line module (3).
  • a horizontal observation unit is provided on the laser emission platform (21), the horizontal observation unit includes an X-axis horizontal observation module (8) and a Y-axis horizontal observation module (9) that are perpendicular to each other, the X-axis
  • the horizontal observation module (8) and the Y-axis horizontal observation module can be liquid level bubbles or angle sensors.
  • the level observation unit is connected with the laser line module, and is used to observe whether the laser line is level.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

一种物体表面平整度检测方法及其检测设备,包括如下步骤:设置一可拆卸固定单元(15)将激光发射平台(21)固定在被测物体表面(20)上,可拆卸固定单元(15)包括电池(13)、真空泵(10)、连接软管(12)和海绵体(11);其中,海绵体(11)固定粘贴于可拆卸固定单元(15)的工作面上;当工作面贴紧被测物体表面(20)时,工作面与被检测物体表面(20)以及海绵体(11)形成一封闭的腔体;真空泵(10)通过连接软管(12)将封闭的腔体抽真空,形成负压吸附腔。

Description

一种物体表面平整度检测方法及其检测设备 技术领域
本发明涉及光学测量技术,特别是涉及一种物体表面平整度检测方法及其设备。
背景技术
物体表面平整度的测量在工业制造领域有着强烈的需求,特别是非接触式的测量方式,在精密制造、航空航天、军事等许多领域都具有广泛的应用。对物体表面平整度的测量可以分为接触式和非接触式的测量方法。接触式测量是测量头与工件表面进行接触测量,沿着工件形状进行扫描运动。它的缺点是容易对被测表面造成不同程度的损伤。由于激光测量技术的发展,非接触测量方式已经成为主流。
在施工中对墙面的平整度、倾斜度测量领域,目前使用的主要就是检测尺。[0010]使用检测尺来测量平整度的原理和路面检测里的3m直尺类似,是接触在被测面上然后观察、测量缝隙。检测尺上还安装有测量坡度、水平度和垂直度等参数的仪表,可以进行倾斜程度的测量。此法几乎是目前测量竖直墙面、建筑内天花板、地板等平整度的唯一方法,需要人手动操作,费时费力,难以得到全面、直观的结果,一些难以触及的位置也不适合用这种方法测量。
专利号为201610901267.7的文献公开了一种光学测量近似平面平整度和倾斜度的方法,利用测量平面状激光与被测面的交线和其与人为规定的标准平面的交线这两条交线在被测面上的投影之间的偏差,加以计算得出被测面与标准面在各位置处的偏移量,进而得到整个被测面的平整度、倾斜度数据,其特征在于,包括如下步骤:(1)人为定义一个实际被测平面对应的标准数学平面,应当尽可能接近被测面;(2)在距离该标准平面一定距离的地方放置有能发射出某种颜色的平面状激光的激光发射器来向被测面发射激光,使得激光平面与该标准数学平面间有一个非90°的夹角,则被测面上出现的被激光