WO2020077661A1 - 一种建筑质量检测机器人系统及其方法 - Google Patents
一种建筑质量检测机器人系统及其方法 Download PDFInfo
- Publication number
- WO2020077661A1 WO2020077661A1 PCT/CN2018/111725 CN2018111725W WO2020077661A1 WO 2020077661 A1 WO2020077661 A1 WO 2020077661A1 CN 2018111725 W CN2018111725 W CN 2018111725W WO 2020077661 A1 WO2020077661 A1 WO 2020077661A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- laser scanner
- detection
- robot system
- building
- black
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 34
- 238000012360 testing method Methods 0.000 title claims abstract description 27
- 238000001514 detection method Methods 0.000 claims description 121
- 238000007689 inspection Methods 0.000 claims description 97
- 230000033001 locomotion Effects 0.000 claims description 25
- 230000008569 process Effects 0.000 claims description 24
- 239000007789 gas Substances 0.000 claims description 23
- 238000010276 construction Methods 0.000 claims description 15
- 238000011156 evaluation Methods 0.000 claims description 14
- 238000005259 measurement Methods 0.000 claims description 13
- 238000012545 processing Methods 0.000 claims description 5
- 238000011179 visual inspection Methods 0.000 claims description 3
- 230000000007 visual effect Effects 0.000 abstract description 3
- 238000012113 quantitative test Methods 0.000 abstract 1
- 238000005070 sampling Methods 0.000 description 5
- 238000004891 communication Methods 0.000 description 4
- 230000007547 defect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 238000012372 quality testing Methods 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 230000019771 cognition Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000010921 in-depth analysis Methods 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- WSFSSNUMVMOOMR-NJFSPNSNSA-N methanone Chemical compound O=[14CH2] WSFSSNUMVMOOMR-NJFSPNSNSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000003252 repetitive effect Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8806—Specially adapted optical and illumination features
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/88—Investigating the presence of flaws or contamination
- G01N21/8851—Scan or image signal processing specially adapted therefor, e.g. for scan signal adjustment, for detecting different kinds of defects, for compensating for structures, markings, edges
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J5/00—Manipulators mounted on wheels or on carriages
- B25J5/007—Manipulators mounted on wheels or on carriages mounted on wheels
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J11/00—Manipulators not otherwise provided for
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1615—Programme controls characterised by special kind of manipulator, e.g. planar, scara, gantry, cantilever, space, closed chain, passive/active joints and tendon driven manipulators
- B25J9/162—Mobile manipulator, movable base with manipulator arm mounted on it
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1694—Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B25—HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
- B25J—MANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
- B25J9/00—Programme-controlled manipulators
- B25J9/16—Programme controls
- B25J9/1694—Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
- B25J9/1697—Vision controlled systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01D—MEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
- G01D21/00—Measuring or testing not otherwise provided for
- G01D21/02—Measuring two or more variables by means not covered by a single other subclass
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/0094—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots involving pointing a payload, e.g. camera, weapon, sensor, towards a fixed or moving target
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0231—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means
- G05D1/0246—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means
- G05D1/0248—Control of position or course in two dimensions specially adapted to land vehicles using optical position detecting means using a video camera in combination with image processing means in combination with a laser
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0255—Control of position or course in two dimensions specially adapted to land vehicles using acoustic signals, e.g. ultra-sonic singals
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
- G05D1/021—Control of position or course in two dimensions specially adapted to land vehicles
- G05D1/0276—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle
- G05D1/0278—Control of position or course in two dimensions specially adapted to land vehicles using signals provided by a source external to the vehicle using satellite positioning signals, e.g. GPS
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/20—Control system inputs
- G05D1/24—Arrangements for determining position or orientation
- G05D1/247—Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/20—Control system inputs
- G05D1/24—Arrangements for determining position or orientation
- G05D1/247—Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons
- G05D1/248—Arrangements for determining position or orientation using signals provided by artificial sources external to the vehicle, e.g. navigation beacons generated by satellites, e.g. GPS
-
- G—PHYSICS
- G08—SIGNALLING
- G08C—TRANSMISSION SYSTEMS FOR MEASURED VALUES, CONTROL OR SIMILAR SIGNALS
- G08C17/00—Arrangements for transmitting signals characterised by the use of a wireless electrical link
- G08C17/02—Arrangements for transmitting signals characterised by the use of a wireless electrical link using a radio link
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/10—Cameras or camera modules comprising electronic image sensors; Control thereof for generating image signals from different wavelengths
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N23/00—Cameras or camera modules comprising electronic image sensors; Control thereof
- H04N23/60—Control of cameras or camera modules
- H04N23/695—Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/02—Mechanical
- G01N2201/021—Special mounting in general
- G01N2201/0216—Vehicle borne
Definitions
- the invention relates to the field of automatic inspection of building quality, in particular to a building quality detection robot system and a method thereof.
- the construction industry Before the project is delivered, the construction industry generally needs to conduct a comprehensive inspection and evaluation of the construction quality, especially for the detection of defects such as wall cracks, unevenness and hollow drums.
- defects such as wall cracks, unevenness and hollow drums.
- different countries and different companies often have different testing standards and assessment methods for building quality.
- Existing construction quality inspection methods mainly include manual sampling and analysis using professional instruments at the inspection station, using simple tools such as square rulers, spirit levels and house inspection rods for on-site sampling and testing.
- the construction quality such as flatness and wall cracks cannot be sampled at the inspection station for analysis, and must be inspected on site. Therefore, the construction quality inspection is labor-intensive and repetitive work, and has high professional technical requirements for practitioners.
- Building quality is very important for building waterproof, moisture-proof, thermal insulation and fire prevention.
- Existing building quality testing technology still needs to be improved and developed.
- the purpose of the present invention is to provide a building quality inspection robot system and a method thereof, aiming to solve the problems of the existing manual building quality sampling inspection that lacks quantitative data, tools are too crude and cannot be comprehensively inspected.
- a building quality inspection robot system which is suitable for surface finish quality inspection in residential / commercial buildings, including:
- Mobile platform for supporting and driving the entire building quality inspection robot system to achieve autonomous movement
- a positioning device for realizing positioning for the movement of a building quality inspection robot system the positioning device being provided on a mobile platform;
- a detection device for detecting the quality of the building is provided on a mobile platform;
- a control structure for controlling the entire building quality detection robot system is provided on a mobile platform;
- the positioning device and the detection device are connected to the control structure, and the control structure controls the mobile platform to realize the movement: in the process of the construction quality detection robot system moving, the positioning device real-time information on the surrounding environment and the building quality detection robot system itself
- the positioning information is fed back to the control structure.
- the control structure controls the mobile platform to move according to the task requirements; the detection device collects various detection information and sends it to the control structure. After the control structure processes the detection information, the detection result is obtained.
- the construction quality inspection robot system wherein the mobile platform includes a bottom plate and a moving wheel provided at the bottom of the bottom plate, a walking power device is provided on the bottom plate, the walking power device is connected to the control structure, The output end is connected with the mobile wheel, so as to drive the mobile wheel to realize the movement and steering of the building quality detection robot system in the plane.
- the positioning device and the detection device are both provided on the bottom plate.
- the construction quality detection robot system wherein the positioning device includes a semi-automatic positioning structure and a fully automatic positioning structure, the semi-automatic positioning structure includes an ultrasonic positioning sensor for real-time sensing the position of the inspector, the ultrasonic positioning sensor is provided at On the mobile platform, the ultrasonic positioning sensor forms a certain inclination with respect to the horizontal plane.
- the ultrasonic positioning sensor is connected to the control structure;
- the fully automatic positioning structure includes a three-dimensional laser scanner, a built-in two-dimensional laser scanner, a color / black and white camera, and inertia Measuring unit and GPS positioning unit, the three-dimensional laser scanner and color / black and white camera are all set on top of the building quality inspection robot system, the two-dimensional laser scanner is built on the building quality inspection robot system, inertial measurement unit and GPS positioning unit Set on the building quality inspection robot system, the three-dimensional laser scanner, built-in two-dimensional laser scanner, color / black and white camera, inertial measurement unit and GPS positioning unit are all connected to the control structure.
