WO2022188226A1 - 有机发光显示面板及显示装置 - Google Patents

有机发光显示面板及显示装置 Download PDF

Info

Publication number
WO2022188226A1
WO2022188226A1 PCT/CN2021/085603 CN2021085603W WO2022188226A1 WO 2022188226 A1 WO2022188226 A1 WO 2022188226A1 CN 2021085603 W CN2021085603 W CN 2021085603W WO 2022188226 A1 WO2022188226 A1 WO 2022188226A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
array substrate
organic
holes
display panel
Prior art date
Application number
PCT/CN2021/085603
Other languages
English (en)
French (fr)
Inventor
姚佳序
汪衎
黄静
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Publication of WO2022188226A1 publication Critical patent/WO2022188226A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/856Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/858Arrangements for extracting light from the devices comprising refractive means, e.g. lenses
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/50OLEDs integrated with light modulating elements, e.g. with electrochromic elements, photochromic elements or liquid crystal elements

Definitions

  • the present application relates to the field of display technology, and in particular, to an organic light-emitting display panel and a display device.
  • organic light-emitting diode Organic Light-Emitting Diode
  • OLED Organic Light-Emitting Diode
  • Polarizer can effectively reduce the reflectivity of the panel under strong light, but it loses nearly 58% of the light output. This greatly increases the lifespan burden of OLEDs; on the other hand, the polarizers are thick and brittle, which is not conducive to the development of dynamic bending products. Therefore, how to improve the light-emitting efficiency of OLED devices is the development direction of low power consumption of OLED products in the future.
  • the embodiments of the present application provide an organic light-emitting display panel and a display device, which can solve the problem of light loss caused by the use of polarizers in the existing organic light-emitting display panel.
  • the laminated structure of the layer and the color filter layer can replace the polarizer, reduce the light loss inside the display panel, improve the luminous transmittance inside the display panel, and also reduce the reflectivity of the display panel.
  • an embodiment of the present application provides an organic light-emitting display panel, which includes:
  • an array substrate comprising a pixel definition layer, the pixel definition layer comprising a plurality of pixel openings
  • a light-emitting device layer comprising a plurality of light-emitting units, each of the light-emitting units being disposed in one of the pixel openings;
  • the black matrix layer is located on the side of the thin film encapsulation layer away from the array substrate, and includes a plurality of first through holes and a light shielding portion surrounding the plurality of first through holes, and the plurality of first through holes
  • the perforations are in one-to-one correspondence with the plurality of pixel openings
  • a first organic film layer at least filled in the first through holes, and a second through hole is formed in each of the first through holes;
  • the refractive index of the organic flat layer is greater than the refractive index of the first organic film layer rate
  • a color filter layer disposed on the organic flat layer, and comprising a plurality of color filter units; the plurality of color filter units correspond to the plurality of first through holes one-to-one;
  • the orthographic projections of each of the pixel openings and the corresponding first through holes on the plane of the array substrate at least partially overlap, and the first through holes and the corresponding color filter units
  • the orthographic projections on the plane of the array substrate at least partially overlap;
  • the cross-section of the second through hole in the direction perpendicular to the array substrate is an inverted trapezoid; in each of the second through holes, the first The acute angle between the interface of the organic film layer and the organic flat layer and the plane parallel to the array substrate is 40 degrees to 70 degrees.
  • the orthographic projections of each pixel opening and its corresponding first through hole and the color filter unit on the plane where the array substrate is located completely overlap.
  • the refractive index of the first organic film layer is 1.2 to 1.5; the refractive index of the organic flat layer is 1.7 to 2.0.
  • the first organic film layer further covers a surface of the light shielding portion on a side away from the array substrate.
  • the thickness of the first organic film layer along a direction perpendicular to the sidewall of the first through hole is 1 to 10 microns;
  • the thickness of the organic flat layer on the side of the light shielding portion away from the array substrate is 5 to 30 microns.
  • the organic light-emitting display panel further includes:
  • the second organic film layer covers the color filter layer, and the refractive index of the second organic film layer is 1.3 to 1.5.
  • the organic light emitting display panel further includes a touch layer, the touch layer is disposed between the thin film encapsulation layer and the black matrix layer, and the touch The layer includes grid-shaped touch electrodes, and the grid openings correspond to the pixel openings one-to-one.
  • the touch electrodes and the orthographic projections of any one of the pixel openings on the plane where the array substrate is located do not overlap.
  • an organic light-emitting display panel including:
  • an array substrate comprising a pixel definition layer, the pixel definition layer comprising a plurality of pixel openings
  • a light-emitting device layer comprising a plurality of light-emitting units, each of the light-emitting units being disposed in one of the pixel openings;
  • the black matrix layer is located on the side of the thin film encapsulation layer away from the array substrate, and includes a plurality of first through holes and a light shielding portion surrounding the plurality of first through holes, and the plurality of first through holes
  • the perforations are in one-to-one correspondence with the plurality of pixel openings
  • a first organic film layer at least filled in the first through holes, and a second through hole is formed in each of the first through holes;
  • the refractive index of the organic flat layer is greater than the refractive index of the first organic film layer rate
  • the color filter layer is arranged on the organic flat layer and includes a plurality of color filter units; the plurality of color filter units correspond to the plurality of first through holes one-to-one.
  • the orthographic projections of each of the pixel openings and the corresponding first through holes on the plane of the array substrate at least partially overlap, and the first through holes are at least partially overlapped.
  • the orthographic projections of the through holes and the corresponding color filter units on the plane of the array substrate at least partially overlap.
  • the orthographic projections of each pixel opening and its corresponding first through hole and the color filter unit on the plane where the array substrate is located completely overlap.
  • the refractive index of the first organic film layer is 1.2 to 1.5; the refractive index of the organic flat layer is 1.7 to 2.0.
  • a cross section of the second through hole in a direction perpendicular to the array substrate is an inverted trapezoid.
  • the interface between the first organic film layer and the organic flat layer forms an acute angle with a plane parallel to the array substrate. 40 degrees to 70 degrees.
  • the first organic film layer further covers a surface of the light shielding portion on a side away from the array substrate.
  • the thickness of the first organic film layer along a direction perpendicular to the sidewall of the first through hole is 1 to 10 microns;
  • the thickness of the organic flat layer on the side of the light shielding portion away from the array substrate is 5 to 30 microns.
  • the organic light-emitting display panel further includes:
  • the second organic film layer covers the color filter layer, and the refractive index of the second organic film layer is 1.3 to 1.5.
  • the organic light emitting display panel further includes a touch layer, the touch layer is disposed between the thin film encapsulation layer and the black matrix layer, and the touch The layer includes grid-shaped touch electrodes, and the grid openings correspond to the pixel openings one-to-one.
  • the touch electrodes and the orthographic projections of any one of the pixel openings on the plane where the array substrate is located do not overlap.
  • an embodiment of the present application further provides a display device including any one of the organic light-emitting display panels described above.
  • the embodiment of the present application adopts a laminated structure including a black matrix layer, a first organic film layer, an organic flat layer and a color filter layer to replace the traditional polarizer, which requires a loss of nearly 58% compared to the traditional polarizer.
  • the laminated structure of the embodiment of the present application can reduce the light loss inside the display panel, improve the luminous transmittance inside the display panel, and the shading part of the black matrix can also absorb the light entering from the outside, thereby reducing the reflectivity of the display panel. .
  • the large-angle light emitted by the light-emitting element can also be totally reflected at the interface between the organic flat layer and the first organic film layer.
  • the divergent light rays are gathered, the loss of light scattering is reduced, and the forward light output of the light-emitting area is improved.
  • FIG. 1 is a schematic diagram of a cross-sectional layer of an organic light-emitting display panel provided by an embodiment of the present application
  • FIG. 2 is a schematic diagram of a cross-sectional layer of an organic light-emitting display panel provided by another embodiment of the present application;
  • FIG. 3 is a schematic diagram of an optical path principle of an organic light-emitting display panel provided by an embodiment of the present application
  • FIG. 4 is a schematic flowchart of a method for fabricating an organic light emitting display panel provided by an embodiment of the present application.
  • Embodiments of the present application provide an organic light-emitting display panel and a display device. Each of them will be described in detail below. It should be noted that the description order of the following embodiments is not intended to limit the preferred order of the embodiments.
  • an embodiment of the present application provides an organic light emitting display panel, including an array substrate 100 , a light emitting device layer, a thin film encapsulation layer 300 and a laminated structure 500 , and the laminated structure 500 includes a black matrix layer 510 , a first organic film layer 520 , an organic flat layer 530 and a color filter layer 540 .
  • the array substrate 100 includes a pixel definition layer 130 , and the pixel definition layer 130 includes a plurality of pixel openings 131 and a non-pixel opening region 132 surrounding the plurality of pixel openings 131 .
  • the plurality of pixel openings 131 are used to define a plurality of light-emitting regions A
  • the non-pixel opening regions 132 are used to define a non-light-emitting region B. It should be noted that, although only the pixel definition layer 130 is described above for the array substrate 100, and some necessary prior art structures are not described in detail, it is understood that the array substrate 100 includes the pixel definition layer in addition to the pixel definition layer.
  • the array substrate 100 further includes a base substrate 110 and a thin film transistor functional layer 120, wherein the thin film transistor functional layer 120 includes a plurality of thin films a transistor for driving the light-emitting device layer to emit light.
  • the plurality of pixel openings 131 are arranged in an array.
  • the cross section of the pixel opening 131 in the direction perpendicular to the array substrate 100 is an inverted trapezoid, that is, the area of the upper opening of the pixel opening 131 (the opening on the side away from the array substrate 100 ) is larger than The area of the lower opening (the opening on the side close to the array substrate 100 ), and the pixel opening 131 shrinks from the direction away from the array substrate 100 to the direction close to the array substrate 100 .
  • the upper opening and the The shape of the lower opening is the same.
  • the cross-sectional shape of the pixel opening 131 in the direction parallel to the plane of the array substrate 100 includes but is not limited to a circle or a polygon, and the polygon includes but is not limited to a rhombus, a rectangle (including a square), an octagon, etc. .
  • the light-emitting device layer includes a plurality of light-emitting units 200 , and each of the light-emitting units 200 is disposed in one of the pixel openings 131 .
  • the plurality of light-emitting units 200 are used to form sub-pixels, such as red sub-pixels, green sub-pixels, and blue sub-pixels, so that the organic light-emitting display panel can realize a display function.
  • the light-emitting unit 200 includes an anode layer 210, an OLED light-emitting layer 220 and a cathode layer 230, wherein the anode layer 210 covers the bottom of each of the pixel openings 131, and the OLED light-emitting layer 220 covers the bottom of each pixel opening 131 respectively.
  • the cathode layer 230 covers the OLED light-emitting layer 220 .
  • the thin film encapsulation layer 300 covers the light emitting device layer.
  • the thin film encapsulation layer 300 is used to encapsulate the light emitting device layer to block water vapor and oxygen.
  • the black matrix layer 510 is disposed on the side of the thin film encapsulation layer 300 away from the array substrate 100 , and includes a plurality of first through holes 511 and surrounds the plurality of first through holes 511 .
  • the light shielding portion 512 of the through hole 511 corresponds to the plurality of first through holes 511 and the plurality of pixel openings 131 one-to-one.
  • the first through hole 511 penetrates the black matrix layer 510 along the thickness direction of the black matrix layer 510 (ie, the direction perpendicular to the array substrate 100 ), so that the light emitted by the light emitting unit 200 can pass through the black matrix layer 510 .
  • the black matrix layer 510 and the light shielding portion 512 surrounding the plurality of first through holes 511 play the role of shielding and absorbing light, which can prevent the light mixing phenomenon between the two adjacent light emitting units 200 , and can also absorb the light incident from the outside of the display panel, thereby reducing the reflectivity of the display panel.
  • the thickness of the black matrix layer 510 ie, the thickness along the direction perpendicular to the plane of the array substrate 100 ) may be, for example, 1 to 10 ⁇ m.
  • the cross section of the first through hole 511 in the direction perpendicular to the array substrate 100 is an inverted trapezoid, that is, the upper opening of the first through hole 511 ( The area of the opening on the side away from the array substrate 100 ) is larger than the area of the lower opening (the opening on the side close to the array substrate 100 ), and the first through hole 511 moves from the side away from the array substrate 100 to the area closer to the array.
  • the substrate 100 is shrunk in the direction, and generally the upper opening and the lower opening have the same shape.
  • the cross-sectional shape of the first through hole 511 in a direction parallel to the array substrate 100 includes, but is not limited to, a circle or a polygon, and the polygon includes but is not limited to a rhombus, a rectangle (including a square), an octagon, and the like.
  • the first organic film layer 520 is filled at least in the first through holes 511 , and a second through hole is formed in each of the first through holes 511 521.
