WO2022190493A1 - 空中表示装置 - Google Patents

空中表示装置 Download PDF

Info

Publication number
WO2022190493A1
WO2022190493A1 PCT/JP2021/045703 JP2021045703W WO2022190493A1 WO 2022190493 A1 WO2022190493 A1 WO 2022190493A1 JP 2021045703 W JP2021045703 W JP 2021045703W WO 2022190493 A1 WO2022190493 A1 WO 2022190493A1
Authority
WO
WIPO (PCT)
Prior art keywords
sheet
light
aerial display
display device
light emitter
Prior art date
Application number
PCT/JP2021/045703
Other languages
English (en)
French (fr)
Inventor
敦 山田
知子 大原
勝平 浜田
裕紹 山本
Original Assignee
ミネベアミツミ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021176729A external-priority patent/JP2022140264A/ja
Application filed by ミネベアミツミ株式会社 filed Critical ミネベアミツミ株式会社
Priority to CN202180093867.4A priority Critical patent/CN116848456A/zh
Priority to US18/549,651 priority patent/US20240295749A1/en
Publication of WO2022190493A1 publication Critical patent/WO2022190493A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/50Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels
    • G02B30/56Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images the image being built up from image elements distributed over a 3D volume, e.g. voxels by projecting aerial or floating images
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/20Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes
    • G02B30/22Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type
    • G02B30/25Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images by providing first and second parallax images to an observer's left and right eyes of the stereoscopic type using polarisation techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B30/00Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images
    • G02B30/60Optical systems or apparatus for producing three-dimensional [3D] effects, e.g. stereoscopic images involving reflecting prisms and mirrors only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/12Reflex reflectors
    • G02B5/122Reflex reflectors cube corner, trihedral or triple reflector type
    • G02B5/124Reflex reflectors cube corner, trihedral or triple reflector type plural reflecting elements forming part of a unitary plate or sheet
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0035Means for improving the coupling-out of light from the light guide provided on the surface of the light guide or in the bulk of it
    • G02B6/0038Linear indentations or grooves, e.g. arc-shaped grooves or meandering grooves, extending over the full length or width of the light guide
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/005Means for improving the coupling-out of light from the light guide provided by one optical element, or plurality thereof, placed on the light output side of the light guide
    • G02B6/0055Reflecting element, sheet or layer
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/0001Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems
    • G02B6/0011Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings specially adapted for lighting devices or systems the light guides being planar or of plate-like form
    • G02B6/0033Means for improving the coupling-out of light from the light guide
    • G02B6/0056Means for improving the coupling-out of light from the light guide for producing polarisation effects, e.g. by a surface with polarizing properties or by an additional polarizing elements
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F13/00Illuminated signs; Luminous advertising
    • G09F13/18Edge-illuminated signs
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N13/00Stereoscopic video systems; Multi-view video systems; Details thereof
    • H04N13/30Image reproducers
    • H04N13/302Image reproducers for viewing without the aid of special glasses, i.e. using autostereoscopic displays
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04108Touchless 2D- digitiser, i.e. digitiser detecting the X/Y position of the input means, finger or stylus, also when it does not touch, but is proximate to the digitiser's interaction surface without distance measurement in the Z direction

