WO2022188390A1 - 转子组件及无刷振动电机 - Google Patents

转子组件及无刷振动电机 Download PDF

Info

Publication number
WO2022188390A1
WO2022188390A1 PCT/CN2021/119317 CN2021119317W WO2022188390A1 WO 2022188390 A1 WO2022188390 A1 WO 2022188390A1 CN 2021119317 W CN2021119317 W CN 2021119317W WO 2022188390 A1 WO2022188390 A1 WO 2022188390A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotor
weight
reset
bearing
magnetic steel
Prior art date
Application number
PCT/CN2021/119317
Other languages
English (en)
French (fr)
Inventor
何振高
金志洪
Original Assignee
浙江省东阳市东磁诚基电子有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110251989.3A external-priority patent/CN112803700A/zh
Priority claimed from CN202120489778.9U external-priority patent/CN218387220U/zh
Application filed by 浙江省东阳市东磁诚基电子有限公司 filed Critical 浙江省东阳市东磁诚基电子有限公司
Publication of WO2022188390A1 publication Critical patent/WO2022188390A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K29/00Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices
    • H02K29/06Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices
    • H02K29/08Motors or generators having non-mechanical commutating devices, e.g. discharge tubes or semiconductor devices with position sensing devices using magnetic effect devices, e.g. Hall-plates, magneto-resistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K7/00Arrangements for handling mechanical energy structurally associated with dynamo-electric machines, e.g. structural association with mechanical driving motors or auxiliary dynamo-electric machines
    • H02K7/06Means for converting reciprocating motion into rotary motion or vice versa