  • the material of the first organic film layer 520 may be, for example, transparent optical glue.
  • the material of the first organic film layer 520 includes, but is not limited to, organic materials containing acrylic resin, epoxy resin, polyimide, polyethylene and/or siloxane. In one embodiment, please refer to FIG.
  • the first organic film layer 520 is only filled in the first through holes 511 , and a second through hole 521 is formed in each of the first through holes 511 , so that the first organic film layer 520 only covers the sidewall of each of the first through holes 511 and surrounds the second through holes 521 .
  • the first organic film layer 520 in the first through hole 511 , the first organic film layer 520 (that is, the first organic film covering the sidewall of the first through hole 511 )
  • the thickness h1 of the layer 520 ) along the direction perpendicular to the sidewall of the first through hole 511 is 1 to 10 ⁇ m. It should be noted that the thickness h1 may be equal or unequal.
  • the first organic film layer 520 is filled in the first through holes 511 and a second through hole 521 is formed in each of the first through holes 511 , At the same time, the first organic film layer 520 also covers the surface of the light shielding portion 512 on the side away from the array substrate 100 , so that the first organic film layer 520 also covers the side of each of the first through holes 511 .
  • a second through hole 521 is formed on the wall and on the surface of the light shielding portion 512 on the side away from the light emitting device layer, and the first organic film layer 520 surrounds each of the first through holes 511 to form a second through hole 521 .
  • the second through hole 521 penetrates the first organic film layer 520 along a direction perpendicular to the array substrate 100 , so that the light emitted by the light emitting unit 200 can enter the second through hole 520 .
  • the through hole 521 can be ejected from the second through hole 521 .
  • the side wall of the first through hole 511 is the part of the light shielding portion 512 located in the first through hole 511 .
  • the light shielding portion 512 in the first through hole 511 can not only reduce the light entering the first through hole 511 from being absorbed by the light shielding portion 512 , but also prevent the light entering the first through hole 511 from being absorbed by the light shielding portion 512 .
  • the first organic film layer 520 (ie, the first organic film layer 520 covering the sidewall of the first through hole 511 ) is along the The thickness h1 perpendicular to the sidewall direction of the first through hole 511 is 1 to 10 ⁇ m; the thickness h2 of the first organic film layer 520 on the side of the light shielding portion 512 away from the array substrate 100 (that is, along the The thickness in the direction perpendicular to the plane of the array substrate 100) may be, for example, 1 to 10 microns. It should be noted that the thickness h1 may be equal or unequal.
  • the organic flat layer 530 covers the black matrix layer 510 and the first organic film layer 520 and fills each of the second through holes 521 .
  • the material of the organic flat layer 530 includes, but is not limited to, organic materials of acrylic resin, epoxy resin, polyimide, polyethylene and/or siloxane, or any of the aforementioned organic materials and zirconia, titanium oxide. and/or a mixture of alumina particles. It should be noted that the material of the organic flat layer 530 is different from the material of the first organic film layer 520 . Referring to FIG.
  • a light reflection interface can be provided (ie, the organic planarization layer 530 and the the interface of the first organic film layer 520), when light is incident on the interface between the organic flat layer 530 and the first organic film layer 520 in each of the second through holes 521, reflection will occur, which not only can
  • the light-absorbing portion 512 can reduce the absorption of light, and the divergent light emitted by the light-emitting unit 200 can be gathered through reflection, thereby reducing light scattering loss and improving the forward light output of the light-emitting area of the display panel.
  • the thickness h3 of the organic flat layer 530 on the side of the light shielding portion 512 away from the array substrate 100 may be, for example, 5 to 30 ⁇ m. It can be understood that the thickness h3 does not include the part located in the second through hole 521 .
  • the refractive index of the organic flat layer 530 is greater than the refractive index of the first organic film layer 520 .
  • the refractive index of the organic flat layer 530 is greater than the refractive index of the first organic film layer 520 .
  • the first organic film layer 520 can reduce the loss of light and improve the light extraction rate. It can be understood that the refractive index of the organic flat layer 530 , the refractive index of the first organic film layer 520 , and the refractive index difference between the organic flat layer 530 and the first organic film layer 520 can be adjusted by adjusting And/or the angle of inclination of the sidewall of the second through hole 521 ( ⁇ as shown in FIG. 1 and FIG. 2 ) changes the critical angle of total reflection.
  • the organic flat layer 530 can be made of a material with a high refractive index, and the first organic film layer 520 can be made of a material with a high refractive index. Use materials with low refractive index.
  • the refractive index of the first organic film layer 520 is 1.2 to 1.5; the refractive index of the organic flat layer 530 is 1.7 to 2.0.
  • the color filter layer 540 is disposed on the organic flat layer 530 and includes a plurality of color filter units 541 ; the plurality of color filter units 541 and the plurality of first The through holes 511 are in one-to-one correspondence.
  • the color filter layer 540 further includes a plurality of third through holes 542, and the third through holes 542 are arranged between adjacent color filter units 541 to separate the color filter layer 540 into a plurality of color filter units.
  • the colored green light unit includes a red light filter unit, a green light filter unit and a blue light filter unit, which are used for filtering red light, green light and blue light respectively.
  • the cross-sectional shape of the color filter unit 541 in the direction parallel to the array substrate 100 includes, but is not limited to, a circle or a polygon, and the polygon includes but is not limited to a rhombus, a rectangle (including a square), a edge, etc.
  • the thickness of the color filter layer 540 (the thickness along the direction perpendicular to the plane of the array substrate 100 ) may be, for example, 1 to 10 ⁇ m.
  • the orthographic projections of each of the pixel openings 131 and the corresponding first through holes 511 on the plane of the array substrate 100 at least partially overlap, and the first through holes 511 and the orthographic projections of the corresponding color filter units 541 on the plane of the array substrate 100 at least partially overlap.
  • the at least partial overlap of the orthographic projections of each of the pixel openings 131 and the corresponding first through holes 511 on the plane of the array substrate 100 includes at least the following situations: (1) Each of the The orthographic projections of the pixel openings 131 and the corresponding first through holes 511 on the plane of the array substrate 100 are partially overlapped, and at least include: (a) each of the pixel openings 131 and the corresponding first through holes 511 .
  • the orthographic projections of the through holes 511 on the plane of the array substrate 100 are overlapped, but any one of the orthographic projections does not completely fall into the orthographic projection of the other, for example: each of the pixel openings 131
  • the central axis (the direction perpendicular to the plane of the array substrate 100 ) and the corresponding central axis of the first through hole 511 (the direction perpendicular to the plane of the array substrate 100 ) are staggered, and the two The orthographic projections do not completely fall into the other; (b) any one of the orthographic projections of each of the pixel openings 131 and the corresponding first through holes 511 on the plane of the array substrate 100 Completely fall into the other one, for example: the central axis of each pixel opening 131 (perpendicular to the direction of the plane of the array substrate 100 ) and the corresponding central axis of the first through hole 511 (perpendicular to the direction of the plane of the array substrate 100 )
  • the orthographic projections of the first through holes 511 and the corresponding color filter units 541 on the plane of the array substrate 100 in the embodiments of the present application at least partially overlap at least include the following situations: ( 1) The orthographic projections of the first through hole 511 and its corresponding color filter unit 541 on the plane of the array substrate 100 at least partially overlap, including at least: (a) the first through hole 511 and the orthographic projections of the corresponding color filter units 541 on the plane of the array substrate 100 overlap, but any one of them does not completely fall into the other, for example: the first through hole 511
  • the central axis of (perpendicular to the plane of the array substrate 100) and the corresponding central axis of the color filter unit 541 (perpendicular to the plane of the array substrate 100) are staggered, and the two (b) any one of the orthographic projections of the first through hole 511 and the corresponding color filter unit 541 on the plane where the array substrate 100 is located completely falls In the other, for example: the central
  • the orthographic projection in the embodiment of the present application refers to the projection perpendicular to the plane of the array substrate 100 ;
  • the orthographic projection of the pixel opening 131 in the embodiment of the present application refers to the outermost periphery of the pixel opening 131 .
  • the closed figure formed by the orthographic projection of the color filter unit 541 refers to the closed figure formed by the orthographic projection of the outermost edge of the color filter unit 541 on the array substrate 100 .
  • the shapes of any two of the pixel opening 131 , the first through hole 511 and the second through hole 521 may be the same or different, and the color filter unit
  • the cross-sectional shape of the first through hole 541 and the first through hole 511 in a direction parallel to the plane of the array substrate 100 may be the same or different.
  • each of the pixel openings 131 , the corresponding first through holes 511 and the color filter units 541 are on the plane of the array substrate 100 .
  • the orthographic projections are completely overlapped, so that more light emitted by the light emitting unit 200 can enter the second through holes 521, and more large-angle light rays can pass between the first organic film layer 520 and the first organic film layer 520.
  • the interface of the organic flat layer 530 is reflected, filtered by the color filter unit 541 and then emitted, so that the display panel has a higher light extraction rate.
  • the polarizer can be replaced by the stacked structure 500 including the black matrix layer 510, the first organic film layer 520, the organic flat layer 530 and the color filter layer 540, which requires a loss of approximately 58% of the light output compared to the polarizer.
  • the embodiment of the present application can significantly reduce the light loss inside the display panel, improve the luminous transmittance inside the display panel, and the shading portion 512 of the black matrix can also absorb the light entering from the outside, thereby reducing the reflectivity of the display panel;
  • the first organic film layer 520 covers the light shielding portion 512 located in the second through hole 521, which can reduce or prevent the light entering the first through hole 511 from being absorbed by the light shielding portion 512;
  • An organic film layer 520 and the organic flat layer 530 form a structure similar to a microlens array in the plurality of first through holes 511 , and the interface between the first organic film layer 520 and the organic flat layer 530 can be Provide a reflection interface for the large-angle light entering the first through hole 511, so that the light is reflected at the interface, especially the total reflection, and the divergent light emitted by the light-emitting unit 200 is gathered after reflection, improving the performance.
  • the light emitting area of the display panel is forward light, and the light scattering loss is reduced; the light shielding portion 512 of the black matrix layer 510 can also absorb the light incident from the outside, thereby reducing the reflectivity of the display panel.
  • the first organic film layer 520 only covers the sidewall of the first through hole 511 and does not cover the surface of the light shielding portion 512 away from the light emitting device layer, it can not only improve the The light-shielding portion 512 of the black matrix layer 510 absorbs external incident light, and the laminated structure 500 also has a thinner thickness.
  • the laminated structure 500 further includes a second organic film layer 550 , and the second organic film layer 550 covers the color filter layer 540 , and fill the third through hole 542 .
  • the second organic film layer 550 can play a planarization role.
  • the material of the second organic film layer 550 can be, for example, transparent optical adhesive, and the material of the second organic film layer 550 includes, but is not limited to, acrylic resin, epoxy resin, polyimide, polyethylene and/or Siloxane organic material.
  • the refractive index of the second organic film layer 550 is, for example, 1.3 to 1.5.
  • the thickness h4 of the second organic film layer 550 on the side of the color filter layer 540 away from the array substrate 100 is, for example, 5 to 30 microns. It can be understood that the thickness h4 does not include the portion filled in the third through hole 542 .
  • the cross section of the second through hole 521 in the direction perpendicular to the array substrate 100 is an inverted trapezoid.
  • the area of the upper opening (the opening on the side away from the array substrate 100 ) of the second through hole 521 is larger than the area of the lower opening (the opening on the side close to the array substrate 100 ), that is, the first opening.
  • the two through holes 521 are constricted from the direction away from the array substrate 100 to the direction close to the array substrate 100 .
  • the upper opening and the lower opening have the same shape.
  • the cross-sectional shape of the second through hole 521 in the direction parallel to the array substrate 100 includes but is not limited to a circle or a polygon, and the polygon includes but is not limited to a rhombus, a rectangle (including a square), an octagon, and the like.
  • the interface between the first organic film layer 520 and the organic planarization layer 530 in each of the second through holes 521 is parallel to the array substrate 100
  • the acute angle ⁇ contained by the plane is 40 degrees to 70 degrees. It can be understood that the interface between the organic flat layer 530 and the first organic film layer 520 is the sidewall of the second through hole 521 , and the organic flat layer 530 and the first organic film layer 520
  • the acute angle ⁇ between the interface of ⁇ and the plane parallel to the array substrate 100 can reflect the inclination of the sidewall of the second through hole 521 .
  • the acute angle ⁇ between the interface of the first organic film layer 520 and the organic flat layer 530 in each of the second through holes 521 and the plane parallel to the array substrate 100 is 40 degrees to 70 degrees.
  • the large-angle light emitted by the light-emitting unit 200 is more fully reflected at the interface between the first organic film layer 520 and the organic flat layer 530, so that the organic light-emitting display panel has a higher light output Rate.
