WO2022186060A1 - マグネトプランバイト型六方晶フェライト磁性粉及びその製造方法並びに電波吸収体及びその製造方法 - Google Patents

マグネトプランバイト型六方晶フェライト磁性粉及びその製造方法並びに電波吸収体及びその製造方法 Download PDF

Info

Publication number
WO2022186060A1
WO2022186060A1 PCT/JP2022/007750 JP2022007750W WO2022186060A1 WO 2022186060 A1 WO2022186060 A1 WO 2022186060A1 JP 2022007750 W JP2022007750 W JP 2022007750W WO 2022186060 A1 WO2022186060 A1 WO 2022186060A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic powder
magnetoplumbite
hexagonal ferrite
type hexagonal
ferrite magnetic
Prior art date
Application number
PCT/JP2022/007750
Other languages
English (en)
French (fr)
Inventor
秀宜 山地
広海 鈴木
Original Assignee
Dowaエレクトロニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022025973A external-priority patent/JP7196345B6/ja
Application filed by Dowaエレクトロニクス株式会社 filed Critical Dowaエレクトロニクス株式会社
Priority to CN202280019170.7A priority Critical patent/CN116964696A/zh
Publication of WO2022186060A1 publication Critical patent/WO2022186060A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/10Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure
    • H01F1/11Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles
    • H01F1/113Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials non-metallic substances, e.g. ferrites, e.g. [(Ba,Sr)O(Fe2O3)6] ferrites with hexagonal structure in the form of particles in a bonding agent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields

Definitions

  • the present invention relates to a magnetoplumbite-type hexagonal ferrite magnetic powder and a method for producing the same, and also to a radio wave absorber containing the magnetoplumbite-type hexagonal ferrite magnetic powder and a method for producing the same.
  • radio waves in the GHz band have come to be used for various purposes.
  • Applications using such high-frequency technology include, for example, mobile phones, wireless LANs, satellite broadcasting, intelligent transportation systems, non-stop automatic toll collection systems (ETC), and automobile assisted road systems (AHS).
  • ETC non-stop automatic toll collection systems
  • AHS automobile assisted road systems
  • EMC electromagnetic compatibility
  • One effective method is to use a radio wave absorber to absorb unnecessary radio waves to prevent reflection and penetration of radio waves.
  • Patent Document 1 discloses a composition formula AFe (12-x) Al x O 19 (where A is one or more of Sr, Ba, Ca and Pb, x: 1. 0 to 2.2), which is a magnetoplumbite-type hexagonal ferrite powder having a peak particle size of 10 ⁇ m or more in the laser diffraction scattering particle size distribution, and has a frequency of around 76 GHz. is disclosed for use in a radio wave absorber for absorbing radio waves of Further, Examples disclose a strontium ferrite particle powder in which A is Sr in the composition formula. Further, as a method for producing strontium ferrite particle powder, a production method is disclosed in which powders as raw materials for strontium ferrite particle powder are mixed, fired, and then pulverized.
  • radio wave absorbers for absorbing radio waves (millimeter waves) in the 60 to 90 GHz band, including the 76 GHz band, are being studied for practical use in automotive radar applications for detecting information such as inter-vehicle distance.
  • radio wave absorber in order to put the radio wave absorber into practical use, it is required to stably exhibit its radio wave absorption ability in a wide temperature range from room temperature to high temperatures of 100° C. or higher.
  • the radio wave absorption capacity has a maximum value in a certain frequency range, and the amount of absorption tends to gradually decrease outside that frequency range. It is desirable that the change width of the maximum value of the frequency with respect to temperature is small.
  • the magnetoplumbite-type hexagonal ferrite magnetic powder of Patent Document 1 is a material that has a radio wave absorption ability in the vicinity of 76 GHz, but there is a problem that the peak frequency in a high temperature range greatly deviates from that at room temperature. .
  • a magnetoplumbite-type hexagonal ferrite magnetic powder that has a radio wave absorption capability in the 60 to 90 GHz band including the 76 GHz band and has a small peak frequency change in a wide temperature range, a method for producing the same, and the magnetic powder are used.
  • An object of the present invention is to provide a radio wave absorber and a manufacturing method thereof.
  • the resonance frequency of the radio wave absorber is a value unique to the composition, and even in the magnetoplumbite-type hexagonal ferrite magnetic powder, different resonance frequencies are exhibited depending on each substitution element and substitution ratio.
  • a magnetoplumbite-type hexagonal ferrite magnetic powder having a general formula representing the atomic ratio of metal elements: A (1-x) La x Fe (n-y-z) Al y Co z (where, A is one or more selected from the group consisting of Sr, Ba and Ca, and 0.01 ⁇ x ⁇ 0.70, 1.00 ⁇ y ⁇ 2.20, 11.00 ⁇ n ⁇ 12.50 , 0.00 ⁇ z ⁇ 1.00).
  • the mode diameter is 1.0 ⁇ m or less, and the mode diameter is smaller than the cumulative 50% particle diameter (d 50 ).
  • a radio wave absorber comprising the magnetoplumbite-type hexagonal ferrite magnetic powder according to any one of (1) to (11) and a resin.
  • the magnetoplumbite-type hexagonal ferrite magnetic powder has a general formula: A (1-x) La xFe (n-y-z) AlyCoz (where A is one or more selected from the group consisting of Sr, Ba and Ca, 0.01 ⁇ x ⁇ 0.70, 1.00 ⁇ y ⁇ 2.20, 11.00 ⁇ n ⁇ 12.50, 0.00 ⁇ z ⁇ 1.00).
  • the cumulative 50% particle diameter (D 50 ) of the magnetoplumbite-type hexagonal ferrite magnetic powder measured by a laser diffraction particle size distribution measuring device on a volume basis is 1.
  • a method for producing a radio wave absorber comprising the step of kneading the magnetoplumbite-type hexagonal ferrite magnetic powder obtained by the production method described in (13) to (17) above with a resin, followed by molding.
  • a magnetoplumbite-type hexagonal ferrite magnetic powder that has an electromagnetic wave absorption capability in the 60 to 90 GHz band including the 76 GHz band and has a small change in peak frequency over a wide temperature range, a method for producing the same, and the magnetic powder. It is possible to provide a radio wave absorber using and a method for manufacturing the same.
  • FIG. 10 is a profile showing radio wave absorption in a frequency band including the 76 GHz band of Comparative Example 2, Examples 7 and 12.
  • FIG. 10 is a profile showing radio wave absorption in a frequency band including the 76 GHz band of Comparative Example 2, Examples 7 and 12.
  • the magnetoplumbite-type hexagonal ferrite magnetic powder of the present invention has a general formula showing the atomic ratio of metal elements: A (1-x) La x Fe (n-y-z) Al y Co z (where A is , Sr, Ba and Ca, and 0.01 ⁇ x ⁇ 0.7, 1.0 ⁇ y ⁇ 2.2, 11.0 ⁇ n ⁇ 12.5, 0 .0 ⁇ z ⁇ 1.0, more specifically 0.01 ⁇ x ⁇ 0.70, 1.00 ⁇ y ⁇ 2.20, 11.00 ⁇ n ⁇ 12.50, 0.00 ⁇ z ⁇ 1.00) as a magnetoplumbite-type hexagonal ferrite magnetic powder as a composite oxide.
  • A is , Sr, Ba and Ca
  • the magnetoplumbite-type hexagonal ferrite magnetic powder of the present invention has a general formula showing the atomic ratio of metal elements: A (1-x) La x Fe (n-y-z) Al y Co z (where A is , Sr, Ba and Ca, and 0.01 ⁇ x ⁇ 0.70, 1.00 ⁇ y ⁇ 2.20, 11.00 ⁇ n ⁇ 12.50, 0 .00 ⁇ z ⁇ 1.00) and has a magnetoplumbite-type crystal structure.
  • the absorption frequency can be adjusted by replacing the Fe site with Al.
  • Al substitution alone shifts the absorption frequency to the high frequency side as the temperature rises, but by further substituting La for the Sr site, the temperature dependence of the adjusted absorption frequency can be reduced.
  • La for the Sr site and Co for the Fe site at the same time, the temperature dependence can be similarly reduced.
  • the value of x for La substitution is set to 0.01 or more, and the value of y is set to 0.01 or more for Al and Co substitution.
  • the value of z is 1.0 or more, and the value of z is 0.0 or more. More specifically, for La substitution, the value of x is 0.01 or more, and for Al and Co substitution, the value of y is 1.00 or more.
  • z is set to 0.00 or more.
  • the value of y is 2.2 or less and the value of z is 1.0 or less. is 2.20 or less, and the value of z is 1.00 or less.
  • x is preferably 0.03 or more, more preferably 0.1 or more, still more preferably 0.3 or more, and preferably 0.6 or less, further preferably 0.5 or less, more specifically 0.5. It is preferably 0.3 or more, more preferably 0.10 or more, still more preferably 0.30 or more, and preferably 0.60 or less, further preferably 0.50 or less.
  • the numerical range of y is preferably 1.1 or more and 1.9 or less, more preferably 1.4 or more and 1.7 or less, more specifically 1.10 or more and 1.90 or less. , and more preferably 1.40 or more and 1.70 or less.
  • the numerical range of z is preferably 0.0 or more and 0.5 or less, more preferably 0.0 or more and 0.4 or less, and more specifically 0.00 or more and 0.50 or less. and more preferably 0.00 or more and 0.40 or less.
  • the value of n in the above atomic ratio is set to 11.0 or more and 12.5 or less, more specifically 11.00 or more and 12.50.
  • the value of n is preferably 11.00 or more, preferably less than 12.00, and the value of n is 11.20 or more and 12. 0.30 or less, or 11.40 or more and 12.20 or less.
  • the absorption frequency of a radio wave absorber is unique to the composition formula of the magnetic powder that constitutes the radio wave absorber, and the element ratio indicated by the composition formula does not refer to the element ratio as a mixture, but to the Refers to the elemental ratio determined by the structure.
  • the ratio shown in the general formula of the atomic ratio of the metal elements in the present invention refers to the atomic ratio of the metal elements contained in the single-phase crystal structure of the magnetoplumbite-type hexagonal ferrite magnetic powder. It substitutes for the Sr site and the Fe site as a constituent of the plumbite type crystal structure.
  • the magnetoplumbite-type hexagonal ferrite magnetic powder of the present invention may contain unavoidable components such as impurities contained in raw materials and impurities derived from manufacturing equipment.
  • unavoidable components such as impurities contained in raw materials and impurities derived from manufacturing equipment.
  • examples of such components include oxides such as Mn.
  • the content of these is preferably suppressed to 0.40% by mass or less.
  • the above atomic ratios of metal elements are atomic ratios excluding unavoidable components.
  • the volume-based cumulative 50% particle size (D 50 ) measured with a laser diffraction particle size distribution analyzer can be used as an index of particle size.
  • the magnetoplumbite-type hexagonal ferrite magnetic powder of the present invention should have a cumulative 50% particle size (D 50 ) of 1 ⁇ m or more and 10 ⁇ m or less in order to reduce the thickness of the radio wave absorber sheet using the magnetic powder. , more preferably 1 ⁇ m or more and 5 ⁇ m or less, and even more preferably 2 ⁇ m or more and less than 3 ⁇ m.
  • the number-based mode diameter and cumulative 50% particle size (volume-based cumulative 50% particle size and In order to distinguish between them, it is indicated as d50 for convenience.Hereinafter, a lower case letter d is used for number-based particle size indication.) can also be used as an index of particle size.
  • the magnetoplumbite-type hexagonal ferrite magnetic powder of the present invention has a modal diameter of 1.0 ⁇ m or less in the number distribution from the viewpoint of facilitating uniformity of the thickness of the thin film when formed into a sheet, and It is preferable to make the mode diameter smaller than the diameter (d 50 ).
  • the specific surface area (BET) is preferably 0.5 m 2 /g or more and 8.0 m 2 /g or less. Further, the specific surface area (BET) is more preferably 0.6 m 2 /g or more and 3.0 m 2 /g or less, and further preferably 0.9 m 2 /g or more and 2.2 m 2 /g or less. .
  • the specific surface area increases as the particles are further pulverized or become small particles, but if the specific surface area exceeds 8.0 m 2 /g, the viscosity increases during mixing with the resin, making it difficult to mix and evenly disperse. I don't like it because it's easy.
  • a specific surface area of less than 0.5 m 2 /g means that there are many coarse particles, which is not preferable because there are many parts where the packing density becomes sparse when formed into a sheet. .
  • the number-based particle size distribution when the mode diameter is 1.0 ⁇ m or more or the mode diameter is larger than the cumulative 50% particle size (d 50 ), the number of small particles decreases, but the opposite Considering the filling properties of the particles when formed into a sheet, the number of particles that fill the gaps between large particles is reduced, which is not preferable.
  • the magnetoplumbite-type hexagonal ferrite magnetic powder of the present invention has, as a powder compact, a radio wave absorption capability in the 60 to 90 GHz band including the 76 GHz band, and is used as a radio wave absorber with a small change in peak frequency over a wide temperature range.
  • the radio wave absorbability was obtained by mixing 0.36 g of magnetoplumbite-type hexagonal ferrite magnetic powder and 0.84 g of microcrystalline cellulose and molding the mixed powder under pressure at 151 MPa. and measured using terahertz wave time domain spectroscopy.
  • X30 is 60 GHz or more and 90 GHz or less. preferable.
  • the frequency range R is preferably 2.5 GHz or less.
  • the frequency range R is more preferably 2.4 GHz or less, more preferably 2.0 GHz or less. and particularly preferably 1.0 GHz or less.
  • the powder compact made of the magnetoplumbite-type hexagonal ferrite magnetic powder of the present invention is mainly used as a radio wave absorber in the 60 to 90 GHz band including the 76 GHz band, it is required to have stable radio wave absorption characteristics over a wide range. Moreover, since it is used as a radio wave absorber, the transmission attenuation is preferably 6 dB or more at all peak frequencies.
  • a radio wave absorber can be produced by kneading the magnetoplumbite-type hexagonal ferrite magnetic powder of the embodiment described above with a resin.
  • This radio wave absorber can be made in various shapes depending on the application.
  • magnetoplumbite-type hexagonal ferrite magnetic powder is used in resin.
  • the radio wave absorber material (kneaded product) obtained by kneading with is rolled to a desired thickness (preferably 0.1 to 4.0 mm, more preferably 0.2 to 2.5 mm) with a rolling roll. .
  • the content of the magnetoplumbite-type hexagonal ferrite magnetic powder in the radio wave absorber material (kneaded material) is 70 to 70 to obtain a radio wave absorber having a radio wave absorption capability in the 60 to 90 GHz band including the 76 GHz band. 95% by mass is preferred.
  • the resin content in the radio wave absorber material (kneaded material) is 5 to 30% by mass in order to sufficiently disperse the magnetoplumbite-type hexagonal ferrite magnetic powder in the radio wave absorber material (kneaded material). is preferred.
  • the total content of the magnetoplumbite-type hexagonal ferrite magnetic powder and the resin in the radio wave absorber material (kneaded material) is preferably 99% by mass or more.
  • the method for producing the magnetoplumbite-type hexagonal ferrite magnetic powder of the present invention comprises a raw material mixing step of mixing raw material powders to obtain a raw material mixture; a firing step of firing the raw material mixture to obtain a fired product; and a pulverizing step of pulverizing the fired product to obtain the magnetoplumbite-type hexagonal ferrite magnetic powder, wherein the magnetoplumbite-type hexagonal ferrite magnetic powder has a general formula showing the atomic ratio of the metal elements: A ( 1-x) La x Fe (n-y-z) Al y Co z (Here, A is one or more selected from the group consisting of Sr, Ba and Ca, and 0.01 ⁇ x ⁇ 0.
  • the raw material powder is not particularly limited, but powders such as SrCO3 , BaCO3, BaCl2.2H2O , CaCO3 , La ( OH) 3 , Fe2O3 , Al2O3 and Co3O4 can be used. can be done.
  • the method of mixing the raw material powders is not particularly limited, and mixing can be performed by a known mixing apparatus such as a Henschel mixer.
  • a step of granulating the obtained raw material mixture to obtain a compact may also be provided.
  • the granulation method is not particularly limited, and any method can be used to form pellets.
  • a drying step may be further provided thereafter.
  • the obtained raw material mixture is fired in a firing step to obtain a fired product.
  • Firing is preferably carried out in an arbitrary firing furnace at a temperature of 1150°C or higher and 1400°C or lower, more preferably 1170°C or higher and 1350°C or lower, and even more preferably 1200°C or higher and 1300°C or lower.
  • the firing container can be filled with raw materials.
