WO2022190795A1 - 異常検出装置及び方法 - Google Patents

異常検出装置及び方法 Download PDF

Info

Publication number
WO2022190795A1
WO2022190795A1 PCT/JP2022/006151 JP2022006151W WO2022190795A1 WO 2022190795 A1 WO2022190795 A1 WO 2022190795A1 JP 2022006151 W JP2022006151 W JP 2022006151W WO 2022190795 A1 WO2022190795 A1 WO 2022190795A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
spectrum
abnormality detection
maximum peak
peak value
Prior art date
Application number
PCT/JP2022/006151
Other languages
English (en)
French (fr)
Inventor
高洋 佐藤
慧介 矢野
昂洋 中村
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Priority to EP22766759.9A priority Critical patent/EP4307557A1/en
Priority to US18/279,274 priority patent/US20240151772A1/en
Priority to CN202280017634.0A priority patent/CN116941179A/zh
Publication of WO2022190795A1 publication Critical patent/WO2022190795A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • G01R31/343Testing dynamo-electric machines in operation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P29/00Arrangements for regulating or controlling electric motors, appropriate for both AC and DC motors
    • H02P29/02Providing protection against overload without automatic interruption of supply
    • H02P29/024Detecting a fault condition, e.g. short circuit, locked rotor, open circuit or loss of load
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R23/00Arrangements for measuring frequencies; Arrangements for analysing frequency spectra
    • G01R23/16Spectrum analysis; Fourier analysis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/34Testing dynamo-electric machines
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H1/00Details of emergency protective circuit arrangements