  • the shape of the lower opening of the pixel opening 131 (the opening on the side close to the array substrate 100 ), the lower opening of the first through hole 511 (the opening on the side close to the array substrate 100 ) ) and the cross-sectional shape of the color filter unit 541 in the direction parallel to the plane of the array substrate 100 are the same, for example, including but not limited to a circle or a polygon, the polygon includes but not limited to a rhombus, a rectangle (including squares), octagons, etc. It should be noted that the dimensions between any two of the foregoing three may be the same or different, and the shapes and dimensions of the three may be completely the same.
  • the cross-sectional shapes of the pixel lower opening, the lower opening of the first through hole 511 and the color filter unit 541 in a direction parallel to the plane of the array substrate 100 may also be different from each other.
  • the cross-sectional shapes of the pixel opening 131 , the first through hole 511 and the color filter unit 541 in a direction parallel to the plane of the array substrate 100 are the same.
  • the shape of any cross section of the pixel opening 131 in a direction parallel to the plane of the array substrate 100 is the same (that is, the upper opening and the lower opening have the same shape).
  • the shape of any cross section of the first through hole 511 in a direction parallel to the plane of the array substrate 100 is the same (ie, the upper opening and the lower opening have the same shape).
  • the shape of any cross section of the color filter unit 541 in a direction parallel to the plane of the array substrate 100 is the same (that is, the upper opening and the lower opening have the same shape).
  • the dimensions of the pixel openings 131 , the first through holes 511 and the color filter units 541 in a direction parallel to the plane of the array substrate 100 may be the same or different.
  • the laminated structure 500 is disposed on the side of the thin film encapsulation layer 300 away from the array substrate 100 , and the thin film encapsulation layer 300 and the laminated structure 500 may also be located between the thin film encapsulation layer 300 and the laminated structure 500 Including other film layers, such as the film layer that realizes the touch function.
  • the organic light emitting display panel further includes a touch layer 400 , and the touch layer 400 is disposed between the thin film encapsulation layer 300 and the laminated structure 500 .
  • the touch layer 400 is disposed between the thin film encapsulation layer 300 and the black matrix layer 510 .
  • the touch control layer 400 is used to realize the touch control function, and the structure of the touch control layer 400 may adopt a known structure in the prior art in the art.
  • the touch layer 400 includes touch electrodes 410, the touch electrodes 410 are grid-shaped, the touch electrodes 410 include a plurality of grid openings 411, and the grid openings 411 are connected to the The pixel openings 131 are in one-to-one correspondence.
  • the orthographic projections of the touch electrodes 410 and any one of the pixel openings 131 on the plane of the array substrate 100 do not overlap, so that the touch electrodes 410 avoid the position of the pixel openings 131 and do not overlap.
  • the light affecting the light emitting unit 200 exits the touch layer 400 .
  • the area of the grid opening 411 is greater than or equal to the area of the upper opening of the pixel opening 131 (the opening on the side away from the array substrate 100 ), so that the light emitted by the light emitting unit 200 can pass through.
  • the mesh opening 411 emits the touch layer 400 .
  • an embodiment of the present application also provides the above-mentioned method for preparing an organic light-emitting display panel, including:
  • the array substrate 100 includes a pixel definition layer 130 , and the pixel definition layer 130 includes a plurality of pixel openings 131 .
  • the pixel opening 131 is used to define the light-emitting area A
  • the non-pixel opening area 132 is used to define the non-light-emitting area B.
  • the array substrate 100 includes a base substrate 110, a thin film transistor functional layer 120 and a pixel definition layer 130; the thin film transistor functional layer 120 is formed on the base substrate 110, and the thin film transistor functional layer 120 is formed on the base substrate 110.
  • 120 includes a plurality of thin film transistors for driving the light-emitting device layer to emit light;
  • the pixel definition layer 130 is formed on the thin film transistor functional layer 120, and the pixel definition layer 130 includes a plurality of pixel openings 131 and a surrounding area.
  • the non-pixel opening regions 132 of the plurality of pixel openings 131 are described.
  • the plurality of pixel openings 131 may be arranged in an array. It should be noted that, the preparation method of the array substrate 100 may adopt a known method in the prior art in the art, which is not particularly limited in the embodiment of the present application.
  • a light-emitting device layer is prepared on the array substrate 100 , the light-emitting device layer includes a plurality of light-emitting units 200 , and one light-emitting unit 200 is arranged in each of the pixel openings 131 .
  • step S2 includes: preparing an anode layer 210 in each of the pixel openings 131 , and making the anode layer 210 cover the bottom of the pixel opening 131 ; preparing an OLED light-emitting layer 220 on the anode layer 210 , and make the OLED light-emitting layer 220 cover the anode layer 210 ; and prepare the cathode layer 230 , and make the cathode layer 230 cover the OLED light-emitting layer 220 and the pixel definition layer 130 .
  • the preparation method of the thin film encapsulation layer 300 may adopt a known method in the prior art in the art, which is not particularly limited in the embodiments of the present application.
  • the touch layer 400 may be prepared on the thin film encapsulation layer 300 .
  • the preparation method of this embodiment does not include this step, and the preparation method of the touch layer 400 can be made by adopting existing methods in the art.
  • the touch layer 400 includes touch electrodes 410, the touch electrodes 410 are grid-shaped, the touch electrodes 410 include a plurality of grid openings 411, and the grid openings 411 are connected to the The pixel openings 131 are in one-to-one correspondence.
  • the orthographic projections of the touch electrodes 410 and any one of the pixel openings 131 on the plane of the array substrate 100 do not overlap, so that the touch electrodes 410 avoid the position of the pixel openings 131 and do not overlap.
  • the light affecting the light emitting unit 200 exits the touch layer 400 .
  • the area of the grid opening 411 is greater than or equal to the area of the upper opening of the pixel opening 131 (the opening on the side away from the array substrate 100 ), so that the light emitted by the light emitting unit 200 can pass through the grid
  • the opening 411 emits the touch layer 400 .
  • the black matrix layer 510 includes a plurality of first through holes 511 and a package Around the light shielding portion 512 of the plurality of first through holes 511 , the plurality of first through holes 511 are in one-to-one correspondence with the plurality of pixel openings 131 .
  • the material of the black matrix layer 510 is coated on the entire surface by means of spin coating, inkjet printing or slit coating, and the thickness of the black matrix layer 510 (that is, the thickness of the black matrix layer 510 along the vertical
  • the thickness in the direction of the plane of the array substrate 100) can be adjusted according to actual requirements, for example, 1 to 10 microns, and the light absorption characteristics of the black matrix layer 510 can be changed by adjusting the transmittance and refractive index of the material ;
  • the plurality of first through holes 511 are produced through the exposure and development process, and the opening shape, size and sidewall inclination angle of the first through holes 511 can be adjusted according to actual needs; for example, the plurality of first through holes 511
  • the positions of the through holes 511 are consistent with the plurality of pixel openings 131 , that is, the position of each of the first through holes 511 is located directly above one of the pixel openings 131 (the direction away from the array substrate 100 is the upper direction).
  • step S6 includes: preparing the first organic film layer 520 and filling the first organic film layer 520 only in the first through holes 511 , and filling the first organic film layer 520 in each of the first through holes 511 .
  • Second through holes 521 are formed in the through holes 511 , that is, the first organic film layer 520 only covers the sidewall of each of the first through holes 511 and surrounds the second through holes 521 .
  • step S5 includes: preparing the first organic film layer 520 , filling the first organic film layer 520 in the first through hole 511 , and filling the first organic film layer 520 in each of the first through holes 511 .
  • Second through holes 521 are formed in the through holes 511 , and the first organic film layer 520 also covers the surface of the light shielding portion 512 on the side away from the array substrate 100 , that is, the first organic film layer 520 also covers the surface of the light shielding portion 512 .
  • the first organic film layer 520 is on each of the first through holes 511 A second through hole 521 is formed in the inner circumference.
  • the material of the first organic film layer 520 is coated on the entire surface by means of spin coating, inkjet printing or slit coating, and the film thickness of the first organic film layer 520 can be adjusted according to actual requirements.
  • the thickness h1 of the first organic film layer 520 covering the sidewall of the first through hole 511 (that is, the thickness along the direction perpendicular to the sidewall of the first through hole 511 ) is, for example, 1 to 10 ⁇ m
  • the thickness h2 of the first organic film layer 520 on the side of the light shielding portion 512 away from the array substrate 100 is, for example is 1 to 10 microns
  • the thickness h2 can be of equal thickness or unequal thickness
  • the material of the first organic film layer 520 is, for example, transparent optical glue
  • the material of the first organic film layer 520 Including, but not limited to, organic materials containing acrylic resin, epoxy resin, polyimide, polyethylene and
  • the sidewall and the light shielding portion 512 are far away from the first organic film layer 520 on the surface of the light emitting device layer.
  • the positions of the plurality of second through holes 521 are, for example, consistent with the positions of the plurality of pixel openings 131 , that is, each of the second through holes 521 is located directly above one of the pixel openings 131 (so as to be away from the pixel openings 131 ).
  • the direction of the array substrate 100 is upward). It can be understood that the opening shape and size of the second through hole 521 and the inclination angle of the side wall can be adjusted according to the actual situation.
  • the material of the organic flat layer 530 is coated on the entire surface by spin coating, inkjet printing or slit coating, and the film thickness of the organic flat layer 530 can be adjusted according to actual requirements, wherein the The thickness h3 of the organic flat layer 530 on the side of the light shielding portion 512 away from the array substrate 100 (the thickness along the direction perpendicular to the plane of the array substrate 100 ) is, for example, 5 to 30 ⁇ m, and the thickness h3 Does not include the part located in the second through hole 521; the material of the organic flat layer 530 includes but is not limited to organic materials of acrylic resin, epoxy resin, polyimide, polyethylene and/or siloxane , or a mixed material of any of the aforementioned organic materials and zirconia, titania and/or alumina particles.
  • the material of the organic flat layer 530 is different from the material of the first organic film layer 520 , and the light emitted by the light emitting unit 200 is incident on the interface between the organic flat layer 530 and the first organic film layer 520 . The light is reflected, and the scattered light is gathered, which reduces the light scattering loss and improves the forward light output of the light-emitting area of the display panel.
  • the refractive index of the organic flat layer 530 is greater than the refractive index of the first organic film layer 520, which can provide conditions for total reflection of light, so that the light-emitting unit 200 emits light.
  • the outgoing large-angle light can be totally reflected at the interface between the first organic film layer 520 and the organic flat layer 530 , thereby further reducing light loss and improving light extraction rate.
  • the refractive index of the first organic film layer 520 is 1.2 to 1.5; the refractive index of the organic flat layer 530 is 1.7 to 2.0.
  • the color filter layer 540 is prepared on the organic flat layer 530.
  • the color filter layer 540 includes a plurality of color filter units 541, and the plurality of color filter units 541 are connected with the plurality of first pass throughs.
  • the perforations 511 are in one-to-one correspondence.
  • the color resist material is coated on the entire surface by spin coating, inkjet printing or slit coating, and the film thickness of the color filter layer 540 can be adjusted according to actual requirements.
  • the thickness is, for example, 1 to 10 microns; the plurality of color filter units 541 are fabricated through an exposure and development process; the plurality of color filter units 541 Including a red filter unit, a green filter unit and a blue filter unit for filtering red light, green light and blue light respectively; for example, the plurality of color filter units 541 and the plurality of first through holes 511
  • the positions of each of the color filter units 541 are consistent with each other, that is, each of the color filter units 541 is disposed directly above one of the first through holes 511 (the direction away from the array substrate 100 is above).
  • the method for fabricating the organic light-emitting display panel described in the embodiment of the present application further includes:
  • the second organic film layer 550 may play a role of planarization.
  • the material of the second organic film layer 550 is coated on the entire surface by means of spin coating, inkjet printing or slit coating, and the thickness of the second organic film layer 550 can be adjusted according to actual requirements, wherein
  • the thickness h4 of the second organic film layer 550 on the side of the color filter layer 540 away from the array substrate 100 (that is, the thickness along the direction perpendicular to the plane of the array substrate 100 ) is, for example, 5 to 30
  • the thickness h4 does not include the part filled in the third through hole 542;
  • the material of the second organic film layer 550 is, for example, optical glue, and the material of the second organic film layer 550 includes but is not limited to It is an organic material containing acrylic resin, epoxy resin, polyimide, polyethylene and/or siloxane.
  • the refractive index of the second organic film layer 550 is, for example, 1.3 to 1.5. It should be noted that the material of the second organic film layer 550 and the material of the first organic film layer 520 may be the
  • an embodiment of the present application further provides a display device, which includes the organic light-emitting display panel described in any one of the above-mentioned embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种有机发光显示面板,包括:像素定义层(100),包括多个像素开口(131);黑矩阵层(510),包括多个第一贯穿孔(511)和包绕多个第一贯穿孔(511)的遮光部(512);第一有机膜层(520),至少填充在第一贯穿孔(511)内,并在每个第一贯穿孔(511)内均形成第二贯穿孔(521);有机平坦层(530),覆盖在黑矩阵层(510)和第一有机膜层(520)上,并填充每个第二贯穿孔(521);及彩膜层(540),设在有机平坦层(530)上。显示面板的层叠结构降低显示面板内部光线损失,提高透过率。