照射照亮的区域位于激光平面与实际被测面两面的交线上;(3)而如果被测面不完全和标准数学平面重合(即存在不平整的情况),则激光在被测面上照亮的区域会和激光平面与标准数学平面之间的交线以标准平面的法线为投影线的在被测面上的投影之间存在偏差,通过这个偏差量进行相应计算可以得出投影线上各个位置的相对于标准数学平面的差距值;(4)通过数码拍摄装置摄取被测面受激光照射的图片,收集被测面上各位置处的这些偏差的数据,并运用计算机处理图片做相应的分析,计算得出被测面上当前激光平面与标准数学平面之间的交线的以标准平面的法线为投影线的在被测 面上的投影区域中每一点相对于标准数学平面的凹凸差距值;(5)改变平面型激光发射器的发射方向或位置,让激光照亮区域以及激光平面与标准数学平面之间的交线以标准平面的法线为投影线的在被测面上的投影扫过整个被测面,并同步多次重复进行步骤4,直到能够计算出整个被测面在照片中任意像素点代表的位置的相对于标准平面的凹凸差距值,从而获取被测面的整体平整度数据;(6)整个被测面相对于标准平面的差异情况得到以后,同时就知道了被测面相对于标准平面的整体倾斜程度,其后只要读出设备摆放时确定的摄像方向,就可以通过计算得到被测面在空间中整体的倾斜程度。
本发明人发现,上述平整度的检测设备和检测方法存在如下缺点:第一,平整度的获得都需要在获得大量的数据后,通过计算和比较数据得到结果,计算量大,耗时较多。第二、需要借助计算机和数码摄影设备实现,成本高。
发明内容
本发明的目的在于提供一种操作简单,精度高,测量速度快,设备成本低的物体表面平整度检测设备和方法。
本发明采用的技术方案是:一种物体表面平整度检测方法,包括如下步骤:
设置一可拆卸固定单元(15)将激光发射平台(21)固定在所述被测物体表面上,所述可拆卸固定单元(15)包括电池(13)、真空泵(10)、连接软管(12)和海棉体(11);其中,所述海绵体固定粘贴于所述固定单元的工作面上;当所述工作面贴紧所述被测物体表面(20)时,所述工作面与所述被检测物体表面(20)以及所述海绵体形成一封闭的腔体;所述真空泵通过所述连接软管将所述封闭的腔体抽真空,形成负压吸附腔;
在所述激光发射平台(21)上设置至少一组能发射出线状激光的激光线模组(1);通过所述激光线模组(1)向所述被测物体表面发射激光线,使得所述激光线与该被测物体表面间有一个非90°的夹角,则被测物体表面上出现一块被所述激光线照射并照亮的区域;
如果被测物体表面为平整,则所述激光线照射并照亮的区域的形状为直线;
如果被测物体表面为不平整,则所述激光线照射并照亮的区域的形状为具有凹陷和凸出的曲线;
改变所述激光线模组(1)的发射方向或位置,使得所述激光线扫过整个被测物体表面,根据激光线照射并照亮的区域的形状,判断整个被测物体表面的平整度。
进一步地,包括如下步骤:
设置一旋转平台使得所述激光发射平台能够旋转,以使得所述激光线模组发射的激光线能够照射到更大面积的被检测物体表面,并根据激光线照射并照亮的区域的形状,判断更大面积的被测物体表面的平整度。
进一步地,包括如下步骤:在所述激光发射平台(21)上设置角度调节单元,通过所述角度调节单元调整改变所述激光线模组(1)的发射方向;在所述激光发射平台和所述旋转平台(16)之间设置水平调节单元,通过所述水平调节单元调整改变所述激光线模组的位置。
进一步地,在所述激光发射平台(21)上设置水平观测单元,所述水平观测单元与所述激光线模组相连接,用于观测所述激光线是否水平。
一种物体表面平整度检测设备,包括激光发射平台(21)和可拆卸固定单元(15);所述可拆卸固定单元(15)用于将所述激光发射平台固定在被检测物体表面(20)上;