Definitions

  • the present invention relates to an aerial display device.
  • the main purpose is to make it easier to adjust the position where the image is formed, or to make it possible to observe the image displayed in the air from a wide angle. was not aimed at.
  • An object of the present invention is to provide an aerial display device capable of improving the quality of aerial display.
  • an aerial display device includes a planar light emitter, a retroreflective sheet, and a half mirror.
  • the said planar light-emitting body has a light emission part.
  • the retroreflective sheet is arranged on the emission surface side of the planar light emitter, and has a plurality of through holes representing figures to be displayed in the air at positions corresponding to the light emitting portions.
  • the half mirror is arranged on the exit surface side of the retroreflective sheet.
  • the aerial display device can improve the quality of aerial display.
  • FIG. 1 is a diagram of an example of an aerial display device according to an embodiment, viewed from the display surface side.
  • FIG. 2 is a cross-sectional view taken along the line XX in FIG.
  • FIG. 3 is a diagram showing an arrangement example of an operation panel in a private toilet room.
  • FIG. 4 is a diagram showing an example of an aerial display device as a comparative example, viewed from the display surface side.
  • 5 is a cross-sectional view taken along the line XX in FIG. 4.
  • FIG. FIG. 6 is a view of a part of the optical elements provided on the light guide plate as seen from the normal direction of the back surface of the light guide plate.
  • FIG. 7 is a YY cross-sectional view in FIG. FIG.
  • FIG. 8 is a diagram showing an example of a state in which the light emitting portion of the light guide plate is made invisible by the light distribution control of the light emitting portion.
  • FIG. 9 is a diagram showing an example of the shape of an optical element that constitutes the light emitting portion of the light guide plate.
  • FIG. 10 is a diagram showing values defining a concave optical element (FIG. 9) having a V-shaped cross section as an example of the optical element.
  • FIG. 11 is a diagram showing an example of a state in which a light-emitting portion is hidden by a light-shielding sheet provided with through holes.
  • FIG. 12 is a diagram showing an example of a state in which the light emitting portion is hidden by the louver sheet.
  • FIG. 13 is a diagram showing an example of a state in which the light emitting portion 4b is hidden by the polarizing reflective sheet, the retardation film, and the polarizing reflective sheet.
  • 14 is a cross-sectional view of an aerial display device showing a first improvement of the configuration of FIG. 13.
  • FIG. 15 is a cross-sectional view of an aerial display device showing a second improved example of the configuration of FIG.
  • FIG. 16 is a cross-sectional view of an aerial display device showing a third improved example of the configuration of FIG.
  • FIG. 17 is a cross-sectional view of an aerial display device showing a fourth improved example of the configuration of FIG.
  • FIG. 18 is a cross-sectional view of an aerial display device showing a fifth improved example of the configuration of FIG. FIG.
  • FIG. 19 is a diagram showing an example of luminance distribution around an aerial display.
  • FIG. 20 is a cross-sectional view showing a structural example of a retroreflective sheet.
  • FIG. 21 is a diagram illustrating an example of detection of a touch on an aerial display by an electrostatic sensor having sensor electrodes.
  • FIG. 1 is a diagram showing an example of an aerial display device 1 according to one embodiment, viewed from the display surface side.
  • FIG. 2 is a cross-sectional view taken along the line XX in FIG.
  • the aerial display device 1 shown in FIGS. 1 and 2 is assumed to be used as an operation panel installed on the wall surface of a private toilet, and the display surface faces the horizontal direction.
  • the aerial display device 1 has a linear light source 3 and a light guide plate 4, which constitute a planar light emitter, arranged in a frame 2 in which a substantially rectangular opening 2a is formed.
  • the linear light source 3 is a light source that emits linear light along the longitudinal direction (X-axis direction) of the light incident side surface 4 a of the light guide plate 4 .
  • the light guide plate 4 is made of a transparent material such as polycarbonate or acryl, guides the light incident from the light incident side surface 4a to the end side, and emits light formed by an optical element provided on the back surface (non-display surface) side. Light is reflected by the portion 4b.
  • the light is emitted in the direction where the eye point EP on the display surface side does not exist (lower left side in FIG. 2), and the light is emitted in the predetermined direction where the eye point EP exists. He is trying to suppress emitted light.
  • the eyepoint EP is a position that is assumed to be viewed by the user.
  • the light-emitting portion 4b of the light guide plate 4 covers the positions of the plurality of through-holes 5a, which may be used to represent a figure to be displayed in the air, in the retroreflective sheet 5 described later (the periphery of the through-holes 5a).
  • the light is emitted in a substantially rectangular area (shape viewed from the display surface side) that covers a predetermined range of the retroreflective sheet 5, or the position corresponding to one or more through holes 5a of the retroreflective sheet 5 is covered with a margin (through It is assumed that light is emitted from an area that also covers a predetermined range around the hole 5a.
  • the end portion of the light emitting portion 4b of the light guide plate 4 is set long in the light guide direction (Y-axis direction) from the position directly facing the outermost through hole 5a of the retroreflective sheet 5.
  • FIG. This long end is determined in consideration of light distribution, positional accuracy of members, etc., rather than the position where the optical axis extends in the opposite direction from the through hole 5a of the retroreflective sheet 5 and reaches the vicinity of the back side of the light guide plate 4. It is a position outside the .
  • the light emitting portion 4b of the light guide plate 4 extends substantially across the entire width of the light guide plate 4 in the lateral direction (X-axis direction).
  • the light-emitting portion 4b of the light guide plate 4 is set long in the light guide direction (Y-axis direction) and in the horizontal direction (X-axis direction) for each through hole 5a of the retroreflective sheet 5 .
  • the light guide plate 4 can be narrowed down to the light necessary for display, so that the light efficiency can be improved.
  • a reflective sheet 8 is arranged on the non-display surface side of the frame 2 so as to cover the opening 2a. , increasing the brightness.
  • the opening 2a may not be present on the non-display surface side of the frame 2 (it may be closed with a bottom plate), and the reflection sheet 8 may be provided on the non-display surface side of the light guide plate 4 .
  • a retroreflective sheet 5 having a plurality of through-holes 5a representing figures to be displayed in the air at positions corresponding to the light emitting portions 4b is placed on the output surface side (light guide plate 4 opposite side).
  • the through-holes 5a provided in the retroreflective sheet 5 are small dot-shaped round holes in the illustrated example, they may be holes of any shape forming a pictogram, for example. The same applies to through holes 5a in the following embodiments.
  • the retroreflective sheet 5 is a sheet on which transparent minute glass beads or the like are arranged without gaps on the surface, and has the property of emitting incident light through the same path (the incident angle and the emitting angle are the same).
  • a corner cube which uses the inner surface of the vertices of a cube in which three surfaces having the property of reflecting light are combined at right angles to each other, is also used. can do.
  • the cost is slightly higher, there is an advantage that the light utilization efficiency is high and the blurring of the aerial display (aerial image) is reduced.
  • a half mirror 6 is arranged on the display surface side of the frame 2 so as to cover the opening 2a, and a top cover 7 is superimposed on the half mirror 6 on the outside.
  • the top cover 7 can be omitted by applying a hard coat treatment to the outer side (viewing side) of the half mirror 6, but since the half mirror 6 is in the form of a film, a transparent resin plate for support is required. Become.
  • the hard coat treatment is performed for the purpose of scratch prevention, antifouling, antibacterial, etc. Even when the top cover 7 is arranged on the outside, it is preferable to apply the hard coat treatment to the top cover 7 .
  • the half mirror 6 is an optical member having a property of reflecting about half of the incident light and transmitting about the remaining half.
  • the top cover 7 is made of transparent material and serves to protect the half mirror 6 . By reducing the transmittance of the top cover 7, it becomes difficult to see the inside of the aerial display device 1 from the outside, and only the aerial display can be seen easily. Also, the retroreflective sheet 5 and the half mirror 6 may be arranged with a slight inclination to each other.
  • the light emitted from the light emitting portion 4b of the light guide plate 4 constituting the planar light emitter passes through the through hole 5a of the retroreflective sheet 5 and exits along the path L1. About half of this light is reflected by the half mirror 6 and strikes the retroreflective sheet 5 along the path L2. The light that hits the retroreflective sheet 5 returns to the half mirror 6 along the path L3 at the same exit angle as the incident angle, and about half of the light is transmitted. Even if the angle of the path L1 changes, the light emitted from a certain point of the light emitting part 4b passes through the same position outside the aerial display device 1 because of the geometric relationship.
  • An aerial display I by an image is performed and can be visually recognized from the user's eye point EP, and the user can be made to perform a touching action with the finger F.
  • FIG. 3 is a diagram showing an example of the layout of the operation panel 100 in the private toilet room.
  • An aerial display device 1 is arranged in front of the operation panel 100 .
  • the operation panel 100 is provided at a position on the wall W within easy reach of the user M sitting on the toilet seat T.
  • the height of the operation panel 100 from the floor surface is, for example, 1 m, and the horizontal position is equivalent to the position of the user M's knees.
  • the vertical viewing range of the aerial display I is, for example, 10 degrees to 35 degrees above the horizontal direction.
  • the horizontal viewing range of the aerial display I is, for example, ⁇ 40 degrees.
  • FIG. 4 is a view from the display surface side showing an example of an aerial display device 1' serving as a comparative example.
  • 5 is a cross-sectional view taken along the line XX in FIG. 4.
  • an aerial display device 1' includes a linear light source 3' and a light guide plate 4' forming a planar light emitter in a frame 2' having a substantially rectangular opening 2a'. are placed.
  • the linear light source 3' is a light source that emits linear light along the longitudinal direction of the light incident side surface 4a' of the light guide plate 4'.
  • the light guide plate 4' is made of a transparent material such as polycarbonate or acryl, guides the light incident from the light incident side surface 4a' to the end side, and is formed by an optical element provided on the rear surface (non-display surface) side. The light is reflected to the display surface side by the light emitting portion 4b'.
  • a retroreflective sheet 5' is arranged so as to cover the opening 2a' with the reflective surface facing the light guide plate 4' side.
  • a half mirror 6' is arranged on the display surface side of the frame 2' so as to cover the opening 2a', and a top cover 7' is superimposed on the outside of the half mirror 6'.
  • FIG. 6 is a view of a portion of the optical element 4c' provided on the light guide plate 4' as seen from the normal direction of the back surface of the light guide plate 4', and FIG. be.
  • the optical element 4c' is formed by cutting from the light guide plate 4' with a cutting tool such as a cutting tool, or by using a cutting tool to form ridges corresponding to the optical element 4c'.
  • An optical element 4c' is formed in the process of forming the light plate 4'.
  • the edge E of the optical element 4c' has a narrow width and a shallow depth, which reduces the amount of light reflected toward the exit surface side and makes the pattern boundary of the aerial display unclear.
  • the path of the light is long and there are many interfaces through which the light passes. That is, in FIG. 5, the light emitted from the light emitting portion 4b' travels along the path L1' ⁇ path L2' ⁇ path L3', and passes through the surface of the light guide plate 4' (the surface on the display surface side) and the back surface of the half mirror 6'.
  • the front and back surfaces of the light guide plate 4′ the surface (reflective surface) of the retroreflective sheet 5′, the back and front surfaces of the light guide plate 4′, the back and front surfaces of the half mirror 6′, and the back and front surfaces of the top cover 7′.
  • the long path of light makes it easy for light to diffuse, and the large number of interfaces makes it easy for light to diffuse and attenuate due to fine irregularities on the interface and impurities inside the transparent resin. becomes unclear.
  • the light emitted from the light emitting portion 4b travels along the path L1 ⁇ path L2 ⁇ path L3, and passes through the surface of the light guide plate 4, the back surface of the half mirror 6, and the retroreflective sheet 5.
  • the light passes through the front surface (reflecting surface), the rear surface and front surface of the half mirror 6, and the rear surface and front surface of the top cover 7, resulting in fewer interfaces to pass through and a shorter passage length of the transparent resin.
  • the pattern boundary of the aerial display can be made clear.
  • the cause of the above-mentioned "light emitting part is visible" is that in the comparative example of FIGS. 4 and 5, the light distribution from the light emitting part 4b' of the light guide plate 4' is not controlled, ' to eyepoint EP'. It is conceivable to control the light distribution so that the light from the light emitting portion 4b' of the light guide plate 4' does not go directly to the eye point EP', but it is difficult to completely eliminate the light going to the eye point EP'. Therefore, even if the light distribution is controlled, some unnecessary light directly advances to the eye point EP'.
  • FIG. 8 is a diagram showing an example of a state in which the light-emitting portion 4b of the light guide plate 4 is made invisible by light distribution control of the light-emitting portion 4b.
  • the light emitted from the light emitting portion 4b of the light guide plate 4 through the path L0 is greatly suppressed by the light distribution control, and the light of the normal path L1 becomes the main light, so that the light emitting portion is not seen.