Description

有机发光显示面板及显示装置 技术领域
本申请涉及显示技术领域,具体涉及一种有机发光显示面板及显示装置。
背景技术
目前有机发光二极管(Organic Light-Emitting Diode,OLED)手机产品朝着大尺寸,高刷新率,高亮度的方式发展,但在电池技术没有跨越式突破的情况下,市场对OLED产品的功耗提出了更高的要求。
偏光片(POL)能够有效地降低强光下面板的反射率,却损失了接近58%的出光。这对于OLED来说,极大地增加了其寿命负担;另一方面,偏光片厚度较大、材质脆,不利于动态弯折产品的开发。因此,如何提高OLED器件出光效率是未来OLED产品低功耗的发展方向。
技术问题
本申请实施例提供一种有机发光显示面板及显示装置,可以解决现有有机发光显示面板中由于使用偏光片而导致光损失的问题,通过采用包括黑矩阵层、第一有机膜层、有机平坦层和彩膜层的叠层结构能够取代偏光片,降低显示面板内部光线损失,提升显示面板内部发光透过率,还能降低显示面板的反射率。
技术解决方案
第一方面,本申请实施例提供了一种有机发光显示面板,其包括:
阵列基板,包括像素定义层,所述像素定义层包括多个像素开口;
发光器件层,包括多个发光单元,每个所述发光单元设在一个所述像素开口中;
薄膜封装层,覆盖在所述发光器件层上;
黑矩阵层,位于所述薄膜封装层的远离所述阵列基板的一侧,并包括多个第一贯穿孔和包绕所述多个第一贯穿孔的遮光部,所述多个第一贯穿孔与所述多个像素开口一一对应;
第一有机膜层,至少填充在所述第一贯穿孔内,并在每个所述第一贯穿孔内均形成第二贯穿孔;
有机平坦层,覆盖在所述黑矩阵层和所述第一有机膜层上,并填充每个所述第二贯穿孔,所述有机平坦层的折射率大于所述第一有机膜层的折射率;及
彩膜层,设在所述有机平坦层上,并包括多个彩色滤光单元;所述多个彩色滤光单元与所述多个第一贯穿孔一一对应;
其中,每个所述像素开口及与其对应的所述第一贯穿孔在所述阵列基板所在平面上的正投影至少部分重叠,且所述第一贯穿孔及与其对应的所述彩色滤光单元在所述阵列基板所在平面上的正投影至少部分重叠;所述第二贯穿孔在垂直于所述阵列基板方向上的截面呈倒梯形;在每个所述第二贯穿孔中所述第一有机膜层与所述有机平坦层的界面与平行于所述阵列基板的平面所夹锐角为40度至70度。
可选的,在本申请的一些实施例中,每个所述像素开口及与其对应的所述第一贯穿孔和所述彩色滤光单元在所述阵列基板所在平面上的正投影完全重叠。
可选的,在本申请的一些实施例中,所述第一有机膜层的折射率为1.2至1.5;所述有机平坦层的折射率为1.7至2.0。
可选的,在本申请的一些实施例中,所述第一有机膜层还覆盖所述遮光部远离所述阵列基板一侧的表面。
可选的,在本申请的一些实施例中,在所述第一贯穿孔中,所述第一有机膜层沿着垂直于所述第一贯穿孔侧壁方向的厚度为1至10微米;所述有机平坦层位于所述遮光部远离所述阵列基板一侧的厚度为5至30微米。
可选的,在本申请的一些实施例中,所述有机发光显示面板还包括:
第二有机膜层,覆盖在所述彩膜层上,且所述第二有机膜层的折射率为1.3至1.5。
可选的,在本申请的一些实施例中,所述有机发光显示面板还包括触控层,所述触控层设在所述薄膜封装层和所述黑矩阵层之间,所述触控层包括呈网格状的触控电极,所述网格开口与所述像素开口一一对应。
可选的,在本申请的一些实施例中,所述触控电极与所述任意一个所述像素开口在所述阵列基板所在平面上的正投影均无交叠。
第二方面,本申请实施例提供一种有机发光显示面板,包括:
阵列基板,包括像素定义层,所述像素定义层包括多个像素开口;
发光器件层,包括多个发光单元,每个所述发光单元设在一个所述像素开口中;
薄膜封装层,覆盖在所述发光器件层上;
黑矩阵层,位于所述薄膜封装层的远离所述阵列基板的一侧,并包括多个第一贯穿孔和包绕所述多个第一贯穿孔的遮光部,所述多个第一贯穿孔与所述多个像素开口一一对应;
第一有机膜层,至少填充在所述第一贯穿孔内,并在每个所述第一贯穿孔内均形成第二贯穿孔;
有机平坦层,覆盖在所述黑矩阵层和所述第一有机膜层上,并填充每个所述第二贯穿孔,所述有机平坦层的折射率大于所述第一有机膜层的折射率;及
彩膜层,设在所述有机平坦层上,并包括多个彩色滤光单元;所述多个彩色滤光单元与所述多个第一贯穿孔一一对应。
可选的,在本申请的一些实施例中,每个所述像素开口及与其对应的所述第一贯穿孔在所述阵列基板所在平面上的正投影至少部分重叠,且所述第一贯穿孔及与其对应的所述彩色滤光单元在所述阵列基板所在平面上的正投影至少部分重叠。
可选的,在本申请的一些实施例中,每个所述像素开口及与其对应的所述第一贯穿孔和所述彩色滤光单元在所述阵列基板所在平面上的正投影完全重叠。
可选的,在本申请的一些实施例中,所述第一有机膜层的折射率为1.2至1.5;所述有机平坦层的折射率为1.7至2.0。
可选的,在本申请的一些实施例中,所述第二贯穿孔在垂直于所述阵列基板方向上的截面呈倒梯形。
可选的,在本申请的一些实施例中,在每个所述第二贯穿孔中所述第一有机膜层与所述有机平坦层的界面与平行于所述阵列基板的平面所夹锐角为40度至70度。
可选的,在本申请的一些实施例中,所述第一有机膜层还覆盖所述遮光部远离所述阵列基板一侧的表面。
可选的,在本申请的一些实施例中,在所述第一贯穿孔中,所述第一有机膜层沿着垂直于所述第一贯穿孔侧壁方向的厚度为1至10微米;所述有机平坦层位于所述遮光部远离所述阵列基板一侧的厚度为5至30微米。
可选的,在本申请的一些实施例中,所述有机发光显示面板还包括:
第二有机膜层,覆盖在所述彩膜层上,且所述第二有机膜层的折射率为1.3至1.5。
可选的,在本申请的一些实施例中,所述有机发光显示面板还包括触控层,所述触控层设在所述薄膜封装层和所述黑矩阵层之间,所述触控层包括呈网格状的触控电极,所述网格开口与所述像素开口一一对应。
可选的,在本申请的一些实施例中,所述触控电极与所述任意一个所述像素开口在所述阵列基板所在平面上的正投影均无交叠。
第三方面,本申请实施例还提供一种显示装置,其包含上述任意一种所述有机发光显示面板。
有益效果
相较于现有技术,本申请实施例采用包括黑矩阵层、第一有机膜层、有机平坦层和彩膜层的叠层结构取代传统偏光片,相比于传统偏光片需要损失近58%的出光,本申请实施例的叠层结构能够降低显示面板内部光线损失,提升显示面板内部发光透过率,并且黑矩阵的遮光部还可以吸外部射入的光线,进而降低显示面板的反射率。此外,通过使有机平坦层采用高折射率材料且第一有机膜层采用低折射率材料,还可以使发光元件发出的大角度光线在有机平坦层与第一有机膜层的界面发生全反射,使得发散光线被聚拢,减少光散射损失,提高发光区域正向出光。
附图说明
图1是本申请一实施例提供的有机发光显示面板的截面图层示意图;
图2是本申请另一实施例提供的有机发光显示面板的截面图层示意图;
图3是本申请实施例提供的有机发光显示面板光路原理示意图;
图4是本申请实施例提供的有机发光显示面板的制备方法的流程示意图。
本发明的实施方式
本申请实施例提供一种有机发光显示面板及显示装置。以下分别进行详细说明。需说明的是,以下实施例的描述顺序不作为对实施例优选顺序的限定。
请参考图1至图3,本申请实施例提供了一种有机发光显示面板,包括阵列基板100、发光器件层、薄膜封装层300及叠层结构500,所述叠层结构500包括黑矩阵层510、第一有机膜层520、有机平坦层530及彩膜层540。
请参考图1和图2,所述阵列基板100包括像素定义层130,所述像素定义层130包括多个像素开口131及包绕所述多个像素开口131的非像素开口区域132。所述多个像素开口131用于定义多个发光区A,所述非像素开口区域132用于定义非发光区B。需要说明的是,虽然以上对所述阵列基板100只描述了像素定义层130,有些必要的现有技术结构未进行详细描述,但是可以理解的是,所述阵列基板100除了包括所述像素定义层130以外,还可以根据需要包括其他结构,例如在本申请实施例中,所述阵列基板100还包括衬底基板110和薄膜晶体管功能层120,其中所述薄膜晶体管功能层120包括多个薄膜晶体管,用于驱动所述发光器件层发光。示例性的,所述多个像素开口131呈阵列排布。
在一实施例中,所述像素开口131在垂直于所述阵列基板100方向上的截面呈倒梯形,即所述像素开口131的上开口(远离所述阵列基板100一侧的开口)面积大于下开口(靠近所述阵列基板100一侧的开口)的面积,而所述像素开口131由远离所述阵列基板100向靠近所述阵列基板100的方向呈收缩状,通常所述上开口与所述下开口的形状相同。所述像素开口131在平行于所述阵列基板100所在平面的方向上的截面形状包括但不限于为圆形或多边形,所述多边形包括但不限于菱形、长方形(包括正方形)、八边形等。
请参考图1和图2,所述发光器件层包括多个发光单元200,每个所述发光单元200设在一个所述像素开口131中。所述多个发光单元200用于形成子像素,例如:红色子像素、绿色子像素、蓝色子像素,以使所述有机发光显示面板实现显示功能。示例性的,所述发光单元200包括阳极层210、OLED发光层220和阴极层230,其中所述阳极层210覆盖每个所述像素开口131的底部,所述OLED发光层220分别覆盖在每个所述像素开口131中的所述阳极层210上,所述阴极层230覆盖在所述OLED发光层220上。
请参考图1和图2,所述薄膜封装层300覆盖在所述发光器件层上。所述薄膜封装层300用于封装所述发光器件层以阻隔水汽和氧气。
