WO2022190363A1 - 貯湯装置および貯湯式給湯システム - Google Patents

貯湯装置および貯湯式給湯システム Download PDF

Info

Publication number
WO2022190363A1
WO2022190363A1 PCT/JP2021/010089 JP2021010089W WO2022190363A1 WO 2022190363 A1 WO2022190363 A1 WO 2022190363A1 JP 2021010089 W JP2021010089 W JP 2021010089W WO 2022190363 A1 WO2022190363 A1 WO 2022190363A1
Authority
WO
WIPO (PCT)
Prior art keywords
tank
hot water
water storage
temperature
tank water
Prior art date
Application number
PCT/JP2021/010089
Other languages
English (en)
French (fr)
Inventor
泰光 野村
慶郎 青▲柳▼
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023505049A priority Critical patent/JPWO2022190363A1/ja
Priority to PCT/JP2021/010089 priority patent/WO2022190363A1/ja
Publication of WO2022190363A1 publication Critical patent/WO2022190363A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H1/00Water heaters, e.g. boilers, continuous-flow heaters or water-storage heaters
    • F24H1/18Water-storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters

Definitions

  • the present disclosure relates to a hot water storage device and a hot water storage type hot water supply system including the hot water storage device.
  • Patent Document 1 for example, a hot water storage tank, a heating source, a hot water supply pipe connected to the upper layer of the hot water storage tank, a medium temperature hot water supply pipe connected to the middle layer of the hot water storage tank, and a boiling-up switching valve.
  • the boiling-up switching valve is designed to supply water heated by the heating source to the hot water storage tank through the high-temperature hot water supply pipe in the high-temperature boiling mode that boils high-temperature water (corresponding to the hot water of Patent Document 1).
  • the hot water storage type hot water supply system supplies the water heated by the heating source to the hot water storage tank through the medium-temperature hot water discharge pipe. disclosed.
  • the hot water storage type hot water supply system shown in Patent Document 1 is disclosed to shift from a middle temperature boiling top mode to a high temperature boiling top mode.
  • Patent Document 1 the conditions for changing the direction of the boiling-up switching valve are disclosed based on the temperature of hot water discharged from the heating source, but the conditions for shifting from the medium-temperature boiling-up mode to the high-temperature boiling-up mode are disclosed. not Therefore, before the hot water in the hot water storage tank reaches a desired temperature, the medium temperature hot water boiling mode is switched to the high temperature hot water boiling mode, and there is a possibility that a sufficient amount of medium hot water cannot be stored in the hot water storage tank.
  • An object of the present disclosure is to obtain a hot water storage device capable of storing a sufficient amount of medium-temperature hot water in a hot water storage tank and then supplying high-temperature water to the hot water storage tank, and a hot water storage type hot water supply system including the hot water storage device. .
  • a hot water storage device and a hot water storage type hot water supply system include a hot water storage tank that stores tank water therein, a heating source that heats the tank water, and a heating source that uses the tank water stored in the lower portion of the hot water storage tank.
  • the flow path switching device forms a middle inflow tank water circulation circuit, and the temperature of the tank water before being heated by the heating source is equal to or higher than the predetermined medium-temperature desired temperature.
  • the flow switching device switches from the middle inflow tank water circulation circuit to the upper inflow tank water circulation circuit.
  • a hot water storage device and a hot water storage type hot water supply system switches from a middle inflow tank water circulation circuit to an upper inflow tank water circulation circuit when the temperature of the tank water before being heated by the heating source is equal to or higher than the desired intermediate water temperature. Therefore, after a sufficient amount of medium-temperature hot water is stored in the hot water storage tank, high-temperature water can be supplied to the hot water storage tank.
  • FIG. 1 is a schematic diagram of a hot water storage type hot water supply system according to an embodiment
  • FIG. FIG. 2 is a hardware configuration diagram of a control device for the hot water storage type hot water supply system according to the embodiment
  • 1 is a functional block diagram of a hot water storage device of a hot water storage type hot water supply system according to an embodiment
  • FIG. FIG. 2 is a schematic diagram of a case where a first usage terminal uses tank water as it is in the hot water storage type hot water supply system according to the embodiment
  • FIG. 4 is a schematic diagram of a case where a second usage terminal mixes tank water with water from a water source in the storage hot water supply system according to the embodiment
  • 4 is a flow chart of a hot water storage operation of the hot water storage type hot water supply system according to the embodiment.
  • FIG. 4 is a schematic diagram of the hot water storage type hot water supply system according to the embodiment when the hot water storage operation of step S101 is completed.
  • FIG. 4 is a schematic diagram of the hot water storage type hot water supply system according to the embodiment when the process of step S105 of the hot water storage operation is finished.
  • FIG. 4 is a first diagram showing the temperature distribution of tank water inside the hot water storage tank during hot water storage operation in the hot water storage type hot water supply system according to the embodiment.
  • FIG. 4 is a second diagram showing the temperature distribution of tank water inside the hot water storage tank during the hot water storage operation in the hot water storage type hot water supply system according to the embodiment.
  • FIG. 10 is a third diagram showing the temperature distribution of tank water inside the hot water storage tank during the hot water storage operation in the hot water storage type hot water supply system according to the embodiment
  • FIG. 11 is a fourth diagram showing the temperature distribution of tank water inside the hot water storage tank during the hot water storage operation in the hot water storage type hot water supply system according to the embodiment
  • FIG. 4 is a schematic diagram of a hot water storage system according to a modification of the embodiment
  • a hot water storage device and a hot water storage type hot water supply system will be described based on the drawings. It should be noted that the present disclosure is not limited to only the following embodiments, and modifications or omissions can be made without departing from the gist of the present disclosure. Furthermore, it is also possible to appropriately combine the configurations of the hot water storage device and the hot water storage type hot water supply system according to the respective embodiments and modifications, as well as additional configurations. In addition, the same reference numerals are assigned to elements common to each drawing, and duplicate descriptions are omitted.
  • FIG. 1 is a schematic diagram of a storage-type hot water supply system according to an embodiment.
  • a hot water storage type hot water supply system 1000 includes a hot water storage device 1 , a first usage terminal 1100 , a second usage terminal 1200 , a supply pipe 1300 and an extraction pipe 1400 .
  • the hot water storage device 1 has a heating unit 2, a hot water storage unit 3, an inter-unit outgoing pipe 4, and an inter-unit return pipe 5.
  • a heating unit 2, a hot water storage unit 3, an inter-unit forwarding pipe 4, and an inter-unit return pipe 5 are connected so that the heat medium flows, thereby forming a heat medium circulation circuit in which the heat medium circulates. 100 are formed.
  • a fluid is used as the heat medium, and for example, water or a mixture of an additive and water is used as the heat medium.
  • the heating unit 2 heats the heat medium.
  • a means for the heating unit 2 to heat the heat medium for example, means for heating the heat medium by means of a vapor compression heat pump that circulates a refrigerant to transfer the heat of the air or water to the heat medium, gas, kerosene, or the like.
  • Means for burning fuel and heating the heat medium by combustion heat means for heating the heat medium with an electric heater that generates heat when electric power is supplied, means for collecting heat from the sun to heat the heat medium, etc. mentioned.
  • means for heating the heat medium with a vapor compression heat pump has high energy efficiency, and it is desirable to use this means.
  • the heating unit 2 preferably has a refrigerant circuit in which a refrigerant circulates and uses a natural refrigerant such as R744 or R290 as the refrigerant.
  • Natural refrigerants have a smaller global warming potential than HFC (hydrofluorocarbon) refrigerants such as R410A or R32, and can reduce the impact on the global environment.
  • the hot water storage unit 3 stores water heated using a heat medium.
  • the water stored in the hot water storage unit 3 is called tank water.
  • the tank water may be referred to as low temperature water, medium temperature water, or high temperature water depending on the temperature of the tank water.
  • Low temperature water is tank water that has a lower temperature than medium and high temperature water.
  • medium-temperature water is tank water that has a higher temperature than low-temperature water and a lower temperature than high-temperature water.
  • High-temperature water is tank water having a higher temperature than low-temperature water and medium-temperature water.
  • the hot water storage unit 3 includes a hot water storage tank 10, a heat exchanger 11, a heat medium circulation pump 12, a tank water circulation pump 13, a channel switching device 14, a hot water storage unit supply pipe 20, and a hot water storage unit extraction pipe 21. , a lower pipe 22, a post-heating pipe 23, a central pipe 24, an upper pipe 25, a supply pipe connection portion 26, an extraction pipe connection portion 27, a tank temperature sensor 30, and a pre-heating tank water temperature sensor 31 , a post-heating tank water temperature sensor 32 , and a control device 40 .
  • a tank water circulation circuit 200 for circulating tank water is formed in the hot water storage unit 3 .
  • tank water circulation circuit 200 There are two types of the tank water circulation circuit 200 according to the embodiment, a middle inflow tank water circulation circuit 201 and an upper inflow tank water circulation circuit 202 .
  • the difference between the middle inflow tank water circulation circuit 201 and the upper inflow tank water circulation circuit 202 will be described later.
  • the hot water storage tank 10 is hollow and stores tank water in the internal space. It is desirable that the hot water storage tank 10 is made of a highly anticorrosive material such as stainless steel.
  • the shape of the hot water tank 10 is desirably cylindrical, having a top portion positioned highest in the vertical direction, a bottom portion positioned lowest in the vertical direction, and a body portion connecting the top and bottom portions. Further, in the space inside the hot water storage tank 10, respective ends of the hot water storage unit supply pipe 20, the hot water storage unit extraction pipe 21, the lower pipe 22, the middle pipe 24, and the upper pipe 25 are positioned.
  • the hot water storage unit supply pipe 20 , the hot water storage unit extraction pipe 21 , the lower pipe 22 , the middle pipe 24 , and the upper pipe 25 are exposed to the outside of the hot water storage tank 10 from the body of the hot water storage tank 10 .
  • the heat exchanger 11 is formed with a first flow path 11a and a second flow path 11b, and exchanges heat between the fluid flowing through the first flow path 11a and the fluid flowing through the second flow path 11b. let it happen
  • the tank water flows through the first flow path 11a
  • the heat medium flows through the second flow path 11b
  • the tank water is heated by heat exchange between the tank water and the heat medium. be done. Since the tank water is heated by the heating unit 2 and the heat exchanger 11, the heating unit 2 and the heat exchanger 11 correspond to a heating source for heating the tank water.
  • the heat medium circulation pump 12 pressurizes the heat medium and circulates the heat medium in the heat medium circulation circuit 100 .
  • the heat medium circulation pump 12 is provided in the middle of the inter-unit return pipe 5 and inside the hot water storage unit 3 .
  • the tank water circulation pump 13 circulates the tank water in the tank water circulation circuit 200 by pressurizing the tank water.
  • the tank water circulation pump 13 is provided in the middle of the post-heating pipe 23 .
  • the tank water circulation pump 13 has an electric motor, and the flow rate of the tank water circulating in the tank water circulation circuit 200 can be changed by changing the rotation speed of the electric motor.
  • the number of revolutions of the electric motor is referred to as the number of revolutions N.
  • the relationship between the number of revolutions N and the flow rate of the tank water circulating in the tank water circulation circuit 200 is such that the larger the value of the number of revolutions N, the greater the flow rate of the tank water circulating in the tank water circulation circuit 200 per unit time.
  • the channel switching device 14 switches the channel of the tank water circulation circuit 200 .
  • the tank water circulation circuit 200 is divided into two types, a middle inflow tank water circulation circuit 201 and an upper inflow tank water circulation circuit 202, and the flow path switching device 14 is either the middle inflow tank water circulation circuit 201 or the upper inflow tank water circulation circuit 202. switch to one side.
  • the channel switching device 14 has an A port 14a, a B port 14b, and a C port 14c, and communicates the channel for communicating the A port 14a and the B port 14b with the A port 14a and the C port 14c. It is a three-way valve that switches the flow path.
  • the flow switching device 14 connects the A port 14a and the B port 14b, the upper inflow tank water circulation circuit 202 is formed, and when the A port 14a and the C port 14c are connected, A middle inflow tank water circulation circuit 201 is formed.
  • the hot water storage unit internal supply pipe 20 is a pipe with one end positioned in the space below the hot water storage tank 10 and the other end connected to the supply pipe connection portion 26 .
  • the hot water storage unit internal extraction pipe 21 is a pipe with one end located in the space above the hot water storage tank 10 and the other end connected to the extraction pipe connection portion 27 .
  • the lower pipe 22 is a pipe having one end positioned in the space below the hot water storage tank 10 and the other end connected to one end of the first flow path 11 a of the heat exchanger 11 .
  • the post-heating pipe 23 has one end connected to the other end of the first flow path 11 a of the heat exchanger 11 and the other end connected to the A port 14 a of the flow path switching device 14 . is.
  • the central pipe 24 is a pipe whose one end is connected to the C port 14c of the channel switching device 14 and whose other end is positioned in the central space of the hot water storage tank 10 .
  • the other end of the central pipe 24 is positioned vertically above one end of the lower pipe 22 positioned in the space below the hot water storage tank 10 .
  • the upper pipe 25 is a pipe whose one end is connected to the B port 14b of the channel switching device 14 and whose other end is located in the upper space of the hot water storage tank 10 .
  • the other end of the upper pipe 25 is more vertical than one end of the lower pipe 22 located in the lower space of the hot water storage tank 10 and one end of the middle pipe 24 located in the middle space of the hot water storage tank 10. direction above.
  • the supply pipe connection portion 26 is a portion that connects the supply pipe 1300 to the hot water storage unit 3 .
  • the supply pipe 1300 By connecting the end portion of the supply pipe 1300 (corresponding to the end portion of the first supply pipe 1301 to be described later) to the supply pipe connection portion 26, the supply pipe 1300 and the hot water storage unit supply pipe 20 communicate with each other.
  • the extraction pipe connection portion 27 is a portion that connects the extraction pipe 1400 to the hot water storage unit 3 .
  • the extraction pipe 1400 By connecting the end of the extraction pipe 1400 (corresponding to the end of the first extraction pipe 1401 to be described later) to the extraction pipe connection portion 27 , the extraction pipe 1400 and the hot water storage unit extraction pipe 21 communicate with each other.
  • the tank temperature sensor 30 detects the temperature of the tank water located at the sensor height H of the hot water storage tank 10 .
  • the temperature of the tank water located at the sensor height H of the hot water storage tank 10 will be referred to as the tank internal temperature Tt.
  • the tank temperature sensor 30 is provided on the wall surface of the hot water storage tank 10 at a position separated from the bottom surface of the hot water storage tank 10 by the sensor height H in the vertical direction.
  • the sensor height H is predetermined by the designer so that the volume of the tank water stored above the sensor height H of the hot water storage tank 10 is equal to the amount of high-temperature water stored in the hot water storage device 1. It is.
  • the amount of high-temperature water stored in the hot water storage device 1 is determined in advance by the designer according to the amount of water to be used in the predetermined first usage terminal 1100 or the like. For example, when 50 liters of water is used in the first utilization terminal 1100, at least the hot water storage device 1 is designed to store 50 liters or more of high-temperature water, and is positioned above the sensor height H of the hot water storage tank 10. The sensor height H is predetermined so that the volume of the stored tank water is 50 liters or more.
  • the pre-heating tank water temperature sensor 31 detects the temperature of the tank water before it is heated by exchanging heat with the heat medium in the heat exchanger 11 .
  • the temperature of the tank water before being heated by exchanging heat with the heat medium will be referred to as the tank water temperature before heating Thb.
  • the pre-heating tank water temperature sensor 31 is arranged in the middle of the lower pipe 22 and detects the temperature of the tank water flowing through the lower pipe 22 as the pre-heating tank water temperature Thb.
  • the post-heating tank water temperature sensor 32 detects the temperature of the tank water after it has been heated by exchanging heat with the heat medium in the heat exchanger 11 .
  • the temperature of the tank water after being heated by exchanging heat with the heat medium will be referred to as the tank water temperature after heating Tha.
  • the post-heating tank water temperature sensor 32 is arranged in the middle of the post-heating pipe 23 and detects the temperature of the tank water flowing through the post-heating pipe 23 as the post-heating tank water temperature Tha.
  • FIG. 2 is a hardware configuration diagram regarding the controller of the hot water storage type hot water supply system according to the embodiment.
  • the control device 40 will be described with reference to FIG.
  • the control device 40 controls components of the hot water storage device 1 such as the tank water circulation pump 13 and the channel switching device 14 .
  • the control device 40 has a processor 41 , a memory 42 and a hardware interface 43 .
  • the processor 41, memory 42, and hardware interface 43 are connected so as to be able to exchange information.
  • the processor 41 is a device that executes a program stored in the memory 42 to control the components of the hot water storage device 1 or perform data processing.
  • a CPU Central Processing Unit
  • the memory 42 stores programs executed by the processor 41 and data necessary for executing the programs. Also, the memory 42 is used as a work area for the processor 41 .
  • Non-volatile or volatile semiconductor memory such as RAM (Random Access Memory), ROM (Read Only Memory), and flash memory is used for the memory 42 .
  • the hardware interface 43 transmits or receives signals to and from components of the hot water storage device 1 .
  • the hardware interface 43 and components for transmitting or receiving signals are connected to the hardware interface 43 by wires or wirelessly so that signals can be transmitted or received.
  • a terminal block to which a signal line is connected a terminal block to which a signal line is connected, a GPIO (General Purpose Input/Output), or a transceiver that transmits or receives radio waves for wireless communication is used.
  • FIG. 3 is a functional block diagram relating to the hot water storage device of the hot water storage type hot water supply system according to the embodiment. Next, a functional block diagram of the hot water storage device 1 will be described with reference to FIG.
  • the control device 40 includes a receiving unit 50, a transmitting unit 51, a storage unit 52, a control unit 53, and a determining unit 54.
  • the receiving unit 50 and the transmitting unit 51 are implemented by the hardware interface 43 .
  • the storage unit 52 is implemented by storing various information in the memory 42 .
  • the control unit 53 and the determination unit 54 are implemented by the processor 41 performing processing according to the programs stored in the memory 42 .
  • the receiving unit 50 receives signals transmitted to the control device 40 .
  • the receiving unit 50 is connected to the tank temperature sensor 30, the pre-heating tank water temperature sensor 31, and the post-heating tank water temperature sensor 32, and the receiving unit 50 receives signals containing information about temperatures detected by the respective sensors. .
