WO2022190796A1 - 異常検出装置及び方法 - Google Patents

異常検出装置及び方法 Download PDF

Info

Publication number
WO2022190796A1
WO2022190796A1 PCT/JP2022/006152 JP2022006152W WO2022190796A1 WO 2022190796 A1 WO2022190796 A1 WO 2022190796A1 JP 2022006152 W JP2022006152 W JP 2022006152W WO 2022190796 A1 WO2022190796 A1 WO 2022190796A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
motor
frequency width
changed
width
Prior art date
Application number
PCT/JP2022/006152
Other languages
English (en)
French (fr)
Inventor
高洋 佐藤
慧介 矢野
昂洋 中村
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2022190796A1 publication Critical patent/WO2022190796A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load

Definitions

  • the present invention relates to an abnormality detection device and method for detecting an abnormal state of a rotating machine such as a motor.
  • Patent Literature 1 discloses an anomaly detection device that can identify the frequency corresponding to the cycle of the sound emitted by rotation based on an audio signal even when periodic noise is present.
  • This anomaly detection device detects an envelope curve of an audio signal representing a periodic sound emitted from a rotating body having a predetermined number of wings and a periodic sound emitted from another object.
  • the frequency spectrum of the audio signal is calculated, and frequency candidates corresponding to the period of the sound emitted from the rotating body in that frame are detected for each frame.
  • the duration time for which the fluctuation of the power of the frequency spectrum component in the candidate detected for that frame is less than a certain value is obtained, and the candidate with the longest duration time is the sound emitted from the rotating body. It is specified as the frequency corresponding to the period.
  • the user In order to obtain correct diagnostic results, the user must keep the rotation speed of the motor constant at least while performing diagnostic measurements. Further, when the degree of abnormality in the diagnostic result increases, the user must determine whether the abnormality is actually caused by an abnormality in the motor or by a change in the rotation speed of the motor.
  • An object of the present invention is to solve the above problems and to provide an abnormality detection device and method capable of detecting an abnormal state of a motor with higher accuracy than conventional techniques.
  • An abnormality detection device includes: An abnormality detection device that detects whether the rotation speed of the motor has changed based on the current or voltage supplied to the motor from a power supply, By frequency analyzing the current or voltage data, calculating the frequency width of the peak having the maximum peak value of the frequency analysis result, determining that the rotation speed of the motor has changed when the calculated frequency width is greater than or equal to a predetermined frequency width threshold, while the calculated frequency width is less than a predetermined frequency width threshold; When the signal processing unit that determines that the rotation speed of the motor has not changed, Prepare.
  • An abnormality detection device includes: An abnormality detection device that detects whether the rotation speed of the motor has changed based on the current or voltage supplied to the motor from a power supply, By dividing the time period of the current or voltage data into a plurality of times and performing frequency analysis, calculating the difference frequency between the highest frequency and the lowest frequency among the frequencies having the maximum peak value of each frequency analysis result, determining that the rotation speed of the motor has changed when the calculated difference frequency is greater than or equal to a predetermined difference frequency threshold, while the calculated frequency width is less than a predetermined frequency width threshold; When the signal processing unit that determines that the rotation speed of the motor has not changed, Prepare.
  • the abnormality detection device or the like by detecting whether or not the rotational speed of the motor has changed, it is possible to detect an abnormal state of the motor with higher accuracy than in the prior art. .
  • FIG. 1 is a block diagram showing a configuration example of a motor abnormality detection device 4 according to Embodiment 1.
  • FIG. FIG. 2 is a flow chart showing anomaly detection processing executed by the processor 10 of FIG. 1;
  • FIG. 2 is a graph showing an example of a motor current spectrum calculated by the abnormality detection device 4 of FIG. 1;
  • FIG. 3 is a graph showing an example of a motor current spectrum for explaining a concept of setting a frequency width threshold value set in the abnormality detection process of FIG. 2;
  • FIG. 9 is a flowchart showing abnormality detection processing executed by the processor 10 of the abnormality detection device 4 according to the second embodiment; 9 is a graph showing an example of a motor current spectrum calculated by the abnormality detection device 4 according to the second embodiment; 10 is a flow chart showing anomaly detection processing executed by the processor 10 of the anomaly detection device 4 according to Embodiment 3.
  • FIG. 9 is a graph showing an example of a motor current spectrum calculated by an abnormality detection device 4 according to Embodiment 3.
  • FIG. 10 is a flow chart showing abnormality detection processing executed by the processor 10 of the abnormality detection device 4 according to the fourth embodiment. 10 is a graph showing an example of a motor current spectrum calculated by an abnormality detection device 4 according to Embodiment 4.
  • FIG. 9 is a graph showing an example of a motor current spectrum calculated by an abnormality detection device 4 according to Embodiment 3.
  • FIG. 1 is a block diagram showing a configuration example of a motor abnormality detection device 4 according to the first embodiment.
  • FIG. 1 shows an abnormality detection device 4 and its peripheral circuits, and AC power from an AC power supply 1 is supplied to a motor 2 via a current sensor 3.
  • the abnormality detection device 4 includes an AD converter 11, a processor 10 having a frequency analysis section 12 and an abnormality detection section 13 and constituting a "signal processing section", and a display section 14. be.
  • the frequency analysis unit 12 and the abnormality detection unit 13 have memories 12m and 13m, respectively.
  • the current sensor 3 detects the current value of the current supplied from the AC power supply 1 to the motor 2 and outputs a detection signal indicating the current value to the AD converter 11 .
  • the AD converter 11 AD-converts the input detection signal into current data indicating a current value, and then outputs the current data to the frequency analysis unit 12 .
  • the frequency analysis unit 12 performs a fast Fourier transform (FFT) process on the AD conversion values of the current data for a predetermined time period T1, calculates the FFT value (power) of the spectrum, and stores it in the memory 12m.
  • the abnormality detection unit 13 searches for the frequency width (for example, half width) of the maximum peak value in the calculated FFT value of the spectrum and stores it in the memory 13m.
  • the abnormality detection unit 13 determines that the drive frequency is stable and the rotational speed of the motor 1 is not changing. It judges and displays the judgment result on the display unit 14 .
  • FIG. 2 is a flow chart showing anomaly detection processing executed by the processor 10 of FIG.
  • step S1 of FIG. 2 the AD conversion value of the current value of the predetermined time period T1 detected by the current sensor 3 is inputted. , FFT processing is performed using the memory 12m to calculate the spectrum of the FFT value (power) of the spectrum.
  • step S3 the abnormality detection unit 13 calculates the frequency width (for example, half width) of the maximum peak value in the calculated FFT value of the spectrum, and the frequency width calculated in step S4 ⁇ predetermined frequency width. It is determined whether or not it is a threshold value.
  • the abnormality detection unit 13 executes the processes of steps S3 to S6. If YES in step S4, the process proceeds to step S5, and if NO in step S4, the process proceeds to step S6.
  • step S5 it is determined that the driving frequency is fluctuating and the rotation speed of the motor 1 has changed, the determination result is displayed on the display unit 14, and the abnormality detection process is terminated.