  • the atmosphere during firing is preferably an oxidizing atmosphere, and the oxidizing atmosphere is preferably air, oxygen, a mixed gas of oxygen and nitrogen, a mixed gas of oxygen and a rare gas, or the like.
  • the obtained fired product is pulverized in a pulverizing step to obtain a magnetoplumbite-type hexagonal ferrite magnetic powder.
  • coarse pulverization and fine pulverization may be performed.
  • Coarse pulverization here means pulverizing the fired product, and any pulverization method such as impact pulverization with a hammer mill can be used.
  • fine pulverization means making the fired product after coarse pulverization into a finer state, and any method such as wet pulverization with an attritor can be used.
  • the slurry after wet pulverization can be solid-liquid separated and dried by any method to obtain magnetoplumbite-type hexagonal ferrite magnetic powder.
  • the magnetoplumbite-type hexagonal ferrite magnetic powder obtained in the pulverization step can be heat-treated by any heat treatment method in the heat treatment step.
  • the heat treatment temperature is preferably 850° C. or higher and 1000° C. or lower, more preferably 870° C. or higher and 930° C. or lower.
  • the atmosphere during the heat treatment is preferably an oxidizing atmosphere, more preferably an air atmosphere.
  • the obtained magnetoplumbite-type hexagonal ferrite magnetic powder can be kneaded with a resin to produce a radio wave absorber.
  • This radio wave absorber can be made in various shapes depending on the application.
  • magnetoplumbite-type hexagonal ferrite magnetic powder is used in resin.
  • the radio wave absorber material (kneaded product) obtained by kneading with is rolled to a desired thickness (preferably 0.1 to 4.0 mm, more preferably 0.2 to 2.5 mm) with a rolling roll. .
  • magnetoplumbite-type hexagonal ferrite magnetic powder and the method for producing the same according to the present invention will be described in detail below with reference to examples.
  • the specific surface area of the magnetoplumbite-type hexagonal magnetic powder was measured by the BET one-point method using a specific surface area measuring device (Macsorb model-1210 manufactured by Mountec Co., Ltd.).
  • composition analysis was performed using an induction plasma emission spectrometer ICP (720-ES) manufactured by Agilent Technologies. Measurement wavelengths were Sr: 216.596 nm, La: 408.671 nm, Fe: 259.940 nm, Al: 396.152 nm, Ba: 233.527 nm, Co: 230.786 nm.
  • ICP induction plasma emission spectrometer
  • VSM vibrating sample magnetometer
  • a mixed powder obtained by mixing 0.36 g of magnetoplumbite-type hexagonal magnetic powder and 0.84 g of microcrystalline cellulose was press-molded at 151 MPa to obtain a compact having a diameter of 13 mm.
  • the obtained green compact was subjected to transmission attenuation measurement by terahertz wave time domain spectroscopy to obtain the peak frequency of the green compact.
  • terahertz spectroscopic system TAS7400SL manufactured by Advantest Corporation
  • the observed signal waveform of the sample and the reference waveform of the blank are extended to 8448 ps and subjected to Fourier transform, and the ratio (Ssig/Sref) of the obtained Fourier spectra (respectively Ssig and Sref) is obtained, and placed on the sample holder.
  • the transmission attenuation of the placed compact was calculated.
  • profiles showing radio wave absorption in a frequency band including the 76 GHz band of Examples 7 and 12 and Comparative Example 2 are shown in FIG.
  • the fired sagger After granulating and molding the mixed powder thus obtained into pellets to obtain a molded body, 2 kg of the molded body is filled in a fired sagger, the fired sagger is placed in a box-shaped firing furnace, and placed in the atmosphere. It was fired by holding at 1279° C. for 4 hours. After roughly pulverizing the sintered body obtained by this sintering with a hammer mill, the obtained coarse powder is wet-pulverized for 70 minutes with an attritor using water as a solvent, and the obtained slurry is solid-liquid separated to obtain The resulting cake was dried and pulverized to obtain a magnetoplumbite-type hexagonal ferrite magnetic powder (hereinafter simply referred to as "magnetic powder").
  • magnetic powder magnetoplumbite-type hexagonal ferrite magnetic powder
  • composition analysis was first performed as an evaluation of physical property values, and the BET specific surface area and particle size distribution were determined, and X-ray diffraction (XRD) measurement was performed. Then, after measuring the magnetic properties and measuring the transmission attenuation of the green compact, the frequency range R was obtained. As a result of XRD measurement, it was confirmed that the magnetic powder obtained in this example had a magnetoplumbite-type crystal structure, and no crystal phase other than magnetoplumbite-type crystals was confirmed. Similar results were also obtained for Examples 2 to 32.
  • Example 2 The magnetic powder obtained in Example 1 was further heated in an air atmosphere at 900° C. for 20 minutes in an electric muffle furnace (FUW253PB manufactured by Advantech Toyo Co., Ltd.) to obtain a magnetic powder after heat treatment.
  • the magnetic powder thus obtained was subjected to composition analysis in the same manner as in Example 1 to determine the BET specific surface area and particle size distribution, and to X-ray diffraction (XRD) measurement. Then, after measuring the magnetic properties and measuring the transmission attenuation of the green compact, the frequency range R was determined.
  • XRD X-ray diffraction
  • a magnetic powder was produced under the same conditions as in Example 1, except that the ratio was set to 10 minutes, and the evaluation was performed under the same conditions as in Example 1.
  • Example 4 The magnetic powder obtained in Example 3 was further heat treated at 900° C. for 20 minutes to obtain magnetic powder after heat treatment. The obtained magnetic powder was evaluated under the same conditions as in Example 1.
  • a magnetic powder was produced under the same conditions as in Example 1, except that the ratio was set to 10 minutes, and the evaluation was performed under the same conditions as in Example 1.
  • Example 6 The magnetic powder obtained in Example 5 was further heat-treated at 900° C. for 20 minutes to obtain magnetic powder after heat treatment. The obtained magnetic powder was evaluated under the same conditions as in Example 1.
  • a magnetic powder was produced under the same conditions as in Example 1, except that the ratio was set to 10 minutes, and the evaluation was performed under the same conditions as in Example 1.
  • Example 8 The magnetic powder obtained in Example 7 was further heat treated at 900° C. for 20 minutes to obtain magnetic powder after heat treatment. The obtained magnetic powder was evaluated under the same conditions as in Example 1.
  • Sr:La:Fe:Al 0.61:0.39:9.45:1.56
  • the La raw material is La(OH) 3
  • a magnetic powder was produced under the same conditions as in Example 1, and evaluated under the same conditions as in Example 1, except that La 2 O 3 was used instead of , and the wet pulverization time after firing was set to 50 minutes.
  • Example 12 As raw material powders, 595 g of SrCO3 with a purity of 99% by mass, 469 g of Al2O3 with a purity of 99.9% by mass , 4487 g of Fe2O3 with a purity of 99% by mass , and La with a purity of 99.99% by mass 316 g of (OH) 3 and 133 g of Co 3 O 4 with a purity of 99.99 mass % were weighed. This raw material powder was mixed with a Henschel mixer, and then further mixed with a vibration mill by a dry method.
  • a magnetic powder was prepared under the same conditions as in Example 1 except that the time for wet pulverization after sintering was changed to 60 minutes, and the magnetic powder was evaluated under the same conditions as in Example 1.
  • Example 13 The magnetic powder obtained in Example 12 was further heat treated at 900° C. for 20 minutes to obtain magnetic powder after heat treatment. The obtained magnetic powder was evaluated under the same conditions as in Example 1.
  • Example 14 As raw material powders, 467 g of SrCO 3 with a purity of 99% by mass, 454 g of Al 2 O 3 with a purity of 99.9% by mass, 4508 g of Fe 2 O 3 with a purity of 99% by mass, and La with a purity of 99.99% by mass 410 g of (OH) 3 and 160 g of BaCl 2 .2H 2 O with a purity of 99 mass % were weighed. This raw material powder was mixed with a Henschel mixer, and then further mixed with a vibration mill by a dry method.
  • a magnetic powder was prepared under the same conditions as in Example 1, and evaluated under the same conditions as in Example 1, except that the wet pulverization time after sintering was 55 minutes and the sintering temperature was 1270°C.
  • Example 16 A magnetic powder was produced under the same conditions as in Example 15, and evaluated under the same conditions as in Example 1, except that the wet pulverization time after firing was set to 20 minutes.
  • Example 17 A magnetic powder was produced under the same conditions as in Example 15, and evaluated under the same conditions as in Example 1, except that the time for wet pulverization after firing was set to 30 minutes.
  • Example 18 A magnetic powder was prepared under the same conditions as in Example 15, and evaluated under the same conditions as in Example 1, except that the wet pulverization time after firing was set to 40 minutes.
  • Example 19 A magnetic powder was produced under the same conditions as in Example 15, and evaluated under the same conditions as in Example 1, except that the wet pulverization time after firing was set to 55 minutes.
  • Example 21 A magnetic powder was prepared under the same conditions as in Example 20, and evaluated under the same conditions as in Example 1, except that the wet pulverization time after firing was set to 20 minutes.
  • Example 22 A magnetic powder was prepared under the same conditions as in Example 20, and evaluated under the same conditions as in Example 1, except that the wet pulverization time after firing was set to 30 minutes.
  • Example 23 A magnetic powder was produced under the same conditions as in Example 20, and evaluated under the same conditions as in Example 1, except that the time for wet pulverization after firing was set to 40 minutes.
  • Example 24 A magnetic powder was produced under the same conditions as in Example 20, and evaluated under the same conditions as in Example 1, except that the time for wet pulverization after firing was set to 50 minutes.
  • Example 25 A magnetic powder was produced under the same conditions as in Example 1, except that wet pulverization after sintering was not performed, and was evaluated under the same conditions as in Example 1.
  • Example 26 As raw material powders, 595 g of SrCO3 with a purity of 99% by mass, 469 g of Al2O3 with a purity of 99.9% by mass , 4596 g of Fe2O3 with a purity of 99% by mass , and La with a purity of 99.99% by mass 316 g of (OH) 3 and 22 g of Co 3 O 4 with a purity of 99.99 mass % were weighed. This raw material powder was mixed with a Henschel mixer, and then further mixed with a vibration mill by a dry method.
  • a magnetic powder was prepared under the same conditions as in Example 1 except that the time for wet pulverization after sintering was changed to 60 minutes, and the magnetic powder was evaluated under the same conditions as in Example 1.
  • Example 27 As raw material powders, 507 g of SrCO3 with a purity of 99% by mass , 454 g of Al2O3 with a purity of 99.9% by mass , 4508 g of Fe2O3 with a purity of 99% by mass, and La with a purity of 99.99% by mass 410 g of (OH) 3 and 84 g of BaCl 2 .2H 2 O with a purity of 99 mass % were weighed. This raw material powder was mixed with a Henschel mixer, and then further mixed with a vibration mill by a dry method.
  • a magnetic powder was prepared under the same conditions as in Example 1 except that the time for wet pulverization after sintering was set to 55 minutes, and the magnetic powder was evaluated under the same conditions as in Example 1.
  • Example 28 As raw material powders, 378 g of SrCO3 with a purity of 99% by mass , 454 g of Al2O3 with a purity of 99.9% by mass , 4508 g of Fe2O3 with a purity of 99% by mass, and La with a purity of 99.99% by mass 410 g of (OH) 3 and 299 g of BaCl 2 .2H 2 O with a purity of 99 mass % were weighed. This raw material powder was mixed with a Henschel mixer, and then further mixed with a vibration mill by a dry method.
  • a magnetic powder was prepared under the same conditions as in Example 1 except that the time for wet pulverization after sintering was set to 55 minutes, and the magnetic powder was evaluated under the same conditions as in Example 1.
  • Example 29 A magnetic powder was prepared under the same conditions as in Example 15, and evaluated under the same conditions as in Example 1, except that wet pulverization after sintering was not performed.
  • Example 30 A magnetic powder was produced under the same conditions as in Example 15, and evaluated under the same conditions as in Example 1, except that the wet pulverization time after sintering was set to 120 minutes.
  • Example 31 A magnetic powder was prepared under the same conditions as in Example 20, and evaluated under the same conditions as in Example 1, except that wet pulverization after sintering was not performed.
  • Table 1 shows the production conditions, the evaluation results of the magnetic powder, and the radio wave absorption characteristic measurement results in the above examples and comparative examples.
  • the volume-based particle size distribution D50 is shown in Table 1
  • the volume-based D10, D90 and mode diameter, and the number - based d10, d50 , d90 and mode diameter Measurement results The measurement results of Examples 29, 15 to 19, and 30 are shown in Table 2 as representative examples.
  • the slight deviation between the molar ratio in the raw material powder shown in each example and comparative example and the molar ratio in the composition formula shown in the evaluation results of the magnetic powder in Table 1 is due to impurities in the manufacturing process. are due to the unavoidable contamination of
  • the frequency range R of the green compact can be reduced by substituting even a small amount of La from Sr. It can be seen that when the quantity x is 0.05, the frequency range R can be 2.5 GHz. Further, comparing Example 1 and Comparative Example 1 in the Sr system, it can be seen that the frequency range R can be set to 2.0 GHz when the substitution amount x of La is 0.10. Furthermore, in the comparison between Example 1 and Comparative Example 1 in the system of Sr, and in the comparison between Example 1 and Comparative Example 2 further having Ba, by substituting La, the frequency range R of the powder compact was reduced to 2.5. It can be seen that it can be set to 0 GHz or less.
  • the frequency range R can be reduced to 2.0 GHz or less even if the heat treatment is applied to the magnetic powder that has been subjected to the same treatment up to the pulverization step, provided that the charged composition is the same.
  • the frequency range R of the powder compact can be suppressed to 2.5 GHz or less while controlling the frequency peak by the amount of Al substituted.
  • the frequency range R of the powder compact can be suppressed to 2.4 GHz or less. .0 GHz or less.
  • the magnetoplumbite type has a radio wave absorption capacity in the 60 to 90 GHz band including the 76 GHz band and has a small change in peak frequency in a wide temperature range. It is possible to provide a hexagonal ferrite magnetic powder, a method for producing the same, and a radio wave absorber using the magnetic powder and a method for producing the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Hard Magnetic Materials (AREA)
  • Compounds Of Iron (AREA)

