WO2022188290A1 - OsFTL1及其编码基因在缩短水稻的抽穗期中的应用 - Google Patents
OsFTL1及其编码基因在缩短水稻的抽穗期中的应用 Download PDFInfo
- Publication number
- WO2022188290A1 WO2022188290A1 PCT/CN2021/100546 CN2021100546W WO2022188290A1 WO 2022188290 A1 WO2022188290 A1 WO 2022188290A1 CN 2021100546 W CN2021100546 W CN 2021100546W WO 2022188290 A1 WO2022188290 A1 WO 2022188290A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- plant
- protein
- rice
- sequence
- osftl1
- Prior art date
Links
- 108090000623 proteins and genes Proteins 0.000 title claims abstract description 108
- 235000007164 Oryza sativa Nutrition 0.000 title claims abstract description 75
- 235000009566 rice Nutrition 0.000 title claims abstract description 74
- 240000007594 Oryza sativa Species 0.000 title claims description 69
- 238000004904 shortening Methods 0.000 title description 2
- 230000009261 transgenic effect Effects 0.000 claims abstract description 41
- 239000012620 biological material Substances 0.000 claims abstract description 12
- 241000196324 Embryophyta Species 0.000 claims description 83
- 102000004169 proteins and genes Human genes 0.000 claims description 44
- 230000014509 gene expression Effects 0.000 claims description 33
- 230000017260 vegetative to reproductive phase transition of meristem Effects 0.000 claims description 29
- 150000007523 nucleic acids Chemical class 0.000 claims description 24
- 108020004707 nucleic acids Proteins 0.000 claims description 23
- 102000039446 nucleic acids Human genes 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 22
- 108020004414 DNA Proteins 0.000 claims description 21
- 230000001105 regulatory effect Effects 0.000 claims description 21
- 239000013598 vector Substances 0.000 claims description 18
- 240000008042 Zea mays Species 0.000 claims description 12
- 235000002017 Zea mays subsp mays Nutrition 0.000 claims description 12
- 102000053602 DNA Human genes 0.000 claims description 11
- 241000209140 Triticum Species 0.000 claims description 10
- 235000021307 Triticum Nutrition 0.000 claims description 10
- 125000003729 nucleotide group Chemical group 0.000 claims description 10
- 244000068988 Glycine max Species 0.000 claims description 9
- 235000010469 Glycine max Nutrition 0.000 claims description 9
- 239000002299 complementary DNA Substances 0.000 claims description 9
- 239000002773 nucleotide Substances 0.000 claims description 9
- 241000219194 Arabidopsis Species 0.000 claims description 8
- 241000209510 Liliopsida Species 0.000 claims description 8
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 8
- 241000209504 Poaceae Species 0.000 claims description 7
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 claims description 7
- 235000005822 corn Nutrition 0.000 claims description 7
- 241001233957 eudicotyledons Species 0.000 claims description 7
- 235000021374 legumes Nutrition 0.000 claims description 7
- 244000005700 microbiome Species 0.000 claims description 7
- 210000000056 organ Anatomy 0.000 claims description 7
- 230000000694 effects Effects 0.000 claims description 6
- 108091026890 Coding region Proteins 0.000 claims description 5
- 235000016383 Zea mays subsp huehuetenangensis Nutrition 0.000 claims description 5
- 235000009973 maize Nutrition 0.000 claims description 5
- 238000003976 plant breeding Methods 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- 241000209758 Aegilops Species 0.000 claims description 3
- 241000743774 Brachypodium Species 0.000 claims description 3
- 240000006394 Sorghum bicolor Species 0.000 claims description 3
- 235000011684 Sorghum saccharatum Nutrition 0.000 claims description 3
- 244000062793 Sorghum vulgare Species 0.000 claims description 3
- 125000000539 amino acid group Chemical group 0.000 claims description 3
- 235000019713 millet Nutrition 0.000 claims description 3
- 238000012217 deletion Methods 0.000 claims description 2
- 230000037430 deletion Effects 0.000 claims description 2
- 108020001507 fusion proteins Proteins 0.000 claims description 2
- 102000037865 fusion proteins Human genes 0.000 claims description 2
- 238000006467 substitution reaction Methods 0.000 claims description 2
- 238000009331 sowing Methods 0.000 abstract description 8
- 238000002474 experimental method Methods 0.000 abstract description 6
- 235000013339 cereals Nutrition 0.000 abstract description 3
- 241000209094 Oryza Species 0.000 abstract 6
- 241000746966 Zizania Species 0.000 abstract 2
- 235000002636 Zizania aquatica Nutrition 0.000 abstract 2
- 230000005070 ripening Effects 0.000 abstract 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 17
- 230000037361 pathway Effects 0.000 description 10
- 239000013604 expression vector Substances 0.000 description 8
- 230000006870 function Effects 0.000 description 8
- 241000589158 Agrobacterium Species 0.000 description 6
- 230000001939 inductive effect Effects 0.000 description 6
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 5
- 101150062628 EHD1 gene Proteins 0.000 description 5
- 241001460678 Napo <wasp> Species 0.000 description 5
- 239000011259 mixed solution Substances 0.000 description 5
- 238000013518 transcription Methods 0.000 description 5
- 230000035897 transcription Effects 0.000 description 5
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 4
- 108091028043 Nucleic acid sequence Proteins 0.000 description 4
- 239000003623 enhancer Substances 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000013612 plasmid Substances 0.000 description 4
- 238000011160 research Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 108020004705 Codon Proteins 0.000 description 3
- 206010020649 Hyperkeratosis Diseases 0.000 description 3
- 108020005350 Initiator Codon Proteins 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 238000009395 breeding Methods 0.000 description 3
- 230000001488 breeding effect Effects 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 239000003550 marker Substances 0.000 description 3
- 108020004999 messenger RNA Proteins 0.000 description 3
- 108010058731 nopaline synthase Proteins 0.000 description 3
- 238000003259 recombinant expression Methods 0.000 description 3
- 241000894007 species Species 0.000 description 3
- LWTDZKXXJRRKDG-KXBFYZLASA-N (-)-phaseollin Chemical compound C1OC2=CC(O)=CC=C2[C@H]2[C@@H]1C1=CC=C3OC(C)(C)C=CC3=C1O2 LWTDZKXXJRRKDG-KXBFYZLASA-N 0.000 description 2
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- 241000701489 Cauliflower mosaic virus Species 0.000 description 2
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 2
- 101000579716 Homo sapiens Protein RFT1 homolog Proteins 0.000 description 2
- 108060001084 Luciferase Proteins 0.000 description 2
- 235000007688 Lycopersicon esculentum Nutrition 0.000 description 2
- 101000713179 Papio hamadryas Solute carrier family 52, riboflavin transporter, member 2 Proteins 0.000 description 2
- 108091034057 RNA (poly(A)) Proteins 0.000 description 2
- 240000003768 Solanum lycopersicum Species 0.000 description 2
- 108010028230 Trp-Ser- His-Pro-Gln-Phe-Glu-Lys Proteins 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 238000012271 agricultural production Methods 0.000 description 2
- 230000009418 agronomic effect Effects 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000001419 dependent effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- 230000002363 herbicidal effect Effects 0.000 description 2
- 239000004009 herbicide Substances 0.000 description 2
- 230000000977 initiatory effect Effects 0.000 description 2
- 230000009456 molecular mechanism Effects 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 230000029553 photosynthesis Effects 0.000 description 2
- 238000010672 photosynthesis Methods 0.000 description 2
- 230000001902 propagating effect Effects 0.000 description 2
- 230000008844 regulatory mechanism Effects 0.000 description 2
- YGSDEFSMJLZEOE-UHFFFAOYSA-N salicylic acid Chemical compound OC(=O)C1=CC=CC=C1O YGSDEFSMJLZEOE-UHFFFAOYSA-N 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000001932 seasonal effect Effects 0.000 description 2
- 238000002864 sequence alignment Methods 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- GEWDNTWNSAZUDX-WQMVXFAESA-N (-)-methyl jasmonate Chemical compound CC\C=C/C[C@@H]1[C@@H](CC(=O)OC)CCC1=O GEWDNTWNSAZUDX-WQMVXFAESA-N 0.000 description 1
- BDDNVWUKTDRKME-UHFFFAOYSA-N 1,2,3-benzothiadiazole-7-thiol Chemical compound S1N=NC2=C1C(=CC=C2)S BDDNVWUKTDRKME-UHFFFAOYSA-N 0.000 description 1
- 241000589156 Agrobacterium rhizogenes Species 0.000 description 1
- 241000219195 Arabidopsis thaliana Species 0.000 description 1
- 101001033883 Cenchritis muricatus Protease inhibitor 2 Proteins 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 1
- LMKYZBGVKHTLTN-NKWVEPMBSA-N D-nopaline Chemical compound NC(=N)NCCC[C@@H](C(O)=O)N[C@@H](C(O)=O)CCC(O)=O LMKYZBGVKHTLTN-NKWVEPMBSA-N 0.000 description 1
- 108010066133 D-octopine dehydrogenase Proteins 0.000 description 1
- 101150074155 DHFR gene Proteins 0.000 description 1
- 101150111720 EPSPS gene Proteins 0.000 description 1
- -1 Ehd4 Proteins 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- YQYJSBFKSSDGFO-UHFFFAOYSA-N Epihygromycin Natural products OC1C(O)C(C(=O)C)OC1OC(C(=C1)O)=CC=C1C=C(C)C(=O)NC1C(O)C(O)C2OCOC2C1O YQYJSBFKSSDGFO-UHFFFAOYSA-N 0.000 description 1
- XZWYTXMRWQJBGX-VXBMVYAYSA-N FLAG peptide Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](NC(=O)[C@@H](N)CC(O)=O)CC1=CC=C(O)C=C1 XZWYTXMRWQJBGX-VXBMVYAYSA-N 0.000 description 1
- 108010023832 Florigen Proteins 0.000 description 1
- 101150027875 Ftl1 gene Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- 239000005562 Glyphosate Substances 0.000 description 1
- 108010093488 His-His-His-His-His-His Proteins 0.000 description 1
