WO2021029104A1 - 回転電機の診断システム及び診断方法 - Google Patents

回転電機の診断システム及び診断方法 Download PDF

Info

Publication number
WO2021029104A1
WO2021029104A1 PCT/JP2020/013029 JP2020013029W WO2021029104A1 WO 2021029104 A1 WO2021029104 A1 WO 2021029104A1 JP 2020013029 W JP2020013029 W JP 2020013029W WO 2021029104 A1 WO2021029104 A1 WO 2021029104A1
Authority
WO
WIPO (PCT)
Prior art keywords
electric machine
rotary electric
leakage current
current
spectrum
Prior art date
Application number
PCT/JP2020/013029
Other languages
English (en)
French (fr)
Inventor
勇一郎 吉武
雄太 伊藤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2021029104A1 publication Critical patent/WO2021029104A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/72Testing of electric windings
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors

Definitions

  • the present invention relates to a diagnostic system and a diagnostic method for rotating electric machines such as electric motors, generators, and induction machines.
  • a sudden failure occurs in a rotating electric machine such as an electric motor, a generator, and an induction machine, it may cause an unexpected shutdown of the entire user's system and cause a great loss in social life. For example, if a rotary electric machine is stopped at an unexpected timing in various production factories, all the products being manufactured may be lost and the delivery date to the supplier may be delayed. Also, a sudden generator outage at a power plant can result in significant economic losses. It has been reported that 35% of the causes of failure of rotary electric machines are related to bearings and 35% are related to insulation. Preventing these failures before they occur greatly contributes to the stable operation of rotary electric machines. To do.
  • Patent Document 1 measures the zero-phase current of a three-phase power supply circuit, and based on the harmonic component extracted from the measured zero-phase current, the power supply circuit of each phase An insulation deterioration diagnostic device that derives an insulation resistance value is described. Further, in Patent Document 2, a zero-phase current is obtained by using a current sensor attached to each of the lead wires of each phase of a rotary electric machine and a current sensor attached to the lead wires of all phases at once. A deterioration diagnosis system for diagnosing deterioration of the bearing and deterioration of the insulation of the stator winding by measuring the leakage current flowing through the insulating material of the stator winding is described.
  • the rotary electric machine is equipped with a stator and a rotor, and the coil is housed in a slot provided in the core of the stator and the rotor.
  • the surface of the coil arranged in the slot is covered with an insulating layer.
  • a magnetic wedge is installed in the opening of the slot to prevent the coil from falling out of the slot.
  • a large proportion of the causes of accidents in rotating electric machines are coil breakage due to the magnetic wedge falling out of the slot or loosening with respect to the slot.
  • the magnetic wedge or the fragment of the magnetic wedge destroys the insulating layer covering the coil arranged in the slot, causing dielectric breakdown in the rotary electric machine and causing an abnormality.
  • the present invention provides a diagnostic system and a diagnostic method for a rotating electric machine capable of detecting a fall of a magnetic wedge from a slot of a stator or a rotor core or looseness to a slot and detecting an abnormality of the rotating electric machine.
  • the purpose is a diagnostic system and a diagnostic method for a rotating electric machine capable of detecting a fall of a magnetic wedge from a slot of a stator or a rotor core or looseness to a slot and detecting an abnormality of the rotating electric machine. The purpose.
  • the rotary electric machine diagnostic system is installed in a reciprocating cable connected to the coil of the rotary electric machine, and inputs a current sensor that measures the reciprocating current flowing through the reciprocating cable and the reciprocating current measured by the current sensor.
  • a diagnostic device for obtaining a leakage current which is the difference between the current flowing into the coil and the current flowing out of the coil, from the reciprocating current.
  • the diagnostic apparatus obtains a spectrum of the leakage current frequency region from the leakage current waveform, and if the obtained spectrum is different from the spectrum of the leakage current frequency region when the rotating electric machine is normal, It is determined that the rotary electric machine is abnormal.
  • the method for diagnosing a rotating electric machine is a measurement step of measuring the reciprocating current flowing through the reciprocating cable with a current sensor installed in a reciprocating cable connected to the coil of the rotating electric machine, and the reciprocating current from the reciprocating current to the coil.
  • the leakage current acquisition step of obtaining the leakage current, which is the difference between the inflowing current and the outflowing current from the coil, and the spectrum of the leakage current frequency region obtained from the leakage current waveform are obtained, and the obtained spectrum is the rotary electric machine. If the spectrum is different from the spectrum of the frequency region of the leakage current in the normal case, the rotary electric machine is provided with a diagnostic step of determining that the abnormality is present.
  • a diagnostic system and a diagnostic method for a rotating electric machine capable of detecting a fall of a magnetic wedge from a slot of a stator or a rotor core or looseness to the slot and detecting an abnormality of the rotating electric machine. Can be done.
  • FIG. 3 is a block diagram showing a diagnostic system according to a first embodiment of the present invention and a rotary electric machine diagnosed by the diagnostic system.
  • the magnetic wedge installed in the slot provided in the stator and the core of the rotor falls off from the slot or becomes loose with respect to the slot, the magnetic field leaking from the rotary electric machine is distorted. Therefore, by detecting the distortion of the magnetic field leaking from the rotating electric machine, it is possible to detect the falling off or loosening of the magnetic wedge, which has a large proportion of the causes of the insulation accident.
  • the distortion of the magnetic field leaking from the rotating electric machine appears in the harmonic component of the current leaking only from the coil arranged in the slot to the insulating layer covering the surface of the coil (hereinafter referred to as "leakage current to ground").
  • the reciprocating current flowing through the reciprocating cable connected to each phase of the coil of the rotary electric machine is measured by one current sensor, and the difference between the reciprocating currents is obtained to measure the leakage current to the ground.
  • the reciprocating cable is a pair of cables through which the current flowing into the coil of the rotary electric machine and the current flowing out of the coil flow.
  • the difference in reciprocating current is the difference between the current flowing into the coil and the current flowing out of the coil (difference between the current flowing in one of the reciprocating cables and the current flowing in the other).
  • the leakage current to the ground is obtained as the difference between the reciprocating currents measured by the current sensor.
  • the present invention it is possible to detect abnormalities in the rotating electric machine such as the magnetic wedge falling out of the slot or loosening in the slot, and it is possible to prevent the coil from being damaged and the electric machine from being broken down due to these.
  • the diagnostic system and diagnostic method for rotary electric machines can diagnose rotary electric machines such as electric motors, generators, and induction machines.
  • rotary electric machines such as electric motors, generators, and induction machines.
  • it is effective for rotary electric machines with variable loads used in gas turbines, railways, automobiles, aviation, wind power generators, and the like.
  • FIG. 7 is a block diagram showing a diagnostic system 10 according to a first embodiment of the present invention and a rotary electric machine 1 diagnosed by the diagnostic system 10.
  • the rotary electric machine 1 is connected to the power system 9.
  • the diagnostic system 10 can be connected to the reciprocating cable 5 connected to the rotary electric machine 1. Further, the rotary electric machine 1 is connected to the device 50 which is a load.
  • FIG. 8 is a diagram showing a part of the stator 30 of the rotary electric machine 1.
  • the stator 30 faces the rotor 40 with a gap in between, and includes a stator core 31 and a stator coil 32.
  • the stator core 31 is provided with a slot 33.
  • the stator coil 32 is housed in the slot 33, and its surface is covered with the insulating layer 34.
  • a magnetic wedge 35 is installed in the opening of the slot 33. When the magnetic wedge 35 falls off from the slot 33 or becomes loose with respect to the slot 33, the magnetic wedge 35 and fragments of the magnetic wedge 35 destroy the insulating layer 34 covering the stator coil 32, and the stator coil 32 is damaged. An abnormality of the rotary electric machine 1 such as insulation destruction of the rotary electric machine 1 may occur.