- the construction quality detection robot system wherein the detection device includes a three-dimensional laser scanner, a built-in two-dimensional laser scanner, a color / black-and-white camera, a gas detector, and an electronic detection rod, and the gas detector is set to move On the platform, the electronic detection rod is set at the bottom of the mobile platform.
- the three-dimensional laser scanner, built-in two-dimensional laser scanner, color / black and white camera, gas detector and electronic detection rod are connected to the control structure: use three-dimensional laser scanning Instrument and built-in 2D laser scanner to obtain point cloud data of building surface for shape and size evaluation; use color / black and white camera to obtain image information of building surface for visual inspection project evaluation; use electronic inspection rod to obtain building
- the surface voiceprint features are used for the detection and evaluation of empty valleys;
- the gas detector is used to obtain the gas content information in the building for the detection and evaluation of harmful gases; the controller integrates these detection information for processing and obtains the detection results.
- the construction quality inspection robot system wherein a lifting device is provided on the mobile platform, a Z-axis rotating device is provided on the lifting device, an X-axis tilting device is provided on the Z-axis rotating device, and a The output end is provided with a mounting frame, and the 3D laser scanner, built-in 2D laser scanner, color / black and white camera are all set on the mounting frame; the lifting device drives the 3D laser scanner, built-in 2D laser scanner, color / The black and white camera moves up and down along the Z axis, the Z axis rotation device drives the 3D laser scanner, the built-in 2D laser scanner, the color / black and white camera rotates around the Z axis, and the X axis tilt device drives the 3D laser scanner, The built-in two-dimensional laser scanner and color / black and white camera use the X-axis rotation center to realize up-down pitch rotation; the lifting device, Z-axis rotation device and X-axis pitch device are all connected to the control structure.
- the building quality inspection robot system further includes an inclination measuring instrument provided on the mobile platform, and the inclination measuring instrument is connected to the control structure.
- the building quality inspection robot system further includes a 4G routing system, and the 4G routing system is connected to the control structure.
- a quick disassembly component is provided between the X-axis tilting device and the mounting frame.
- An inspection method for a building quality inspection robot system which specifically includes the following steps:
- the building quality inspection robot system moves to the best position from the measured subject
- the detection device sends various detection information to the control structure, and the control structure processes the detection information to obtain the detection result;
- the detection method of the building quality detection robot system wherein the detection device includes a three-dimensional laser scanner, a built-in two-dimensional laser scanner, a color / black and white camera, a gas detector, and an electronic detection rod.
- the calibration process of the instrument, built-in two-dimensional laser scanner, color / black and white camera before inspection is as follows: set the plane where the inclination measuring instrument is located as the reference horizontal plane of the building quality inspection robot system, and determine the reference horizontal plane and the actual horizontal plane through the inclination measuring apparatus The angle between them; before the detection, face and position calibration of the ultrasonic positioning sensor, 3D laser scanner, built-in 2D laser scanner, color / black and white camera according to the reference level, that is, the calibration of the ultrasonic positioning sensor, 3D laser scanner , The relative angle of the built-in 2D laser scanner, color / black and white camera relative to the reference horizontal plane; during the detection process, the lifting device, Z-axis rotation device and X-axis tilt device drive the 3D laser scanner, the
- the controller obtains the ultrasonic positioning sensor by reading the movement information of the lifting device, Z-axis rotating device and X-axis tilting device , 3D laser scanner, built-in 2D laser scanner, color / black-and-white camera turned angle during the detection process, to obtain the angle between the measured target and the reference horizontal plane, and finally to obtain the measured subject and the actual horizontal plane The angle between them, so as to get the horizontality and verticality of the measured subject.
- the present invention provides a building quality inspection robot system and method thereof, and can automatically complete the quality inspection of the building through the building quality inspection robot system, and generate a visual report at the same time, saving time and effort, and greatly saving Detection cost; to achieve comprehensive detection of building surface problems, to ensure 100% coverage of the building; to achieve quantitative detection of building surface problems, the same inspection of the building itself to achieve the uniformity of detection; real-time recording And upload the original detection data, the original detection data can be saved and uploaded in real time, to provide original data reference for the disputes that may result from the detection results.
- FIG. 1 is a schematic structural diagram of a building quality inspection robot system in the present invention.
- FIG. 2 is an internal structure diagram of a building quality inspection robot system in the present invention.
- FIG. 3 is a side view of the building quality inspection robot system of the present invention.
- FIG. 4 is a flowchart of steps of the detection method of the building quality detection robot system in the present invention.
- first and second are used for description purposes only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated.
- the features defined as “first” and “second” may explicitly or implicitly include one or more of the features.
- the meaning of “plurality” is two or more, unless otherwise specifically limited.
- connection should be understood in a broad sense, for example, it can be fixed connection or detachable Connected, or integrally connected; it can be mechanical, electrical, or can communicate with each other; it can be directly connected, or it can be indirectly connected through an intermediary, it can be the connection between two elements or the interaction of two elements relationship.
- the first feature “above” or “below” the second feature may include the first and second features in direct contact, or may include the first and second features Contact not directly but through other features between them.
- the first feature is “above”, “above” and “above” the second feature includes that the first feature is directly above and obliquely above the second feature, or simply means that the first feature is higher in level than the second feature.
- the first feature is “below”, “below” and “below” the second feature includes that the first feature is directly below and obliquely below the second feature, or simply means that the first feature is less horizontal than the second feature.
- a building quality inspection robot system is suitable for surface finish quality inspection in residential / commercial buildings, including:
- Mobile platform 100 for supporting and driving the entire building quality inspection robot system to achieve autonomous movement
- a positioning device for implementing positioning for the movement of a building quality inspection robot system the positioning device being provided on the mobile platform 100;
- An inspection device for inspecting building quality is provided on the mobile platform 100;
- a control structure for controlling the entire building quality detection robot system is provided on the mobile platform 100;
- Both the positioning device and the detection device are connected to a control structure, and the control structure controls the mobile platform 100 to move: during the movement of the building quality detection robot system, the positioning device real-time converts the surrounding environment information and the building quality detection robot system The positioning information itself is fed back to the control structure.
- the control structure controls the mobile platform 100 to move according to the task requirements; the detection device collects various detection information and sends it to the control structure. After the control structure processes the detection information, the detection result is obtained.
- control structure includes a controller 410 and a microcontroller / embedded system 420, the controller 410 is connected to the microcontroller / embedded system 420, the positioning device and the detection device are both connected to the microcontroller / embedded system 420, and the controller 410 sends an instruction to the single-chip microcomputer / embedded system 420, and the single-chip microcomputer / embedded system 420 controls the mobile platform 100 to realize movement.
- the mobile platform 100 includes a bottom plate and a moving wheel 111 provided at the bottom of the bottom plate, the positioning device and the detection device are provided on the bottom plate, and a walking power device (such as a walking motor) is provided on the bottom plate, the walking power
- the device is connected to the single-chip / embedded system 420, and the power output of the walking power device is connected to the mobile wheel 111 to drive the mobile wheel to realize the movement and steering of the building quality inspection robot system in the plane: according to the requirements of the inspection task,
- the system 420 controls the walking power device to drive the moving wheel 111 to move, so that the building quality detection robot system reaches the target detection position.
- four moving wheels 111 are provided and are respectively arranged on the four corners of the bottom of the base, wherein two moving wheels 111 are driving wheels and the other two moving wheels 111 It is a universal wheel to ensure the smooth contact of the mobile platform 100 with the ground and the flexibility of movement.
- an automatic mechanical lock for locking the moving wheel 111 is provided at the bottom of the bottom plate, and the automatic mechanical lock is connected to the microcontroller / embedded system 420 , The single-chip / embedded system 420 controls the automatic mechanical lock to lock or unlock the mobile wheel 111.
- the positioning device includes a semi-automatic positioning structure and a fully automatic positioning structure.
- the semi-automatic positioning structure includes an ultrasonic positioning sensor 210 for real-time sensing the position of the inspector.