- 101100288095 Klebsiella pneumoniae neo gene Proteins 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- 102000002704 Leucyl aminopeptidase Human genes 0.000 description 1
- 108010004098 Leucyl aminopeptidase Proteins 0.000 description 1
- 241000710118 Maize chlorotic mottle virus Species 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 101710202365 Napin Proteins 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 101710089395 Oleosin Proteins 0.000 description 1
- 240000008467 Oryza sativa Japonica Group Species 0.000 description 1
- 101001130366 Oryza sativa subsp. japonica B3 domain-containing protein LFL1 Proteins 0.000 description 1
- 101100075854 Oryza sativa subsp. japonica MADS50 gene Proteins 0.000 description 1
- 101100075855 Oryza sativa subsp. japonica MADS51 gene Proteins 0.000 description 1
- 101000921214 Oryza sativa subsp. japonica Protein EARLY HEADING DATE 2 Proteins 0.000 description 1
- 101710163504 Phaseolin Proteins 0.000 description 1
- IAJOBQBIJHVGMQ-UHFFFAOYSA-N Phosphinothricin Natural products CP(O)(=O)CCC(N)C(O)=O IAJOBQBIJHVGMQ-UHFFFAOYSA-N 0.000 description 1
- 108700001094 Plant Genes Proteins 0.000 description 1
- 206010036590 Premature baby Diseases 0.000 description 1
- 102100028269 Protein RFT1 homolog Human genes 0.000 description 1
- 244000184734 Pyrus japonica Species 0.000 description 1
- 238000011529 RT qPCR Methods 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 125000000066 S-methyl group Chemical group [H]C([H])([H])S* 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 108010016634 Seed Storage Proteins Proteins 0.000 description 1
- 240000005498 Setaria italica Species 0.000 description 1
- 208000037065 Subacute sclerosing leukoencephalitis Diseases 0.000 description 1
- 206010042297 Subacute sclerosing panencephalitis Diseases 0.000 description 1
- 108091036066 Three prime untranslated region Proteins 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 108091023045 Untranslated Region Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 101150103518 bar gene Proteins 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 229940027138 cambia Drugs 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 230000009025 developmental regulation Effects 0.000 description 1
- KXZOIWWTXOCYKR-UHFFFAOYSA-M diclofenac potassium Chemical compound [K+].[O-]C(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl KXZOIWWTXOCYKR-UHFFFAOYSA-M 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 230000000408 embryogenic effect Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- IAJOBQBIJHVGMQ-BYPYZUCNSA-N glufosinate-P Chemical compound CP(O)(=O)CC[C@H](N)C(O)=O IAJOBQBIJHVGMQ-BYPYZUCNSA-N 0.000 description 1
- 229930182470 glycoside Natural products 0.000 description 1
- 150000002338 glycosides Chemical class 0.000 description 1
- XDDAORKBJWWYJS-UHFFFAOYSA-N glyphosate Chemical compound OC(=O)CNCP(O)(O)=O XDDAORKBJWWYJS-UHFFFAOYSA-N 0.000 description 1
- 229940097068 glyphosate Drugs 0.000 description 1
- 101150054900 gus gene Proteins 0.000 description 1
- 101150029559 hph gene Proteins 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 101150044508 key gene Proteins 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- GEWDNTWNSAZUDX-UHFFFAOYSA-N methyl 7-epi-jasmonate Natural products CCC=CCC1C(CC(=O)OC)CCC1=O GEWDNTWNSAZUDX-UHFFFAOYSA-N 0.000 description 1
- 108091070501 miRNA Proteins 0.000 description 1
- 239000002679 microRNA Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 230000003278 mimic effect Effects 0.000 description 1
- 238000005065 mining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000031787 nutrient reservoir activity Effects 0.000 description 1
- 235000002252 panizo Nutrition 0.000 description 1
- FJKROLUGYXJWQN-UHFFFAOYSA-N papa-hydroxy-benzoic acid Natural products OC(=O)C1=CC=C(O)C=C1 FJKROLUGYXJWQN-UHFFFAOYSA-N 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- LWTDZKXXJRRKDG-UHFFFAOYSA-N phaseollin Natural products C1OC2=CC(O)=CC=C2C2C1C1=CC=C3OC(C)(C)C=CC3=C1O2 LWTDZKXXJRRKDG-UHFFFAOYSA-N 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 238000012113 quantitative test Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229960004889 salicylic acid Drugs 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
- 238000003971 tillage Methods 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000014621 translational initiation Effects 0.000 description 1
- 239000013603 viral vector Substances 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/415—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from plants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/79—Vectors or expression systems specially adapted for eukaryotic hosts
- C12N15/82—Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
- C12N15/8241—Phenotypically and genetically modified plants via recombinant DNA technology
- C12N15/8261—Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A40/00—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
- Y02A40/10—Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
- Y02A40/146—Genetically Modified [GMO] plants, e.g. transgenic plants
Definitions
- the invention relates to the application of OsFTL1 and its encoding gene in shortening the heading stage of rice in the field of biotechnology.
- Rice (Oryza sativa L.) is one of the three major food crops in the world, and rice is the staple food for more than half of the world's population. As the world's population continues to grow, and climate change and human activities lead to the continuous reduction of land suitable for cultivation, how to improve rice yield is still the focus of current crop research. In agricultural production, the growth period of crops plays a decisive role in crop yield, among which the heading date of rice is one of the most important agronomic traits that determine the yield and quality of rice. The appropriate heading date is suitable for rice varieties to adapt to different ecological regions and different plantings. Seasons play a key role.
- the main influencing factors of heading date include cultivar differences, photoperiod and tillage methods. Differences in heading date of different rice varieties directly affect the cultivating area and seasonal adaptability of varieties, and photoperiod is one of the most important environmental factors regulating heading date.
- at least 14 genes involved in the regulation of rice heading stage have been found through QTL mapping studies, which basically clarified the molecular regulatory network of rice heading stage. It is currently known that there are two main regulatory pathways for rice heading stage, including the Hd1-dependent OsGI-Hd1-Hd3a pathway and the Ehd1-dependent Ghd7-Ehd1-RFT1/Hd3a pathway, which are functional under short-day conditions. Redundant, and antagonistic under long-day exposure.
- Hd1 is the homologous gene of Arabidopsis thaliana flowering key gene CONSTANS (CO) in rice. It is regulated by OsGI. It promotes flowering by activating the expression of Hd3a gene under short-day light, and delays the expression of Hd3a gene by inhibiting it under long-day light. In flowering, this pathway is homologous to the GI-CO-FT pathway in Arabidopsis.
- the Ehd1 gene in the other pathway is highly conserved in rice and encodes a B-type response regulator, which is regulated by Ghd7 to inhibit flowering, and can promote flowering by activating Hd3a and RFT1 genes, which is a unique regulatory pathway in rice.
- Ehd1 gene is the center of various signal transduction.
- Ehd1 gene can promote the early heading of rice by inducing the expression of FT-Like gene under short-day light, while its expression is regulated by multiple regulators under long-day light.
- the positive regulators include Ehd2, Ehd4, MADS50 and MADS51, negative regulators include Ghd7, Ghd8, OsLFL1, etc.
- the technical problem to be solved by the present invention is how to shorten the heading period (flowering period) of plants or prolong the heading period (flowering period) of plants.
- the present invention firstly provides any of the following applications of a protein or a substance that regulates the activity or content of the protein:
- Said protein (whose name is OsFTL1) is A1), A2), A3) or A4) as follows:
- amino acid sequence is the protein of sequence 1;
- amino acid sequence shown in SEQ ID NO: 1 in the sequence listing has undergone the substitution and/or deletion and/or addition of one or several amino acid residues and has the same function;
- A3 A protein derived from maize, sorghum, millet, goat grass, Brachypodium or wheat and having 75% or more identity to sequence 1 and the same function as the protein described in A1);
- A4 A fusion protein obtained by linking a tag to the N-terminus or/and C-terminus of A1) or A2) or A3).
- amino-terminal or carboxyl-terminal of the protein consisting of the amino acid sequence shown in SEQ ID NO: 1 in the sequence listing can be attached with the tags shown in the following table.
- the protein in the above A2) is a protein having 75% or more identity to the amino acid sequence of the protein shown in SEQ ID NO: 1 and having the same function. Having 75% or more identity is 75%, 80%, 85%, 90%, 95%, 96%, 97%, 98%, or 99% identical .
- the protein in the above A2) can be artificially synthesized, or can be obtained by first synthesizing its encoding gene and then carrying out biological expression.
- the coding gene of the protein in the above-mentioned A2) can be obtained by deleting the codons of one or several amino acid residues in the DNA sequence shown in SEQ ID NO: 2, and/or carrying out missense mutation of one or several base pairs, and/ Or the coding sequence of the tag shown in the above table is connected to its 5' end and/or 3' end.
- the DNA molecule shown in SEQ ID NO: 2 encodes the protein shown in SEQ ID NO: 1.