  • FIG. 9 is a diagram showing an example of the shape of the optical element 4c that constitutes the light emitting portion 4b of the light guide plate 4.
  • the concave optical element having a V-shaped cross section is illustrated here, a concave optical element having a polygonal cross section or a top-flat arc-shaped cross section (arc-shaped with a flattened tip) may be used. It may be an optical element.
  • the pitch at which the optical elements 4c are arranged is, for example, 0.1 mm, but the value of the pitch is not limited to this value.
  • FIG. 10 is a diagram showing values defining a concave optical element (FIG. 9) having a V-shaped cross section as an example of the optical element 4c.
  • the optical element 4c is defined by a width D, an apex angle, and a base angle (angle A) on the light rising side.
  • the width D is 0.1 mm
  • the apex angle is 60 degrees
  • the angle A is a variable.
  • apex angle 60 degrees
  • angle A 32 degrees from the simulation results.
  • the horizontal visual field range of ⁇ 40 degrees is realized by light distribution in the horizontal direction by the linear light source 3 . Note that the light distribution control not only prevents the light emitting portion from being seen, but also eliminates light emission in useless directions, thereby increasing the light efficiency and improving the brightness.
  • FIG. 11 is a diagram showing an example of a state in which the light-emitting portion 4b is hidden by the light-shielding sheet 9 provided with the through holes 9a.
  • the difference from FIG. 2 is that a plurality of through holes 9a corresponding to the through holes 5a of the retroreflective sheet 5 are shifted as new optical members between the retroreflective sheet 5 and the light guide plate 4.
  • the difference is that the provided light shielding sheet 9 is provided.
  • the through holes 9a of the light shielding sheet 9 are provided above the through holes 5a of the retroreflective sheet 5, the light on the upward path L0 is suppressed and the light on the downward path L1 is suppressed. become the master.
  • FIG. 12 is a diagram showing an example of a state in which the louver sheet 10 hides the light emitting portion 4b.
  • a louver sheet 10 is provided as a new optical member between the retroreflective sheet 5 and the light guide plate 4 to pass light in a predetermined direction (diagonally downward in the figure). This is the point.
  • the louver sheet 10 suppresses light on the upward path L0 and mainly emits light on the downward path L1.
  • FIG. 13 is a diagram showing an example of a state in which the light-emitting portion 4b is hidden by the polarizing reflecting sheet 11, the retardation film 12, and the polarizing reflecting sheet 13.
  • FIG. 13 differs from FIG. 2 in that a polarizing reflecting sheet 11, a retardation film 12, and a polarizing reflecting sheet 13 are provided as new optical members.
  • a polarizing reflection sheet 11 is arranged between the retroreflection sheet 5 and the light guide plate 4 . Incidentally, the polarizing reflection sheet 11 only needs to cover the through holes 5a of the retroreflection sheet 5, but it may be laminated over the entire surface.
  • the retardation film 12 is arranged on the exit surface side of the retroreflective sheet 5 , and has through holes 12 a at the same positions as the through holes 5 a of the retroreflective sheet 5 .
  • the phase difference of the retardation film 12 is ⁇ /4
  • the retardation axis in the XY plane is the polarization axis of the incident light (reflection axis or transmission axis of the polarizing reflection sheet 13, basically reflecting
  • the axis and transmission axis are arranged horizontally or vertically, resulting in a positive or negative 45° tilt with respect to the X or Y axis.
  • the polarizing reflecting sheet 13 is provided in place of the half mirror 6 ( FIG. 2 ), and is arranged so that the transmission axis (direction of polarized light to be transmitted) is orthogonal to the polarizing reflecting sheet 11 .
  • the light emitted from the light emitting portion 4b of the light guide plate 4 along the path L0 is polarized by the polarizing reflection sheet 11 and oscillates, for example, in the depth direction of the drawing. It passes through the through holes 12 a of the retardation film 12 and reaches the polarizing reflection sheet 13 . The state of polarization does not change in the through holes 5a and 12a.
  • the polarizing reflection sheet 13 is arranged in a direction to pass polarized waves vibrating, for example, in the vertical direction in the figure, the light on the path L0 is suppressed.
  • the light emitted from the light emitting portion 4b of the light guide plate 4 along the path L1 is polarized by the polarizing reflection sheet 11 and vibrates, for example, in the depth direction of the paper surface of the drawing. It passes through 12 through-holes 12 a and reaches the polarizing reflection sheet 13 .
  • the polarizing reflection sheet 13 is arranged, for example, in a direction to pass the polarized wave vibrating in the vertical direction in the figure, almost all of it is reflected to form a path L2, passes through the retardation film 12, and is retroreflected. The light is retroreflected by the sheet 5, passes through the retardation film 12 again, and becomes the path L3.
  • the polarized wave changes to vibrate in the vertical direction, passes through the polarizing reflection sheet 13, and becomes part of the aerial display I.
  • a depolarizing sheet for example, Cosmo Shine SRF manufactured by Toyobo Co., Ltd.
  • the polarizing reflecting sheet 13 polarization If it is arranged on the visible side of the reflective sheet 13 and the absorption type polarizing sheet 13A of FIG. 17 or 18), the aerial display I can be visually recognized.
  • the cause of the above "multiple images are visible" is that in the comparative example shown in FIGS. 4 and 5, the interface when passing through the light guide plate 4' mainly on the paths L2' and L3' is visible. It depends. In this respect, in the embodiments of FIGS. 1 and 2, the light exiting through the through holes 5a of the retroreflective sheet 5 on the path L1 does not pass through the interface of the light guide plate 4, so multiple images are visible. will be gone.
  • FIGS. 14 to 18 show the light from the light emitting portion 4b of the light guide plate 4 through the through hole 5a of the retroreflective sheet 5 in the eyepoint direction by the polarizing reflecting sheets 11 and 13 and the retardation film 12 explained in FIG.
  • This is an improved example of a configuration (polarization configuration) that makes the light emitted directly to the polarizer invisible. That is, in the configuration of FIG. 13, return light (light traveling in the opposite direction of path L1) reflected by polarized light reflecting sheet 13 of polarized light oscillating in the vertical direction of path L3 passes through through holes 12a and 5a. It passes through and hits the polarizing reflection sheet 11 .
  • the polarizing reflection sheet 13 basically reflects polarized light vibrating in the depth direction of the drawing, but also reflects some polarized light vibrating in the vertical direction of the drawing. Since the polarizing reflecting sheet has a lower degree of polarization than the absorbing polarizing sheet, it transmits and reflects polarized light in directions other than the transmission axis direction. In other words, the polarizing reflection sheet alone has a low degree of polarization and the transmission axis is shifted from the horizontal/vertical direction, which causes the aperture to appear. Also, the transmission axis of the polarizing reflection sheet 13 is slightly deviated from the horizontal and vertical directions.
  • the retardation film 12 does not have a delay amount of ⁇ /4 for all wavelengths in the visible range, the polarization of the light on the path L3 is completely polarized light that oscillates vertically in the figure. It's not working.
  • the polarizing reflection sheet 13 reflects not only the light on the path L3 but also the polarized light that oscillates in the vertical direction. Since the polarizing reflection sheet 11 transmits polarized waves in the depth direction in the drawing and reflects polarized waves oscillating in the vertical direction in the drawing, the returned light, which is polarized waves oscillating in the vertical direction in the drawing, is reflected. The light passes through the outer polarizing reflection sheet 13 as it is and goes out.
  • the light transmitted through the polarizing reflecting sheet 11 is reflected by a planar light emitter (a prism sheet may be included in addition to the light guide plate 4 and the reflecting sheet 8), and part of the light transmitted through the polarizing reflecting sheet 11 passes through the polarizing reflection sheet 13 .
  • a planar light emitter a prism sheet may be included in addition to the light guide plate 4 and the reflecting sheet 8
  • part of the light transmitted through the polarizing reflecting sheet 11 passes through the polarizing reflection sheet 13 .
  • the openings of the through holes 12a and 5a appear as if they are shining, and the visibility of the aerial display I is reduced.
  • the countermeasure is the configuration of FIG.
  • FIG. 14 is a cross-sectional view of the aerial display device 1 showing a first improved example of the configuration of FIG. 14 differs from the configuration of FIG. 13 in that the polarizing reflecting sheet (reflecting polarizing sheet) 11 is replaced with an absorbing polarizing sheet 11A. It is the same as the reflective sheet 11 .
  • a reflective polarizing sheet has a property of reflecting polarized light that is not transmitted, whereas an absorptive polarizing sheet has a property of absorbing polarized light that is not transmitted.
  • the transmission axis of the absorbing polarizing sheet 11A is hardly deviated from the horizontal or vertical direction of the sheet.
  • the light emitted from the light emitting portion 4b of the light guide plate 4 along the path L1 is absorbed by the absorptive polarizing sheet 11A, for example, the polarized wave component vibrating in the vertical direction of the drawing paper. It becomes a polarized wave vibrating in a direction, passes through the through hole 5 a of the retroreflective sheet 5 and the through hole 12 a of the retardation film 12 , and reaches the polarizing reflecting sheet 13 .
  • the polarizing reflection sheet 13 is arranged, for example, in a direction to pass the polarized wave vibrating in the vertical direction in the figure, almost all of it is reflected to form a path L2, passes through the retardation film 12, and is retroreflected.
  • the light is retroreflected by the sheet 5, passes through the retardation film 12 again, and becomes the path L3.
  • the phase is shifted by ⁇ /2 by passing through the retardation film 12 twice, the polarized wave changes to oscillate in the vertical direction in the figure, passes through the polarizing reflection sheet 13, and passes through the aerial display I. become a department.
  • the light emitted from the light emitting portion 4b of the light guide plate 4 along the path L1 strikes the absorptive polarizing sheet 11A. Since the waves are absorbed, the loss of light is large, and finally the brightness of the aerial display I is lowered.
  • the countermeasure is the configuration of FIG.
  • FIG. 15 is a cross-sectional view of the aerial display device 1 showing a second improved example of the configuration of FIG. 15 differs from the configuration of FIG. 14 in that a reflective polarizing sheet 11R is provided between the absorptive polarizing sheet 11A and the light guide plate 4.
  • the transmission axis of the reflective polarizing sheet 11R coincides or substantially coincides with that of the absorptive polarizing sheet 11A. It should be noted that the deviation of the transmission axes of the bottom (on the light guide plate 4 side) absorptive polarizing sheet 11A and reflective polarizing sheet 11R does not significantly affect the brightness and aperture visibility.
  • the light emitted from the light emitting portion 4b of the light guide plate 4 along the path L1 strikes the reflective polarizing sheet 11R before the absorbing polarizing sheet 11A.
  • a polarized wave that oscillates vertically is reflected.
  • the light reflected by the reflective polarizing sheet 11R returns to the light guide plate 4 and is reused. Operations after the absorbing polarizing sheet 11A are the same as in FIG. Therefore, the loss of light due to the absorptive polarizing sheet 11A is eliminated, and the brightness of the aerial display I is improved.
  • the light reflected by the reflective polarizing sheet 11R and returned to the light guide plate 4 (the polarized wave vibrating in the vertical direction in the drawing) is reflected in a complicated manner inside the light guide plate 4, or is planarly polarized. Due to the phase difference of the optical parts of the light emitter (light guide plate 4, prism sheet, etc.), when converted into a polarized wave that oscillates in the depth direction of the figure, it passes through the reflective polarizing sheet 11R. , can contribute to improving the brightness of the aerial display I. However, if the polarization direction does not change inside the light guide plate 4, it cannot be expected to contribute to the improvement of luminance.
  • the countermeasure is the configuration of FIG.
  • FIG. 16 is a cross-sectional view of the aerial display device 1 showing a third improved example of the configuration of FIG. 16 differs from the configuration of FIG. 15 in that a retardation film 15 is arranged between the reflective polarizing sheet 11R and the light guide plate 4.
  • the phase difference of the retardation film 15 is ⁇ /4
  • the retardation axis in the XY plane is the polarization axis of the incident light (reflection axis or transmission axis of the polarizing reflection sheet 13, basically reflecting
  • the axis and transmission axis are arranged horizontally or vertically, resulting in a positive or negative 45° tilt with respect to the X or Y axis.
  • the absorptive polarizing sheet 11A, the reflective polarizing sheet 11R, and the retardation film 15 may be simply laminated, but when they are adhered together, interfacial reflection is reduced, contributing to improvement in brightness. do.
  • the light emitted from the light emitting portion 4b of the light guide plate 4 along the path L1 passes through the retardation film 15.
  • the light reflected by the reflective polarizing sheet 11R in the subsequent stage and returned to the light guide plate 4 (the polarized wave vibrating in the vertical direction in the drawing) passes through the retardation film 15 and passes through the light guide plate 4 again. Since it passes through the retardation film 15 and passes through the retardation film 15 twice, it is converted into a polarized wave that oscillates in the depth direction of the figure. Therefore, the light can pass through the reflective polarizing sheet 11R in the latter stage, and can contribute to the improvement of the brightness of the aerial display I. Subsequent operations are the same.
  • the emitted light from the light guide plate 4 is slightly polarized, it is slightly affected by the retardation caused by the retardation film 15 .
  • the reflective polarizing sheet 11R is of the linear polarization type, the more the polarization of the transmission axis component, the more the transmitted light.
  • the retardation film 15 may be arranged on the light guide plate 4 side of the polarizing reflection sheet 11 in FIG.