  • FIG. 1 is a diagram showing the configuration of the diagnostic system 10 according to the present embodiment, and shows the entire circuit including the diagnostic system 10, the rotary electric machine 1, and the power system 9.
  • the three phases of the stator coil 32 are connected by ⁇ connection.
  • the rotary electric machine 1 is connected to the power system 9 by a power supply cable 3.
  • the power supply cable 3 branches at the terminal block 4 of the terminal box and is connected to the rotary electric machine 1 as a reciprocating cable 5.
  • the reciprocating cable 5 is composed of a pair of power feeding cables 3, and is connected to each phase of the stator coil 32 of the rotary electric machine 1.
  • the diagnostic system 10 includes a current sensor 2, a measuring device 8, and a diagnostic device 20.
  • the measuring device 8 and the diagnostic device 20 may be composed of one device (for example, a computer) or a plurality of devices.
  • the current sensor 2 is installed for each phase on the reciprocating cable 5 connected to each phase of the stator coil 32 of the rotary electric machine 1, and is located between the terminal block 4 and the rotary electric machine 1. A total of three current sensors 2 are provided for each phase of the stator coil 32 of the rotary electric machine 1.
  • One current sensor 2 is installed in a pair of power feeding cables 3 constituting the reciprocating cable 5, and measures the reciprocating current flowing through the reciprocating cable 5 (current flowing into the stator coil 32 and current flowing out from the stator coil 32). To do.
  • the measuring device 8 is connected to the current sensor 2 and includes at least one of a communication device and a storage medium.
  • the communication device transmits the reciprocating current measured by the current sensor 2 to the diagnostic device 20 by wireless communication or wired communication.
  • the storage medium stores the reciprocating current measured by the current sensor 2.
  • the storage medium may be detachable from the measuring device 8. Further, the measuring device 8 may be attached to and detached from the diagnostic device 20.
  • the measuring device 8 can be composed of, for example, a personal computer with a hard disk, a data logger, an oscilloscope provided with a storage device and capable of USB connection, and the like.
  • the diagnostic device 20 inputs the reciprocating current measured by the current sensor 2 from the measuring device 8.
  • the diagnostic device 20 receives the reciprocating current transmitted from the communication device of the measuring device 8 and inputs the reciprocating current from the measuring device 8 by connecting the storage medium of the measuring device 8 that stores the reciprocating current. ..
  • the diagnostic apparatus 20 obtains a ground leakage current (current leaking only from the stator coil 32 to the insulating layer 34 covering the surface of the stator coil 32) from the input reciprocating current.
  • the current sensor 2 is installed in the reciprocating cable 5 connected to each phase of the stator coil 32 of the rotary electric machine 1, and the reciprocating current flowing through each phase of the stator coil 32 of the rotary electric machine 1 is 1
  • FIG. 2 is a diagram showing an example of a time change of the ground leakage current, and is a diagram created based on the experimental results of measuring the ground leakage current.
  • the horizontal axis of FIG. 2 indicates time, and the vertical axis indicates the magnitude (amplitude) of leakage current to ground.
  • the time change of the ground leakage current includes a time zone in which the ground leakage current takes a substantially constant value and a time zone in which the ground leakage current increases. That is, the leakage current to the ground fluctuates and increases intermittently.
  • the leakage current to the ground takes a substantially constant and stable value in a low output region where the output of the rotary electric machine 1 is small. This constant value is the minimum value of leakage current to ground.
  • the increase in leakage current to the ground occurs when the load of the rotary electric machine 1 fluctuates and the output of the rotary electric machine 1 transitions from the low output region to the high output region and becomes large.
  • the value of the stable leakage current to the ground (amplitude value) that appears in the low output region of the rotary electric machine 1 is referred to as the reference value 12, and the amount of increase in the leakage current to the ground with respect to the reference value 12 is the fluctuation value 11. It is called.
  • the reference value 12 can be the minimum value of the leakage current to the ground.
  • the diagnostic device 20 performs frequency analysis on the obtained ground leakage current for an arbitrary time zone, and detects that the magnetic wedge 35 has fallen off from the slot 33 of the stator core 31 or loosened in the slot 33.
  • the diagnostic apparatus 20 obtains the spectrum of the ground leakage current in the frequency domain by converting the waveform of the ground leakage current into the spectrum of the frequency domain.
  • FIG. 3 shows the frequency domain of the leakage current to the ground when the magnetic wedge 35 is normal, that is, when the magnetic wedge 35 has not fallen off from the slot 33 of the stator core 31 or loosened with respect to the slot 33. It is a figure which shows the example of a spectrum, and is the figure which was created based on the experimental result which measured the earth leakage current.
  • the horizontal axis of FIG. 3 indicates the frequency, and the vertical axis indicates the leakage current to the ground (logarithmic value).
  • the rotary electric machine 1 in which the magnetic wedge 35 is normal is, for example, a rotary electric machine after manufacturing and before the start of operation, or a rotary electric machine after repair and before the start of operation.
  • the peak 21 of the fundamental wave component is detected as the largest peak in the spectrum of the frequency region of the leakage current to the ground, and the slot harmonic is the next largest peak.
  • a peak 22 due to a wave is detected.
  • FIG. 4 shows the spectrum of the frequency domain of the leakage current to the ground when the magnetic wedge 35 is abnormal, that is, when the magnetic wedge 35 falls off from the slot 33 of the stator core 31 or loosens with respect to the slot 33. It is a figure which shows an example, and is the figure created based on the experimental result which measured the leakage current to the ground.
  • the horizontal axis of FIG. 4 indicates the frequency, and the vertical axis indicates the leakage current to the ground (logarithmic value).
  • the magnetic wedge 35 is normal in the spectrum of the frequency region of the leakage current to the ground in addition to the peak 21 of the fundamental wave component and the peak 22 due to the slot harmonics.
  • a peak 23 indicating an abnormality, which does not exist in the spectrum of the rotating electric machine 1, is detected.
  • the peak 23 showing this abnormality is caused by the distortion of the magnetic field leaking from the rotary electric machine 1 due to the magnetic wedge 35 falling off or loosening.
  • the peak 23 tends to have a smaller amplitude than the peak 22 due to the slot harmonics.
  • the peak 23 in which the magnetic wedge 35 is not present in the rotary electric machine 1 in which the magnetic wedge 35 is normal appears clearly.
  • the magnetic wedge 35 is abnormal. Can be judged. Specifically, if a peak that does not exist in the spectrum when the magnetic wedge 35 is normal (however, a peak larger than the noise level) is detected in the spectrum of the frequency region of the leakage current to the ground, the magnetic wedge 35 is abnormal. Can be judged.
  • the diagnostic device 20 stores the spectrum of the frequency domain of the leakage current to the ground for the normal rotary electric machine 1 (that is, the rotary electric machine 1 in which the magnetic wedge 35 is normal). Then, the diagnostic apparatus 20 compares the obtained frequency domain spectrum of the ground leakage current with the frequency domain spectrum of the ground leakage current for the normal rotary electric machine 1, and obtains the frequency domain spectrum of the ground leakage current. When a peak that does not exist in the frequency domain spectrum of the leakage current to ground is detected for the normal rotary electric machine 1, the rotary electric machine 1 is abnormal, that is, the magnetic wedge 35 is dropped from the slot 33 of the stator core 31. It is determined that the slot 33 is loose and abnormal.
  • the current sensor 2 can also be installed on the reciprocating cable 5 connected to each phase of the stator coil 32 of the rotary electric machine 1 as follows.
  • the reciprocating cable 5 connected to one phase of the stator coil 32 of the rotary electric machine 1 is composed of a pair of power feeding cables 3.
  • Each of the pair of power supply cables 3 constituting the reciprocating cable 5 can be composed of a plurality of cables. That is, the reciprocating cable 5 may be composed of a pair of power feeding cables 3 composed of a plurality of cables.