所述激光发射平台上安装有至少一组激光线模组(1),所述激光线模组用于向被检测物体表面(20)发射激光线;
所述可拆卸固定单元(15)包括电池(13)、真空泵(10)、连接软管(12)和海棉体(11);所述海绵体固定粘贴于所述可拆卸固定单元的工作面上;当所述工作面贴紧所述待检测物体表面(20)时,所述工作面与所述待检测物体表面(20)以及所述海绵体形成一封闭的腔体;所述真空泵通过所述连接软管将所述封闭的腔体抽真空,形成负压吸附腔。
进一步地,在所述激光发射平台和可拆卸固定单元之间设置旋转平台(16),所述旋转平台用于使得所述激光发射平台在所述可拆卸固定单元之上旋转。
进一步地,所述激光发射平台(21)上设有角度调节单元,通过所述角度调节单元调整改变所述激光线模组(1)的发射方向;在所述激光发射平台和所述旋转平台(16)之间设有水平调节单元,通过所述水平调节单元调整改变所述激光线模组的位置。
进一步地,在所述激光发射平台(21)上设有水平观测单元,所述水平观测单元与所述激光线模组相连接,用于观测所述激光线是否水平。
优选地,所述水平调节单元包括第一水平调节轮(5)、第二水平调节轮(6)和第三水平调节轮(7)。
优选地,所述水平观测单元包括彼此垂直的X轴水平观测模块(8)和Y轴水平观测模块(9),所述X轴水平观测模块(8)和Y轴水平观测模块为液体水平气泡或角度传感器。
本发明的有益效果在于,第一,将检测设备可拆卸地直接安装在将被测物体表面上,将被 测物体表面在垂直方向上的偏差用激光照射的方式转换成平行方向上的偏差,使得对偏差的检测难度大大降低。第二,被测物体表面平整度的偏差情况全部在被测面上体现,只需人眼观测分析即可,不需要在测量设备上安装复杂的测量工具,成本低廉而又操作快速。
附图说明
图1为本发明的物体表面平整度检测设备工作时的结构示意图;
图2为本发明的物体表面平整度检测设备俯视角度的结构示意图;
图3为本发明的物体表面平整度检测设备的主视角度的剖面结构示意图。
图中,1、第一激光线模组;3、第二激光线模组;2、第一角度调节轮;4、第二角度调节轮;5、第一水平调节轮;6、第二水平调节轮;7、第三水平调节轮;8、X轴水平观测模块;9、Y轴水平观测模块;10、真空泵;11、海棉体;12、连接软管;13、电池;15、可拆卸固定单元;16、旋转单元;20、待检测物体表面;21、激光发射平台。
具体实施方式
下面将结合本发明实施例中的附图,对发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明中的术语“第一”、“第二”、“第三”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”、“第三”的特征可以明示或者隐含地包括至少一个该特征。本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。本发明实施例中所有方向性指示(诸如上、下、左、右、前、后……)仅用于解释在某一特定姿态(如附图所示)下各部件之间的相对位置关系、运动情况等,如果该特定姿态发生改变时,则该方向性指示也相应地随之改变。此外,术语“包括”和“具有”以及它们任何变形,意图在于覆盖不排他的包含。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本发明的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
如图1、图2和图3所示,一种物体表面平整度检测方法,包括如下步骤:
设置一可拆卸固定单元(15)将激光发射平台(21)固定在所述被测物体表面上,所述可拆卸固定单元(15)包括电池(13)、真空泵(10)、连接软管(12)和海棉体(11);其中,所述海绵体固定粘贴于所述固定单元的工作面上;当所述工作面贴紧所述被测物体表面(20)时,所述工作面与所述被检测物体表面(20)以及所述海绵体形成一封闭的腔体;所述真空泵通过所述连接软管将所述封闭的腔体抽真空,形成负压吸附腔;
在所述激光发射平台(21)上设置至少一组能发射出线状激光的激光线模组(1);通过所述激光线模组(1)向所述被测物体表面发射激光线,使得所述激光线与该被测物体表面间有一个非90°的夹角,则被测物体表面上出现一块被所述激光线照射并照亮的区域;
如果被测物体表面为平整,则所述激光线照射并照亮的区域的形状为直线;
如果被测物体表面为不平整,则所述激光线照射并照亮的区域的形状为具有凹陷和凸出的曲线;
改变所述激光线模组(1)的发射方向或位置,使得所述激光线扫过整个被测物体表面,根据激光线照射并照亮的区域的形状,判断整个被测物体表面的平整度。
进一步地,包括如下步骤:
设置一旋转平台使得所述激光发射平台能够旋转,以使得所述激光线模组发射的激光线能够照射到更大面积的被检测物体表面,并根据激光线照射并照亮的区域的形状,判断更大面积的被测物体表面的平整度。
进一步地,包括如下步骤:在所述激光发射平台(21)上设置角度调节单元,通过所述角度调节单元调整改变所述激光线模组(1)的发射方向;在所述激光发射平台和所述旋转平台(16)之间设置水平调节单元,通过所述水平调节单元调整改变所述激光线模组的位置。
进一步地,在所述激光发射平台(21)上设置水平观测单元,所述水平观测单元与所述激光线模组相连接,用于观测所述激光线是否水平。
一种物体表面平整度检测设备,包括激光发射平台(21)和可拆卸固定单元(15);所述可拆卸固定单元(15)用于将所述激光发射平台固定在被检测物体表面(20)上;
所述激光发射平台上安装有第一激光线模组(1)和第二激光线模组(3);,所述第一激光线模组(1)和第二激光线模组(3)用于向被检测物体表面(20)发射激光线;
所述可拆卸固定单元(15)包括电池(13)、真空泵(10)、连接软管(12)和海棉体(11);所述海绵体固定粘贴于所述可拆卸固定单元的工作面上;当所述工作面贴紧所述待检测物体表 面(20)时,所述工作面与所述待检测物体表面(20)以及所述海绵体形成一封闭的腔体;所述真空泵通过所述连接软管将所述封闭的腔体抽真空,形成负压吸附腔。
进一步地,在所述激光发射平台和可拆卸固定单元之间设置旋转平台(16),所述旋转平台用于使得所述激光发射平台在所述可拆卸固定单元之上旋转。
进一步地,所述激光发射平台(21)上设有角度调节单元,所述角度调节单元包括第一角度调节轮(2)和第二角度调节轮(4),通过所述第一角度调节轮(2)和第二角度调节轮(4)调整改变所述第一激光线模组(1)和第二激光线模组(3)的发射方向;
在所述激光发射平台和所述旋转平台(16)之间设有水平调节单元,所述水平调节单元包括第一水平调节轮(5)、第二水平调节轮(6)和第三水平调节轮(7),通过所述第一水平调节轮(5)、第二水平调节轮(6)和第三水平调节轮(7)调整改变所述第一激光线模组(1)和第二激光线模组(3)的位置。
进一步地,在所述激光发射平台(21)上设有水平观测单元,所述水平观测单元包括彼此垂直的X轴水平观测模块(8)和Y轴水平观测模块(9),所述X轴水平观测模块(8)和Y轴水平观测模块可以为液体水平气泡或角度传感器。所述水平观测单元与所述激光线模组相连接,用于观测所述激光线是否水平。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (9)