  • polarized waves oscillating in the vertical direction in the figure are passed by the polarizing reflection sheet 13 on the exit side, and polarized waves oscillating in the depth direction in the figure are internally reflected and blocked.
  • the transmission axis of the film-type polarizing reflection sheet 13 is slightly deviated from the horizontal and vertical axes of the sheet. This causes the opening of 5a to appear as if it is shining. For example, part of the light on path L0 in FIG. 13 is visible from the outside.
  • the countermeasure is the configuration of FIG.
  • FIG. 17 is a cross-sectional view of the aerial display device 1 showing a fourth improved example of the configuration of FIG. 17 differs from the configuration of FIG. 16 in that an absorptive polarizing sheet 13A is arranged between the polarizing reflecting sheet 13 and the top cover 7.
  • the transmission axis of the absorbing polarizing sheet 13A is substantially the same as that of the polarizing reflecting sheet 13A. If the transmission axes of the absorptive polarizing sheet 13A and the polarizing reflecting sheet 13 are completely positioned, the effect is reduced. The best effect can be obtained when the respective transmission axes are aligned and perpendicular to the absorbing polarizing sheet 11A.
  • the transmission axis is not 90 degrees with the absorbing polarizing sheet 11A, the effect is reduced. Since the polarizing reflecting sheet has a lower degree of polarization than the absorbing polarizing sheet, the transmission and reflection of polarized light in a direction other than the transmission axis direction also causes the appearance of the aperture. Therefore, when the respective transmission axes are aligned and orthogonal to the absorptive polarizing sheet 11A, the light is transmitted and reflected with the least loss, so that the brightness increases and the aperture visibility can be reduced.
  • the transmission axis of the polarizing reflection sheet 13 is slightly deviated from the vertical, if the transmission axis of the absorptive polarizing sheet 13A coincides with the deviated direction, it will cause the opening to appear. More precisely, the transmission axis of the absorbing polarizing sheet 11A and the transmitting axis of the absorbing polarizing sheet 13A are perpendicular to each other. Also, although FIG. 17 shows an example of improvement based on FIG. 16, similar improvements may be made based on FIGS. 13-15.
  • the retardation film 12 is provided on the exit side of the retroreflective sheet 5.
  • the light on the path L2 in FIG. 17 is retroreflected by the retroreflective sheet 5 through the retardation film 12.
  • specular reflection also occurs on the surface of the retardation film 12, which causes unwanted aerial images.
  • the countermeasure is the configuration of FIG.
  • FIG. 18 is a cross-sectional view of the aerial display device 1 showing a fifth improved example of the configuration of FIG. 18 differs from the configuration of FIG. 17 in that a low-reflection sheet 16 is provided on the exit side of the retardation film 12 .
  • the low reflection sheet 16 is provided with through holes 16 a at the same positions as the through holes 12 a of the retardation film 12 and the through holes 5 a of the retroreflective sheet 5 .
  • the through holes 5a, 12a and 16a are formed at the same time.
  • An example of improvement based on FIG. 17 is shown in FIG. 18, but similar improvements may be made based on FIGS. 13-16.
  • Table 1 below shows the calculation results of the brightness and contrast of the aerial display I, etc. by combining sheets or films.
  • Table 1 the leftmost column indicates the drawing number of the corresponding configuration. Variants #1-#3 are not represented in the figure. Note that Table 1 does not cover all combinations, and other configurations are possible.
  • “Bottom” is a sheet or film placed between the light guide plate 4 and the retroreflective sheet 5
  • “Middle” is a sheet or film around the retroreflective sheet 5
  • “Top” is the top cover 7.
  • LV is a louver sheet
  • ⁇ /4" is a retardation sheet
  • rPol is a reflective polarizing sheet
  • aPol is an absorptive polarizing sheet
  • black is an absorbing sheet
  • RR is a retroreflective sheet.
  • FIG. 19 is a diagram showing an example of the luminance distribution around the mid-air display. is the luminance distribution measured so that the center of the aerial display I is located at the center of . Since the image is tilted at 23 degrees, the image NI1 of the opening due to the through hole 5a of the retroreflective sheet 5, the aerial display I, and the unnecessary image NI2 do not overlap, and luminance can be evaluated by each image.
  • the unnecessary image NI2 is an aerial image generated at a position twice the distance between the aerial display I and the polarizing reflection sheet 13. FIG. In FIG.
  • the center is the main aerial image corresponding to the aerial display I
  • the upper image NI1 corresponds to the openings such as the through holes 5a of the retroreflective sheet 5
  • the lower image NI2 is the retroreflective sheet 5, etc. This is an unnecessary aerial image due to surface reflection and multiple reflection.
  • the configuration of FIG. 18 has the highest brightness “A” of the main aerial image
  • the configuration of variant #2 has the highest contrast CT1
  • the highest contrast CT2 is the configuration of FIG. is the configuration.
  • FIG. 20 is a cross-sectional view showing a structural example of the retroreflective sheet 5.
  • the retroreflective sheet 5 has a prism 5c with an apex angle of 90° forming a corner cube formed on the back side of a transparent plate, and a reflective layer 5d made of metal vapor deposition or the like on the outside of the prism 5c to form a reflective surface.
  • the surface on which the reflective layer 5d is formed has triangular prisms arranged vertically and horizontally.
  • a black light-shielding sheet 5f for example, is attached to the back surface of the reflective layer 5d via an adhesive 5e.
  • the light shielding sheet 5f does not have to be black or the like. Further, in order to improve the contrast, a diffusion sheet having a scattering characteristic equivalent to that of the light shielding sheet may be arranged as the light shielding sheet 5f.
  • the retroreflective sheet 5 having such a structure is used in the configurations shown in FIGS. Leakage of light from the part is reduced, and a decrease in contrast of the aerial display I is prevented.
  • the light shielding sheet 5f behind the retroreflective sheet 5 in FIG. 20 not only has a high light shielding property, but also that the contrast of the aerial display I is affected by the scattering state of the surface on the side of the light guide plate 4.
  • Table 2 shows "aerial image evaluation” and "black film evaluation” for the light-shielding sheet (black film) 5f specified by "manufacturer” and "trade name”.
  • PMMA immediately below "manufacturer” and "trade name” means acrylic resin, and corresponds to the state in which the light shielding sheet is not provided.
  • the 'Aerial Image Rating' includes the brightness of the main aerial image 'AI', the brightness of the aperture 'Aperture', the contrast 'CT' and the 'leakage'.
  • AI corresponds to “A” in Table 1 above
  • aperture corresponds to “B” in Table 1
  • CT corresponds to "CT1” in Table 1.
  • Black film evaluation includes “total light transmission”, “total reflection”, “specular reflection” and “glossiness”.
  • Table 3 includes "total thickness", “base material”, “surface” and “coating treatment” for the light shielding sheet (black film) 5f specified by the "manufacturer” and "trade name”.
  • AG of "surface” means anti-glare treatment.
  • the light emitted from the light guide plate 4 is reflected by the light shielding sheet of the retroreflective sheet 5 on the side of the light guide plate 4, reflected by the surface of the light guide plate 4, passes through the opening of the through hole 5a, and reaches the eye point EP.
  • the specular reflection of the light shielding sheet is small, this noise component becomes small and the brightness of the aperture becomes small.
  • FIG. 21 is a diagram showing an example of detection of a touch on the aerial display I by an electrostatic sensor having sensor electrodes 14A and 14B. 21 differs from FIG. 2 in that a pair of sensor electrodes 14A and 14B are provided outside the through hole 5a of the retroreflective sheet 5 on the exit surface side.
  • a voltage between the sensor electrodes 14A and 14B electric lines of force are generated as indicated by broken lines, and in the process of touching the aerial display I with the user's finger F, the lines of electric force are changed by the finger F at the ground level. , and a touch on the aerial display I can be detected from the change.
  • an IR (infrared) sensor or the like may be used to detect the contact of the finger F with the aerial display I and control the on/off of the corresponding function.
  • the retroreflection sheet 5 for example, a prism type is adopted.
  • the prism surface of the retroreflection sheet 5 is vapor-deposited with Al, so light hardly penetrates except through the through holes 5a.
  • the electrostatic sensor since metal blocks electric lines of force, the electrostatic sensor must be arranged on the exit surface side of the retroreflective sheet 5 . Since the imaging distance of the aerial image depends on the distance between the half mirror 6 and the retroreflective sheet 5, if the aerial image is to be formed at a position away from the top cover 7, the half mirror 6 and the retroreflective sheet The distance between 5 becomes longer. Therefore, the dead space can be utilized by arranging the sensor electrodes 14A and 14B and the control board in the gap.
  • the sensor electrodes 14A and 14B and the control board are arranged so as not to obstruct the optical path.
  • the control substrate is preferably black or printed in black so that stray light is not diffusely reflected. The black color makes it difficult to see the sensor electrodes 14A and 14B and the control board from the viewing side. 21 is based on the configuration of FIG. 2, it may be based on the configurations of FIGS. 11 to 18. FIG.
  • the aerial display device includes a planar light emitter having a light emitting unit, and a graphic displayed in the air at a position corresponding to the light emitting unit, which is arranged on the emission surface side of the planar light emitter.
  • a retroreflective sheet having a plurality of through holes, and a half mirror arranged on the exit surface side of the retroreflective sheet.
  • the light distribution of the planar light emitter is controlled in a predetermined direction.
  • the light distribution can be controlled by the planar light emitter alone, and the problem of the light emitting portion being visible can be resolved.
  • planar light emitter has a linear light source and a light guide plate, and the light emitting section is composed of optical elements. Thereby, a planar light-emitting body can be easily realized.
  • It also has an optical member that suppresses light emitted from the through hole of the retroreflective sheet in the direction where the eye point exists. This makes it possible to more effectively solve the problem that the light emitting portion is visible.
  • the optical member is a light-shielding sheet that is arranged between the retroreflective sheet and the planar light emitter and provided with a plurality of through-holes corresponding to the through-holes of the retroreflective sheet.
  • the optical member is a louver sheet that is arranged between the retroreflective sheet and the planar light emitter and allows light in a predetermined direction to pass therethrough.
  • the light distribution control by the planar light emitter can be supplemented, and the problem that the light emitting portion is visible can be solved more effectively.
  • the optical member includes a first reflective polarizing sheet arranged between the retroreflective sheet and the planar light emitter, and an optical member arranged on the exit surface side of the retroreflective sheet at the same position as the through hole of the retroreflective sheet. and a second reflective polarizing sheet provided in place of the half mirror.
  • It also includes an absorptive polarizing sheet provided in place of the first reflective polarizing sheet. This prevents the opening of the through-hole from appearing shiny due to the light reflected by the first polarizing reflective sheet through the through-hole of the retroreflective sheet, thereby preventing a decrease in the visibility of the aerial display. .
  • a second retardation film is provided between the planar light emitter and the reflective polarizing sheet adjacent to the emission surface side of the planar light emitter.
  • It also includes another absorptive polarizing sheet provided on the exit surface side of the second reflective polarizing sheet. This prevents the transmission of unnecessary polarized light components caused by the deviation of the transmission axis of the second polarizing reflection sheet, thereby improving the visibility of the aerial display.
  • a low-reflection sheet provided on the exit surface side of the first retardation film is also provided. As a result, unnecessary aerial images due to reflection on the surface of the first retardation film are suppressed, visibility of the aerial display is improved, and brightness of the aerial display is also improved.
  • the surface of the light-shielding sheet facing the planar light emitter is treated with anti-glare treatment to reduce specular reflection. This reduces the appearance of the opening of the through-hole shining due to the reflection on the surface of the retroreflective sheet on the planar light emitter side, thereby improving the contrast.
  • the light-emitting portion of the planar light emitter emits light in a substantially rectangular area covering the position of the through-hole that may be used to represent a figure to be displayed in the air, or the through-hole of the retroreflective sheet. Emit an area covering the position corresponding to . Accordingly, it is possible to provide options for the configuration of the light emitting section.
  • a reflective sheet is provided on the side opposite to the emission surface of the planar light emitter. This can reduce light leakage, increase light efficiency, and increase brightness.
  • a pair of sensor electrodes constituting an electrostatic sensor are provided outside the through-hole on the exit surface side of the retroreflective sheet. This makes it possible to configure a non-contact switch suitable for aerial display.
  • the present invention is not limited by the above-described embodiment.
  • the present invention also includes those configured by appropriately combining the respective constituent elements described above. Further effects and modifications can be easily derived by those skilled in the art. Therefore, broader aspects of the present invention are not limited to the above-described embodiments, and various modifications are possible.
  • 1 aerial display device 2 frame, 2a aperture, 3 linear light source, 4 light guide plate, 4a light incident side surface, 4b light emitting part, 5 retroreflective sheet, 5a through hole, 6 half mirror, 7 top cover, 8 reflective sheet, 9 light shielding sheet, 9a through hole, 10 louver sheet, 11 polarizing reflective sheet, 11A absorptive polarizing sheet, 11R reflective polarizing sheet, 12 retardation film, 13 polarizing reflective sheet, 13A absorptive polarizing sheet, 14A, 14B sensor electrode , EP eye point, I mid-air display, F finger