请参考图1和图2,所述黑矩阵层510设在所述薄膜封装层300远离所述阵列基板100的一侧,并包括多个第一贯穿孔511和包绕所述多个第一贯穿孔511的遮光部512,所述多个第一贯穿孔511与所述多个像素开口131一一对应。所述第一贯穿孔511沿所述黑矩阵层510的厚度方向(即垂直于所述阵列基板100的方向)贯穿所述黑矩阵层510,以使所述发光单元200发出的光线能够穿过所述黑矩阵层510,而包绕所述多个第一贯穿孔511的遮光部512则起到遮挡和吸光的作用,既能够防止相邻两个所述发光单元200之间出现混光现象,还能够吸收所述显示面板外部射入的光线,进而降低显示面板的反射率。所述黑矩阵层510的厚度(即沿着垂直于所述阵列基板100所在平面方向上的厚度)可以例如为1至10微米。
在一实施例中,请参考图1和图2,所述第一贯穿孔511在垂直于所述阵列基板100方向上的截面为呈倒梯形,即所述第一贯穿孔511的上开口(远离所述阵列基板100一侧的开口)面积大于下开口(靠近所述阵列基板100一侧的开口)的面积,而所述第一贯穿孔511由远离所述阵列基板100向靠近所述阵列基板100方向呈收缩状,通常所述上开口与所述下开口的形状相同。所述第一贯穿孔511在平行于所述阵列基板100方向上的截面形状包括但不限于为圆形或多边形,所述多边形包括但不限于菱形、长方形(包括正方形)、八边形等。
请参考图1和图2,本实施例中所述第一有机膜层520至少填充在所述第一贯穿孔511内,并在每个所述第一贯穿孔511内均形成第二贯穿孔521。所述第一有机膜层520的材料可以例如为透明光学胶。所述第一有机膜层520的材料包括但不限于为含有丙烯酸树脂、环氧树脂、聚酰亚胺、聚乙烯和/或硅氧烷的有机材料。在一实施例中,请参考图1,所述第一有机膜层520仅填充在所述第一贯穿孔511内,并在每个所述第一贯穿孔511内均形成第二贯穿孔521,使得所述第一有机膜层520仅覆盖在每个所述第一贯穿孔511的侧壁上并合围形成第二贯穿孔521。本实施例中,本实施例中,在所述第一贯穿孔511中,所述第一有机膜层520(即覆盖在所述第一贯穿孔511的侧壁上的所述第一有机膜层520)沿着垂直于所述第一贯穿孔511侧壁方向的厚度h1为1至10微米。需要说明的是,所述厚度h1可以是等厚的,也可以是不等厚的。在另一实施例中,请参考图2,所述第一有机膜层520填充在所述第一贯穿孔511内且在每个所述第一贯穿孔511内均形成第二贯穿孔521,同时所述第一有机膜层520还覆盖所述遮光部512远离所述阵列基板100一侧的表面,使得所述第一有机膜层520同时覆盖在每个所述第一贯穿孔511的侧壁上以及所述遮光部512远离所述发光器件层一侧的表面上,并且所述第一有机膜层520在每个所述第一贯穿孔511内合围形成第二贯穿孔521。需要说明的是,所述第二贯穿孔521沿着垂直于所述阵列基板100的方向贯穿所述第一有机膜层520,以使所述发光单元200发射的光能够射入所述第二贯穿孔521并能够从所述第二贯穿孔521射出。可以理解的是,所述第一贯穿孔511的侧壁即为所述遮光部512位于所述第一贯穿孔511内的部分,通过使所述第一有机膜层520覆盖位于每个所述第一贯穿孔511内的所述遮光部512上,不仅能够减少射入所述第一贯穿孔511内的光线被所述遮光部512吸收,还能够为射入所述第一贯穿孔511内的大角度光线提供反射界面,降低了显示面板内部光线损失。本实施例中,在所述第一贯穿孔511中,所述第一有机膜层520(即覆盖在所述第一贯穿孔511的侧壁上的所述第一有机膜层520)沿着垂直于所述第一贯穿孔511侧壁方向的厚度h1为1至10微米;位于所述遮光部512远离所述阵列基板100一侧的所述第一有机膜层520的厚度h2(即沿着垂直于所述阵列基板100所在平面方向上的厚度)可以例如为1至10微米。需要说明的是,所述厚度h1可以是等厚的,也可以是不等厚的。
请参考图1和图2,所述有机平坦层530覆盖在所述黑矩阵层510和所述第一有机膜层520上,并填充每个所述第二贯穿孔521。所述有机平坦层530的材料包括但不限于为丙烯酸树脂、环氧树脂、聚酰亚胺、聚乙烯和/或硅氧烷的有机材料,或者前述任意一种有机材料与氧化锆、氧化钛和/或氧化铝粒子的混合材料。需要说明的是,所述有机平坦层530的材料与所述第一有机膜层520的材料不同。请参考图3,通过使所述有机平坦层530填充每个所述第二贯穿孔521能够提供光反射界面(即在每个所述第二贯穿孔521中所述有机平坦层530与所述第一有机膜层520的界面),当光线入射到每个所述第二贯穿孔521中的所述有机平坦层530与所述第一有机膜层520的界面上则会发生反射,不仅能够减少所述遮光部512对光线的吸收,而且还能通过反射使所述发光单元200射出的发散光线被聚拢,减少光线散射损失,提高显示面板发光区域的正向出光。所述有机平坦层530位于所述遮光部512远离所述阵列基板100一侧的厚度h3(沿着垂直于所述阵列基板100所在平面方向上的厚度)可以例如为5至30微米。可以理解的是,所述厚度h3不包括位于所述第二贯穿孔521内的部分。
请参考图3,所述有机平坦层530的折射率大于所述第一有机膜层520的折射率。通过使所述有机平坦层530的折射率大于所述第一有机膜层520的折射率可以为光线发生全反射提供条件,使得所述发光单元200发射出的大角度光线能够在所述第一有机膜层520与所述有机平坦层530的界面发生全反射,这样不仅能够使得所述发光单元200发射的大角度发散光线被聚拢,还能使大角度入射光线被全反射而不折射进入所述第一有机膜层520,减少了光线的损失,并提高出光率。可以理解的是,可以通过调整所述有机平坦层530的折射率、所述第一有机膜层520的折射率、所述有机平坦层530与所述第一有机膜层520的折射率差值和/或所述第二贯穿孔521的侧壁倾斜角度(如图1和图2中示出的α)改变全反射的临界角。另外,为了使所述有机平坦层530的折射率大于所述第一有机膜层520的折射率,所述有机平坦层530可以选用高折射率的材料,而所述第一有机膜层520可以选用低折射率的材料。在一实施例中,所述第一有机膜层520的折射率为1.2至1.5;所述有机平坦层530的折射率为1.7至2.0。
请参考图1和图2,所述彩膜层540设在所述有机平坦层530上,并包括多个彩色滤光单元541;所述多个彩色滤光单元541与所述多个第一贯穿孔511一一对应。所述彩膜层540还包括多个第三贯穿孔542,所述第三贯穿孔542设在相邻所述彩色滤光单元541之间,将所述彩膜层540分隔成多个彩色滤光单元541。所述彩色绿光单元包括红色滤光单元、绿色滤光单元以及蓝色滤光单元,分别用于过滤红光、绿光及蓝光。示例性的,所述彩色滤光单元541在平行于所述阵列基板100方向上的截面形状包括但不限于为圆形或多边形,所述多边形包括但不限于菱形、长方形(包括正方形)、八边形等。所述彩膜层540的厚度(沿着垂直于所述阵列基板100所在平面方向上的厚度)可以例如为1至10微米。
请参考图1和图2,每个所述像素开口131及与其对应的所述第一贯穿孔511在所述阵列基板100所在平面上的正投影至少部分重叠,且所述第一贯穿孔511及与其对应的所述彩色滤光单元541在所述阵列基板100所在平面上的正投影至少部分重叠。
需要说明的是,每个所述像素开口131及与其对应的所述第一贯穿孔511在所述阵列基板100所在平面上的正投影至少部分重叠至少包括如下情形:(1)每个所述像素开口131及与其对应的所述第一贯穿孔511在所述阵列基板100所在平面上的正投影部分重叠,其中至少包括:(a)每个所述像素开口131及与其对应的所述第一贯穿孔511在所述阵列基板100所在平面上的正投影是交叠的,但是其中任意一者正投影未完全落入另一者的正投影中,例如:每个所述像素开口131的中心轴(垂直于所述阵列基板100所在平面的方向)及与其对应的所述第一贯穿孔511的中心轴(垂直于所述阵列基板100所在平面的方向)是错开的,并且二者的正投影互相未完全落入另一者中;(b)每个所述像素开口131及与其对应的所述第一贯穿孔511在所述阵列基板100所在平面上的正投影中的任意一者完全落入另一者中,例如:每个所述像素开口131的中心轴(垂直于所述阵列基板100所在平面的方向)及与其对应的所述第一贯穿孔511的中心轴(垂直于所述阵列基板100所在平面的方向)是重合的,并且所述第一贯穿孔511以与其对应的所述像素开口131为基准按照一定比例缩小或放大,又如:每个所述像素开口131的中心轴(垂直于所述阵列基板100所在平面的方向)及与其对应的所述第一贯穿孔511的中心轴(垂直于所述阵列基板100所在平面的方向)是错开的,并且所述像素开口131在所述阵列基板100所在平面上的正投影完全落入与其对应的所述第一贯穿孔511在所述阵列基板100所在平面上的正投影中;(2)每个所述像素开口131及与其对应的所述第一贯穿孔511在所述阵列基板100所在平面上的正投影完全重叠,例如:所述像素开口131与所述第一贯穿孔511在所述阵列基板100所在平面上的正投影形状和尺寸完全相同。