  • FIG. 9 is a diagram showing a current sensor 2 installed in the reciprocating cable 5 in which the reciprocating cable 5 is composed of a pair of power feeding cables 3 composed of a plurality of cables.
  • FIG. 9 shows, as an example, a reciprocating cable 5 in which one of the pair of power supply cables 3 is composed of two cables 3a and 3b and the other is composed of two cables 3c and 3d. ..
  • the power supply cable 3 may be composed of three or more cables.
  • a current sensor 2 can be installed in some of the plurality of cables 3a, 3b, 3c, and 3d constituting the power supply cable 3.
  • FIG. 9 shows, as an example, a configuration in which the current sensor 2 is installed on the cable 3b of one power supply cable 3 and the cable 3c of the other power supply cable 3.
  • the current sensor 2 By installing the current sensor 2 on a part of the plurality of cables in this way, even if the reciprocating cable 5 is thick, the current sensor 2 depends on the size of the reciprocating cable 5 and the current sensor 2. 2 can be installed.
  • an abnormality of the magnetic wedge 35 that is, the magnetic wedge 35 is dropped from the slot 33 of the stator core 31 or a slot is inserted.
  • Looseness with respect to 33 can be detected efficiently and with high accuracy, an abnormality of the rotary electric machine 1 can be detected, and damage to the stator coil 32 and dielectric breakdown of the rotary electric machine 1 can be prevented.
  • the inventors have found that in a rotary electric machine having a load fluctuation, the leakage current to the ground fluctuates as described with reference to FIG. 2 in Example 1.
  • the harmonic component of the ground leakage current includes a component caused by mechanical vibration. Therefore, in the spectrum of the frequency range of the ground leakage current, the peak caused by the distortion of the magnetic field leaking from the rotating electric machine. Only difficult to detect.
  • the diagnostic device 20 removes factors that affect the spectrum of the ground leakage current in the frequency domain other than the abnormality of the magnetic wedge 35, so that the ground leakage current is substantially constant with respect to the obtained ground leakage current. Perform frequency analysis for the time zone that is the value of.
  • FIG. 5 is a diagram showing a time zone in which frequency analysis is performed in the example of the time change of the leakage current to the ground shown in FIG.
  • the diagnostic device 20 extracts a time zone 13 in which the determined magnitude of the leakage current to the ground does not include the fluctuation value 11 and is within a predetermined range.
  • This range of magnitude of ground leakage current includes the reference value 12, and upper and lower limits can be arbitrarily set so that the ground leakage current can be regarded as approximately the reference value 12. If the magnitude of the ground leakage current is within this range, the diagnostic apparatus 20 determines that the ground leakage current is a substantially constant value (reference value 12).
  • the diagnostic device 20 performs frequency analysis of the ground leakage current only in the extracted time zone 13, and converts the waveform of the ground leakage current into a spectrum in the frequency domain. That is, the diagnostic apparatus 20 performs frequency analysis of the ground leakage current only in the time zone 13 in which the ground leakage current is approximately the reference value 12 and the fluctuation is small and the SN ratio is high.
  • the peak 23 (the peak caused by the distortion of the magnetic field leaking from the rotary electric machine 1 due to the falling or loosening of the magnetic wedge 35) can be detected with high accuracy, and the abnormality of the magnetic wedge 35 can be detected with higher accuracy and high sensitivity. ..
  • the abnormality of the magnetic wedge 35 is made more accurate and highly sensitive by performing frequency analysis for the time zone 13 in which the leakage current to the ground does not include the fluctuation value 11 and is a substantially constant value. It can be detected, an abnormality of the rotary electric machine 1 can be detected, and damage to the stator coil 32 and dielectric breakdown of the rotary electric machine 1 can be prevented.
  • FIG. 6 is a diagram showing the configuration of the diagnostic system 10 according to the present embodiment, and like FIG. 1, shows the entire circuit including the diagnostic system 10, the rotary electric machine 1, and the power system 9.
  • the measuring device 8 includes at least one of the wireless communication device 7 and the large-capacity storage 6.
  • the measuring device 8 When the measuring device 8 includes the wireless communication device 7, the measuring device 8 transmits the measurement data such as the reciprocating current measured by the current sensor 2 to the data center by wireless communication by the wireless communication device 7 and stores it in the data center. .. Further, the measuring device 8 provided with the wireless communication device 7 can also transmit the ground leakage current obtained by the diagnostic device 20 to the data center by wireless communication.
  • the measuring device 8 When the measuring device 8 includes the large-capacity storage 6, the measuring device 8 stores the measurement data in the large-capacity storage 6. Further, the measuring device 8 provided with the large-capacity storage 6 can also store the ground leakage current obtained by the diagnostic device 20 in the large-capacity storage 6.
  • the reciprocating current and the leakage current to the ground can be continuously measured while the reciprocating cable 5 is live, so that the amount of data to be accumulated becomes enormous. Therefore, in the case of continuous measurement over a long period of time, it is effective to save the data by transferring the data by the wireless communication device 7 or saving the data in the large-capacity storage 6.
  • the diagnostic system and diagnostic method of the rotary electric machine according to the fourth embodiment of the present invention will be described.
  • the rotary electric machine 1 diagnosed by the diagnostic system 10 is connected to the device 50 as a load.
  • an example of the rotary electric machine 1 in which the diagnostic system 10 can be diagnosed, which is connected to the device 50 in which the load fluctuation occurs and the load current fluctuates, will be described.
  • Examples of the rotary electric machine 1 diagnosed by the diagnostic system 10 according to the present embodiment include an automobile motor, a gas turbine generator, a wind power generator, a vehicle rotary electric machine, and an aviation motor.
  • the diagnostic system 10 can diagnose the entire rotary electric machine 1 in which the amount of power generation and the output of the motor fluctuate.
  • the diagnostic system 10 can diagnose the above-mentioned rotary electric machine 1 and the like, can efficiently detect the abnormality of the magnetic wedge 35 with high accuracy, can detect the abnormality of the rotary electric machine 1, and the stator coil 32. And the occurrence of dielectric breakdown of the rotary electric machine 1 can be prevented.
  • the diagnostic system and diagnostic method of the rotary electric machine according to the fifth embodiment of the present invention will be described.
  • the diagnostic system 10 according to the present embodiment can detect the presence or absence of thermal deterioration and moisture absorption deterioration of the insulating layer 34 of the stator coil 32 in the rotary electric machine 1.
  • the capacitance component of the stator coil 32 of the rotary electric machine 1 can be accurately obtained from the leakage current to the ground.
  • the diagnostic device 20 since the leakage current to the ground is proportional to the capacitance of the stator coil 32, the capacitance of the stator coil 32 can be obtained from the leakage current to the ground. Therefore, the diagnostic apparatus 20 can obtain the change in the capacitance of the stator coil 32 from the change in the leakage current to the ground, and when the capacitance of the stator coil 32 decreases, the insulating layer 34 of the stator coil 32 heats up. It is possible to detect deterioration due to moisture absorption.
  • Such detection of thermal deterioration and moisture absorption deterioration is particularly effective for the rotary electric machine 1 in which partial discharge deterioration with a rated voltage of 2 kV or less does not occur.
  • the diagnostic system 10 can efficiently detect the abnormality of the magnetic wedge 35 and the thermal deterioration and moisture absorption deterioration of the stator coil 32 with high accuracy, especially for the rotary electric machine 1 having a rated voltage of 2 kV or less. An abnormality of the rotary electric machine 1 can be detected, and damage to the stator coil 32 and insulation destruction of the rotary electric machine 1 can be prevented.
  • the present invention is not limited to the above embodiment, and various modifications are possible.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and the present invention is not necessarily limited to the embodiment including all the described configurations.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Testing Of Short-Circuits, Discontinuities, Leakage, Or Incorrect Line Connections (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