  • the transmission unit 51 transmits a control signal generated by the control unit 53 to components outside the control device 40 as will be described later.
  • the transmitter 51 is connected to the heating unit 2 , the heat medium circulation pump 12 , the tank water circulation pump 13 , and the channel switching device 14 , and each component operates according to the control signal transmitted from the transmitter 51 . conduct.
  • the storage unit 52 stores information necessary for the control unit 53 to generate a control signal and information necessary for the determination unit 54 to make a determination. Details of the information stored in the storage unit 52 will be described later.
  • the control unit 53 generates a control signal based on the information contained in the signal received by the receiving unit 50 and the information stored in the storage unit 52.
  • the controller 53 generates a control signal for the heating unit 2 , a control signal for the heat medium circulation pump 12 , a control signal for the tank water circulation pump 13 , and a control signal for the flow path switching device 14 .
  • the controller 53 controls the heating unit 2 , the heat medium circulation pump 12 , the tank water circulation pump 13 , and the channel switching device 14 .
  • the determination unit 54 makes determinations based on information contained in the signal received by the reception unit 50 and information stored in the storage unit 52 . The details of the determination made by the determination unit 54 will be described later.
  • the unit-to-unit supply pipe 4 is a pipe having one end connected to the heating unit 2 and the other end connected to one end of the second flow path 11 b of the heat exchanger 11 .
  • the inter-unit return pipe 5 is a pipe having one end connected to the other end of the second flow path 11 b of the heat exchanger 11 and the other end connected to the heating unit 2 .
  • the first usage terminal 1100 and the second usage terminal 1200 take out the tank water stored in the hot water storage device 1 and use it.
  • the temperature of water to be used in the first terminal 1100 and the second terminal 1200 are set respectively, and the temperature of the water used in the first terminal 1100 is the temperature used in the second terminal 1200. higher than the temperature of the water being used.
  • the first user terminal 1100 is, for example, a dishwasher.
  • the second user terminal 1200 includes, for example, a shower or a washbasin.
  • the first usage terminal 1100 and the second usage terminal 1200 have plugs (not shown) capable of opening and closing the flow path connected to the extraction pipe 1400, and the plugs are operated when tank water is used. to open the flow path.
  • the supply pipe 1300 has a first supply pipe 1301 and a second supply pipe 1302 .
  • the first supply pipe 1301 is a pipe having one end connected to the water source and the other end connected to the supply pipe connection portion 26 of the hot water storage device 1 .
  • One end of the second supply pipe 1302 is connected to a flow path in the middle of the first supply pipe 1301, and the other end is connected to a flow path in the middle of the second extraction pipe 1402 described later. It is a piping that has
  • the takeout pipe 1400 has a first takeout pipe 1401 and a second takeout pipe 1402 .
  • the first take-out pipe 1401 is a pipe having one end connected to the take-out pipe connection portion 27 of the hot water storage device 1 described later and the other end connected to the first utilization terminal 1100 .
  • the second extraction pipe 1402 is a pipe having one end connected to a flow path in the middle of the first extraction pipe 1401 and the other end connected to the second utilization terminal 1200 .
  • FIG. 4 is a schematic diagram of the case where the first usage terminal uses the tank water as it is in the hot water storage type hot water supply system according to the embodiment.
  • the flow path through which water passes is indicated by a thick line.
  • the tank water stored in the upper part of the hot water storage tank 10 flows out to the hot water storage unit internal extraction pipe 21 .
  • the tank water flowing out from the hot water storage tank 10 to the hot water storage unit extraction pipe 21 passes through the hot water storage unit extraction pipe 21 , the extraction pipe connection part 27 and the first extraction pipe 1401 and flows into the first utilization terminal 1100 .
  • the tank water that has flowed into the first usage terminal 1100 is used at the first usage terminal 1100 .
  • water from the water source flows into the hot water storage tank 10 through the first supply pipe 1301 , the supply pipe connection portion 26 , and the hot water storage unit supply pipe 20 .
  • the water from the water source that has flowed into the hot water storage tank 10 is used as tank water.
  • FIG. 5 is a schematic diagram of the storage hot water supply system according to the embodiment when the second usage terminal mixes the tank water with the water from the water source.
  • the flow path through which water passes is indicated by a thick line.
  • the tank water stored in the upper part of the hot water storage tank 10 flows out to the hot water storage unit internal extraction pipe 21 .
  • the tank water flowing out from the hot water storage tank 10 to the hot water storage unit extraction pipe 21 passes through the hot water storage unit extraction pipe 21, the extraction pipe connection part 27, the first extraction pipe 1401, and the second extraction pipe 1402, and then reaches the second It flows into the user terminal 1200 .
  • the tank water flows through the second extraction pipe 1402 the tank water is mixed with the source water that has passed through the first supply pipe 1301 and the second supply pipe 1302 .
  • the water in which the tank water and the water source water flowed into the second terminal 1200 are mixed is used in the second terminal 1200 .
  • water from the water source flows into the hot water storage tank 10 through the first supply pipe 1301 , the supply pipe connection portion 26 , and the hot water storage unit supply pipe 20 .
  • the water from the water source that has flowed into the hot water storage tank 10 is used as tank water.
  • FIG. 6 is a flow chart of the hot water storage operation of the hot water storage type hot water supply system according to the embodiment.
  • the state of the hot water storage type hot water supply system 1000 before starting the hot water storage operation is a state in which the heating unit 2, the heat medium circulation pump 12, and the tank water circulation pump 13 are stopped.
  • a condition for starting the hot water storage operation for example, when a signal including a command to boil the tank water is received from a remote controller (not shown) connected to the control device 40 so as to be able to transmit and receive signals,
  • a remote controller not shown
  • the control device 40 so as to be able to transmit and receive signals
  • the prescribed boiling start time is stored and the time reaches the boiling start time, or when the boiling start temperature is stored in advance in the storage unit 52 and the temperature detected by the tank temperature sensor 30 is reached, boiling starts.
  • the temperature becomes lower than the temperature and the determination unit 54 determines that the amount of heat in the tank water stored in the hot water storage tank 10 is insufficient.
  • the desired high temperature water temperature Th and the desired intermediate temperature Tm are stored in the storage unit 52 . Further, in the hot water storage operation, the rotation speed of the electric motor of the tank water circulation pump 13 is changed by the control unit 53 to the rotation speed Nh for boiling high-temperature water or the rotation speed Nm for boiling medium-temperature water.
  • the desired high-temperature water temperature Th and the desired medium-temperature water temperature Tm are predetermined values before starting the hot water storage operation, and the desired high-temperature water temperature Th is a value higher than the desired medium-temperature water temperature Tm. Further, in the embodiment, the desired high-temperature water temperature Th is equal to or higher than the temperature of the water used in the first terminal 1100, and the desired medium-temperature water temperature Tm is equal to or higher than the temperature of water used in the second terminal 1200. do.
  • the desired high-temperature water temperature Th and the desired medium-temperature water temperature Tm may be determined by the designer or installer at the time of shipment or installation of the hot water storage device 1, respectively.
  • the high-temperature water boiling rotation speed Nh is the rotation speed of the electric motor of the tank water circulation pump 13 that can obtain the tank water heated to the desired high-temperature water temperature Th.
  • the rotation speed Nm for boiling medium-temperature water is the rotation speed of the electric motor of the tank water circulation pump 13, which is higher than the rotation speed Nh for boiling high-temperature water.
  • the control unit 53 acquires the post-heating tank water temperature Tha, and changes the acquired post-heating tank water temperature Tha to If it is lower than the desired high-temperature water temperature Th, the rotation speed of the electric motor of the tank water circulation pump 13 is decreased, and if the obtained post-heating tank water temperature Tha is higher than the desired high-temperature water temperature Th, the electric motor of the tank water circulation pump 13 is rotated. There is a method of increasing the number.
  • the high-temperature water boiling rotation speed Nh is derived by experiment or simulation, the derived high-temperature water boiling rotation speed Nh is stored in advance in the storage unit 52, and the control unit 53 sets the tank water to a high temperature.
  • the rotational speed of the electric motor of the tank water circulation pump 13 sets the tank water to a high temperature.
  • the rotation speed Nm for boiling medium-temperature water only needs to be higher than the rotation speed Nh for boiling high-temperature water. It is a value obtained by adding a constant to the high-temperature water boiling rotation speed Nh.
  • step S100 the controller 53 switches the flow path switching device 14 to a state in which the A port 14a and the C port 14c are communicated.
  • step S100 After the process of step S100 is completed, proceed to the process of step S101.
  • step S ⁇ b>101 the controller 53 starts the operation of the heating unit 2 , the heat medium circulation pump 12 and the tank water circulation pump 13 .
  • FIG. 7 is a schematic diagram of the hot water storage type hot water supply system according to the embodiment when the process of step S101 of the hot water storage operation is completed.
  • the flow paths through which the water and the heat medium pass are indicated by thick lines.
  • the heat medium is heated by the heating unit 2 by operating the heating unit 2 in step S101. Further, the heat medium circulates in the heat medium circulation circuit 100 by operating the heat medium circulation pump 12 in step S101. Specifically, the heat medium heated by the heating unit 2 passes through the inter-unit outgoing pipe 4, the second flow path 11b of the heat exchanger 11, and the inter-unit return pipe 5, and flows into the heating unit 2 again. do.
  • step S100 the flow path switching device 14 brings the A port 14a and the C port 14c into communication, so that the hot water storage tank 10, the lower pipe 22, the first flow path 11a of the heat exchanger 11, and the post-heating pipe 23 , the channel switching device 14 and the central pipe 24 are connected so that the tank water flows, forming a central inflow tank water circulation circuit 201 .
  • the tank water circulates through the middle inflow tank water circulation circuit 201 by operating the tank water circulation pump 13 in step S101 in which the middle inflow tank water circulation circuit 201 is formed. Specifically, tank water flows as described below.
  • Tank water stored in the lower portion of the hot water storage tank 10 flows out to the lower pipe 22 .
  • the tank water flowing out from the hot water storage tank 10 to the lower pipe 22 is supplied to the heat exchanger 11 and passes through the first flow path 11 a of the heat exchanger 11 . Since the heat medium passing through the second flow path 11b is heated by the heating unit 2, it has a higher temperature than the tank water passing through the first flow path 11a. Therefore, the tank water passing through the first flow path 11a is heated by the heat medium passing through the second flow path 11b, and the temperature rises. After passing through the first flow path 11 a , the tank water passes through the post-heating pipe 23 , the flow path switching device 14 and the central pipe 24 and is supplied to the middle part of the hot water storage tank 10 .
  • step S102 After completing the process of step S102, proceed to step S103.
  • step S ⁇ b>103 the receiving unit 50 acquires the pre-heating tank water temperature Thb detected by the pre-heating tank water temperature sensor 31 .
  • step S104 the determination unit 54 determines whether or not the unheated tank water temperature Thb acquired by the reception unit 50 in step S103 is equal to or higher than the medium temperature desired temperature Tm. That is, in step S104, the determination unit 54 determines whether or not the condition Thb ⁇ Tm is satisfied.
  • step S104 if the determination unit 54 determines that the pre-heating tank water temperature Thb is lower than the medium-temperature desired temperature Tm (step S104, No), the process returns to step S103 and the reception unit 50 restarts the pre-heating tank water temperature Thb. Obtain the tank water temperature Thb.
  • step S104 when the judging unit 54 judges that the pre-heating tank water temperature Thb is equal to or higher than the medium-temperature desired temperature Tm (step S104, Yes), the process proceeds to step S105.
  • step S105 the controller 53 switches the channel switching device 14 to a state in which the A port 14a and the B port 14b are communicated.
  • FIG. 8 is a schematic diagram of the hot water storage type hot water supply system according to the embodiment when the process of step S105 of the hot water storage operation is completed.
  • the flow paths through which the water and the heat medium pass are indicated by thick lines.
  • FIG. 8 the flow of tank water at the time when the process of step S105 of the hot water storage operation is completed will be described. Note that the flow of the heat medium at the time when the process of step S105 of the hot water storage operation ends is the same as the flow of the heat medium at the time of the process of step S101 of the hot water storage operation described using FIG. omitted.
  • step S105 the flow path switching device 14 brings the A port 14a and the B port 14b into communication, so that the hot water storage tank 10, the lower pipe 22, the first flow path 11a of the heat exchanger 11, and the post-heating pipe 23 , the channel switching device 14 and the upper pipe 25 are connected so that the tank water flows, and an upper inflow tank water circulation circuit 202 is formed.
  • the tank water circulation pump 13 By operating the tank water circulation pump 13 with the upper inflow tank water circulation circuit 202 formed, the tank water circulates through the upper inflow tank water circulation circuit 202 . Specifically, tank water flows as described below. Tank water stored in the lower portion of the hot water storage tank 10 flows out to the lower pipe 22 . The tank water flowing out from the hot water storage tank 10 to the lower pipe 22 is supplied to the heat exchanger 11 and passes through the first flow path 11 a of the heat exchanger 11 . As described for the middle inflow tank water circulation circuit 201, the tank water passing through the first flow path 11a is heated by the heat medium passing through the second flow path 11b, and the temperature rises. After passing through the first channel 11 a , the tank water passes through the post-heating pipe 23 , the channel switching device 14 and the upper pipe 25 and is supplied to the upper part of the hot water storage tank 10 .
  • step S106 the controller 53 changes the rotation speed N of the electric motor of the tank water circulation pump 13 to the rotation speed Nh for boiling high-temperature water. That is, the control unit 53 controls the rotation speed N of the electric motor of the tank water circulation pump 13 so that the tank water heated to the desired high-temperature water temperature Th can be obtained.
  • step S106 After completing the process of step S106, proceed to step S107.
  • step S ⁇ b>107 the receiver 50 acquires the tank internal temperature Tt detected by the tank temperature sensor 30 .
  • step S108 the determination unit 54 determines whether or not the in-tank temperature Tt acquired by the reception unit 50 in step S107 is equal to or higher than the desired hot water temperature Th. That is, in step S108, the determination unit 54 determines whether or not the condition Tt ⁇ Th is satisfied.
  • step S108 when the judging unit 54 determines that the tank internal temperature Tt is lower than the desired high-temperature water temperature Th (step S108, No), the process returns to step S107 and the receiving unit 50 returns to the tank internal temperature Tt. to get
  • step S108 if the determination unit 54 determines that the tank internal temperature Tt is equal to or higher than the desired high-temperature water temperature Th (step S108, Yes), the process proceeds to step S109.
  • step S ⁇ b>109 the controller 53 stops the operation of the heating unit 2 , the heat medium circulation pump 12 and the tank water circulation pump 13 .
  • step S109 After the process of step S109 ends, the hot water storage type hot water supply system 1000 ends the hot water storage operation.
  • FIGS. 9 to 12 are first to fourth diagrams respectively showing the temperature distribution of tank water inside the hot water storage tank during the hot water storage operation in the hot water storage type hot water supply system according to the embodiment.
  • changes in the temperature distribution of the tank water inside the hot water storage tank 10 during the hot water storage operation will be described with reference to FIGS. 9 to 12.
  • FIG. In this description the desired medium temperature Tm is assumed to be 40°C, and the desired high temperature Th is assumed to be 60°C.
  • the temperature distribution of the tank water inside the hot water storage tank 10 immediately before the start of the hot water storage operation is in the state shown in FIG. Specifically, inside the hot water storage tank 10, a temperature boundary is formed at a position separated from the bottom of the hot water storage tank 10 by a boundary height Hh.
  • Tank water of 40° C. is stored in the portion above the temperature boundary of the hot water storage tank 10, and tank water of 10° C. is stored in the portion below the temperature boundary of the hot water storage tank 10.
  • the hot water storage operation When the hot water storage operation is started with the temperature distribution of the tank water inside the hot water storage tank 10 shown in FIG. is heated by the heat exchanger 11 and flows into the hot water storage tank 10 again from the middle portion of the hot water storage tank 10 .
  • the tank water that has flowed into the hot water storage tank 10 mixes with the tank water in the middle and the lower part, and the temperature of the tank water below the temperature boundary rises.
  • the higher the temperature, the lower the density of water, and the lower the temperature the higher the density. If the temperature of the tank water below the temperature boundary is lower than 40°C, the tank water below the temperature boundary will be more dense than the water at 40°C and will does not migrate and mix with the tank water above the temperature boundary.
  • step S104 of the hot water storage operation is not satisfied, and the tank water heated by the heat exchanger 11 flows into the hot water storage tank 10 from the middle portion of the hot water storage tank 10 . Further, when the temperature of the tank water below the temperature boundary rises, the temperature of the tank water flowing out of the hot water storage tank 10 also rises, and the temperature of the tank water flowing into the hot water storage tank 10 after being heated by the heat exchanger 11. also rises. Therefore, if the hot water storage operation is continued in the state shown in FIG. 10, the temperature of the tank water flowing into the hot water storage tank 10 becomes 40° C. or more, the temperature boundary disappears, and the temperature inside the hot water storage tank 10 becomes uniform. As a result, the temperature distribution of the tank water inside the hot water storage tank 10 shifts from the state shown in FIG. 10 to the state shown in FIG.
  • step S104 for the hot water storage operation When the temperature distribution of the tank water inside the hot water storage tank 10 is shown in FIG. is the same as °C. Therefore, the condition of step S104 for the hot water storage operation is satisfied, and the processing of steps S105 and S106 for the hot water storage operation is performed.
  • the outflowing tank water is heated to 60° C., which is the high temperature desired temperature Th, in the heat exchanger 11, and the heated tank water flows from the upper part of the hot water storage tank 10 to the hot water storage tank 10. flow into the interior of The temperature of the tank water flowing from the top of the hot water storage tank 10 is 60.degree. C., which is higher than the temperature of 40.degree.
  • the tank water flowing from the top of the hot water storage tank 10 does not mix with the tank water already stored in the hot water storage tank 10, and the temperature boundary is formed again. That is, inside the hot water storage tank, tank water of 60° C. is stored above the temperature boundary, and tank water of 40° C. is stored below the temperature boundary. Further, if more time elapses while the processing of steps S105 and S106 of the hot water storage operation is being performed, the amount of 60° C. tank water stored in the hot water storage tank 10 increases, and 40° C. The amount of tank water at °C will be less. Therefore, the temperature boundary moves downward over time, and the boundary height Hh becomes lower. As a result, the temperature distribution of the tank water inside the hot water storage tank 10 shifts from the state shown in FIG. 11 to the state shown in FIG.