  • step S6 it is determined that the drive frequency is stable and the rotation speed of the motor 1 has not changed, the determination result is displayed on the display unit 14, and the abnormality detection process is terminated.
  • FIG. 3 is a graph showing an example of the motor current spectrum calculated by the abnormality detection device 4 of FIG.
  • the frequency width (for example, half width Fwp) of the maximum peak value obtained by frequency analysis of the driving current of the motor 1 exceeds a preset frequency width threshold value, it is determined that the drive frequency has fluctuated.
  • the current waveform for 4 seconds is frequency-analyzed, the maximum peak is calculated, for example, the half-value width (a width lowered by -6 dB) Fwp, and when the calculated half-value width exceeds a predetermined frequency width threshold, the driving frequency is determined to have changed.
  • FIG. 4 is a graph showing an example of the motor current spectrum for explaining the concept of setting the frequency width threshold set in the abnormality detection process of FIG.
  • the frequency width threshold value is preferably set to about twice the slip frequency of the motor 1 (usually about 1 Hz to 2 Hz). This is because the tendency of the rotor abnormality of the motor appears in the frequency band of the drive frequency ⁇ the slip frequency. Anomalies cannot be detected. In order to determine whether the anomaly is captured, the frequency width threshold is preferably set according to the above concept.
  • the frequency width of the peak having the maximum peak value of the spectrum calculated by executing the FFT process on the current data is equal to or greater than a predetermined frequency width threshold.
  • the frequency width threshold value it is determined whether or not the rotation speed of the motor 1 has changed according to whether or not the drive frequency has fluctuated. Therefore, the abnormal state of the motor can be detected with higher accuracy than in the prior art.
  • the frequency width determined in step S4 of FIG. 4 is, for example, the half width, but the present invention is not limited to this, and may be a predetermined frequency width related to the peak of the maximum peak value. That is, it may be a frequency width that is lower than the maximum peak value by a predetermined value (eg, -3 dB, -8 dB, etc.). This also applies to Embodiments 2 to 4, which will be described later.
  • FIG. 5 is a flow chart showing abnormality detection processing executed by the processor 10 of the abnormality detection device 4 according to the second embodiment.
  • the device configuration of the abnormality detection device 4 according to the second embodiment is the same as that shown in FIG.
  • the abnormality detection process according to the second embodiment has the following differences compared with the abnormality detection process according to the first embodiment shown in FIG.
  • step S5A is executed instead of the process of step S5.
  • step S5A add and execute the processes of steps S7 to S11. Differences will be described below.
  • step S4 is the same frequency width threshold as in the first embodiment, but the frequency width threshold in step S9 is different from that in the first embodiment. use. This also applies to the third embodiment, which will be described later.
  • step S5A the abnormality detection unit 13 determines that the drive frequency is fluctuating, and then proceeds to step S7.
  • the abnormality detection unit 13 executes the processes of steps S3 to S11.
  • step S7 the AD conversion value of the current value in the predetermined period T1 is divided into a plurality of predetermined time periods T2 ( ⁇ T1), and FFT processing is performed using the memory 12m for each time period T2. Calculate the FFT value (power).
  • step S8 based on the FFT value of each time period T2, the maximum peak value of each time period T2 is searched, the half width of the maximum peak value is calculated, and in step S9, the calculated frequency width ⁇ predetermined is another frequency width threshold of .
  • another frequency width threshold is set to a value smaller than the frequency width threshold in step S4. For example, if the number of divisions of the time period in step S7 is Nd, the another frequency width threshold is , a value obtained by dividing the frequency width threshold in step S4 by Nd.
  • step S9 If YES in step S9, the process proceeds to step S10, while if NO, the process proceeds to step S11.
  • step S10 it is determined that the driving frequency has fluctuated and the rotational speed of the motor 1 has changed, the determination result is displayed on the display unit 14, and the abnormality detection process ends.
  • step S11 it is determined that the driving frequency is stable and the rotation speed of the motor 1 has not changed, and the frequency of the maximum peak value is determined as the driving frequency. is displayed, and the abnormality detection process ends.
  • FIG. 6 is a graph showing an example of the motor current spectrum calculated by the abnormality detection device 4 according to the second embodiment.
  • the half-value width Fpw of the maximum peak value obtained by dividing and frequency-analyzing is equal to or greater than a predetermined frequency width threshold value, it is determined that the drive frequency has fluctuated, and is less than the predetermined frequency width threshold value. , the frequency corresponding to the maximum peak value is determined as the driving frequency.
  • the frequency width of the peak having the maximum peak value of the spectrum calculated by executing the FFT process on the current data is equal to or greater than a predetermined frequency width threshold. After determining whether or not the drive frequency is fluctuating when it is equal to or greater than the frequency width threshold, the time period is divided and FFT processing is performed again to obtain another frequency width threshold. is used to determine the fluctuation of the drive frequency, and it is determined that the rotation speed of the motor 1 has changed. Therefore, the abnormal state of the motor can be detected with higher accuracy than in the prior art.
  • FIG. 7 is a flow chart showing abnormality detection processing executed by the processor 10 of the abnormality detection device 4 according to the third embodiment.
  • the device configuration of the abnormality detection device 4 according to the third embodiment is the same as that shown in FIG.
  • the abnormality detection process according to the third embodiment has the following differences compared with the abnormality detection process according to the second embodiment shown in FIG.
  • step S6A the process of step S6A is executed.
  • step S7A instead of step S7.
  • steps S21 and S22 instead of steps S10 and S11. If YES in step S9, change the time periods T1 and T2 in step S21, and then return to step S7A. Differences will be described below.
  • step S6A If NO in step S6 of FIG. 7, it is determined in step S6A that the drive frequency is stable and the rotation speed of the motor 1 has not changed, and the frequency of the maximum peak value is determined as the drive frequency. Then, the determination result is displayed on the display unit 14, and the abnormality detection process is terminated. On the other hand, if YES in step S6, it is determined in step S5A that the drive frequency has fluctuated, and the process proceeds to step S7A.
  • step S7A the AD conversion value of the current value in the predetermined time period T1 is divided into two predetermined time periods T2, and FFT processing is performed using the memory 12m for each time period T2 to obtain the spectrum.
  • FFT value power
  • step S8 based on the FFT value of each time period T2, the maximum peak value of each time period T2 is searched, and the frequency width (e.g., half width) of the maximum peak value is calculated. do.
  • step S9 it is determined whether or not the calculated frequency width ⁇ predetermined frequency width threshold.
  • step S22 it is determined that the driving frequency of the motor 1 is stable and the rotation speed of the motor 1 is not changing, and the frequency of the maximum peak value is determined as the driving frequency. , and terminates the abnormality detection process.
  • step S21 it is determined that the driving frequency is fluctuating, the time period T1/2 (which corresponds to the current time period T2) is substituted for the time period T1, and the time period T2/2 is substituted for the time period T2/2. Substitute the period T2 and return to step S7A. That is, it means that the time period to be subjected to FFT processing for calculating the frequency width is set to half compared to the previous calculation.