Definitions

  • the present application relates to the technical field of brushless motors, for example, to a rotor assembly and a brushless vibration motor.
  • the brushless vibration motor can be installed on mobile phones, game consoles, mobile information terminals and other equipment as a silent vibration signal to remind users.
  • the brushless vibration motor is a kind of Hall sensor, which replaces the mechanical commutator, and performs electronic commutation by driving IC (integrated circuit, integrated circuit) to induce the change of magnetic pole, so that the motor can work, with firm structure, small size and long life. Long and other advantages.
  • a brushless vibration motor consists of a rotor assembly, a stator assembly and a housing.
  • the rotor assembly is rotatably mounted on the shaft through a bearing, and the stator assembly includes coil windings and FPC (flexible printed circuit, flexible circuit board) assemblies.
  • the coil windings and FPC assemblies are fixedly installed on the bracket.
  • the rotor The assembly rotates eccentrically due to the interaction between the magnetic field generated by the magnets inside the rotor assembly and the electric field generated by the coil windings, resulting in vibration.
  • the purpose of this application is to provide a rotor assembly and a brushless vibration motor, which can reduce the processing of rotor pieces, simplify the structure and process, increase the weight of the weight, improve the vibration performance of the motor, and have a compact structure.
  • a rotor assembly includes a bearing, a rotor piece, a magnetic steel and a weight, the rotor piece is sleeved on the outer circumference of the bearing, the magnetic steel is sleeved on the rotor piece, and the magnetic steel and the
  • the weights are respectively relatively fixed on both sides of the rotor piece, the cross-sectional shape of the weight is L-shaped, the bottom wall of the weight is in contact with the rotor piece, and the side wall of the weight is in contact with the rotor piece. Both the magnetic steel and the side parts of the rotor piece are in contact with each other.
  • the present application also provides a brushless vibration motor, which includes a casing and a stator assembly, the brushless vibration motor further includes the above-mentioned rotor assembly, and the casing and the stator assembly are fixedly connected to form an installation cavity, so The rotor assembly is rotatably arranged in the installation cavity.
  • FIG. 1 is a schematic diagram of the overall structure of a rotor assembly provided by an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of a bearing in a rotor assembly provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of the cooperation between the rotor piece and the magnetic steel in the rotor assembly provided by the embodiment of the present application;
  • FIG. 4 is a schematic structural diagram of a weight in a rotor assembly provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of the overall structure of the brushless vibration motor provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of the overall structure of the stator assembly provided by the embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a bracket in a stator assembly provided by an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a reset plate in a stator assembly provided by an embodiment of the present application.
  • Chassis 20. Stator assembly; 201, Installation cavity; 202, Bracket; 2021, Installation slot; 203, Rotating shaft; 204, Reset plate; 2041, Reset substrate; 205, FPC assembly; 206, Coil; 30, gasket.
  • connection should be understood in a broad sense, for example, it may be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • connection may be a fixed connection, a detachable connection, or an integrated ; It can be a mechanical connection or an electrical connection; it can be a direct connection or an indirect connection through an intermediate medium, and it can be the internal connection of two elements or the interaction relationship between the two elements.
  • a first feature "on” or “under” a second feature may include direct contact between the first and second features, or may include the first and second features Not directly but through additional features between them.
  • the first feature being “above”, “over” and “above” the second feature includes the first feature being directly above and obliquely above the second feature, or simply means that the first feature is level higher than the second feature.
  • the first feature is “below”, “below” and “below” the second feature includes the first feature being directly below and diagonally below the second feature, or simply means that the first feature has a lower level than the second feature.