  • the boundary height Hh is the same as the sensor height H when the temperature distribution of the tank water inside the hot water storage tank 10 is shown in FIG.
  • the tank water temperature Tt detected by the tank temperature sensor 30 is 60°C, which is the same as the desired high temperature Th of 60°C. Therefore, after the condition of step S108 for the hot water storage operation is satisfied and the processing of step S109 is performed, the hot water storage type hot water supply system 1000 ends the hot water storage operation.
  • the sensor height H is determined so that the volume of the tank water stored above the sensor height H of the hot water storage tank 10 is the amount of high temperature water stored in the hot water storage device 1 . Therefore, in the state shown in FIG. 12 where the boundary height Hh is the same as the sensor height H, the hot water storage tank 10 is in a state of storing a predetermined amount of high-temperature water by the designer.
  • the hot water storage device 1 and the hot water storage type hot water supply system 1000 include the hot water storage tank 10 that stores tank water therein, and the heating source (heating unit 2 and heat exchanger 11) that heats the tank water. ), a lower pipe 22 for supplying the tank water stored in the lower part of the hot water storage tank 10 to the heating source, and a hot water storage tank positioned vertically above the lower part of the hot water storage tank 10 for supplying the tank water heated by the heating source. 10, an upper pipe 25 for supplying the tank water heated by the heat source to the lower portion of the hot water storage tank 10 and the upper portion of the hot water storage tank located above the middle portion in the vertical direction, and a heat source.
  • a central inflow tank water circulation circuit 201 in which the tank water heated in the above passes through the central piping 24 and flows into the central part of the hot water storage tank 10, and the tank water heated by the heating source passes through the upper piping 25 and flows into the upper part of the hot water storage tank 10.
  • the channel switching device 14 switches to the middle inflow tank
  • the flow path switching device 14 has a configuration for switching from the middle inflow tank water circulation circuit 201 to the upper inflow tank water circulation circuit 202 .
  • hot water storage device 1 and hot water storage type hot water supply system 1000 can supply high temperature water to hot water storage tank 10 after a sufficient amount of intermediate hot water is stored in hot water storage tank 10. Effective.
  • the intermediate hot water is a state in which the intermediate hot water is stored up to the bottom of the hot water storage tank 10 where the end of the lower pipe 22 is located. refers to
  • the hot water storage device 1 and the hot water storage type hot water supply system 1000 have an additional configuration in which the tank water supplied to the heat source is changed when the flow path switching device 14 forms the central inflow tank water circulation circuit 201 .
  • the flow rate per unit time is higher than the flow rate per unit time of the tank water supplied to the heating source when the flow switching device 14 forms the upper inflow tank water circulation circuit 202 .
  • the hot water storage device 1 and the hot water storage type hot water supply system 1000 according to the embodiment have a higher flow rate when boiling medium-temperature water than when boiling high-temperature water, Better energy efficiency.
  • the hot water storage device 1 and the hot water storage type hot water supply system 1000 have an electric motor as an additional configuration, and the tank water is circulated through the middle inflow tank water circulation circuit 201 or the upper inflow tank water circulation circuit 202 to rotate the electric motor.
  • the tank water circulation pump 13 is equipped with the tank water circulation pump 13 that can change the flow rate of the circulating tank water per unit time by changing the number of tank water circulation pumps 13, and the tank water circulation pump 13 in the state where the flow path switching device 14 forms the middle inflow tank water circulation circuit 201.
  • the number of rotations of the electric motor is higher than the number of rotations of the electric motor of the tank water circulation pump 13 when the flow path switching device 14 forms the upper inflow tank water circulation circuit 202 .
  • the hot water storage device 1 and the hot water storage type hot water supply system 1000 control the number of revolutions of the tank water circulation pump 13, so that high-temperature water is supplied when medium-temperature water is boiled.
  • the flow rate is higher than when boiling, and the energy efficiency during boiling is improved.
  • the hot water storage device 1 and the hot water storage type hot water supply system 1000 have an additional configuration in which the number of revolutions of the electric motor of the tank water circulation pump 13 when the flow path switching device 14 forms the central inflow tank water circulation circuit 201 is has a configuration that is the maximum number of revolutions that the motor can run.
  • the heating amount of the running water is proportional to the flow rate of the running water. That is, in the hot water storage device 1 and the hot water storage type hot water supply system 1000 according to the embodiment, the larger the rotation speed of the electric motor of the tank water circulation pump 13, the larger the heating amount of the tank water flowing through the heat exchanger 11, which is the heat source, and the energy efficiency. is also excellent.
  • the hot water storage device 1 and the hot water storage type hot water supply system 1000 can achieve the maximum flow rate that the tank water circulation pump 13 can exhibit when the central inflow tank water circulation circuit 201 is formed. Since it is operated at , it has the effect of being able to boil the tank water with excellent energy efficiency.
  • the hot water storage device 1 and the hot water storage type hot water supply system 1000 have an additional configuration in which the tank after being heated by the heat source in which the flow path switching device 14 forms the central inflow tank water circulation circuit 201 is heated.
  • the temperature of the water is configured to be lower than the temperature of the tank water after being heated by the heating source in the state where the flow switching device 14 forms the upper inflow tank water circulation circuit 202 .
  • the hot water storage device 1 and the hot water storage type hot water supply system 1000 according to the embodiment have the effect of being able to store water of two temperatures, high temperature water and medium temperature water, in the hot water storage tank 10. Play.
  • the hot water storage device 1 and the hot water storage type hot water supply system 1000 have an electric motor as an additional configuration, and the tank water is circulated through the middle inflow tank water circulation circuit 201 or the upper inflow tank water circulation circuit 202 to rotate the electric motor.
  • the tank water circulation pump 13 is equipped with a tank water circulation pump 13 that can change the flow rate of the circulating tank water per unit time by changing the number of tank water circulation pumps, and the flow path switching device 14 forms the upper inflow tank water circulation circuit 202.
  • the number of revolutions of the electric motor is such that the temperature of the tank water after being heated by the heating source becomes a predetermined high-temperature water desired temperature Th higher than the medium-temperature water desired temperature Tm.
  • the hot water storage device 1 and the hot water storage type hot water supply system 1000 according to the embodiment have the effect of being able to store water of two temperatures, high temperature water and medium temperature water, in the hot water storage tank 10. Play.
  • the hot water storage device 1 and the hot water storage type hot water supply system 1000 detect the temperature of the tank water stored in the lower part of the hot water storage tank 10 or the temperature of the tank water flowing through the lower pipe 22 as an additional configuration.
  • the temperature of the tank water detected by the pre-heating tank water temperature sensor 31 is the temperature of the tank water before being heated by the heating source.
  • the hot water storage device 1 and the hot water storage type hot water supply system 1000 according to the embodiment accurately detect the temperature of the tank water before being heated by the heating source by the preheating tank water temperature sensor 31. effect that can be achieved.
  • the hot water storage device 1 and the hot water storage type hot water supply system 1000 according to the embodiment have an additional configuration in which the lower pipe 22, the middle pipe 24, and the upper pipe 25 extend from the body of the hot water tank 10 to the outside of the hot water tank 10. exposed to the With this additional configuration, the hot water storage device 1 and the hot water storage type hot water supply system 1000 according to the embodiment have the effect of suppressing the height of the hot water storage device 1 in the vertical direction.
  • the hot water storage device 1 and the hot water storage type hot water supply system 1000 have additional configurations in which the heat source is a heating unit 2 that heats the heat medium, and the heat medium heated by the heating unit 2 and the tank water. and a heat exchanger 11 for exchanging heat therebetween.
  • the hot water storage device 1 and the hot water storage type hot water supply system 1000 according to the embodiment can reduce the amount of refrigerant and fuel in the heating unit 2 compared to means in which the heating unit 2 directly heats the tank water. can reduce the risk of mixing into the tank water.
  • the hot water storage device 1 and the hot water storage type hot water supply system 1000 according to the embodiment have a configuration in which the heating unit 2 is a vapor compression heat pump.
  • the hot water storage device 1 and the hot water storage type hot water supply system 1000 according to the embodiment have the effect of increasing the energy efficiency compared to means for burning fuel and heating the heat medium with combustion heat. Play.
  • the hot water storage device 1 and the hot water storage type hot water supply system 1000 have a configuration in which the heating unit is formed with a refrigerant circuit in which a refrigerant circulates, and the refrigerant is a natural refrigerant.
  • the hot water storage device 1 and the hot water storage type hot water supply system 1000 according to the embodiment can suppress the impact on the global environment compared to the case where the HFC refrigerant is used as the refrigerant. play.
  • the hot water storage type hot water supply system 1000 has a first usage terminal 1100 and a second usage terminal for taking out and using the tank water stored in the hot water storage device 1 and the hot water storage tank 10 as additional configurations. 1200, the temperature of the water used in the first terminal 1100 and the second terminal 1200 is predetermined, and the temperature of the water used in the first terminal 1100 is the second terminal. The temperature of the water used in the terminal 1200 is higher than that of the water used in the second terminal 1200, and the desired intermediate water temperature Tm is equal to or higher than the temperature of the water used in the second terminal 1200.
  • FIG. With this additional configuration hot water storage type hot water supply system 1000 according to the embodiment can use second usage terminal 1200 by supplying intermediate temperature water to second usage terminal 1200 .
  • the hot water storage type hot water supply system 1000 has, as an additional configuration, the temperature of the water after being heated by the heat source in the state where the flow path switching device 14 forms the upper inflow tank water circulation circuit 202 is It has a configuration that is equal to or higher than the temperature of the water used in the first usage terminal 1100 .
  • hot water storage type hot water supply system 1000 according to the embodiment has the effect of being able to use first usage terminal 1100 by supplying high-temperature water to first usage terminal 1100. .
  • the hot water storage type hot water supply system 1000 has, as an additional configuration, a portion of the tank water stored in the hot water storage tank 10 located at the lowest position in the vertical direction of the hot water storage tank 10 (corresponding to the bottom portion). Equipped with a tank temperature sensor 30 that detects the temperature of the tank water stored at a position distant by a predetermined sensor height H, the amount of water used by the first terminal 1100 is predetermined, Among the tank water stored in the hot water storage tank 10, the volume of the tank water located above the sensor height H in the vertical direction is equal to or greater than the amount of water used by the first usage terminal 1100, and the hot water storage operation is performed.
  • the hot water storage type hot water supply system 1000 has the effect of being able to store hot water in the hot water storage tank 10 in the hot water storage operation as much as the amount of hot water to be used by the first usage terminal 1100. .
  • FIG. 13 is a schematic diagram of a hot water storage type hot water supply system according to a modification of the embodiment.
  • Hot water storage type hot water supply system 1001 according to the first modification of the embodiment differs from hot water storage type hot water supply system 1000 of the embodiment in that hot water storage unit supply pipe 20 , hot water storage unit extraction pipe 21 , lower pipe 22 , middle part The position where the pipe 24 and the upper pipe 25 are exposed from the hot water storage tank 10 and the position of the pre-heating tank water temperature sensor 31 are different.
  • Storage hot water supply system 1001 according to the first modification of the embodiment is the same as storage hot water system 1000 of the embodiment except for the differences described above, and therefore descriptions of the same portions are omitted.
  • the hot water storage unit internal supply pipe 20 and the lower pipe 22 are exposed from the bottom surface of the hot water storage tank 10 .
  • the hot water storage unit internal extraction pipe 21 , the middle pipe 24 and the upper pipe 25 are exposed from the top surface of the hot water storage tank 10 .
  • the pre-heating tank water temperature sensor 31 is located on the bottom surface of the hot water storage tank 10 . Since the tank water flows out to the heat exchanger 11 through the lower pipe 22 exposed from the bottom surface, even if the unheated tank water temperature sensor 31 is located at the bottom surface of the hot water storage tank 10, the unheated tank water The temperature sensor 31 can acquire the tank water temperature before heating Thb.
  • the hot water storage device 1 and the hot water storage type hot water supply system 1001 have a hot water storage tank in which tank water is stored, similarly to the hot water storage device 1 and the hot water storage type hot water supply system 1001 according to the embodiment.
  • a heating source heating unit 2 and heat exchanger 11 correspond
  • a lower pipe 22 for supplying the tank water stored in the lower part of the hot water storage tank 10 to the heating source, and heating by the heating source.
  • a central pipe 24 for supplying the heated tank water to the central portion of the hot water storage tank located vertically above the lower portion of the hot water storage tank 10;
  • a central inflow tank water circulation circuit 201 in which the tank water heated by the heating source passes through the central piping 24 and flows into the central part of the hot water storage tank 10, and the heating source.
  • a flow path switching device 14 for switching between an upper inflow tank water circulation circuit 202 in which the tank water heated in the above passes through the upper pipe 25 and flows into the upper part of the hot water storage tank 10, and the hot water storage tank 10 is heated by the heating source.
  • the flow path switching device 14 forms the middle inflow tank water circulation circuit 201, and the temperature of the tank water before being heated by the heating source (corresponding to the tank water temperature before heating Thb) is equal to or higher than the predetermined medium temperature desired temperature Tm (step S104, YES), the flow path switching device 14 is configured to switch from the middle inflow tank water circulation circuit 201 to the upper inflow tank water circulation circuit 202. Therefore, the hot water storage device 1 and the hot water storage type hot water supply system 1001 according to the embodiment also have the same effects as those described in the embodiment.
  • the hot water storage device 1 and the hot water storage type hot water supply system 1001 according to the modification of the embodiment have an additional configuration in which at least one of the lower pipe 22, the middle pipe 24, and the upper pipe 25 is connected to the top surface of the hot water storage tank 10 or It has a configuration in which it is exposed to the outside of the hot water storage tank from the bottom surface.
  • the hot water storage device 1 and the hot water storage type hot water supply system 1001 according to the modification of the embodiment can be connected to the lower pipe 22 like the hot water storage device 1 and the storage type hot water system 1000 according to the embodiment.
  • the horizontal area of the hot water storage device 1 can be suppressed, and the installation area of the hot water storage device 1 can be suppressed, compared to the configuration in which the central pipe 24 and the upper pipe 25 are exposed from the body.
  • the hot water storage unit supply pipe 20 and the lower pipe 22 are exposed from the bottom portion of the hot water storage tank 10, and the hot water storage unit extraction pipe 21 and the central portion are exposed.
  • the pipe 24 and the upper pipe 25 are exposed from the top surface of the hot water storage tank 10, but are not limited to this.
  • the hot water storage unit supply pipe 20 and the lower pipe 22 are exposed from the top surface of the hot water storage tank 10
  • the hot water storage unit extraction pipe 21, the middle pipe 24, and the upper pipe 25 are exposed from the bottom surface of the hot water storage tank 10. But I don't mind.
  • the heating unit 2 and the hot water storage unit 3 are provided in separate housings. It is good as
  • the heat medium circulation pump 12 is located inside the hot water storage unit 3, but is not limited to this, and is located inside the heating unit 2. I don't mind. Moreover, the heat medium circulation pump 12 may be provided in the middle of the pipe 4 going between units.
  • the tank water circulation pump 13 is provided in the middle of the post-heating pipe 23, but is not limited to this, and is provided in the middle of the lower pipe 22. I don't mind.
  • step S102 of the hot water storage operation the controller 53 changes the rotation speed N of the electric motor of the tank water circulation pump 13 to the rotation speed Nm for boiling medium water.
  • the controller 53 may set the rotation speed N of the electric motor of the tank water circulation pump 13 to the rotation speed Nm for boiling medium water at the stage of step S101 and start the operation. In this case, the process of step S102 is not performed, and the process of step S103 is performed after the process of step S101 is completed.
  • the heating unit 2 and the heat exchanger 11 are used to heat-exchange the heat medium heated by the heating unit 2 with the tank water.
  • the tank water is heated, it is not limited to this.
  • a means to directly heat the tank water by burning fuel such as gas or kerosene a means to directly heat the tank water with an electric heater, or a means to directly heat the tank water by collecting heat from the sun.
  • the device for directly heating the tank water corresponds to the heating source.
  • the desired high-temperature water temperature Th and the desired medium-temperature water temperature Tm are determined by the designer or installer at the time of shipment or installation of the hot water storage device 1. However, it is not limited to this.
  • the desired high-temperature water temperature Th and the desired medium-temperature water temperature may be set before the hot water storage operation is started, and may be set to values desired by the user by operating a remote controller (not shown) by the user. .
  • 1 hot water storage device 2 heating unit, 3 hot water storage unit, 4 inter-unit piping, 5 inter-unit return piping, 10 hot water storage tank, 11 heat exchanger, 11a first flow path, 11b second flow path, 12 heat medium Circulation pump, 13 Tank water circulation pump, 14 Channel switching device, 14a A port, 14b B port, 14c C port, 20 Hot water storage unit internal supply piping, 21 Hot water storage unit internal extraction piping, 22 Lower piping, 23 Post-heating piping, 24 Central piping, 25 Upper piping, 26 Supply piping connection, 27 Extraction piping connection, 30 Tank temperature sensor, 31 Tank water temperature sensor before heating, 32 Tank water temperature sensor after heating, 40 Control device, 41 Processor, 42 Memory, 43 hardware interface, 50 receiving unit, 51 transmitting unit, 52 storage unit, 53 control unit, 54 judging unit, 100 heat medium circulation circuit, 200 tank water circulation circuit, 201 central inflow tank water circulation circuit, 202 upper inflow tank water circulation circuit, 1000 storage hot water system, 1001 storage hot water system, 1100 first use terminal, 1200