Abstract

76GHz帯を含む60~90GHz帯域の電波吸収能を有し、広い温度域でピーク周波数の変化の小さいマグネトプランバイト型六方晶フェライト磁性粉及びその製造方法並びに当該磁性粉を用いた電波吸収体及びその製造方法を提供する。マグネトプランバイト型六方晶フェライト磁性粉であって、金属元素の原子比を示す一般式:A(1-x)LaFe(n-y-z)AlCo(ここで、Aは、Sr、Ba及びCaからなる群より選択される1種以上であり、0.01≦x≦0.70、1.00≦y≦2.20、11.00≦n≦12.50、0.00≦z≦1.00である)を満たす、マグネトプランバイト型六方晶フェライト磁性粉。

Description

マグネトプランバイト型六方晶フェライト磁性粉及びその製造方法並びに電波吸収体及びその製造方法
 本発明は、マグネトプランバイト型六方晶フェライト磁性粉及びその製造方法に関し、また、マグネトプランバイト型六方晶フェライト磁性粉を含む電波吸収体及びその製造方法に関する。
 近年、情報通信技術の高度化に伴い、GHz帯域の電波が種々の用途で使用されるようになってきた。このような高周波技術を用いる用途としては、例えば携帯電話、無線LAN、衛星放送、高度道路交通システム、ノンストップ自動料金徴収システム(ETC)、自動車走行支援道路システム(AHS)などが挙げられる。このように高周波域での電波利用形態が多様化すると、電子部品同士の干渉による故障、誤動作、機能不全などが懸念され、その電磁両立性(EMC)対策が重要となってくる。その1つとして、電波吸収体を用いて不要な電波を吸収し、電波の反射及び侵入を防ぐ方法が有効である。
 このような電波吸収体用磁性粉体として、特許文献1には、組成式AFe(12-x)Al19(ただしAはSr、Ba、Ca及びPbの1種以上、x:1.0~2.2)で表されるマグネトプランバイト型六方晶フェライトの粉体であって、レーザー回折散乱粒度分布のピーク粒径が10μm以上であるストロンチウムフェライト粒子粉末が開示されており、76GHz付近の電波を吸収するための電波吸収体に使用することが開示されている。また、実施例には、前記組成式においてAがSrである、ストロンチウムフェライト粒子粉末が開示されている。また、ストロンチウムフェライト粒子粉末の製造方法として、ストロンチウムフェライト粒子粉末の原料となる粉末を混合し、焼成した後に粉砕する製造方法が開示されている。
特開2007-250823号公報
 上述したように、様々な用途に応じて周波数帯が割り振られ、各周波数帯に対応する電波吸収体が開発されている。また、76GHz帯を含む60~90GHz帯域の電波(ミリ波)を吸収するための電波吸収体は車間距離などの情報を検知する車載レーダー用途での実用化が検討されている。しかしながら、電波吸収体の実用化にあたっては、常温から100℃以上の高温にわたる広い温度域において、安定して電波吸収能を発揮することが求められている。一般に、電波吸収能は、ある周波数域で極大値を取り、その周波数域から外れると徐々に吸収量が減衰する傾向がみられるため、広い温度範囲で安定した電波吸収能を発揮するには、温度に対する周波数の極大値の変化幅が小さいことが望ましい。
 この点において、特許文献1のマグネトプランバイト型六方晶フェライト磁性粉は、76GHz付近の電波吸収能を有する材料であるが、高温域においてピーク周波数が常温とは大きくずれてしまう問題点があった。本発明では、76GHz帯を含む60~90GHz帯域の電波吸収能を有し、広い温度域でピーク周波数の変化の小さいマグネトプランバイト型六方晶フェライト磁性粉及びその製造方法並びに当該磁性粉を用いた電波吸収体及びその製造方法を提供することを目的とする。
 上記課題を解決すべく本発明者らは鋭意検討した。そして、電波吸収体の共鳴周波数は組成に固有の値であり、マグネトプランバイト型六方晶フェライト磁性粉においても、各置換元素及び置換割合により異なる共鳴周波数を示すところ、マグネトプランバイト型六方晶フェライト磁性粉の単相の結晶構造の中に含まれる金属元素の原子比を示す一般式:A(1-x)LaFe(n-y-z)AlCo(式中、AはSr、Ba及びCaからなる群より選択される1種以上であり、0.01≦x≦0.70、1.00≦y≦2.20、11.00≦n≦12.50、0.00≦z≦1.00である)を満たすマグネトプランバイト型六方晶フェライト磁性粉において、広い温度域でピーク周波数の変化が小さいことを確認した。すなわち本発明の要旨構成は以下のとおりである。
(1)マグネトプランバイト型六方晶フェライト磁性粉であって、金属元素の原子比を示す一般式:A(1-x)LaFe(n-y-z)AlCo(ここで、Aは、Sr、Ba及びCaからなる群より選択される1種以上であり、0.01≦x≦0.70、1.00≦y≦2.20、11.00≦n≦12.50、0.00≦z≦1.00である)を満たす、マグネトプランバイト型六方晶フェライト磁性粉。
(2)前記xの範囲が、
 0.03≦x≦0.70である、
 前記(1)に記載のマグネトプランバイト型六方晶フェライト磁性粉。
(3)前記xの範囲が、
 0.10≦x≦0.70である、
 前記(1)に記載のマグネトプランバイト型六方晶フェライト磁性粉。
(4)レーザー回折式粒度分布測定装置で測定された体積基準での粒度分布において、累積50%粒径(D50)が、1.0μm以上10.0μm以下である、前記(1)~(3)のいずれかに記載の、マグネトプランバイト型六方晶フェライト磁性粉。
(5)レーザー回折式粒度分布測定装置で測定された体積基準での粒度分布において、累積50%粒径(D50)が、1.0μm以上5.0μm以下である、前記(4)に記載の、マグネトプランバイト型六方晶フェライト磁性粉。
(6)前記マグネトプランバイト型六方晶フェライト磁性粉0.36gと微結晶セルロース0.84gとを混合して得られた混合粉を151MPaで加圧成形して直径13mmの圧粉体を作製し、得られた圧粉体についてテラヘルツ波時間領域分光法を用いて30℃、60℃、90℃及び120℃の各温度における透過減衰量を測定し、それぞれのピーク周波数をX30、X60、X90及びX120としたとき、X30、X60、X90及びX120の最大値と最小値の差である周波数範囲Rが2.5GHz以下である、前記(1)~(5)のいずれかに記載のマグネトプランバイト型六方晶フェライト磁性粉。
(7)前記周波数範囲Rが、2.5GHz以下である、(6)に記載のマグネトプランバイト型六方晶フェライト磁性粉。
(8)前記金属元素Aは、Sr、Baから選択される1種類以上である、前記(1)~(7)のいずれかに記載のマグネトプランバイト型六方晶フェライト磁性粉。
(9)比表面積が0.5m/g以上8.0m/g以下である、請求項1~8のいずれか一項に記載のマグネトプランバイト型六方晶フェライト磁性粉。
(10)レーザー回折式粒度分布測定装置で測定された個数基準での粒度分布において、最頻径が1.0μm以下であり、かつ最頻径が累積50%粒径(d50)より小さい、請求項1~9のいずれか一項に記載のマグネトプランバイト型六方晶フェライト磁性粉。
(11)前記nの範囲が、
 11.00≦n<12.00である、
請求項1~10のいずれか一項に記載のマグネトプランバイト型六方晶フェライト磁性粉。
(12)前記(1)~(11)のいずれかに記載のマグネトプランバイト型六方晶フェライト磁性粉と樹脂とを含む、電波吸収体。
(13)マグネトプランバイト型六方晶フェライト磁性粉の原料となる粉末を混合して原料混合物を得る原料混合工程と、前記原料混合物を焼成して焼成品を得る焼成工程と、前記焼成品を粉砕して前記マグネトプランバイト型六方晶フェライト磁性粉を得る粉砕工程と、を含み、前記マグネトプランバイト型六方晶フェライト磁性粉が、金属元素の原子比を示す一般式:A(1-x)LaFe(n-y-z)AlCo(ここで、AはSr、Ba及びCaからなる群より選択される1種以上であり、0.01≦x≦0.70、1.00≦y≦2.20、11.00≦n≦12.50、0.00≦z≦1.00である)を満たす、マグネトプランバイト型六方晶フェライト磁性粉の製造方法。
(14)前記xの範囲が、0.03≦x≦0.70である、(13)に記載のマグネトプランバイト型六方晶フェライト磁性粉の製造方法。
(15)前記xの範囲が、0.10≦x≦0.70である、(13)に記載のマグネトプランバイト型六方晶フェライト磁性粉の製造方法。
(16)前記粉砕工程において、前記マグネトプランバイト型六方晶フェライト磁性粉のレーザー回折式粒度分布測定装置で測定された体積基準での粒度分布において、累積50%粒径(D50)が、1.0μm以上10.0μm以下となるように粉砕する、前記(13)~(15)のいずれか一項に記載のマグネトプランバイト型六方晶フェライト磁性粉の製造方法。
(17)前記粉砕工程の後に、さらに熱処理を含む、前記(13)~(16)のいずれか一項に記載のマグネトプランバイト型六方晶フェライト磁性粉の製造方法。
(18)前記(13)~(17)に記載の製造方法により得られたマグネトプランバイト型六方晶フェライト磁性粉と樹脂とを混練した後に成形する工程を含む、電波吸収体の製造方法。
 本発明によれば、76GHz帯を含む60~90GHz帯域の電波吸収能を有し、広い温度域でピーク周波数の変化の小さいマグネトプランバイト型六方晶フェライト磁性粉及びその製造方法、並びに当該磁性粉を用いた電波吸収体及びその製造方法を提供することができる。
本発明の一実施形態による製造フローを説明する図である。 比較例2、実施例7及び12の76GHz帯を含む周波数帯域における電波吸収を示したプロファイルである。
(マグネトプランバイト型六方晶フェライト磁性粉)
 本発明のマグネトプランバイト型六方晶フェライト磁性粉は、金属元素の原子比を示す一般式:A(1-x)LaFe(n-y-z)AlCo(ここで、Aは、Sr、Ba及びCaからなる群より選択される1種以上であり、0.01≦x≦0.7、1.0≦y≦2.2、11.0≦n≦12.5、0.0≦z≦1.0であり、より具体的には0.01≦x≦0.70、1.00≦y≦2.20、11.00≦n≦12.50、0.00≦z≦1.00である)を満たす、複合酸化物としてのマグネトプランバイト型六方晶フェライト磁性粉である。以下で、本発明のマグネトプランバイト型六方晶フェライト磁性粉の組成、粒度分布等の態様について説明する。
[原子比]
 本発明のマグネトプランバイト型六方晶フェライト磁性粉は、金属元素の原子比を示す一般式:A(1-x)LaFe(n-y-z)AlCo(ここで、Aは、Sr、Ba及びCaからなる群より選択される1種以上であり、0.01≦x≦0.70、1.00≦y≦2.20、11.00≦n≦12.50、0.00≦z≦1.00である)である、マグネトプランバイト型の結晶構造を有する六方晶フェライト磁性粉である。