Definitions

  • the present invention relates to an abnormality detection device and method for detecting an abnormal state of a rotating machine such as a motor.
  • Patent Literature 1 discloses an anomaly detection device that can identify the frequency corresponding to the cycle of the sound emitted by rotation based on an audio signal even when periodic noise is present.
  • This anomaly detection device detects an envelope curve of an audio signal representing a periodic sound emitted from a rotating body having a predetermined number of wings and a periodic sound emitted from another object.
  • the frequency spectrum of the audio signal is calculated, and frequency candidates corresponding to the period of the sound emitted from the rotating body in that frame are detected for each frame.
  • the duration time for which the fluctuation of the power of the frequency spectrum component in the candidate detected for that frame is less than a certain value is obtained, and the candidate with the longest duration time is the sound emitted from the rotating body. It is specified as the frequency corresponding to the period.
  • the user In order to obtain correct diagnostic results, the user must keep the rotation speed of the motor constant at least while performing diagnostic measurements. Further, when the degree of abnormality in the diagnostic result increases, the user must determine whether the abnormality is actually caused by an abnormality in the motor or by a change in the rotation speed of the motor.
  • An object of the present invention is to solve the above problems and to provide an abnormality detection device and method capable of detecting an abnormal state of a motor with higher accuracy than conventional techniques.
  • An abnormality detection device includes: An abnormality detection device that detects an abnormal state of the motor based on the current or voltage supplied to the motor from a power supply, By frequency-analyzing the current or voltage data in different first and second time periods, the first driving frequency corresponding to the maximum peak value of the spectrum in the first time period and the second time period retrieving a second drive frequency corresponding to the maximum peak value of the spectrum for the period; After correcting the frequency axis of one spectrum so as to match the maximum peak values of the respective spectra based on the first spectrum having the first driving frequency and the spectrum having the second driving frequency , calculating an averaged spectrum for the corrected spectrum and the uncorrected spectrum, Based on the averaged spectrum, an abnormal peak value equal to or greater than a predetermined threshold is searched for at a frequency different from the driving frequency having the maximum peak value, and the abnormal state of the motor is determined according to the presence or absence of the abnormal peak value.
  • a signal processing unit that determines Prepare.
  • the abnormal state of the motor can be detected with higher accuracy than the conventional technology.
  • FIG. 1 is a block diagram showing a configuration example of a motor abnormality detection device 4 according to Embodiment 1.
  • FIG. FIG. 2 is a flow chart showing anomaly detection processing executed by the processor 10 of FIG. 1;
  • FIG. 3 is a graph showing an example of a plurality of motor current spectra calculated when the processor 10 of FIG. 1 executes the abnormality detection process of FIG. 2;
  • 10 is a flow chart showing preprocessing for abnormality detection executed by the processor 10 of the motor abnormality detection device 4 according to the second embodiment.
  • 9 is a flowchart showing abnormality detection processing executed by the processor 10 of the motor abnormality detection device 4 according to the second embodiment.
  • FIG. 5 is a graph showing a first example of a motor current spectrum calculated when the processor 10 of FIG. 1 executes the abnormality detection process of FIG. 4B;
  • FIG. FIG. 5 is a graph showing a second example of a motor current spectrum calculated when the processor 10 of FIG. 1 executes the abnormality detection process of FIG. 4B;
  • FIG. 1 is a block diagram showing a configuration example of a motor abnormality detection device 4 according to the first embodiment.
  • FIG. 1 shows an abnormality detection device 4 and its peripheral circuits, and AC power from an AC power supply 1 is supplied to a motor 2 via a current sensor 3.
  • the abnormality detection device 4 includes an AD converter 11, a processor 10 having a frequency analysis section 12 and an abnormality detection section 13 and constituting a "signal processing section", and a display section 14. be.
  • the frequency analysis unit 12 and the abnormality detection unit 13 have memories 12m and 13m, respectively.
  • the current sensor 3 detects the current value of the current supplied from the AC power supply 1 to the motor 2 and outputs a detection signal indicating the current value to the AD converter 11 .
  • the AD converter 11 AD-converts the input detection signal into current data indicating a current value, and then outputs the current data to the frequency analysis unit 12 .
  • the frequency analysis unit 12 performs fast Fourier transform (FFT) processing on the input current data over a predetermined time period T1 and two divided time periods T2 and T3.
  • FFT fast Fourier transform
  • the abnormality detection unit 13 determines the abnormal state of the motor based on the FFT-processed spectrum, and displays the determination result on the display unit 14 .
  • the processor 10 consisting of the frequency analysis unit 12 and the abnormality detection unit 13 executes the abnormality detection process shown in FIG. do.
  • FIG. 2 is a flow chart showing anomaly detection processing executed by the processor 10 of FIG. 3 is a graph showing an example of a plurality of spectra of motor current calculated when the processor 10 of FIG. 1 executes the abnormality detection process of FIG. 2.
  • FIG. 2 is a flow chart showing anomaly detection processing executed by the processor 10 of FIG. 3 is a graph showing an example of a plurality of spectra of motor current calculated when the processor 10 of FIG. 1 executes the abnormality detection process of FIG. 2.
  • FIG. 1 The abnormality detection process according to the first embodiment will be described below with reference to FIGS. 2 and 3.
  • FIG. 2 is a diagrammatic representation of the abnormality detection process according to the first embodiment.
  • step S1 of FIG. 2 the current data of the AD conversion value of the predetermined time period T1 detected by the current sensor 3 is input, and in step S2A, the frequency analysis unit 12 detects the AD conversion value of the current value of the predetermined time period T1.
  • FFT processing is performed using the memory 12m to calculate the reference spectrum 100 (FIG. 3A) of the FFT value (power), and in step S2B, the AD conversion value of the current value for the predetermined period T1 is
  • the memory 12m is used to perform FFT processing for each of the two predetermined time periods T2 and T3, and the FFT value (power) spectra 101 and 102 (Fig. 3(b) ) and FIG. 3(c)).
  • step S3 the abnormality detection unit 13 searches for the drive frequency corresponding to the maximum peak value of each time period T2, T3 based on the spectrum of each time period T2, T3.
  • steps S3 to S9 is executed by the abnormality detection unit 13.
  • the corrected high A spectrum 102A FIG.
  • step S5 the spectrum 102A having the corrected high driving frequency f high and the spectrum 101 having the low driving frequency f low after correction are added together with the maximum peak values and divided by 2 to obtain these 2
  • An averaged spectrum 103 (FIG. 3(e)) of the spectra is calculated and stored in the memory 13m.
  • step S6 the abnormality detection unit 13 searches for a peak value of the abnormal peak 104 equal to or greater than a predetermined threshold value at a frequency different from the drive frequency having the maximum peak value, based on the averaged spectrum 103 ( FIG. 3(e)).