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

貯湯タンク内に十分な量の中温湯を貯湯してから、貯湯タンクへ高温水を供給することができる貯湯装置を得る。 本開示の一態様に係る貯湯装置1は、貯湯タンク10と、タンク水を加熱する加熱源と、タンク水を加熱源に供給する下部配管22と、加熱源で加熱されたタンク水を貯湯タンク10の中部に供給する中部配管24と、加熱源で加熱されたタンク水を貯湯タンク10の上部に供給する上部配管25と、中部流入タンク水循環回路201と上部流入タンク水循環回路202とを切り替える流路切替装置14と、を備え、貯湯運転において、流路切替装置14が中部流入タンク水循環回路201を形成した状態であり加熱源で加熱される前のタンク水の温度が中温水所望温度Tm以上である場合は、流路切替装置14は中部流入タンク水循環回路201から上部流入タンク水循環回路202に切り替える。

Description

貯湯装置および貯湯式給湯システム
 本開示は貯湯装置および当該貯湯装置を含む貯湯式給湯システムに関する。
 従来、例えば特許文献1に示すように、貯湯タンクと加熱源と貯湯タンク上層部に接続された高温湯出湯配管と貯湯タンクの中層部に接続された中温湯出湯配管と沸上切替弁とを備え、沸上切替弁は高温水(特許文献1の高温湯が該当)を沸かし上げる高温湯沸上モードでは加熱源で加熱された水を高温湯出湯配管を介して貯湯タンクに供給するよう流路を切り替え、中温水(特許文献1の中温湯が該当)を沸かし上げる中温湯沸き上げモードでは加熱源で加熱された水を中温湯出湯配管を介して貯湯タンクに供給する貯湯式給湯システムが開示されている。また、特許文献1に示す貯湯式給湯システムは中温湯沸上モードから高温湯沸上モードに移行することが開示されている。
特開2009-204252号公報
 特許文献1では、沸上切替弁の向きを変える条件については加熱源からの出湯温度に基づいて開示されているが、中温湯沸上モードから高温湯沸上モードに移行する条件については開示されていない。したがって、貯湯タンク内の湯が所望の温度に達していないうちに中温湯沸上モードから高温湯沸上モードに切り替わってしまい、貯湯タンク内に十分な量の中温水を貯湯できない恐れがある。
 本開示は、貯湯タンク内に十分な量の中温水を貯湯してから、貯湯タンクへ高温水を供給することができる貯湯装置および当該貯湯装置を含む貯湯式給湯システムを得ることを目的とする。
 本開示の一態様に係る貯湯装置ならびに貯湯式給湯システムは、内部にタンク水を貯留する貯湯タンクと、タンク水を加熱する加熱源と、貯湯タンクの下部に貯留されたタンク水を加熱源に供給する下部配管と、加熱源で加熱されたタンク水を貯湯タンクの下部よりも鉛直方向において上方に位置する貯湯タンクの中部に供給する中部配管と、加熱源で加熱されたタンク水が貯湯タンクの下部および中部よりも鉛直方向において上方に位置する貯湯タンクの上部に供給する上部配管と、加熱源で加熱されたタンク水が中部配管を通過して貯湯タンクの中部に流入する中部流入タンク水循環回路と加熱源で加熱されたタンク水が上部配管を通過して貯湯タンクの上部に流入する上部流入タンク水循環回路と、を切り替える流路切替装置と、を備え、貯湯タンクに加熱源で加熱されたタンク水を貯留する貯湯運転において流路切替装置が中部流入タンク水循環回路を形成した状態であり加熱源で加熱される前のタンク水の温度が予め定められた中温水所望温度以上である場合は流路切替装置は中部流入タンク水循環回路から上部流入タンク水循環回路に切り替える。
 本開示の一態様に係る貯湯装置ならびに貯湯式給湯システムは、加熱源で加熱される前のタンク水の温度が中温水所望温度以上であれば中部流入タンク水循環回路から上部流入タンク水循環回路に切り替えるため、貯湯タンク内に十分な量の中温水を貯湯してから、貯湯タンクへ高温水を供給することができる。
実施の形態に係る貯湯式給湯システムの概略図である。 実施の形態に係る貯湯式給湯システムの制御装置に関するハードウェア構成図である。 実施の形態に係る貯湯式給湯システムの貯湯装置に関する機能ブロック図である。 実施の形態に係る貯湯式給湯システムで第一の利用端末がタンク水をそのまま利用する場合の概略図である。 実施の形態に係る貯湯式給湯システムで第二の利用端末がタンク水を水源の水と混合させて利用する場合の概略図である。 実施の形態に係る貯湯式給湯システムの貯湯運転のフローチャートである。 実施の形態に係る貯湯式給湯システムについて貯湯運転のステップS101の処理が終了した時点における概略図である。 実施の形態に係る貯湯式給湯システムについて貯湯運転のステップS105の処理が終了した時点における概略図である。 実施の形態に係る貯湯式給湯システムにおいて貯湯運転時の貯湯タンクの内部のタンク水の温度分布を示す第一の図である。 実施の形態に係る貯湯式給湯システムにおいて貯湯運転時の貯湯タンクの内部のタンク水の温度分布を示す第二の図である。 実施の形態に係る貯湯式給湯システムにおいて貯湯運転時の貯湯タンクの内部のタンク水の温度分布を示す第三の図である。 実施の形態に係る貯湯式給湯システムにおいて貯湯運転時の貯湯タンクの内部のタンク水の温度分布を示す第四の図である。 実施の形態の変形例に係る貯湯式給湯システムの概略図である。
 本開示の実施の形態に係る貯湯装置および貯湯式給湯システムについて図面に基づいて説明する。なお、本開示は以下の実施の形態のみに限定されることはなく、本開示の趣旨を逸脱しない範囲で変形または省略することが可能である。さらに、各々の実施の形態ならびに変形例に係る貯湯装置および貯湯式給湯システムの構成ならびに付加的な構成を適宜組み合わせることも可能である。また、各図において共通する要素には同一の符号を付して重複する説明を省略する。
実施の形態.
 図1は実施の形態に係る貯湯式給湯システムの概略図である。貯湯式給湯システム1000は、貯湯装置1と、第一の利用端末1100と、第二の利用端末1200と、供給配管1300と、取出配管1400と、を備える。
 貯湯装置1は、加熱ユニット2と、貯湯ユニット3と、ユニット間往き配管4と、ユニット間戻り配管5を有する。また、貯湯装置1には、加熱ユニット2と貯湯ユニット3とユニット間往き配管4とユニット間戻り配管5とが熱媒体が流れるように接続されることで、熱媒体が循環する熱媒体循環回路100が形成されている。なお、熱媒体には流体が用いられ、例えば水または添加剤と水の混合液などが熱媒体に用いられる。
 加熱ユニット2は熱媒体を加熱する。加熱ユニット2が熱媒体を加熱する手段としては、例えば、冷媒を循環させて大気の熱または水の熱を熱媒体に移動させる蒸気圧縮式ヒートポンプで熱媒体を加熱する手段、ガスまたは灯油などの燃料を燃焼させ燃焼熱によって熱媒体を加熱する手段、電力が供給されることで発熱する電熱ヒーターで熱媒体を加熱する手段、または太陽からの熱を集熱して熱媒体を加熱する手段などが挙げられる。特に蒸気圧縮式ヒートポンプで熱媒体を加熱する手段はエネルギー効率が高く、当該手段を用いることが望ましい。また、蒸気圧縮式ヒートポンプを用いて熱媒体を加熱する手段では、加熱ユニット2は冷媒が循環する冷媒回路を有し、冷媒にR744またはR290などの自然冷媒を使用することが望ましい。自然冷媒は、R410AまたはR32などのHFC(ハイドロフルオロカーボン)冷媒と比較して地球温暖化係数が小さく、地球環境への影響を抑制することができる。
 貯湯ユニット3は、熱媒体を利用して加熱された水を貯湯する。ここで、貯湯ユニット3に貯湯される水のことをタンク水と称する。また、実施の形態ではタンク水のことをタンク水の温度に応じて低温水、中温水または高温水と称する場合がある。低温水は、中温水および高温水よりも温度が低いタンク水のことである。また、中温水は、低温水よりも温度が高く、高温水よりも温度が低いタンク水のことである。また、高温水は、低温水および中温水よりも温度が高いタンク水のことである。
 貯湯ユニット3は、貯湯タンク10と、熱交換器11と、熱媒体循環ポンプ12と、タンク水循環ポンプ13と、流路切替装置14と、貯湯ユニット内供給配管20と、貯湯ユニット内取出配管21と、下部配管22と、加熱後配管23と、中部配管24と、上部配管25と、供給配管接続部26と、取出配管接続部27と、タンク温度センサ30と、加熱前タンク水温度センサ31と、加熱後タンク水温度センサ32と、制御装置40と、を有している。また、貯湯ユニット3にはタンク水が循環するタンク水循環回路200が形成されている。なお、実施の形態に係るタンク水循環回路200は中部流入タンク水循環回路201と上部流入タンク水循環回路202の二種類がある。中部流入タンク水循環回路201と上部流入タンク水循環回路202の差異については後述する。
 貯湯タンク10は中空であり、内部の空間にタンク水を貯留する。貯湯タンク10は、例えばステンレス鋼などの防食性の高い材料が用いられることが望ましい。また、貯湯タンク10の形状は、鉛直方向における最も上方に位置する天面部と鉛直方向における最も下方に位置する底面部と天面部および底面部を繋ぐ胴部を有する筒形であることが望ましい。さらに、貯湯タンク10の内部の空間には、貯湯ユニット内供給配管20と貯湯ユニット内取出配管21と下部配管22と中部配管24と上部配管25とのそれぞれの端部が位置する。また、貯湯ユニット内供給配管20と貯湯ユニット内取出配管21と下部配管22と中部配管24と上部配管25はそれぞれ貯湯タンク10の胴部から貯湯タンク10の外部に露出している。
 熱交換器11は、第一の流路11aと第二の流路11bとが形成され、第一の流路11aを流れる流体と第二の流路11bを流れる流体との間で熱交換を行わせる。実施の形態では、第一の流路11aにはタンク水が流れ、第二の流路11bには熱媒体が流れ、タンク水と熱媒体の間で熱交換が行われることによってタンク水が加熱される。なお、加熱ユニット2と熱交換器11によってタンク水が加熱されるため、加熱ユニット2と熱交換器11がタンク水を加熱する加熱源に該当する。
 熱媒体循環ポンプ12は、熱媒体を加圧して熱媒体循環回路100に熱媒体を循環させる。熱媒体循環ポンプ12はユニット間戻り配管5の途中かつ貯湯ユニット3の内部に設けられている。
 タンク水循環ポンプ13は、タンク水を加圧してタンク水循環回路200にタンク水を循環させる。タンク水循環ポンプ13は加熱後配管23の途中に設けられている。また、タンク水循環ポンプ13は電動機を有しており、電動機の回転数を変更することによってタンク水循環回路200を循環するタンク水の流量を変更することができる。以降、電動機の回転数を回転数Nとする。なお、回転数Nとタンク水循環回路200を循環するタンク水の流量との関係は、回転数Nの値が大きいほど単位時間あたりにタンク水循環回路200を循環するタンク水の流量が多くなる。
 流路切替装置14はタンク水循環回路200の流路を切り替える。後述するようにタンク水循環回路200は中部流入タンク水循環回路201と上部流入タンク水循環回路202の二種類に分かれ、流路切替装置14は中部流入タンク水循環回路201と上部流入タンク水循環回路202のいずれか一方に切り替える。実施の形態では、流路切替装置14はAポート14aとBポート14bとCポート14cとを有し、Aポート14aとBポート14bを連通させる流路とAポート14aとCポート14cを連通させる流路とを切り替える三方弁である。なお、後述するように流路切替装置14がAポート14aとBポート14bを連通させている場合は上部流入タンク水循環回路202が形成され、Aポート14aとCポート14cを連通させている場合は中部流入タンク水循環回路201が形成される。
 貯湯ユニット内供給配管20は、一方の端部が貯湯タンク10の下部の空間に位置し、他方の端部が供給配管接続部26に接続された配管である。
 貯湯ユニット内取出配管21は、一方の端部が貯湯タンク10の上部の空間に位置し、他方の端部が取出配管接続部27に接続された配管である。
 下部配管22は、一方の端部が貯湯タンク10の下部の空間に位置し、他方の端部が熱交換器11の第一の流路11aの一方の端部に接続された配管である。
 加熱後配管23は、一方の端部が熱交換器11の第一の流路11aの他方の端部に接続され、他方の端部が流路切替装置14のAポート14aに接続された配管である。
 中部配管24は一方の端部が流路切替装置14のCポート14cに接続され、他方の端部が貯湯タンク10の中部の空間に位置する配管である。中部配管24の他方の端部は、貯湯タンク10の下部の空間に位置する下部配管22の一方の端部よりも鉛直方向における上方に位置している。
 上部配管25は一方の端部が流路切替装置14のBポート14bに接続され、他方の端部が貯湯タンク10の上部の空間に位置する配管である。上部配管25の他方の端部は、貯湯タンク10の下部の空間に位置する下部配管22の一方の端部および貯湯タンク10の中部の空間に位置する中部配管24の一方の端部よりも鉛直方向における上方に位置している。
 供給配管接続部26は貯湯ユニット3に供給配管1300を接続させる部分である。供給配管接続部26に供給配管1300の端部(後述する第一の供給配管1301の端部が該当)が接続されることによって、供給配管1300と貯湯ユニット内供給配管20が連通する。
 取出配管接続部27は貯湯ユニット3に取出配管1400を接続させる部分である。取出配管接続部27に取出配管1400の端部(後述する第一の取出配管1401の端部が該当)が接続されることによって、取出配管1400と貯湯ユニット内取出配管21が連通する。
 タンク温度センサ30は、貯湯タンク10のセンサ高さHに位置するタンク水の温度を検出する。以後、貯湯タンク10のセンサ高さHに位置するタンク水の温度をタンク内温度Ttと称する。実施の形態では、タンク温度センサ30は貯湯タンク10の底面部から鉛直方向にセンサ高さH離れた位置の貯湯タンク10の壁面に設けられる。センサ高さHは、貯湯タンク10のセンサ高さHより上方の位置に貯留されているタンク水の体積が貯湯装置1が貯留する高温水の量となるように設計者によって予め定められた高さである。なお、貯湯装置1が貯留する高温水の量は予め定められた第一の利用端末1100で利用する水の量などによって設計者によって予め定められる。例えば第一の利用端末1100で50リットルの水を利用する場合には、少なくとも貯湯装置1は50リットル以上の高温水を貯留できるよう設計され、貯湯タンク10のセンサ高さHより上方の位置に貯留されるタンク水の体積が50リットル以上になるようにセンサ高さHは予め定められる。