- the ultrasonic positioning sensor 210 is provided on the mobile platform 100.
- the positioning sensor 210 forms a certain inclination angle with respect to the horizontal plane. The inclination angle can be adjusted according to actual needs (the inclination angle can be adjusted by driving the motor).
- the ultrasonic positioning sensor 210 is connected to the single-chip microcomputer / embedded system 420.
- the ultrasonic positioning sensor 210 senses the position of the inspector in real time and transmits to the microcontroller / embedded system 420, and the microcontroller / embedded system 420 feeds back the information to the controller 410, and the controller 410 sends instructions to SCM / embedded system 420, controls the construction quality inspection robot system to follow the movement of the inspector (that is, where the inspector moves, the construction quality inspection robot system follows the movement);
- the fully automatic positioning structure includes a three-dimensional laser scanner 220.
- the controller 410 After processing, the controller 410 sends instructions to the single-chip / embedded system 420 to control the mobile platform 100 to drive the building quality inspection robot system to realize autonomous navigation movement.
- the controller 410 can record the position information of the building quality detection robot system itself in real time through the positioning device, and correspond to the real-time building quality detection original data synchronously, which is used to identify building defects and their positions, and is stored in the controller 410.
- the detection device includes a three-dimensional laser scanner 220, a built-in two-dimensional laser scanner, a color / black-and-white camera 230, a gas detector 310, and an electronic detection rod 320.
- the gas detector 310 is provided on the bottom plate, electronically
- the detection rod 320 is provided at the bottom of the bottom plate.
- the three-dimensional laser scanner 220, the built-in two-dimensional laser scanner, the color / black-and-white camera 230, the gas detector 310, and the electronic detection rod 320 are all connected to the microcontroller / embedded system 420: Use the 3D laser scanner 220 and the built-in 2D laser scanner to obtain point cloud data of the building surface for shape and size evaluation; use the color / black and white camera 230 to obtain image information of the building surface for visual inspection project evaluation; Use the electronic detection rod 320 to obtain the sound wave characteristics of the surface of the building for the detection and evaluation of the empty valley; use the gas detector 310 to obtain the internal gas content information of the building for the detection and evaluation of harmful gases; the controller 410 integrates these detection information for processing, Out of the test results.
- the controller 410 can store a variety of building quality testing standards and their parameters.
- the building quality testing robot system can modify the building quality testing standards and their parameters according to the specific requirements of the use object to ensure that the testing operations can comply with specific standards and requirements.
- a lifting device 330 is provided on the floor, a Z-axis rotating device is provided on the lifting device 330, and an X-axis tilting device 340 is provided on the Z-axis rotating device.
- a mounting bracket is provided at the output end of the X-axis tilting device 340.
- the built-in 2D laser scanner, color / black and white camera 230 moves up and down along the Z axis, and the Z axis rotating device drives the 3D laser scanner 220, the built-in 2D laser scanner, and the color / black and white camera 230 rotates around the Z axis
- the center realizes the rotation
- the X-axis tilting device 340 drives the 3D laser scanner 220, the built-in 2D laser scanner, and the color / black and white camera 230 to realize the up-down tilting rotation with the X-axis rotation center;
- the X-axis tilting device 340 is connected to the single-chip microcomputer / embedded system 420: by setting the lifting device 330, the Z-axis rotating device and the X-axis tilting device 340, the three-dimensional Optical scanner 220, the built-in two-dimensional laser scanners, color / monochrome camera 230 can detect the range.
- the lifting device 330 uses a lifting cylinder, and the Z-axis rotating device and the X-axis tilting device 340 can be driven by a motor and controlled by the controller 410.
- the building quality inspection robot system further includes An inclination measuring instrument 440 on the mobile platform 100, the inclination measuring instrument 440 is connected to the single chip microcomputer / embedded system 420: the inclination measuring instrument 440 has an accuracy of 0.001 °, and the plane on which the inclination measuring instrument 440 is located is a building quality inspection
- the reference horizontal plane of the robot system, the angle between the reference horizontal plane and the actual horizontal plane is measured by the inclination measuring instrument 440; before detection, the ultrasonic positioning sensor 210, the three-dimensional laser scanner 220, the built-in two-dimensional laser scanner,
- the color / black and white camera 230 performs posture calibration (ie, calibrates the relative angle of the ultrasonic positioning sensor 210, the three-dimensional laser scanner 220, the built-in two-dimensional laser scanner,
- the reference horizontal plane is provided for the detection of horizontality and verticality, and the consistency of the measurement results is ensured; before the detection, the ultrasonic positioning sensor 210, the three-dimensional laser scanner 220, the built-in two-dimensional laser scanner, color
- the black / white camera 230 is calibrated to ensure the measurement accuracy of the horizontal positioning and verticality of the ultrasonic positioning sensor 210, the three-dimensional laser scanner 220, the built-in two-dimensional laser scanner, and the color / black and white camera 230.
- the building quality inspection robot system can measure the following items: (1) Wall / ceiling / floor flatness, combined with a three-dimensional laser scanner 220, a built-in two-dimensional laser scanner, and a color / black-and-white camera 230. (2) The ceiling / floor levelness is implemented in conjunction with the application of the inclination measuring instrument 440 described above. (3) Wall verticality, combined with the application of the inclination measuring instrument 440 described above. (3) The size of the floor / ceiling / wall tile joints, combined with the color / black and white camera 230. (4) Wall angle, combined with the application of the inclination measuring instrument 440 described above. (5) Wall / ceiling / floor empty valleys are realized by electronic detection rod 320.
- the building quality inspection robot system obtains the original information of all kinds of measured subjects from the ultrasonic positioning sensor 210, the three-dimensional laser scanner 220, the built-in two-dimensional laser scanner, and the color / black and white camera 230, based on different algorithms, Process this information; the building quality inspection robot system will also include various information (the various information includes the original information of the measured subject, the position information of the robot, the ultrasonic positioning sensor 210, the three-dimensional laser scanner 220, the built-in two The angle information of the 3D laser scanner, color / black and white camera 230, etc.) is recorded and encrypted.
- the building quality inspection robot system further includes two rechargeable batteries 110 that are provided on the mobile platform 100, and the rechargeable battery 110 is the entire building
- the quality inspection robot system provides power; the rechargeable battery 110 can be used for on-site charging, or one rechargeable battery 110 can be charged, and one rechargeable battery 110 can be used.
- the building quality inspection robot system can also use a computer-aided control system to check the usage of the rechargeable battery 110, activate an alarm or send a message to the supervisory system to notify the operator according to the usage.
- the building quality inspection robot system further includes a wireless communication device 430, the wireless communication device 430 is connected to the controller 410, and the controller 410 communicates through wireless
- the device 430 transmits the encrypted operation data to the cloud platform in real time, such as battery power, motor information, and original detection data, etc., and uses the cloud platform to perform in-depth analysis, processing, storage, and sharing of the detection data.
- the wireless communication device uses a 4G routing system, and the 4G routing system and the cloud platform can implement 4G network communication.
- the building quality inspection robot system can also be connected to a handheld terminal (the handheld terminal can be a mobile phone, a tablet computer, etc.), and read Take the real-time running data of the building quality inspection robot system or input instructions to the building quality inspection robot system.
- a handheld terminal can be a mobile phone, a tablet computer, etc.
- the X-axis tilting device 340 is provided with a quick-release component 341 between the mounting frame, and the quick-release component 341 allows the mounting frame and the three-dimensional laser scanning on the mounting frame to be scanned
- the instrument 220, the built-in two-dimensional laser scanner, and the color / black and white camera 230 can be removed.
- a detection method of a building quality detection robot system as described above specifically includes the following steps:
- the building quality inspection robot system moves to the best position from the measured subject
- the detection device sends various detection information to the control structure, and the control structure processes the detection information to obtain the detection result;
- the detection device includes a three-dimensional laser scanner 220, a built-in two-dimensional laser scanner, a color / black and white camera 230, a gas detector 310, and an electronic detection rod 320.