还需要说明的是,本申请实施例中所述第一贯穿孔511及与其对应的所述彩色滤光单元541在所述阵列基板100所在平面上的正投影至少部分重叠至少包括如下情形:(1)所述第一贯穿孔511及与其对应的所述彩色滤光单元541在所述阵列基板100所在平面上的正投影至少部分重叠,其中至少包括:(a)所述第一贯穿孔511及与其对应的所述彩色滤光单元541在所述阵列基板100所在平面上的正投影有交叠,但是其中任意一者未完全落入另一者中,例如:所述第一贯穿孔511的中心轴(垂直于所述阵列基板100所在平面的方向)及与其对应的所述彩色滤光单元541的中心轴(垂直于所述阵列基板100所在平面的方向)是错开的,并且二者互相未完全落入另一者中;(b)所述第一贯穿孔511及与其对应的所述彩色滤光单元541在所述阵列基板100所在平面上的正投影中的任意一者完全落入另一者中,例如:所述第一贯穿孔511的中心轴(垂直于所述阵列基板100所在平面的方向)及与其对应的所述彩色滤光单元541的中心轴(垂直于所述阵列基板100所在平面的方向)是重合的,并且所述彩色滤光单元541以与其对应的所述第一贯穿孔511为基准按照一定比例缩小或放大,又如:所述第一贯穿孔511的中心轴(垂直于所述阵列基板100所在平面的方向)及与其对应的所述彩色滤光单元541的中心轴(垂直于所述阵列基板100所在平面的方向)是错开的,并且所述第一贯穿孔511在所述阵列基板100所在平面上的正投影完全落入与其对应的所述彩色滤光单元541在所述阵列基板100所在平面上的正投影中;(2)所述第一贯穿孔511及与其对应的所述彩色滤光单元541在所述阵列基板100所在平面上的正投影完全重叠,例如:所述第一贯穿孔511及与其对应的所述彩色滤光单元541在所述阵列基板100所在平面上的正投影形状和尺寸完全相同。
还需要说明的是,本申请实施例所述正投影是指垂直于所述阵列基板100所在平面方向的投影;本申请实施例所述像素开口131的正投影是指所述像素开口131最外围的边缘在所述阵列基板100上的正投影所构成的封闭图形;同样的,所述第一贯穿孔511的正投影是指所述第一贯穿孔511最外围边缘在所述阵列基板100上的正投影所构成的封闭图形;所述彩色滤光单元541的投影是指所述彩色滤光单元541最外围的边缘在所述阵列基板100上的正投影所构成的封闭图形。
还需要说明的是,本申请实施例中所述像素开口131、所述第一贯穿孔511和所述第二贯穿孔521中任意两个的形状可以相同也可以不同,所述彩色滤光单元541与所述第一贯穿孔511在平行于所述阵列基板100所在平面方向上的截面形状可以相同,也可以不同。
在一实施例中,请参考图1和图2,每个所述像素开口131及与其对应的所述第一贯穿孔511和所述彩色滤光单元541在所述阵列基板100所在平面上的正投影完全重叠,以使所述发光单元200发出的光更多的射入所述第二贯穿孔521中,并且使更多的大角度光线能够在所述第一有机膜层520与所述有机平坦层530的界面处发生反射,并由所述彩色滤光单元541过滤后射出,使得显示面板具有更高的出光率。
本申请实施例通过采用包括黑矩阵层510、第一有机膜层520、有机平坦层530和彩膜层540的叠层结构500能够取代偏光片,相比于偏光片需要损失接近58%的出光,本申请实施例能够显著降低显示面板内部光线损失,提高显示面板内部发光透过率,并且黑矩阵的遮光部512还可以吸外部射入的光线,进而降低显示面板的反射率;其中,所述第一有机膜层520覆盖在位于所述第二贯穿孔521的遮光部512上,能够减少或避免射入所述第一贯穿孔511内的光线被所述遮光部512吸收;所述第一有机膜层520与所述有机平坦层530在所述多个第一贯穿孔511中形成了类似微透镜阵列的结构,所述第一有机膜层520与所述有机平坦层530的界面能够为射入所述第一贯穿孔511内的大角度光线提供反射界面,使光线在界面处发生反射,尤其是全反射,而所述发光单元200射出的发散光线经过反射后则被聚拢,提高了显示面板发光区域的正向出光,减少了光线散射损失;所述黑矩阵层510的遮光部512还能够吸收外部射入的光线,进而降低显示面板的反射率。此外,若所述第一有机膜层520仅覆盖在所述第一贯穿孔511的侧壁上而不覆盖在所述遮光部512远离所述发光器件层一侧的表面上,不仅能够提高所述黑矩阵层510的遮光部512对外部射入光线的吸收,而且叠层结构500还具有更薄的厚度。
在一实施例中,请参考图1和图2,本申请实施例所述叠层结构500还包括第二有机膜层550,所述第二有机膜层550覆盖在所述彩膜层540上,并填充所述第三贯穿孔542。所述第二有机膜层550可以起到平坦化作用。所述第二有机膜层550的材料可以例如为透明光学胶,所述第二有机膜层550的材料包括但不限于为含有丙烯酸树脂、环氧树脂、聚酰亚胺、聚乙烯和/或硅氧烷的有机材料。所述第二有机膜层550的折射率例如为1.3至1.5。所述第二有机膜层550的位于所述彩膜层540远离所述阵列基板100一侧的厚度h4(即沿着垂直于所述阵列基板100所在平面方向上的厚度)例如为5至30微米。可以理解的是,所述厚度h4不包括填充在所述第三贯穿孔542内的部分。在一实施例中,请参考图1和图2,所述第二贯穿孔521在垂直于所述阵列基板100方向上的截面呈倒梯形。可以理解的是,所述第二贯穿孔521的上开口(远离所述阵列基板100一侧的开口)面积大于下开口(靠近所述阵列基板100一侧的开口)的面积,即所述第二贯穿孔521的由远离所述阵列基板100向靠近所述阵列基板100方向呈收缩状,通常所述上开口与所述下开口的形状相同。所述第二贯穿孔521在平行于所述阵列基板100方向上的截面形状包括但不限于为圆形或多边形,所述多边形包括但不限于菱形、长方形(包括正方形)、八边形等。
在一实施例中,请参考图1和图2,在每个所述第二贯穿孔521中所述第一有机膜层520与所述有机平坦层530的界面与平行于所述阵列基板100的平面所夹锐角α为40度至70度。可以理解的是,所述有机平坦层530与所述第一有机膜层520的界面即为所述第二贯穿孔521的侧壁,所述有机平坦层530与所述第一有机膜层520的界面与平行于所述阵列基板100的平面所夹锐角α能够体现出所述第二贯穿孔521的侧壁的倾斜程度。将每个所述第二贯穿孔521中所述第一有机膜层520与所述有机平坦层530的界面与平行于所述阵列基板100的平面所夹锐角α控制在40度至70度能够使得所述发光单元200发散出的大角度光线更多的在所述第一有机膜层520与所述有机平坦层530的界面发生全反射,进而使得所述有机发光显示面板具有更高的出光率。
在一实施例中,所述像素开口131的下开口(靠近所述阵列基板100一侧的开口)的形状、所述第一贯穿孔511的下开口(靠近所述阵列基板100一侧的开口)的形状以及所述彩色滤光单元541在平行于所述阵列基板100所在平面方向上的截面形状均相同,例如包括但不限于为圆形或多边形,所述多边形包括但不限于菱形、长方形(包括正方形)、八边形等。需要说明的是,前述三者中的任意两者之间的尺寸可以相同也可以不同,还可以是三者之间的形状和尺寸完全相同。另外,在另一些实施例中,所述像素下开口、所述第一贯穿孔511的下开口以及所述彩色滤光单元541在平行于所述阵列基板100所在平面方向上的截面形状也可以彼此不相同。
在一实施例中,所述像素开口131、所述第一贯穿孔511以及所述彩色滤光单元541在平行于所述阵列基板100所在平面方向上的截面形状均相同。所述像素开口131在平行于所述阵列基板100所在平面方向上的任一截面的形状都相同(即所述上开口与所述下开口形状相同)。所述第一贯穿孔511在平行于所述阵列基板100所在平面方向上的任一截面的形状都相同(即所述上开口与所述下开口形状相同)。所述彩色滤光单元541在平行于所述阵列基板100所在平面方向上的任一截面的形状都相同(即所述上开口与所述下开口形状相同)。需要说明的是,所述像素开口131、所述第一贯穿孔511以及所述彩色滤光单元541在平行于所述阵列基板100所在平面方向上的截面的尺寸可以相同也可以不同。
需要说明的是,本申请实施例中所述叠层结构500设在所述薄膜封装层300远离所述阵列基板100的一侧,而所述薄膜封装层300与叠层结构500之间还可以包括其它膜层,例如实现触控功能的膜层。在一实施例中,请参考图1和图2,所述有机发光显示面板还包括触控层400,所述触控层400设在所述薄膜封装层300和叠层结构500之间。具体的,所述触控层400设在所述薄膜封装层300和所述黑矩阵层510之间。所述触控层400用于实现触控功能,所述触控层400的结构可以采用本领域现有技术中的已知结构。
示例性的,所述触控层400包括触控电极410,所述触控电极410呈网格状,所述触控电极410包括多个网格开口411,所述网格开口411与所述像素开口131一一对应。所述触控电极410与任意一个所述像素开口131在所述阵列基板100所在平面上的正投影均无交叠,以使所述触控电极410避开所述像素开口131的位置而不影响所述发光单元200的光线射出所述触控层400。示例性的,所述网格开口411的面积大于或等于所述像素开口131的上开口(远离所述阵列基板100一侧的开口)的面积,以使所述发光单元200发射的光线能够通过所述网格开口411射出所述触控层400。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述的部分,可以参见其他实施例的相关描述。
相应的,请参考图1至图4,本申请实施例还提供了上述有机发光显示面板的制备方法,包括:
S1、提供一阵列基板100,所述阵列基板100包括像素定义层130,所述像素定义层130包括多个像素开口131。所述像素开口131用于定义发光区A,所述非像素开口区域132用于定义非发光区B。
示例性的,所述阵列基板100包括衬底基板110、薄膜晶体管功能层120和像素定义层130;所述薄膜晶体管功能层120形成在所述衬底基板110上,并且所述薄膜晶体管功能层120包括多个薄膜晶体管,用于驱动所述发光器件层发光;所述像素定义层130形成在所述薄膜晶体管功能层120上,所述像素定义层130包括多个像素开口131和包绕所述多个像素开口131的非像素开口区域132。所述多个像素开口131可以呈阵列排布。需要说明的是,所述阵列基板100的制备方法可以采用本领域现有技术中的已知方法,本申请实施例不做特殊限定。