- the present invention also provides any of the following applications of the biomaterial related to OsFTL1:
- the biological material is any one of the following B1) to B7):
- B2 an expression cassette containing the nucleic acid molecule of B1);
- B3 a recombinant vector containing the nucleic acid molecule described in B1) or a recombinant vector containing the expression cassette described in B2);
- B4 a recombinant microorganism containing the nucleic acid molecule described in B1), or a recombinant microorganism containing the expression cassette described in B2), or a recombinant microorganism containing the recombinant vector described in B3);
- B5 a transgenic plant cell line containing the nucleic acid molecule of B1), or a transgenic plant cell line containing the expression cassette of B2);
- B6 a transgenic plant tissue containing the nucleic acid molecule of B1), or a transgenic plant tissue containing the expression cassette of B2);
- B7 A transgenic plant organ containing the nucleic acid molecule of B1), or a transgenic plant organ containing the expression cassette of B2).
- nucleic acid molecule of B1) may be as follows b11) or b12) or b13) or b14) or b15):
- the coding sequence is the cDNA molecule or DNA molecule of sequence 2 in the sequence listing;
- b14 has 75% or more identity with the nucleotide sequence defined by b11) or b12) or b13), and encodes a cDNA molecule or DNA molecule of OsFTL1;
- b15 hybridizes under stringent conditions to a nucleotide sequence defined by b11) or b12) or b13) or b14) and encodes a cDNA molecule or DNA molecule of OsFTL1.
- the nucleic acid molecule can be DNA, such as cDNA, genomic DNA or recombinant DNA; the nucleic acid molecule can also be RNA, such as mRNA or hnRNA.
- nucleotide sequence encoding the OsFTL1 protein of the present invention can easily mutate the nucleotide sequence encoding the OsFTL1 protein of the present invention using known methods, such as directed evolution and point mutation.
- Those artificially modified nucleotides with 75% or higher identity to the nucleotide sequence of the OsFTL1 protein isolated by the present invention, as long as they encode the OsFTL1 protein and have the function of the OsFTL1 protein, are all derived from the nucleus of the present invention. nucleotide sequences and are equivalent to the sequences of the present invention.
- identity refers to sequence similarity to a native nucleic acid sequence. “Identity” includes 75% or more, or 85% or more, or 90% or more, or 95% or more of the nucleotide sequence of the protein consisting of the amino acid sequence shown in the coding sequence 1 of the present invention. Nucleotide sequences of higher identity. Identity can be assessed with the naked eye or with computer software. Using computer software, the identity between two or more sequences can be expressed in percent (%), which can be used to assess the identity between related sequences.
- the stringent conditions may be as follows: 50°C, hybridization in a mixed solution of 7% sodium dodecyl sulfate (SDS), 0.5M NaPO 4 and 1 mM EDTA, 50°C, 2 ⁇ SSC, 0.1 Rinse in %SDS; also: 50°C, hybridize in a mixed solution of 7% SDS, 0.5M NaPO 4 and 1mM EDTA, rinse at 50°C, 1 ⁇ SSC, 0.1% SDS; also: 50°C , hybridized in a mixed solution of 7% SDS, 0.5M NaPO 4 and 1 mM EDTA, washed at 50°C, 0.5 ⁇ SSC, 0.1% SDS; also: 50°C, in 7% SDS, 0.5M NaPO 4 and Hybridize in a mixed solution of 1mM EDTA, rinse in 0.1 ⁇ SSC, 0.1% SDS at 50°C; alternatively: hybridize in a mixed solution of 7% SDS, 0.5M NaPO
- the above-mentioned 75% or more identity may be 80%, 85%, 90% or more than 95% identity.
- the described expression cassette (OsFTL1 gene expression cassette) containing the nucleic acid molecule of coding OsFTL1 protein, refers to the DNA that can express OsFTL1 protein in host cell, and this DNA can not only include the start that starts OsFTL1 gene transcription , and may also include a terminator that terminates transcription of the OsFTL1 gene. Further, the expression cassette may also include enhancer sequences. Promoters useful in the present invention include, but are not limited to, constitutive promoters, tissue, organ and development specific promoters, and inducible promoters.
- promoters include, but are not limited to: the constitutive promoter 35S of cauliflower mosaic virus; the wound-inducible promoter from tomato, leucine aminopeptidase ("LAP", Chao et al. (1999) Plant Physiol 120: 979-992); chemically inducible promoter from tobacco, pathogenesis-related 1 (PR1) (induced by salicylic acid and BTH (benzothiadiazole-7-thiol acid S-methyl ester)); tomato Protease inhibitor II promoter (PIN2) or LAP promoter (both inducible with methyl jasmonate); heat shock promoter (US Pat. No. 5,187,267); tetracycline-inducible promoter (US Pat. No.
- seed-specific promoters such as foxtail millet seed-specific promoter pF128 (CN101063139B (Chinese patent 200710099169.7)), seed storage protein-specific promoters (for example, promoters of phaseolin, napin, oleosin and soybean beta conglycin (Beachy et al (1985) EMBO J. 4:3047-3053)). They can be used alone or in combination with other plant promoters. All references cited herein are incorporated by reference in their entirety.
- Suitable transcription terminators include, but are not limited to: Agrobacterium nopaline synthase terminator (NOS terminator), cauliflower mosaic virus CaMV 35S terminator, tml terminator, pea rbcS E9 terminator and nopaline and octopine Synthase terminators (see, eg: Odell et al. (1985) Nature 313:810; Rosenberg et al. (1987) Gene, 56:125; Guerineau et al. (1991) Mol. Gen. Genet, 262:141; Proudfoot (1991) Cell, 64:671; Sanfacon et al. Genes Dev., 5:141; Mogen et al.
- NOS terminator Agrobacterium nopaline synthase terminator
- cauliflower mosaic virus CaMV 35S terminator tml terminator
- pea rbcS E9 terminator nopaline and octopine Synthase terminators
- a recombinant vector containing the OsFTL1 gene expression cassette can be constructed by using an existing expression vector.
- the plant expression vectors include binary Agrobacterium vectors and vectors that can be used for plant microprojectile bombardment, and the like. Such as pAHC25, pBin438, pCAMBIA1302, pCAMBIA2301, pCAMBIA1301, pCAMBIA1300, pBI121, pCAMBIA1391-Xa, PSN1301 or pCAMBIA1391-Xb (CAMBIA company) and so on.
- the plant expression vector may also contain the 3' untranslated region of the foreign gene, ie, containing the polyadenylation signal and any other DNA fragments involved in mRNA processing or gene expression.
- the poly(A) signal can guide the addition of poly(A) to the 3' end of the mRNA precursor, such as Agrobacterium crown gall-inducing (Ti) plasmid genes (such as nopaline synthase gene Nos), plant genes (such as soybean The untranslated regions transcribed from the 3' end of the storage protein gene) have similar functions.
- Agrobacterium crown gall-inducing (Ti) plasmid genes such as nopaline synthase gene Nos
- plant genes such as soybean
- enhancers can also be used, including translation enhancers or transcription enhancers. These enhancer regions can be ATG initiation codons or adjacent region initiation codons, etc., but must be associated with the coding.
- the reading frames of the sequences are identical to ensure correct translation of the entire sequence.
- the translation control signals and initiation codons can be derived from a wide variety of sources, either natural or synthetic.
- the translation initiation region can be derived from a transcription initiation region or a structural gene.
- the plant expression vector used can be processed, such as adding a gene (GUS gene, luciferase gene, luciferase gene) that can be expressed in plants encoding an enzyme that can produce color change or a luminescent compound.
- marker genes for antibiotics such as the nptII gene that confers resistance to kanamycin and related antibiotics, the bar gene that confers resistance to the herbicide phosphinothricin, the hph gene that confers resistance to the antibiotic hygromycin , and the dhfr gene conferring resistance to methotrexate, the EPSPS gene conferring resistance to glyphosate
- marker genes for chemical resistance such as herbicide resistance genes
- mannose-6- which provides the ability to metabolize mannose Phosphoisomerase gene.
- the vector may be a plasmid, cosmid, phage or viral vector.
- the plasmid can be the pTCK303 vector.
- the recombinant vector can specifically be pTCK303-OsFTL1.
- the pTCK303-OsFTL1 is a recombinant vector obtained by replacing the DNA fragment between the BamHI and SacI recognition sequences of the pTCK303 vector with the OsFTL1 gene shown in sequence 2.
- the pTCK303-OsFTL1 can express the protein encoded by the OsFTL1 gene (ie, the OsFTL1 protein shown in sequence 1) under the driving of the maize Ubiqutin (UBI) promoter.
- UBI maize Ubiqutin
- the microorganisms may be yeast, bacteria, algae or fungi.
- the bacteria can be Agrobacterium, such as Agrobacterium rhizogenes EHA105.
- transgenic plant cell lines, transgenic plant tissues and transgenic plant organs may all include propagating material or may not include propagating material.
- the present invention also provides a method for cultivating photosynthesis-enhanced plants, the method comprising expressing OsFTL1 in a recipient plant, or increasing the content or activity of OsFTL1 in the recipient plant, to obtain a target plant with enhanced photosynthesis.
- the above method can be achieved by introducing a gene encoding OsFTL1 into the recipient plant and expressing the encoding gene.
- the encoding gene can be the nucleic acid molecule of B1).
- the encoding gene of OsFTL1 can be modified as follows, and then introduced into the recipient plant to achieve better expression effect:
- the promoters may include constitutive, inducible, time-sequential regulation, developmental regulation, chemical regulation, tissue-preferred and tissue-specific promoters ; the choice of promoter will vary with the temporal and spatial requirements of expression and will also depend on the target species; e.g. tissue- or organ-specific expression promoters, depending on what stage of development the receptor is desired; although the provenance of the source Many promoters for dicotyledonous plants are functional in monocotyledonous plants and vice versa, but ideally, a dicotyledonous promoter is chosen for expression in dicotyledonous plants and a monocotyledonous promoter for expression in monocots;
- Linking with a suitable transcription terminator can also improve the expression efficiency of the gene of the present invention; for example, tml derived from CaMV, E9 derived from rbcS; any available terminator known to function in plants can be combined with The gene of the present invention is connected;
- enhancer sequences such as intron sequences (eg from Adhl and bronzel) and viral leader sequences (eg from TMV, MCMV and AMV).