- the calibration process of the built-in 2D laser scanner and color / black-and-white camera 230 before inspection is as follows: Set the plane where the inclination measuring instrument 440 is located as the reference level of the building quality inspection robot system, and determine the reference level and the actual level by the inclination measuring instrument 440 The angle between the horizontal planes; before the detection, face the ultrasonic positioning sensor 210, the three-dimensional laser scanner 220, the built-in two-dimensional laser scanner, the color / black-and-white camera 230 according to the reference level to calibrate the ultrasonic positioning sensor 210 , The relative angle of the three-dimensional laser scanner 220, the built-in two-dimensional laser scanner, and the color / black and white camera 230 relative to the reference horizontal plane.
- the combination of the three-dimensional laser scanner 220, the built-in two-dimensional laser scanner, and the color / black-and-white camera 230 detect the horizontality and verticality of the measured object.
- the process is as follows: During the detection process, the lifting device 330 , Z-axis rotation device and X-axis tilting device 340 drive the 3D laser scanner 220, built-in 2D laser scanner, color / black and white camera 230 to make the 3D laser scanner 220, built-in 2D laser scanner, color / The black-and-white camera 230 and the measured object form a certain angle, and the controller 410 obtains the ultrasonic positioning sensor 210, the three-dimensional laser scanner 220 by reading the motion information of the lifting device 330, the Z-axis rotating device and the X-axis tilting device 340.
- the building quality inspection robot system can automatically complete the quality inspection of the building, and generate a visual report at the same time, saving time and effort, high efficiency, and greatly saving the inspection cost.
- the original detection data can be saved and uploaded in real time to provide reference for the original data for possible disputes caused by the detection results.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Robotics (AREA)
- Mechanical Engineering (AREA)
- General Physics & Mathematics (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Automation & Control Theory (AREA)
- Aviation & Aerospace Engineering (AREA)
- Multimedia (AREA)
- Signal Processing (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Optics & Photonics (AREA)
- Electromagnetism (AREA)
- Acoustics & Sound (AREA)
- Computer Networks & Wireless Communication (AREA)
- Manipulator (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Abstract
一种建筑质量检测机器人系统及其方法,通过建筑质量检测机器人系统即可以自动对建筑完成质量的检测,同时生成一个可视化报告,省时省力,极大地节约了检测成本;实现对建筑表面问题的全面检测,保证对建筑的100%覆盖率;实现对建筑表面问题的量化检测,对建筑本身的检测遵循一样的标准,实现了检测的统一性;实时记录并上传原始检测数据,可将检测原始数据实时保存并上传,为检测结果可能导致的争议提供原始数据参考。
Description
本发明涉及建筑质量自动化检测领域,尤其涉及一种建筑质量检测机器人系统及其方法。
建筑行业在项目交付之前,一般需要对建筑质量进行综合检测评估,特别是针对墙壁裂缝、不平整度以及空鼓等瑕疵的检测。而全球建筑市场中,不同国家、不同公司对建筑质量往往有不同的检测标准和评估方法。
现有建筑质量检测手段主要包括人工取样后在检测站利用专业仪器进行分析,使用角尺、水平尺和验房棒等简单工具现场取样检测等。而平整度、墙壁裂缝等建筑质量无法取样到检测站进行分析,必须现场检测,因而建筑质量检测为劳动力密集型、重复性工作,且对从业人员有较高的专业技术要求。人工现场取样检测主要存在以下问题:(1)主观差异性:对平整度、颜色一致性等建筑质量问题,每一个检测师都会有自己的主观认知和评价,检测结果不可避免带有主观差异性。(2)缺乏量化数据:现有检测手段和工具大多只能定性给出检测结果,无法给出建筑质量量化数据,更无法将建筑缺陷与空间位置信息对应和关联。(3)工具过于简陋:缺乏数字化和信息化手段和工具,从而使得复现检测过程和结果基本上成为不可能。(4)无法全面检测:全面检测需要巨大的人力花费,目前行业内只能实现取样检测,所以空鼓等缺陷很大可能在检测过程中被漏掉。
建筑质量对于建筑防水、防潮、保温和防火等至关重要。现有建筑质量检测技术还有待于改进和发展。
发明内容
本发明的目的在于提供一种建筑质量检测机器人系统及其方法,旨在解决现有的人工建筑质量取样检测缺乏量化数据、工具过于简陋和无法全面检测的问题。
本发明的技术方案如下:
一种建筑质量检测机器人系统,其中,适用于住宅/商业建筑中的表面完工质量检测,包括:
用于支撑和带动整个建筑质量检测机器人系统实现自主移动的移动平台;
用于为建筑质量检测机器人系统的移动实现定位的定位装置,所述定位装置设置在移动平台上;
用于对建筑质量进行检测的检测装置,所述检测装置设置在移动平台上;
用于控制整个建筑质量检测机器人系统的控制结构,所述控制结构设置在移动平台上;
所述定位装置和检测装置均与控制结构连接,控制结构控制移动平台实现移动:在建筑质量检测机器人系统实现移动的过程中,所述定位装置实时将周围环境的信息和建筑质量检测机器人系统本身的定位信息反馈至控制结构,控制结构控制移动平台按任务要求实现移动;检测装置收集各项检测信息发送至控制结构,控制结构对检测信息处理后,得到检测结果。
所述的建筑质量检测机器人系统,其中,所述移动平台包括底板和设置在底板底部的移动轮,在底板上设置有行走动力装置,所述行走动力装置与控制结构连接,行走动力装置的动力输出端与移动轮连接,从而驱动移动轮实现建筑质量检测机器人系统在平面内移动和转向,所述定位装置和检测装置均设置在底板上。
所述的建筑质量检测机器人系统,其中,所述定位装置包括半自动定位结构和全自动定位结构,所述半自动定位结构包括用于实时感知检测员位置的超声波定位传感器,所述超声波定位传感器设置在移动平台上,超声波定位传感器相对于水平面形成一定倾角,所述超声波定位传感器与控制结构连接;所述全自动定位结构包括三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机、惯性测量单元和GPS定位单元,所述三维激光扫描仪和彩色/黑白相机均设置在建筑质量检测机器人系统的顶部,二维激光扫描仪内置在建筑质量检测机器人系统上,惯性测量单元和GPS定位单元设置在建筑质量检测机器人系统上,所述三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机、惯性测量单元和GPS定位单元均与控制结构连接。