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Theoretical Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)

Abstract

実施形態の空中表示装置(1)は、面状発光体(3、4)と、再帰反射シート(5)と、ハーフミラー(6)とを備える。前記面状発光体(3、4)は、発光部(4b)を有する。前記再帰反射シート(5)は、前記面状発光体(3、4)の出射面側に配置され、前記発光部(4b)に対応する位置に空中表示する図形を表した複数の貫通孔(5a)を有する。前記ハーフミラー(6)は、前記再帰反射シート(5)の出射面側に配置される。

Description

空中表示装置
 本発明は、空中表示装置に関する。
 従来から、再帰反射シートやハーフミラーが用いられ、空中に画像を結像させる空中表示装置が提案されている(例えば、特許文献1、2等を参照)。
特開2018-81138号公報 特開2017-107165号公報
 しかしながら、従来の技術では、画像が結像される位置を調整しやすくしたり、空中に表示される画像を広い角度から観察可能としたりすることを主な目的としており、空中表示の質の向上を目指すものではなかった。
 本発明は、上記に鑑みてなされたものであって、空中表示の質の向上を図ることのできる空中表示装置を提供することを目的とする。
 上述した課題を解決し、目的を達成するために、本発明の一態様に係る空中表示装置は、面状発光体と、再帰反射シートと、ハーフミラーとを備える。前記面状発光体は、発光部を有する。前記再帰反射シートは、前記面状発光体の出射面側に配置され、前記発光部に対応する位置に空中表示する図形を表した複数の貫通孔を有する。前記ハーフミラーは、前記再帰反射シートの出射面側に配置される。
 本発明の一態様に係る空中表示装置は、空中表示の質の向上を図ることができる。
図1は、一実施形態にかかる空中表示装置の例を示す表示面側から見た図である。 図2は、図1におけるX-X断面図である。 図3は、トイレ個室内における操作パネルの配置例を示す図である。 図4は、比較例となる空中表示装置の例を示す表示面側から見た図である。 図5は、図4におけるX-X断面図である。 図6は、導光板に設けられた光学素子の一部を導光板の裏面の法線方向から見た図である。 図7は、図6におけるY-Y断面図である。 図8は、導光板の発光部の配光制御により発光部を見えなくした状態の例を示す図である。 図9は、導光板の発光部を構成する光学素子の形状の例を示す図である。 図10は、光学素子の一例として断面形状がV形状の凹型の光学素子(図9)を規定する値を示す図である。 図11は、貫通孔が設けられた遮光シートにより発光部を見えなくした状態の例を示す図である。 図12は、ルーバーシートにより発光部を見えなくした状態の例を示す図である。 図13は、偏光反射シート、位相差フィルムおよび偏光反射シートにより発光部4bを見えなくした状態の例を示す図である。 図14は、図13の構成の第1の改良例を示す空中表示装置の断面図である。 図15は、図13の構成の第2の改良例を示す空中表示装置の断面図である。 図16は、図13の構成の第3の改良例を示す空中表示装置の断面図である。 図17は、図13の構成の第4の改良例を示す空中表示装置の断面図である。 図18は、図13の構成の第5の改良例を示す空中表示装置の断面図である。 図19は、空中表示の周辺の輝度分布の例を示す図である。 図20は、再帰反射シートの構造例を示す断面図である。 図21は、センサ電極を有する静電センサによる空中表示へのタッチの検知の例を示す図である。
 以下、実施形態に係る空中表示装置について図面を参照して説明する。なお、この実施形態によりこの発明が限定されるものではない。また、図面における各要素の寸法の関係、各要素の比率などは、現実と異なる場合がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。また、1つの実施形態や変形例に記載された内容は、原則として他の実施形態や変形例にも同様に適用される。
 図1は、一実施形態にかかる空中表示装置1の例を示す表示面側から見た図である。図2は、図1におけるX-X断面図である。なお、図1および図2における空中表示装置1は、個室トイレ内の壁面等に設置される操作パネルに採用されることが想定されており、表示面が水平方向を向いている。
 図1および図2において、空中表示装置1は、略矩形状の開口2aが形成されたフレーム2内に、面状発光体を構成する線状光源3と導光板4とが配置されている。線状光源3は、導光板4の入光側面4aの長手方向(X軸方向)に沿って線状に発光する光源である。導光板4は、ポリカーボネートやアクリル等の透明材料により形成され、入光側面4aから入射された光を終端側まで導き、裏面(非表示面)側に設けられた、光学素子により形成される発光部4bにより光を反射する。
 なお、この実施形態では、発光部4bの光学素子の調整により、表示面側のアイポイントEPが存在しない方向(図2における左下側)に光を出射し、アイポイントEPが存在する所定方向に出射する光を抑制するようにしている。アイポイントEPは、ユーザが目視することが想定される位置である。
 また、導光板4の発光部4bは、後述する再帰反射シート5における、空中表示する図形を表すのに用いられる可能性のある複数の貫通孔5aの位置を余裕をもってカバー(貫通孔5aの周囲の所定範囲もカバー)する略矩形状の領域(表示面側から見た形状)を発光するか、または、再帰反射シート5の1または複数の貫通孔5aに対応する位置を余裕をもってカバー(貫通孔5aの周囲の所定範囲もカバー)する領域を発光するものとする。前者の場合、導光板4の発光部4bの端部は、再帰反射シート5のいちばん外側の貫通孔5aに正対する位置から導光方向(Y軸方向)に長く設定される。この長く設定された端部は、再帰反射シート5の貫通孔5aから光軸を逆方向に伸ばして導光板4の裏側付近に到達する位置よりも、配光や部材の位置精度等を考慮してより外側の位置である。横方向(X軸方向)について、導光板4の発光部4bは、導光板4のほぼ全幅に延びるものとなる。後者の場合、導光板4の発光部4bは、再帰反射シート5の各貫通孔5aについて、導光方向(Y軸方向)と横方向(X軸方向)とについて長く設定される。前者の場合、空中表示する図形を変更する場合、再帰反射シート5の貫通孔5aを変更すればよいため、対応が容易になる。また、後者の場合、導光板4から出る光を表示に必要なものに絞ることができるため、光効率を高めることができる。
 また、フレーム2の非表示面側には、開口2aを覆うように、反射シート8が配置されており、導光板4から背面側へ漏れる光を導光板4に戻すことで、光効率を高め、輝度を高めている。なお、フレーム2の非表示面側に開口2aはなくてもよく(底板で塞がれていてもよい)、導光板4の非表示面側に反射シート8が設けられていればよい。
 また、導光板4の出射面側には、発光部4bに対応する位置に空中表示する図形を表した複数の貫通孔5aを有する再帰反射シート5が、反射面を出射面側(導光板4とは反対側)に向けて配置されている。なお、再帰反射シート5に設けられる貫通孔5aは、図示の例ではドット状の小さな丸孔となっているが、例えばピクトグラムを構成する任意の形状の孔でもよい。以下の実施形態における貫通孔5aについても同様である。再帰反射シート5は、透明の微小なガラスビーズ球などが表面に隙間なく配置され、入射された光を同じ経路で出射(入射角と出射角が同じ)する性質を有したシートである。再帰反射シート5としては、ガラスビーズ球の他に、コーナーキューブと呼ばれる、光を反射する性質を持った3枚の面が互いに直角に組み合わされた、立方体の頂点の内面を利用したものも使用することができる。この場合、コストは若干高くなるが、光利用効率が高く、空中表示(空中像)のボケが少なくなるという利点がある。
 また、フレーム2の表示面側には、開口2aを覆うようにハーフミラー6が配置され、ハーフミラー6にはトップカバー7が外側に重ねられている。なお、ハーフミラー6の外側(視認側)にハードコート処理を施すことにより、トップカバー7を省略することもできるが、ハーフミラー6はフィルム状であるため、支持用の透明樹脂板が必要となる。なお、ハードコート処理は、傷防止や汚れ防止、抗菌などを目的として施されるものであり、トップカバー7が外側に配置される場合でも、トップカバー7にハードコート処理を施すのが好ましい。ハーフミラー6は、入射された光の半分程度を反射し、残りの半分程度を透過させる性質を有した光学部材である。トップカバー7は、透明材料により形成され、ハーフミラー6を保護するためのものである。なお、トップカバー7の透過度を下げることにより、外部から空中表示装置1の内部が見えづらくなり、空中表示だけを見やすくすることができる。また、再帰反射シート5とハーフミラー6とは、互いに少し傾けて配置されるものであってもよい。
 図2において、面状発光体を構成する導光板4の発光部4bから出た光は再帰反射シート5の貫通孔5aを通って経路L1で出る。この光は、半分程度がハーフミラー6で反射され、経路L2により再帰反射シート5に当たる。再帰反射シート5に当たった光は、入射角と同じ出射角で経路L3によりハーフミラー6に戻り、半分程度が透過する。発光部4bのある点から出た光は、経路L1の角度が変わっても幾何学的な関係から空中表示装置1外の同じ位置を通過するため、ハーフミラー6およびトップカバー7の外側に空中像による空中表示Iが行われ、ユーザのアイポイントEPから視認することができ、ユーザに指Fにより触れる動作を行わせることができる。
 図3は、トイレ個室内における操作パネル100の配置例を示す図である。操作パネル100の前面には空中表示装置1が配置されている。図3においては、便座Tに腰かけた利用者Mが容易に手の届く壁W上の位置に操作パネル100が設けられている。操作パネル100の床面からの高さは例えば1m、水平位置は利用者Mの膝の位置と同等である。このような操作パネル100の配置に対し、日本人の平均座高を考慮すると、空中表示Iの垂直方向の視野範囲は、例えば、水平方向を基準として、上方向に10deg~35degとなる。空中表示Iの水平方向の視野範囲は、例えば±40degとなる。
 図4は、比較例となる空中表示装置1’の例を示す表示面側から見た図である。図5は、図4におけるX-X断面図である。図4および図5において、空中表示装置1’は、略矩形状の開口2a’が形成されたフレーム2’内に、面状発光体を構成する線状光源3’と導光板4’とが配置されている。線状光源3’は、導光板4’の入光側面4a’の長手方向に沿って線状に発光する光源である。導光板4’は、ポリカーボネートやアクリル等の透明材料により形成され、入光側面4a’から入射された光を終端側まで導き、裏面(非表示面)側に設けられた、光学素子により形成される発光部4b’により光を表示面側に反射する。
 また、フレーム2’の非表示面側には、開口2a’を覆うように、反射面を導光板4’側に向けて再帰反射シート5’が配置されている。また、フレーム2’の表示面側には、開口2a’を覆うようにハーフミラー6’が配置され、ハーフミラー6’にはトップカバー7’が外側に重ねられている。
 図5において、透明表示装置を構成する導光板4’の発光部4b’から経路L1’で出た光は、半分程度がハーフミラー6’で反射され、経路L2’により導光板4’を通過して再帰反射シート5’に当たる。再帰反射シート5’に当たった光は、入射角と同じ出射角で経路L3’によりハーフミラー6’に戻り、半分程度が透過する。発光部4b’のある点から出た光は、経路L1’の位置が変わっても幾何学的な関係から空中表示装置1’外の同じ位置を通過するため、ハーフミラー6’およびトップカバー7’の外側に空中像による空中表示I’が行われ、ユーザのアイポイントEP’から視認することができる。
 ここで、図4および図5に示された比較例では、
・空中表示のパターン境界が不明瞭である
・発光部が見えてしまう
・多重像が見えてしまう
等により、空中表示の質が低下するおそれがあった。
 上記の「空中表示のパターン境界が不明瞭である」の原因の一つは、導光板4’の発光部4b’を構成する光学素子4c’(図1および図2における実施形態の導光板4の発光部4bを構成する光学素子4cについても同様)の加工方法に起因する。図6は、導光板4’に設けられた光学素子4c’の一部を導光板4’の裏面の法線方向から見た図であり、図7は、図6におけるY-Y断面図である。図6および図7において、光学素子4c’は導光板4’から切削工具であるバイトにより削られて形成されるか、バイトにより光学素子4c’に対応する突条が形成された金型により導光板4’が形成される過程で光学素子4c’が形成される。そのため、光学素子4c’の端部Eでは幅が細く深さが浅くなり、出射面側に対して反射する光量が低下し、空中表示のパターン境界が不明瞭となってしまう。
 この点、図1および図2の実施形態において、空中表示のパターン境界を定めるのは再帰反射シート5の貫通孔5aであり、導光板4の発光部4bを構成する光学素子4cの端部が空中表示のパターン境界に影響を与えることがなくなるため、空中表示のパターン境界を明瞭にすることができる。
 また、上記の「空中表示のパターン境界が不明瞭である」の他の原因として、図4および図5の比較例では、再帰反射シート5’とハーフミラー6’とが導光板4’を挟んで設けられるため、光の経路が長く、通過する界面が多いことが挙げられる。すなわち、図5において、発光部4b’から出た光は、経路L1’→経路L2’→経路L3’と進み、導光板4’の表面(表示面側の面)、ハーフミラー6’の裏面、導光板4’の表面および裏面、再帰反射シート5’の表面(反射面)、導光板4’の裏面および表面、ハーフミラー6’の裏面および表面、トップカバー7’の裏面および表面を経る。光の経路が長いことで光の拡散が生じやすくなり、界面が多いことで、界面の微細な凹凸形状や透明樹脂内部の不純物等により光の拡散および減衰が生じやすくなり、空中表示のパターン境界が不明瞭となる。
 この点、図1および図2の実施形態において、発光部4bから出た光は、経路L1→経路L2→経路L3と進み、導光板4の表面、ハーフミラー6の裏面、再帰反射シート5の表面(反射面)、ハーフミラー6の裏面および表面、トップカバー7の裏面および表面を経ることになり、通過する界面が少なくなったり、透明樹脂の通過長さが短くなったりする。その結果、空中表示のパターン境界を明瞭にすることができる。
 次に、上記の「発光部が見えてしまう」の原因は、図4および図5の比較例において、導光板4’の発光部4b’からの配光が制御されておらず、発光部4b’からアイポイントEP’に直接に進む光によるものである。なお、導光板4’の発光部4b’からの光がアイポイントEP’に直接に向かわないように配光制御することも考えられるが、アイポイントEP’に向かう光を完全になくすことは困難であるため、配光制御しても若干の不要光がアイポイントEP’へ直接進む。
 この点、図1および図2の実施形態においては、導光板4の発光部4bの光学素子の調整により、表示面側のアイポイントEPが存在しない方向(図2における左下側)に光を出射するようにしているため、発光部が見えてしまう問題は解消する。図8は、導光板4の発光部4bの配光制御により発光部4bを見えなくした状態の例を示す図である。図8において、導光板4の発光部4bから経路L0により出る光は配光制御により大幅に抑制され、正常な経路L1の光が主となるため、発光部が見えてしまうことはなくなる。