 本発明によれば、マグネトプランバイト型の結晶構造を骨格として、一般的に知られるストロンチウムフェライト(SrFe1219)を例とした場合に、上記一般式で示される各元素による置換の効果は以下のように説明できる。まず、FeサイトをAlで置換することにより吸収周波数を調整することができる。ここで、Al置換単独では温度上昇に伴い吸収周波数が高周波側へシフトしてしまうところ、さらにSrサイトをLaで置換することにより、調整した吸収周波数の温度依存性を小さくすることができる。また、SrサイトをLaで置換することと同時にFeサイトをCoで置換することでも、同様に温度依存性を小さくすることができる。このような原理により、76GHz帯を含む60~90GHz帯域の電波吸収能を有し、広い温度域でピーク周波数の変化の小さいマグネトプランバイト型六方晶フェライト磁性粉を得ることができる。
 ピーク周波数の制御及びピーク周波数の温度依存性を小さくする効果を得るため、上記原子比を示す一般式において、La置換に関し、xの値を0.01以上とし、Al、Co置換に関し、yの値を1.0以上、zの値を0.0以上とし、より具体的にはLa置換に関し、xの値を0.01以上とし、Al、Co置換に関し、yの値を1.00以上、zの値を0.00以上とする。
 一方、La、Al、Coの添加が過剰になると結晶構造の維持が困難となるため、上記原子比を示す一般式において、La置換に関し、xの値を0.7以下とし、Al、Co置換に関し、yの値を2.2以下、zの値を1.0以下とし、より具体的には、La置換に関し、xの値を0.70以下とし、Al、Co置換に関し、yの値を2.20以下、zの値を1.00以下とする。
 xは0.03以上が好ましく、0.1以上がより好ましく、0.3以上がさらに好ましく、また、0.6以下が好ましく、0.5以下がさらに好ましく、より具体的には、0.03以上が好ましく、0.10以上がより好ましく、0.30以上がさらに好ましく、また、0.60以下が好ましく、0.50以下がさらに好ましい。ここで、La置換による効果は顕著であるため、xの値は0.01以上0.10以下の範囲であっても一定の効果を有する。
 yの数値範囲は1.1以上1.9以下であることが好ましく、1.4以上1.7以下であることがさらに好ましく、より具体的には、1.10以上1.90以下であることが好ましく、1.40以上1.70以下であることがさらに好ましい。。
 zの数値範囲は0.0以上0.5以下であることが好ましく、0.0以上0.4以下であることがさらに好ましく、より具体的には、0.00以上0.50以下であることが好ましく、0.00以上0.40以下であることがさらに好ましい。
 マグネトプランバイト型の結晶構造を有する六方晶フェライト磁性粉を得るため、上記原子比におけるnの値は、11.0以上12.5以下とし、より具体的には、11.00以上12.50以下とする。焼成後の未反応物の残量を抑制する点から、nの値は、11.00以上であることが好ましく、12.00未満であることが好ましく、nの値は、11.20以上12.30以下であってもよいし、11.40以上12.20以下であってもよい。
 電波吸収体の吸収周波数は、電波吸収体を構成する磁性粉の組成式に固有のものであり、組成式によって示される元素比は、混合物としての元素比を指すのではなく、単一の結晶構造によって決まる元素比をいう。本発明における金属元素の原子比の一般式において示される比は、マグネトプランバイト型六方晶フェライト磁性粉の単相の結晶構造の中に含まれる金属元素の原子比を指し、各金属元素はマグネトプランバイト型結晶構造を構成するものとして、Srサイト及びFeサイトに置換しているものである。なお、原料として混合した各金属元素がマグネトプランバイト型六方晶フェライトの各サイトに置換せずに、その外側に別の形態(例えばAlなど)として残存した場合、最終的に得られる磁性粉混合物は所望の吸収周波数の領域から大きく外れた周波数となる。
 本発明のマグネトプランバイト型六方晶フェライト磁性粉には、原料に含まれる不純物や製造設備に由来する不純物等の不可避的な成分が含まれ得る。このような成分としては、例えばMn等の各酸化物が挙げられる。これらの含有量は、0.40質量%以下に抑制することが好ましい。上記の金属元素の原子比は、不可避的な成分を除いた原子比である。
[粒度分布]
 本発明のマグネトプランバイト型六方晶フェライト磁性粉において、レーザー回折式粒度分布測定装置で測定された体積基準での累積50%粒径(D50)を粒度の指標として用いることができる。本発明のマグネトプランバイト型六方晶フェライト磁性粉は、その磁性粉を使用した電波吸収体シートの薄層化を図るため、この累積50%粒径(D50)が1μm以上10μm以下であることが好ましく、1μm以上5μm以下であることがより好ましく、2μm以上3μm未満であることがさらに好ましい。また本発明のマグネトプランバイト型六方晶フェライト磁性粉において、レーザー回折式粒度分布測定装置で測定された個数基準での最頻径および累積50%粒径(体積基準での累積50%粒径と区別するため、便宜上d50と示す。以下、小文字dを個数基準の粒径表示に用いる。)を粒度の指標として用いることもできる。本発明のマグネトプランバイト型六方晶フェライト磁性粉は、シート化した際の薄膜の厚さを均一化しやすくする観点から、この個数分布における最頻径を1.0μm以下とし、かつ累積50%粒径(d50)よりも最頻径を小さくすることが好ましい。ここで、比表面積(BET)は、0.5m/g以上8.0m/g以下であることが好ましい。また、比表面積(BET)は、0.6m/g以上3.0m/g以下であることがより好ましく、0.9m/g以上2.2m/g以下であることがさらに好ましい。粒子の粉砕が進む、または小粒形になると比表面積が高くなるが、比表面積が8.0m/g超になると、樹脂との混合時に粘度が高くなり混合しにくく、均一な分散も困難となりやすいため、好ましくない。また、比表面積が0.5m/g未満となることは、粗大な粒子が多くなることを意味しており、シート化した際に充填密度が疎になる部分が多くなってしまうため好ましくない。同様に、個数基準での粒度分布において、最頻径が1.0μm以上であり、又は最頻径が累積50%粒径(d50)より大きいと、小粒形の粒子が少なくなるが、逆にシート化した際の粒子の充填性を考慮すると、大きな粒子同士の空隙間を埋める粒子が少なくなるため、好ましくない。比表面積を測定することで、レーザー回折式粒度分布測定装置では確認しづらい微粉の焼結状況を確認することができ、比表面積を上記数値範囲とすることで電波吸収体を作製する際に樹脂やゴム中にマグネトプランバイト型六方晶フェライト磁性粉を均一に分散させる効果が期待できる。
[透過減衰量]
 本発明のマグネトプランバイト型六方晶フェライト磁性粉は、圧粉体として76GHz帯を含む60~90GHz帯域の電波吸収能を有し、広い温度域でピーク周波数の変化の小さい電波吸収体として用いられる。ここで電波吸収能は、マグネトプランバイト型六方晶フェライト磁性粉0.36gと微結晶セルロース0.84gとを混合して得られた混合粉を151MPaで加圧成形して直径13mmの圧粉体を作製し、テラヘルツ波時間領域分光法を用いて測定する。測定される30℃、60℃、90℃及び120℃における透過減衰量のピーク周波数をそれぞれ、X30、X60、X90及びX120としたとき、X30は60GHz以上90GHz以下であることが好ましい。また、X30、X60、X90及びX120の最大値と最小値の差を周波数範囲Rとして定義した場合に、周波数範囲Rは2.5GHz以下であることが好ましい。そして、X30、X60、X90及びX120の最大値と最小値の差を周波数範囲Rとして定義した場合に、周波数範囲Rは2.4GHz以下であることがより好ましく、2.0GHz以下であることがさらに好ましく、1.0GHz以下であることが特に好ましい。本発明のマグネトプランバイト型六方晶フェライト磁性粉からなる圧粉体は主に76GHz帯を含む60~90GHz帯域の電波吸収体として用いられるため、幅広い範囲において安定した電波吸収特性が要求される。また、電波吸収体として用いることから、全てのピーク周波数において透過減衰量は6dB以上であることが好ましい。
(電波吸収体の作製及び評価)
 また、上述した実施の形態のマグネトプランバイト型六方晶フェライト磁性粉を樹脂と混練することにより、電波吸収体を製造することができる。この電波吸収体は、用途に応じて様々な形状にすることができるが、シート状の電波吸収体(電波吸収体シート)を作製する場合には、マグネトプランバイト型六方晶フェライト磁性粉を樹脂と混練して得られる電波吸収体素材(混練物)を圧延ロールなどにより所望の厚さ(好ましくは0.1~4.0mm、さらに好ましくは0.2~2.5mm)に圧延すればよい。また、電波吸収体素材(混練物)中のマグネトプランバイト型六方晶フェライト磁性粉の含有量は、76GHz帯を含む60~90GHz帯域の電波吸収能を有する電波吸収体を得るために、70~95質量%であるのが好ましい。また、電波吸収体素材(混練物)中の樹脂の含有量は、電波吸収体素材(混練物)中にマグネトプランバイト型六方晶フェライト磁性粉を十分に分散させるために、5~30質量%であるのが好ましい。また、電波吸収体素材(混練物)中のマグネトプランバイト型六方晶フェライト磁性粉と樹脂の合計の含有量は99質量%以上であるのが好ましい。
(マグネトプランバイト型六方晶フェライト磁性粉の製造方法)
 本発明のマグネトプランバイト型六方晶フェライト磁性粉の製造方法は、原料となる粉末を混合して原料混合物を得る原料混合工程と、前記原料混合物を焼成して焼成品を得る焼成工程と、前記焼成品を粉砕して前記マグネトプランバイト型六方晶フェライト磁性粉を得る粉砕工程と、を少なくとも備え、前記マグネトプランバイト型六方晶フェライト磁性粉が、金属元素の原子比を示す一般式:A(1-x)LaFe(n-y-z)AlCo(ここで、AはSr、Ba及びCaからなる群より選択される1種以上であり、0.01≦x≦0.7、1.0≦y≦2.2、11.0≦n≦12.5、0.0≦z≦1.0であり、より具体的には、0.01≦x≦0.70、1.00≦y≦2.20、11.00≦n≦12.50、0.00≦z≦1.00であり、さらに、xは0.03以上が好ましく、0.10以上がより好ましい)を満たす。
 図1を参照しつつ、以下で、本発明に従うマグネトプランバイト型六方晶フェライト磁性粉の製造方法の各工程を詳細に説明する。
[原料混合工程]
 まず、原料混合工程としては、金属元素の原子比を示す一般式:A(1-x)LaFe(n-y-z)AlCo(ここで、Aは、Sr、Ba及びCaからなる群より選択される1種以上であり、0.01≦x≦0.70、1.00≦y≦2.20、11.00≦n≦12.50、0.00≦z≦1.00である)を満たす、マグネトプランバイト型六方晶フェライト磁性粉の原料となる粉末を混合して原料混合物を得る。また、このときxは0.03以上が好ましく、0.10以上がより好ましい。原料粉末は特に限定されないが、SrCO、BaCO、BaCl・2HO、CaCO、La(OH)、Fe、Al及びCo等の粉末を用いることができる。また、原料粉末を混合する方法は特に限定されず、ヘンシェルミキサー等の公知の混合装置により混合を実施することができる。
 また、得られた原料混合物を造粒して成形体を得る工程を設けても良い。造粒方法は特に限定されず、任意の方法によりペレット状に成形することができる。造粒した成形体が水分を含んでいる場合は、その後にさらに乾燥工程を設けても良い。