  • another frequency width threshold value in step S9 is set to, for example, half of the frequency width threshold value in step S3, but the present invention is not limited to this.
  • another frequency width threshold may be further halved. That is, in step S21, another frequency width threshold may be halved and replaced.
  • FIG. 8 is a graph showing an example of the motor current spectrum calculated by the abnormality detection device 4 according to the third embodiment.
  • the frequency width of the maximum peak value obtained by frequency analysis of the current data of the motor 1 is equal to or greater than a predetermined frequency width threshold value, it is determined that the driving frequency is fluctuating.
  • the time period for frequency analysis is divided in half and frequency analysis is performed again.
  • the frequency width of the maximum peak value obtained by dividing and analyzing the frequency is equal to or greater than the different frequency width threshold value, it is determined that the driving frequency is fluctuating.
  • the frequency corresponding to the peak value is determined as the drive frequency.
  • the frequency width of the maximum peak value obtained by dividing and frequency-analyzing is equal to or greater than the above-described another frequency width threshold value, the time period is further halved to perform frequency analysis, and the same determination is repeated.
  • the current data for 4 seconds is frequency-analyzed, and the half-value width Fpw that is lower than the maximum peak value by half-value (-6 dB) is calculated (FIG. 8(a)), and the half-value width Fpw is a predetermined frequency.
  • the width threshold it is determined that the drive frequency is fluctuating (FIG. 8(b)), and when it is less than the frequency width threshold, the frequency corresponding to the peak having the maximum peak value is set as the drive frequency. (Fig. 8(c)).
  • frequency analysis is performed again every two seconds, for example (FIGS. 8(d) and (e)).
  • a half-value width Fpw that is reduced by half the value is calculated from the maximum peak value of the spectrum that is the result of frequency analysis every two seconds, and when the re-calculated half-value width Fpw is less than another predetermined frequency width threshold, the half-value width The peak related to Fpw is determined as the peak of the drive frequency.
  • the half width Fpw is equal to or greater than the another frequency width threshold value, it is determined that the driving frequency is fluctuating, and frequency analysis is performed every second to determine that the driving frequency is fluctuating. Repeat until the maximum peak of the drive frequency can be determined.
  • the frequency width of the peak having the maximum peak value of the spectrum calculated by executing the FFT process on the current data is equal to or greater than a predetermined frequency width threshold. It is determined whether or not it is, and when it is equal to or greater than the frequency width threshold value, it is determined that the drive frequency is fluctuating. Then, the time period is divided into two and the FFT process is performed again to determine the variation of the drive frequency using another frequency width threshold, and when it is determined that the drive frequency is still varying, It is detected whether or not the rotation speed of the motor 1 has changed by dividing the time period into two, executing the FFT processing again, and determining the fluctuation of the drive frequency using another frequency width threshold value. Therefore, the abnormal state of the motor can be detected with higher accuracy than in the prior art.
  • FIG. 9 is a flow chart showing abnormality detection processing executed by the processor 10 of the abnormality detection device 4 according to the fourth embodiment.
  • the device configuration of the abnormality detection device 4 according to the fourth embodiment is the same as that shown in FIG.
  • the abnormality detection process according to the third embodiment has the following differences compared with the abnormality detection process according to the first embodiment shown in FIG.
  • steps S2, S3, and S4 are replaced with steps S2A, S3A, and S4A, respectively, and executed. Differences will be described below.
  • step S2A of FIG. 9 the frequency analysis unit 12 divides the AD conversion value of the current value of the predetermined period T1 into a plurality of Nda predetermined time periods T2 ( ⁇ T1) by Nda, and for each time period T2, FFT processing is performed using the memory 12m to calculate FFT values (power).
  • Nda is a natural number of 2 or more.
  • the abnormality detection unit 13 searches for the frequency of the maximum peak value in each time period T2 based on the FFT value in each time period T2, and among the searched multiple Nda frequencies, the highest frequency and the lowest frequency.
  • step S4A it is determined whether or not the calculated difference frequency ⁇ predetermined difference frequency threshold.
  • step S5 it is determined that the driving frequency is fluctuating and the rotation speed of the motor 1 has changed, the determination result is displayed on the display unit 14, and the abnormality detection process is terminated.
  • step S6 it is determined that the driving frequency is stable and the rotation speed of the motor 1 is not changing, and the determination result is displayed on the display section 14.
  • FIG. 10 is a graph showing an example of the motor current spectrum calculated by the abnormality detection device 4 according to the fourth embodiment.
  • Embodiment 4 will explain countermeasures when the drive frequency of the motor 1 fluctuates discontinuously.
  • frequency analysis is performed by dividing the time period for frequency analysis. Find the frequency corresponding to the maximum peak value in the spectrum of each frequency analysis result. If the difference between the maximum value and the minimum value of each frequency is greater than or equal to the difference frequency threshold value, it is determined that the drive frequency of the motor 1 fluctuates.
  • the current waveform for 4 seconds is divided every 1 second and frequency analysis is performed, and the difference between the highest frequency and the lowest frequency among the frequencies corresponding to each maximum peak value is greater than or equal to the difference frequency threshold.
  • the drive frequency fluctuates.
  • the maximum frequency is 52 Hz
  • the minimum frequency is 49 Hz
  • the difference frequency threshold value is 2 Hz
  • 52-49 3 Hz
  • the time period for frequency analysis is divided, frequency analysis is performed, the frequency corresponding to the maximum peak value is obtained in the spectrum of each frequency analysis result, and the maximum value of each frequency and If the difference between the minimum values, that is, the difference between the highest frequency and the lowest frequency is equal to or greater than the difference frequency threshold value, it is determined that the driving frequency of the motor 1 fluctuates and the rotational speed of the motor 1 changes. As a result, the abnormal state of the motor can be detected with higher accuracy than the conventional technology.
  • frequency analysis is performed on the current data of the current supplied to the motor from the AC power supply to determine whether or not the rotation speed of the motor has changed, but the present invention is not limited to this. Similarly, it may be determined whether or not the rotational speed of the motor has changed by analyzing the frequency of the voltage data of the voltage supplied to the motor from the AC power supply.
  • the frequency width of the maximum peak value of the spectrum of the frequency analysis result is equal to or greater than a predetermined frequency width threshold value, or When the difference between the highest frequency and the lowest frequency among the frequencies of the maximum peak value of the spectrum of each frequency analysis result is more than a predetermined difference frequency threshold
  • determining whether or not the drive frequency of the motor has fluctuated according to whether or not there is it is determined whether or not the rotation speed of the motor has changed.
  • the abnormal state of the motor can be detected with higher accuracy than the conventional technology.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Electric Motors In General (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)