  • the abnormal peak 104 has a peak value having, for example, the second or third strongest power, for example, next to the maximum peak.
  • step S7 the abnormality detection unit 13 determines whether or not there is an abnormal peak. If YES, the process proceeds to step S8, and if NO, the process proceeds to step S9.
  • step S8 it is determined that the motor is in an abnormal state, the result of the determination is displayed on the display unit 14, and the abnormality detection process ends.
  • step S9 it is determined that the motor is not in an abnormal state, the determination result is displayed on the display unit 14, and the abnormality detection process is terminated.
  • the time period T1 is divided into two time periods T2 and T3 for the current data of the motor drive current acquired in the predetermined time period T1, and frequency analysis is performed.
  • a drive frequency that has the maximum peak value for each of T2 and T3 is searched.
  • the frequency axis of the spectrum of the frequency analysis result with the high drive frequency is multiplied by the division value of the low drive frequency divided by the high drive frequency of the two searched drive frequencies, and the spectrum of the frequency analysis result with the low drive frequency is multiplied. Add and average.
  • the driving frequency fluctuates in the data for 4 seconds, and the peak of the abnormality feature is dulled
  • the FFT between 0 to 2 seconds and the frequency analysis for 2 to 4 seconds
  • the frequencies of the maximum peaks are 51 Hz and 52 Hz, respectively
  • the spectrum obtained by multiplying the frequency axis of 52 Hz by 51/52 and the spectrum of the frequency analysis result of 51 Hz are added and averaged.
  • the features of the abnormality appear sharply, and the features of the abnormality can be captured more accurately and with higher sensitivity than the envelope FFT.
  • the peak 104 (FIG. 3(e)) that could not be seen with the conventional technology can be captured.
  • the drive frequency fluctuates, it becomes easy to separate the noise component from the peak that always appears, and the abnormality detection process can be performed with higher accuracy than in the conventional technology.
  • FIG. 4A is a flow chart showing preprocessing for abnormality detection executed by the processor 10 of the motor abnormality detection device 4 according to the second embodiment.
  • FIG. 4B is a flowchart showing an abnormality detection process executed by the processor 10 of the motor abnormality detection device 4 according to the second embodiment.
  • the abnormality detection process according to the second embodiment differs from the abnormality detection process according to the first embodiment in the following points.
  • the abnormality detection device 4 is configured in the same manner as in FIG. (1)
  • the anomaly detection pre-processing in FIG. 4A is executed before the anomaly detection process in FIG. 4B.
  • a peak width (frequency width) is calculated, and based on the calculated peak width, a lower cutoff frequency fc is determined and stored in the memory 13m.
  • the abnormality detection process of FIG. 4B is characterized in that the process of step S2C is inserted between steps S2A and S2B. Differences will be described below.
  • step S11 of the abnormality detection preprocessing in FIG. 4A the AD conversion value of the current value detected by the current sensor 3 during the predetermined time period T1 is input.
  • step S12 the frequency analysis unit 12 performs FFT processing on the AD conversion value of the current value of the predetermined period T1 using the memory 12m to calculate the spectrum of the FFT value (power).
  • step SS13 the frequency width of the peak having the maximum peak value is calculated for FFT values equal to or greater than a predetermined threshold, and in step S14, based on the calculated frequency width of the peak, the lower cutoff frequency fc is set, and the anomaly detection preprocessing is terminated.
  • the low cutoff frequency fc is set, for example, so that the lower cutoff frequency fc increases as the calculated peak width (frequency width) increases. , to increase the detection sensitivity.
  • step S2C of the abnormality detection process in FIG. 4B the reference spectrum 100 is filtered with a high-pass filter having the low cutoff frequency fc determined in the abnormality detection preprocessing, and the filtered spectrum is used as a reference.
  • the processes of steps S2B to S9 are executed in the same manner as in FIG.
  • FIG. 5A is a graph showing a first example of a motor current spectrum calculated when the processor 10 of FIG. 1 executes the abnormality detection process of FIG. 4B.
  • FIG. 5B is a graph showing a second example of the motor current spectrum calculated when the processor 10 of FIG. 1 executes the abnormality detection process of FIG. 4B.
  • the band width for cutting the low-frequency component is adjusted according to the degree of fluctuation of the drive frequency to increase the detection sensitivity. For example, as shown in the spectrum and 201 of FIG. 5A, when the fluctuation amount of the drive frequency is within ⁇ 0.5 Hz, the low cutoff frequency fc is set to 1 Hz. Moreover, as shown in the spectrum 202 of FIG. 5B, when the fluctuation amount of the driving frequency is within ⁇ 1.0 Hz, it is preferable to set the low cutoff frequency fc to 2 Hz.
  • the calculated spectrum is high-pass filtered using a predetermined low cutoff frequency fc. Cut frequency components.
  • the lower cutoff frequency fc is set so that the lower cutoff frequency fc increases as the calculated frequency width of the peak increases, thereby increasing the detection sensitivity. can be done.
  • the drive frequency fluctuates, it becomes easy to separate the noise component from the peak that always appears, and the abnormality detection process can be performed with higher accuracy than in the conventional technology.
  • the current data of the current supplied from the AC power supply to the motor is frequency-analyzed to determine the abnormal state of the motor, but the present invention is not limited to this.
  • the voltage data of the voltage may be frequency-analyzed to similarly determine the abnormal condition of the motor.
  • the frequency axis of the spectrum having the higher drive frequency is multiplied by a division value obtained by dividing the lower drive frequency by the higher drive frequency of the two drive frequencies including the first and second drive frequencies.
  • the spectrum having the corrected high driving frequency is calculated, and the spectrum having the corrected high driving frequency and the spectrum having the low driving frequency are calculated.
  • the averaged spectrum is calculated by combining the maximum peak values of the two spectra.
  • the present invention is not limited to this, and the frequency axis of the spectrum having the low drive frequency is multiplied by a division value obtained by dividing the high drive frequency by the low drive frequency of the first and second drive frequencies.
  • a spectrum having the corrected low driving frequency is calculated, and the corrected spectrum having the low driving frequency and the spectrum having the high driving frequency are calculated. and the averaged spectrum may be calculated by combining the maximum peak values of the two spectra.
  • one spectrum is adjusted so as to match the maximum peak values of each spectrum. After correcting the frequency axis, an averaged spectrum of the corrected spectrum and the uncorrected spectrum may be calculated.
  • the abnormality detection process when the drive frequency fluctuates, it becomes easy to separate the noise component from the peak that always appears, and the abnormality detection process can be performed with higher precision than in the prior art. It can be carried out.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Mathematical Physics (AREA)
  • Tests Of Circuit Breakers, Generators, And Electric Motors (AREA)
  • Control Of Electric Motors In General (AREA)