所述的建筑质量检测机器人系统,其中,所述检测装置包括三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机、气体检测仪和电子检测棒,所述气体检测仪设置在移动平台上,电子检测棒设置在移动平台的底部,所述三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机、气体检测仪和电子检测棒均与控制结构连接:使用三维激光扫描仪和内置的二维激光扫描仪获取建筑表面的点云数据以供形状和尺寸方面的评估;使用彩色/黑白相机获取建筑表面的图像信息以供视觉类检测项目评估;使用电子检测棒获取建筑表面声纹特征以供空谷的检测和评估;使用气体检测仪获取建筑内部气体含量信息以供有害气体的检测和评估;控制器综合这些检测信息进行处理,得出检测结果。
所述的建筑质量检测机器人系统,其中,在移动平台上设置有升降装置,在升降装置上设置有Z轴旋转装置,在Z轴旋转装置上设置有X轴俯仰装置,在X轴俯仰装置的输出端设置有安装架,所述三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机均设置在安装架上;升降装置带动三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机沿Z轴上下升降, Z轴旋转装置带动三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机以Z轴为旋转中心实现旋转,X轴俯仰装置带动三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机以X轴旋转中心实现上下俯仰旋转;所述升降装置、Z轴旋转装置和X轴俯仰装置均与控制结构连接。
所述的建筑质量检测机器人系统,其中,还包括设置在移动平台上的倾角测量仪,所述倾角测量仪与控制结构连接。
所述的建筑质量检测机器人系统,其中,还包括4G路由系统,所述4G路由系统与控制结构连接。
所述的建筑质量检测机器人系统,其中,所述X轴俯仰装置与安装架之间设置有快速拆卸部件。
一种如上述任一项所述的建筑质量检测机器人系统的检测方法,其中,具体包括以下步骤:
S1.建筑质量检测机器人系统移动到距离被测主体的最佳位置上;
S2.检测装置将各项检测信息发送至控制结构,控制结构对检测信息处理后,得到检测结果;
S3.输出检测结果。
所述的建筑质量检测机器人系统的检测方法,其中,所述检测装置包括三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机、气体检测仪和电子检测棒,而对于三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机在检测前的校准过程如下:设定倾角测量仪所在的平面为建筑质量检测机器人系统的基准水平面,通过倾角测量仪测定基准水平面与实际水平面之间的角度;在检测前,根据基准水平面对超声波定位传感器、三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机进行位姿校准,即校准超声波定位传感器、三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机相对于基准水平面的相对角度;在检测过程中,升降装置、Z轴旋转装置和X轴俯仰装置带动三维激光扫描仪、内置的二维激光扫描仪、彩色/ 黑白相机动作,使三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机和被测目标物形成一定的角度,控制器通过读取升降装置、Z轴旋转装置和X轴俯仰装置的动作信息,得出超声波定位传感器、三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机在检测过程中转过的角度,得出被测目标物与基准水平面之间的角度,最终得出被测主体与实际水平面之间的角度,从而得出被测主体的水平度、垂直度。
本发明的有益效果:本发明通过提供一种建筑质量检测机器人系统及其方法,通过建筑质量检测机器人系统即可以自动对建筑完成质量的检测,同时生成一个可视化报告,省时省力,极大地节约了检测成本;实现对建筑表面问题的全面检测,保证对建筑的100%覆盖率;实现对建筑表面问题的量化检测,对建筑本身的检测遵循一样的标准,实现了检测的统一性;实时记录并上传原始检测数据,可将检测原始数据实时保存并上传,为检测结果可能导致的争议提供原始数据参考。
图1是本发明中建筑质量检测机器人系统的结构示意图。
图2是本发明中建筑质量检测机器人系统的内部结构图。
图3是本发明中建筑质量检测机器人系统的侧视图。
图4是本发明中建筑质量检测机器人系统的检测方法的步骤流程图。
下面详细描述本发明的实施方式,所述实施方式的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横 向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是机械连接,也可以是电连接或可以相互通讯;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
下文的公开提供了许多不同的实施方式或例子用来实现本发明的不同结构。为了简化本发明的公开,下文中对特定例子的部件和设置进行描述。当然,它们仅仅为示例,并且目的不在于限制本发明。此外,本发明可以 在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。此外,本发明提供了的各种特定的工艺和材料的例子,但是本领域普通技术人员可以意识到其他工艺的应用和/或其他材料的使用。
如图1至图3所示,一种建筑质量检测机器人系统,适用于住宅/商业建筑中的表面完工质量检测,包括:
用于支撑和带动整个建筑质量检测机器人系统实现自主移动的移动平台100;
用于为建筑质量检测机器人系统的移动实现定位的定位装置,所述定位装置设置在移动平台100上;
用于对建筑质量进行检测的检测装置,所述检测装置设置在移动平台100上;
用于控制整个建筑质量检测机器人系统的控制结构,所述控制结构设置在移动平台100上;
所述定位装置和检测装置均与控制结构连接,控制结构控制移动平台100实现移动:在建筑质量检测机器人系统实现移动的过程中,所述定位装置实时将周围环境的信息和建筑质量检测机器人系统本身的定位信息反馈至控制结构,控制结构控制移动平台100按任务要求实现移动;检测装置收集各项检测信息发送至控制结构,控制结构对检测信息处理后,得到检测结果。
具体地,所述控制结构包括控制器410和单片机/嵌入式系统420,所述控制器410和单片机/嵌入式系统420连接,定位装置和检测装置均与单片机/嵌入式系统420连接,控制器410发送指令至单片机/嵌入式系统420,单片机/嵌入式系统420控制移动平台100实现移动。
具体地,所述移动平台100包括底板和设置在底板底部的移动轮111,所述定位装置和检测装置设置在底板上,在底板上设置有行走动力装置(如 行走电机),所述行走动力装置与单片机/嵌入式系统420连接,行走动力装置的动力输出端与移动轮111连接,从而驱动移动轮实现建筑质量检测机器人系统在平面内移动和转向:按照检测任务要求,通过单片机/嵌入式系统420控制行走动力装置带动移动轮111实现移动,使建筑质量检测机器人系统到达目标检测位置。
优选地,为了增加移动平台100移动的平稳性,所述移动轮111设置4个,并分别设置在底座底部的4个角上,其中两个移动轮111为驱动轮,另外两个移动轮111为万向轮,保证移动平台100与地面的平稳接触及移动的灵活性。
进一步地,为了防止在检测过程中移动平台100在外力作用下运动而影响检测效果,在底板底部设置有用于锁紧移动轮111的自动机械锁,所述自动机械锁与单片机/嵌入式系统420连接,由单片机/嵌入式系统420控制自动机械锁对移动轮111进行锁定或解锁。
具体地,所述定位装置包括半自动定位结构和全自动定位结构,所述半自动定位结构包括用于实时感知检测员位置的超声波定位传感器210,所述超声波定位传感器210设置在移动平台100上,超声波定位传感器210相对于水平面形成一定倾角,该倾角可根据实际需要可调(可通过马达带动实现倾角的调节),所述超声波定位传感器210与单片机/嵌入式系统420连接,当选定建筑质量检测机器人系统的移动模式为半自动移动模式时,超声波定位传感器210实时感知检测员位置并传输至单片机/嵌入式系统420,单片机/嵌入式系统420将信息反馈至控制器410,控制器410发送指令至单片机/嵌入式系统420,控制建筑质量检测机器人系统跟随检测员实现的移动(即检测员移动到哪里,建筑质量检测机器人系统就跟随移动到哪里);所述全自动定位结构包括三维激光扫描仪220、内置的二维激光扫描仪、彩色/黑白相机230、惯性测量单元(所述惯性测量单元是测量物体三轴姿态角(或角速率)以及加速度的装置)和GPS定位单元,所述三维激 光扫描仪220和彩色/黑白相机230均设置在建筑质量检测机器人系统的顶部,二维激光扫描仪内置在建筑质量检测机器人系统上,惯性测量单元和GPS定位单元设置在建筑质量检测机器人系统上,所述三维激光扫描仪220、内置的二维激光扫描仪、彩色/黑白相机230、惯性测量单元和GPS定位单元均与单片机/嵌入式系统420连接:当选定建筑质量检测机器人系统的移动模式为全自动移动模式时,三维激光扫描仪220、内置的二维激光扫描仪、彩色/黑白相机230、惯性测量单元和GPS定位单元实时将建筑质量检测机器人系统周围的环境信息和建筑质量检测机器人系统的位置信息传输至单片机/嵌入式系统420,单片机/嵌入式系统420将信息反馈至控制器410,控制器410经过处理后发送指令至单片机/嵌入式系统420,从而控制移动平台100带动建筑质量检测机器人系统实现自主导航移动。控制器410通过定位装置可实时记录建筑质量检测机器人系统自身的位置信息,并与实时建筑质量检测原始数据同步对应,用于标识建筑缺陷及其位置,存储在控制器410中。