  1. 一种物体表面平整度检测方法,包括如下步骤:
    设置一可拆卸固定单元将激光发射平台固定在所述被测物体表面上,所述可拆卸固定单元(15)包括电池(13)、真空泵(10)、连接软管(12)和海棉体(11);其中,所述海绵体固定粘贴于所述固定单元的工作面上;当所述工作面贴紧所述被测物体表面(20)时,所述工作面与所述被检测物体表面(20)以及所述海绵体形成一封闭的腔体;所述真空泵通过所述连接软管将所述封闭的腔体抽真空,形成负压吸附腔;
    在所述激光发射平台(21)上设置至少一组能发射出线状激光的激光线模组(1);通过所述激光线模组(1)向所述被测物体表面发射激光线,使得所述激光线与该被测物体表面间有一个非90°的夹角,则被测物体表面上出现一块被所述激光线照射并照亮的区域;
    如果被测物体表面为平整,则所述激光线照射并照亮的区域的形状为直线;
    如果被测物体表面为不平整,则所述激光线照射并照亮的区域的形状为具有凹陷和凸出的曲线;
    改变所述激光线模组(1)的发射方向或位置,使得所述激光线扫过整个被测物体表面,根据激光线照射并照亮的区域的形状,判断整个被测物体表面的平整度。
  2. 根据权利要求1所述的物体表面平整度检测方法,其特征在于,包括如下步骤:
    设置一旋转平台使得所述激光发射平台能够旋转,以使得所述激光线模组发射的激光线能够照射到更大面积的被检测物体表面,并根据激光线照射并照亮的区域的形状,判断更大面积的被测物体表面的平整度。3、根据权利要求1或2所述的物体表面平整度检测方法,包括如下步骤:在所述激光发射平台(21)上设置角度调节单元,通过所述角度调节单元调整改变所述激光线模组(1)的发射方向;在所述激光发射平台和所述旋转平台(16)之间设置水平调节单元,通过所述水平调节单元调整改变所述激光线模组的位置。
  3. 根据权利要求1或2所述的物体表面平整度检测方法,包括如下步骤:在所述激光发射平台(21)上设置水平观测单元,所述水平观测单元与所述激光线模组相连接,用于观测所述激光线是否水平。
  4. 一种物体表面平整度检测设备,其特征在于,包括激光发射平台(21)、和可拆卸固定单元(15);所述可拆卸固定单元(15)用于将所述激光发射平台固定在被检测物体表面(20);
    所述激光发射平台上安装有至少一组激光线模组(1),所述激光线模组用于向被检测物体表面(20)发射激光线;
    所述可拆卸固定单元(15)包括电池(13)、真空泵(10)、连接软管(12)和海棉体(11);所述海绵体固定粘贴于所述可拆卸固定单元的工作面上;当所述工作面贴紧所述待检测物体表面(20)时,所述工作面与所述待检测物体表面(20)以及所述海绵体形成一封闭的腔体;所述真空泵通过所述连接软管将所述封闭的腔体抽真空,形成负压吸附腔。
  5. 根据权利要求4所述的物体表面平整度检测设备,其特征在于,在所述激光发射平台和可拆卸固定单元之间设置旋转平台(16),所述旋转平台用于使得所述激光发射平台在所述可拆卸固定单元之上旋转。
  6. 根据权利要求4或5所述的物体表面平整度检测设备,其特征在于,所述激光发射平台(21)上设有角度调节单元,通过所述角度调节单元调整改变所述激光线模组(1)的发射方向;在所述激光发射平台和所述旋转平台(16)之间设有水平调节单元,通过所述水平调节单元调整改变所述激光线模组的位置。
  7. 根据权利要求5或6所述的物体表面平整度检测设备,其特征在于,在所述激光发射平台(21)上设有水平观测单元,所述水平观测单元与所述激光线模组相连接,用于观测所述激光线是否水平。
  8. 如权利要求6所述的物体表面平整度检测设备,其特征在于,其特征在于,所述水平调节单元包括第一水平调节轮(5)、第二水平调节轮(6)和第三水平调节轮(7)。
  9. 如权利要求7所述的物体表面平整度检测设备,其特征在于,所述水平观测单元包括彼此垂直的X轴水平观测模块(8)和Y轴水平观测模块(9),所述X轴水平观测模块(8)和Y轴水平观测模块为液体水平气泡或角度传感器。
PCT/CN2021/081416 2021-03-15 2021-03-18 一种物体表面平整度检测方法及其检测设备 WO2022193202A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110277617.8A CN113155060A (zh) 2021-03-15 2021-03-15 一种物体表面平整度检测方法及其检测设备
CN202110277617.8 2021-03-15