 加熱前タンク水温度センサ31は、熱交換器11で熱媒体と熱交換を行い加熱される前のタンク水の温度を検出する。以後、熱媒体と熱交換を行い加熱される前のタンク水の温度を加熱前タンク水温度Thbと称する。実施の形態では、加熱前タンク水温度センサ31は下部配管22の途中に配置され、下部配管22を流れるタンク水の温度を加熱前タンク水温度Thbとして検出する。
 加熱後タンク水温度センサ32は、熱交換器11で熱媒体と熱交換を行い加熱された後のタンク水の温度を検出する。以後、熱媒体と熱交換を行い加熱された後のタンク水の温度を加熱後タンク水温度Thaと称する。実施の形態では、加熱後タンク水温度センサ32は加熱後配管23の途中に配置され、加熱後配管23を流れるタンク水の温度を加熱後タンク水温度Thaとして検出する。
 図2は実施の形態に係る貯湯式給湯システムの制御装置に関するハードウェア構成図である。図2を用いて制御装置40の説明を行う。制御装置40はタンク水循環ポンプ13および流路切替装置14などの貯湯装置1が有する構成要素の制御を行う。制御装置40は、プロセッサ41と、メモリ42と、ハードウェアインターフェース43と、を有する。なお、プロセッサ41とメモリ42とハードウェアインターフェース43はそれぞれ情報の受け渡しが可能なように接続されている。
 プロセッサ41は、メモリ42に記憶されているプログラムを実行することで貯湯装置1が有する構成要素の制御またはデータ処理を実行する装置である。プロセッサ41には、例えばCPU(Central Processing Unit)が用いられる。
 メモリ42は、プロセッサ41が実行するプログラムおよびプログラムの実行に必要なデータを記憶する。また、メモリ42はプロセッサ41の作業領域として用いられる。メモリ42には、例えばRAM(Randam Access Memory)、ROM(Read Only Memory)、フラッシュメモリーなどの不揮発性または揮発性の半導体メモリが用いられる。
 ハードウェアインターフェース43は、貯湯装置1が有する構成要素と信号の送信または受信を行う。ハードウェアインターフェース43と信号の送信または受信を行う構成要素は有線または無線によって信号の送信または受信が可能なようにハードウェアインターフェース43に接続されている。ハードウェアインターフェース43には、例えば信号線が接続される端子台、GPIO(General Purpose Input/Output)または無線通信の電波を送信または受信する送受信機が用いられる。
 図3は実施の形態に係る貯湯式給湯システムの貯湯装置に関する機能ブロック図である。次に図3を用いて貯湯装置1の機能ブロック図について説明する。
 制御装置40は、受信部50と、送信部51と、記憶部52と、制御部53と、判断部54と、を備える。なお、受信部50と送信部51はハードウェアインターフェース43によって実現される。また、記憶部52はメモリ42に各種情報を記憶させることによって実現される。さらに、制御部53と判断部54はプロセッサ41がメモリ42に記憶されたプログラムに従って処理を行うことによって実現される。
 受信部50は、制御装置40に送信される信号を受信する。受信部50は、タンク温度センサ30と加熱前タンク水温度センサ31と加熱後タンク水温度センサ32に接続されており、受信部50はそれぞれのセンサが検出した温度に関する情報を含む信号を受信する。
 送信部51は、後述するように制御部53で生成された制御信号を制御装置40の外部の構成要素に送信する。送信部51は、加熱ユニット2と熱媒体循環ポンプ12とタンク水循環ポンプ13と流路切替装置14に接続されており、それぞれの構成要素は送信部51から送信された制御信号に応じて動作を行う。
 記憶部52は、制御部53が制御信号を生成するために必要な情報および判断部54が判断を行うために必要な情報を記憶している。なお、記憶部52が記憶している情報の詳細は後述する。
 制御部53は、受信部50で受信した信号に含まれる情報および記憶部52が記憶している情報に基づいて制御信号を生成する。制御部53は加熱ユニット2に対する制御信号と熱媒体循環ポンプ12に対する制御信号とタンク水循環ポンプ13に対する制御信号と流路切替装置14に対する制御信号を生成する。換言すると制御部53は加熱ユニット2と熱媒体循環ポンプ12とタンク水循環ポンプ13と流路切替装置14とを制御する。
 判断部54は、受信部50で受信した信号に含まれる情報および記憶部52が記憶している情報に基づいて判断を行う。なお、判断部54が行う判断の詳細は後述する。
 次に、図1を用いて、ユニット間往き配管4とユニット間戻り配管5の説明を行う。ユニット間往き配管4は一方の端部が加熱ユニット2に接続され、他方の端部が熱交換器11の第二の流路11bの一方の端部に接続された配管である。ユニット間戻り配管5は一方の端部が熱交換器11の第二の流路11bの他方の端部に接続され、他方の端部が加熱ユニット2に接続された配管である。
 次に、図1を用いて、貯湯装置1を除く貯湯式給湯システム1000の構成要素の説明を行う。第一の利用端末1100と第二の利用端末1200は、それぞれ貯湯装置1に貯留されたタンク水を取り出して利用する。第一の利用端末1100と第二の利用端末1200にはそれぞれ利用される水の温度が定められており、第一の利用端末1100で利用される水の温度は第二の利用端末1200で利用される水の温度よりも高い。第一の利用端末1100としては例えば食器洗浄機が挙げられる。第二の利用端末1200としては例えばシャワーまたは洗面台などが挙げられる。また、第一の利用端末1100と第二の利用端末1200は取出配管1400に繋がる流路の開閉が可能な図示を省略した栓を有しており、タンク水を利用する場合には栓が操作されて流路を開く。
 供給配管1300は、第一の供給配管1301と第二の供給配管1302とを有する。第一の供給配管1301は、一方の端部が水源に接続され、他方の端部が貯湯装置1の供給配管接続部26に接続されている配管である。第二の供給配管1302は、一方の端部が第一の供給配管1301の途中の流路に接続され、他方の端部が後述する第二の取出配管1402の途中の流路に接続されている配管である。
 取出配管1400は、第一の取出配管1401と第二の取出配管1402とを有する。第一の取出配管1401は、一方の端部が後述する貯湯装置1の取出配管接続部27に接続され、他方の端部が第一の利用端末1100に接続されている配管である。第二の取出配管1402は、一方の端部が第一の取出配管1401の途中の流路に接続され、他方の端部が第二の利用端末1200に接続されている配管である。
 図4は実施の形態に係る貯湯式給湯システムで第一の利用端末がタンク水をそのまま利用する場合の概略図である。なお、図4では水が通過する流路を太線で示す。次に図4を用いて第一の利用端末1100がタンク水をそのまま利用する場合の水の流れについて説明する。第一の利用端末1100でタンク水が利用される場合では、第一の利用端末1100の栓が取出配管1400に繋がる流路を開いた状態である。
 貯湯タンク10の上部に貯留されているタンク水は貯湯ユニット内取出配管21へ流出する。貯湯タンク10から貯湯ユニット内取出配管21へ流出したタンク水は、貯湯ユニット内取出配管21と取出配管接続部27と第一の取出配管1401を通過して第一の利用端末1100に流入する。第一の利用端末1100に流入されたタンク水は第一の利用端末1100で利用される。
 また、水源の水は第一の供給配管1301と供給配管接続部26と貯湯ユニット内供給配管20を通過して貯湯タンク10の内部に流入する。貯湯タンク10の内部に流入した水源の水はタンク水として用いられる。
 図5は実施の形態に係る貯湯式給湯システムで第二の利用端末がタンク水を水源の水と混合させて利用する場合の概略図である。なお、図5では水が通過する流路を太線で示す。次に図5を用いて第二の利用端末1200でタンク水を水源の水と混合させて利用する場合の水の流れについて説明する。第二の利用端末1200でタンク水が利用される場合では、第二の利用端末1200の栓が取出配管1400に繋がる流路を開いた状態である。
 貯湯タンク10の上部に貯留されているタンク水は貯湯ユニット内取出配管21へ流出する。貯湯タンク10から貯湯ユニット内取出配管21へ流出したタンク水は、貯湯ユニット内取出配管21と取出配管接続部27と第一の取出配管1401と第二の取出配管1402を通過して第二の利用端末1200に流入する。タンク水が第二の取出配管1402を流れる際に、タンク水は第一の供給配管1301と第二の供給配管1302を通過した水源の水と混合される。第二の利用端末1200に流入されたタンク水と水源の水とが混合した水は第二の利用端末1200で利用される。
 また、水源の水は第一の供給配管1301と供給配管接続部26と貯湯ユニット内供給配管20を通過して貯湯タンク10の内部に流入する。貯湯タンク10の内部に流入した水源の水はタンク水として用いられる。
 図6は実施の形態に係る貯湯式給湯システムの貯湯運転のフローチャートである。次に図6を用いて貯湯タンク10の内部に高温水および中温水を貯留する貯湯運転について説明する。なお、貯湯運転を開始する前の貯湯式給湯システム1000の状態は、加熱ユニット2と熱媒体循環ポンプ12とタンク水循環ポンプ13が停止している状態とする。また、貯湯運転の開始の条件としては、例えば、制御装置40と信号を送受信可能に接続された図示を省略したリモコンからタンク水を沸き上げる命令を含む信号を受け取った場合、記憶部52に予め定められた沸き上げ開始時刻が記憶されており時刻が沸き上げ開始時刻になった場合、または記憶部52に予め沸き上げ開始温度が記憶されておりタンク温度センサ30が検出した温度が沸き上げ開始温度よりも低くなり判断部54が貯湯タンク10に貯留されているタンク水の熱量が不足すると判断した場合などが挙げられる。
 また、貯湯運転では、記憶部52に高温水所望温度Thと中温水所望温度Tmが記憶される。さらに、貯湯運転ではタンク水循環ポンプ13の電動機の回転数は、制御部53によって高温水沸き上げ時回転数Nhまたは中温水沸き上げ時回転数Nmに変更される。
 高温水所望温度Thと中温水所望温度Tmはそれぞれ貯湯運転の開始前に予め定められた値であり、高温水所望温度Thは中温水所望温度Tmよりも大きい値である。また、実施の形態では高温水所望温度Thは第一の利用端末1100で利用する水の温度以上であり、中温水所望温度Tmは第二の利用端末1200で利用する水の温度以上であるとする。なお、高温水所望温度Thと中温水所望温度Tmは、貯湯装置1の出荷時または設置時に設計者または設置者によってそれぞれ定められても良い。
 高温水沸き上げ時回転数Nhは高温水所望温度Thに昇温されたタンク水を得ることができるタンク水循環ポンプ13の電動機の回転数である。中温水沸き上げ時回転数Nmは高温水沸き上げ時回転数Nhよりも大きいタンク水循環ポンプ13の電動機の回転数である。タンク水循環ポンプ13の電動機の回転数を高温水沸き上げ時回転数Nhに変更する方法としては、例えば、制御部53は加熱後タンク水温度Thaを取得し、取得した加熱後タンク水温度Thaが高温水所望温度Thよりも低い場合はタンク水循環ポンプ13の電動機の回転数を減少させ、取得した加熱後タンク水温度Thaが高温水所望温度Thよりも高い場合はタンク水循環ポンプ13の電動機の回転数を増加させる方法が挙げられる。また、他の方法として、実験またはシミュレーションによって高温水沸き上げ回転数Nhを導出し、導出した高温水沸き上げ回転数Nhを記憶部52に予め記憶させておき、制御部53はタンク水を高温水所望温度Thに昇温する際にタンク水循環ポンプ13の電動機の回転数を導出した高温水沸き上げ回転数Nhにする方法も挙げられる。また、中温水沸き上げ時回転数Nmは、高温水沸き上げ回転数Nhよりも大きければよく、例えばタンク水循環ポンプ13の電動機が運転することができる最大の回転数Nmax、または記憶部52に記憶された高温水沸き上げ時回転数Nhに定数を加算した値である。
 貯湯運転の開始後、ステップS100の処理へ進む。ステップS100では、制御部53は流路切替装置14をAポート14aとCポート14cとを連通させる状態に切り替える。
 ステップS100の処理の終了後、ステップS101の処理へ進む。ステップS101では、制御部53は加熱ユニット2と熱媒体循環ポンプ12とタンク水循環ポンプ13の運転を開始する。
 図7は実施の形態に係る貯湯式給湯システムについて貯湯運転のステップS101の処理が終了した時点における概略図である。なお、図7では水および熱媒体が通過する流路を太線で示す。図7を用いて貯湯運転のステップS101の処理が終了した時点におけるタンク水および熱媒体の流れについて説明する。
 ステップS101で加熱ユニット2が運転することによって、熱媒体は加熱ユニット2で加熱される。また、ステップS101で熱媒体循環ポンプ12が運転することによって、熱媒体は熱媒体循環回路100を循環する。具体的には、加熱ユニット2で加熱された熱媒体は、ユニット間往き配管4と熱交換器11の第二の流路11bとユニット間戻り配管5とを通過し、加熱ユニット2に再び流入する。
 ステップS100で流路切替装置14がAポート14aとCポート14cとを連通させる状態になることによって、貯湯タンク10と下部配管22と熱交換器11の第一の流路11aと加熱後配管23と流路切替装置14と中部配管24とがタンク水が流れるように接続され、中部流入タンク水循環回路201が形成される。