本発明は、磁性楔の、固定子または回転子のコアのスロットからの脱落やスロットに対する緩みを検出し、回転電機の異常を検出可能な、回転電機の診断システムと診断方法を提供する。本発明による回転電機の診断システム(10)は、回転電機(1)のコイルに接続された往復ケーブル(5)に設置され、往復ケーブル(5)に流れる往復電流を計測する電流センサ(2)と、電流センサ(2)が計測した往復電流を入力し、往復電流から、コイルに流入する電流(I1)とコイルから流出する電流(I2)の差分である漏れ電流を求める診断装置(20)とを備える。診断装置(20)は、漏れ電流の波形から漏れ電流の周波数領域のスペクトルを求め、求めたスペクトルが、回転電機(1)が正常な場合における漏れ電流の周波数領域のスペクトルと異なっていれば、回転電機(1)が異常であると判断する。

Description

回転電機の診断システム及び診断方法
 本発明は、電動機、発電機、及び誘導機などの回転電機の診断システムと診断方法に関する。
 電動機、発電機、及び誘導機などの回転電機は、突発的な故障を起こすと、ユーザのシステム全体に対して想定外の稼動停止をもたらし、社会生活に大きな損失を与える恐れがあり得る。例えば、各種の生産工場において回転電機が予期せぬタイミングで停止すると、製作中の製品をすべて失い、発注先への納期が遅れる場合がある。また、発電所における突発的な発電機の停止は、経済的に大きな損失を生じうる。回転電機の故障原因のうち、軸受に関するものが35%で絶縁に関するものが35%であるという報告があり、これらの故障を発生前に未然に防ぐことは、回転電機の安定した稼働に大きく貢献する。
 近年、材料や装置構造における技術革新によって、回転電機を含めた電気機器は、機器の信頼性と製造容易性などのトレードオフとなる事象に対し、バランス良く設計されるようになってきた。しかし、周囲環境や稼働条件が過酷な場合において、電気機器が故障するケースも散見されるようになり、安価かつ高精度な診断技術を併用することの重要性が高くなっている。
 回転電機の従来の診断システムの例として、特許文献1には、三相給電電路の零相電流を計測し、計測した零相電流から抽出した高調波成分に基づいて、各相の給電電路の絶縁抵抗値を導出する絶縁劣化診断装置が記載されている。また、特許文献2には、回転電機の各相の引き出し線のそれぞれに取り付けられた電流センサと、全ての相の引き出し線に一括して取り付けられた電流センサを使用することによって、零相電流と固定子巻線の絶縁材を介して流れる漏れ電流を計測して、軸受の劣化と固定子巻線の絶縁の劣化を診断する劣化診断システムが記載されている。
特開2013-130440号公報 特開2015-215275号公報
 回転電機は、固定子と回転子を備え、固定子と回転子のコアに設けられたスロット内にコイルが収納される。スロット内に配置されたコイルは、表面が絶縁層で覆われている。コイルがスロットから脱落するのを防ぐために、スロットの開口部に磁性楔が設置される。
 回転電機の事故の要因のうちで多くの割合を占めるのは、磁性楔がスロットから脱落したりスロットに対して緩くなったりすることによるコイルの破損である。磁性楔のスロットからの脱落やスロットに対する緩みが生じると、磁性楔や磁性楔の破片が、スロット内に配置されたコイルを覆う絶縁層を破壊し、回転電機に絶縁破壊が起こって異常が生じ得る。
 特許文献1や特許文献2に記載されたような従来の診断システムでは、磁性楔のスロットからの脱落やスロットに対する緩みを検出できない。このため、従来は、主に目視により磁性楔のスロットからの脱落やスロットに対する緩みを検出しており、検出に必要な労力が大きく、見落としによる検出漏れがあると、コイルが破損して回転電機に絶縁破壊が起こる可能性があるという課題がある。このため、磁性楔のスロットからの脱落やスロットに対する緩みという、回転電機の異常を検出できる診断システムが望まれている。
 本発明は、磁性楔の、固定子または回転子のコアのスロットからの脱落やスロットに対する緩みを検出し、回転電機の異常を検出可能な、回転電機の診断システムと診断方法を提供することを目的とする。
 本発明による回転電機の診断システムは、回転電機のコイルに接続された往復ケーブルに設置され、前記往復ケーブルに流れる往復電流を計測する電流センサと、前記電流センサが計測した前記往復電流を入力し、前記往復電流から、前記コイルに流入する電流と前記コイルから流出する電流の差分である漏れ電流を求める診断装置とを備える。前記診断装置は、前記漏れ電流の波形から前記漏れ電流の周波数領域のスペクトルを求め、求めた前記スペクトルが、前記回転電機が正常な場合における前記漏れ電流の周波数領域のスペクトルと異なっていれば、前記回転電機が異常であると判断する。
 本発明による回転電機の診断方法は、回転電機のコイルに接続された往復ケーブルに設置された電流センサで、前記往復ケーブルに流れる往復電流を計測する計測工程と、前記往復電流から、前記コイルに流入する電流と前記コイルから流出する電流の差分である漏れ電流を求める漏れ電流取得工程と、前記漏れ電流の波形から前記漏れ電流の周波数領域のスペクトルを求め、求めた前記スペクトルが、前記回転電機が正常な場合における前記漏れ電流の周波数領域のスペクトルと異なっていれば、前記回転電機が異常であると判断する診断工程とを備える。
 本発明によると、磁性楔の、固定子または回転子のコアのスロットからの脱落やスロットに対する緩みを検出し、回転電機の異常を検出可能な、回転電機の診断システムと診断方法を提供することができる。
本発明の実施例1による診断システムの構成を示す図。 対地漏れ電流の時間変化の例を示す図。 磁性楔が正常な場合における、対地漏れ電流の周波数領域のスペクトルの例を示す図。 磁性楔が異常な場合における、対地漏れ電流の周波数領域のスペクトルの例を示す図。 本発明の実施例2において、図2に示した対地漏れ電流の時間変化の例にて周波数分析を行う時間帯を示した図。 本発明の実施例3による診断システムの構成を示す図。 本発明の実施例1による診断システムと、診断システムが診断する回転電機を示すブロック図。 回転電機の固定子の一部を示す図。 複数条のケーブルからなる給電ケーブルが一対となって構成されている往復ケーブルに設置されている電流センサを示す図。
 回転電機では、固定子と回転子のコアに設けられたスロットに設置された磁性楔がスロットから脱落したりスロットに対して緩くなったりすると、回転電機から漏れる磁場が歪む。従って、回転電機から漏れる磁場の変歪を検出すると、絶縁事故の要因のうちで比率の多い磁性楔の脱落や緩みを検出できる。回転電機から漏れる磁場の変歪は、スロット内に配置されたコイルからコイルの表面を覆う絶縁層にのみ漏れ流れる電流(以下、「対地漏れ電流」と称する)の高調波成分に現れる。
 本発明では、回転電機のコイルの各相に繋がる往復ケーブルに流れる往復電流を1つの電流センサで計測し、往復電流の差分を求めることで、対地漏れ電流を計測する。往復ケーブルとは、回転電機のコイルに流入する電流とコイルから流出する電流が流れる一対のケーブルのことである。往復電流の差分とは、コイルに流入する電流とコイルから流出する電流の差分(往復ケーブルの一方に流れる電流と他方に流れる電流の差分)のことである。対地漏れ電流は、電流センサが計測した往復電流から、往復電流の差分として求められる。
 本発明では、計測した対地漏れ電流に対して周波数分析を実施することで、磁性楔の、コアのスロットからの脱落やスロットに対する緩みを効率良く高精度に検出する。
 本発明では、磁性楔のスロットからの脱落やスロットに対する緩みという回転電機の異常を検出可能であり、これらに起因するコイルの破損と回転電機の絶縁破壊の発生を防止できる。これにより、省メンテナンスを可能とする新たな診断手法を提供でき、回転電機の診断サービスをより高効率化できる。また、回転電機の絶縁特性と相関のある量として、回転電機から漏れる磁場の変歪の他に、回転電機の静電容量成分の変化を検出することができる。
 本発明による回転電機の診断システムと診断方法は、電動機、発電機、及び誘導機などの回転電機を診断することができる。特に、ガスタービン、鉄道、自動車、航空、及び風力発電機などに用いられる、負荷が変動する回転電機に有効である。
 以下、本発明の実施例による、回転電機の診断システム及び診断方法を、図面を用いて説明する。以下では、回転電機の固定子について診断を行う例を説明するが、本発明による、回転電機の診断システム及び診断方法は、回転子についても、固定子と同様に診断することができる。なお、本明細書で用いる図面において、同一のまたは対応する構成要素には同一の符号を付け、これらの構成要素については繰り返しの説明を省略する場合がある。
 本発明の実施例1による、回転電機の診断システム及び診断方法について説明する。