Abstract

従来技術に比較して高い精度でモータの異常状態を検出することができる異常検出装置が提供される。本発明の異常検出装置(4)は、電源からモータ(2)に供給される電流又は電圧に基づいて、前記モータ(2)の回転速度が変化したか否かを検出する異常検出装置であって、信号処理部(10)を備える。前記信号処理部(10)は、前記電流又は電圧のデータを周波数分析することで、前記周波数分析結果の最大ピーク値を有するピークの周波数幅を計算し、前記計算された周波数幅が所定の周波数幅しきい値以上であるときに、前記モータの回転速度が変化したと判断する一方、前記計算された周波数幅が所定の周波数幅しきい値未満であるときに、前記モータ(2)の回転速度が変化していないと判断する。

Description

異常検出装置及び方法
 本発明は、例えばモータ等の回転機の異常状態を検出する異常検出装置及び方法に関する。
 モータの状態を診断する監視機器において、センサで取得した例えばモータ電流のデータを周波数分析したときに、常時現れるピーク以外にノイズ成分が見られた場合、それを異常状態と判断し、ノイズ成分を数値化して異常の度合いを示すことが行われている。
 例えば、特許文献1では、周期的な雑音が存在する場合でも、音声信号に基づいて回転が発する音の周期に相当する周波数を特定可能な異常検出装置が開示されている。この異常検出装置は、所定枚数の羽を有する回転体から発せられる周期的な音及び他の物体から発せられる周期的な音が表された音声信号の包絡線を検波し、包絡線からフレームごとに音声信号の周波数スペクトルを算出し、フレームごとに、そのフレームにおける回転体から発せられる音の周期に相当する周波数の候補を検出する。次いで、フレーム毎に、そのフレームについて検出された候補における周波数スペクトルの成分のパワーに対する、パワーの変動が一定以下となる継続時間を求め、継続時間が最長となる候補を回転体から発せられる音の周期に相当する周波数として特定する。
特開2019-100975号公報
 しかし、上述の従来技術では、モータの回転速度が一定であることが前提となっており、仮に測定期間中にモータの駆動周波数が変動した場合、常時現れるピークとノイズ成分の切り分けが困難となる。その結果、常時現れるピークをノイズ成分として判断してしまい、診断結果の異常度合いが高くなってしまうという問題点があった。
 ユーザは、正しい診断結果を得るためには、少なくとも診断のための測定を行っている間はモータの回転速度を一定に保たなければならない。また、診断結果の異常度合いが大きくなった場合、それが実際にモータの異常に起因するものか、モータの回転速度が変化したことによるものかをユーザ側で切り分けなければならない。
 本発明の目的は以上の問題点を解決し、従来技術に比較して高い精度でモータの異常状態を検出することができる異常検出装置及び方法を提供することにある。
 本発明の一態様に係る異常検出装置は、
 電源からモータに供給される電流又は電圧に基づいて、前記モータの回転速度が変化したか否かを検出する異常検出装置であって、
 前記電流又は電圧のデータを周波数分析することで、前記周波数分析結果の最大ピーク値を有するピークの周波数幅を計算し、
 前記計算された周波数幅が所定の周波数幅しきい値以上であるときに、前記モータの回転速度が変化したと判断する一方、前記計算された周波数幅が所定の周波数幅しきい値未満であるときに、前記モータの回転速度が変化していないと判断する信号処理部を、
備える。
 本発明の別の一態様に係る異常検出装置は、
 電源からモータに供給される電流又は電圧に基づいて、前記モータの回転速度が変化したか否かを検出する異常検出装置であって、
 前記電流又は電圧のデータの時間期間を複数分割して周波数分析することで、各周波数分析結果の最大ピーク値を有する周波数のうちの最高周波数と最低周波数の差周波数を計算し、
 前記計算された差周波数が所定の差周波数しきい値以上であるときに、前記モータの回転速度が変化したと判断する一方、前記計算された周波数幅が所定の周波数幅しきい値未満であるときに、前記モータの回転速度が変化していないと判断する信号処理部を、
備える。
 従って、本発明に係る異常検出装置等によれば、前記モータの回転速度が変化したか否かを検出することで、従来技術に比較して高い精度でモータの異常状態を検出することができる。
実施形態1に係るモータの異常検出装置4の構成例を示すブロック図である。 図1のプロセッサ10により実行される異常検出処理を示すフローチャートである。 図1の異常検出装置4により計算されるモータ電流のスペクトルの一例を示すグラフである。 図2の異常検出処理において設定される周波数幅しきい値を設定する考え方を説明するためのモータ電流のスペクトルの一例を示すグラフである。 実施形態2に係る異常検出装置4のプロセッサ10により実行される異常検出処理を示すフローチャートである。 実施形態2に係る異常検出装置4により計算されるモータ電流のスペクトルの一例を示すグラフである。 実施形態3に係る異常検出装置4のプロセッサ10により実行される異常検出処理を示すフローチャートである。 実施形態3に係る異常検出装置4により計算されるモータ電流のスペクトルの一例を示すグラフである。 実施形態4に係る異常検出装置4のプロセッサ10により実行される異常検出処理を示すフローチャートである。 実施形態4に係る異常検出装置4により計算されるモータ電流のスペクトルの一例を示すグラフである。
 以下、本発明に係る実施形態について図面を参照して説明する。なお、同一又は同様の構成要素については同一の符号を付している。
(実施形態1)
 図1は実施形態1に係るモータの異常検出装置4の構成例を示すブロック図である。図1は異常検出装置4及びその周辺回路を示しており、交流電源1からの交流電力は電流センサ3を介してモータ2に供給される。図1において、異常検出装置4は、AD変換器11と、周波数分析部12及び異常検出部13を有して「信号処理部」を構成するプロセッサ10と、表示部14とを備えて構成される。ここで、周波数分析部12及び異常検出部13はそれぞれメモリ12m,13mを有する。
 図1において、電流センサ3は、交流電源1からモータ2に供給される電流の電流値を検出して、電流値を示す検出信号をAD変換器11に出力する。AD変換器11は、入力される検出信号を、電流値を示す電流データにAD変換した後、周波数分析部12に出力する。周波数分析部12は、所定の時間期間T1の電流データのAD変換値に対して高速フーリエ変換(FFT)処理を実行し、スペクトルのFFT値(パワー)を計算してメモリ12mに格納する。異常検出部13は、計算されたスペクトルのFFT値において、最大ピーク値の周波数幅(例えば半値幅)を検索してメモリ13mに格納し、検索された最大ピーク値の周波数幅が所定の周波数幅しきい値以上であるか否かを判断し、周波数幅しきい値以上であるときに、駆動周波数が変動しており、モータ1の回転速度が変化したと判断して判断結果を表示部14に表示する。一方、異常検出部13は、検索された最大ピーク値の周波数幅が所定の周波数幅しきい値を超えないときに、駆動周波数が安定しており、モータ1の回転速度が変化していないと判断して判断結果を表示部14に表示する。
 図2は、図1のプロセッサ10により実行される異常検出処理を示すフローチャートである。
 図2のステップS1において、電流センサ3により検出された所定時間期間T1の電流値のAD変換値を入力し、ステップS2において、周波数分析部12は、所定期間期間T1の電流値のAD変換値に対して、メモリ12mを用いてFFT処理を実行してスペクトルとのFFT値(パワー)のスペクトルを計算する。次いで、ステップS3において、異常検出部13は、計算されたスペクトルのFFT値において、最大ピーク値の周波数幅(例えば半値幅)を計算し、ステップS4において計算された周波数幅≧所定の周波数幅しきい値であるか否かがを判断する。なお、異常検出部13は、ステップS3~S6の処理を実行する。ステップS4において、YESのときはステップS5に進む一方、NOのときはステップS6に進む。ステップS5において、駆動周波数が変動しており、モータ1の回転速度が変化したと判断し、判断結果を表示部14に表示して当該異常検出処理を終了する。一方、ステップS6において、駆動周波数が安定しており、モータ1の回転速度が変化していないと判断し、判断結果を表示部14に表示して当該異常検出処理を終了する。