 中部流入タンク水循環回路201が形成された状態であるステップS101でタンク水循環ポンプ13が運転することによって、タンク水は中部流入タンク水循環回路201を循環する。具体的には、次に説明するようにタンク水は流れる。貯湯タンク10の下部に貯留されているタンク水は下部配管22に流出する。貯湯タンク10から下部配管22に流出したタンク水は熱交換器11に供給され、熱交換器11の第一の流路11aを通過する。第二の流路11bを通過する熱媒体は加熱ユニット2で加熱されているため、第一の流路11aを通過するタンク水と比べて、温度が高い。このため、第一の流路11aを通過するタンク水は、第二の流路11bを通過する熱媒体によって加熱され、温度が上昇する。第一の流路11aを通過した後のタンク水は、加熱後配管23と流路切替装置14と中部配管24とを通過し、貯湯タンク10の中部に供給される。
 図6を用いて、ステップS101の処理が終了した後の貯湯運転について説明する。ステップS101の処理の終了後、ステップS102へ進む。ステップS102では、制御部53はタンク水循環ポンプ13の電動機の回転数Nを中温水沸き上げ時回転数Nmに変更する。つまり、制御部53はN=Nmになるようタンク水循環ポンプ13を制御する。
 ステップS102の処理の終了後、ステップS103へ進む。ステップS103では、受信部50は加熱前タンク水温度センサ31が検出した加熱前タンク水温度Thbを取得する。
 ステップS103の処理の終了後、ステップS104へ進む。ステップS104では、判断部54はステップS103で受信部50が取得した加熱前タンク水温度Thbが中温水所望温度Tm以上であるか否かを判断する。つまり、ステップS104では判断部54はThb≧Tmの条件を満たすか否かを判断する。
 ステップS104の処理において、加熱前タンク水温度Thbが中温水所望温度Tmよりも低いと判断部54が判断した場合(ステップS104,No)は、ステップS103の処理に戻り受信部50は再び加熱前タンク水温度Thbを取得する。
 ステップS104の処理において、加熱前タンク水温度Thbが中温水所望温度Tm以上と判断部54が判断した場合(ステップS104,Yes)は、ステップS105の処理へ進む。ステップS105では、制御部53は流路切替装置14をAポート14aとBポート14bとを連通させる状態に切り替える。
 図8は実施の形態に係る貯湯式給湯システムについて貯湯運転のステップS105の処理が終了した時点における概略図である。なお、図8では水および熱媒体が通過する流路を太線で示す。図8を用いて貯湯運転のステップS105の処理が終了した時点におけるタンク水の流れについて説明する。なお、貯湯運転のステップS105の処理が終了した時点における熱媒体の流れは図7を用いて説明した貯湯運転のステップS101の処理が終了した時点における熱媒体の流れと同様であるため、説明を省略する。
 ステップS105で流路切替装置14がAポート14aとBポート14bとを連通させる状態になることによって、貯湯タンク10と下部配管22と熱交換器11の第一の流路11aと加熱後配管23と流路切替装置14と上部配管25とがタンク水が流れるように接続され、上部流入タンク水循環回路202が形成される。
 上部流入タンク水循環回路202が形成された状態でタンク水循環ポンプ13が運転することによって、タンク水は上部流入タンク水循環回路202を循環する。具体的には、次に説明するようにタンク水は流れる。貯湯タンク10の下部に貯留されているタンク水は下部配管22に流出する。貯湯タンク10から下部配管22に流出したタンク水は熱交換器11に供給され、熱交換器11の第一の流路11aを通過する。中部流入タンク水循環回路201で説明した通り、第一の流路11aを通過するタンク水は、第二の流路11bを通過する熱媒体によって加熱され、温度が上昇する。第一の流路11aを通過した後のタンク水は、加熱後配管23と流路切替装置14と上部配管25とを通過し、貯湯タンク10の上部に供給される。
 図6を用いて、ステップS105の処理が終了した後の貯湯運転について説明する。ステップS105の処理の終了後、ステップS106へ進む。ステップS106では、制御部53はタンク水循環ポンプ13の電動機の回転数Nを高温水沸き上げ時回転数Nhに変更する。つまり、制御部53は高温水所望温度Thに昇温されたタンク水を得ることができるようにタンク水循環ポンプ13の電動機の回転数Nを制御する。
 ステップS106の処理の終了後、ステップS107へ進む。ステップS107では、受信部50はタンク温度センサ30が検出したタンク内温度Ttを取得する。
 ステップS107の処理の終了後、ステップS108へ進む。ステップS108では、判断部54はステップS107で受信部50が取得したタンク内温度Ttが高温水所望温度Th以上であるか否かを判断する。つまり、ステップS108では判断部54はTt≧Thの条件を満たすか否かを判断する。
 ステップS108の処理において、タンク内温度Ttが高温水所望温度Thよりも低いと判断部54が判断した場合(ステップS108,No)は、ステップS107の処理に戻り受信部50は再びタンク内温度Ttを取得する。
 ステップS108の処理において、タンク内温度Ttが高温水所望温度Th以上と判断部54が判断した場合(ステップS108,Yes)は、ステップS109の処理へ進む。ステップS109では、制御部53は加熱ユニット2と熱媒体循環ポンプ12とタンク水循環ポンプ13の運転を停止する。
 ステップS109の処理の終了後、貯湯式給湯システム1000は貯湯運転を終了する。
 図9から図12は、それぞれ実施の形態に係る貯湯式給湯システムにおいて貯湯運転時の貯湯タンクの内部のタンク水の温度分布を示す第一から第四の図である。次に図9から図12を用いて貯湯運転時の貯湯タンク10の内部のタンク水の温度分布の変化について説明する。なお、本説明では、中温水所望温度Tmを40℃、高温所望温度Thを60℃として説明を行う。
 貯湯運転の開始直前の貯湯タンク10の内部のタンク水の温度分布は図9に示される状態である。具体的には貯湯タンク10の内部には貯湯タンク10の底部から境界高さHh離れた位置に温度の境界が形成されている。また、貯湯タンク10の温度の境界よりも上方の部分には40℃のタンク水が貯留されており、貯湯タンク10の温度の境界よりも下方の部分には10℃のタンク水が貯留されている。
 貯湯タンク10の内部のタンク水の温度分布が図9に示される状態で貯湯運転が開始されると、ステップS101が終了した時点から貯湯タンク10の下部からタンク水が流出し、流出したタンク水が熱交換器11で加熱されて貯湯タンク10の中部から再び貯湯タンク10の内部に流入する。貯湯タンク10の内部に流入したタンク水は、中部と下部のタンク水と混ざり合い、温度の境界よりも下方のタンク水は温度が上昇する。ここで、一般的に水は温度が高くなるほど密度が低くなり、温度が低くなるほど密度が高くなる。温度の境界よりも下方のタンク水の温度が40℃よりも低い場合では、温度の境界よりも下方のタンク水は、40°Cの水よりも密度が高いために温度の境界よりも上方へは移動せず、温度の境界よりも上方のタンク水と混ざらない。このため、加熱されたタンク水が貯湯タンク10の中部から流入することによって、温度の境界よりも下方のタンク水は加熱されたタンク水と混ざり温度が上昇し、温度の境界よりも上方のタンク水は温度を維持する。その結果、貯湯タンク10の内部のタンク水の温度分布は図9に示される状態から図10に示される状態に移行する。
 貯湯タンク10の内部のタンク水の温度分布が図10に示される状態では、貯湯タンク10から流出する温度は20℃であるため、加熱前温度Thbも20℃であり中温水所望温度Tmの40℃よりも小さい。したがって、貯湯運転のステップS104の条件を満たさず、熱交換器11で加熱されたタンク水は貯湯タンク10の中部から貯湯タンク10の内部に流入する。また、温度の境界よりも下方のタンク水の温度が上昇すると、貯湯タンク10から流出するタンク水の温度も上昇し、熱交換器11で加熱され貯湯タンク10の内部に流入するタンク水の温度も上昇する。このため、図10に示す状態で貯湯運転を継続すると貯湯タンク10の内部に流入するタンク水の温度が40℃以上となり、温度の境界は無くなり、貯湯タンク10の内部の温度は均一となる。その結果、貯湯タンク10の内部のタンク水の温度分布は図10に示される状態から図11に示される状態に移行する。
 貯湯タンク10の内部のタンク水の温度分布が図11に示される状態では、貯湯タンク10から流出する温度は40℃であるため、加熱前温度Thbも40℃であり中温水所望温度Tmの40℃と同じである。したがって、貯湯運転のステップS104の条件を満たし、貯湯運転のステップS105とステップS106の処理が行われる。ステップS105とステップS106の処理が行われることで、流出したタンク水は熱交換器11で高温所望温度Thである60℃に加熱され、加熱されたタンク水は貯湯タンク10の上部から貯湯タンク10の内部に流入する。貯湯タンク10の上部から流入するタンク水の温度は60℃であり、すでに貯湯タンク10に貯留されているタンク水の温度である40℃よりも高い。このため、貯湯タンク10の上部から流入するタンク水は、すでに貯湯タンク10に貯留されているタンク水とは混ざらず、再び温度の境界が形成される。つまり、貯湯タンクの内部では、温度の境界よりも上方には60℃のタンク水が貯留され、温度の境界よりも下方には40℃のタンク水が貯留される。また、貯湯運転のステップS105とステップS106の処理が行われた状態でさらに時間が経過すると、貯湯タンク10に貯留された60℃のタンク水の量は多くなり、貯湯タンク10に貯留された40℃のタンク水の量は少なくなる。このため、温度の境界は時間の経過によって下方へと移動し、境界高さHhは低くなる。その結果、貯湯タンク10の内部のタンク水の温度分布は図11に示される状態から図12に示される状態に移行する。
 貯湯タンク10の内部のタンク水の温度分布が図12に示される状態では、境界高さHhがセンサ高さHと同じである。図12に示される状態では、タンク温度センサ30が検出するタンク水温度Ttは60℃であり、高温所望温度Thの60℃と同じである。したがって、貯湯運転のステップS108の条件を満たし、ステップS109の処理が行われた後、貯湯式給湯システム1000は貯湯運転を終了する。また、前述のようにセンサ高さHは貯湯タンク10のセンサ高さHよりも上方に貯留されたタンク水の体積が貯湯装置1が貯留する高温水の量となるように定められている。このため、境界高さHhがセンサ高さHと同じである図12に示される状態では、貯湯タンク10は設計者によって予め定められた量の高温水を貯留している状態である。
 以上のように実施の形態に係る貯湯装置1および貯湯式給湯システム1000は、内部にタンク水を貯留する貯湯タンク10と、タンク水を加熱する加熱源(加熱ユニット2と熱交換器11が該当)と、貯湯タンク10の下部に貯留されたタンク水を加熱源に供給する下部配管22と、加熱源で加熱されたタンク水を貯湯タンク10の下部よりも鉛直方向において上方に位置する貯湯タンク10の中部に供給する中部配管24と、加熱源で加熱されたタンク水を貯湯タンク10の下部および中部よりも鉛直方向において上方に位置する貯湯タンクの上部に供給する上部配管25と、加熱源で加熱されたタンク水が中部配管24を通過して貯湯タンク10の中部に流入する中部流入タンク水循環回路201と加熱源で加熱されたタンク水が上部配管25を通過して貯湯タンク10の上部に流入する上部流入タンク水循環回路202とを切り替える流路切替装置14と、を備え、貯湯タンク10に加熱源で加熱されたタンク水を貯留する貯湯運転において、流路切替装置14が中部流入タンク水循環回路201を形成した状態であり加熱源で加熱される前のタンク水の温度(加熱前タンク水温度Thbが該当)が予め定められた中温水所望温度Tm以上である場合(ステップS104,YESが該当)は、流路切替装置14は中部流入タンク水循環回路201から上部流入タンク水循環回路202に切り替える構成を有する。当該構成のうち、加熱源で加熱される前のタンク水の温度が予め定められた中温水所望温度Tm以上である場合は、流路切替装置14は中部流入タンク水循環回路201から上部流入タンク水循環回路202に切り替える構成によって、実施の形態に係る貯湯装置1および貯湯式給湯システム1000は貯湯タンク10に十分な量の中温水を貯湯してから、貯湯タンク10へ高温水を供給することができる効果を奏する。なお、十分な量の中温水とは、実施の形態に係る貯湯装置1および貯湯式給湯システム1000では、下部配管22の端部が位置する貯湯タンク10の下部まで中温水が貯留されている状態のことを指す。
 また、実施の形態に係る貯湯装置1および貯湯式給湯システム1000は、付加的な構成として、流路切替装置14が中部流入タンク水循環回路201を形成した状態における加熱源に供給されるタンク水の単位時間当たりの流量は、流路切替装置14が上部流入タンク水循環回路202を形成した状態における加熱源に供給されるタンク水の単位時間当たりの流量よりも多い構成を有する。当該付加的な構成を備えることによって、実施の形態に係る貯湯装置1および貯湯式給湯システム1000は、中温水を沸き上げる際には高温水を沸き上げるときよりも流量が多く、沸き上げ時のエネルギー効率が良くなる。
 また、実施の形態に係る貯湯装置1および貯湯式給湯システム1000は、付加的な構成として、電動機を有し中部流入タンク水循環回路201または上部流入タンク水循環回路202にタンク水を循環させ電動機の回転数を変更することで循環するタンク水の単位時間当たりの流量を変更することができるタンク水循環ポンプ13を備え、流路切替装置14が中部流入タンク水循環回路201を形成した状態におけるタンク水循環ポンプ13の電動機の回転数は、流路切替装置14が上部流入タンク水循環回路202を形成した状態におけるタンク水循環ポンプ13の前記電動機の回転数よりも多い構成を有する。当該付加的な構成を備えることによって、実施の形態に係る貯湯装置1および貯湯式給湯システム1000は、タンク水循環ポンプ13の回転数を制御することで、中温水を沸き上げる際には高温水を沸き上げるときよりも流量が多く、沸き上げ時のエネルギー効率が良くなる。