 以下、導光板4の配光制御について、より詳細に説明する。図9は、導光板4の発光部4bを構成する光学素子4cの形状の例を示す図である。なお、ここでは断面形状がV形状の凹型の光学素子について図示したが、断面形状が多角形状の凹型の光学素子や断面形状がトップフラット円弧形状(先端部が平坦になった円弧形状)型の光学素子であってもよい。また、図9において、光学素子4cの配置されるピッチは、例えば0.1mmとされているが、ピッチの値はこの値に限られない。
 図10は、光学素子4cの一例として断面形状がV形状の凹型の光学素子(図9)を規定する値を示す図である。図10において、光学素子4cは、幅Dと、頂角と、光立ち上げ側の底角(角度A)とにより規定される。ここでは、幅Dを0.1mmとし、頂角を60degとし、角度Aを変数とする。前述した垂直方向の視野範囲10deg~35degに配光制御する場合、シミュレーションの結果から、幅D=0.1mm、頂角=60deg、角度A=32degが適した値となる。なお、水平方向の視野範囲±40degは、線状光源3による水平方向への配光により実現される。なお、配光制御により、発光部が見えてしまうのが防止されるだけでなく、無駄な方向への光出射がなくなって光効率を高め、輝度を向上させることもできる。
 図8~図10では、導光板4の一部の光学素子による配光制御について説明したが、導光板4の発光部4bを見えなくするための他の構成について、図11~図13を用いて説明する。なお、所定方向に出射する光の抑制は、大方は面状発光体である導光板4の発光部4bを構成する光学素子4cで行われるが、それだけでは不十分な場合には、以下の図11~図13の光学部材で補われる。
 図11は、貫通孔9aが設けられた遮光シート9により発光部4bを見えなくした状態の例を示す図である。図11において、図2と異なるのは、再帰反射シート5と導光板4との間に、新たな光学部材として、再帰反射シート5の貫通孔5aに対応する複数の貫通孔9aがずらされて設けられた遮光シート9が設けられている点である。図11において、遮光シート9の貫通孔9aは再帰反射シート5の貫通孔5aよりも上側にずらされて設けられているため、上向きの経路L0の光は抑制され、下向きの経路L1の光が主となる。
 図12は、ルーバーシート10により発光部4bを見えなくした状態の例を示す図である。図12において、図2と異なるのは、再帰反射シート5と導光板4との間に、新たな光学部材として、所定方向(図において斜め下向き)の光を通過させるルーバーシート10が設けられている点である。ルーバーシート10により、上向きの経路L0の光は抑制され、下向きの経路L1の光が主となる。
 図13は、偏光反射シート11、位相差フィルム12および偏光反射シート13により発光部4bを見えなくした状態の例を示す図である。図13において、図2と異なるのは、新たな光学部材として偏光反射シート11と位相差フィルム12と偏光反射シート13とが設けられていることである。偏光反射シート11は、再帰反射シート5と導光板4との間に配置される。なお、偏光反射シート11は再帰反射シート5の貫通孔5aを覆うだけでよいが、全面に積層されるものでもよい。位相差フィルム12は、再帰反射シート5の出射面側に配置され、再帰反射シート5の貫通孔5aと同じ位置に貫通孔12aが設けられている。例えば、再帰反射シート5に位相差フィルム12が貼り付けられた後に、貫通孔5aおよび貫通孔12aが同時に形成される。位相差フィルム12の位相差はλ/4となっており、X-Y面内における遅延軸は入射する光線の偏光の軸(偏光反射シート13の反射軸もしくは透過軸であり、基本的に反射軸と透過軸は水平か垂直に配置されるので、結果的にX軸かY軸)に対して正方向または負方向に45°傾けられている。偏光反射シート13は、ハーフミラー6(図2)に代えて設けられており、透過軸(通過させる偏光の方向)は偏光反射シート11と直交するように配置されている。
 図13において、導光板4の発光部4bから経路L0で出た光は、偏光反射シート11により、例えば図の紙面の奥行方向に振動する偏波となり、再帰反射シート5の貫通孔5aおよび位相差フィルム12の貫通孔12aを通過して、偏光反射シート13に到達する。貫通孔5a、12aでは偏波の状態は変化しない。ここで、偏光反射シート13は、例えば図の上下方向に振動する偏波を通過させる向きに配置されているため、経路L0の光は抑制される。
 一方、導光板4の発光部4bから経路L1で出た光は、偏光反射シート11により、例えば図の紙面の奥行方向に振動する偏波となり、再帰反射シート5の貫通孔5aおよび位相差フィルム12の貫通孔12aを通過して、偏光反射シート13に到達する。ここで、偏光反射シート13は、例えば図の上下方向に振動する偏波を通過させる向きに配置されているため、ほぼ全てが反射されて経路L2となり、位相差フィルム12を通過し、再帰反射シート5により再帰反射され、再度、位相差フィルム12を通過して経路L3となる。ここで、位相差フィルム12を2回透過することにより位相がλ/2だけずらされるため、上下方向に振動する偏波に変化し、偏光反射シート13を通過し、空中表示Iの一部となる。なお、偏光サングラスをかけた利用者であっても、一般に偏光サングラスの透過軸は図の上下方向に設定されているため、空中表示Iを視認することができる。偏光サングラスの透過軸と空中表示Iの透過軸とが直交している場合は、偏光解消シート(例えば、東洋紡株式会社のコスモシャインSRF)を偏光反射シート13(後述の図14~図16の偏光反射シート13、図17または図18の吸収型偏光シート13Aについても同様)の視認側に配置すれば、空中表示Iの視認が可能となる。
 次に、上記の「多重像が見えてしまう」の原因は、図4および図5の比較例において、主に経路L2’、L3’で導光板4’を通過する際の界面が見えてしまうことによる。この点、図1および図2の実施形態においては、経路L1で再帰反射シート5の貫通孔5aを出た光は、導光板4の界面を通過することがないため、多重像が見えてしまうことはなくなる。
 次に、図14~図18は、図13で説明された偏光反射シート11、13および位相差フィルム12によって導光板4の発光部4bから再帰反射シート5の貫通孔5aを通ってアイポイント方向へ直接に出る光を見えなくする構成(偏光構成)の改良例である。すなわち、図13の構成では、経路L3の図の上下方向に振動する偏波の光が偏光反射シート13で反射された戻り光(経路L1の逆方向に進む光)が貫通孔12a、5aを通って偏光反射シート11に当たる。偏光反射シート13では図の奥行方向に振動する偏波の光が基本的には反射するが、図の上下方向に振動する偏波の光も若干は反射する。偏光反射シートは偏光度が吸収型偏光シートよりも低いため、透過軸方向以外の偏光が透過および反射する。つまり、偏光反射シートだけでは偏光度が低く、透過軸が水平垂直からずれているため、開口見えの原因となる。また、偏光反射シート13の透過軸は水平・垂直方向から若干ずれている。さらに、位相差フィルム12は可視域のすべて波長に対して遅延量がλ/4にはなっていないため、経路L3の光の偏波は完全に図の上下方向に振動する偏波の光にはなっていない。以上のことから、偏光反射シート13では経路L3の光は図の奥行方向だけでなく上下方向に振動する偏波の光も反射する。偏光反射シート11は図の奥行方向の偏波を通過させ、図の上下方向に振動する偏波を反射することから、図の上下方向に振動する偏波である上記の戻り光は反射し、そのまま外側の偏光反射シート13を通過して外部に出る。また、偏光反射シート11を透過した光は面状発光体(導光板4、反射シート8の他にプリズムシートが含まれる場合もある)で反射し、偏光反射シート11と透過した光の一部が偏光反射シート13を透過する。そのため、貫通孔12a、5aの開口部が光っているように見えてしまい、空中表示Iの視認性を低下させてしまう。その対策が図14の構成である。
 図14は、図13の構成の第1の改良例を示す空中表示装置1の断面図である。図14において、図13の構成と異なるのは、偏光反射シート(反射型偏光シート)11が吸収型偏光シート11Aに変わった点であり、吸収型偏光シート11Aを通過する偏波の方向は偏光反射シート11と同じである。反射型偏光シートは、透過しない偏波の光を反射する性質を有するのに対し、吸収型偏光シートは、透過しない偏波の光を吸収する性質を有する。なお、吸収型偏光シート11Aの透過軸は、シートの水平方向もしくは垂直方向からほとんどずれていない。
 図14において、導光板4の発光部4bから経路L1で出た光は、吸収型偏光シート11Aにより、例えば図の紙面の上下方向に振動する偏波の成分は吸収され、図の紙面の奥行方向に振動する偏波となり、再帰反射シート5の貫通孔5aおよび位相差フィルム12の貫通孔12aを通過して、偏光反射シート13に到達する。ここで、偏光反射シート13は、例えば図の上下方向に振動する偏波を通過させる向きに配置されているため、ほぼ全てが反射されて経路L2となり、位相差フィルム12を通過し、再帰反射シート5により再帰反射され、再度、位相差フィルム12を通過して経路L3となる。ここで、位相差フィルム12を2回透過することにより位相がλ/2だけずらされるため、図の上下方向に振動する偏波に変化し、偏光反射シート13を通過し、空中表示Iの一部となる。
 また、経路L3の光は全てが偏光反射シート13を通過するわけではなく、一部は偏光反射シート13で反射され、戻り光として経路L4で再帰反射シート5の貫通孔5aおよび位相差フィルム12の貫通孔12aを通過して、吸収型偏光シート11Aに到達する。この戻り光の偏波は図の上下方向に振動するものとなっている。ここで、吸収型偏光シート11Aは図の奥行方向の偏波を通過させ、図の上下方向の偏波を吸収するため、経路L4の戻り光はほとんどが吸収される。そのため、戻り光の吸収型偏光シート11Aによる反射はなくなり、貫通孔12a、5aの開口部が光っているように見えることがなく、空中表示Iの視認性を低下させてしまうことがなくなる。
 図14の構成では、導光板4の発光部4bから経路L1で出た光が吸収型偏光シート11Aに当たり、図の奥行方向に振動する偏波は通過するが、図の上下方向に振動する偏波は吸収されるため、光のロスが大きく、最終的に空中表示Iの輝度が低下してしまう。その対策が図15の構成である。
 図15は、図13の構成の第2の改良例を示す空中表示装置1の断面図である。図15において、図14の構成と異なるのは、吸収型偏光シート11Aと導光板4との間に反射型偏光シート11Rが設けられた点である。反射型偏光シート11Rの透過軸は吸収型偏光シート11Aと一致もしくはほぼ一致している。なお、ボトム(導光板4側)の吸収型偏光シート11Aと反射型偏光シート11Rの透過軸のずれは、あまり輝度や開口見えには影響を及ぼさない。後述の図17または図18におけるトップ(出射側)の吸収型偏光シート13Aと偏光反射シート13の透過軸のずれは、輝度や開口見えへの影響は大きい。また、図15において、吸収型偏光シート11Aと反射型偏光シート11Rは、単に積層されるものでもよいが、両者が貼り合わされて密着することで、界面反射が低減し、輝度の向上に寄与する。
 図15において、導光板4の発光部4bから経路L1で出た光は吸収型偏光シート11Aよりも先に反射型偏光シート11Rに当たり、図の奥行方向に振動する偏波は通過され、図の上下方向に振動する偏波は反射される。反射型偏光シート11Rで反射された光は導光板4に戻り、再利用される。吸収型偏光シート11A以降の動作は、図14と同様である。そのため、吸収型偏光シート11Aによる光のロスがなくなり、空中表示Iの輝度の向上が図られる。
 図15の構成では、反射型偏光シート11Rにより反射されて導光板4に戻された光(図の上下方向に振動する偏波)は、導光板4の内部で複雑に反射されたり、面状発光体の光学部品(導光板4、プリズムシート等)の位相差に起因したりして、図の奥行方向に振動する偏波に変換された場合には、反射型偏光シート11Rを通過して、空中表示Iの輝度向上に寄与することができる。しかし、導光板4の内部で偏波の方向が変わらない場合には、輝度向上への寄与が期待できない。その対策が図16の構成である。
 図16は、図13の構成の第3の改良例を示す空中表示装置1の断面図である。図16において、図15の構成と異なるのは、反射型偏光シート11Rと導光板4との間に位相差フィルム15が配置された点である。位相差フィルム15の位相差はλ/4となっており、X-Y面内における遅延軸は入射する光線の偏光の軸(偏光反射シート13の反射軸もしくは透過軸であり、基本的に反射軸と透過軸は水平か垂直に配置されるので、結果的にX軸かY軸)に対して正方向または負方向に45°傾けられている。なお、吸収型偏光シート11Aと反射型偏光シート11Rと位相差フィルム15は、単に積層されるものでもよいが、それらが貼り合わされて密着することで、界面反射が低減し、輝度の向上に寄与する。
 図16において、導光板4の発光部4bから経路L1で出た光は位相差フィルム15を通過する。しかし、後段の反射型偏光シート11Rにより反射されて導光板4に戻された光(図の上下方向に振動する偏波)は、位相差フィルム15を通過し、導光板4を経由して再び位相差フィルム15を通過することとなり、2回、位相差フィルム15を通過するため、図の奥行方向に振動する偏波に変換される。そのため、後段の反射型偏光シート11Rを通過することができ、空中表示Iの輝度向上に寄与することができる。その後の動作は同様である。なお、導光板4からの出射光は偏光に若干の偏りがあるため、位相差フィルム15による位相差の影響を若干受ける。そして、反射型偏光シート11Rは直線偏光タイプであるため、透過軸成分の偏光が多ければ、透過光は増加する。また、位相差フィルム15は、図13における偏光反射シート11の導光板4側に配置されるようにしてもよい。
 図13~図16の構成では、出射側の偏光反射シート13により図の上下方向に振動する偏波は通過され、図の奥行方向に振動する偏波は内部に反射されてブロックされていたが、フィルムタイプの偏光反射シート13はシートの水平・垂直の軸から透過軸が若干ずれている場合が多く、図の奥行方向に振動する偏波が完全にブロックされておらず、貫通孔12a、5aの開口部が光っているように見える要因となる。例えば、図13における経路L0の光の一部が外部から見えてしまう。その対策が図17の構成である。
 図17は、図13の構成の第4の改良例を示す空中表示装置1の断面図である。図17において、図16の構成と異なるのは、偏光反射シート13とトップカバー7との間に吸収型偏光シート13Aが配置された点である。吸収型偏光シート13Aの透過軸は偏光反射シート13とほぼ同じである。なお、吸収型偏光シート13Aと偏光反射シート13の透過軸が完全に位置すると効果が低下する。それぞれの透過軸が一致し、吸収型偏光シート11Aと直交状態が最も効果が得られる。そのため、吸収型偏光シート11Aと透過軸が90度になってない場合、効果が低下する。偏光反射シートは偏光度が吸収型偏光シートよりも低いため、透過軸方向以外の偏光が透過および反射することも、開口見えの原因になる。そのため、それぞれの透過軸が一致し、吸収型偏光シート11Aと直交すると損失が最も少ない状態で透過および反射するため、輝度が高くなり、開口見えが低減できる。偏光反射シート13の透過軸は垂直から若干ずれているので、ずれた方向に吸収型偏光シート13Aの透過軸が一致すると開口見えの原因になる。正確には吸収型偏光シート11Aの透過軸と吸収型偏光シート13Aの透過軸が直交する。また、図16をベースとして改良された例が図17に示されたが、図13~図15をベースとして同様な改良が施されるのでもよい。