Abstract

従来技術に比較して高い精度でモータの異常状態を検出することができる異常検出装置を提供する。本発明の異常検出装置(4)は信号処理部(10)を備える。信号処理部(10)は、電流又は電圧のデータを異なる第1及び第2の時間期間で周波数分析することで、第1の時間期間のスペクトルの最大ピーク値に対応する第1の駆動周波数と、第2の時間期間のスペクトルの最大ピーク値に対応する第2の駆動周波数とを検索し、第1の駆動周波数を有する第1のスペクトルと、第2の駆動周波数を有するスペクトルとに基づいて、各スペクトルの各最大ピーク値を合わせるように一方のスペクトルの周波数軸を補正した後、補正後のスペクトルと未補正のスペクトルとに係る平均化スペクトルを計算し、平均化スペクトルに基づいて、最大ピーク値を有する駆動周波数とは異なる周波数において、所定のしきい値以上の異常ピーク値を検索し、異常ピーク値の有無に応じて、モータ(2)の異常状態を判断する。

Description

異常検出装置及び方法
 本発明は、例えばモータ等の回転機の異常状態を検出する異常検出装置及び方法に関する。
 モータの状態を診断する監視機器において、センサで取得した例えばモータ電流のデータを周波数分析したときに、常時現れるピーク以外にノイズ成分が見られた場合、それを異常状態と判断し、ノイズ成分を数値化して異常の度合いを示すことが行われている。
 例えば、特許文献1では、周期的な雑音が存在する場合でも、音声信号に基づいて回転が発する音の周期に相当する周波数を特定可能な異常検出装置が開示されている。この異常検出装置は、所定枚数の羽を有する回転体から発せられる周期的な音及び他の物体から発せられる周期的な音が表された音声信号の包絡線を検波し、包絡線からフレームごとに音声信号の周波数スペクトルを算出し、フレームごとに、そのフレームにおける回転体から発せられる音の周期に相当する周波数の候補を検出する。次いで、フレーム毎に、そのフレームについて検出された候補における周波数スペクトルの成分のパワーに対する、パワーの変動が一定以下となる継続時間を求め、継続時間が最長となる候補を回転体から発せられる音の周期に相当する周波数として特定する。
特開2019-100975号公報
 しかし、上述の従来技術では、モータの回転速度が一定であることが前提となっており、仮に測定期間中にモータの駆動周波数が変動した場合、常時現れるピークとノイズ成分の切り分けが困難となる。その結果、常時現れるピークをノイズ成分として判断してしまい、診断結果の異常度合いが高くなってしまうという問題点があった。
 ユーザは、正しい診断結果を得るためには、少なくとも診断のための測定を行っている間はモータの回転速度を一定に保たなければならない。また、診断結果の異常度合いが大きくなった場合、それが実際にモータの異常に起因するものか、モータの回転速度が変化したことによるものかをユーザ側で切り分けなければならない。
 本発明の目的は以上の問題点を解決し、従来技術に比較して高い精度でモータの異常状態を検出することができる異常検出装置及び方法を提供することにある。
 本発明の一態様に係る異常検出装置は、
 電源からモータに供給される電流又は電圧に基づいて、前記モータの異常状態を検出する異常検出装置であって、
 前記電流又は電圧のデータを異なる第1及び第2の時間期間で周波数分析することで、前記第1の時間期間のスペクトルの最大ピーク値に対応する第1の駆動周波数と、前記第2の時間期間のスペクトルの最大ピーク値に対応する第2の駆動周波数とを検索し、
 前記第1の駆動周波数を有する第1のスペクトルと、前記第2の駆動周波数を有するスペクトルとに基づいて、前記各スペクトルの各最大ピーク値を合わせるように一方のスペクトルの周波数軸を補正した後、補正後のスペクトルと未補正のスペクトルとに係る平均化スペクトルを計算し、
 前記平均化スペクトルに基づいて、最大ピーク値を有する駆動周波数とは異なる周波数において、所定のしきい値以上の異常ピーク値を検索し、前記異常ピーク値の有無に応じて、前記モータの異常状態を判断する信号処理部を、
備える。
 従って、本発明に係る異常検出装置等によれば、従来技術に比較して高い精度でモータの異常状態を検出することができる。
実施形態1に係るモータの異常検出装置4の構成例を示すブロック図である。 図1のプロセッサ10により実行される異常検出処理を示すフローチャートである。 図1のプロセッサ10により図2の異常検出処理を実行したときに計算されるモータ電流の複数のスペクトルの一例を示すグラフである。 実施形態2に係るモータの異常検出装置4のプロセッサ10により実行される異常検出前置処理を示すフローチャートである。 実施形態2に係るモータの異常検出装置4のプロセッサ10により実行される異常検出処理を示すフローチャートである。 図1のプロセッサ10により図4Bの異常検出処理を実行したときに計算されるモータ電流のスペクトルの第1の例を示すグラフである。 図1のプロセッサ10により図4Bの異常検出処理を実行したときに計算されるモータ電流のスペクトルの第2の例を示すグラフである。
 以下、本発明に係る実施形態について図面を参照して説明する。なお、同一又は同様の構成要素については同一の符号を付している。
(実施形態1)
 図1は実施形態1に係るモータの異常検出装置4の構成例を示すブロック図である。図1は異常検出装置4及びその周辺回路を示しており、交流電源1からの交流電力は電流センサ3を介してモータ2に供給される。図1において、異常検出装置4は、AD変換器11と、周波数分析部12及び異常検出部13を有して「信号処理部」を構成するプロセッサ10と、表示部14とを備えて構成される。ここで、周波数分析部12及び異常検出部13はそれぞれメモリ12m,13mを有する。