[焼成工程]
 次いで、得られた原料混合物を焼成工程において焼成し、焼成品を得る。焼成は任意の焼成炉で1150℃以上1400℃以下の温度で実施することが好ましく、1170℃以上1350℃以下がより好ましく、1200℃以上1300℃以下がさらに好ましい。例えば箱型焼成炉を用いる場合においては、焼成用容器に原料を充填することができる。焼成時の雰囲気は、酸化性雰囲気とすることが好ましく、酸化性雰囲気としては、大気、酸素、酸素及び窒素の混合ガス、酸素及び希ガスの混合ガス等の雰囲気とすることが好ましい。
[粉砕工程]
 次に、得られた焼成品を粉砕工程において焼成品を粉砕して、マグネトプランバイト型六方晶フェライト磁性粉を得る。粉砕工程では、粗粉砕及び微粉砕を行ってもよい。ここで粗粉砕とは焼成品を解砕することであり、ハンマーミルによる衝撃粉砕など任意の粉砕方法を用いることができる。また、微粉砕とは粗粉砕後の焼成品をさらに微細な状態にすることであり、アトライターによる湿式粉砕など任意の方法を用いることができる。湿式粉砕後のスラリーは任意の方法で固液分離及び乾燥をすることにより、マグネトプランバイト型六方晶フェライト磁性粉を得ることができる。
 また、粉砕工程で得られたマグネトプランバイト型六方晶フェライト磁性粉に対し、熱処理工程において、任意の熱処理方法で熱処理することができる。熱処理の温度は850℃以上1000℃以下が好ましく、870℃以上930℃以下がより好ましい。また、当該熱処理時の雰囲気は酸化性雰囲気が好ましく、大気雰囲気がより好ましい。熱処理を施すことにより、微小なマグネトプランバイト型六方晶フェライト磁性粉が焼結し比表面積が小さくなるため、電波吸収体を作製する際に樹脂やゴム中にマグネトプランバイト型六方晶フェライト磁性粉を均一に分散させる効果が期待できる。また、吸収周波数への直接の影響は分かっていないが、熱処理することにより粉砕工程で発生した結晶の歪みが除去されて、保磁力Hc等の磁気特性が回復する。
(電波吸収体の作製)
 また、得られたマグネトプランバイト型六方晶フェライト磁性粉は、樹脂と混練することにより電波吸収体を製造することができる。この電波吸収体は、用途に応じて様々な形状にすることができるが、シート状の電波吸収体(電波吸収体シート)を作製する場合には、マグネトプランバイト型六方晶フェライト磁性粉を樹脂と混練して得られる電波吸収体素材(混練物)を圧延ロールなどにより所望の厚さ(好ましくは0.1~4.0mm、さらに好ましくは0.2~2.5mm)に圧延すればよい。
 以下、実施例により、本発明によるマグネトプランバイト型六方晶フェライト磁性粉及びその製造方法について詳細に説明する。
 実施例における評価は以下のようにして行った。
[粒度分布及び累積50%粒径]
 マグネトプランバイト型六方晶磁性粉の粒度分布は、レーザー回折式粒度分布測定装置(日本電子株式会社製のへロス粒度分布測定装置(HELOS&RODOS))を使用して、焦点距離200mm、分散圧1.7bar、吸引圧130mbarで乾式分散させて測定した。得られた測定結果から、体積基準の累積50%粒径(D50)及び個数基準の累積50%粒径(d50)を求めた。また、同様に累積10%粒径(D10及びd10)及び累積90%粒径(D90及びd90)を求め、併せて最頻径も確認した。
[比表面積測定]
 マグネトプランバイト型六方晶磁性粉の比表面積は比表面積測定装置(株式会社マウンテック製のMacsorb model-1210)を用いて、BET1点法で測定した。
[組成分析]
 組成分析は、アジレントテクノロジー株式会社製の高周波誘導プラズマ発光分析装置ICP(720-ES)を使用して行った。測定波長としては、Sr;216.596nm、La;408.671nm、Fe;259.940nm、Al;396.152nm、Ba;233.527nm、Co;230.786nmにて行った。
[磁気特性]
 マグネトプランバイト型六方晶磁性粉の磁気特性として、振動試料型磁力計(VSM)(東英工業株式会社製のVSM-P7)を使用して、印加磁場1193kA/m(15kOe)でM-H曲線を測定し、保磁力Hc、飽和磁化σs、角形比SQ、保磁力分布SFDを求めた。
[結晶構造]
 マグネトプランバイト型六方晶磁性粉のX線回折測定は、粉末X線回折装置(株式会社リガク製の水平型多目的X線回折装置Ultima IV)を使用して、線源をCuKα線、管電圧を40kV、管電流を40mA、測定範囲を2θ=20°~50°として、粉末X線回折法(XRD)により行った。
[電波吸収特性測定]
 マグネトプランバイト型六方晶磁性粉0.36gと微結晶セルロース0.84gとを混合して得られた混合粉を151MPaで加圧成形して直径13mmの圧粉体を得た。得られた圧粉体に対して、テラヘルツ波時間領域分光法にて透過減衰量測定を行い、圧粉体のピーク周波数を求めた。具体的には、アドバンテスト社製のテラヘルツ分光システムTAS7400SLを用い、圧粉体をサンプルホルダーに置いた場合とブランクの場合との測定をおこなった。アドバンテスト社製の温度制御モジュールTAS1030を用い、圧粉体を30℃、60℃、90℃、120℃に加熱し、各温度での透過減衰量測定を行い、50~100GHzで最大の透過減衰量を示す周波数(周波数ピーク値、単位:GHz)を求めた。用いた条件を以下に列挙する。
・サンプルホルダー径:φ10mm
・MeasurementMode:Transmission
・FrequencyResolution:1.9GHz
・VerticalAxis:Absorbance
・HorizontalAxis:Frequency[THz]
・CumulatedNumber(Sample):2048
・CumulatedNumber(Background):2048
 観測されたサンプルの信号波形及びブランクの参照波形を8448psまで拡張してフーリエ変換し、得られたフーリエスペクトル(各々、Ssig、Srefとする。)の比(Ssig/Sref)を求め、サンプルホルダーに置かれた圧粉体の透過減衰量を算定した。主な測定結果の例として、実施例7、12及び比較例2の76GHz帯を含む周波数帯域における電波吸収を示したプロファイルを図2に示す。
(実施例1)
 まず、原料粉末として純度99質量%のSrCOを636gと、純度99.9質量%のAlを392gと、純度99質量%のFeを3880gと、純度99.99質量%のLa(OH)を90g秤量した。この原料粉末をヘンシェルミキサーにより混合した後、さらに振動ミルにより乾式法で混合した。なお、この原料粉末中のSrとLaとFeとAlのモル比は、Sr:La:Fe:Al=0.90:0.10:10.15:1.62である。このようにして得られた混合粉末をペレット状に造粒成形して成形体を得た後、成形体2kgを焼成サヤに充填し、この焼成サヤを箱型焼成炉内に入れ、大気中において1279℃で4時間保持して焼成した。この焼成により得られた焼成体をハンマーミルで粗粉砕した後、得られた粗粉を、溶媒として水を使用したアトライターにより70分間湿式粉砕し、得られたスラリーを固液分離し、得られたケーキを乾燥させ、解砕してマグネトプランバイト型六方晶フェライト磁性粉(以下、単に「磁性粉」という)を得た。
 このようにして得られた磁性粉について、まず物性値の評価として組成分析を行い、BET比表面積及び粒度分布を求めるとともに、X線回折(XRD)測定を行った。そして、磁気特性の測定及び圧粉体の透過減衰量を測定した後、周波数範囲Rを求めた。XRD測定の結果、本実施例で得られた磁性粉はマグネトプランバイト型の結晶構造を持つことが確認され、マグネトプランバイト型結晶以外の結晶相は確認されなかった。また、この結果は実施例2~32についても同様の結果が得られた。
(実施例2)
 実施例1で得られた磁性粉をさらに電気マッフル炉(アドバンテック東洋株式会社製のFUW253PB)により大気雰囲気中において900℃で20分間し、熱処理後の磁性粉を得た。このようにして得られた磁性粉について、実施例1と同様に組成分析を行い、BET比表面積及び粒度分布を求めるとともに、X線回折(XRD)測定を行った。そして、磁気特性の測定及び圧粉体の透過減衰量を測定した後、周波数範囲Rを求めた。
(実施例3)
 原料粉末中のSrとLaとFeとAlのモル比を、Sr:La:Fe:Al=0.80:0.20:10.15:1.62とし、焼成後の湿式粉砕の時間を60分とした以外は、実施例1と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
(実施例4)
 実施例3で得られた磁性粉をさらに900℃で20分間熱処理し、熱処理後の磁性粉を得た。得られた磁性粉は、実施例1と同じ条件で評価した。
(実施例5)
 原料粉末中のSrとLaとFeとAlのモル比を、Sr:La:Fe:Al=0.71:0.29:10.15:1.62とし、焼成後の湿式粉砕の時間を35分とした以外は、実施例1と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
(実施例6)
 実施例5で得られた磁性粉をさらに900℃で20分間熱処理し、熱処理後の磁性粉を得た。得られた磁性粉は、実施例1と同じ条件で評価した。
(実施例7)
 原料粉末中のSrとLaとFeとAlのモル比を、Sr:La:Fe:Al=0.61:0.39:10.15:1.62とし、焼成後の湿式粉砕の時間を50分とした以外は、実施例1と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
(実施例8)
 実施例7で得られた磁性粉をさらに900℃で20分間熱処理し、熱処理後の磁性粉を得た。得られた磁性粉は、実施例1と同じ条件で評価した。
(実施例9)
 原料粉末中のSrとLaとFeとAlのモル比を、Sr:La:Fe:Al=0.61:0.39:9.45:1.56とし、La原料として、La(OH)に代えてLaを用い、焼成後の湿式粉砕の時間を50分とした以外は、実施例1と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
(実施例10)
 原料粉末中のSrとLaとFeとAlのモル比を、Sr:La:Fe:Al=0.51:0.49:10.15:1.62とし、焼成温度を1270℃、焼成後の湿式粉砕の時間を55分とした以外は、実施例1と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
(実施例11)
 原料粉末中のSrとLaとFeとAlのモル比を、Sr:La:Fe:Al=0.41:0.59:10.15:1.62とし、焼成温度を1270℃、焼成後の湿式粉砕の時間を60分とした以外は、実施例1と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
(実施例12)