 図7は、本発明の実施例1による診断システム10と、診断システム10が診断する回転電機1を示すブロック図である。回転電機1は、電力系統9に接続されている。診断システム10は、回転電機1に接続している往復ケーブル5に接続可能である。また、回転電機1は、負荷となる装置50に接続されている。
 図8は、回転電機1の固定子30の一部を示す図である。固定子30は、空隙を挟んで回転子40に対向し、固定子コア31と固定子コイル32を備える。固定子コア31には、スロット33が設けられている。固定子コイル32は、スロット33に収納され、表面が絶縁層34で覆われている。スロット33の開口部には、磁性楔35が設置されている。磁性楔35がスロット33から脱落したりスロット33に対して緩くなったりすると、磁性楔35や磁性楔35の破片が固定子コイル32を覆う絶縁層34を破壊し、固定子コイル32の破損や回転電機1の絶縁破壊という回転電機1の異常が起こり得る。
 図1は、本実施例による診断システム10の構成を示す図であり、診断システム10と回転電機1と電力系統9を含めた全体回路を示している。本実施例では、回転電機1は、固定子コイル32の三相がΔ結線で結線されている。また、回転電機1は、電力系統9に給電ケーブル3で接続されている。給電ケーブル3は、端子箱の端子台4にて分岐し、往復ケーブル5として回転電機1に結線される。往復ケーブル5は、一対の給電ケーブル3で構成されており、回転電機1の固定子コイル32の1つの相ごとに接続する。
 診断システム10は、電流センサ2と計測装置8と診断装置20を備える。なお、計測装置8と診断装置20は、1つの装置(例えば、コンピュータ)で構成しても、複数の装置で構成してもよい。
 電流センサ2は、回転電機1の固定子コイル32の各相に接続された往復ケーブル5に、相ごとに設置され、端子台4と回転電機1との間に位置する。電流センサ2は、回転電機1の固定子コイル32の各相に対して1つ、合計3つ設けられる。1つの電流センサ2は、往復ケーブル5を構成する一対の給電ケーブル3に設置され、往復ケーブル5に流れる往復電流(固定子コイル32に流入する電流と固定子コイル32から流出する電流)を計測する。
 計測装置8は、電流センサ2に接続されており、通信機器と記憶媒体の少なくとも一方を備える。通信機器は、無線通信または有線通信によって、電流センサ2が計測した往復電流を診断装置20に送信する。記憶媒体は、電流センサ2が計測した往復電流を記憶する。記憶媒体は、計測装置8に対して着脱可能でもよい。また、計測装置8は、診断装置20に対して着脱可能でもよい。計測装置8は、例えば、ハードディスク付きパソコンとデータロガーや、記憶装置を備えUSB接続が可能なオシロスコープなどで構成することができる。
 診断装置20は、電流センサ2が計測した往復電流を計測装置8から入力する。診断装置20は、計測装置8の通信機器から送信された往復電流を受信したり、往復電流を記憶した計測装置8の記憶媒体が接続されたりすることで、計測装置8から往復電流を入力する。診断装置20は、入力した往復電流から、対地漏れ電流(固定子コイル32から固定子コイル32の表面を覆う絶縁層34にのみ漏れ流れる電流)を求める。
 本実施例による診断システム10では、回転電機1の固定子コイル32の各相に繋がる往復ケーブル5に電流センサ2が設置され、回転電機1の固定子コイル32の各相に流れる往復電流を1つの電流センサ2で計測し、診断装置20が往復電流の差分を求めることで、回転電機1の固定子コイル32の各相における対地漏れ電流を高精度に計測する。対地漏れ電流Iは、固定子コイル32から固定子コイル32の表面を覆う絶縁層34にのみ漏れ流れる電流のことであり、回転電機1の固定子コイル32に流入する電流I1の値から、固定子コイル32から流出する電流I2の値を引いて往復電流の差分を求めることで、得ることができる(I=I1-I2)。
 図2は、対地漏れ電流の時間変化の例を示す図であり、対地漏れ電流を計測した実験結果を基に作成した図である。図2の横軸は時間を示し、縦軸は対地漏れ電流の大きさ(振幅)を示す。
 図2に示すように、対地漏れ電流の時間変化には、対地漏れ電流がほぼ一定の値を取る時間帯と、対地漏れ電流が増大する時間帯が存在する。すなわち、対地漏れ電流は、変動して間欠的に増大する。対地漏れ電流は、回転電機1の出力が小さい低出力領域で、ほぼ一定の安定した値を取る。この一定の値は、対地漏れ電流の最小値である。対地漏れ電流の増大は、回転電機1の負荷に変動があり、回転電機1の出力が低出力領域から高出力領域に遷移して大きくなる際に発生する。
 図2に示すように、回転電機1の低出力領域で現れる安定した対地漏れ電流の値(振幅の値)を、基準値12と称し、基準値12に対する対地漏れ電流の増加量を変動値11と称する。基準値12は、対地漏れ電流の最小値とすることができる。
 診断装置20は、求めた対地漏れ電流に対し、任意の時間帯について周波数分析を実施し、磁性楔35の、固定子コア31のスロット33からの脱落やスロット33に対する緩みを検出する。診断装置20は、対地漏れ電流の波形を周波数領域のスペクトルに変換することで、対地漏れ電流の周波数領域のスペクトルを求める。
 図3は、磁性楔35が正常な場合、すなわち、磁性楔35が、固定子コア31のスロット33から脱落したりスロット33に対して緩んだりしていない場合における、対地漏れ電流の周波数領域のスペクトルの例を示す図であり、対地漏れ電流を計測した実験結果を基に作成した図である。図3の横軸は周波数を示し、縦軸は対地漏れ電流(対数を取った値)を示す。磁性楔35が正常な回転電機1とは、例えば、製造後で運転開始前の回転電機や、補修後で運転開始前の回転電機である。
 図3に示すように、磁性楔35が正常な回転電機1では、対地漏れ電流の周波数領域のスペクトルに、最も大きなピークとして基本波成分のピーク21が検出され、その次に大きなピークとしてスロット高調波(スロット33の存在に起因する高調波)によるピーク22が検出される。
 図4は、磁性楔35が異常な場合、すなわち、磁性楔35が、固定子コア31のスロット33から脱落したりスロット33に対して緩んだりした場合における、対地漏れ電流の周波数領域のスペクトルの例を示す図であり、対地漏れ電流を計測した実験結果を基に作成した図である。図4の横軸は周波数を示し、縦軸は対地漏れ電流(対数を取った値)を示す。
 図4に示すように、磁性楔35が異常な回転電機1では、対地漏れ電流の周波数領域のスペクトルに、基本波成分のピーク21とスロット高調波によるピーク22の他に、磁性楔35が正常な回転電機1のスペクトルには存在しない、異常を示すピーク23が検出される。この異常を示すピーク23は、磁性楔35の脱落や緩みによって回転電機1から漏れる磁場の変歪に起因する。このピーク23は、磁性楔35の異常状態の初期においては、スロット高調波によるピーク22よりも振幅が小さい傾向にある。しかし、磁性楔35が異常な回転電機1では、磁性楔35が正常な回転電機1では存在しないピーク23が、明確に出現する。
 従って、対地漏れ電流の周波数領域のスペクトルが、回転電機1が正常な場合、すなわち磁性楔35が正常な場合における対地漏れ電流の周波数領域のスペクトルと異なっていれば、磁性楔35が異常であると判断することができる。具体的には、対地漏れ電流の周波数領域のスペクトルに、磁性楔35が正常な場合のスペクトルには存在しないピーク(但し、ノイズレベルより大きいピーク)が検出されたら、磁性楔35が異常であると判断することができる。
 診断装置20は、正常な回転電機1(すなわち、磁性楔35が正常な回転電機1)について対地漏れ電流の周波数領域のスペクトルを記憶しておく。そして、診断装置20は、求めた対地漏れ電流の周波数領域のスペクトルと、正常な回転電機1についての対地漏れ電流の周波数領域のスペクトルとを比較し、求めた対地漏れ電流の周波数領域のスペクトルに、正常な回転電機1についての対地漏れ電流の周波数領域のスペクトルには存在しないピークを検出したら、回転電機1が異常である、すなわち、磁性楔35が、固定子コア31のスロット33から脱落したりスロット33に対して緩んだりしており異常であると判断する。
 電流センサ2は、回転電機1の固定子コイル32の各相に接続する往復ケーブル5に、次のように設置することもできる。
 回転電機1の固定子コイル32の1つの相に接続する往復ケーブル5は、一対の給電ケーブル3で構成されている。往復ケーブル5を構成する一対の給電ケーブル3のそれぞれは、複数条のケーブルで構成することができる。すなわち、往復ケーブル5は、複数条のケーブルからなる給電ケーブル3が一対となって構成されてもよい。
 図9は、往復ケーブル5が、複数条のケーブルからなる給電ケーブル3が一対となって構成されており、この往復ケーブル5に設置されている電流センサ2を示す図である。図9には、一例として、一対の給電ケーブル3の一方が2本のケーブル3a、3bで構成されており、他方が2本のケーブル3c、3dで構成されている往復ケーブル5を示している。給電ケーブル3は、3本以上のケーブルで構成することもできる。