 次いで、実施形態1に係る異常検出装置4の実施例について以下に説明する。
 図3は図1の異常検出装置4により計算されるモータ電流のスペクトルの一例を示すグラフである。
 実施形態1では、図3に示すように、モータ1の駆動電流に対して周波数分析した最大ピーク値の周波数幅(例えば半値幅Fwp)があらかじめ設定した周波数幅しきい値を超えている場合に、駆動周波数が変動したと判定する。例えば4秒間の電流波形を周波数分析し、最大のピークに対して、例えば半値幅(-6dB下がる幅)Fwpを算出し、算出した半値幅が所定の周波数幅しきい値を超えるときに駆動周波数が変動したと判定する。
 図4は図2の異常検出処理において設定される周波数幅しきい値を設定する考え方を説明するためのモータ電流のスペクトルの一例を示すグラフである。
 前記周波数幅しきい値は、モータ1のすべり周波数(通常は1Hz~2Hz程度)×2倍程度に設定することが好ましい。これは、駆動周波数±すべり周波数の周波数帯にモータの回転子異常の傾向が現れるので、すべり周波数分だけ駆動周波数が変動すると、回転子異常の成分がその駆動周波数成分に埋もれてしまって、その異常が捉えられなくなる。その異常が捉えられるかどうかを判断するために、周波数幅しきい値は上記の考え方で設定することが好ましい。
 以上説明したように、実施形態1によれば、電流データに対してFFT処理を実行して計算されたスペクトルの最大ピーク値を有するピークの周波数幅が所定の周波数幅しきい値以上であるか否かがを判断し、周波数幅しきい値以上であるときに、駆動周波数が変動しているか否かに応じてモータ1の回転速度が変化したか否かを判断している。従って、従来技術に比較して高い精度でモータの異常状態を検出することができる。
 以上の実施形態1では、図4のステップS4で判断する周波数幅は例えば半値幅であるが、本発明はこれに限らず、最大ピーク値のピークに係る所定の周波数幅であってもよい。すなわち、最大ピーク値から所定の値(例えば-3dB、-8dBなど)だけ下がる周波数幅であってもよい。これは、後述する実施形態2~4においても同様である。
(実施形態2)
 図5は実施形態2に係る異常検出装置4のプロセッサ10により実行される異常検出処理を示すフローチャートである。なお、実施形態2に係る異常検出装置4の装置構成は、図1と同様である。実施形態2に係る異常検出処理は、図2の実施形態1に係る異常検出処理と比較して、以下の相違点を有する。
(1)ステップS5の処理に代えて、ステップS5Aの処理を実行する。
(2)ステップS7~S11の処理を追加して実行する。
 以下、相違点について説明する。
 なお、ステップS4の周波数幅しきい値は、実施形態1と同様の周波数幅しきい値であるが、ステップS9の周波数幅しきい値は、実施形態1とは別の周波数幅しきい値を用いる。これについては、後述する実施形態3でも同様である。
 図5において、ステップS5Aにおいて、異常検出部13は、駆動周波数が変動していると判断した後、ステップS7に進む。なお、異常検出部13は、ステップS3~S11の処理を実行する。ステップS7では、所定期間期間T1の電流値のAD変換値を、複数の所定の時間期間T2(<T1)に分割して各時間期間T2毎に、メモリ12mを用いてFFT処理を実行してFFT値(パワー)を計算する。次いで、ステップS8において、各時間期間T2のFFT値に基づいて、各時間期間T2の最大ピーク値を検索し、最大ピーク値の半値幅を計算し、ステップS9において、計算された周波数幅≧所定の別の周波数幅しきい値であるか否かを判断する。ここで、別の周波数幅しきい値は、ステップS4の周波数幅しきい値よりも小さい値に設定され、例えばステップS7の時間期間の分割数をNdとすると、別の周波数幅しきい値は、ステップS4の周波数幅しきい値をNdで除算した値などに設定される。
 ステップS9において、YESのときはステップS10に進む一方、NOのときはステップS11に進む。ステップS10において、駆動周波数が変動していると判断し、モータ1の回転速度が変化したと判断して、判断結果を表示部14に表示して当該異常検出処理を終了する。一方、ステップS11では、駆動周波数が安定しており、モータ1の回転速度が変化していないと判断し、また、最大のピーク値の周波数を駆動周波数と判断し、判断結果を表示部14に表示して当該異常検出処理を終了する。
 図6は実施形態2に係る異常検出装置4により計算されるモータ電流のスペクトルの一例を示すグラフである。
 図6において、モータの電流データに対して周波数分析したスペクトルの最大ピーク値の周波数幅(半値幅Fpw)が所定の周波数幅しきい値以上である場合に、駆動周波数が変動していると判定する(図6(a))。次いで、周波数分析する時間期間T1を細かく分割して、再度周波数分析する。図6の例では、図6(b)~図6(e)に示すように、
(1)0~1秒の時間期間と、
(2)1~2秒の時間期間と、
(3)2~3秒の時間期間と、
(4)3~4秒の時間期間と、
の4個の時間期間に分割してFFTを行っている。ここで、前記分割して周波数分析した最大ピーク値の半値幅Fpwが所定の周波数幅しきい値以上である場合に、駆動周波数が変動したと判定し、所定の周波数幅しきい値未満である場合は、最大ピーク値に対応する周波数を駆動周波数と判定する。
 以上説明したように、実施形態2によれば、電流データに対してFFT処理を実行して計算されたスペクトルの最大ピーク値を有するピークの周波数幅が所定の周波数幅しきい値以上であるか否かがを判断し、周波数幅しきい値以上であるときに、駆動周波数が変動していると判断した後、時間期間を分割して再度FFT処理を実行して別の周波数幅しきい値を用いて駆動周波数の変動を判断してモータ1の回転速度が変化したと判断している。従って、従来技術に比較して高い精度でモータの異常状態を検出することができる。
(実施形態3)
 図7は、実施形態3に係る異常検出装置4のプロセッサ10により実行される異常検出処理を示すフローチャートである。なお、実施形態3に係る異常検出装置4の装置構成は、図1と同様である。実施形態3に係る異常検出処理は、図5の実施形態2に係る異常検出処理と比較して、以下の相違点を有する。
(1)ステップS6に代えて、ステップS6Aの処理を実行する。
(2)ステップS7に代えて、ステップS7Aの処理を実行する。
(3)ステップS10~S11に代えて、ステップS21~S22を実行し、ここで、ステップS9でYESのときは、ステップS21の時間期間T1,T2を変更した後、ステップS7Aに戻る。
 以下、相違点について説明する。
 図7のステップS6においてNOのときは、ステップS6Aにおいて、駆動周波数が安定しており、モータ1の回転速度が変化していないと判断し、また、最大のピーク値の周波数を駆動周波数と判断し、判断結果を表示部14に表示して当該異常検出処理を終了する。一方、ステップS6においてYESのときは、ステップS5Aにおいて、駆動周波数が変動していると判断して、ステップS7Aに進む。
 ステップS7Aにおいて、所定の時間期間T1の電流値のAD変換値を、2個の所定の時間期間T2に2分割して各時間期間T2毎に、メモリ12mを用いてFFT処理を実行してスペクトルのFFT値(パワー)を計算し、ステップS8において、各時間期間T2のFFT値に基づいて、各時間期間T2の最大ピーク値を検索し、最大ピーク値の周波数幅(例えば半値幅)を計算する。ステップS9では、計算された周波数幅≧所定の周波数幅しきい値であるか否かが判断され、YESのときはステップS21に進む一方、NOのときはステップS22に進む。