 原料粉末として純度99質量%のSrCOを595gと、純度99.9質量%のAlを469gと、純度99質量%のFeを4487gと、純度99.99質量%のLa(OH)を316gと、純度99.99質量%のCoを133g秤量した。この原料粉末をヘンシェルミキサーにより混合した後、さらに振動ミルにより乾式法で混合した。なお、この原料粉末中のSrとLaとFeとAlのモル比は、Sr:La:Fe:Al:Co=0.71:0.29:9.84:1.63:0.29である。その他は焼成後の湿式粉砕の時間を60分とした以外は、実施例1と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
(実施例13)
 実施例12で得られた磁性粉をさらに900℃で20分間熱処理し、熱処理後の磁性粉を得た。得られた磁性粉は、実施例1と同じ条件で評価した。
(実施例14)
 原料粉末として純度99質量%のSrCOを467gと、純度99.9質量%のAlを454gと、純度99質量%のFeを4508gと、純度99.99質量%のLa(OH)を410gと、純度99質量%のBaCl・2HOを160g秤量した。この原料粉末をヘンシェルミキサーにより混合した後、さらに振動ミルにより乾式法で混合した。なお、この原料粉末中のSrとLaとFeとAlのモル比は、Sr:La:Ba:Fe:Al=0.53:0.36:0.11:9.41:1.50である。その他は焼成後の湿式粉砕の時間を55分とし、焼成温度を1270℃とした以外は、実施例1と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
(実施例15)
 原料粉末中のSrとLaとFeとAlのモル比を、Sr:La:Fe:Al=0.71:0.29:10.59:1.18とし、焼成温度を1270℃、焼成後の湿式粉砕の時間を10分とした以外は、実施例1と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
(実施例16)
 焼成後の湿式粉砕の時間を20分とした以外は、実施例15と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
(実施例17)
 焼成後の湿式粉砕の時間を30分とした以外は、実施例15と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
(実施例18)
 焼成後の湿式粉砕の時間を40分とした以外は、実施例15と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
(実施例19)
 焼成後の湿式粉砕の時間を55分とした以外は、実施例15と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
(実施例20)
 原料粉末中のSrとLaとFeとAlのモル比を、Sr:La:Fe:Al=0.53:0.47:9.80:1.96とし、焼成温度を1270℃、焼成後の湿式粉砕の時間を10分とした以外は、実施例1と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
(実施例21)
 焼成後の湿式粉砕の時間を20分とした以外は、実施例20と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
(実施例22)
 焼成後の湿式粉砕の時間を30分とした以外は、実施例20と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
(実施例23)
 焼成後の湿式粉砕の時間を40分とした以外は、実施例20と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
(実施例24)
 焼成後の湿式粉砕の時間を50分とした以外は、実施例20と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
 さらに、次の実施例25から実施例32の実施例について試験を実施し、評価を行った。
(実施例25)
 焼成後の湿式粉砕を実施しなかった以外は、実施例1と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
(実施例26)
 原料粉末として純度99質量%のSrCOを595gと、純度99.9質量%のAlを469gと、純度99質量%のFeを4596gと、純度99.99質量%のLa(OH)を316gと、純度99.99質量%のCoを22g秤量した。この原料粉末をヘンシェルミキサーにより混合した後、さらに振動ミルにより乾式法で混合した。なお、この原料粉末中のSrとLaとFeとAlのモル比は、Sr:La:Fe:Al:Co=0.71:0.29:10.08:1.63:0.05である。その他は焼成後の湿式粉砕の時間を60分とした以外は、実施例1と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
(実施例27)
 原料粉末として純度99質量%のSrCOを507gと、純度99.9質量%のAlを454gと、純度99質量%のFeを4508gと、純度99.99質量%のLa(OH)を410gと、純度99質量%のBaCl・2HOを84g秤量した。この原料粉末をヘンシェルミキサーにより混合した後、さらに振動ミルにより乾式法で混合した。なお、この原料粉末中のSrとLaとFeとAlのモル比は、Sr:La:Ba:Fe:Al=0.58:0.37:0.06:9.47:1.51である。その他は焼成後の湿式粉砕の時間を55分とした以外は、実施例1と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
(実施例28)
 原料粉末として純度99質量%のSrCOを378gと、純度99.9質量%のAlを454gと、純度99質量%のFeを4508gと、純度99.99質量%のLa(OH)を410gと、純度99質量%のBaCl・2HOを299g秤量した。この原料粉末をヘンシェルミキサーにより混合した後、さらに振動ミルにより乾式法で混合した。なお、この原料粉末中のSrとLaとFeとAlのモル比は、Sr:La:Ba:Fe:Al=0.43:0.37:0.21:9.47:1.51である。その他は焼成後の湿式粉砕の時間を55分とした以外は、実施例1と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
(実施例29)
 焼成後の湿式粉砕を実施しなかった以外は、実施例15と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
(実施例30)
 焼成後の湿式粉砕の時間を120分とした以外は、実施例15と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
(実施例31)
 焼成後の湿式粉砕を実施しなかった以外は、実施例20と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
(実施例32)
 原料粉末中のSrとLaとFeとAlのモル比を、Sr:La:Fe:Al=0.95:0.05:10.14:1.62とし、焼成温度を1270℃、焼成後の湿式粉砕の時間を60分とした以外は、実施例1と同じ条件で磁性粉を作製し、実施例1と同じ条件で評価した。
(比較例1)
 まず、原料粉末として純度99質量%のSrCOを515gと、純度99.9質量%のAlを284gと、純度99質量%のFeを2701gとを秤量した。この原料粉末をヘンシェルミキサーにより混合した後、さらに振動ミルにより乾式法で混合した。なお、この原料粉末中のSrとFeとAlのモル比は、Sr:Fe:Al=1.00:9.71:1.61である。このようにして得られた混合粉末を、焼成温度を1260℃としたこと以外は、実施例1と同様の方法により磁性粉を作製し、実施例1と同じ条件で評価した。
(比較例2)
 まず、原料粉末として純度99質量%のSrCOを470gと、純度99.9質量%のAlを290gと、純度99質量%のFeを2646gと、純度99質量%のBaCl・2HOを93gとを秤量した。この原料粉末をヘンシェルミキサーにより混合した後、さらに振動ミルにより乾式法で混合した。なお、この原料粉末中のSrとBaとFeとAlのモル比は、Sr:Ba:Fe:Al=0.89:0.11:9.30:1.61である。このようにして得られた混合粉末を、湿式粉砕を60分としたこと以外は、実施例1と同様の方法により磁性粉を作製し、実施例1と同じ条件で評価した。
 以上の実施例及び比較例における製造条件、磁性粉の評価結果及び電波吸収特性測定結果を表1に示す。また、表1では体積基準の粒度分布D50のみを示したが、体積基準のD10、D90及び最頻径と、個数基準でのd10、d50、d90及び最頻径の各測定結果について実施例29、15~19、30の測定結果を代表例として表2に示す。なお、各実施例及び比較例において示される原料粉末中のモル比と、表1の磁性粉の評価結果において示される組成式中のモル比に若干のずれが生じるのは、製造工程中の不純物の不可避的な混入によるものであり、これらは実質同じものである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1の結果から、Srの系における実施例32と比較例1とを比較すると、SrからLaに僅かでも置換することにより、圧粉体の周波数範囲Rを小さくすることができ、Laの置換量xが0.05のとき、周波数範囲Rを2.5GHzとすることができることが分かる。
 また、Srの系における実施例1と比較例1とを比較すれば、Laの置換量xが0.10のとき、周波数範囲Rを2.0GHzとすることができることが分かる。
 さらに、Srの系における実施例1と比較例1との比較及びBaをさらに有する実施例1と比較例2との比較において、Laを置換することにより、圧粉体の周波数範囲Rを2.0GHz以下とすることができることが分かる。
 また、実施例1~8の結果から、同じ仕込み組成であれば、粉砕工程まで同じ処理をした磁性粉において熱処理を施しても周波数範囲Rを2.0GHz以下とすることができることが分かった。
 こうして、実施例1~32の結果からは、Alの置換量によって周波数ピークを制御しつつ、かつ圧粉体の周波数範囲Rを2.5GHz以下に抑えることができることが分かる。
 また、Laの置換量を限定することにより、圧粉体の周波数範囲Rを2.4GHz以下に抑えることができ、Laの置換量をさらに限定することにより、圧粉体の周波数範囲Rを2.0GHz以下に抑えることができることが分かる。
 また、表2の結果からは、個数基準での粒度分布において、最頻径が1.0μm以下であり、かつ最頻径が累積50%粒径(d50)より小さいときに、良好な電波吸収体シートを得ることができ、圧粉体の周波数範囲Rを小さくすることができることが分かる。
 本発明によれば、La、Al、Coの置換量を調整することで、76GHz帯を含む60~90GHz帯域の電波吸収能を有し、広い温度域でピーク周波数の変化の小さいマグネトプランバイト型六方晶フェライト磁性粉及びその製造方法並びに当該磁性粉を用いた電波吸収体及びその製造方法を提供することができる。
 