- the OsFTL1-encoding gene can be introduced into recipient plants using a recombinant expression vector containing the OsFTL1-encoding gene.
- the recombinant expression vector can specifically be the pTCK303-OsFTL1.
- the recombinant expression vector can be introduced into plant cells by using Ti plasmid, plant virus vector, direct DNA transformation, microinjection, electroporation and other conventional biotechnology methods (Weissbach, 1998, Method for Plant Molecular Biology VIII, Academy Press, New York). , pp. 411-463; Geiserson and Corey, 1998, Plant Molecular Biology (2nd Edition).).
- the plant of interest is understood to include not only the first-generation plants in which the OsFTL1 protein or its encoding gene has been altered, but also its progeny.
- the gene can be propagated in that species, and conventional breeding techniques can be used to transfer the gene into other varieties of the same species, including in particular commercial varieties.
- the plants of interest include seeds, callus, whole plants and cells.
- the present invention also provides a product with the function of regulating plant flowering time, the product containing OsFTL1 or the biological material.
- the plant may be M1) or M2) or M3):
- M2 grasses, crucifers or legumes
- the flowering time can be reflected in the heading stage.
- OsFTL1 or the biological material also belongs to the protection scope of the present invention.
- Figure 1 shows the sequence alignment results.
- Figure 2 shows the detection results of the relative expression level of FTL1 gene in OsFTL1 transgenic rice.
- Figure 3 is a photograph of wild-type and OsFTL1 transgenic rice. A-OsFTL1 transgenic rice heading earlier than wild type; B- OsFTL1 transgenic rice mature stage phenotype.
- Figure 4 shows the heading dates of wild-type and OsFTL1 transgenic rice in Beijing long-day (A) and Hainan short-day (B) field conditions.
- the pTCK303 vector in the following examples (Zhang, H., Zhang, J., Yan, J., Gou, F., Mao, Y., Tang, G., Botella, J.R., & Zhu, J.K. (2017).
- Short tandem target mimic rice lines uncover functions of miRNAs in regulating important agronomic traits. Proceedings of the National Academy of Sciences of the United States of America,114(20),5277–5282.https://doi.org/10.1073/pnas .1703752114), the public can obtain the biological material from the applicant, and the biological material is only used for repeating the relevant experiments of the present invention and cannot be used for other purposes.
- Example 1 OsFTL1 can promote the early heading date of rice
- This example provides a protein derived from Nipponbare rice that can promote the early heading date.
- the name of the protein is OsFTL1, and its sequence is sequence 1 in the sequence table.
- the coding gene sequence of OsFTL1 is sequence 2, and the genome sequence for sequence 3.
- the OsFTL1 gene shown in sequence 2 in the sequence table was artificially synthesized, the DNA fragment between the BamHI and SacI recognition sequences of the pTCK303 vector was replaced with the OsFTL1 gene shown in sequence 2, and other sequences were kept unchanged to obtain a recombinant vector, which was named as pTCK303-OsFTL1.
- pTCK303-OsFTL1 can express the protein encoded by the OsFTL1 gene (ie the OsFTL1 protein shown in sequence 1) under the drive of the maize Ubiqutin (UBI) promoter.
- the mature seeds of japonica rice variety Nipponbare were sterilized and induced to obtain embryogenic callus.
- the pTCK303-OsFTL1 obtained in step 1 was introduced into Agrobacterium EHA105, the callus was infected by the method of rice genetic transformation mediated by Agrobacterium Co-cultivation, using resistance screening to obtain transgenic plants, the screened transgenic rice is OsFTL1 transgenic rice.
- the relative expression level of OsFTL1 gene at the RNA level in OsFTL1 transgenic rice was detected by qRT-PCR method.
- the primers used were: 5′-TACACCCTGGTGATGGTGGAT-3′ (SEQ ID NO: 4 ), 5'-AGAGACTCCTGTGGTAGCCG-3' (sequence 5 in the sequence table);
- the internal reference gene is rice Ubiqutin gene, and the primers for the internal reference gene are: 5'-AAGAAGCTGAAGCATCCAGC-3' (sequence 6 in the sequence table), 5'-CCAGGACAAGATGATCTGCC-3 ' (Sequence 7 in the Sequence Listing).
- OsFTL1 transgenic rice The results showed that the relative expression levels of OsFTL1 gene in three lines (OsFTL1-OE1, OsFTL1-OE2 and OsFTL1-OE3) of OsFTL1 transgenic rice were significantly higher than those of wild type (WT), and all three lines were overexpressed.
- OsFTL1 rice material Figure 2.
- the heading date of rice was detected, and the rice to be tested: wild-type Nipponbare rice (WT), rice overexpressing OsFTL1 (OsFTL1-OE1, OsFTL1-OE2 and OsFTL1-OE3).
- the heading dates of each tested rice were counted under the field planting conditions in Beijing and Hainan.
- the statistical method is as follows: each type of rice to be tested is planted in 2 rows, arranged randomly, and the heading period of a single plant is counted. When the panicle of the plant is exposed by 1/2 of the flag leaf sheath, it is recorded as heading, and the heading period is the number of days from sowing to heading. .