 図17において、図の奥行方向に振動する偏波の経路L0の光は、偏光反射シート13によりほとんどがブロックされるが、偏光反射シート13の透過軸がX-Y面内でずれている場合、ずれに応じた量の光がブロックされずに通過する。しかし、後段の吸収型偏光シート13Aにより図の奥行方向に振動する偏波のほとんどが吸収されるため、外部に経路L0から出る光はほとんどなくなり、貫通孔12a、5aの開口部が光っているように見えてしまうのが防止され、空中表示Iの視認性の低下が防止される。
 図13~図17の構成では、再帰反射シート5の出射側に位相差フィルム12が設けられており、例えば、図17の経路L2の光は位相差フィルム12を通して再帰反射シート5で再帰反射されて経路L3の光となるが、位相差フィルム12の表面でも正反射が発生し、不要な空中像の要因となる。その対策が図18の構成である。
 図18は、図13の構成の第5の改良例を示す空中表示装置1の断面図である。図18において、図17の構成と異なるのは、位相差フィルム12の出射側に低反射シート16が設けられている点である。なお、低反射シート16には位相差フィルム12の貫通孔12aおよび再帰反射シート5の貫通孔5aと同じ位置に貫通孔16aが設けられている。例えば、再帰反射シート5に位相差フィルム12および低反射シート16が貼り付けられた後に、貫通孔5a、12a、16aが同時に形成される。なお、図17をベースとして改良された例が図18に示されたが、図13~図16をベースとして同様な改良が施されるのでもよい。
 図18において、経路L2で偏光反射シート13から低反射シート16側に反射してきた光は、低反射シート16により正反射が抑えられ、低反射シート16の内部を貫通していく光だけとなり、正反射に基づく不要な空中像(空中表示Iと偏光反射シート13との間の距離の2倍の位置に発生する空中像)の発生が防止され、空中表示Iの視認性の低下が防止される。また、不要な空中像に使われる光が空中表示Iに使用されることで、空中表示Iの輝度向上にもつながる。
 次の表1は、シートまたはフィルムの組み合わせによる空中表示I等の輝度およびコントラストの計算結果である。
Figure JPOXMLDOC01-appb-T000001
 表1において、左端の列は対応する構成の図番を示している。変形例#1~#3は図には表されていない。なお、表1は全ての組み合わせを網羅しておらず、他の構成もあり得る。表1において、「Bottom」は導光板4と再帰反射シート5との間に配置されるシートまたはフィルム、「Middle」は再帰反射シート5の周辺のシートまたはフィルム、「Top」はトップカバー7の周辺のシートまたはフィルムである。また、「LV」はルーバーシート、「λ/4」は位相差シート、「rPol」は反射型偏光シート、「aPol」は吸収型偏光シート、「黒」は吸収シート、「RR」は再帰反射シート、「AR」は低反射シート、「HM」はハーフミラー、「A」は主要な空中像の輝度、「B」は貫通孔5a等による開口部の輝度、「C」は不要な空中像の輝度、「CT1」(コントラスト)はA/B、「CT2」はA/Cである。また、「Middle」における吸収シート「黒」は、後述する再帰反射シート5の背面に設けられる反射層(5d)である。
 図19は、空中表示の周辺の輝度分布の例を示す図であり、空中表示装置1の表示側の面の法線方向から図1におけるY軸の負方向に23度傾いた方向から輝度計の中心に空中表示Iの中心が位置するように測定された輝度分布である。23度傾けられているため、再帰反射シート5の貫通孔5a等による開口部の像NI1、空中表示I、不要な像NI2が重ならず、それぞれの像による輝度評価が可能となっている。なお、不要な像NI2は、空中表示Iと偏光反射シート13との間の距離の2倍の位置に発生する空中像である。図19において、中央は空中表示Iに対応する主要な空中像、上側の像NI1は再帰反射シート5の貫通孔5a等の開口部に対応するもの、下側の像NI2は再帰反射シート5等の表面反射や多重反射による不要な空中像である。
 表1から、主要な空中像の輝度「A」が最も高いのは図18の構成であり、コントラストCT1が最も高いのは変形例#2の構成であり、コントラストCT2が最も高いのは図18の構成である。
 次に、図1、図2、図11~図18(後述の図21も同様)の構成における再帰反射シート5の問題点の解決策が示される。すなわち、再帰反射シート5には若干の光透過性があるため、貫通孔5aが設けられていない部分からの漏れ光により空中表示Iのコントラストが低下するという問題があった。なお、図11の構成では再帰反射シート5の光源側に遮光シート9が設けられるため、貫通孔5aが設けられていない部分からの漏れ光による影響は少ないが、影響が皆無とは言えないため、対策は効果がある。このような漏れ光の問題は、金属蒸着等による反射層が設けられるコーナーキューブ型の再帰反射シート5の場合、反射層を厚くすることにより漏れ光の低減が可能であるが、大幅なコストアップを招くため、現実的ではない。
 図20は、再帰反射シート5の構造例を示す断面図である。図20において、再帰反射シート5は、透明な板の裏側にコーナーキューブを構成する頂角が90°のプリズム5cが形成され、その外側に金属蒸着等による反射層5dで反射面が形成されている。右側の平面視から明らかなように、反射層5dが形成される面は三角錐状のプリズムが縦横に配置されたものとなっている。また、反射層5dの背面には、粘着剤5eを介して、例えば黒色の遮光シート5fが貼り付けられている。なお、粘着剤5eを黒色等の低透過のものとすれば、遮光シート5fは黒色等にしなくてもよい。また、コントラストの改善のためには、遮光シート5fとして、遮光シートと同等の散乱特性を有する拡散シートが配置されるようにしてもよい。このような構造の再帰反射シート5が図1、図2、図11~図18(後述の図21も同様)の構成に用いられることで、再帰反射シート5の貫通孔5aが設けられていない部分からの漏れ光が低減され、空中表示Iのコントラストの低下が防止される。
 また、図20における再帰反射シート5の背面の遮光シート5fは、単に遮光性が高いだけでなく、導光板4側の表面の散乱状態により空中表示Iのコントラストが影響を受けることが確認されている。表2は、「メーカー」および「商品名」により特定される遮光シート(黒フィルム)5fについて、「空中像評価」と「黒フィルム評価」とが示されたものである。「メーカー」「商品名」のすぐ下の「PMMA」は、アクリル樹脂を意味しており、遮光シートが設けられていない状態に対応している。「空中像評価」は、主要な空中像の輝度「AI」と、開口部の輝度「開口」と、コントラスト「CT」と、「漏れ光」とを含んでいる。「AI」は前述の表1の「A」に対応し、「開口」は表1の「B」に対応し、「CT」は表1の「CT1」に対応している。「黒フィルム評価」は、「全光線透過」「全反射」「正反射」「光沢度」を含んでいる。表3は、「メーカー」および「商品名」により特定される遮光シート(黒フィルム)5fについて、「総厚」「基材」「表面」「塗工処理」を含んでいる。「表面」の「AG」は、アンチグレア処理を意味している。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
 表2および表3から、遮光シートが設けられていない状態の「PMMA」の場合の「漏れ光」に対して、いずれの遮光シートであっても、「漏れ光」は大幅に減少している。コントラスト「CT」は、「X2B#50」「X2B#75」「X4LGB#25」が優れている。すなわち、アンチグレア処理が施されていて「正反射」が小さいほど、コントラスト「CT」の改善がみられる。これは、遮光シートで散乱反射された光の散乱が弱く正反射が強いと、開口から光が出射し、開口の輝度を増加させるためと考えられる。例えば、図2において、導光板4から出た光は再帰反射シート5の導光板4側の遮光シートで反射され、導光板4の表面で反射されて貫通孔5aの開口を通ってアイポイントEP側に出ていく成分があるが、遮光シートの正反射が小さいと、このノイズ成分は小さくなり、開口の輝度が小さくなる。
 次に、空中表示を非接触式の電気的なスイッチのボタンとして動作させるための構成について説明する。図21は、センサ電極14A、14Bを有する静電センサによる空中表示Iへのタッチの検知の例を示す図である。図21において、図2と異なるのは、再帰反射シート5の出射面側の貫通孔5aの外側の部分に、1対のセンサ電極14A、14Bが設けられている点である。センサ電極14A、14B間に電圧を印加することで、破線で示すような電気力線が生じ、ユーザが指Fで空中表示Iを触れる過程で、接地レベルにある指Fにより電気力線に変化を生じさせ、その変化から空中表示Iへのタッチを検出することができる。ユーザの指Fは空中表示Iに触れるだけで、実在のボタン等に触れるわけではないので、衛生面において望ましいものとすることができる。なお、IR(赤外線)センサ等により指Fの空中表示Iへの接触が検出され、対応する機能のオン・オフ等が制御されるようにしてもよい。
 なお、再帰反射シート5としては、例えばプリズムタイプが採用されるが、その場合、再帰反射シート5のプリズム面にはAl蒸着がされるので、貫通孔5a以外は光がほとんど透過しない。また、金属は電気力線を遮断してしまうため、静電センサは再帰反射シート5の出射面側に配置しないといけない。空中像の結像距離はハーフミラー6と再帰反射シート5との間の距離に依存するため、トップカバー7より離れた位置に空中像を結像させようとすると、ハーフミラー6と再帰反射シート5との間の距離は長くなる。そのため、空隙にセンサ電極14A、14Bや制御基板を配置することでデットスペースを生かすことができる。センサ電極14A、14Bや制御基板は、光路を邪魔しないように配置される。また、迷光が乱反射しないように、制御基板は黒色もしくは黒色印刷した方が好ましい。黒色にすることで視認側からセンサ電極14A、14Bや制御基板が見えにくくなる。また、図21は図2の構成がベースとされているが、図11~図18の構成がベースとされるものであってもよい。
 以上、本発明の実施形態について説明したが、本発明は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。
 以上のように、実施形態に係る空中表示装置は、発光部を有する面状発光体と、面状発光体の出射面側に配置され、発光部に対応する位置に空中表示する図形を表した複数の貫通孔を有する再帰反射シートと、再帰反射シートの出射面側に配置されたハーフミラーとを備える。これにより、空中表示の質の向上を図ることができる。
 また、面状発光体は、所定の方向に配光が制御される。これにより、面状発光体単体により配光制御を行うことができ、発光部が見えてしまう問題を解消することができる。
 また、面状発光体は、線状光源と導光板と有し、発光部は光学素子から構成される。これにより、面状発光体を容易に実現することができる。
 また、再帰反射シートの貫通孔からアイポイントの存在する方向に出射する光を抑制する光学部材を備える。これにより、発光部が見えてしまう問題をより有効に解消することができる。
 また、光学部材は、再帰反射シートと面状発光体との間に配置され、再帰反射シートの貫通孔に対応する複数の貫通孔がずらされて設けられた遮光シートである。これにより、面状発光体による配光制御を補うことができ、発光部が見えてしまう問題をより有効に解消することができる。
 また、光学部材は、再帰反射シートと面状発光体との間に配置され、所定の方向の光を通過させるルーバーシートである。これにより、面状発光体による配光制御を補うことができ、発光部が見えてしまう問題をより有効に解消することができる。
 また、光学部材は、再帰反射シートと面状発光体との間に配置された第1の反射型偏光シートと、再帰反射シートの出射面側に配置され、再帰反射シートの貫通孔と同じ位置に貫通孔が設けられた第1の位相差フィルムと、ハーフミラーに代えて設けられた第2の反射型偏光シートとから構成される。これにより、面状発光体による配光制御を補うことができ、発光部が見えてしまう問題をより有効に解消することができる。
 また、第1の反射型偏光シートに代えて設けられた吸収型偏光シートを備える。これにより、再帰反射シートの貫通孔を通して第1の偏光反射シートにより反射される光によって、貫通孔の開口部が光って見えてしまうのが防止され、空中表示の視認性の低下が防止される。
 また、吸収型偏光シートと面状発光体との間に配置された反射型偏光シートを備える。これにより、吸収型偏光シートによる光のロスが低減され、空中表示の輝度が向上する。
 また、面状発光体とこの面状発光体の出射面側に隣接する反射型偏光シートとの間に配置された第2の位相差フィルムを備える。これにより、反射型偏光シートで面状発光体側に戻された光の再利用が促進され、空中表示の輝度が向上する。
 また、第2の反射型偏光シートの出射面側に設けられた他の吸収型偏光シートを備える。これにより、第2の偏光反射シートの透過軸のずれに起因する不要な偏光成分の透過を防ぎ、空中表示の視認性が向上する。
 また、第1の位相差フィルムの出射面側に設けられた低反射シートを備える。これにより、第1の位相差フィルムの表面での反射による不要な空中像が抑制され、空中表示の視認性が向上し、空中表示の輝度も向上する。
 また、再帰反射シートの面状発光体側に設けられる遮光シートを備える。これにより、貫通孔が設けられていない部分の漏れ光が低減され、コントラストが向上する。
 また、遮光シートの面状発光体側の表面は、正反射を低下させるアンチグレア処理が施されている。これにより、再帰反射シートの面状発光体側の面での反射により貫通孔の開口部が光って見えるのが低減され、コントラストが向上する。
 また、面状発光体の発光部は、空中表示する図形を表すのに用いられる可能性のある貫通孔の位置をカバーする略矩形状の領域を発光するか、または、再帰反射シートの貫通孔に対応する位置をカバーする領域を発光する。これにより、発光部の構成に選択肢を与えることができる。
 また、面状発光体の出射面と反対側に配置される反射シートを備える。これにより、漏れる光を減らし、光効率を高め、輝度を高めることができる。
 また、再帰反射シートの出射面側の貫通孔の外側の部分に、静電センサを構成する1対のセンサ電極が設けられる。これにより、空中表示に適合する、非接触式のスイッチを構成することができる。
 また、上記実施の形態により本発明が限定されるものではない。上述した各構成要素を適宜組み合わせて構成したものも本発明に含まれる。また、さらなる効果や変形例は、当業者によって容易に導き出すことができる。よって、本発明のより広範な態様は、上記の実施の形態に限定されるものではなく、様々な変更が可能である。
 1 空中表示装置,2 フレーム,2a 開口,3 線状光源,4 導光板,4a 入光側面,4b 発光部,5 再帰反射シート,5a 貫通孔,6 ハーフミラー,7 トップカバー,8 反射シート,9 遮光シート,9a 貫通孔,10 ルーバーシート,11 偏光反射シート,11A 吸収型偏光シート,11R 反射型偏光シート,12 位相差フィルム,13 偏光反射シート,13A 吸収型偏光シート,14A、14B センサ電極,EP アイポイント,I 空中表示,F 指