 往復ケーブル5が、一対の、複数条のケーブルからなる給電ケーブル3、すなわち、ケーブル3a、3bからなる給電ケーブル3とケーブル3c、3dからなる給電ケーブル3で構成されている場合には、電流センサ2は、給電ケーブル3を構成する複数条のケーブル3a、3b、3c、3dのうち一部のケーブルに設置することができる。図9には、一例として、電流センサ2が、一方の給電ケーブル3のケーブル3bと他方の給電ケーブル3のケーブル3cに設置された構成を示している。
 このように、電流センサ2を、複数条のケーブルのうちの一部のケーブルに設置することで、往復ケーブル5が太くても、往復ケーブル5と電流センサ2の大きさに応じて、電流センサ2を設置できる。
 本実施例による診断システム10では、計測した対地漏れ電流に対して周波数分析を実施することで、磁性楔35の異常、すなわち、磁性楔35の、固定子コア31のスロット33からの脱落やスロット33に対する緩みを効率良く高精度に検出することができ、回転電機1の異常を検出可能であり、固定子コイル32の破損と回転電機1の絶縁破壊の発生を防止できる。
 本発明の実施例2による、回転電機の診断システム及び診断方法について説明する。以下では、本実施例について、実施例1と異なる点を主に説明する。
 発明者らは、負荷変動を有する回転電機においては、実施例1で図2を用いて説明したように、対地漏れ電流が変動することを見出した。対地漏れ電流が変動すると、対地漏れ電流の高調波成分に機械的な振動に起因する成分が含まれるため、対地漏れ電流の周波数領域のスペクトルにおいて、回転電機から漏れる磁場の変歪に起因するピークのみを検出することが難しい。
 そこで、本実施例では、診断装置20は、磁性楔35の異常以外に対地漏れ電流の周波数領域のスペクトルに影響を与える要因を取り除くため、求めた対地漏れ電流に対し、対地漏れ電流がほぼ一定の値である時間帯について周波数分析を実施する。
 図5は、図2に示した対地漏れ電流の時間変化の例において、周波数分析を行う時間帯を示した図である。診断装置20は、求めた対地漏れ電流の大きさが、変動値11を含まず、予め定めた範囲内に収まっている時間帯13を抽出する。対地漏れ電流の大きさのこの範囲は、基準値12を含み、対地漏れ電流がほぼ基準値12であるとみなせるように上限と下限を任意に定めることができる。診断装置20は、対地漏れ電流の大きさがこの範囲内に収まっていれば、対地漏れ電流がほぼ一定の値(基準値12)であると判断する。
 そして、診断装置20は、抽出した時間帯13のみについて、対地漏れ電流の周波数分析を実施し、対地漏れ電流の波形を周波数領域のスペクトルに変換する。すなわち、診断装置20は、対地漏れ電流が、ほぼ基準値12であり変動が小さくSN比が高い時間帯13のみを対象として、対地漏れ電流の周波数分析を行う。
 本実施例では、機械的な振動(例えば、機械的劣化による振動)などに起因する変動を含まない対地漏れ電流について周波数分析を実施するので、対地漏れ電流の周波数領域のスペクトルにおいて、異常を示すピーク23(磁性楔35の脱落や緩みによって回転電機1から漏れる磁場の変歪に起因するピーク)を高精度に検出することができ、磁性楔35の異常をより高精度で高感度に検出できる。
 本実施例による診断システム10では、対地漏れ電流が変動値11を含まずほぼ一定の値である時間帯13について周波数分析を実施することで、磁性楔35の異常をより高精度で高感度に検出することができ、回転電機1の異常を検出可能であり、固定子コイル32の破損と回転電機1の絶縁破壊の発生を防止できる。
 本発明の実施例3による、回転電機の診断システム及び診断方法について説明する。以下では、本実施例について、実施例1と異なる点を主に説明する。
 図6は、本実施例による診断システム10の構成を示す図であり、図1と同様に、診断システム10と回転電機1と電力系統9を含めた全体回路を示している。
 本実施例による診断システム10は、計測装置8が無線通信機器7と大容量ストレージ6の少なくとも一方を備える。
 計測装置8が無線通信機器7を備えると、計測装置8は、電流センサ2が計測した往復電流などの計測データを、無線通信機器7による無線通信によってデータセンタに送信し、データセンタに保存する。また、無線通信機器7を備えた計測装置8は、診断装置20が求めた対地漏れ電流を、無線通信によってデータセンタに送信することもできる。
 計測装置8が大容量ストレージ6を備えると、計測装置8は、計測データを大容量ストレージ6に保存する。また、大容量ストレージ6を備えた計測装置8は、診断装置20が求めた対地漏れ電流を大容量ストレージ6に保存することもできる。
 本実施例による診断システム10では、往復電流や対地漏れ電流を、往復ケーブル5を活線したまま連続的に計測できるため、蓄積するデータ量が膨大になる。このため、長期間にわたって連続的に計測する場合には、無線通信機器7によりデータを転送したり、大容量ストレージ6にデータを保存したりすると、データの保存に有効である。
 無線通信機器7によりデータをデータセンタに転送するときには、データの転送に不具合が生じることがある。また、大容量ストレージ6に長期的に連続してデータを蓄積すると、データの保存に不具合が生じることがある。このため、本実施例による診断システム10は、状況に応じて無線通信機器7と大容量ストレージ6を使い分けるか、両者を併用するのが好ましい。
 本発明の実施例4による、回転電機の診断システム及び診断方法について説明する。実施例1で図7を用いて説明したように、診断システム10が診断する回転電機1は、負荷となる装置50に接続されている。本実施例では、診断システム10が診断可能な回転電機1であって、負荷変動が発生する装置50に接続され負荷電流が変動する回転電機1について、その例を説明する。
 本実施例による診断システム10が診断する回転電機1の例として、自動車用モータ、ガスタービン用発電機、風力用発電機、車両用回転電機、及び航空用モータなどが挙げられる。これら以外にも、診断システム10は、発電量やモータの出力が変動する回転電機1の全般を診断することが可能である。
 本実施例による診断システム10は、上述した回転電機1などを診断し、磁性楔35の異常を効率良く高精度に検出することができ、回転電機1の異常を検出可能で、固定子コイル32の破損と回転電機1の絶縁破壊の発生を防止できる。
 本発明の実施例5による、回転電機の診断システム及び診断方法について説明する。本実施例による診断システム10は、回転電機1について、固定子コイル32の絶縁層34の熱劣化や吸湿劣化などの有無を検出することができる。
 本実施例による診断システム10では、回転電機1の固定子コイル32の静電容量成分を、対地漏れ電流から精度よく求めることができる。診断装置20は、対地漏れ電流が固定子コイル32の静電容量に比例するので、対地漏れ電流から固定子コイル32の静電容量を求めることができる。従って、診断装置20は、対地漏れ電流の変化から固定子コイル32の静電容量の変化を求めることができ、固定子コイル32の静電容量が減少したら固定子コイル32の絶縁層34が熱や吸湿により劣化したことなどを検出できる。
 このような熱劣化や吸湿劣化などの検出は、特に定格電圧が2kV以下の部分放電劣化が生じない回転電機1に対して有効である。
 本実施例による診断システム10は、特に定格電圧が2kV以下の回転電機1に対し、磁性楔35の異常と固定子コイル32の熱劣化や吸湿劣化を効率良く高精度に検出することができ、回転電機1の異常を検出可能で、固定子コイル32の破損と回転電機1の絶縁破壊の発生を防止できる。
 なお、本発明は、上記の実施例に限定されるものではなく、様々な変形が可能である。例えば、上記の実施例は、本発明を分かりやすく説明するために詳細に説明したものであり、本発明は、必ずしも説明した全ての構成を備える態様に限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能である。また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、削除したり、他の構成を追加・置換したりすることが可能である。
 1…回転電機、2…電流センサ、3…給電ケーブル、3a、3b、3c、3d…給電ケーブルを構成するケーブル、4…端子台、5…往復ケーブル、6…大容量ストレージ、7…無線通信機器、8…計測装置、9…電力系統、10…診断システム、11…変動値、12…基準値、13…実施例2において対地漏れ電流の周波数分析を行う時間帯、20…診断装置、21…基本波成分のピーク、22…スロット高調波によるピーク、23…異常を示すピーク、30…固定子、31…固定子コア、32…固定子コイル、33…スロット、34…絶縁層、35…磁性楔、40…回転子、50…負荷となる装置。