具体地,所述检测装置包括三维激光扫描仪220、内置的二维激光扫描仪、彩色/黑白相机230、气体检测仪310和电子检测棒320,所述气体检测仪310设置在底板上,电子检测棒320设置在底板的底部,所述三维激光扫描仪220、内置的二维激光扫描仪、彩色/黑白相机230、气体检测仪310和电子检测棒320均与单片机/嵌入式系统420连接:使用三维激光扫描仪220和内置的二维激光扫描仪获取建筑表面的点云数据以供形状和尺寸方面的评估;使用彩色/黑白相机230获取建筑表面的图像信息以供视觉类检测项目评估;使用电子检测棒320获取建筑表面声纹特征以供空谷的检测和评估;使用气体检测仪310获取建筑内部气体含量信息以供有害气体的检测和评估;控制器410综合这些检测信息进行处理,得出检测结果。控制器410中可存储多种建筑质量检测标准及其参数,所述建筑质量检测机器人系统可以根据使用对象具体要求修改建筑质量检测标准及其参数,以 保证检测作业可以遵循特定的标准和要求。
为了使本建筑质量检测机器人系统的检测工作范围更广,在底板上设置有升降装置330,在升降装置330上设置有Z轴旋转装置,在Z轴旋转装置上设置有X轴俯仰装置340,在X轴俯仰装置340的输出端设置有安装架,所述三维激光扫描仪220、内置的二维激光扫描仪、彩色/黑白相机230均设置在安装架上;升降装置330带动三维激光扫描仪220、内置的二维激光扫描仪、彩色/黑白相机230沿Z轴上下升降,Z轴旋转装置带动三维激光扫描仪220、内置的二维激光扫描仪、彩色/黑白相机230以Z轴为旋转中心实现旋转,X轴俯仰装置340带动三维激光扫描仪220、内置的二维激光扫描仪、彩色/黑白相机230以X轴旋转中心实现上下俯仰旋转;所述升降装置330、Z轴旋转装置和X轴俯仰装置340均与单片机/嵌入式系统420连接:通过设置升降装置330、Z轴旋转装置和X轴俯仰装置340,有效扩大三维激光扫描仪220、内置的二维激光扫描仪、彩色/黑白相机230可以检测的范围。
进一步地,所述升降装置330采用升降气缸,所述Z轴旋转装置和X轴俯仰装置340可采用马达进行驱动,并由控制器410进行控制。
为了保证超声波定位传感器210、三维激光扫描仪220、内置的二维激光扫描仪、彩色/黑白相机230对水平度、垂直度检测的精度和一致性,所述建筑质量检测机器人系统还包括设置在移动平台100上的倾角测量仪440,所述倾角测量仪440与单片机/嵌入式系统420连接:所述倾角测量仪440的精度达到0.001°,设定倾角测量仪440所在的平面为建筑质量检测机器人系统的基准水平面,通过倾角测量仪440测定基准水平面与实际水平面之间的角度;在检测前,根据基准水平面对超声波定位传感器210、三维激光扫描仪220、内置的二维激光扫描仪、彩色/黑白相机230进行位姿校准(即校准超声波定位传感器210、三维激光扫描仪220、内置的二维激光 扫描仪、彩色/黑白相机230相对于基准水平面的相对角度)。通过设置倾角测量仪440,为水平度和垂直度的检测提供基准水平面,保证测量结果的一致性;在检测前对超声波定位传感器210、三维激光扫描仪220、内置的二维激光扫描仪、彩色/黑白相机230进行校准,保证超声波定位传感器210、三维激光扫描仪220、内置的二维激光扫描仪、彩色/黑白相机230对水平度、垂直度的测量精度。
进一步地,本建筑质量检测机器人系统可以对以下项目进行测量:(1)墙壁/天花板/地板平整度,结合三维激光扫描仪220、内置的二维激光扫描仪、彩色/黑白相机230实现。(2)天花板/地板水平度,结合上述所述倾角测量仪440的应用实现。(3)墙壁垂直度,结合上述所述倾角测量仪440的应用实现。(3)地板/天花板/墙壁瓷砖接缝大小,结合彩色/黑白相机230实现。(4)墙壁夹角,结合上述所述倾角测量仪440的应用实现。(5)墙壁/天花板/地板空谷,通过电子检测棒320实现。(6)墙壁/天花板/地板裂缝,结合彩色/黑白相机230实现。(7)建筑整体清洁度,结合彩色/黑白相机230实现。(8)有害气体含量(甲醛,苯),通过气体检测仪310检测。
其中,所述建筑质量检测机器人系统从超声波定位传感器210、三维激光扫描仪220、内置的二维激光扫描仪、彩色/黑白相机230中获取各类被测主体的原始信息,基于不同的算法,对这些信息进行处理;本建筑质量检测机器人系统还将各种信息(所述各种信息包括被测主体的原始信息,机器人的位置信息,超声波定位传感器210、三维激光扫描仪220、内置的二维激光扫描仪、彩色/黑白相机230的角度信息,等)进行记录并加密。
为了使本建筑质量检测机器人系统的续航能力更好,所述建筑质量检测机器人系统还包括两个可充电电池110,所述可充电电池110设置在移动平台100上,可充电电池110为整个建筑质量检测机器人系统提供电源;可充电电池110可以实现现场充电使用,也可以实现一个可充电电池110 在充电,一个可充电电池110使用。
进一步地,所述建筑质量检测机器人系统还可以使用计算机辅助控制系统来检查可充电电池110的使用情况,根据使用情况激活警报或向监督系统发送消息,通知操作员。
为了使本建筑质量检测机器人系统的运行数据可以及时反馈和远程分享,所述建筑质量检测机器人系统还包括无线通讯装置430,所述无线通讯装置430与控制器410连接,控制器410通过无线通讯装置430将加密的运行数据实时传输至云平台,例如电池电量、马达信息、检测原始数据,等,采用云平台对检测数据进行深度分析处理、存储和分享。
优选地,所述无线通讯装置采用4G路由系统,所述4G路由系统与云平台可实现4G网络通讯。
为了使本建筑质量检测机器人系统的运行数据可以及时反馈给检测员,所述的建筑质量检测机器人系统还可以连接手持终端(所述手持终端可以是手机,平板电脑,等),通过手持终端读取建筑质量检测机器人系统的实时运行数据或者向建筑质量检测机器人系统输入指令。
为了使本建筑质量检测机器人系统方便携带,所述X轴俯仰装置340的与安装架之间设置有快速拆卸部件341,通过快速拆卸部件341,使安装架、安装在安装架上的三维激光扫描仪220、内置的二维激光扫描仪、彩色/黑白相机230可以被拆卸下来。
如图4所示,一种如上述所述的建筑质量检测机器人系统的检测方法,具体包括以下步骤:
S1.建筑质量检测机器人系统移动到距离被测主体的最佳位置上;
S2.检测装置将各项检测信息发送至控制结构,控制结构对检测信息处理后,得到检测结果;
S3.输出检测结果。
在某些实施例中,所述检测装置包括三维激光扫描仪220、内置的二维 激光扫描仪、彩色/黑白相机230、气体检测仪310和电子检测棒320,而对于三维激光扫描仪220、内置的二维激光扫描仪、彩色/黑白相机230在检测前的校准过程如下:设定倾角测量仪440所在的平面为建筑质量检测机器人系统的基准水平面,通过倾角测量仪440测定基准水平面与实际水平面之间的角度;在检测前,根据基准水平面对超声波定位传感器210、三维激光扫描仪220、内置的二维激光扫描仪、彩色/黑白相机230进行位姿校准,即校准超声波定位传感器210、三维激光扫描仪220、内置的二维激光扫描仪、彩色/黑白相机230相对于基准水平面的相对角度。
在某些实施例中,结合三维激光扫描仪220、内置的二维激光扫描仪、彩色/黑白相机230检测被测目标物的水平度、垂直度,过程如下:在检测过程中,升降装置330、Z轴旋转装置和X轴俯仰装置340带动三维激光扫描仪220、内置的二维激光扫描仪、彩色/黑白相机230动作,使三维激光扫描仪220、内置的二维激光扫描仪、彩色/黑白相机230和被测目标物形成一定的角度,控制器410通过读取升降装置330、Z轴旋转装置和X轴俯仰装置340的动作信息,得出超声波定位传感器210、三维激光扫描仪220、内置的二维激光扫描仪、彩色/黑白相机230在检测过程中转过的角度,得出被测目标物与基准水平面之间的角度,最终得出被测主体与实际水平面之间的角度,从而得出被测主体的水平度、垂直度。
本技术方案相对于现有技术,具有以下优点:
(1)通过建筑质量检测机器人系统即可以自动对建筑完成质量的检测,同时生成一个可视化报告,省时省力,效率高,极大地节约了检测成本。
(2)实现对建筑表面问题的全面检测,保证对建筑的100%覆盖率。
(3)实现对建筑表面问题的量化检测,对建筑本身的检测遵循一样的标准,实现了检测的统一性,避免人工主观的误差。
(4)实时记录并上传原始检测数据,可将检测原始数据实时保存并上 传,为检测结果可能导致的争议提供原始数据参考。
(5)通过设置倾角测量仪440,保证对水平度、垂直度的测量精度。
在本说明书的描述中,参考术语“一个实施方式”、“某些实施方式”、“示意性实施方式”、“示例”、“具体示例”、或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。
应当理解的是,本发明的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本发明所附权利要求的保护范围。
Claims (10)
- 一种建筑质量检测机器人系统,其特征在于,适用于住宅/商业建筑中的表面完工质量检测,包括:用于支撑和带动整个建筑质量检测机器人系统实现自主移动的移动平台;用于为建筑质量检测机器人系统的移动实现定位的定位装置,所述定位装置设置在移动平台上;用于对建筑质量进行检测的检测装置,所述检测装置设置在移动平台上;用于控制整个建筑质量检测机器人系统的控制结构,所述控制结构设置在移动平台上;所述定位装置和检测装置均与控制结构连接,控制结构控制移动平台实现移动:在建筑质量检测机器人系统实现移动的过程中,所述定位装置实时将周围环境的信息和建筑质量检测机器人系统本身的定位信息反馈至控制结构,控制结构控制移动平台按任务要求实现移动;检测装置收集各项检测信息发送至控制结构,控制结构对检测信息处理后,得到检测结果。
- 根据权利要求1所述的建筑质量检测机器人系统,其特征在于,所述移动平台包括底板和设置在底板底部的移动轮,在底板上设置有行走动力装置,所述行走动力装置与控制结构连接,行走动力装置的动力输出端与移动轮连接,从而驱动移动轮实现建筑质量检测机器人系统在平面内移动和转向,所述定位装置和检测装置均设置在底板上。