S2、在所述阵列基板100上制备发光器件层,所述发光器件层包括多个发光单元200,在每个所述像素开口131中设置一个发光单元200。
示例性的,步骤S2包括:在每个所述像素开口131中制备阳极层210,并使所述阳极层210覆盖所述像素开口131的底部;在所述阳极层210上制备OLED发光层220,并使所述OLED发光层220覆盖在所述阳极层210上;以及制备所述阴极层230,并使所述阴极层230覆盖在所述OLED发光层220及所述像素定义层130上。
S3、制备薄膜封装层300,使所述薄膜封装层300覆盖在所述发光器件层上。需要说明的是,所述薄膜封装层300的制备方法可以采用本领域现有技术中的已知方法,本申请实施例不做特殊限定。
在一实施例中,所述步骤S3之后还可以包括在所述薄膜封装层300上制备触控层400。需要说明的是,当所述有机发光显示面板不包含所述触控层400时,则本实施例所述制备方法中不包含本步骤,所述触控层400的制备方法可以采用本领域现有技术中的已知方法。示例性的,所述触控层400包括触控电极410,所述触控电极410呈网格状,所述触控电极410包括多个网格开口411,所述网格开口411与所述像素开口131一一对应。所述触控电极410与任意一个所述像素开口131在所述阵列基板100所在平面上的正投影均无交叠,以使所述触控电极410避开所述像素开口131的位置而不影响所述发光单元200的光线射出所述触控层400。所述网格开口411的面积大于或等于所述像素开口131的上开口(远离所述阵列基板100一侧的开口)的面积,以使所述发光单元200发射的光线能够通过所述网格开口411射出所述触控层400。
S4、在所述薄膜封装层300(或所述触控层400)远离所述阵列基板100的一侧制备黑矩阵层510,其中所述黑矩阵层510包括多个第一贯穿孔511和包绕所述多个第一贯穿孔511的遮光部512,所述多个第一贯穿孔511与所述多个像素开口131一一对应。
示例性的,通过旋涂、喷墨打印或狭缝涂覆的方式整面涂覆所述黑矩阵层510的材料,所述黑矩阵层510的厚度(即所述黑矩阵层510沿着垂直于所述阵列基板100所在平面的方向的厚度)可以根据实际要求进行调整,例如为1至10微米,并且可以通过调整材料的透过率和折射率来改变所述黑矩阵层510的吸光特性;通过曝光显影制程制作出所述多个第一贯穿孔511,所述第一贯穿孔511的开口形状、尺寸和侧壁倾斜角度可以根据实际需求进行调整;例如,所述多个第一贯穿孔511与所述多个像素开口131的位置一致,即每个所述第一贯穿孔511的位置位于一个所述像素开口131的正上方(以远离所述阵列基板100的方向为上方)。
S5、制备所述第一有机膜层520,并使所述第一有机膜层520至少填充在所述第一贯穿孔511内,并在每个所述第一贯穿孔511内均形成第二贯穿孔521。
在一实施例中,步骤S6包括:制备所述第一有机膜层520,并使所述第一有机膜层520仅填充在所述第一贯穿孔511内,并在每个所述第一贯穿孔511内均形成第二贯穿孔521,即所述第一有机膜层520仅覆盖在每个所述第一贯穿孔511的侧壁上并合围形成第二贯穿孔521。
在另一实施例中,步骤S5包括:制备所述第一有机膜层520,并使所述第一有机膜层520填充在所述第一贯穿孔511内,并在每个所述第一贯穿孔511内均形成第二贯穿孔521,所述第一有机膜层520还覆盖所述遮光部512远离所述阵列基板100一侧的表面,即所述第一有机膜层520同时覆盖在每个所述第一贯穿孔511的侧壁上以及所述遮光部512远离所述发光器件层一侧的表面上,并所述第一有机膜层520在每个所述第一贯穿孔511内合围形成第二贯穿孔521。
示例性的,通过旋涂、喷墨打印或狭缝涂覆的方式整面涂覆所述第一有机膜层520的材料,可以根据实际要求调整所述第一有机膜层520的膜层厚度,其中覆盖在所述第一贯穿孔511的侧壁上的所述第一有机膜层520的厚度h1(即沿着垂直于所述第一贯穿孔511的侧壁方向上的厚度)例如为1至10微米,位于所述遮光部512远离所述阵列基板100一侧的所述第一有机膜层520的厚度h2(即沿着垂直于所述阵列基板100所在平面方向上的厚度)例如为1至10微米,所述厚度h2可以是等厚的,也可以是不等厚的;所述第一有机膜层520的材料例如为透明光学胶,所述第一有机膜层520的材料包括但不限于为含有丙烯酸树脂、环氧树脂、聚酰亚胺、聚乙烯和/或硅氧烷的有机材料;通过曝光显影制程制作出多个第二贯穿孔521,可以同时去除所述黑矩阵层510上的所述第一有机膜层520,仅保留所述第一贯穿孔511侧壁上的所述第一有机膜层520,也可以同时保留覆盖在所述第一贯穿孔511的侧壁及所述遮光部512远离所述发光器件层一侧表面上的所述第一有机膜层520。所述多个第二贯穿孔521的位置例如为与所述多个像素开口131的位置一致,即每个所述第二贯穿孔521位于一个所述像素开口131的正上方(以远离所述阵列基板100的方向为上方)。可以理解的是,所述第二贯穿孔521的开口形状、尺寸和侧壁的倾斜角度可以根据实际情况进行调整,通过调整所述第二贯穿孔521的开口形状、尺寸、侧壁的倾斜角度以及所述第一有机膜层520的透过率和折射率,可以使光线在所述第二贯穿孔521的侧壁上发生反射,尤其是全反射,并且能够改变全反射的临界角大小。
S6、制备有机平坦层530,使所述有机平坦层530覆盖在所述黑矩阵层510和所述第一有机膜层520上,并填充每个所述第二贯穿孔521。
示例性的,通过旋涂、喷墨打印或狭缝涂覆的方式整面涂覆所述有机平坦层530的材料,可以根据实际要求调整所述有机平坦层530的膜层厚度,其中,所述有机平坦层530位于所述遮光部512远离所述阵列基板100一侧的厚度h3(沿着垂直于所述阵列基板100所在平面方向上的厚度)例如为5至30微米,所述厚度h3不包括位于所述第二贯穿孔521内的部分;所述有机平坦层530的材料包括但不限于为丙烯酸树脂、环氧树脂、聚酰亚胺、聚乙烯和/或硅氧烷的有机材料,或者前述任意一种有机材料与氧化锆、氧化钛和/或氧化铝粒子的混合材料。所述有机平坦层530的材料与所述第一有机膜层520的材料不同,所述发光单元200发射的光线入射到所述有机平坦层530与所述第一有机膜层520的界面会发生反射,进而使发散的光线被聚拢,减少了光线散射损失,提高了显示面板发光区域的正向出光。
在一实施例中,在步骤S6中,所述有机平坦层530的折射率大于所述第一有机膜层520的折射率,这样能够为光线发生全反射提供条件,使得所述发光单元200发射出的大角度光线能够在所述第一有机膜层520与所述有机平坦层530的界面发生全反射,进一步减少光线损失,提高出光率。在一实施例中,所述第一有机膜层520的折射率为1.2至1.5;所述有机平坦层530的折射率为1.7至2.0。
S7、在所述有机平坦层530上制备所述彩膜层540,所述彩膜层540包括多个彩色滤光单元541,所述多个彩色滤光单元541与所述多个第一贯穿孔511一一对应。
示例性的,通过旋涂、喷墨打印或狭缝涂覆的方式整面涂覆色阻材料,可以根据实际要求进行调整所述彩膜层540的膜层厚度,所述彩膜层540的厚度(沿着垂直于所述阵列基板100所在平面方向上的厚度)例如为1至10微米;通过曝光显影制程制作出所述多个彩色滤光单元541;所述多个彩色滤光单元541包括红色滤光单元、绿色滤光单元以及蓝色滤光单元,分别用于过滤红光、绿光及蓝光;例如,所述多个彩色滤光单元541与所述多个第一贯穿孔511的位置一致,即每个所述彩色滤光单元541设在一个所述第一贯穿孔511的正上方(以远离所述阵列基板100的方向为上方)。
在一实施例中,本申请实施例所述有机发光显示面板的制备方法还包括:
S8、制备第二有机膜层550,使所述第二有机膜层550覆盖在所述彩膜层540上。所述第二有机膜层550可以起到平坦化的作用。
示例性的,通过旋涂、喷墨打印或狭缝涂覆的方式整面涂覆所述第二有机膜层550的材料,可以根据实际要求调整所述第二有机膜层550的厚度,其中所述第二有机膜层550的位于所述彩膜层540远离所述阵列基板100一侧的厚度h4(即沿着垂直于所述阵列基板100所在平面方向上的厚度)例如为5至30微米,所述厚度h4不包括填充在所述第三贯穿孔542内的部分;所述第二有机膜层550的材料例如为光学胶,所述第二有机膜层550的材料包括但不限于为含有丙烯酸树脂、环氧树脂、聚酰亚胺、聚乙烯和/或硅氧烷的有机材料。所述第二有机膜层550的折射率例如为1.3至1.5。需要说明的是,所述第二有机膜层550的材料与所述第一有机膜层520的材料可以相同,也可以不同。
本申请实施例所述制备方法中没有详述的部分,请参见前述关于所述有机发光显示面板各个实施例的相关描述。
相应的,本申请实施例还提供一种显示装置,其包含上述任意一种实施例所述有机发光显示面板。
以上对本申请实施例所提供的一种有机发光显示面板及显示装置进行了详细介绍,本文中应用了具体个例对本申请的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本申请的方法及其核心思想;同时,对于本领域的技术人员,依据本申请的思想,在具体实施方式及应用范围上均会有改变之处,综上所述,本说明书内容不应理解为对本申请的限制。