  • the rotor piece of the rotor assembly is stepped, and the weight is placed at the bottom of the step, and the magnetic steel is placed at the height of the step of the rotor piece, that is, the weight and the magnetic steel are placed on the rotor piece in sequence, and the bearing is press-fitted on the top of the rotor piece.
  • the weight in the related art is limited by the installation space, the volume and weight are small, and the amount of vibration generated is insufficient, which affects the performance of the motor.
  • the weight set between the magnetic steel and the rotor sheet will also have a certain impact on the magnetic circuit. .
  • the rotor assembly includes a bearing 1, a rotor piece 2, a magnetic steel 3 and a weight 4, the rotor piece 2 is sleeved on the outer circumference of the bearing 1, and the magnetic
  • the steel 3 is sleeved on the rotor sheet 2, and the magnetic steel 3 and the weight 4 are relatively fixed on both sides of the rotor sheet 2 respectively.
  • the cross-sectional shape of the weight 4 is L-shaped, and the bottom wall of the weight 4 and the rotor sheet 2 abuts, and the side wall of the weight 4 is in contact with both the magnetic steel 3 and the side portion of the rotor piece 2 .
  • the magnetic steel 3 and the weight 4 are respectively relatively fixed on both sides of the rotor sheet 2 , thereby reducing the processing of the rotor sheet 2 , simplifying the structure and process, and reducing the installation restriction of the weight 4 .
  • the direct connection between the rotor piece 2 and the magnetic steel 3 makes the rotor piece 2 directly form a magnetic circuit, solves the problem of air gap loss in the magnetic field, and improves the performance of the vibration motor.
  • the side wall of the weight 4 extends along the axial direction of the bearing 1 , and the bottom wall of the weight 4 extends toward the bearing 1 from the side wall of the weight 4 .
  • the side of the rotor piece 2 is located between the magnet steel 3 and the weight 4 .
  • the cross-sectional shape of the weight 4 is L-shaped, the bottom wall of the weight 4 is in contact with the rotor sheet 2 , and the side wall of the weight 4 is in contact with the magnetic steel 3 and the side of the rotor sheet 2 . , which not only increases the volume weight of the weight 4, improves the vibration performance of the motor, but also makes the entire rotor assembly compact in structure.
  • the bearing 1 is an oil-impregnated bearing.
  • An annular abutting portion 11 is provided on the outer periphery of the bearing 1 to limit abutment in the axial direction of the rotor sheet 2 to avoid axial movement of the rotor sheet 2 during rotation.
  • the rotor piece 2 is formed of magnetically conductive low carbon steel.
  • the rotor sheet 2 is in contact with the annular abutting portion 11 to ensure the pull-off force between the bearing 1 and the rotor sheet 2, and to ensure the stability of the rotor assembly installation.
  • a central hole 21 for the bearing 1 to pass through is provided in the middle of the rotor piece 2 , and a flange 22 is provided at the central hole 21 to facilitate the installation of the magnetic steel 3 and the bearing 1 .
  • the bearing 1 is press-fitted in the central hole 21 and the flange 22 of the rotor sheet 2 by means of an interference fit.
  • the flange 22 of the rotor sheet 2 is connected with the side of the rotor sheet 2 .
  • the magnetic steel 3 is sleeved on the flange 22 for fixing.
  • the magnetic steel 3 uses high-performance materials, such as neodymium, iron, boron, etc., to magnetize the magnetic steel 3 axially multi-pole, and control and ensure the gap between the magnetic poles to reduce the loss of the magnetic field.
  • the magnetic steel 3 is in full contact with one side of the rotor sheet 2 and is fixed by UV anaerobic glue to reduce the loss of the magnetic circuit.
  • the weight 4 is fixed on one side of the rotor piece 2 by laser welding or glue to play the role of eccentric rotation.
  • the weight 4 is an arc-shaped stepped structure with a central angle less than or equal to 180°, so as to increase the weight of the weight 4 as much as possible and increase the vibration amount.
  • the end face of the bearing 1 away from the magnetic steel 3 is set higher than the top surface of the weight 4 to ensure the clearance between the weight 4 and the casing 10 when the rotor assembly is working, and avoid hindering the rotation of the weight 4 .
  • the top surface of the weight 4 is a surface provided on the bottom wall of the weight 4 on the side facing away from the rotor sheet 2 .