 また、実施の形態に係る貯湯装置1および貯湯式給湯システム1000は、付加的な構成として、流路切替装置14が中部流入タンク水循環回路201を形成した状態におけるタンク水循環ポンプ13の電動機の回転数は、電動機が運転することができる最大の回転数である構成を有する。一般的に加熱源が流水を加熱する場合において、流水の加熱量は流水の流量と比例する。つまり、実施の形態に係る貯湯装置1および貯湯式給湯システム1000ではタンク水循環ポンプ13の電動機の回転数が大きいほど加熱源である熱交換器11を流れるタンク水の加熱量は大きくなり、エネルギー効率も優れる。当該付加的な構成を備えることによって、実施の形態に係る貯湯装置1および貯湯式給湯システム1000は、中部流入タンク水循環回路201を形成している場合にはタンク水循環ポンプ13が発揮できる最大の流量で運転をしているため、優れたエネルギー効率でタンク水を沸き上げることができる効果を奏する。
 また、実施の形態に係る貯湯装置1および貯湯式給湯システム1000は、付加的な構成として、流路切替装置14が中部流入タンク水循環回路201を形成した状態における加熱源で加熱された後のタンク水の温度は、流路切替装置14が上部流入タンク水循環回路202を形成した状態における加熱源で加熱された後のタンク水の温度よりも低い構成を有する。当該付加的な構成を備えることによって、実施の形態に係る貯湯装置1および貯湯式給湯システム1000は、貯湯タンク10に高温水と中温水との二つの温度の水を貯湯することができる効果を奏する。
 また、実施の形態に係る貯湯装置1および貯湯式給湯システム1000は、付加的な構成として、電動機を有し中部流入タンク水循環回路201または上部流入タンク水循環回路202にタンク水を循環させ電動機の回転数を変更することで循環するタンク水の単位時間当たりの流量を変更することができるタンク水循環ポンプ13を備え、流路切替装置14が上部流入タンク水循環回路202を形成した状態におけるタンク水循環ポンプの電動機の回転数は加熱源で加熱された後のタンク水の温度が中温水所望温度Tmよりも高い温度に予め定められた高温水所望温度Thとなる回転数である構成を有する。当該付加的な構成を備えることによって、実施の形態に係る貯湯装置1および貯湯式給湯システム1000は、貯湯タンク10に高温水と中温水との二つの温度の水を貯湯することができる効果を奏する。
 また、実施の形態に係る貯湯装置1および貯湯式給湯システム1000は、付加的な構成として、貯湯タンク10の下部に貯留されているタンク水の温度または下部配管22を流れるタンク水の温度を検出する加熱前タンク水温度センサ31を備え、加熱前タンク水温度センサ31が検出したタンク水の温度が加熱源で加熱される前のタンク水の温度である構成を有する。当該付加的な構成を備えることによって、実施の形態に係る貯湯装置1および貯湯式給湯システム1000は、加熱前タンク水温度センサ31によって加熱源で加熱される前のタンク水の温度を精度良く検出することができる効果を奏する。
 また、実施の形態に係る貯湯装置1および貯湯式給湯システム1000は、付加的な構成として、下部配管22と中部配管24と上部配管25は、それぞれ貯湯タンク10の胴部から貯湯タンク10の外部に露出している構成を有する。当該付加的な構成を備えることによって、実施の形態に係る貯湯装置1および貯湯式給湯システム1000は、貯湯装置1の鉛直方向の高さを抑制することができる効果を奏する。
 また、実施の形態に係る貯湯装置1および貯湯式給湯システム1000は、付加的な構成として、加熱源は熱媒体を加熱する加熱ユニット2と加熱ユニット2で加熱された熱媒体とタンク水との間で熱交換を行わせる熱交換器11とを有する構成を有する。当該付加的な構成を備えることによって、実施の形態に係る貯湯装置1および貯湯式給湯システム1000は、加熱ユニット2がタンク水を直接加熱する手段と比較して、加熱ユニット2内の冷媒や燃料がタンク水へ混合してしまうリスクを低減できる。
 また、実施の形態に係る貯湯装置1および貯湯式給湯システム1000は、付加的な構成として、加熱ユニット2は蒸気圧縮式のヒートポンプである構成を有する。当該付加的な構成を備えることによって、実施の形態に係る貯湯装置1および貯湯式給湯システム1000は、燃料を燃焼させ燃焼熱で熱媒体を加熱する手段と比較してエネルギー効率が高くなる効果を奏する。
 また、実施の形態に係る貯湯装置1および貯湯式給湯システム1000は、付加的な構成として、加熱ユニットには冷媒が循環する冷媒回路が形成されており、冷媒は自然冷媒である構成を有する。当該付加的な構成を備えることによって、実施の形態に係る貯湯装置1および貯湯式給湯システム1000は、冷媒にHFC冷媒を使用する場合と比較して地球環境への影響を抑制することができる効果を奏する。
 また、実施の形態に係る貯湯式給湯システム1000は、付加的な構成として、貯湯装置1と貯湯タンク10に貯留されたタンク水を取り出して利用する第一の利用端末1100および第二の利用端末1200と、を備え、第一の利用端末1100および第二の利用端末1200にはそれぞれ利用する水の温度が予め定められており、第一の利用端末1100で利用する水の温度は第二の利用端末1200で利用する水の温度よりも高く、中温水所望温度Tmは第二の利用端末1200で利用する水の温度以上である構成を有する。当該付加的な構成を有することによって、実施の形態に係る貯湯式給湯システム1000は第二の利用端末1200に中温水を供給することで第二の利用端末1200を利用することができる。
 また、実施の形態に係る貯湯式給湯システム1000は、付加的な構成として、流路切替装置14が上部流入タンク水循環回路202を形成した状態における加熱源で加熱された後の水の温度は、第一の利用端末1100で利用する水の温度以上である構成を有する。当該付加的な構成を有することによって、実施の形態に係る貯湯式給湯システム1000は第一の利用端末1100に高温水を供給することで第一の利用端末1100を利用することができる効果を奏する。
 また、実施の形態に係る貯湯式給湯システム1000は、付加的な構成として、貯湯タンク10に貯留されたタンク水のうち鉛直方向における貯湯タンク10の最も下方に位置する部分(底面部が該当)より予め定められたセンサ高さH離れた位置に貯留されているタンク水の温度を検出するタンク温度センサ30を備え、第一の利用端末1100が利用する水の量は予め定められており、貯湯タンク10に貯留されたタンク水のうち鉛直方向における前記センサ高さHよりも上方に位置するタンク水の体積は、第一の利用端末1100が利用する水の量以上であって、貯湯運転において流路切替装置14が上部流入タンク水循環回路202を形成した状態でありタンク温度センサ30が検出したタンク水の温度が第一の利用端末1100で利用する水の温度以上である場合には貯湯運転を終了する構成を有する。当該付加的な構成を有することによって、実施の形態に係る貯湯式給湯システム1000は貯湯運転で貯湯タンク10に第一の利用端末1100で利用する分の高温水を貯留することができる効果を奏する。
 図13は実施の形態の変形例に係る貯湯式給湯システムの概略図である。次に実施の形態の変形例について説明する。実施の形態の第一の変形例に係る貯湯式給湯システム1001は実施の形態の貯湯式給湯システム1000と比較して、貯湯ユニット内供給配管20と貯湯ユニット内取出配管21と下部配管22と中部配管24と上部配管25が貯湯タンク10から露出する位置と加熱前タンク水温度センサ31の位置が異なる。なお、実施の形態の第一の変形例に係る貯湯式給湯システム1001は上述の異なる点を除いて実施の形態の貯湯式給湯システム1000と同様であるため、同様の部分は説明を省略する。
 貯湯式給湯システム1001において、貯湯ユニット内供給配管20と下部配管22は貯湯タンク10の底面部から露出している。また、貯湯ユニット内取出配管21と中部配管24と上部配管25は貯湯タンク10の天面部から露出している。
 また、貯湯式給湯システム1001において、加熱前タンク水温度センサ31は貯湯タンク10の底面部に位置している。タンク水は底面部から露出している下部配管22を介して熱交換器11へ流出するため、加熱前タンク水温度センサ31が貯湯タンク10の底面部に位置していても、加熱前タンク水温度センサ31は加熱前タンク水温度Thbを取得することができる。
 以上のように実施の形態の変形例に係る貯湯装置1および貯湯式給湯システム1001は、実施の形態に係る貯湯装置1および貯湯式給湯システム1001と同様に、内部にタンク水を貯留する貯湯タンク10と、タンク水を加熱する加熱源(加熱ユニット2と熱交換器11が該当)と、貯湯タンク10の下部に貯留されたタンク水を加熱源に供給する下部配管22と、加熱源で加熱されたタンク水を貯湯タンク10の下部よりも鉛直方向において上方に位置する貯湯タンクの中部に供給する中部配管24と、加熱源で加熱されたタンク水を貯湯タンクの下部および中部よりも鉛直方向において上方に位置する貯湯タンクの上部に供給する上部配管25と、加熱源で加熱されたタンク水が中部配管24を通過して貯湯タンク10の中部に流入する中部流入タンク水循環回路201と加熱源で加熱されたタンク水が上部配管25を通過して貯湯タンク10の上部に流入する上部流入タンク水循環回路202とを切り替える流路切替装置14と、を備え、貯湯タンク10に加熱源で加熱されたタンク水を貯留する貯湯運転において、流路切替装置14が中部流入タンク水循環回路201を形成した状態であり加熱源で加熱される前のタンク水の温度(加熱前タンク水温度Thbが該当)が予め定められた中温水所望温度Tm以上である場合(ステップS104,YESが該当)は、流路切替装置14は中部流入タンク水循環回路201から上部流入タンク水循環回路202に切り替える構成を有する。このため、実施の形態に係る貯湯装置1および貯湯式給湯システム1001も実施の形態で説明した効果と同様の効果を奏する。
 また、実施の形態の変形例に係る貯湯装置1および貯湯式給湯システム1001は、付加的な構成として、下部配管22と中部配管24と上部配管25の少なくとも一つは貯湯タンク10の天面部または底面部から貯湯タンクの外部に露出している構成を有する。当該付加的な構成を備えることによって、実施の形態の変形例に係る貯湯装置1および貯湯式給湯システム1001は、実施の形態に係る貯湯装置1および貯湯式給湯システム1000のように下部配管22と中部配管24と上部配管25が胴部から露出している構成と比較して、貯湯装置1の水平方向の面積を抑制することができ、貯湯装置1の設置面積を抑制することができる。
 なお、実施の形態の変形例に係る貯湯装置1および貯湯式給湯システム1001では、貯湯ユニット内供給配管20と下部配管22は貯湯タンク10の底面部から露出し、貯湯ユニット内取出配管21と中部配管24と上部配管25は貯湯タンク10の天面部から露出しているが、これに限らない。例えば、貯湯ユニット内供給配管20と下部配管22は貯湯タンク10の天面部から露出し、貯湯ユニット内取出配管21と中部配管24と上部配管25は貯湯タンク10の底面部から露出している構成でも構わない。
 また、実施の形態に係る貯湯装置1および貯湯式給湯システム1000では、加熱ユニット2と貯湯ユニット3を別筐体としているが、これに限らず、加熱ユニット2と貯湯ユニット3を一つの筐体としても良い。
 また、実施の形態に係る貯湯装置1および貯湯式給湯システム1000では、熱媒体循環ポンプ12は貯湯ユニット3の内部に位置しているが、これに限らず、加熱ユニット2の内部に位置していても構わない。また、熱媒体循環ポンプ12はユニット間往き配管4の途中に設けられていても構わない。
 また、実施の形態に係る貯湯装置1および貯湯式給湯システム1000では、タンク水循環ポンプ13は加熱後配管23の途中に設けられているが、これに限らず、下部配管22の途中に設けられていても構わない。
 また、実施の形態に係る貯湯装置1および貯湯式給湯システム1000では、貯湯運転のステップS102で制御部53はタンク水循環ポンプ13の電動機の回転数Nを中温水沸き上げ時回転数Nmに変更しているが、これに限らずステップS101の段階で制御部53はタンク水循環ポンプ13の電動機の回転数Nを中温水沸き上げ時回転数Nmにして運転を開始しても構わない。この場合、ステップS102の処理は行われず、ステップS101の処理の終了後、ステップS103の処理が行われる。
 また、実施の形態に係る貯湯装置1および貯湯式給湯システム1000では、加熱ユニット2と熱交換器11を用いて、加熱ユニット2で加熱した熱媒体をタンク水と熱交換させることによってタンク水を加熱しているがこれに限らない。例えば、ガスまたは灯油などの燃料を燃焼させてタンク水を直接加熱する手段、電熱ヒーターでタンク水を直接加熱する手段、または太陽からの熱を集熱してタンク水を直接加熱する手段などを用いても良い。この場合、タンク水を直接加熱させる装置が加熱源に該当する。
 また、実施の形態に係る貯湯装置1および貯湯式給湯システム1000では、高温水所望温度Thと中温水所望温度Tmは、貯湯装置1の出荷時または設置時に設計者または設置者によって定められるものとしたが、これに限らない。高温水所望温度Thと中温水所望温度は貯湯運転の開始前に定められていれば良く、使用者が図示を省略したリモコンを操作することによって使用者が所望する値にそれぞれ定められても良い。
1 貯湯装置、2 加熱ユニット、3 貯湯ユニット、4 ユニット間往き配管、5 ユニット間戻り配管、10 貯湯タンク、11 熱交換器、11a 第一の流路、11b 第二の流路、12 熱媒体循環ポンプ、13 タンク水循環ポンプ、14 流路切替装置、14a Aポート、14b Bポート、14c Cポート、20 貯湯ユニット内供給配管、21 貯湯ユニット内取出配管、22 下部配管、23 加熱後配管、24 中部配管、25 上部配管、26 供給配管接続部、27 取出配管接続部、30 タンク温度センサ、31 加熱前タンク水温度センサ、32 加熱後タンク水温度センサ、40 制御装置、41 プロセッサ、42 メモリ、43 ハードウェアインターフェース、50 受信部、51 送信部、52 記憶部、53 制御部、54 判断部、100 熱媒体循環回路、200 タンク水循環回路、201 中部流入タンク水循環回路、202 上部流入タンク水循環回路、1000 貯湯式給湯システム、1001 貯湯式給湯システム、1100 第一の利用端末、1200 第二の利用端末、1300 供給配管、1301 第一の供給配管、1302 第二の供給配管、1400 取出配管、1401 第一の取出配管、1402 第二の取出配管。