- 根据权利要求1所述的建筑质量检测机器人系统,其特征在于,所述定位装置包括半自动定位结构和全自动定位结构,所述半自动定位结构包括用于实时感知检测员位置的超声波定位传感器,所述超声波定位传感器设置在移动平台上,超声波定位传感器相对于水平面形成一定倾角,所 述超声波定位传感器与控制结构连接;所述全自动定位结构包括三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机、惯性测量单元和GPS定位单元,所述三维激光扫描仪和彩色/黑白相机均设置在建筑质量检测机器人系统的顶部,二维激光扫描仪内置在建筑质量检测机器人系统上,惯性测量单元和GPS定位单元设置在建筑质量检测机器人系统上,所述三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机、惯性测量单元和GPS定位单元均与控制结构连接。
- 根据权利要求1所述的建筑质量检测机器人系统,其特征在于,所述检测装置包括三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机、气体检测仪和电子检测棒,所述气体检测仪设置在移动平台上,电子检测棒设置在移动平台的底部,所述三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机、气体检测仪和电子检测棒均与控制结构连接:使用三维激光扫描仪和内置的二维激光扫描仪获取建筑表面的点云数据以供形状和尺寸方面的评估;使用彩色/黑白相机获取建筑表面的图像信息以供视觉类检测项目评估;使用电子检测棒获取建筑表面声纹特征以供空谷的检测和评估;使用气体检测仪获取建筑内部气体含量信息以供有害气体的检测和评估;控制器综合这些检测信息进行处理,得出检测结果。
- 根据权利要求4所述的建筑质量检测机器人系统,其特征在于,在移动平台上设置有升降装置,在升降装置上设置有Z轴旋转装置,在Z轴旋转装置上设置有X轴俯仰装置,在X轴俯仰装置的输出端设置有安装架,所述三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机均设置在安装架上;升降装置带动三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机沿Z轴上下升降,Z轴旋转装置带动三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机以Z轴为旋转中心实现旋转,X轴俯仰装置带动三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机以X轴旋转中 心实现上下俯仰旋转;所述升降装置、Z轴旋转装置和X轴俯仰装置均与控制结构连接。
- 根据权利要求5所述的建筑质量检测机器人系统,其特征在于,还包括设置在移动平台上的倾角测量仪,所述倾角测量仪与控制结构连接。
- 根据权利要求1所述的建筑质量检测机器人系统,其特征在于,还包括4G路由系统,所述4G路由系统与控制结构连接。
- 根据权利要求5所述的建筑质量检测机器人系统,其特征在于,所述X轴俯仰装置与安装架之间设置有快速拆卸部件。
- 一种如权利要求1-8任一项所述的建筑质量检测机器人系统的检测方法,其特征在于,具体包括以下步骤:S1.建筑质量检测机器人系统移动到距离被测主体的最佳位置上;S2.检测装置将各项检测信息发送至控制结构,控制结构对检测信息处理后,得到检测结果;S3.输出检测结果。
- 根据权利要求9所述的建筑质量检测机器人系统的检测方法,其特征在于,所述检测装置包括三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机、气体检测仪和电子检测棒,而对于三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机在检测前的校准过程如下:设定倾角测量仪所在的平面为建筑质量检测机器人系统的基准水平面,通过倾角测量仪测定基准水平面与实际水平面之间的角度;在检测前,根据基准水平面对超声波定位传感器、三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机进行位姿校准,即校准超声波定位传感器、三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机相对于基准水平面的相对角度;在检测 过程中,升降装置、Z轴旋转装置和X轴俯仰装置带动三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机动作,使三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机和被测目标物形成一定的角度,控制器通过读取升降装置、Z轴旋转装置和X轴俯仰装置的动作信息,得出超声波定位传感器、三维激光扫描仪、内置的二维激光扫描仪、彩色/黑白相机在检测过程中转过的角度,得出被测目标物与基准水平面之间的角度,最终得出被测主体与实际水平面之间的角度,从而得出被测主体的水平度、垂直度。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US17/233,673 US12130239B2 (en) | 2018-10-19 | 2021-04-19 | Construction inspection robotic system and method thereof |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201811224838.3 | 2018-10-19 | ||
CN201811224838.3A CN109352621A (zh) | 2018-10-19 | 2018-10-19 | 一种建筑质量检测机器人系统及其方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/233,673 Continuation US12130239B2 (en) | 2018-10-19 | 2021-04-19 | Construction inspection robotic system and method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020077661A1 true WO2020077661A1 (zh) | 2020-04-23 |
Family
ID=65345991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2018/111725 WO2020077661A1 (zh) | 2018-10-19 | 2018-10-24 | 一种建筑质量检测机器人系统及其方法 |
Country Status (3)
Country | Link |
---|---|
US (1) | US12130239B2 (zh) |
CN (1) | CN109352621A (zh) |
WO (1) | WO2020077661A1 (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112129650A (zh) * | 2020-09-07 | 2020-12-25 | 安徽理工大学 | 一种建筑工程监理用检测装置 |
CN113858178A (zh) * | 2021-10-28 | 2021-12-31 | 集智联机器人(苏州)有限公司 | 一种移动式双臂复合装配机器人 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7294927B2 (ja) * | 2019-07-23 | 2023-06-20 | ファナック株式会社 | 相違点抽出装置 |
CN112577419A (zh) * | 2019-09-30 | 2021-03-30 | 上海稳图货架安全检测技术有限公司 | 一种地坪规整度测量方法 |
CN113043326A (zh) * | 2019-12-27 | 2021-06-29 | 沈阳新松机器人自动化股份有限公司 | 壳体易拆装的机器人 |
CN111307041A (zh) * | 2020-03-20 | 2020-06-19 | 嘉兴方石科技有限公司 | 建筑测量方法 |
US11836940B2 (en) * | 2020-06-15 | 2023-12-05 | Zebra Technologies Corporation | Three-dimensional sensor acuity recovery assistance |
CN111811486A (zh) * | 2020-07-01 | 2020-10-23 | 江苏核电有限公司 | 一种用于穹顶服务机构的定位装置及其定位方法 |
CN112539780A (zh) * | 2020-11-30 | 2021-03-23 | 湖南哈工聚能科技有限公司 | 一种建筑测量机器人 |
CN112582085B (zh) * | 2020-12-07 | 2024-03-19 | 中广核核电运营有限公司 | 双层安全壳表面缺陷检测设备及检测方法 |
CN112962462A (zh) * | 2021-02-07 | 2021-06-15 | 陕西华山路桥集团有限公司 | 一种多节段钢箱梁拼装方法 |
CN113124832A (zh) * | 2021-05-02 | 2021-07-16 | 曹志鹏 | 一种用于温室施工工程的指针式垂直仪 |
CN114083510B (zh) * | 2021-12-03 | 2023-06-27 | 上海交通大学 | 可变角度、直径的隧洞检测机器人 |
CN114633256A (zh) * | 2022-03-23 | 2022-06-17 | 南开大学 | 一种自主实时实景三维重建与检测机器人系统 |
CN115570576A (zh) * | 2022-09-26 | 2023-01-06 | 武汉铁路职业技术学院 | 一种可变形铁轨隧道检测机器人 |
CN115435213A (zh) * | 2022-10-12 | 2022-12-06 | 国网江苏省电力有限公司南通供电分公司 | 一种配电变压器声纹巡检装置 |