Claims (17)

  1.  発光部を有する面状発光体と、
     前記面状発光体の出射面側に配置され、前記発光部に対応する位置に空中表示する図形を表した複数の貫通孔を有する再帰反射シートと、
     前記再帰反射シートの出射面側に配置されたハーフミラーと、
    を備える空中表示装置。
  2.  前記面状発光体は、所定の方向に配光が制御される、
    請求項1に記載の空中表示装置。
  3.  前記面状発光体は、線状光源と導光板と有し、
     前記発光部は光学素子から構成される、
    請求項1または2に記載の空中表示装置。
  4.  前記再帰反射シートの貫通孔からアイポイントの存在する方向に出射する光を抑制する光学部材、
    を備える請求項1~3のいずれか一つに記載の空中表示装置。
  5.  前記光学部材は、前記再帰反射シートと前記面状発光体との間に配置され、前記再帰反射シートの貫通孔に対応する複数の貫通孔がずらされて設けられた遮光シートである、
    請求項4に記載の空中表示装置。
  6.  前記光学部材は、前記再帰反射シートと前記面状発光体との間に配置され、所定の方向の光を通過させるルーバーシートである、
    請求項4に記載の空中表示装置。
  7.  前記光学部材は、
     前記再帰反射シートと前記面状発光体との間に配置された第1の反射型偏光シートと、
     前記再帰反射シートの出射面側に配置され、前記再帰反射シートの貫通孔と同じ位置に貫通孔が設けられた第1の位相差フィルムと、
     前記ハーフミラーに代えて設けられた第2の反射型偏光シートと、
    から構成される、
    請求項4に記載の空中表示装置。
  8.  前記第1の反射型偏光シートに代えて設けられた吸収型偏光シートを備える、
    請求項7に記載の空中表示装置。
  9.  前記吸収型偏光シートと前記面状発光体との間に配置された第3の反射型偏光シートを備える、
    請求項8に記載の空中表示装置。
  10.  前記面状発光体と該面状発光体の出射面側に隣接する前記反射型偏光シートとの間に配置された第2の位相差フィルムを備える、
    請求項7または9に記載の空中表示装置。
  11.  前記第2の反射型偏光シートの出射面側に設けられた他の吸収型偏光シートを備える、
    請求項7~10のいずれか一つに記載の空中表示装置。
  12.  前記第1の位相差フィルムの出射面側に設けられた低反射シートを備える、
    請求項7~11のいずれか一つに記載の空中表示装置。
  13.  前記再帰反射シートの前記面状発光体側に設けられる遮光シートを備える、
    請求項1~12のいずれか一つに記載の空中表示装置。
  14.  前記遮光シートの前記面状発光体側の表面は、正反射を低下させるアンチグレア処理が施されている、
    請求項13に記載の空中表示装置。
  15.  前記面状発光体の発光部は、前記空中表示する図形を表すのに用いられる可能性のある貫通孔の位置をカバーする略矩形状の領域を発光するか、または、前記再帰反射シートの貫通孔に対応する位置をカバーする領域を発光する、
    請求項1~14のいずれか一つに記載の空中表示装置。
  16.  前記面状発光体の出射面と反対側に配置される反射シートを備える、
    請求項1~15のいずれか一つに記載の空中表示装置。
  17.  前記再帰反射シートの出射面側の貫通孔の外側の部分に、静電センサを構成する1対のセンサ電極が設けられる、
    請求項1~16のいずれか一つに記載の空中表示装置。
PCT/JP2021/045703 2021-03-12 2021-12-10 空中表示装置 WO2022190493A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180093867.4A CN116848456A (zh) 2021-03-12 2021-12-10 空中显示装置
US18/549,651 US20240295749A1 (en) 2021-03-12 2021-12-10 Aerial display device

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021039965 2021-03-12
JP2021-039965 2021-03-12
JP2021176729A JP2022140264A (ja) 2021-03-12 2021-10-28 空中表示装置
JP2021-176729 2021-10-28

Publications (1)

Publication Number Publication Date
WO2022190493A1 true WO2022190493A1 (ja) 2022-09-15

Family

ID=83226045

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/045703 WO2022190493A1 (ja) 2021-03-12 2021-12-10 空中表示装置

Country Status (2)

Country Link
US (1) US20240295749A1 (ja)
WO (1) WO2022190493A1 (ja)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08272326A (ja) * 1995-02-08 1996-10-18 Asutei Kk シグナルミラ
JP2012163701A (ja) * 2011-02-04 2012-08-30 National Institute Of Information & Communication Technology 多視点空中映像表示装置
US20150153577A1 (en) * 2012-06-14 2015-06-04 Igor Nikitin Device for generating a virtual light image
JP2016534413A (ja) * 2013-09-30 2016-11-04 クリアインク ディスプレイズ, インコーポレイテッドClearink Displays, Inc. フロント照明型半再帰反射ディスプレイのための方法及び装置
WO2018043673A1 (ja) * 2016-08-31 2018-03-08 国立大学法人宇都宮大学 表示装置及び空中像の表示方法
JP2018081138A (ja) * 2016-11-14 2018-05-24 日本カーバイド工業株式会社 画像表示装置
JP2018513401A (ja) * 2015-03-09 2018-05-24 オラフォル アメリカズ インコーポレイテッド 部分的再帰反射体ツール及びシートを形成する方法並びにその装置
WO2019039600A1 (ja) * 2017-08-25 2019-02-28 林テレンプ株式会社 空中像表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08272326A (ja) * 1995-02-08 1996-10-18 Asutei Kk シグナルミラ
JP2012163701A (ja) * 2011-02-04 2012-08-30 National Institute Of Information & Communication Technology 多視点空中映像表示装置
US20150153577A1 (en) * 2012-06-14 2015-06-04 Igor Nikitin Device for generating a virtual light image
JP2016534413A (ja) * 2013-09-30 2016-11-04 クリアインク ディスプレイズ, インコーポレイテッドClearink Displays, Inc. フロント照明型半再帰反射ディスプレイのための方法及び装置
JP2018513401A (ja) * 2015-03-09 2018-05-24 オラフォル アメリカズ インコーポレイテッド 部分的再帰反射体ツール及びシートを形成する方法並びにその装置
WO2018043673A1 (ja) * 2016-08-31 2018-03-08 国立大学法人宇都宮大学 表示装置及び空中像の表示方法
JP2018081138A (ja) * 2016-11-14 2018-05-24 日本カーバイド工業株式会社 画像表示装置
WO2019039600A1 (ja) * 2017-08-25 2019-02-28 林テレンプ株式会社 空中像表示装置

Also Published As

Publication number Publication date
US20240295749A1 (en) 2024-09-05

Similar Documents

Publication Publication Date Title
JP6885332B2 (ja) 光学デバイスおよび表示装置
TWI577922B (zh) Optical device
US9891515B2 (en) Projection screen
WO2021085524A1 (ja) 表示装置
TWI750764B (zh) 多層光電模組
US11163106B2 (en) Multilayer opto-electronic module
EP3376098B1 (en) Display apparatus
WO2022190493A1 (ja) 空中表示装置
JP2022082465A (ja) 空中入力装置、空中入力表示装置及びホログラムシート
JP2022140264A (ja) 空中表示装置
JPWO2019159758A1 (ja) 光学結像装置
JP6549817B2 (ja) コンバイナ
JP2022139533A (ja) 空中表示装置
JP2011122870A (ja) 光学式位置検出装置及び投射型表示装置
WO2022004775A1 (ja) 立体表示用ガラス基板およびこれを備えた非接触操作装置
JP7559443B2 (ja) 加飾シート、加飾シート付き表示装置、加飾シートの製造方法、及び、加飾シート付き表示装置の製造方法
CN116848456A (zh) 空中显示装置
JP2023136498A (ja) 空中表示装置
WO2022190581A1 (ja) 空中表示装置
JP6304581B2 (ja) 死角補助装置
JP2023180146A (ja) 空中表示装置
JP2022035466A (ja) 空中像形成装置
JP2022140265A (ja) 空中表示装置
WO2022190660A1 (ja) 空中表示装置
US20240027809A1 (en) Cover panel and display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930338

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202180093867.4

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18549651

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930338

Country of ref document: EP

Kind code of ref document: A1