- the OsFTL1 gene transgenic rice had heading only 45-50 days after sowing, while the wild type was 58-61 days, indicating that under the short-day conditions, the heading date of the transgenic rice was longer than that of the wild type. Shortened by about 11 days, the grain-filling maturity period of rice was correspondingly advanced.
- Table 1 The results of the field experiments in Beijing in 2020 and Hainan in 2021 are shown in Table 1. This indicated that OsFTL1 and its encoding gene could regulate the heading date of rice.
- the OsFTL1 and related biological materials of the present invention can promote early heading of rice, the heading date of OsFTL1 transgenic rice is significantly earlier than that of the wild type, and the transgenic rice has heading only 45-47 days after sowing.
- the wild type is still in the tillering stage, and correspondingly, the heading stage of the wild type is 116-118 days after sowing.
- the heading period of transgenic rice can be shortened by about 71 days compared with the wild type, and the grain filling maturity of rice is correspondingly earlier. This indicated that OsFTL1 and its encoding gene could regulate the heading date of rice.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Molecular Biology (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biophysics (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Physics & Mathematics (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Cell Biology (AREA)
- Botany (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
Abstract
OsFTL1的序列为序列表中序列1,其编码基因序列为序列表中序列2。实验证明,OsFTL1及其相关的生物材料可以促进水稻提前抽穗,转OsFTL1基因水稻的抽穗期较野生型大幅提前,播种后仅45-47天转基因水稻即已经抽穗。此时野生型仍处于分蘖期,相应地,野生型的抽穗期为播种后116-118天。这说明转基因水稻的抽穗期可较野生型缩短约71天,而且水稻籽粒灌浆成熟期也相应提前。说明,OsFTL1及其编码基因可以调控水稻的抽穗期。
Description
本发明涉及生物技术领域中,OsFTL1及其编码基因在缩短水稻的抽穗期中的应用。
水稻(Oryza sativa L.)是世界上三大粮食作物之一,全球有超过一半的人口以水稻作为主食。随着世界人口的持续增长,同时气候变化以及人类活动导致适宜耕种的土地面积不断减少,如何提高水稻产量仍是当今农作物研究的重点。在农业生产中,农作物的生育期对作物产量起着决定性的作用,其中水稻抽穗期是决定水稻产量和品质的最重要农艺性状之一,合适的抽穗期对水稻品种适应不同生态区域以及不同种植季节具有关键作用。长期以来,选育早熟且高产的水稻品种一直是育种家们研究的重点和热点,而对抽穗期调控途径的解析以及抽穗期基因分子作用机理的研究对于作物育种、品种改良及品种推广具有重要的意义。
抽穗期的主要影响因素包括品种差异、光周期和耕作方式等,不同水稻品种抽穗期的差异直接影响品种的耕种区域与季节适应性,而光周期是调控抽穗期的一个最重要环境因素。近年来通过QTL定位研究已发现至少14个参与调控水稻抽穗期的基因,基本明确了水稻抽穗期的分子调控网络。目前已知水稻的抽穗期主要有两条调控途径,包括依赖于Hd1的OsGI-Hd1-Hd3a途径和依赖于Ehd1的Ghd7-Ehd1-RFT1/Hd3a途径,这两条途径在短日照条件下有功能冗余,而在长日照下存在拮抗作用。植物从Hd1和Ehd1收集开花信号,并将其转导至成花素基因Hd3a和RFT1,分别在长、短日照条件下促进水稻开花。其中,Hd1是拟南芥开花关键基因CONSTANS(CO)在水稻中的同源基因,受OsGI调控,在短日照下通过激活Hd3a基因的表达来促进开花,在长日照下抑制Hd3a基因的表达延迟开花,该通路与拟南芥中的GI-CO-FT途径同源。而另一条途径中的Ehd1基因在水稻中高度保守,编码一个B型响应调节因子,受Ghd7调控抑制开花,可以通过激活Hd3a和RFT1基因来促进开花,是水稻中特有的调控途径。Ehd1基因是多种信号传导的中心,在短日照下Ehd1基因可通过诱导FT-Like基因的表达促进水稻提前抽穗,而在长日照下其表达受多个调节因子调控,其中正向调节因子包括Ehd2、Ehd4、MADS50和MADS51,负向调控因子包括Ghd7、Ghd8、 OsLFL1等。
目前虽然对水稻抽穗期的调控途径及相关功能基因的研究取得了一定进展,对重要的关键途径已经有了基本的了解,但是详细的开花调控机制还不清楚,很多调控抽穗期的关键基因仍是未知。因此对于控制水稻抽穗期功能基因的挖掘及分子机理研究,有利于帮助我们进一步完善对水稻抽穗期调控机制的认识,并以此为基础有针对性的采取措施改良水稻品种抽穗期,提高品种的地区适应性及季节适应性,进一步保障产量和品质的提高,对解决农业生产中长期存在的“早熟与高产难以兼顾”的矛盾具有重要的理论意义及应用价值。
发明公开
本发明所要解决的技术问题是如何缩短植物的抽穗期(开花期)或者延长植物的抽穗期(开花期)。
为解决上述技术问题,本发明首先提供了蛋白质或调控所述蛋白质活性或含量的物质的下述任一应用:
D1)调控植物开花时间;
D2)制备调控植物开花时间产品;
D3)植物育种;
所述蛋白质(其名称为OsFTL1)为如下A1)、A2)、A3)或A4):
A1)氨基酸序列是序列1的蛋白质;
A2)将序列表中序列1所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有相同功能的蛋白质;
A3)来源于玉米、高粱、谷子、山羊草、二穗短柄草或小麦且与序列1具有75%或以上同一性并与A1)所述蛋白质具有相同功能的蛋白质;
A4)在A1)或A2)或A3)的N端或/和C端连接标签得到的融合蛋白质。
为了使A1)中的蛋白质便于纯化,可在由序列表中序列1所示的氨基酸序列组成的蛋白质的氨基末端或羧基末端连接上如下表所示的标签。
表:标签的序列
标签 | 残基 | 序列 |
Poly-Arg | 5-6(通常为5个) | RRRRR |
Poly-His | 2-10(通常为6个) | HHHHHH |
FLAG | 8 | DYKDDDDK |
Strep-tag II | 8 | WSHPQFEK |
c-myc | 10 | EQKLISEEDL |
上述A2)中的蛋白质,为与序列1所示蛋白质的氨基酸序列具有75%或75%以上同一性且具有相同功能的蛋白质。所述具有75%或75%以上同一性为具有75%、具有80%、具有85%、具有90%、具有95%、具有96%、具有97%、具有98%或具有99%的同一性。
上述A2)中的蛋白质可人工合成,也可先合成其编码基因,再进行生物表达得到。
上述A2)中的蛋白质的编码基因可通过将序列2所示的DNA序列中缺失一个或几个氨基酸残基的密码子,和/或进行一个或几个碱基对的错义突变,和/或在其5′端和/或3′端连上上表所示的标签的编码序列得到。其中,序列2所示的DNA分子编码序列1所示的蛋白质。
本发明还提供了与OsFTL1相关的生物材料的下述任一应用:
D1)调控植物开花时间;
D2)制备调控植物开花时间产品;
D3)植物育种;
所述生物材料为下述B1)至B7)中的任一种:
B1)编码OsFTL1的核酸分子;
B2)含有B1)所述核酸分子的表达盒;
B3)含有B1)所述核酸分子的重组载体、或含有B2)所述表达盒的重组载体;
B4)含有B1)所述核酸分子的重组微生物、或含有B2)所述表达盒的重组微生物、或含有B3)所述重组载体的重组微生物;
B5)含有B1)所述核酸分子的转基因植物细胞系、或含有B2)所述表达盒的转基因植物细胞系;
B6)含有B1)所述核酸分子的转基因植物组织、或含有B2)所述表达盒的转基因植物组织;
B7)含有B1)所述核酸分子的转基因植物器官、或含有B2)所述表达盒的转基因植物器官。
上述应用中,B1)所述核酸分子可为如下b11)或b12)或b13)或b14) 或b15):
b11)编码序列是序列表中序列2的cDNA分子或DNA分子;
b12)序列表中序列2所示的cDNA分子或DNA分子;
b13)序列表中序列3所示的DNA分子;
b14)与b11)或b12)或b13)限定的核苷酸序列具有75%或75%以上同一性,且编码OsFTL1的cDNA分子或DNA分子;
b15)在严格条件下与b11)或b12)或b13)或b14)限定的核苷酸序列杂交,且编码OsFTL1的cDNA分子或DNA分子。
其中,所述核酸分子可以是DNA,如cDNA、基因组DNA或重组DNA;所述核酸分子也可以是RNA,如mRNA或hnRNA等。
本领域普通技术人员可以很容易地采用已知的方法,例如定向进化和点突变的方法,对本发明的编码OsFTL1蛋白质的核苷酸序列进行突变。那些经过人工修饰的,具有与本发明分离得到的OsFTL1蛋白质的核苷酸序列75%或者更高同一性的核苷酸,只要编码OsFTL1蛋白质且具有OsFTL1蛋白质功能,均是衍生于本发明的核苷酸序列并且等同于本发明的序列。
这里使用的术语“同一性”指与天然核酸序列的序列相似性。“同一性”包括与本发明的编码序列1所示的氨基酸序列组成的蛋白质的核苷酸序列具有75%或更高,或85%或更高,或90%或更高,或95%或更高同一性的核苷酸序列。同一性可以用肉眼或计算机软件进行评价。使用计算机软件,两个或多个序列之间的同一性可以用百分比(%)表示,其可以用来评价相关序列之间的同一性。
上述应用中,所述严格条件可为如下:50℃,在7%十二烷基硫酸钠(SDS)、0.5M NaPO
4和1mM EDTA的混合溶液中杂交,在50℃,2×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO
4和1mM EDTA的混合溶液中杂交,在50℃,1×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO
4和1mM EDTA的混合溶液中杂交,在50℃,0.5×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO
4和1mM EDTA的混合溶液中杂交,在50℃,0.1×SSC,0.1%SDS中漂洗;还可为:50℃,在7%SDS、0.5M NaPO
4和1mM EDTA的混合溶液中杂交,在65℃,0.1×SSC,0.1%SDS中漂洗;也可为:在6×SSC,0.5%SDS的溶液中,在65℃下杂交,然后用2×SSC,0.1%SDS和1×SSC,0.1%SDS各洗膜一次;也可为:2×SSC,0.1%SDS的溶液中,在68℃下杂交并洗膜2次, 每次5min,又于0.5×SSC,0.1%SDS的溶液中,在68℃下杂交并洗膜2次,每次15min;也可为:0.1×SSPE(或0.1×SSC)、0.1%SDS的溶液中,65℃条件下杂交并洗膜。