  • This embodiment also discloses a brushless vibration motor, as shown in FIG. 5 , including a casing 10 and a stator assembly 20 , the brushless vibration motor further includes the above-mentioned rotor assembly, and the casing 10 and the stator assembly 20 are fixed
  • the connection forms an installation cavity 201 , and the rotor assembly is rotatably disposed in the installation cavity 201 .
  • the stator assembly 20 includes a bracket 202 and a rotating shaft 203 , the bracket 202 is fixedly connected with the casing 10 to form an installation cavity 201 , and the rotating shaft 203 is fixed to the bracket 202 and the casing 10 .
  • the bearing 1 is sleeved on the outer circumference of the rotating shaft 203 and the end of the bearing 1 away from the magnetic steel 3 is in contact with the casing 10 .
  • the bracket 202 is formed of non-magnetic conductive material.
  • the brushless vibration motor further includes a spacer 30, the spacer 30 is fixedly sleeved on the outer circumference of the rotating shaft 203, and the stator assembly 20 and the rotor assembly are respectively located at both ends of the spacer 30 to ensure that the rotor assembly and the stator gap between components 20.
  • the stator assembly 20 further includes a reset plate 204 , a mounting slot 2021 is provided on the bracket 202 , the reset plate 204 is installed in the mounting slot 2021 , and the reset plate 204 is made of soft magnetic material.
  • the reset plate 204 includes a plurality of reset substrates 2041 of different sizes, the plurality of reset substrates 2041 are distributed along the circumferential direction of the bracket 202, and the included angle between every two adjacent reset substrates 2041 is equal, so as to make the rotor assembly stop at the preset position.
  • the reset plate 204 is made of soft magnetic material, and the bracket 202 is formed of non-magnetic material, the magnetic steel 3 will not attract, and the reset plate 204 of the high magnetic permeability alloy has a strong attraction force with the magnetic steel 3, which is used to make the rotor assembly Stop at the preset position to reduce the resistance of the rotor when the motor starts and solve the problem of starting dead point.
  • Installing the reset plate 204 in the installation slot 2021 of the bracket 202 not only limits the installation of the reset plate 204, improves the installation stability, but also reduces the internal space of the motor occupied by the reset plate 204, without affecting the appearance of the motor.
  • the reset plate 204 specifically includes a plurality of reset substrates 2041 of different sizes, which facilitates the distinction during installation, so that the reset substrates 2041 of the corresponding size can be installed into the corresponding installation slots 2021 to improve the installation efficiency.
  • the reset plate 204 includes three fan-shaped reset substrates 2041, large, medium, and small, the angle ⁇ of the fan-shaped area of the smallest reset substrate 2041 is 50° ⁇ 55°, and the angle ⁇ of the fan-shaped area of the largest reset substrate 2041 The included angle ⁇ is 75° ⁇ 80°, and the included angle ⁇ of the fan-shaped region of the last reset substrate 2041 is 60° ⁇ 65°.
  • is 55°
  • is 75°
  • is 65°.
  • the reset plate 204 can be installed by installing the reset substrates 2041 of different sizes into the corresponding installation grooves 2021 , thereby improving the installation efficiency.
  • the values of ⁇ , ⁇ and ⁇ can be set as required.
  • the stator assembly 20 also includes an FPC assembly 205 and a coil 206 to ensure the normal operation of the motor.
  • the preset position described in this embodiment is the position where the magnetic field center of the coil 206 and the magnetic pole center of the magnetic steel 3 are not zero.
  • the rotor assembly and the brushless vibration motor provided by the embodiments of the present application have the following advantages:
  • the direct connection between the rotor piece 2 and the magnetic steel 3 makes the rotor piece 2 directly form a magnetic circuit, which solves the problem of air gap loss in the magnetic field and improves the performance of the vibration motor.
  • the cross-sectional shape of the weight 4 is L-shaped, the bottom wall of the weight 4 is in contact with the rotor sheet 2, and the side wall of the weight 4 is in contact with the magnetic steel 3 and the side of the rotor sheet 2, which increases the The volume weight of the weight 4 is reduced, the vibration performance of the motor is improved, and the structure of the entire rotor assembly is compact.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Motor Or Generator Frames (AREA)