Claims (9)

  1.  回転電機のコイルに接続された往復ケーブルに設置され、前記往復ケーブルに流れる往復電流を計測する電流センサと、
     前記電流センサが計測した前記往復電流を入力し、前記往復電流から、前記コイルに流入する電流と前記コイルから流出する電流の差分である漏れ電流を求める診断装置と、
    を備え、
     前記診断装置は、前記漏れ電流の波形から前記漏れ電流の周波数領域のスペクトルを求め、求めた前記スペクトルが、前記回転電機が正常な場合における前記漏れ電流の周波数領域のスペクトルと異なっていれば、前記回転電機が異常であると判断する、
    ことを特徴とする、回転電機の診断システム。
  2.  前記診断装置は、求めた前記スペクトルに、前記回転電機が正常な場合における前記漏れ電流の周波数領域の前記スペクトルには存在しないピークを検出したら、前記回転電機が異常であると判断する、
    請求項1に記載の回転電機の診断システム。
  3.  前記診断装置は、前記漏れ電流の大きさが予め定めた範囲内に収まっている時間帯のみについて、前記漏れ電流の波形から前記漏れ電流の周波数領域の前記スペクトルを求める、
    請求項1に記載の回転電機の診断システム。
  4.  前記往復ケーブルは、一対の給電ケーブルで構成されており、前記給電ケーブルは、複数条のケーブルで構成されており、
     前記電流センサは、前記給電ケーブルを構成する前記複数条のケーブルのうち、一部のケーブルに設置されている、
    請求項1に記載の回転電機の診断システム。
  5.  前記電流センサは、負荷が変動する前記回転電機の前記コイルに接続された前記往復ケーブルに設置されている、
    請求項1に記載の回転電機の診断システム。
  6.  前記電流センサは、定格電圧が2kV以下の前記回転電機の前記コイルに接続された前記往復ケーブルに設置されている、
    請求項1に記載の回転電機の診断システム。
  7.  回転電機のコイルに接続された往復ケーブルに設置された電流センサで、前記往復ケーブルに流れる往復電流を計測する計測工程と、
     前記往復電流から、前記コイルに流入する電流と前記コイルから流出する電流の差分である漏れ電流を求める漏れ電流取得工程と、
     前記漏れ電流の波形から前記漏れ電流の周波数領域のスペクトルを求め、求めた前記スペクトルが、前記回転電機が正常な場合における前記漏れ電流の周波数領域のスペクトルと異なっていれば、前記回転電機が異常であると判断する診断工程と、
    を備えることを特徴とする、回転電機の診断方法。
  8.  前記診断工程では、求めた前記スペクトルに、前記回転電機が正常な場合における前記漏れ電流の周波数領域の前記スペクトルには存在しないピークを検出したら、前記回転電機が異常であると判断する、
    請求項7に記載の回転電機の診断方法。
  9.  前記診断工程では、前記漏れ電流の大きさが予め定めた範囲内に収まっている時間帯のみについて、前記漏れ電流の波形から前記漏れ電流の周波数領域の前記スペクトルを求める、
    請求項7に記載の回転電機の診断方法。
PCT/JP2020/013029 2019-08-09 2020-03-24 回転電機の診断システム及び診断方法 WO2021029104A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-147421 2019-08-09
JP2019147421A JP7217682B2 (ja) 2019-08-09 2019-08-09 回転電機の診断システム及び診断方法