Claims (15)

  1.  内部にタンク水を貯留する貯湯タンクと、
     前記タンク水を加熱する加熱源と、
     前記貯湯タンクの下部に貯留された前記タンク水を前記加熱源に供給する下部配管と、
     前記加熱源で加熱された前記タンク水を前記貯湯タンクの前記下部よりも鉛直方向において上方に位置する前記貯湯タンクの中部に供給する中部配管と、
     前記加熱源で加熱された前記タンク水を前記貯湯タンクの前記下部および前記中部よりも鉛直方向において上方に位置する前記貯湯タンクの上部に供給する上部配管と、
     前記加熱源で加熱された前記タンク水が前記中部配管を通過して前記貯湯タンクの前記中部に流入する中部流入タンク水循環回路と、前記加熱源で加熱された前記タンク水が前記上部配管を通過して前記貯湯タンクの前記上部に流入する上部流入タンク水循環回路と、を切り替える流路切替装置と、を備え、
     前記貯湯タンクに前記加熱源で加熱された前記タンク水を貯留する貯湯運転において、前記流路切替装置が前記中部流入タンク水循環回路を形成した状態であり前記加熱源で加熱される前の前記タンク水の温度が予め定められた中温水所望温度以上である場合は、前記流路切替装置は前記中部流入タンク水循環回路から前記上部流入タンク水循環回路に切り替える貯湯装置。
  2.  前記流路切替装置が前記中部流入タンク水循環回路を形成した状態における前記加熱源に供給される前記タンク水の単位時間当たりの流量は、前記流路切替装置が前記上部流入タンク水循環回路を形成した状態における前記加熱源に供給される前記タンク水の単位時間当たりの流量よりも多い請求項1に記載の貯湯装置。
  3.  電動機を有し、前記中部流入タンク水循環回路または前記上部流入タンク水循環回路に前記タンク水を循環させ、前記電動機の回転数を変更することで循環する前記タンク水の単位時間当たりの流量を変更することができるタンク水循環ポンプを備え、
     前記流路切替装置が前記中部流入タンク水循環回路を形成した状態における前記タンク水循環ポンプの前記電動機の回転数は、前記流路切替装置が前記上部流入タンク水循環回路を形成した状態における前記タンク水循環ポンプの前記電動機の回転数よりも多い請求項1または2に記載の貯湯装置。
  4.  前記流路切替装置が前記中部流入タンク水循環回路を形成した状態における前記タンク水循環ポンプの前記電動機の回転数は、前記電動機が運転することができる最大の回転数である請求項3に記載の貯湯装置。
  5.  前記流路切替装置が前記中部流入タンク水循環回路を形成した状態における前記加熱源で加熱された後の前記タンク水の温度は、前記流路切替装置が前記上部流入タンク水循環回路を形成した状態における前記加熱源で加熱された後の前記タンク水の温度よりも低い請求項1から4のいずれか一項に記載の貯湯装置。
  6.  電動機を有し、前記中部流入タンク水循環回路または前記上部流入タンク水循環回路に前記タンク水を循環させ、前記電動機の回転数を変更することで循環する前記タンク水の単位時間当たりの流量を変更することができるタンク水循環ポンプを備え、
     前記流路切替装置が前記上部流入タンク水循環回路を形成した状態における前記タンク水循環ポンプの前記電動機の回転数は、前記加熱源で加熱された後の前記タンク水の温度が前記中温水所望温度よりも高い温度に予め定められた高温水所望温度となる回転数である請求項1から5のいずれか一項に記載の貯湯装置。
  7.  前記貯湯タンクの前記下部に貯留されている前記タンク水の温度または前記下部配管を流れる前記タンク水の温度を検出する加熱前タンク水温度センサを備え、
     前記加熱前タンク水温度センサが検出した前記タンク水の温度が前記加熱源で加熱される前の前記タンク水の温度である請求項1から6のいずれか一項に記載の貯湯装置。
  8.  前記下部配管と前記中部配管と前記上部配管は、それぞれ前記貯湯タンクの胴部から前記貯湯タンクの外部に露出している請求項1から7のいずれか一項に記載の貯湯装置。
  9.  前記下部配管と前記中部配管と前記上部配管の少なくとも一つは、前記貯湯タンクの天面部または底面部から前記貯湯タンクの外部に露出している請求項1から7のいずれか一項に記載の貯湯装置。
  10.  前記加熱源は、熱媒体を加熱する加熱ユニットと、前記加熱ユニットで加熱された熱媒体と前記タンク水との間で熱交換を行わせる熱交換器と、を有する請求項1から9のいずれか一項に記載の貯湯装置。
  11.  前記加熱ユニットは蒸気圧縮式のヒートポンプである請求項10に記載の貯湯装置。
  12.  前記加熱ユニットには冷媒が循環する冷媒回路が形成されており、
     前記冷媒は自然冷媒である請求項11に記載の貯湯装置。
  13.  請求項1から請求項12のいずれか一項に記載の貯湯装置と、
     前記貯湯タンクに貯留された前記タンク水を取り出して利用する第一の利用端末および第二の利用端末と、を備え、
     前記第一の利用端末および前記第二の利用端末には、それぞれ利用する水の温度が予め定められており、前記第一の利用端末で利用する水の温度は前記第二の利用端末で利用する水の温度よりも高く、
     前記中温水所望温度は前記第二の利用端末で利用する水の温度以上である貯湯式給湯システム。
  14.  前記流路切替装置が前記上部流入タンク水循環回路を形成した状態における前記加熱源で加熱された後の前記タンク水の温度は、前記第一の利用端末で利用する水の温度以上である請求項13に記載の貯湯式給湯システム。
  15.  前記貯湯タンクに貯留された前記タンク水のうち、鉛直方向における前記貯湯タンクの最も下方に位置する部分より予め定められたセンサ高さ離れた位置に貯留されている前記タンク水の温度を検出するタンク温度センサを備え、
     前記第一の利用端末が利用する水の量は予め定められており、
     前記貯湯タンクに貯留された前記タンク水のうち、鉛直方向における前記センサ高さよりも上方に位置する前記タンク水の体積は、前記第一の利用端末が利用する水の量以上であって、
     前記貯湯運転において、前記流路切替装置が前記上部流入タンク水循環回路を形成した状態であり前記タンク温度センサが検出した前記タンク水の温度が前記第一の利用端末で利用する水の温度以上である場合には、前記貯湯運転を終了する請求項13または14に記載の貯湯式給湯システム。
PCT/JP2021/010089 2021-03-12 2021-03-12 貯湯装置および貯湯式給湯システム WO2022190363A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023505049A JPWO2022190363A1 (ja) 2021-03-12 2021-03-12
PCT/JP2021/010089 WO2022190363A1 (ja) 2021-03-12 2021-03-12 貯湯装置および貯湯式給湯システム

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/010089 WO2022190363A1 (ja) 2021-03-12 2021-03-12 貯湯装置および貯湯式給湯システム

Publications (1)

Publication Number Publication Date
WO2022190363A1 true WO2022190363A1 (ja) 2022-09-15

Family

ID=83227629

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/010089 WO2022190363A1 (ja) 2021-03-12 2021-03-12 貯湯装置および貯湯式給湯システム

Country Status (2)

Country Link
JP (1) JPWO2022190363A1 (ja)
WO (1) WO2022190363A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046858A (ja) * 2005-08-11 2007-02-22 Rinnai Corp 貯湯装置
WO2016001980A1 (ja) * 2014-06-30 2016-01-07 三菱電機株式会社 暖房給湯システム

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007046858A (ja) * 2005-08-11 2007-02-22 Rinnai Corp 貯湯装置
WO2016001980A1 (ja) * 2014-06-30 2016-01-07 三菱電機株式会社 暖房給湯システム

Also Published As

Publication number Publication date
JPWO2022190363A1 (ja) 2022-09-15

Similar Documents

Publication Publication Date Title
US9945566B2 (en) Hot water-centered combined hot water and heating boiler
CN104823003A (zh) 热泵热源系统
JP3854169B2 (ja) ヒートポンプ式給湯装置
JP5494703B2 (ja) ヒートポンプ式給湯機
JP5220083B2 (ja) 給湯システム
WO2022190363A1 (ja) 貯湯装置および貯湯式給湯システム
JP3632645B2 (ja) ヒートポンプ給湯機
JP2013242115A (ja) 貯湯式給湯システム
JP4482579B2 (ja) 貯湯式給湯装置
JP2007232345A (ja) 貯湯式給湯暖房装置
JP5176474B2 (ja) ヒートポンプ給湯装置
JP5655695B2 (ja) 貯湯式給湯機
JP4816712B2 (ja) ヒートポンプ給湯機
JP2011169584A (ja) ヒートポンプ給湯機
JP2008051354A (ja) 貯湯式暖房装置
JP4403983B2 (ja) 給湯装置
JP4226533B2 (ja) 貯湯式給湯装置
JP5145069B2 (ja) 給湯システム
JP5248437B2 (ja) 貯湯式暖房装置
JP2009186065A (ja) 貯湯式給湯装置
JP6119499B2 (ja) 貯湯式給湯機
JP4656106B2 (ja) 貯湯式給湯機
JP3908768B2 (ja) ヒートポンプ式給湯装置
JP5312070B2 (ja) 給湯機
JP5186235B2 (ja) 貯湯式給湯システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21930215

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023505049

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21930215

Country of ref document: EP

Kind code of ref document: A1