 図1において、電流センサ3は、交流電源1からモータ2に供給される電流の電流値を検出して、電流値を示す検出信号をAD変換器11に出力する。AD変換器11は、入力される検出信号を、電流値を示す電流データにAD変換した後、周波数分析部12に出力する。周波数分析部12は、入力される電流データに対して、所定の時間期間T1及び2分割された時間期間T2,T3にわたって、高速フーリエ変換(FFT)処理を実行する。異常検出部13は、FFT処理後のスペクトルに基づいて、モータの異常状態を判断して、その判断結果を表示部14に表示する。具体的には、周波数分析部12及び異常検出部13からなるプロセッサ10は、図2の異常検出処理を実行することで、モータの異常状態を判断して、その判断結果を表示部14に表示する。
 図2は、図1のプロセッサ10により実行される異常検出処理を示すフローチャートである。また、図3は、図1のプロセッサ10により図2の異常検出処理を実行したときに計算されるモータ電流の複数のスペクトルの一例を示すグラフである。
 以下、図2及び図3を参照して、実施形態1に係る異常検出処理について説明する。
 図2のステップS1において、電流センサ3により検出された所定時間期間T1のAD変換値の電流データを入力し、ステップS2Aにおいて、周波数分析部12は、所定期間期間T1の電流値のAD変換値を、メモリ12mを用いてFFT処理を実行してFFT値(パワー)の基準スペクトル100(図3(a))を計算し、ステップS2Bにおいて、所定期間期間T1の電流値のAD変換値を、2個の所定の時間期間T2,T3に2分割して各時間期間T2,T3毎に、メモリ12mを用いてFFT処理を実行してFFT値(パワー)のスペクトル101,102(図3(b)及び図3(c))を計算する。
 次いで、ステップS3において、異常検出部13は、各時間期間T2,T3のスペクトルに基づいて、各時間期間T2,T3の最大ピーク値に対応する駆動周波数を検索する。なお、ステップS3~S9の処理は異常検出部13により実行される。ステップS4において、検索された2個の駆動周波数のうち、低い駆動周波数flow(図3において、flow=51Hz)を高い駆動周波数fhigh(図3において、flow=52Hz)で除算した除算値(flow/fhigh)を、高い駆動周波数fhighを有するスペクトル102の周波数軸に乗算するように、高い駆動周波数fhighを有するスペクトル102の周波数軸を補正することで、補正後の高い駆動周波数fhighを有するスペクトル102A(図3(d))を計算してメモリ13mに格納する。次いで、ステップS5において、補正後の高い駆動周波数fhighを有するスペクトル102Aと、低い駆動周波数flowを有するスペクトル101とを、最大ピーク値を合わせて加算して2で除算することで、これら2個のスペクトルの平均化スペクトル103(図3(e))を計算してメモリ13mに格納する。
 次いで、ステップS6において、異常検出部13は、平均化スペクトル103に基づいて、最大ピーク値を有する駆動周波数とは異なる周波数において、所定のしきい値以上の異常ピーク104のピーク値を検索する(図3の(e))。ここで、異常ピーク104は、例えば最大ピークに次いで、例えば2番目又は3番目に強いパワーを有するピーク値を有する。さらに、ステップS7において、異常検出部13は、異常ピークがあるか否かが判断され、YESのときはステップS8に進む一方、NOのときはステップS9に進む。ステップS8では、モータが異常状態であると判断し、判断結果を表示部14に表示して当該異常検出処理を終了する。また、ステップS9において、モータが異常状態ではないと判断し、判断結果を表示部14に表示し、当該異常検出処理を終了する。
 図2の異常検出処理では、所定の時間期間T1で取得したモータの駆動電流の電流データに対して、時間期間T1を時間期間T2,T3に2分割して周波数分析し、2分割した時間期間T2,T3毎のピーク値の最大値となる駆動周波数を検索する。検索された2つの駆動周波数のうち、低い駆動周波数÷高い駆動周波数の除算値を、高い駆動周波数を有する周波数分析結果のスペクトルの周波数軸に乗算し、低い駆動周波数を有する周波数分析結果のスペクトルに加算して平均化する。
 例えば図3の実施例では、4秒間のデータで駆動周波数が変動していることで、異常の特徴のピークが鈍る場合、例えば0~2秒の間のFFTと2秒~4秒の周波数分析を実行して、最大ピークの周波数がそれぞれ51Hz、52Hzだとすると、52Hzの周波数軸を51/52倍したスペクトルと、51Hzの周波数分析結果のスペクトルと合算して平均化する。これによって、異常の特徴がシャープに現れることになり、エンベローブFFTよりも感度よく、かつ正確に異常の特徴を捉えることができる。
 以上説明したように、図3(e)に示すように、図2の異常検出処理を行うことで、従来技術では見えていなかったピーク104(図3(e))を捉えることができる。特に、駆動周波数が変動した場合において、常時出現するピークとノイズ成分とを切り分けすることが容易となり、異常検出処理を従来技術に比較して高精度で行うことができる。
(実施形態2)
 図4Aは実施形態2に係るモータの異常検出装置4のプロセッサ10により実行される異常検出前置処理を示すフローチャートである。また、図4Bは実施形態2に係るモータの異常検出装置4のプロセッサ10により実行される異常検出処理を示すフローチャートである。実施形態2に係る異常検出処理が、実施形態1に係る異常検出処理と比較して以下のことが異なる。なお、異常検出装置4は、図1と同様に構成される。