Abstract

一种转子组件及无刷振动电机,涉及无刷电机技术领域。该转子组件包括轴承(1)、转子片(2)、磁钢(3)和重锤(4),转子片(2)套设于轴承(1)的外周,磁钢(3)套设于转子片(2)上,且磁钢(3)和重锤(4)分别相对固定设于转子片(2)的两侧,重锤(4)的横截面形状为L形,重锤(4)的底壁与转子片(2)抵接,重锤(4)的侧壁与磁钢(3)和转子片(2)的侧部均抵接。

Description

转子组件及无刷振动电机
本公开要求在2021年03月08日提交中国专利局、申请号为202110251989.3的中国专利申请的优先权,同时要求在2021年03月08日提交中国专利局、申请号为202120489778.9的中国专利申请的优先权,以上申请的全部内容通过引用结合在本公开中。
技术领域
本申请涉及无刷电机技术领域,例如涉及一种转子组件及无刷振动电机。
背景技术
无刷振动电机作为振动产生单元可安装在手机、游戏机、移动式信息终端等设备上用作无声振动信号提醒用户。无刷振动电机是一种霍尔感应器,取代机械换向器,通过驱动IC(integrated circuit,集成电路)感应磁极变化来进行电子换向,从而使马达工作,具有结构牢固、体积小、寿命长等优点。无刷振动电机包含转子组件、定子组件和外壳。转子组件通过轴承可转动地安装于轴上,定子组件包括线圈绕组和FPC(flexible printed circuit,柔性电路板)组件,线圈绕组和FPC组件均固定安装于托架上,当向线圈通电时,转子组件因转子组件内部磁钢产生的磁场和线圈绕组产生的电场间的相互作用而偏心旋转,从而产生振动。
发明内容
本申请的目的在于提供一种转子组件及无刷振动电机,能减少对转子片的加工、简化结构及工艺,增大了重锤的体积重量,提高电机的振动性能,结构紧凑。
本申请采用以下技术方案:
一种转子组件,包括轴承、转子片、磁钢和重锤,所述转子片套设于所述轴承的外周,所述磁钢套设于所述转子片上,且所述磁钢和所述重锤分别相对固定设于所述转子片的两侧,所述重锤的横截面形状为L形,所述重锤的底壁与所述转子片抵接,所述重锤的侧壁与所述磁钢和所述转子片的侧部均抵接。
本申请还提供了一种无刷振动电机,包括机壳和定子组件,所述无刷振动电机还包括如上所述的转子组件,所述机壳和所述定子组件固定连接形成安装腔,所述转子组件可转动地设于所述安装腔内。
附图说明
图1是本申请实施例提供的转子组件的整体结构示意图;
图2是本申请实施例提供的转子组件中轴承的结构示意图;
图3是本申请实施例提供的转子组件中转子片和磁钢配合的结构示意图;
图4是本申请实施例提供的转子组件中重锤的结构示意图;
图5是本申请实施例提供的无刷振动电机的整体结构示意图;
图6是本申请实施例提供的定子组件的整体结构示意图;
图7是本申请实施例提供的定子组件中托架的结构示意图;
图8是本申请实施例提供的定子组件中复位板的结构示意图。
图中:
1、轴承;11、环形抵接部;2、转子片;21、中心孔;22、翻边;3、磁钢;4、重锤;
10、机壳;20、定子组件;201、安装腔;202、托架;2021、安装槽;203、转轴;204、复位板;2041、复位基板;205、FPC组件;206、线圈;30、垫片。
具体实施方式
下面将结合附图对本申请实施例的技术方案进行描述。
在本申请的描述中,除非另有明确的规定和限定,术语“相连”、“连接”、“固定”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本申请中,除非另有明确的规定和限定,第一特征在第二特征之“上”或之“下”可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征“之上”、“上方”和“上面”包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在相关技术中,转子组件的转子片为台阶式,在台阶底处放重锤,在转子 片的台阶高处放磁钢,即转子片上面依次放有重锤、磁钢,轴承压装在转子片中间以实现转子转动。
但是相关技术中的重锤受安装空间限制,体积重量较小,产生的振动量不足,影响电机的性能,同时设于磁钢与转子片之间的重锤也会对磁回路有一定的影响。
基于此,亟需一种转子组件及无刷振动电机,用以解决如上提到的问题。
下面结合附图并通过具体实施方式来说明本申请的技术方案。
本实施例公开了一种转子组件,如图1-图4所示,该转子组件包括轴承1、转子片2、磁钢3和重锤4,转子片2套设于轴承1的外周,磁钢3套设于转子片2上,且磁钢3和重锤4分别相对固定设于转子片2的两侧,重锤4的横截面形状为L形,重锤4的底壁与转子片2抵接,重锤4的侧壁与磁钢3和转子片2的侧部均抵接。
本申请通过将磁钢3和重锤4分别相对固定设于转子片2的两侧,减少对转子片2的加工、简化结构及工艺,同时减少重锤4的安装限制。