Publications (1)

Publication Number Publication Date
WO2021029104A1 true WO2021029104A1 (ja) 2021-02-18

Family

ID=74569636

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/013029 WO2021029104A1 (ja) 2019-08-09 2020-03-24 回転電機の診断システム及び診断方法

Country Status (3)

Country Link
JP (1) JP7217682B2 (ja)
TW (1) TWI735253B (ja)
WO (1) WO2021029104A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190796A1 (ja) * 2021-03-08 2022-09-15 オムロン株式会社 異常検出装置及び方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356443A (en) * 1980-08-26 1982-10-26 Westinghouse Electric Corp. Detection of arcing faults in polyphase electric machines
JP2002527027A (ja) * 1998-10-07 2002-08-20 ゼネラル・エレクトリック・カンパニイ 電動機巻線汚染検出器および検出
JP2009092527A (ja) * 2007-10-10 2009-04-30 Denso Corp 回転電機における固定子巻線の絶縁検査方法
JP2009099144A (ja) * 2007-10-15 2009-05-07 General Electric Co <Ge> Acモータシステムの残存寿命を遠隔予測する方法及びシステム
JP2013540270A (ja) * 2010-10-07 2013-10-31 エー ビー ビー リサーチ リミテッド 発電機の固定子スロット・ウェッジの欠損検出方法
US20140084937A1 (en) * 2012-09-27 2014-03-27 General Electric Company On-Line Monitoring of Stator Insulation in Motors and Generators
JP2015091219A (ja) * 2013-11-06 2015-05-11 ゼネラル・エレクトリック・カンパニイ 回転機械のための絶縁監視の温度補償
JP2015215275A (ja) * 2014-05-13 2015-12-03 株式会社日立製作所 劣化診断システム
WO2016038651A1 (ja) * 2014-09-08 2016-03-17 株式会社日立製作所 絶縁診断システムまたは回転機
WO2017221588A1 (ja) * 2016-06-21 2017-12-28 三菱電機株式会社 負荷の異常検出装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103713261B (zh) * 2013-12-26 2016-06-01 合肥工业大学 一种感应电机气隙偏心故障的检测系统及检测方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4356443A (en) * 1980-08-26 1982-10-26 Westinghouse Electric Corp. Detection of arcing faults in polyphase electric machines
JP2002527027A (ja) * 1998-10-07 2002-08-20 ゼネラル・エレクトリック・カンパニイ 電動機巻線汚染検出器および検出
JP2009092527A (ja) * 2007-10-10 2009-04-30 Denso Corp 回転電機における固定子巻線の絶縁検査方法
JP2009099144A (ja) * 2007-10-15 2009-05-07 General Electric Co <Ge> Acモータシステムの残存寿命を遠隔予測する方法及びシステム
JP2013540270A (ja) * 2010-10-07 2013-10-31 エー ビー ビー リサーチ リミテッド 発電機の固定子スロット・ウェッジの欠損検出方法
US20140084937A1 (en) * 2012-09-27 2014-03-27 General Electric Company On-Line Monitoring of Stator Insulation in Motors and Generators
JP2015091219A (ja) * 2013-11-06 2015-05-11 ゼネラル・エレクトリック・カンパニイ 回転機械のための絶縁監視の温度補償
JP2015215275A (ja) * 2014-05-13 2015-12-03 株式会社日立製作所 劣化診断システム
WO2016038651A1 (ja) * 2014-09-08 2016-03-17 株式会社日立製作所 絶縁診断システムまたは回転機
WO2017221588A1 (ja) * 2016-06-21 2017-12-28 三菱電機株式会社 負荷の異常検出装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022190796A1 (ja) * 2021-03-08 2022-09-15 オムロン株式会社 異常検出装置及び方法

Also Published As

Publication number Publication date
JP7217682B2 (ja) 2023-02-03
JP2021028591A (ja) 2021-02-25
TWI735253B (zh) 2021-08-01
TW202107106A (zh) 2021-02-16

Similar Documents

Publication Publication Date Title
Stone Condition monitoring and diagnostics of motor and stator windings–A review
Tallam et al. A survey of methods for detection of stator-related faults in induction machines
Lee et al. An online technique for monitoring the insulation condition of AC machine stator windings
US6460013B1 (en) Shaft voltage current monitoring system for early warning and problem detection
US20160266206A1 (en) Generator neutral ground monitoring device utilizing direct current component measurement and analysis
US10184985B2 (en) Systems and methods for crack detection in doubly-fed induction generators
US20050218906A1 (en) System and method for monitoring of insulation condition
CN117074844A (zh) 高压电网输电线路的智能化实时在线监测系统
Singh et al. The impact of the converter on the reliability of a wind turbine generator
RU2351048C1 (ru) Способ функциональной диагностики асинхронных электродвигателей
WO2021029104A1 (ja) 回転電機の診断システム及び診断方法
CN110749810A (zh) 一种调相机绝缘故障预测方法及系统
Battulga et al. Automated detection of failures in doubly-fed induction generators for wind turbine applications
US10778135B2 (en) Motor parallel winding differential current protection
JP2020026967A (ja) 電気機械の診断装置および診断方法、並びに回転電機
Younsi et al. Online capacitance and dissipation factor monitoring of AC motor stator insulation
Stone et al. Experience with continuous on-line partial discharge monitoring of generators and motors
Stone et al. Advances in interpreting partial discharge test results from motor and generator stator windings
JP7218239B2 (ja) 電気機械の診断方法および診断装置、並びに回転電機
Ramirez-Niño et al. Monitoring network for online diagnosis of power generators
Dmitriev et al. Partial Discharge Measurements in Synchronous Generators
KR20090041067A (ko) 부분 방전 신호 측정시 외부 잡음 제거 방법
Pamulaparthy et al. Convergence of Protection Relay and Monitoring System for Next Generation Asset Management
Zhu et al. Application of on-line versus off-line PD testing for stator insulation monitoring
Garcia et al. Non-Invasive Fault Detection Through External Magnetic Field Aided by Sigma-Delta Microcontroller

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20853286

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20853286

Country of ref document: EP

Kind code of ref document: A1