(1)図4Aの異常検出前置処理は、図4Bの異常検出処理よりも前段で実行され、これにより、異常検出部13は、所定のしきい値以上のFFT値において、最大ピーク値を有するピーク幅(周波数幅)を計算し、計算されたピーク幅に基づいて、低域遮断周波数fcを決定してメモリ13mに格納する。
(2)図4Bの異常検出処理は、図2の異常検出処理と比較して、ステップS2Cの処理を、ステップS2AとステップS2Bとの間に挿入したことを特徴とする。
 以下、相違点について説明する。
 図4Aの異常検出前置処理のステップS11において、電流センサ3により検出された所定時間期間T1の電流値のAD変換値を入力する。次いで、ステップS12において、周波数分析部12は、所定期間期間T1の電流値のAD変換値を、メモリ12mを用いてFFT処理を実行してFFT値(パワー)のスペクトルを計算する。さらに、ステップSS13において、所定のしきい値以上のFFT値において、最大ピーク値を有するピークの周波数幅を計算し、ステップS14において、計算されたピークの周波数幅に基づいて、低域遮断周波数fcを設定して、当該異常検出前置処理を終了する。
 なお、ステップS14では、低域遮断周波数fcは、例えば、計算されたピーク幅(周波数幅)が大きくなるにつれて、低域遮断周波数fcを高くするように、低域遮断周波数fcを設定することで、検出感度を高くする。
 図4Bの異常検出処理のステップS2Cにおいては、基準スペクトル100のうち、異常検出前置処理において決定された低域遮断周波数fcを有するハイパスフィルタでフィルタリング処理を行って、フィルタリング処理後のスペクトルを基準スペクトル100として、ステップS2B~S9の処理を、図2と同様に実行する。
 図5Aは図1のプロセッサ10により図4Bの異常検出処理を実行したときに計算されるモータ電流のスペクトルの第1の例を示すグラフである。また、図5Bは図1のプロセッサ10により図4Bの異常検出処理を実行したときに計算されるモータ電流のスペクトルの第2の例を示すグラフである。
 この実施形態2では、モータの駆動電流の電流データを周波数分析して、モータ異常の特徴を捉える時に、余分なDC成分及びその近傍の低域成分をカットし、すなわちハイパスフィルタリングすることを特徴としている。ここで、モータの駆動周波数が変動すると、DC成分及びその近傍の周波数幅が大きくなることがあり、一部がカットできずに異常の特徴と捉えてしまう。そこで、駆動周波数の変動の程度に合わせて、低域成分をカットする帯域幅を調整し、検出感度を上げる。例えば、図5Aのスペクトルと201に示すように、駆動周波数の変動量が±0.5Hz以内のときは、低域遮断周波数fcを1Hzに設定する。また、図5Bのスペクトル202に示すように、駆動周波数の変動量が±1.0Hz以内のときは、低域遮断周波数fcを2Hzにすることが好ましい。
 以上説明したように、実施形態2によれば、実施形態1の異常検出処理において、所定の低域遮断周波数fcを用いて、計算されたスペクトルをハイパスフィルタリングすることで、余分はDC成分及び低周波成分をカットする。ここで、低域遮断周波数fcは、計算されたピークの周波数幅が大きくなるにつれて、低域遮断周波数fcを高くするように、低域遮断周波数fcを設定することで、検出感度を高くすることができる。これにより、特に、駆動周波数が変動した場合において、常時出現するピークとノイズ成分とを切り分けすることが容易となり、異常検出処理を従来技術に比較して高精度で行うことができる。
(変形例)
 以上の実施形態では、交流電源からモータに供給される電流の電流データを周波数分析してモータの異常状態について判断しているが、本発明はこれに限らず、交流電源からモータに供給される電圧の電圧データを周波数分析して、同様にモータの異常状態について判断してもよい。
 以上の実施形態では、第1及び第2の駆動周波数を含む2つの駆動周波数のうち、低い駆動周波数を高い駆動周波数で除算した除算値を、前記高い駆動周波数を有するスペクトルの周波数軸に乗算するように、前記高い駆動周波数を有するスペクトルの周波数軸を補正することで、補正後の高い駆動周波数を有するスペクトルを計算し、前記補正後の高い駆動周波数を有するスペクトルと、前記低い駆動周波数を有するスペクトルとに基づいて、当該2つのスペクトルの各最大ピーク値を合わせて前記平均化スペクトルを計算している。しかし、本発明はこれに限らず、前記第1及び第2の駆動周波数のうち、高い駆動周波数を低い駆動周波数で除算した除算値を、前記低い駆動周波数を有するスペクトルの周波数軸に乗算するように、前記低い駆動周波数を有するスペクトルの周波数軸を補正することで、補正後の低い駆動周波数を有するスペクトルを計算し、前記補正後の低い駆動周波数を有するスペクトルと、前記高い駆動周波数を有するスペクトルとに基づいて、当該2つのスペクトルの各最大ピーク値を合わせて前記平均化スペクトルを計算してもよい。
 従って、本発明では、前記第1の駆動周波数を有する第1のスペクトルと、前記第2の駆動周波数を有するスペクトルとに基づいて、前記各スペクトルの各最大ピーク値を合わせるように一方のスペクトルの周波数軸を補正した後、補正後のスペクトルと未補正のスペクトルとに係る平均化スペクトルを計算してもよい。
 以上詳述したように、本発明によれば、駆動周波数が変動した場合において、常時出現するピークとノイズ成分とを切り分けすることが容易となり、異常検出処理を従来技術に比較して高精度で行うことができる。
1 交流電源
2 モータ
3 電流センサ
4 異常検出装置
10 プロセッサ(信号処理部)
11 AD変換器
12 周波数分析部
12m メモリ
13 異常検出部
13m メモリ
14 表示部