转子片2与磁钢3的直接连接,使转子片2直接形成磁回路,解决磁场气隙损耗问题,提高振动电机的性能。
在一实施例中,请参见图1,重锤4的侧壁沿轴承1的轴向延伸,重锤4的底壁自重锤4的侧壁朝轴承1延伸。
在一实施例中,转子片2的侧部位于磁钢3和重锤4之间。
在一实施例中,重锤4的横截面形状为L形,重锤4的底壁与转子片2抵接,重锤4的侧壁与磁钢3和转子片2的侧部均抵接,既增大了重锤4的体积重量,提高电机的振动性能,又使得整个转子组件结构紧凑。
在一实施例中,轴承1为含油轴承。轴承1的外周设有环形抵接部11以对转子片2的轴向进行限位抵接,避免转动中转子片2发生轴向移动。
在一实施例中,转子片2采用导磁低碳钢成型。转子片2与环形抵接部11抵接,以保证轴承1与转子片2的拉脱力,确保转子组件安装的稳定性。转子片2的中部设有供轴承1穿设的中心孔21,中心孔21处设有翻边22以便于磁钢3和轴承1的安装。轴承1采用过盈配合压装在转子片2中心孔21和翻边22内。
在一实施例中,请参见图1,转子片2的翻边22与转子片2的侧部连接。
磁钢3套设于翻边22上实现固定。磁钢3采用高性能材料,如钕、铁、硼等,对磁钢3轴向多极充磁,并控制与保证磁极间的间隙,以减少磁场损失。
在一实施例中,磁钢3与转子片2一侧全面接触,并通过UV厌氧胶固定,以减少磁路的损失。
在本实施例中,重锤4用激光焊接或胶水固定在转子片2的一侧以起到偏心转动的作用。具体地,重锤4为圆心角小于或等于180°的圆弧形台阶结构,以尽可能增大重锤4重量,提高振动量。轴承1远离磁钢3一端的端面高于重锤4的顶面设置,以确保转子组件工作时重锤4与机壳10间的间隙,避免阻碍重锤4的转动。
在一实施例中,请参见图1,重锤4的顶面为重锤4的底壁上背对转子片2的侧部设置的一个表面。
本实施例还公开了一种无刷振动电机,如图5所示,包括机壳10和定子组件20,该无刷振动电机还包括如上所述的转子组件,机壳10和定子组件20固定连接形成安装腔201,转子组件可转动地设于安装腔201内。
在一实施例中,如图6所示,该定子组件20包括托架202和转轴203,托架202与机壳10固定连接形成安装腔201,转轴203与托架202和机壳10均固定连接,轴承1套设于转轴203的外周且轴承1远离磁钢3的一端与机壳10抵接。托架202采用不导磁材料成型。
在一实施例中,该无刷振动电机还包括垫片30,垫片30固定套设于转轴203的外周,定子组件20与转子组件分别位于垫片30的两端,以保证转子组件与定子组件20间的间隙。
在一实施例中,如图7-8所示,定子组件20还包括复位板204,托架202上设有安装槽2021,复位板204安装于安装槽2021内,复位板204由软磁材料制成,复位板204包括多个尺寸不等的复位基板2041,多个复位基板2041沿托架202的周向分布,每相邻两个复位基板2041间均等夹角设置,用于使转子组件止停在预设位置。
由于复位板204由软磁材料制成,托架202采用不导磁材料成型,磁钢3不会吸,而高导磁合金的复位板204与磁钢3吸力较大,用于使转子组件止停在预设位置,以降低电机起动时转子的阻力,解决起动死点的问题。将复位板204安装于托架202的安装槽2021内,既对复位板204的安装进行限位,提高安装稳定性,又能减少复位板204占用电机的内部空间,不影响电机的外观。
复位板204具体包括多个尺寸不等的复位基板2041,便于安装时的区分,以将相应尺寸的复位基板2041安装至相应的安装槽2021,提高安装效率。
在一实施例中,复位板204包括大、中、小三个扇形的复位基板2041,最 小的复位基板2041的扇形区域的夹角α为50°~55°,最大的复位基板2041的扇形区域的夹角β为75°~80°,最后一个复位基板2041的扇形区域的夹角γ为60°~65°。
示例性地:α取55°,β取75°,γ取65°。安装时通过将不同尺寸的复位基板2041安装至相应的安装槽2021内即可实现复位板204的安装,提高安装效率。在其他实施例中,α、β和γ的取值可根据需要设置。
定子组件20还包括FPC组件205和线圈206等以确保电机的正常工作。
需要说明的是,本实施例阐述的预设位置为线圈206的磁场中心与磁钢3的磁极中心不为零的位置。
综上,本申请实施例提供的一种转子组件及无刷振动电机具备如下优势:
1、通过将磁钢3和重锤4分别相对固定设于转子片2的两侧,减少对转子片2的加工、简化结构及工艺,同时减少对重锤4的安装限制。
2、转子片2与磁钢3的直接连接,使转子片2直接形成磁回路,解决磁场气隙损耗问题,提高振动电机的性能。
3、重锤4的横截面形状为L形,重锤4的底壁与转子片2抵接,重锤4的侧壁与磁钢3和转子片2的侧部均抵接,既增大了重锤4的体积重量,提高电机的振动性能,又使得整个转子组件结构紧凑。
对于所属领域的普通技术人员来说,在上述说明的基础上还可以做出其它不同形式的变化或变动。