 ステップS22において、モータ1の駆動周波数が安定しており、モータ1の回転速度が変化していないと判断し、また、最大のピーク値の周波数を駆動周波数と判断し、判断結果を表示部14に表示して当該異常検出処理を終了する。ステップS21において、駆動周波数が変動していると判断し、時間期間T1/2(これは、現時点における時間期間T2に対応する)を時間期間T1に置き換えて代入し、時間期間T2/2を時間期間T2に置き換えて代入し、ステップS7Aに戻る。すなわち、周波数幅を計算するFFT処理の対象とする時間期間を前回の計算に比較して半分に設定することを意味する。
 以上の実施形態3では、ステップS9の別の周波数幅しきい値を、例えばステップS3の周波数幅しきい値の半分としているが、本発明はこれに限らず、ステップS9の処理を2回目以降判断するときは、別の周波数幅しきい値をさらに半分にしてもよい。すなわち、ステップS21において、別の周波数幅しきい値を半分にして置き換えるようにしてもよい。この場合は、時間期間T1=2×T2である場合であり、時間T1=Nf×T2(N≧3の自然数)であるときは、別の周波数幅しきい値を1/Nfして置き換えてもよい。
 図8は実施形態3に係る異常検出装置4により計算されるモータ電流のスペクトルの一例を示すグラフである。
 実施形態3では、モータ1の電流データに対して周波数分析した最大ピーク値の周波数幅が所定の周波数幅しきい値以上であるときに、駆動周波数が変動していると判定し、このとき、周波数分析する時間期間を半分に分割して、再度、周波数分析する。その分割して周波数分析した最大ピーク値の周波数幅が前記別の周波数幅しきい値以上であるときに、駆動周波数が変動していると判定するが、周波数幅しきい値未満のときは最大ピーク値に対応する周波数が駆動周波数と判定する。これに対して、分割して周波数分析した最大ピーク値の周波数幅が前記別の周波数幅しきい値以上である場合には、さらに時間期間を半分にして周波数分析し、同じ判定を繰り返す。
 図8に示すように、例えば4秒間の電流データを周波数分析し、最大ピーク値から例えば半値(-6dB)下がる半値幅Fpwを算出し(図8(a))、半値幅Fpwが所定の周波数幅しきい値以上のときに、駆動周波数が変動していると判定し(図8(b))、周波数幅しきい値未満のときに当該最大ピーク値を有するピークに対応する周波数を駆動周波数と判定する(図8(c))。一方、駆動周波数が変動していると判定した場合、例えば2秒毎で周波数分析を再度行う(図8(d),(e))。2秒毎の周波数分析結果であるスペクトルの最大ピーク値から例えば半値下がる半値幅Fpwを算出し、再度算出された半値幅Fpwが所定の別の周波数幅しきい値未満のときに、当該半値幅Fpwに係るピークは駆動周波数のピークと判定する。ここで、当該半値幅Fpwが前記別の周波数幅しきい値以上であるときに、駆動周波数が変動していると判定し、さらに1秒毎で周波数分析して、駆動周波数が変動している駆動周波数の最大ピークが判定できるまで繰り返す。
 以上説明したように、実施形態3によれば、電流データに対してFFT処理を実行して計算されたスペクトルの最大ピーク値を有するピークの周波数幅が所定の周波数幅しきい値以上であるか否かがを判断し、周波数幅しきい値以上であるときに、駆動周波数が変動していると判断する。次いで、時間期間を2分割して再度FFT処理を実行して別の周波数幅しきい値を用いて駆動周波数の変動を判断し、駆動周波数がいまだ変動していると判断されたときに、さらに時間期間を2分割して再度FFT処理を実行して別の周波数幅しきい値を用いて駆動周波数の変動を判断することでモータ1の回転速度が変化したか否かを検出している。従って、従来技術に比較して高い精度でモータの異常状態を検出することができる。
(実施形態4)
 図9は実施形態4に係る異常検出装置4のプロセッサ10により実行される異常検出処理を示すフローチャートである。なお、実施形態4に係る異常検出装置4の装置構成は、図1と同様である。実施形態3に係る異常検出処理は、図2の実施形態1に係る異常検出処理と比較して、以下の相違点を有する。
(1)ステップS2,S3,S4の各処理をそれぞれ、ステップS2A,S3A,S4Aに置き換えて実行する。
 以下、相違点について説明する。
 図9のステップS2Aにおいて、周波数分析部12は、所定期間期間T1の電流値のAD変換値を、複数Ndaの所定の時間期間T2(<T1)にNda分割して各時間期間T2毎に、メモリ12mを用いてFFT処理を実行してFFT値(パワー)を計算する。ここで、Ndaは2以上の自然数である。次いで、ステップS3Aにおいて、異常検出部13は、各時間期間T2のFFT値に基づいて、各時間期間T2の最大ピーク値の周波数を検索し、検索された複数Nda個の周波数のうち、最高周波数と最低周波数との差周波数を計算する。ステップS4Aにおいて、計算された差周波数≧所定の差周波数しきい値であるか否かが判断され、YESのときはステップS5に進む一方、NOのときはステップS6に進む。ステップS5では、駆動周波数が変動しており、モータ1の回転速度が変化したと判断し、判断結果を表示部14に表示して当該異常検出処理を終了する。一方、ステップS6では、駆動周波数が安定しており、モータ1の回転速度が変化していないと判断し、判断結果を表示部14に表示する。
 図10は実施形態4に係る異常検出装置4により計算されるモータ電流のスペクトルの一例を示すグラフである。
 実施形態4は、モータ1の駆動周波数が非連続的に変動している場合の対策について説明する。実施形態4では、図10に示すように、周波数分析する時間期間を分割して、周波数分析する。各周波数分析結果のスペクトルで最大ピーク値に対応する周波数を求める。その各周波数の最大値と最小値の差が、差周波数しきい値以上である場合は、モータ1の駆動周波数が変動していると判定する。
 具体的には、例えば4秒間の電流波形を1秒毎に分割して周波数分析し、各最大ピーク値に対応する周波数のうちの最高周波数と最低周波数の差が前記差周波数しきい値以上のときに駆動周波数が変動していると判定する。図10の例の場合において、最高周波数が52Hzで、最低周波数が49Hzで、前記差周波数しきい値を2Hzとすると、52-49=3Hzなので2Hz以上となり、モータ1の駆動周波数は変動していると判定する。
 以上説明したように、実施形態4によれば、周波数分析する時間期間を分割して、周波数分析し、各周波数分析結果のスペクトルで最大ピーク値に対応する周波数を求め、各周波数の最大値と最小値の差、すなわち、最高周波数と最低周波数の差が前記差周波数しきい値以上である場合は、モータ1の駆動周波数が変動し、モータ1の回転速度が変化したと判定する。これにより、従来技術に比較して高い精度でモータの異常状態を検出することができる。
(変形例)
 以上の各実施形態では、交流電源からモータに供給される電流の電流データを周波数分析して、前記モータの回転速度が変化したか否かを判断しているが、本発明はこれに限らず、交流電源からモータに供給される電圧の電圧データを周波数分析して、同様にモータの回転速度が変化したか否かを判断してもよい。
 以上詳述したように、本発明によれば、例えば、モータの電流データを周波数分析して周波数分析結果のスペクトルの最大ピーク値の周波数幅が所定の周波数幅しきい値以上であるか、もしくは、モータの電流データを複数の時間期間に分割して周波数分析して各周波数分析結果のスペクトルの最大ピーク値の周波数のうちの最高周波数と最低周波数の差が所定の差周波数しきい値以上であるか否かに応じて、モータの駆動周波数が変動しているか否かを判定することで、モータの回転速度が変化したか否かを判断する。これにより、従来技術に比較して高い精度でモータの異常状態を検出することができる。
1 交流電源
2 モータ
3 電流センサ
4 異常検出装置
10 プロセッサ(信号処理部)
11 AD変換器
12 周波数分析部
12m メモリ
13 異常検出部
13m メモリ
14 表示部