CN118500481B (zh) * | 2024-07-16 | 2024-09-17 | 广东科信通实业有限公司 | 一种高空作业防坠落报警系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008055569A (ja) * | 2006-08-31 | 2008-03-13 | Sanyo Electric Co Ltd | 点検ロボット |
CN103624763A (zh) * | 2012-11-09 | 2014-03-12 | 沈阳建筑大学 | 一种无线遥控建筑环境参数检测机器人 |
CN105856188A (zh) * | 2016-05-06 | 2016-08-17 | 简燕梅 | 移动式柔性建筑结构检测机器人 |
JP2018001366A (ja) * | 2016-07-06 | 2018-01-11 | 東日本旅客鉄道株式会社 | 高所作業用マジックハンド |
CN107709158A (zh) * | 2015-06-15 | 2018-02-16 | 多尼克公司 | 用于自动检查表面的系统和方法 |
JP2018039075A (ja) * | 2016-09-07 | 2018-03-15 | 学校法人千葉工業大学 | 建築物点検ロボット |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101148207B1 (ko) * | 2010-07-29 | 2012-05-23 | 삼성중공업 주식회사 | 와이어 구동 장치 및 그 구동 방법 |
US20130041508A1 (en) * | 2011-08-12 | 2013-02-14 | Georgia Tech Research Corporation | Systems and methods for operating robots using visual servoing |
US9193402B2 (en) * | 2013-11-26 | 2015-11-24 | Elwha Llc | Structural assessment, maintenance, and repair apparatuses and methods |
CN203732989U (zh) * | 2013-12-17 | 2014-07-23 | 国家电网公司 | 具有三维激光扫描功能的变电站智能巡检机器人 |
US9283674B2 (en) * | 2014-01-07 | 2016-03-15 | Irobot Corporation | Remotely operating a mobile robot |
PL3368250T3 (pl) * | 2015-10-28 | 2023-02-13 | Bar-Ilan University | Robotyczny system współpracy |
CN106003064A (zh) * | 2016-06-17 | 2016-10-12 | 上海工程技术大学 | 一种复杂环境多传感器智能探测机器人 |
CN106018417A (zh) * | 2016-06-27 | 2016-10-12 | 深圳大学 | 一种外墙缺陷的检测方法及检测系统 |
US20190034864A1 (en) * | 2017-07-25 | 2019-01-31 | Bossa Nova Robotics Ip, Inc. | Data Reduction in a Bar Code Reading Robot Shelf Monitoring System |
CN108592895B (zh) * | 2018-05-08 | 2024-04-30 | 安捷睿(厦门)机器人有限公司 | 基于三维激光扫描的建筑施工检测系统、方法及设备 |
US11106208B2 (en) * | 2018-07-10 | 2021-08-31 | Imam Abdulrahman Bin Faisal University | Building quality inspection system and inspection robot |
-
2018
- 2018-10-19 CN CN201811224838.3A patent/CN109352621A/zh active Pending
- 2018-10-24 WO PCT/CN2018/111725 patent/WO2020077661A1/zh active Application Filing
-
2021
- 2021-04-19 US US17/233,673 patent/US12130239B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008055569A (ja) * | 2006-08-31 | 2008-03-13 | Sanyo Electric Co Ltd | 点検ロボット |
CN103624763A (zh) * | 2012-11-09 | 2014-03-12 | 沈阳建筑大学 | 一种无线遥控建筑环境参数检测机器人 |
CN107709158A (zh) * | 2015-06-15 | 2018-02-16 | 多尼克公司 | 用于自动检查表面的系统和方法 |
CN105856188A (zh) * | 2016-05-06 | 2016-08-17 | 简燕梅 | 移动式柔性建筑结构检测机器人 |
JP2018001366A (ja) * | 2016-07-06 | 2018-01-11 | 東日本旅客鉄道株式会社 | 高所作業用マジックハンド |
JP2018039075A (ja) * | 2016-09-07 | 2018-03-15 | 学校法人千葉工業大学 | 建築物点検ロボット |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112129650A (zh) * | 2020-09-07 | 2020-12-25 | 安徽理工大学 | 一种建筑工程监理用检测装置 |
CN112129650B (zh) * | 2020-09-07 | 2023-01-17 | 广东顺德顺策工程管理有限公司 | 一种建筑工程监理用检测装置 |
CN113858178A (zh) * | 2021-10-28 | 2021-12-31 | 集智联机器人(苏州)有限公司 | 一种移动式双臂复合装配机器人 |
Also Published As
Publication number | Publication date |
---|---|
US20210310960A1 (en) | 2021-10-07 |
CN109352621A (zh) | 2019-02-19 |
US12130239B2 (en) | 2024-10-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020077661A1 (zh) | 一种建筑质量检测机器人系统及其方法 | |
CN108303426B (zh) | 一种电缆隧道缺陷无损快速检测装置及其检测方法 | |
US8467049B2 (en) | Manhole modeler using a plurality of scanners to monitor the conduit walls and exterior | |
US20140336928A1 (en) | System and Method of Automated Civil Infrastructure Metrology for Inspection, Analysis, and Information Modeling | |
CN109632103A (zh) | 高空建筑物温度分布与表面裂缝远程监测系统及监测方法 | |
JP2019144191A (ja) | 橋梁などの構造物を検査するための画像処理システム、画像処理方法及びプログラム | |
CN109491408A (zh) | 一种可用于室内结构检测的无人机 | |
KR20160142482A (ko) | 건설용 무인 비행체 장치 | |
CN114808575A (zh) | 基于扫描激光的轨道平顺度检测系统及方法 | |
JP2001280960A (ja) | 遠隔計測方法及び装置 | |
JP2011180007A (ja) | 構造物調査システムおよびこれに用いる位置測定装置 | |
JP7285174B2 (ja) | 壁面のひび割れ測定機および測定方法 | |
CN111307041A (zh) | 建筑测量方法 | |
WO2022193202A1 (zh) | 一种物体表面平整度检测方法及其检测设备 | |
CN107727377B (zh) | 一种稳定精度测试系统 | |
CN206583880U (zh) | 一种移动试验室 | |
CN211696251U (zh) | 一种混凝土裂缝检测设备 | |
WO2021018036A1 (zh) | 轨道数据的测量装置及方法、轨道巡检机器人 | |
CN208283295U (zh) | 裂缝扫描装置 | |
CN206192322U (zh) | 一种测量x射线机拍摄角度的装置 | |
CN117347485A (zh) | 一种用于无人机的铁路桥梁裂缝超声波检测载荷系统 | |
CN109373917A (zh) | 激光测厚对射光斑人工目视检测装置及方法 | |
KR101291712B1 (ko) | 이동식 슬럼프테스트 및 플로우테스트 장치 | |
CN106546209A (zh) | 一种测量x射线机拍摄角度的装置及其方法 | |
CN209215943U (zh) | 一种可用于室内结构检测的无人机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18937440 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18937440 Country of ref document: EP Kind code of ref document: A1 |