Claims (10)

  1. 一种转子组件,包括轴承(1)、转子片(2)、磁钢(3)和重锤(4),所述转子片(2)套设于所述轴承(1)的外周,所述磁钢(3)套设于所述转子片(2)上,且所述磁钢(3)和所述重锤(4)分别相对固定设于所述转子片(2)的两侧,所述重锤(4)的横截面形状为L形,所述重锤(4)的底壁与所述转子片(2)抵接,所述重锤(4)的侧壁与所述磁钢(3)和所述转子片(2)的侧部均抵接。
  2. 根据权利要求1所述的转子组件,其中,所述轴承(1)的外周设有环形抵接部(11),所述转子片(2)与所述环形抵接部(11)抵接。
  3. 根据权利要求1所述的转子组件,其中,所述转子片(2)的中部设有供所述轴承(1)穿设的中心孔(21),所述中心孔(21)处设有翻边(22),所述磁钢(3)套设于所述翻边(22)上。
  4. 根据权利要求1所述的转子组件,其中,所述磁钢(3)与所述转子片(2)间通过UV厌氧胶固定。
  5. 根据权利要求1所述的转子组件,其中,所述重锤(4)为圆心角小于或等于180°的圆弧形台阶结构。
  6. 根据权利要求1所述的转子组件,其中,所述轴承(1)远离所述磁钢(3)一端的端面高于所述重锤(4)的顶面设置。
  7. 一种无刷振动电机,包括机壳(10)和定子组件(20),所述无刷振动电机还包括如权利要求1-6任一项所述的转子组件,所述机壳(10)和所述定子组件(20)固定连接形成安装腔(201),所述转子组件可转动地设于所述安装腔(201)内。
  8. 根据权利要求7所述的无刷振动电机,其中,所述定子组件(20)包括托架(202)和转轴(203),所述托架(202)与所述机壳(10)固定连接形成所述安装腔(201),所述转轴(203)与所述托架(202)和所述机壳(10)均固定连接,所述轴承(1)套设于所述转轴(203)的外周且所述轴承(1)远离所述磁钢(3)的一端与所述机壳(10)抵接。
  9. 根据权利要求8所述的无刷振动电机,其中,所述定子组件(20)还包括复位板(204),所述托架(202)上设有安装槽(2021),所述复位板(204)安装于所述安装槽(2021)内,所述复位板(204)由软磁材料制成;
    所述复位板(204)包括多个尺寸不等的复位基板(2041),所述多个复位基板(2041)沿所述托架(202)的周向分布,每相邻两个所述复位基板(2041)间均等夹角设置,以使所述转子组件止停在预设位置。
  10. 根据权利要求9所述的无刷振动电机,其中,所述复位板(204)包括三个扇形的所述复位基板(2041),其中,一个所述复位基板(2041)的扇形区域的夹角α为50°~55°,另一个所述复位基板(2041)的扇形区域的夹角β为75°~80°,又一个所述复位基板(2041)的扇形区域的夹角γ为60°~65°。
PCT/CN2021/119317 2021-03-08 2021-09-18 转子组件及无刷振动电机 WO2022188390A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202120489778.9 2021-03-08
CN202110251989.3 2021-03-08
CN202110251989.3A CN112803700A (zh) 2021-03-08 2021-03-08 一种转子组件及无刷振动电机
CN202120489778.9U CN218387220U (zh) 2021-03-08 2021-03-08 一种转子组件及无刷振动电机

Publications (1)

Publication Number Publication Date
WO2022188390A1 true WO2022188390A1 (zh) 2022-09-15

Family

ID=83226192

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/119317 WO2022188390A1 (zh) 2021-03-08 2021-09-18 转子组件及无刷振动电机

Country Status (1)