上述75%或75%以上同一性,可为80%、85%、90%或95%以上的同一性。
上述应用中,B2)所述的含有编码OsFTL1蛋白质的核酸分子的表达盒(OsFTL1基因表达盒),是指能够在宿主细胞中表达OsFTL1蛋白质的DNA,该DNA不但可包括启动OsFTL1基因转录的启动子,还可包括终止OsFTL1基因转录的终止子。进一步,所述表达盒还可包括增强子序列。可用于本发明的启动子包括但不限于:组成型启动子,组织、器官和发育特异的启动子,和诱导型启动子。启动子的例子包括但不限于:花椰菜花叶病毒的组成型启动子35S;来自西红柿的创伤诱导型启动子,亮氨酸氨基肽酶("LAP",Chao等人(1999)Plant Physiol 120:979-992);来自烟草的化学诱导型启动子,发病机理相关1(PR1)(由水杨酸和BTH(苯并噻二唑-7-硫代羟酸S-甲酯)诱导);西红柿蛋白酶抑制剂II启动子(PIN2)或LAP启动子(均可用茉莉酮酸甲酯诱导);热休克启动子(美国专利5,187,267);四环素诱导型启动子(美国专利5,057,422);种子特异性启动子,如谷子种子特异性启动子pF128(CN101063139B(中国专利200710099169.7)),种子贮存蛋白质特异的启动子(例如,菜豆球蛋白、napin,oleosin和大豆beta conglycin的启动子(Beachy等人(1985)EMBO J.4:3047-3053))。它们可单独使用或与其它的植物启动子结合使用。此处引用的所有参考文献均全文引用。合适的转录终止子包括但不限于:农杆菌胭脂碱合成酶终止子(NOS终止子)、花椰菜花叶病毒CaMV 35S终止子、tml终止子、豌豆rbcS E9终止子和胭脂氨酸和章鱼氨酸合酶终止子(参见,例如:Odell等人(I
985)Nature 313:810;Rosenberg等人(1987)Gene,56:125;Guerineau等人(1991)Mol.Gen.Genet,262:141;Proudfoot(1991)Cell,64:671;Sanfacon等人Genes Dev.,5:141;Mogen等人(1990)Plant Cell,2:1261;Munroe等人(1990)Gene,91:151;Ballad等人(1989)Nucleic Acids Res.17:7891;Joshi等人(1987)Nucleic Acid Res.,15:9627)。
可用现有的表达载体构建含有所述OsFTL1基因表达盒的重组载体。所述植物表达载体包括双元农杆菌载体和可用于植物微弹轰击的载体等。如pAHC25、 pBin438、pCAMBIA1302、pCAMBIA2301、pCAMBIA1301、pCAMBIA1300、pBI121、pCAMBIA1391-Xa、PSN1301或pCAMBIA1391-Xb(CAMBIA公司)等。所述植物表达载体还可包含外源基因的3′端非翻译区域,即包含聚腺苷酸信号和任何其它参与mRNA加工或基因表达的DNA片段。所述聚腺苷酸信号可引导聚腺苷酸加入到mRNA前体的3′端,如农杆菌冠瘿瘤诱导(Ti)质粒基因(如胭脂碱合成酶基因Nos)、植物基因(如大豆贮存蛋白基因)3′端转录的非翻译区均具有类似功能。使用本发明的基因构建植物表达载体时,还可使用增强子,包括翻译增强子或转录增强子,这些增强子区域可以是ATG起始密码子或邻接区域起始密码子等,但必需与编码序列的阅读框相同,以保证整个序列的正确翻译。所述翻译控制信号和起始密码子的来源是广泛的,可以是天然的,也可以是合成的。翻译起始区域可以来自转录起始区域或结构基因。为了便于对转基因植物细胞或植物进行鉴定及筛选,可对所用植物表达载体进行加工,如加入可在植物中表达的编码可产生颜色变化的酶或发光化合物的基因(GUS基因、萤光素酶基因等)、抗生素的标记基因(如赋予对卡那霉素和相关抗生素抗性的nptII基因,赋予对除草剂膦丝菌素抗性的bar基因,赋予对抗生素潮霉素抗性的hph基因,和赋予对氨甲喋呤抗性的dhfr基因,赋予对草甘磷抗性的EPSPS基因)或是抗化学试剂标记基因等(如抗除莠剂基因)、提供代谢甘露糖能力的甘露糖-6-磷酸异构酶基因。从转基因植物的安全性考虑,可不加任何选择性标记基因,直接以逆境筛选转化植株。
上述应用中,所述载体可为质粒、黏粒、噬菌体或病毒载体。所述质粒具体可为pTCK303载体。
B3)所述重组载体具体可为pTCK303-OsFTL1。所述pTCK303-OsFTL1为将pTCK303载体的BamHI和SacI识别序列间的DNA片段替换为序列2所示的OsFTL1基因得到的重组载体。所述pTCK303-OsFTL1能在玉米Ubiqutin(UBI)启动子的驱动下表达OsFTL1基因所编码的蛋白质(即序列1所示的OsFTL1蛋白质)。
上述应用中,所述微生物可为酵母、细菌、藻或真菌。其中,细菌可为农杆菌,如发根农杆菌EHA105。
上述应用中,所述转基因植物细胞系、转基因植物组织和转基因植物器官均可包括繁殖材料,也可不包括繁殖材料。
本发明还提供了培育光合作用增强植物的方法,所述方法包括使受体植物 中表达OsFTL1,或提高受体植物中OsFTL1的含量或活性,得到光合作用增强的目的植物。
上述方法可通过向所述受体植物中导入OsFTL1的编码基因并使所述编码基因得到表达实现。
上述方法中,所述编码基因可为B1)所述核酸分子。
上述方法中,其中所述OsFTL1的编码基因可先进行如下修饰,再导入受体植物中,以达到更好的表达效果:
1)根据实际需要进行修饰和优化,以使基因高效表达;例如,可根据受体植物所偏爱的密码子,在保持本发明所述OsFTL1的编码基因的氨基酸序列的同时改变其密码子以符合植物偏爱性;优化过程中,最好能使优化后的编码序列中保持一定的GC含量,以最好地实现植物中导入基因的高水平表达,其中GC含量可为35%、多于45%、多于50%或多于约60%;
2)修饰邻近起始甲硫氨酸的基因序列,以使翻译有效起始;例如,利用在植物中已知的有效的序列进行修饰;
3)与各种植物表达的启动子连接,以利于其在植物中的表达;所述启动子可包括组成型、诱导型、时序调节、发育调节、化学调节、组织优选和组织特异性启动子;启动子的选择将随着表达时间和空间需要而变化,而且也取决于靶物种;例如组织或器官的特异性表达启动子,根据需要受体在发育的什么时期而定;尽管证明了来源于双子叶植物的许多启动子在单子叶植物中是可起作用的,反之亦然,但是理想地,选择双子叶植物启动子用于双子叶植物中的表达,单子叶植物的启动子用于单子叶植物中的表达;
4)与适合的转录终止子连接,也可以提高本发明基因的表达效率;例如来源于CaMV的tml,来源于rbcS的E9;任何已知在植物中起作用的可得到的终止子都可以与本发明基因进行连接;
5)引入增强子序列,如内含子序列(例如来源于Adhl和bronzel)和病毒前导序列(例如来源于TMV,MCMV和AMV)。
所述OsFTL1的编码基因可利用含有所述OsFTL1的编码基因的重组表达载体导入受体植物。所述重组表达载体具体可为所述pTCK303-OsFTL1。
所述重组表达载体可通过使用Ti质粒,植物病毒栽体,直接DNA转化,微注射,电穿孔等常规生物技术方法导入植物细胞(Weissbach,1998,Method for Plant Molecular Biology VIII,Academy Press,New York,pp.411-463;Geiserson and Corey,1998,Plant Molecular Biology(2nd Edition).)。
所述目的植物理解为不仅包含OsFTL1蛋白或其编码基因被改变的第一代植物,也包括其子代。对于所述目的植物,可以在该物种中繁殖该基因,也可用常规育种技术将该基因转移进入相同物种的其它品种,特别包括商业品种中。所述目的植物包括种子、愈伤组织、完整植株和细胞。
本发明还提供了具有调控植物开花时间功能的产品,所述产品含有OsFTL1或所述生物材料。
上文中,所述植物可为M1)或M2)或M3):
M1)单子叶植物或双子叶植物;
M2)禾本科植物、十字花科植物或豆科植物;
M3)水稻、小麦、玉米、拟南芥、油菜或大豆。
上文中,所述开花时间可体现在抽穗期上。
OsFTL1或所述生物材料,也属于本发明的保护范围。
图1为序列比对结果。
图2为转OsFTL1基因水稻中FTL1基因相对表达水平检测结果。
图3为野生型与转OsFTL1基因水稻的照片。A-转OsFTL1基因水稻较野生型提前抽穗;B-转OsFTL1基因水稻成熟期表型。
图4为野生型和转OsFTL1基因水稻在北京长日照(A)和海南短日照(B)田间条件下的抽穗期。
图3-4中,**表示与WT相比,差异达到极显著水平,p<0.01。
实施发明的最佳方式
下面结合具体实施方式对本发明进行进一步的详细描述,给出的实施例仅为了阐明本发明,而不是为了限制本发明的范围。以下提供的实施例可作为本技术领域普通技术人员进行进一步改进的指南,并不以任何方式构成对本发明的限制。
下述实施例中的实验方法,如无特殊说明,均为常规方法,按照本领域内的文献所描述的技术或条件或者按照产品说明书进行。下述实施例中所用的材料、试剂、仪器等,如无特殊说明,均可从商业途径得到。以下实施例中的定量试验,均设置三次重复实验,结果取平均值。下述实施例中,如无特殊说明,序列表 中各核苷酸序列的第1位均为相应DNA/RNA的5′末端核苷酸,末位均为相应DNA/RNA的3′末端核苷酸。
下述实施例中的pTCK303载体(Zhang,H.,Zhang,J.,Yan,J.,Gou,F.,Mao,Y.,Tang,G.,Botella,J.R.,&Zhu,J.K.(2017).Short tandem target mimic rice lines uncover functions of miRNAs in regulating important agronomic traits.Proceedings of the National Academy of Sciences of the United States of America,114(20),5277–5282.https://doi.org/10.1073/pnas.1703752114),公众可从申请人处获得该生物材料,该生物材料只为重复本发明的相关实验所用,不可作为其它用途使用。
实施例1、OsFTL1可以促进水稻抽穗期提前
本实施例提供了一种来源于日本晴水稻可以促进抽穗期提前的蛋白质,该蛋白质的名称为OsFTL1,其序列为序列表中序列1,在日本晴中,OsFTL1的编码基因序列为序列2,基因组序列为序列3。
将水稻OsFTL1与其它植物中同源蛋白的进行序列比对,发现其与玉米、高粱、谷子、山羊草、小麦、二穗短柄草的同一性分别为94.15%、93.57%、93.57%、92.40%、92.40%、92.98%(图1)。
1、重组载体的构建
人工合成序列表中序列2所示的OsFTL1基因,将pTCK303载体的BamHI和SacI识别序列间的DNA片段替换为序列2所示的OsFTL1基因,保持其他序列不变,得到重组载体,将其命名为pTCK303-OsFTL1。pTCK303-OsFTL1能在玉米Ubiqutin(UBI)启动子的驱动下表达OsFTL1基因所编码的蛋白质(即序列1所示的OsFTL1蛋白质))。
2、转基因植株的构建
将水稻粳稻品种日本晴的成熟种子消毒后诱导得到胚性愈伤组织,将步骤1得到的pTCK303-OsFTL1导入农杆菌EHA105中后,利用农杆菌介导的水稻遗传转化方法对愈伤组织进行侵染共培养,利用抗性筛选得到转基因植株,筛选到的转基因水稻即为OsFTL1转基因水稻。
利用水稻粳稻品种日本晴(WT)作为对照,用qRT-PCR方法检测OsFTL1转基因水稻中OsFTL1基因在RNA水平上的的相对表达水平,所用引物为:5′- TACACCCTGGTGATGGTGGAT-3′(序列表中序列 4),5′-AGAGACTCCTGTGGTAGCCG-3′(序列表中序列5);内参基因为水稻Ubiqutin基因,内参基因引物为:5′-AAGAAGCTGAAGCATCCAGC-3′(序列表中序列6),5′-CCAGGACAAGATGATCTGCC-3′(序列表中序列7)。
结果显示,OsFTL1转基因水稻的3个株系(OsFTL1-OE1、OsFTL1-OE2和OsFTL1-OE3)中OsFTL1基因的相对表达水平均显著高于野生型(WT),这三个株系均为过表达OsFTL1水稻材料(图2)。