Publications (1)

Publication Number Publication Date
WO2022193202A1 true WO2022193202A1 (zh) 2022-09-22

Family

ID=76887174

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/081416 WO2022193202A1 (zh) 2021-03-15 2021-03-18 一种物体表面平整度检测方法及其检测设备

Country Status (2)

Country Link
CN (1) CN113155060A (zh)
WO (1) WO2022193202A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116222481A (zh) * 2023-05-06 2023-06-06 无锡麦格威精密机械有限公司 一种新能源电池包线轮廓度自动测量仪

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113670178B (zh) * 2021-10-22 2022-04-19 徐州苏力德木业有限公司 基于板材生产加工的厚直度测量标记装置

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101650169A (zh) * 2009-07-17 2010-02-17 山东富美科技有限公司 一种刮刀平整度检测系统
JP2012198069A (ja) * 2011-03-18 2012-10-18 Seiko Epson Corp 平坦度検出装置、および平坦度検出方法
CN203587069U (zh) * 2013-11-16 2014-05-07 天津杰锋钢管工贸有限公司 一种管头平整检测装置
CN106248005A (zh) * 2016-10-16 2016-12-21 欧阳平 一种光学测量平整度和倾斜度的方法
JP2018096687A (ja) * 2016-12-07 2018-06-21 株式会社リコー 光照射器、光学センサ、光学検査装置
CN207963843U (zh) * 2018-04-11 2018-10-12 苏州镒升机器人科技有限公司 一种物体平面度检测装置
CN108917565A (zh) * 2018-04-08 2018-11-30 温州职业技术学院 不干胶材料平整度检测设备
CN109470182A (zh) * 2018-11-27 2019-03-15 中国航发长春控制科技有限公司 一种航空件超高精度端面平面度检测成像装置及检测方法
CN110440724A (zh) * 2019-08-14 2019-11-12 莱赛激光科技股份有限公司 一种平面平整度检测装置及检测方法
CN110618138A (zh) * 2019-10-30 2019-12-27 安徽工业大学 一种利用等厚干涉原理检测显示屏中缺陷的系统及方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101650169A (zh) * 2009-07-17 2010-02-17 山东富美科技有限公司 一种刮刀平整度检测系统
JP2012198069A (ja) * 2011-03-18 2012-10-18 Seiko Epson Corp 平坦度検出装置、および平坦度検出方法
CN203587069U (zh) * 2013-11-16 2014-05-07 天津杰锋钢管工贸有限公司 一种管头平整检测装置
CN106248005A (zh) * 2016-10-16 2016-12-21 欧阳平 一种光学测量平整度和倾斜度的方法
JP2018096687A (ja) * 2016-12-07 2018-06-21 株式会社リコー 光照射器、光学センサ、光学検査装置
CN108917565A (zh) * 2018-04-08 2018-11-30 温州职业技术学院 不干胶材料平整度检测设备
CN207963843U (zh) * 2018-04-11 2018-10-12 苏州镒升机器人科技有限公司 一种物体平面度检测装置
CN109470182A (zh) * 2018-11-27 2019-03-15 中国航发长春控制科技有限公司 一种航空件超高精度端面平面度检测成像装置及检测方法
CN110440724A (zh) * 2019-08-14 2019-11-12 莱赛激光科技股份有限公司 一种平面平整度检测装置及检测方法
CN110618138A (zh) * 2019-10-30 2019-12-27 安徽工业大学 一种利用等厚干涉原理检测显示屏中缺陷的系统及方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116222481A (zh) * 2023-05-06 2023-06-06 无锡麦格威精密机械有限公司 一种新能源电池包线轮廓度自动测量仪

Also Published As

Publication number Publication date
CN113155060A (zh) 2021-07-23

Similar Documents

Publication Publication Date Title
WO2022193202A1 (zh) 一种物体表面平整度检测方法及其检测设备
CN107167790B (zh) 一种基于标定场的激光雷达两步标定方法
WO2020077661A1 (zh) 一种建筑质量检测机器人系统及其方法
JP2013190272A (ja) 3次元レーザ測量装置及び3次元レーザ測量方法
CN1673682A (zh) 激光测定方法及激光测定系统
BR112013004127B1 (pt) sensor de inclinação para um aparelho e processo para determinação de uma inclinação de um aparelho
CN109668543A (zh) 基于激光雷达的倾斜度测量方法
CN111721265A (zh) 一种室内地面倾斜度三维测量装置
CN106441371B (zh) 数字水准仪专用检定/校准装置
JP3940619B2 (ja) トンネル掘削機の位置計測装置
JP4787435B2 (ja) トンネル掘削機の位置計測装置
WO2023160353A1 (zh) 一种激光投线装置
CN218443819U (zh) 一种混凝土浇筑厚度及平整度检测装置
US20130021618A1 (en) Apparatus and method to indicate a specified position using two or more intersecting lasers lines
CN116164718A (zh) 一种垂直度检测装置及测量方法
CN216246150U (zh) 一种物体表面平整度检测设备
CN108682035A (zh) 一种单步光刀系统激光空间平面方程计算方法
CN212903049U (zh) 一种便携式三维激光扫描系统
CN114663486A (zh) 一种基于双目视觉的建筑物测高方法及系统
JP3010362B2 (ja) 座標計測方法及び座標計測装置
CN208000118U (zh) 具有激光测距仪的水平测量装置
CN205861060U (zh) 一种适用于大型建筑的垂直度检测仪
CN206095204U (zh) 手持式激光测量仪
CN108917624A (zh) 用于发动机内表面绝热层厚度检测的挠度计算方法、装置及绝热层厚度检测方法、系统
JP3718312B2 (ja) 機械高測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930795

Country of ref document: EP

Kind code of ref document: A1