Claims (20)

  1. 一种有机发光显示面板,其包括:
    阵列基板,包括像素定义层,所述像素定义层包括多个像素开口;
    发光器件层,包括多个发光单元,每个所述发光单元设在一个所述像素开口中;
    薄膜封装层,覆盖在所述发光器件层上;
    黑矩阵层,位于所述薄膜封装层的远离所述阵列基板的一侧,并包括多个第一贯穿孔和包绕所述多个第一贯穿孔的遮光部,所述多个第一贯穿孔与所述多个像素开口一一对应;
    第一有机膜层,至少填充在所述第一贯穿孔内,并在每个所述第一贯穿孔内均形成第二贯穿孔;
    有机平坦层,覆盖在所述黑矩阵层和所述第一有机膜层上,并填充每个所述第二贯穿孔,所述有机平坦层的折射率大于所述第一有机膜层的折射率;及
    彩膜层,设在所述有机平坦层上,并包括多个彩色滤光单元;所述多个彩色滤光单元与所述多个第一贯穿孔一一对应;
    其中,每个所述像素开口及与其对应的所述第一贯穿孔在所述阵列基板所在平面上的正投影至少部分重叠,且所述第一贯穿孔及与其对应的所述彩色滤光单元在所述阵列基板所在平面上的正投影至少部分重叠;所述第二贯穿孔在垂直于所述阵列基板方向上的截面呈倒梯形;在每个所述第二贯穿孔中所述第一有机膜层与所述有机平坦层的界面与平行于所述阵列基板的平面所夹锐角为40度至70度。
  2. 如权利要求1所述的显示面板,其中,每个所述像素开口及与其对应的所述第一贯穿孔和所述彩色滤光单元在所述阵列基板所在平面上的正投影完全重叠。
  3. 如权利要求1所述的显示面板,其中,所述第一有机膜层的折射率为1.2至1.5;所述有机平坦层的折射率为1.7至2.0。
  4. 如权利要求1所述的显示面板,其中,所述第一有机膜层还覆盖所述遮光部远离所述阵列基板一侧的表面。
  5. 如权利要求1所述的显示面板,其中,在所述第一贯穿孔中,所述第一有机膜层沿着垂直于所述第一贯穿孔侧壁方向的厚度为1至10微米;所述有机平坦层位于所述遮光部远离所述阵列基板一侧的厚度为5至30微米。
  6. 如权利要求1所述的显示面板,其中,所述有机发光显示面板还包括:
    第二有机膜层,覆盖在所述彩膜层上,且所述第二有机膜层的折射率为1.3至1.5。
  7. 如权利要求1所述的显示面板,其中,所述有机发光显示面板还包括触控层,所述触控层设在所述薄膜封装层和所述黑矩阵层之间,所述触控层包括呈网格状的触控电极,所述网格开口与所述像素开口一一对应。
  8. 如权利要求7所述的显示面板,其中,所述触控电极与所述任意一个所述像素开口在所述阵列基板所在平面上的正投影均无交叠。
  9. 一种有机发光显示面板,其包括:
    阵列基板,包括像素定义层,所述像素定义层包括多个像素开口;
    发光器件层,包括多个发光单元,每个所述发光单元设在一个所述像素开口中;
    薄膜封装层,覆盖在所述发光器件层上;
    黑矩阵层,位于所述薄膜封装层的远离所述阵列基板的一侧,并包括多个第一贯穿孔和包绕所述多个第一贯穿孔的遮光部,所述多个第一贯穿孔与所述多个像素开口一一对应;
    第一有机膜层,至少填充在所述第一贯穿孔内,并在每个所述第一贯穿孔内均形成第二贯穿孔;
    有机平坦层,覆盖在所述黑矩阵层和所述第一有机膜层上,并填充每个所述第二贯穿孔,所述有机平坦层的折射率大于所述第一有机膜层的折射率;及
    彩膜层,设在所述有机平坦层上,并包括多个彩色滤光单元;所述多个彩色滤光单元与所述多个第一贯穿孔一一对应。
  10. 如权利要求9所述的显示面板,其中,每个所述像素开口及与其对应的所述第一贯穿孔在所述阵列基板所在平面上的正投影至少部分重叠,且所述第一贯穿孔及与其对应的所述彩色滤光单元在所述阵列基板所在平面上的正投影至少部分重叠。
  11. 如权利要求10所述的显示面板,其中,每个所述像素开口及与其对应的所述第一贯穿孔和所述彩色滤光单元在所述阵列基板所在平面上的正投影完全重叠。
  12. 如权利要求9所述的显示面板,其中,所述第一有机膜层的折射率为1.2至1.5;所述有机平坦层的折射率为1.7至2.0。
  13. 如权利要求9所述的显示面板,其中,所述第二贯穿孔在垂直于所述阵列基板方向上的截面呈倒梯形。
  14. 如权利要求13所述的显示面板,其中,在每个所述第二贯穿孔中所述第一有机膜层与所述有机平坦层的界面与平行于所述阵列基板的平面所夹锐角为40度至70度。
  15. 如权利要求9所述的显示面板,其中,所述第一有机膜层还覆盖所述遮光部远离所述阵列基板一侧的表面。
  16. 如权利要求9所述的显示面板,其中,在所述第一贯穿孔中,所述第一有机膜层沿着垂直于所述第一贯穿孔侧壁方向的厚度为1至10微米;所述有机平坦层位于所述遮光部远离所述阵列基板一侧的厚度为5至30微米。
  17. 如权利要求9所述的显示面板,其中,所述有机发光显示面板还包括:
    第二有机膜层,覆盖在所述彩膜层上,且所述第二有机膜层的折射率为1.3至1.5。
  18. 如权利要求9所述的显示面板,其中,所述有机发光显示面板还包括触控层,所述触控层设在所述薄膜封装层和所述黑矩阵层之间,所述触控层包括呈网格状的触控电极,所述网格开口与所述像素开口一一对应。
  19. 如权利要求18所述的显示面板,其中,所述触控电极与所述任意一个所述像素开口在所述阵列基板所在平面上的正投影均无交叠。
  20. 一种显示装置,其包含权利要求9所述的显示面板。
PCT/CN2021/085603 2021-03-11 2021-04-06 有机发光显示面板及显示装置 WO2022188226A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110266495.2A CN113054136B (zh) 2021-03-11 2021-03-11 有机发光显示面板及显示装置
CN202110266495.2 2021-03-11

Publications (1)

Publication Number Publication Date
WO2022188226A1 true WO2022188226A1 (zh) 2022-09-15

Family

ID=76511683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/085603 WO2022188226A1 (zh) 2021-03-11 2021-04-06 有机发光显示面板及显示装置

Country Status (2)

Country Link
CN (2) CN113054136B (zh)
WO (1) WO2022188226A1 (zh)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113540190A (zh) * 2021-06-30 2021-10-22 上海天马微电子有限公司 显示面板和显示装置
CN113480951A (zh) * 2021-07-09 2021-10-08 南通惟怡新材料科技有限公司 折射增强型光学胶、显示面板及其制备方法
CN113571660A (zh) * 2021-07-09 2021-10-29 Tcl华星光电技术有限公司 Oled显示面板及其制造方法
CN113554938B (zh) * 2021-07-21 2023-08-22 南通惟怡新材料科技有限公司 出光改善型功能膜以及显示面板
CN115701236A (zh) * 2021-07-30 2023-02-07 京东方科技集团股份有限公司 显示基板及其制备方法、显示面板和显示装置
CN113690390A (zh) * 2021-08-23 2021-11-23 京东方科技集团股份有限公司 显示面板及其制备方法、显示设备
CN113745433B (zh) * 2021-09-08 2023-06-02 武汉华星光电半导体显示技术有限公司 一种显示面板
CN117135973A (zh) * 2021-10-28 2023-11-28 武汉华星光电半导体显示技术有限公司 显示面板
CN113809142B (zh) * 2021-11-04 2023-11-24 合肥维信诺科技有限公司 显示面板及显示装置
CN117835760A (zh) * 2021-12-13 2024-04-05 武汉华星光电半导体显示技术有限公司 显示面板及电子装置
CN114267807B (zh) * 2021-12-15 2023-08-22 武汉华星光电半导体显示技术有限公司 一种显示面板
CN114242915B (zh) * 2021-12-20 2023-12-01 武汉天马微电子有限公司 显示面板和显示装置
CN117015259A (zh) * 2022-04-26 2023-11-07 京东方科技集团股份有限公司 显示面板及其制备方法、显示装置
CN117616901A (zh) * 2022-04-29 2024-02-27 京东方科技集团股份有限公司 一种显示面板、显示装置
CN115084409A (zh) * 2022-06-21 2022-09-20 京东方科技集团股份有限公司 显示面板、显示装置和车载显示系统
CN118160427A (zh) * 2022-09-28 2024-06-07 京东方科技集团股份有限公司 发光面板及其制备方法、发光装置
CN117715475A (zh) * 2023-08-07 2024-03-15 荣耀终端有限公司 防窥显示屏及电子设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109148718A (zh) * 2018-08-20 2019-01-04 武汉华星光电半导体显示技术有限公司 有机发光显示面板及其制造方法
CN110504381A (zh) * 2019-08-23 2019-11-26 昆山工研院新型平板显示技术中心有限公司 显示面板、显示面板的制作方法及显示装置
CN112117315A (zh) * 2020-09-23 2020-12-22 京东方科技集团股份有限公司 显示面板、显示屏和显示屏设备
CN212341879U (zh) * 2020-04-27 2021-01-12 北京迈格威科技有限公司 Oled显示屏及指纹识别模组
US20210020700A1 (en) * 2015-04-13 2021-01-21 Samsung Display Co., Ltd. Display device and method of manufacturing same
CN112259695A (zh) * 2020-10-20 2021-01-22 京东方科技集团股份有限公司 显示面板与显示装置
CN112420958A (zh) * 2020-11-18 2021-02-26 合肥维信诺科技有限公司 显示面板及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103972262B (zh) * 2013-11-19 2017-06-06 厦门天马微电子有限公司 一种有机发光显示装置及其制造方法
KR102490894B1 (ko) * 2018-02-08 2023-01-25 삼성디스플레이 주식회사 유기 발광 표시 장치
CN111883576B (zh) * 2020-09-09 2022-09-02 云谷(固安)科技有限公司 显示面板、显示装置及成型方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210020700A1 (en) * 2015-04-13 2021-01-21 Samsung Display Co., Ltd. Display device and method of manufacturing same
CN109148718A (zh) * 2018-08-20 2019-01-04 武汉华星光电半导体显示技术有限公司 有机发光显示面板及其制造方法
CN110504381A (zh) * 2019-08-23 2019-11-26 昆山工研院新型平板显示技术中心有限公司 显示面板、显示面板的制作方法及显示装置
CN212341879U (zh) * 2020-04-27 2021-01-12 北京迈格威科技有限公司 Oled显示屏及指纹识别模组
CN112117315A (zh) * 2020-09-23 2020-12-22 京东方科技集团股份有限公司 显示面板、显示屏和显示屏设备
CN112259695A (zh) * 2020-10-20 2021-01-22 京东方科技集团股份有限公司 显示面板与显示装置
CN112420958A (zh) * 2020-11-18 2021-02-26 合肥维信诺科技有限公司 显示面板及其制备方法

Also Published As

Publication number Publication date
CN113054136A (zh) 2021-06-29
CN113054136B (zh) 2022-07-12
CN115000322A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2022188226A1 (zh) 有机发光显示面板及显示装置
KR102679028B1 (ko) 유기발광 표시장치
US10304813B2 (en) Display device having a plurality of bank structures
US9536930B2 (en) Display device
US10693103B2 (en) Light-emitting device and manufacturing method thereof, electronic apparatus
CN112397547A (zh) 显示装置
US10367171B2 (en) Low reflective display device
WO2022198707A1 (zh) 显示面板及显示装置
CN113838991B (zh) 显示面板和显示装置
CN113471386B (zh) 一种显示面板及其制作方法、显示装置
WO2022267201A1 (zh) 显示面板及显示面板制作方法
WO2019227669A1 (zh) 显示面板及显示装置
WO2023246492A1 (zh) 显示面板、显示装置和车载显示系统
CN111276516B (zh) 显示面板及显示面板制备方法
CN113156732A (zh) 反射式显示面板及其制备方法、及显示装置
CN115360314A (zh) 一种显示基板、显示装置和制作方法
KR101985606B1 (ko) 저반사 디스플레이 장치
CN114094029A (zh) 显示面板和显示装置
WO2023108725A1 (zh) 显示面板
WO2023029076A1 (zh) 一种显示面板
CN111025742B (zh) 一种显示面板及显示装置
WO2024082488A1 (zh) 封装发光单元、显示装置和封装发光单元的制作方法
CN215494468U (zh) 反射式显示面板及显示装置
CN112965293A (zh) 一种色转换基板和显示面板
JP5859928B2 (ja) 光拡散部材およびその製造方法、表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929698

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21929698

Country of ref document: EP

Kind code of ref document: A1