3、转OsFTL1基因水稻的抽穗期提前
检测水稻的抽穗期,待测水稻:野生型日本晴水稻(WT),过表达OsFTL1水稻(OsFTL1-OE1、OsFTL1-OE2和OsFTL1-OE3)。
在北京和海南田间种植条件下分别统计各待测水稻的抽穗期。统计方法为:每种待测水稻均种植2行,随机排列,统计单株抽穗期,植株的穗由剑叶叶鞘露出1/2时记为抽穗,抽穗期为从播种到抽穗所经历的天数。
结果表明(图3、图4),转OsFTL1基因水稻的抽穗期较野生型大幅提前。在北京长日照条件下,播种后仅45-47天转基因水稻即已经抽穗,此时野生型仍处于分蘖期,相应地,野生型的抽穗期为播种后116-118天。这说明在长日照条件下,转基因水稻的抽穗期可较野生型缩短约71天,而且水稻籽粒灌浆成熟期也相应提前。而在海南短日照条件下,转OsFTL1基因水稻也在播种后仅45-50天即已抽穗,而野生型为58-61天,说明在短日照条件下,转基因水稻的抽穗期可较野生型缩短约11天,水稻籽粒灌浆成熟期也相应提前。2020年北京和2021年海南田间实验的结果如表1所示。说明,OsFTL1及其编码基因可以调控水稻的抽穗期。
表1、野生型和转基因水稻在北京和海南田间条件下的抽穗期(天)
水稻 | 2020年北京 | 2021年海南 |
WT | 117±1 | 59.50±1.05 |
OsFTL1-OE1 | 46±1** | 47.33±0.82** |
OsFTL1-OE2 | 45.67±0.58** | 46.67±1.21** |
OsFTL1-OE3 | 45.33±0.58** | 48.67±1.03** |
表1中,*表示与同年份WT相比,差异达到显著水平,p<0.05;**表示与同年份WT相比,差异达到显著水平,p<0.01。
以上对本发明进行了详述。对于本领域技术人员来说,在不脱离本发明的宗旨和范围,以及无需进行不必要的实验情况下,可在等同参数、浓度和条件下,在较宽范围内实施本发明。虽然本发明给出了特殊的实施例,应该理解为,可以对本发明作进一步的改进。总之,按本发明的原理,本申请欲包括任何变更、用途或对本发明的改进,包括脱离了本申请中已公开范围,而用本领域已知的常规技术进行的改变。按以下附带的权利要求的范围,可以进行一些基本特征的应用。
工业应用
实验证明,本发明的OsFTL1及其相关的生物材料可以促进水稻提前抽穗,转OsFTL1基因水稻的抽穗期较野生型大幅提前,播种后仅45-47天转基因水稻即已经抽穗。此时野生型仍处于分蘖期,相应地,野生型的抽穗期为播种后116-118天。这说明转基因水稻的抽穗期可较野生型缩短约71天,而且水稻籽粒灌浆成熟期也相应提前。说明,OsFTL1及其编码基因可以调控水稻的抽穗期。
Claims (18)
- 蛋白质或调控所述蛋白质活性或含量的物质的下述任一应用:D1)调控植物开花时间;D2)制备调控植物开花时间产品;D3)植物育种;所述蛋白质为如下A1)、A2)、A3)或A4):A1)氨基酸序列是序列1的蛋白质;A2)将序列表中序列1所示的氨基酸序列经过一个或几个氨基酸残基的取代和/或缺失和/或添加且具有相同功能的蛋白质;A3)来源于玉米、高粱、谷子、山羊草、二穗短柄草或小麦且与序列1具有75%或以上同一性并与A1)所述蛋白质具有相同功能的蛋白质;A4)在A1)或A2)或A3)的N端或/和C端连接标签得到的融合蛋白质。
- 根据权利要求1所述的应用,其特征在于:所述植物为M1)或M2)或M3):M1)单子叶植物或双子叶植物;M2)禾本科植物、十字花科植物或豆科植物;M3)水稻、小麦、玉米、拟南芥、油菜或大豆。
- 根据权利要求1或2所述的应用,其特征在于:所述开花时间体现在抽穗期上。
- 与权利要求1中所述蛋白质相关的生物材料的下述任一应用:D1)调控植物开花时间;D2)制备调控植物开花时间产品;D3)植物育种;所述生物材料为下述B1)至B7)中的任一种:B1)编码权利要求1中所述蛋白质的核酸分子;B2)含有B1)所述核酸分子的表达盒;B3)含有B1)所述核酸分子的重组载体、或含有B2)所述表达盒的重组载体;B4)含有B1)所述核酸分子的重组微生物、或含有B2)所述表达盒的重组 微生物、或含有B3)所述重组载体的重组微生物;B5)含有B1)所述核酸分子的转基因植物细胞系、或含有B2)所述表达盒的转基因植物细胞系;B6)含有B1)所述核酸分子的转基因植物组织、或含有B2)所述表达盒的转基因植物组织;B7)含有B1)所述核酸分子的转基因植物器官、或含有B2)所述表达盒的转基因植物器官。
- 根据权利要求4所述的应用,其特征在于:B1)所述核酸分子为如下b11)或b12)或b13)或b14)或b15):b11)编码序列是序列表中序列2的cDNA分子或DNA分子;b12)序列表中序列2所示的cDNA分子或DNA分子;b13)序列表中序列3所示的DNA分子;b14)与b11)或b12)或b13)限定的核苷酸序列具有75%或75%以上同一性,且编码权利要求1中所述蛋白质的cDNA分子或DNA分子;b15)在严格条件下与b11)或b12)或b13)或b14)限定的核苷酸序列杂交,且编码权利要求1中所述蛋白质的cDNA分子或DNA分子。
- 根据权利要求4或5所述的应用,其特征在于:所述植物为M1)或M2)或M3):M1)单子叶植物或双子叶植物;M2)禾本科植物、十字花科植物或豆科植物;M3)水稻、小麦、玉米、拟南芥、油菜或大豆。
- 根据权利要求4或5所述的应用,其特征在于:所述开花时间体现在抽穗期上。
- 根据权利要求4或5所述的应用,其特征在于:所述植物为M1)或M2)或M3):M1)单子叶植物或双子叶植物;M2)禾本科植物、十字花科植物或豆科植物;M3)水稻、小麦、玉米、拟南芥、油菜或大豆;所述开花时间体现在抽穗期上。
- 培育开花时间提前植物的方法,包括使受体植物中表达权利要求1中所 述蛋白质,或提高受体植物中权利要求1中所述蛋白质的含量或活性,得到开花时间提前的目的植物。
- 根据权利要求9所述的方法,其特征在于:所述方法通过向所述受体植物中导入权利要求1中所述蛋白质的编码基因并使所述编码基因得到表达实现。
- 根据权利要求10所述的方法,其特征在于:所述编码基因为权利要求4或5中B1)所述核酸分子。
- 根据权利要求9-11中任一所述的方法,其特征在于:所述植物为M1)或M2)或M3):M1)单子叶植物或双子叶植物;M2)禾本科植物、十字花科植物或豆科植物;M3)水稻、小麦、玉米、拟南芥、油菜或大豆。
- 根据权利要求9-11中任一所述的方法,其特征在于:所述开花时间体现在抽穗期上。
- 根据权利要求9-11中任一所述的方法,其特征在于:所述植物为M1)或M2)或M3):M1)单子叶植物或双子叶植物;M2)禾本科植物、十字花科植物或豆科植物;M3)水稻、小麦、玉米、拟南芥、油菜或大豆;所述开花时间体现在抽穗期上。
- 具有调控植物开花时间功能的产品,含有权利要求1中所述蛋白质或权利要求4或5中所述生物材料。
- 根据权利要求15所述的产品,其特征在于:所述植物为M1)或M2)或M3):M1)单子叶植物或双子叶植物;M2)禾本科植物、十字花科植物或豆科植物;M3)水稻、小麦、玉米、拟南芥、油菜或大豆。
- 根据权利要求15或16所述的产品,其特征在于:所述开花时间体现在抽穗期上。
- 权利要求1中所述蛋白质或权利要求4或5中所述生物材料。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110259853.7 | 2021-03-10 | ||
CN202110259853.7A CN113072629A (zh) | 2021-03-10 | 2021-03-10 | OsFTL1及其编码基因在缩短水稻的抽穗期中的应用 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022188290A1 true WO2022188290A1 (zh) | 2022-09-15 |
Family
ID=76612252
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/100546 WO2022188290A1 (zh) | 2021-03-10 | 2021-06-17 | OsFTL1及其编码基因在缩短水稻的抽穗期中的应用 |
Country Status (2)
Country | Link |
---|---|
CN (2) | CN113072629A (zh) |
WO (1) | WO2022188290A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117535342A (zh) * | 2024-01-09 | 2024-02-09 | 中国农业大学 | 提高苜蓿产量和/或分枝数的方法及其所用蛋白质与相关生物材料 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011107808A1 (en) * | 2010-03-05 | 2011-09-09 | The University Of Warwick | Molecular engineering of a floral inducer for crop improvement |
CN103266112A (zh) * | 2013-06-07 | 2013-08-28 | 武汉大学 | 控制水稻开花的OsAGP13基因及其RNA干扰片段的应用 |
CN107973844A (zh) * | 2017-12-22 | 2018-05-01 | 山西省农业科学院小麦研究所 | 小麦抽穗期相关蛋白Ta-Hd4A及其应用 |
CN110072882A (zh) * | 2016-10-19 | 2019-07-30 | 孟山都技术公司 | 用于改变开花和植物株型以提高产量潜力的组合物和方法 |
CN112481276A (zh) * | 2020-12-28 | 2021-03-12 | 山东农业大学 | 玉米基因ZmSCL14在调控植物开花期中的应用 |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2006138005A2 (en) * | 2005-05-10 | 2006-12-28 | Monsanto Technology, Llc | Genes and uses for plant improvement |
CN101353376B (zh) * | 2008-08-22 | 2011-08-31 | 中国科学院遗传与发育生物学研究所 | 一种与水稻抽穗期相关的蛋白及其编码基因与应用 |
CN101704885A (zh) * | 2009-12-14 | 2010-05-12 | 四川农业大学 | 一种控制水稻抽穗期和籽粒大小的蛋白及其编码基因 |
CN102776201B (zh) * | 2011-05-09 | 2014-10-01 | 华中农业大学 | OsELF3基因在控制水稻抽穗期中的应用 |
CN102787122B (zh) * | 2012-06-21 | 2013-06-19 | 南京农业大学 | 一个控制水稻抽穗期基因OsEHD4及其突变体和应用 |
CN107400672B (zh) * | 2017-09-15 | 2020-08-21 | 中国水稻研究所 | OsCOL15基因在调控水稻抽穗期中的应用 |
-
2021
- 2021-03-10 CN CN202110259853.7A patent/CN113072629A/zh active Pending
- 2021-06-17 WO PCT/CN2021/100546 patent/WO2022188290A1/zh active Application Filing
- 2021-06-30 CN CN202110739723.3A patent/CN114276427B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011107808A1 (en) * | 2010-03-05 | 2011-09-09 | The University Of Warwick | Molecular engineering of a floral inducer for crop improvement |