Claims (12)

  1.  電源からモータに供給される電流又は電圧に基づいて、前記モータの回転速度が変化したか否かを検出する異常検出装置であって、
     前記電流又は電圧のデータを周波数分析することで、前記周波数分析結果の最大ピーク値を有するピークの周波数幅を計算し、
     前記計算された周波数幅が所定の周波数幅しきい値以上であるときに、前記モータの回転速度が変化したと判断する一方、前記計算された周波数幅が所定の周波数幅しきい値未満であるときに、前記モータの回転速度が変化していないと判断する信号処理部を、
    備える異常検出装置。
  2.  前記周波数幅は前記最大ピーク値を有するピークの半値幅である、
    請求項1に記載の異常検出装置。
  3.  前記信号処理部は、前記計算された周波数幅が所定の周波数幅しきい値以上であるときに、
     前記電流又は電圧のデータの時間期間を複数時間期間に分割して各周波数分析することで、前記各周波数分析結果のうちの最大ピーク値の周波数幅を計算し、
     前記計算された周波数幅が所定の別の周波数幅しきい値以上であるときに、前記モータの回転速度が変化したと判断する一方、前記計算された周波数幅が所定の別の周波数幅しきい値未満であるときに、前記モータの回転速度が変化していないと判断する、
    請求項1又は2に記載の異常検出装置。
  4.  前記信号処理部は、前記計算された周波数幅が所定の周波数幅しきい値以上であるときに、
     前記電流又は電圧のデータの時間期間を2個の時間期間に分割して各周波数分析することで、前記各周波数分析結果のうちの最大ピーク値の周波数幅を計算し、
     前記計算された周波数幅が所定の別の周波数幅しきい値未満であるときに、前記モータの回転速度が変化していないと判断する、
    請求項1又は2に記載の異常検出装置。
  5.  前記信号処理部は、前記計算された周波数幅が所定の別の周波数幅しきい値以上であるときに、前記電流又は電圧のデータの2分割された時間期間をさらに2個の時間期間に分割して各周波数分析することで、前記各周波数分析結果のうちの最大ピーク値の周波数幅を計算し、
     前記計算された周波数幅が所定のさらに別の周波数幅しきい値未満であるときに、前記モータの回転速度が変化していないと判断する、
    請求項4に記載の異常検出装置。
  6.  電源からモータに供給される電流又は電圧に基づいて、前記モータの回転速度が変化したか否かを検出する異常検出装置であって、
     前記電流又は電圧のデータの時間期間を複数分割して周波数分析することで、各周波数分析結果の最大ピーク値を有する周波数のうちの最高周波数と最低周波数の差周波数を計算し、
     前記計算された差周波数が所定の差周波数しきい値以上であるときに、前記モータの回転速度が変化したと判断する一方、前記計算された周波数幅が所定の周波数幅しきい値未満であるときに、前記モータの回転速度が変化していないと判断する信号処理部を、
    備える異常検出装置。
  7.  電源からモータに供給される電流又は電圧に基づいて、前記モータの回転速度が変化したか否かを検出する異常検出方法であって、
     信号処理部が、前記電流又は電圧のデータを周波数分析することで、前記周波数分析結果の最大ピーク値を有するピークの周波数幅を計算ステップと、
     前記信号処理部が、前記計算された周波数幅が所定の周波数幅しきい値以上であるときに、前記モータの回転速度が変化したと判断する一方、前記計算された周波数幅が所定の周波数幅しきい値未満であるときに、前記モータの回転速度が変化していないと判断するステップとを、
    含む異常検出方法。
  8.  前記周波数幅は前記最大ピーク値を有するピークの半値幅である、
    請求項7に記載の異常検出方法。
  9.  前記信号処理部が、前記計算された周波数幅が所定の周波数幅しきい値以上であるときに、
     前記電流又は電圧のデータの時間期間を複数時間期間に分割して各周波数分析することで、前記各周波数分析結果のうちの最大ピーク値の周波数幅を計算するステップと、
     前記信号処理部が、前記計算された周波数幅が所定の別の周波数幅しきい値以上であるときに、前記モータの回転速度が変化したと判断する一方、前記計算された周波数幅が所定の別の周波数幅しきい値未満であるときに、前記モータの回転速度が変化していないと判断するステップとを、
    さらに含む請求項7又は8に記載の異常検出方法。
  10.  前記信号処理部が、前記計算された周波数幅が所定の周波数幅しきい値以上であるときに、
     前記電流又は電圧のデータの時間期間を2個の時間期間に分割して各周波数分析することで、前記各周波数分析結果のうちの最大ピーク値の周波数幅を計算するステップと、
     前記信号処理部が、前記計算された周波数幅が所定の別の周波数幅しきい値未満であるときに、前記モータの回転速度が変化していないと判断するステップとを、
    さらに含む請求項7又は8に記載の異常検出方法。
  11.  前記信号処理部が、前記計算された周波数幅が所定の別の周波数幅しきい値以上であるときに、前記電流又は電圧のデータの2分割された時間期間をさらに2個の時間期間に分割して各周波数分析することで、前記各周波数分析結果のうちの最大ピーク値の周波数幅を計算ステップと、
     前記信号処理部が、前記計算された周波数幅が所定のさらに別の周波数幅しきい値未満であるときに、前記モータの回転速度が変化していないと判断するステップと、
    をさらに含む請求項10に記載の異常検出方法。
  12.  電源からモータに供給される電流又は電圧に基づいて、前記モータの回転速度が変化したか否かを検出する異常検出方法であって、
     信号処理部が、前記電流又は電圧のデータの時間期間を複数分割して周波数分析することで、各周波数分析結果の最大ピーク値を有する周波数のうちの最高周波数と最低周波数の差周波数を計算するステップと、
     前記信号処理部が、前記計算された差周波数が所定の差周波数しきい値以上であるときに、前記モータの回転速度が変化したと判断する一方、前記計算された周波数幅が所定の周波数幅しきい値未満であるときに、前記モータの回転速度が変化していないと判断するステップとを、
    含む異常検出方法。
PCT/JP2022/006152 2021-03-08 2022-02-16 異常検出装置及び方法 WO2022190796A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-036621 2021-03-08
JP2021036621A JP2022136827A (ja) 2021-03-08 2021-03-08 異常検出装置及び方法