Claims (18)

  1.  マグネトプランバイト型六方晶フェライト磁性粉であって、
     金属元素の原子比を示す一般式:A(1-x)LaFe(n-y-z)AlCo
    (ここで、
     Aは、Sr、Ba及びCaからなる群より選択される1種以上であり、
     0.01≦x≦0.70、
     1.00≦y≦2.20、
     11.00≦n≦12.50、
     0.00≦z≦1.00である)を満たす、
    マグネトプランバイト型六方晶フェライト磁性粉。
  2.  前記xの範囲が、
     0.03≦x≦0.70である、
     請求項1に記載のマグネトプランバイト型六方晶フェライト磁性粉。
  3.  前記xの範囲が、
     0.10≦x≦0.70である、
     請求項1に記載のマグネトプランバイト型六方晶フェライト磁性粉。
  4.  レーザー回折式粒度分布測定装置で測定された体積基準での粒度分布において、累積50%粒径(D50)が、1.0μm以上10.0μm以下である、請求項1~3のいずれか一項に記載の、マグネトプランバイト型六方晶フェライト磁性粉。
  5.  レーザー回折式粒度分布測定装置で測定された体積基準での粒度分布において、累積50%粒径(D50)が、1.0μm以上5.0μm以下である、請求項4に記載の、マグネトプランバイト型六方晶フェライト磁性粉。
  6.  前記マグネトプランバイト型六方晶フェライト磁性粉0.36gと微結晶セルロース0.84gとを混合して得られた混合粉を151MPaで加圧成形して直径13mmの圧粉体を作製し、得られた圧粉体についてテラヘルツ波時間領域分光法を用いて30℃、60℃、90℃及び120℃の各温度における透過減衰量を測定し、それぞれのピーク周波数をX30、X60、X90、及びX120としたとき、X30、X60、X90、及びX120の最大値と最小値の差である周波数範囲Rが2.5GHz以下である、請求項1~5のいずれか一項に記載のマグネトプランバイト型六方晶フェライト磁性粉。
  7.  前記周波数範囲Rが、2.4GHz以下である、請求項6に記載のマグネトプランバイト型六方晶フェライト磁性粉。
  8.  前記金属元素Aは、Sr、Baから選択される1種類以上である、請求項1~7のいずれか一項に記載のマグネトプランバイト型六方晶フェライト磁性粉。
  9.  比表面積が0.5m/g以上8.0m/g以下である、請求項1~8のいずれか一項に記載のマグネトプランバイト型六方晶フェライト磁性粉。
  10.  レーザー回折式粒度分布測定装置で測定された個数基準での粒度分布において、最頻径が1.0μm以下であり、かつ最頻径が累積50%粒径(d50)より小さい、請求項1~9のいずれか一項に記載のマグネトプランバイト型六方晶フェライト磁性粉。
  11.  前記nの範囲が、
     11.00≦n<12.00である、
    請求項1~10のいずれか一項に記載のマグネトプランバイト型六方晶フェライト磁性粉。
  12.  請求項1~11のいずれか一項に記載のマグネトプランバイト型六方晶フェライト磁性粉と樹脂とを含む、電波吸収体。
  13.  マグネトプランバイト型六方晶フェライト磁性粉の原料となる粉末を混合して原料混合物を得る原料混合工程と、
     前記原料混合物を焼成して焼成品を得る焼成工程と、
     前記焼成品を粉砕して前記マグネトプランバイト型六方晶フェライト磁性粉を得る粉砕工程と、を含み、
     前記マグネトプランバイト型六方晶フェライト磁性粉が、金属元素の原子比を示す一般式:A(1-x)LaFe(n-y-z)AlCo
    (ここで、
     AはSr、Ba及びCaからなる群より選択される1種以上であり、
     0.01≦x≦0.70、
     1.00≦y≦2.20、
     11.00≦n≦12.50、
     0.00≦z≦1.00である)を満たす、
    マグネトプランバイト型六方晶フェライト磁性粉の製造方法。
  14.  前記xの範囲が、
     0.03≦x≦0.70である、
     請求項13に記載のマグネトプランバイト型六方晶フェライト磁性粉の製造方法。
  15.  前記xの範囲が、
     0.10≦x≦0.70である、
     請求項13に記載のマグネトプランバイト型六方晶フェライト磁性粉の製造方法。
  16.  前記粉砕工程において、前記マグネトプランバイト型六方晶フェライト磁性粉のレーザー回折式粒度分布測定装置で測定された体積基準での粒度分布において、累積50%粒径(D50)が、1.0μm以上10.0μm以下となるように粉砕する、請求項13~15のいずれか一項に記載のマグネトプランバイト型六方晶フェライト磁性粉の製造方法。
  17.  前記粉砕工程の後に、さらに熱処理工程を含む、請求項13~16のいずれか一項に記載のマグネトプランバイト型六方晶フェライト磁性粉の製造方法。
  18.  請求項13~17に記載の製造方法により得られたマグネトプランバイト型六方晶フェライト磁性粉と樹脂とを混練した後に成形する工程を含む、電波吸収体の製造方法。
     
PCT/JP2022/007750 2021-03-05 2022-02-24 マグネトプランバイト型六方晶フェライト磁性粉及びその製造方法並びに電波吸収体及びその製造方法 WO2022186060A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280019170.7A CN116964696A (zh) 2021-03-05 2022-02-24 磁铅石型六方晶铁氧体磁性粉末及其制造方法、以及电波吸收体及其制造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021-035790 2021-03-05
JP2021035790 2021-03-05
JP2022-025973 2022-02-22
JP2022025973A JP7196345B6 (ja) 2021-03-05 2022-02-22 マグネトプランバイト型六方晶フェライト磁性粉及びその製造方法並びに電波吸収体及びその製造方法

Publications (1)

Publication Number Publication Date
WO2022186060A1 true WO2022186060A1 (ja) 2022-09-09

Family

ID=83155099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/007750 WO2022186060A1 (ja) 2021-03-05 2022-02-24 マグネトプランバイト型六方晶フェライト磁性粉及びその製造方法並びに電波吸収体及びその製造方法

Country Status (2)

Country Link
JP (1) JP2023030020A (ja)
WO (1) WO2022186060A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277312A (ja) * 1999-03-19 2000-10-06 Tdk Corp 焼結磁石およびその製造方法
JP2005032745A (ja) * 2003-07-07 2005-02-03 Hitachi Metals Ltd 焼結フェライト磁石およびその製造方法
WO2014021426A1 (ja) * 2012-08-01 2014-02-06 Tdk株式会社 フェライト磁性材料、フェライト焼結磁石及びモータ

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000277312A (ja) * 1999-03-19 2000-10-06 Tdk Corp 焼結磁石およびその製造方法
JP2005032745A (ja) * 2003-07-07 2005-02-03 Hitachi Metals Ltd 焼結フェライト磁石およびその製造方法
WO2014021426A1 (ja) * 2012-08-01 2014-02-06 Tdk株式会社 フェライト磁性材料、フェライト焼結磁石及びモータ

Also Published As

Publication number Publication date
JP2023030020A (ja) 2023-03-07

Similar Documents

Publication Publication Date Title
EP2784044B1 (en) Magnetoplumbite-type hexagonal ferrite
EP3180294B1 (en) Co2 z-type ferrite composite material for use in ultra-high frequency antennas
KR20170109637A (ko) 극초단파 안테나에서 사용하기 위한 Mo-도핑된 Co2Z-형 페라이트 복합 물질
US11945753B2 (en) Low loss power ferrites and method of manufacture
CN105418059A (zh) 电波吸收体用的铁氧体组合物以及电波吸收体
EP3754673A1 (en) Magnetic material, method for producing same, and sheet for electromagnetic wave absorption
JP7196345B2 (ja) マグネトプランバイト型六方晶フェライト磁性粉及びその製造方法並びに電波吸収体及びその製造方法
JP7292795B2 (ja) マグネトプランバイト型六方晶フェライト磁性粉末およびその製造方法
WO2022186060A1 (ja) マグネトプランバイト型六方晶フェライト磁性粉及びその製造方法並びに電波吸収体及びその製造方法
JP2022024885A (ja) マグネトプランバイト型六方晶フェライト磁性粉の製造方法及びマグネトプランバイト型六方晶フェライト磁性粉
JP2010260766A (ja) マグネトプランバイト型六方晶フェライトおよびそれを用いた電波吸収体
KR101714895B1 (ko) 전파 흡수체용 페라이트 조성물 및 전파 흡수체
JP7376627B2 (ja) マグネトプランバイト型六方晶フェライト磁性粉及びその製造方法並びに電波吸収体及びその製造方法
WO2020158554A1 (ja) マグネトプランバイト型六方晶フェライト磁性粉末およびその製造方法
WO2022070634A1 (ja) MnZn系フェライト、及びその製造方法
JP2024037608A (ja) マグネトプランバイト型六方晶フェライト磁性粉及びその製造方法並びに電波吸収体及びその製造方法
JP2024037607A (ja) マグネトプランバイト型フェライト磁性粉及びその製造方法並びに電波吸収体及びその製造方法
CN116964696A (zh) 磁铅石型六方晶铁氧体磁性粉末及其制造方法、以及电波吸收体及其制造方法
Winatapura et al. Mechanosynthesis, crystal structure, magnetic and absorption properties of Al substituted BaFe12O19
WO2020158334A1 (ja) MnCoZn系フェライトおよびその製造方法
WO2021161913A1 (ja) マグネトプランバイト型六方晶フェライト磁性粉末およびその製造方法
JP2021138583A (ja) マグネトプランバイト型六方晶フェライト磁性粉末およびその製造方法
KR101255153B1 (ko) Z형 페라이트 및 이를 포함하는 전자 부품
CN115180941A (zh) 一种高Q值近零Tf复合微波介质陶瓷材料及其制备方法
JPH10335132A (ja) フェライト焼結体、電波吸収体および電波吸収壁

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763116

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280019170.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22763116

Country of ref document: EP

Kind code of ref document: A1