CN103266112A (zh) * | 2013-06-07 | 2013-08-28 | 武汉大学 | 控制水稻开花的OsAGP13基因及其RNA干扰片段的应用 |
CN110072882A (zh) * | 2016-10-19 | 2019-07-30 | 孟山都技术公司 | 用于改变开花和植物株型以提高产量潜力的组合物和方法 |
CN107973844A (zh) * | 2017-12-22 | 2018-05-01 | 山西省农业科学院小麦研究所 | 小麦抽穗期相关蛋白Ta-Hd4A及其应用 |
CN112481276A (zh) * | 2020-12-28 | 2021-03-12 | 山东农业大学 | 玉米基因ZmSCL14在调控植物开花期中的应用 |
Non-Patent Citations (10)
Title |
---|
CAI F., SHAO C., ZHANG Y., BAO Z., LI Z., SHI G., BAO M., ZHANG J.: "Identification and characterisation of a novel FT orthologous gene in London plane with a distinct expression response to environmental stimuli compared to PaFT", PLANT BIOLOGY, vol. 21, no. 6, 1 November 2019 (2019-11-01), US , pages 1039 - 1051, XP055965654, ISSN: 1435-8603, DOI: 10.1111/plb.13019 * |
DATABASE Nucleotide 1 January 2015 (2015-01-01), ANONYMOUS: "Brachypodium distachyon FLOWERING LOCUS T 1 (FTL1) mRNA, complete cds", XP055965647, retrieved from Genkbank Database accession no. KF572023 * |
DATABASE Nucleotide 7 August 2018 (2018-08-07), ANONYMOUS : "PREDICTED: Oryza sativa Japonica Group protein RICE FLOWERING LOCUS T 1-like (LOC4324585), mRNA", XP055965603, retrieved from Genbank Database accession no. XM_015756406 * |
DATABASE Protein 1 January 2015 (2015-01-01), ANONYMOUS: "FLOWERING LOCUS T 1 [Brachypodium distachyon]", XP055965618, retrieved from Genbank Database accession no. AHB63017 * |
DATABASE Protein 7 August 2018 (2018-08-07), ANONYMOUS : "protein RICE FLOWERING LOCUS T 1-like [Oryza sativa Japonica Group]", XP055965720, retrieved from Genbank Database accession no. XP_015624852 * |
IZAWA TAKESHI, OIKAWA TETSUO, SUGIYAMA NOBUKO, TANISAKA TAKATOSHI, YANO MASAHIRO, SHIMAMOTO KO: "Phytochrome mediates the external light signal to repress FT orthologs in photoperiodic flowering of rice", GENES & DEVELOPMENT, vol. 16, no. 15, 1 August 2002 (2002-08-01), US , pages 2006 - 2020, XP002307549, ISSN: 0890-9369, DOI: 10.1101/gad.999202 * |
LIANG WU, DONGFENG LIU, JIAJIE WU, RONGZHI ZHANG, ZHENGRUI QIN, DANMEI LIU, AILI LI, DAOLIN FU, WENXUE ZHAI, LONG MAO: "Regulation of FLOWERING LOCUS T by a MicroRNA in Brachypodium distachyon", THE PLANT CELL, vol. 25, no. 11, 30 November 2013 (2013-11-30), US, pages 4363 - 4377, XP055965595, ISSN: 1040-4651, DOI: 10.1105/tpc.113.118620 * |
OGISO-TANAKA ERI, MATSUBARA KAZUKI, YAMAMOTO SHIN-ICHI, NONOUE YASUNORI, WU JIANZHONG, FUJISAWA HIROKO, ISHIKUBO HARUMI, TANAKA TS: "Natural Variation of the RICE FLOWERING LOCUS T 1 Contributes to Flowering Time Divergence in Rice", PLOS ONE, vol. 8, no. 10, 1 October 2013 (2013-10-01), pages 1 - 22, XP055965661, DOI: 10.1371/journal.pone.0075959 * |
WANG FANMIAO, YANO KENJI, NAGAMATSU SHIRO, INARI‐IKEDA MAYUKO, KOKETSU ERIKO, HIRANO KO, AYA KOICHIRO, MATSUOKA MAKOTO: "Genome‐wide expression quantitative trait locus studies facilitate isolation of causal genes controlling panicle structure", THE PLANT JOURNAL, vol. 103, no. 1, 1 July 2020 (2020-07-01), GB , pages 266 - 278, XP055965651, ISSN: 0960-7412, DOI: 10.1111/tpj.14726 * |
WU CHANGYIN, YOU CHANGJUN, LI CAISHUN, LONG TUAN, CHEN GUOXING, BYRNE MARY E., ZHANG QIFA: "RID1 , encoding a Cys2/His2-type zinc finger transcription factor, acts as a master switch from vegetative to floral development in rice", PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES, vol. 105, no. 35, 2 September 2008 (2008-09-02), pages 12915 - 12920, XP055965667, ISSN: 0027-8424, DOI: 10.1073/pnas.0806019105 * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117535342A (zh) * | 2024-01-09 | 2024-02-09 | 中国农业大学 | 提高苜蓿产量和/或分枝数的方法及其所用蛋白质与相关生物材料 |
CN117535342B (zh) * | 2024-01-09 | 2024-05-07 | 中国农业大学 | 提高苜蓿产量和/或分枝数的方法及其所用蛋白质与相关生物材料 |
Also Published As
Publication number | Publication date |
---|---|
CN114276427A (zh) | 2022-04-05 |
CN113072629A (zh) | 2021-07-06 |
CN114276427B (zh) | 2023-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110563827B (zh) | 与玉米籽粒产量相关的蛋白质及其编码基因 | |
CN113980106B (zh) | 调控植物种子和器官大小的小肽及其编码基因和应用 | |
CN114276428B (zh) | 与水稻氮吸收与转化相关的蛋白质及其编码基因与应用 | |
WO2022188290A1 (zh) | OsFTL1及其编码基因在缩短水稻的抽穗期中的应用 | |
CN114276426B (zh) | 与水稻产量相关的蛋白质与生物材料及二者在提高水稻产量中的应用 | |
CN114277052B (zh) | 用于缩短水稻抽穗期的蛋白质及其编码基因与应用 | |
WO2022188287A1 (zh) | 用于缩短水稻抽穗期的蛋白质及其编码基因与应用 | |
CN111187342B (zh) | ZmG2在提高植物强光胁迫抗性和产量中的应用 | |
CN107739403B (zh) | 一种与植物开花期相关的蛋白及其编码基因与应用 | |
CN114644693B (zh) | ZmWRKY44蛋白及其编码基因与调控植物抗旱的应用 | |
CN114276425B (zh) | OsDREB1C及其编码基因在提高水稻光合效率中的应用 | |
CN111172188B (zh) | ZmGLK1在提高植物强光胁迫抗性和产量中的应用 | |
CN114644695B (zh) | 用于调控玉米抗旱性的蛋白质及其应用 | |
CN114644691B (zh) | Eip1蛋白及其编码基因与抗旱应用 | |
CN114645026B (zh) | 苹果酸脱氢酶mdh及其编码基因与应用 | |
CN112679590B (zh) | 调控植物耐热性的相关蛋白AtMYBS1及其编码基因与应用 | |
CN112979775B (zh) | 抗穗发芽转基因小麦的培育方法及其相关生物材料 | |
CN113773375B (zh) | 大豆核因子蛋白GmNF307在植物耐盐调控中的应用 | |
WO2022188286A1 (zh) | 与水稻产量相关的蛋白质与生物材料及二者在提高水稻产量中的应用 | |
CN117925691A (zh) | At4g37650及其编码基因在培育耐盐作物方面的应用 | |
CN117209575A (zh) | 蛋白质及其编码基因在调控玉米大斑病和小斑病中的应用 | |
CN113773374A (zh) | 转录因子ZmbZIPa6及其编码基因与应用 | |
CN116926079A (zh) | 转录因子wrky7在调控水稻种子大小与产量中的应用 | |
CN114645064A (zh) | 抗旱相关蛋白ZmSHH2c在提高玉米抗旱性中的应用 | |
CN116836249A (zh) | 与小麦产量相关的三个同源基因及相关蛋白质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21929760 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21929760 Country of ref document: EP Kind code of ref document: A1 |