Country Link
WO (1) WO2022188390A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1424802A (zh) * 2001-12-10 2003-06-18 日本电产科宝株式会社 无刷电动机
JP2005117849A (ja) * 2003-10-10 2005-04-28 Tokyo Parts Ind Co Ltd 駆動回路が内蔵されたステータと同ステータを備えた軸方向空隙型ブラシレスモータ
JP2006094643A (ja) * 2004-09-24 2006-04-06 Nidec Copal Corp 単相ブラシレスモータ
KR20070049354A (ko) * 2005-11-08 2007-05-11 엘지이노텍 주식회사 편평형 진동 모터
CN102237749A (zh) * 2010-04-28 2011-11-09 三洋精密株式会社 扁平形振动电机
JP2012005293A (ja) * 2010-06-18 2012-01-05 Nidec Seimitsu Corp 扁平形振動モータ
CN105610272A (zh) * 2014-11-19 2016-05-25 日本电产精密株式会社 振动马达
CN210167903U (zh) * 2019-07-11 2020-03-20 浙江省东阳市东磁诚基电子有限公司 一种无刷扁平振动马达
CN112803700A (zh) * 2021-03-08 2021-05-14 浙江省东阳市东磁诚基电子有限公司 一种转子组件及无刷振动电机

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1424802A (zh) * 2001-12-10 2003-06-18 日本电产科宝株式会社 无刷电动机
JP2005117849A (ja) * 2003-10-10 2005-04-28 Tokyo Parts Ind Co Ltd 駆動回路が内蔵されたステータと同ステータを備えた軸方向空隙型ブラシレスモータ
JP2006094643A (ja) * 2004-09-24 2006-04-06 Nidec Copal Corp 単相ブラシレスモータ
KR20070049354A (ko) * 2005-11-08 2007-05-11 엘지이노텍 주식회사 편평형 진동 모터
CN102237749A (zh) * 2010-04-28 2011-11-09 三洋精密株式会社 扁平形振动电机
JP2012005293A (ja) * 2010-06-18 2012-01-05 Nidec Seimitsu Corp 扁平形振動モータ
CN105610272A (zh) * 2014-11-19 2016-05-25 日本电产精密株式会社 振动马达
CN210167903U (zh) * 2019-07-11 2020-03-20 浙江省东阳市东磁诚基电子有限公司 一种无刷扁平振动马达
CN112803700A (zh) * 2021-03-08 2021-05-14 浙江省东阳市东磁诚基电子有限公司 一种转子组件及无刷振动电机

Similar Documents

Publication Publication Date Title
JP4240949B2 (ja) 永久磁石式回転電機の回転子
US7109623B2 (en) Motor and electrically-driven fan employing the same
US8115354B2 (en) Brushless vibration motor
US8106552B2 (en) Vibration motor
JPH11146617A (ja) ブラシレスdcモータ構造
JP2008306844A (ja) 4角形状外形の小型モータ
KR20070008426A (ko) Bldc 진동모터
US7064465B2 (en) Motor
CN218387220U (zh) 一种转子组件及无刷振动电机
WO2022188390A1 (zh) 转子组件及无刷振动电机
CN112803700A (zh) 一种转子组件及无刷振动电机
JP3310248B2 (ja) 方形振動モータ
CN111463983A (zh) 一种新型单线圈无刷马达及其实现方法
CN107124054B (zh) 交替极永磁电机及其转子
JPWO2006070610A1 (ja) インナーロータ型振動モータ
KR100892319B1 (ko) 편평형 진동 모터
CN210693592U (zh) 电动机转子结构
JP3196198U (ja) ブラシレス薄型モーター
JP4667837B2 (ja) 埋め込み磁石型のロータ
CN210225069U (zh) 一种高效运转的无刷电机
WO2022085576A1 (ja) ロータ及び該ロータを用いたモータ、並びに、電子機器
JP2019004551A (ja) 振動モータ
JP2008178294A (ja) 永久磁石式回転電機の回転子
CN1829047A (zh) 马达的转子平衡构造
KR100312343B1 (ko) 단상의브러쉬레스팬모터

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929855

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929855

Country of ref document: EP

Kind code of ref document: A1