Publications (1)

Publication Number Publication Date
WO2022190796A1 true WO2022190796A1 (ja) 2022-09-15

Family

ID=83227602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006152 WO2022190796A1 (ja) 2021-03-08 2022-02-16 異常検出装置及び方法

Country Status (2)

Country Link
JP (1) JP2022136827A (ja)
WO (1) WO2022190796A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082657A1 (ja) * 2017-10-24 2019-05-02 オムロン株式会社 サーボドライバ及び状態変化検出方法
JP2020176998A (ja) * 2019-04-23 2020-10-29 ルネサスエレクトロニクス株式会社 半導体装置、モータ制御システム、及びエラー検出方法
JP6824494B1 (ja) * 2020-06-29 2021-02-03 三菱電機株式会社 異常診断装置、電力変換装置および異常診断方法
WO2021029104A1 (ja) * 2019-08-09 2021-02-18 株式会社日立製作所 回転電機の診断システム及び診断方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082657A1 (ja) * 2017-10-24 2019-05-02 オムロン株式会社 サーボドライバ及び状態変化検出方法
JP2020176998A (ja) * 2019-04-23 2020-10-29 ルネサスエレクトロニクス株式会社 半導体装置、モータ制御システム、及びエラー検出方法
WO2021029104A1 (ja) * 2019-08-09 2021-02-18 株式会社日立製作所 回転電機の診断システム及び診断方法
JP6824494B1 (ja) * 2020-06-29 2021-02-03 三菱電機株式会社 異常診断装置、電力変換装置および異常診断方法

Also Published As

Publication number Publication date
JP2022136827A (ja) 2022-09-21

Similar Documents

Publication Publication Date Title
US20240068864A1 (en) Systems and methods for monitoring of mechanical and electrical machines
US7289919B2 (en) Cyclic time averaging for machine monitoring
US9759774B2 (en) Anomaly diagnosis system, method, and apparatus
US6087796A (en) Method and apparatus for determining electric motor speed using vibration and flux
US10368177B2 (en) Abnormality detecting device, abnormality detection method, and recording medium storing abnormality detection computer program
EP2761315B1 (en) A method of determining stationary signals for the diagnostics of an electromechanical system
JP2019100761A (ja) 電磁振動成分の除去方法、回転機械診断方法、及び回転機械診断装置
EP2135144B1 (en) Machine condition monitoring using pattern rules
WO2018221469A1 (ja) 状態監視装置、状態監視方法及びプログラム
US20230027207A1 (en) Determination of RPM Based on Vibration Spectral Plots and Speed Range
CN111649886B (zh) 异常检测装置、旋转机械、异常检测方法及计算机可读取的存储介质
JP2020003363A (ja) 転がり軸受の異常診断方法及び異常診断装置、異常診断プログラム
JP2010266327A (ja) 設備診断装置及び設備診断方法
WO2022190796A1 (ja) 異常検出装置及び方法
JP2019168412A (ja) 異常検出装置および異常検出方法
CN117157515A (zh) 异常诊断装置和异常诊断方法
JP2015211133A (ja) Cmp分析装置、cmp分析方法、及びプログラム
JP2011252761A (ja) 軸受状態監視方法及び軸受状態監視装置
JP2003130724A (ja) 評価装置
WO2022190795A1 (ja) 異常検出装置及び方法
JP6977364B2 (ja) 回転機構の異常検知感度設定装置および異常検知感度設定方法
JP3561151B2 (ja) 異常診断装置および異常診断方法
JP2002098585A (ja) 回転機器の異常検出方法及びその装置
WO2022190730A1 (ja) 異常検出装置及び方法
JP2020144111A (ja) 異常検出装置、回転機械、異常検出方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766760

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22766760

Country of ref document: EP

Kind code of ref document: A1