Claims (10)

  1.  電源からモータに供給される電流又は電圧に基づいて、前記モータの異常状態を検出する異常検出装置であって、
     前記電流又は電圧のデータを異なる第1及び第2の時間期間で周波数分析することで、前記第1の時間期間のスペクトルの最大ピーク値に対応する第1の駆動周波数と、前記第2の時間期間のスペクトルの最大ピーク値に対応する第2の駆動周波数とを検索し、
     前記第1の駆動周波数を有する第1のスペクトルと、前記第2の駆動周波数を有するスペクトルとに基づいて、前記各スペクトルの各最大ピーク値を合わせるように一方のスペクトルの周波数軸を補正した後、補正後のスペクトルと未補正のスペクトルとに係る平均化スペクトルを計算し、
     前記平均化スペクトルに基づいて、最大ピーク値を有する駆動周波数とは異なる周波数において、所定のしきい値以上の異常ピーク値を検索し、前記異常ピーク値の有無に応じて、前記モータの異常状態を判断する信号処理部を、
    備える異常検出装置。
  2.  前記平均化スペクトルを計算するときに、前記信号処理部は、
    (1)前記第1及び第2の駆動周波数のうち、低い駆動周波数を高い駆動周波数で除算した除算値を、前記高い駆動周波数を有するスペクトルの周波数軸に乗算するように、前記高い駆動周波数を有するスペクトルの周波数軸を補正することで、補正後の高い駆動周波数を有するスペクトルを計算し、前記補正後の高い駆動周波数を有するスペクトルと、前記低い駆動周波数を有するスペクトルとに基づいて、当該2つのスペクトルの各最大ピーク値を合わせて前記平均化スペクトルを計算し、もしくは
    (2)前記第1及び第2の駆動周波数のうち、高い駆動周波数を低い駆動周波数で除算した除算値を、前記低い駆動周波数を有するスペクトルの周波数軸に乗算するように、前記低い駆動周波数を有するスペクトルの周波数軸を補正することで、補正後の低い駆動周波数を有するスペクトルを計算し、前記補正後の低い駆動周波数を有するスペクトルと、前記高い駆動周波数を有するスペクトルとに基づいて、当該2つのスペクトルの各最大ピーク値を合わせて前記平均化スペクトルを計算する、
    請求項1に記載の異常検出装置。
  3.  前記信号処理部は、第1及び第2の時間期間で周波数分析する前に、前記周波数分析する前記電流又は電圧のデータに対して、所定の低域遮断周波数でハイパスフィルタリングする、
    請求項1又は2に記載の異常検出装置。
  4.  前記信号処理部は、
     前記電流又は電圧のデータを、前記第1及び第2の時間期間を含む時間期間で周波数分析し、前記周波数分析結果のスペクトルに基づいて、最大ピーク値を有するピークの周波数幅を計算し、前記計算されたピークの周波数幅に基づいて、前記低域遮断周波数を設定する、
    請求項3に記載の異常検出装置。
  5.  前記信号処理部は、前記計算されたピークの周波数幅が広くなるにつれて、前記低域遮断周波数を高くなるように設定する、
    請求項4に記載の異常検出装置。
  6.  電源からモータに供給される電流又は電圧に基づいて、前記モータの異常状態を検出する異常検出方法であって、
     信号処理部が、前記電流又は電圧のデータを異なる第1及び第2の時間期間で周波数分析することで、前記第1の時間期間のスペクトルの最大ピーク値に対応する第1の駆動周波数と、前記第2の時間期間のスペクトルの最大ピーク値に対応する第2の駆動周波数とを検索するステップと、
     前記第1の駆動周波数を有する第1のスペクトルと、前記第2の駆動周波数を有するスペクトルとに基づいて、前記各スペクトルの各最大ピーク値を合わせるように一方のスペクトルの周波数軸を補正した後、補正後のスペクトルと未補正のスペクトルとに係る平均化スペクトルを計算するステップと、
     前記信号処理部が、前記平均化スペクトルに基づいて、最大ピーク値を有する駆動周波数とは異なる周波数において、所定のしきい値以上の異常ピーク値を検索し、記異常ピーク値の有無に応じて、前記モータの異常状態を判断するステップと、
    含む異常検出方法。
  7.  前記平均化スペクトルを計算するステップは、前記信号処理部が、
    (1)前記第1及び第2の駆動周波数のうち、低い駆動周波数を高い駆動周波数で除算した除算値を、前記高い駆動周波数を有するスペクトルの周波数軸に乗算するように、前記高い駆動周波数を有するスペクトルの周波数軸を補正することで、補正後の高い駆動周波数を有するスペクトルを計算し、前記補正後の高い駆動周波数を有するスペクトルと、前記低い駆動周波数を有するスペクトルとに基づいて、当該2つのスペクトルの各最大ピーク値を合わせて前記平均化スペクトルを計算し、もしくは
    (2)前記第1及び第2の駆動周波数のうち、高い駆動周波数を低い駆動周波数で除算した除算値を、前記低い駆動周波数を有するスペクトルの周波数軸に乗算するように、前記低い駆動周波数を有するスペクトルの周波数軸を補正することで、補正後の低い駆動周波数を有するスペクトルを計算し、前記補正後の低い駆動周波数を有するスペクトルと、前記高い駆動周波数を有するスペクトルとに基づいて、当該2つのスペクトルの各最大ピーク値を合わせて前記平均化スペクトルを計算する、
    請求項6に記載の異常検出方法。
  8.  前記信号処理部が、第1及び第2の時間期間で周波数分析する前に、前記周波数分析する前記電流又は電圧のデータに対して、所定の低域遮断周波数でハイパスフィルタリングするステップを、
    さらに含む請求項6又は7に記載の異常検出方法。
  9.  前記信号処理部が、前記電流又は電圧のデータを、前記第1及び第2の時間期間を含む時間期間で周波数分析し、前記周波数分析結果のスペクトルに基づいて、最大ピーク値を有するピークの周波数幅を計算し、前記計算されたピークの周波数幅に基づいて、前記低域遮断周波数を設定するステップを、
    さらに含む請求項8に記載の異常検出方法。
  10.  前記低域遮断周波数を設定するステップは、前記計算されたピークの周波数幅が広くなるにつれて、前記低域遮断周波数を高くなるように設定する、
    請求項9に記載の異常検出方法。
PCT/JP2022/006151 2021-03-08 2022-02-16 異常検出装置及び方法 WO2022190795A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22766759.9A EP4307557A1 (en) 2021-03-08 2022-02-16 Abnormality detection device and method
US18/279,274 US20240151772A1 (en) 2021-03-08 2022-02-16 Abnormality detector apparatus and method for detecting abnomal state of rotary machine such as motor
CN202280017634.0A CN116941179A (zh) 2021-03-08 2022-02-16 异常检测装置及方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-036620 2021-03-08
JP2021036620A JP2022136826A (ja) 2021-03-08 2021-03-08 異常検出装置及び方法

Publications (1)

Publication Number Publication Date
WO2022190795A1 true WO2022190795A1 (ja) 2022-09-15

Family

ID=83227680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006151 WO2022190795A1 (ja) 2021-03-08 2022-02-16 異常検出装置及び方法

Country Status (5)

Country Link
US (1) US20240151772A1 (ja)
EP (1) EP4307557A1 (ja)
JP (1) JP2022136826A (ja)
CN (1) CN116941179A (ja)
WO (1) WO2022190795A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082277A1 (ja) * 2017-10-24 2019-05-02 三菱電機株式会社 異常診断装置、異常診断方法及び異常診断システム
JP2019100975A (ja) 2017-12-07 2019-06-24 富士通株式会社 異常検出用コンピュータプログラム、異常検出装置及び異常検出方法
WO2020208743A1 (ja) * 2019-04-10 2020-10-15 三菱電機株式会社 電動機設備の異常診断装置、電動機設備の異常診断方法、および電動機設備の異常診断システム
JP2020176998A (ja) * 2019-04-23 2020-10-29 ルネサスエレクトロニクス株式会社 半導体装置、モータ制御システム、及びエラー検出方法
JP6824494B1 (ja) * 2020-06-29 2021-02-03 三菱電機株式会社 異常診断装置、電力変換装置および異常診断方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019082277A1 (ja) * 2017-10-24 2019-05-02 三菱電機株式会社 異常診断装置、異常診断方法及び異常診断システム
JP2019100975A (ja) 2017-12-07 2019-06-24 富士通株式会社 異常検出用コンピュータプログラム、異常検出装置及び異常検出方法
WO2020208743A1 (ja) * 2019-04-10 2020-10-15 三菱電機株式会社 電動機設備の異常診断装置、電動機設備の異常診断方法、および電動機設備の異常診断システム
JP2020176998A (ja) * 2019-04-23 2020-10-29 ルネサスエレクトロニクス株式会社 半導体装置、モータ制御システム、及びエラー検出方法
JP6824494B1 (ja) * 2020-06-29 2021-02-03 三菱電機株式会社 異常診断装置、電力変換装置および異常診断方法

Also Published As

Publication number Publication date
EP4307557A1 (en) 2024-01-17
US20240151772A1 (en) 2024-05-09
JP2022136826A (ja) 2022-09-21
CN116941179A (zh) 2023-10-24

Similar Documents

Publication Publication Date Title
US10607632B2 (en) Abnormal sound detection apparatus and detection method
JP6223461B2 (ja) インピーダンス解析に基づく電気機械システムの診断方法
KR101966270B1 (ko) 전자 진동 성분의 제거 방법, 회전 기계 진단 방법, 및 회전 기계 진단 장치
US6087796A (en) Method and apparatus for determining electric motor speed using vibration and flux
US20190166442A1 (en) Abnormality detecting device, abnormality detection method, and abnormality detection computer program
CN116383754B (zh) 一种机车车辆配件生产在线监测系统及方法
JP6511573B1 (ja) 転がり軸受の異常診断方法及び異常診断装置、異常診断プログラム
WO2021049568A1 (ja) 振動検出装置、振動検出方法および異常判定システム
JP2024019278A (ja) 異常診断装置および異常診断方法
WO2022190795A1 (ja) 異常検出装置及び方法
JP2010266327A (ja) 設備診断装置及び設備診断方法
CN113092114B (zh) 一种轴承故障诊断方法、装置及存储介质
JPH10288546A (ja) 回転機器の異常判定方法
WO2022190730A1 (ja) 異常検出装置及び方法
WO2022190796A1 (ja) 異常検出装置及び方法
JP4003086B2 (ja) 評価方法及び装置
US20230358596A1 (en) Diagnostic apparatus, machining system, diagnostic method, and recording medium
JP2022136826A5 (ja)
JP2004361286A (ja) 回転機械の劣化診断方法
JP2020019072A (ja) 工具刃数推定装置およびこれを備えた工作機械、ならびに工具刃数推定方法
JP7040920B2 (ja) 軸受の状態監視装置及び異常診断方法
JP2000046893A (ja) 異常診断装置および異常診断方法
JPH0545210A (ja) 回転体診断装置
JPH09257562A (ja) 電動機械の異常診断方法
JPH07159289A (ja) 異常現象の原因診断方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22766759

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18279274

Country of ref document: US

Ref document number: 202280017634.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022766759

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022766759

Country of ref document: EP

Effective date: 20231009