WO2022185952A1 - ガン治療薬 - Google Patents

ガン治療薬 Download PDF

Info

Publication number
WO2022185952A1
WO2022185952A1 PCT/JP2022/006631 JP2022006631W WO2022185952A1 WO 2022185952 A1 WO2022185952 A1 WO 2022185952A1 JP 2022006631 W JP2022006631 W JP 2022006631W WO 2022185952 A1 WO2022185952 A1 WO 2022185952A1
Authority
WO
WIPO (PCT)
Prior art keywords
cancer
cells
drug resistance
cabazitaxel
opioid receptor
Prior art date
Application number
PCT/JP2022/006631
Other languages
English (en)
French (fr)
Inventor
勝久 堀本
将史 北澤
貴之 木卜
敦 溝上
浩二 泉
貴史 島田
Original Assignee
ソシウム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソシウム株式会社 filed Critical ソシウム株式会社
Priority to CN202280007861.5A priority Critical patent/CN116615242A/zh
Priority to US18/548,891 priority patent/US20240156781A1/en
Priority to EP22763008.4A priority patent/EP4302779A1/en
Publication of WO2022185952A1 publication Critical patent/WO2022185952A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/4025Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil not condensed and containing further heterocyclic rings, e.g. cromakalim
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/335Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
    • A61K31/337Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having four-membered rings, e.g. taxol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/454Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. pimozide, domperidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • A61K31/485Morphinan derivatives, e.g. morphine, codeine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/496Non-condensed piperazines containing further heterocyclic rings, e.g. rifampin, thiothixene or sparfloxacin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents

Definitions

  • the present invention relates to therapeutic agents for cell drug resistance to microtubule inhibitors, and pharmaceutical compositions for treating cancer.
  • Anticancer agents used in cancer chemotherapy include taxane anticancer agents.
  • Taxane anticancer agents include paclitaxel and docetaxel. When paclitaxel and docetaxel are administered to a cancer patient, drug resistance appears in the patient's cancer cells, resulting in treatment resistance in the patient, which tends to reduce the therapeutic effect.
  • cabazitaxel as a taxane-based anticancer agent.
  • cabazitaxel is also effective in treating prostate cancer patients who have received prior therapy including docetaxel.
  • cabazitaxel tends to develop drug resistance in cancer cells, develop treatment resistance in patients, and reduce its therapeutic effect (see, for example, Patent Document 1).
  • one of the objects of the present invention is to provide means for enhancing the therapeutic effect of anticancer agents.
  • aspects of the present invention provide therapeutic agents for cellular drug resistance to microtubule inhibitors, including kappa opioid receptor agonists.
  • the therapeutic agent for cell drug resistance to microtubule inhibitors may contain a ⁇ opioid receptor agonist as an active ingredient.
  • the therapeutic agent for cellular drug resistance to microtubule inhibitors may comprise an effective amount of a ⁇ opioid receptor agonist for treating cellular drug resistance to microtubule inhibitors.
  • the kappa opioid receptor agonist is spiradrine, nalfuraphine, ICI-199,441, LPK-26, BRL-52537, and GR-89696, and salts thereof. It may be at least one selected from the group consisting of
  • the ⁇ opioid receptor agonist may be at least one of spiradrine and a salt thereof.
  • the salt may be a physiologically acceptable salt.
  • the microtubule inhibitors may be taxane anticancer agents.
  • the taxane anticancer agent may be at least one selected from the group consisting of cabazitaxel, paclitaxel, and docetaxel.
  • the taxane anticancer agent may be cabazitaxel.
  • the cancer may be at least one selected from the group consisting of prostate cancer, bladder cancer, breast cancer, stomach cancer, and uterine cancer.
  • the cancer may be urological cancer.
  • the urological cancer may be at least one selected from prostate cancer, bladder cancer, kidney cancer, renal pelvic cancer, testicular cancer, and penile cancer.
  • the cancer may be prostate cancer.
  • the cancer may be breast cancer.
  • the cancer may be uterine cancer.
  • the therapeutic agent for cellular drug resistance to the above microtubule inhibitors may be administered to cancer patients.
  • a patient may be a human or a non-human animal.
  • ⁇ opioid receptor agonist in the manufacture of a therapeutic agent for cellular drug resistance to microtubule inhibitors.
  • the therapeutic agent for cell drug resistance to microtubule inhibitors may contain a ⁇ opioid receptor agonist as an active ingredient.
  • the therapeutic agent for cellular drug resistance to microtubule inhibitors may comprise an effective amount of a ⁇ opioid receptor agonist for treating cellular drug resistance to microtubule inhibitors.
  • the kappa opioid receptor agonist is at least one selected from the group consisting of spiradrine, nalfuraphine, ICI-199,441, LPK-26, BRL-52537, and GR-89696, and salts thereof. There may be.
  • the ⁇ opioid receptor agonist may be at least one of spiradrine and salts thereof.
  • the salt may be a physiologically acceptable salt.
  • the microtubule inhibitor may be a taxane anticancer agent.
  • the taxane anticancer agent may be at least one selected from the group consisting of cabazitaxel, paclitaxel, and docetaxel.
  • the taxane anticancer agent may be cabazitaxel.
  • the cancer may be at least one selected from the group consisting of prostate cancer, bladder cancer, breast cancer, stomach cancer, and uterine cancer.
  • the cancer may be urological cancer.
  • the urological cancer may be at least one selected from prostate cancer, bladder cancer, kidney cancer, renal pelvic cancer, testicular cancer, and penile cancer.
  • the cancer may be prostate cancer.
  • the cancer may be breast cancer.
  • the cancer may be uterine cancer.
  • therapeutic agents for cellular drug resistance to microtubule inhibitors may be administered to cancer patients.
  • a patient may be a human or a non-human animal.
  • aspects of the present invention provide a method of treating cellular drug resistance to microtubule inhibitors, comprising administering a ⁇ opioid receptor agonist to a patient.
  • the patient may be administered a ⁇ opioid receptor agonist as an active ingredient.
  • the patient may be administered an effective amount of a ⁇ opioid receptor agonist for treating cellular drug resistance to microtubule inhibitors.
  • the kappa opioid receptor agonist is spiradrine, nalfuraphine, ICI-199,441, LPK-26, BRL-52537, and GR-89696, and salts thereof. It may be at least one selected from the group consisting of
  • the ⁇ opioid receptor agonist may be at least one of spiradrine and salts thereof.
  • the salt may be a physiologically acceptable salt.
  • the microtubule inhibitor may be a taxane anticancer agent.
  • the taxane anticancer drug may be at least one selected from the group consisting of cabazitaxel, paclitaxel, and docetaxel.
  • the taxane anticancer drug may be cabazitaxel.
  • the cancer may be at least one selected from the group consisting of prostate cancer, bladder cancer, breast cancer, stomach cancer, and uterine cancer.
  • the cancer may be urological cancer.
  • the urological cancer may be at least one selected from prostate cancer, bladder cancer, kidney cancer, renal pelvic cancer, testicular cancer, and penile cancer.
  • the cancer may be prostate cancer.
  • the cancer may be breast cancer.
  • the cancer may be uterine cancer.
  • the patient may be a cancer patient.
  • a patient may be a human or a non-human animal.
  • a pharmaceutical composition for treating cancer comprising a ⁇ opioid receptor agonist and a microtubule inhibitor.
  • the above pharmaceutical composition for cancer treatment may contain a ⁇ opioid receptor agonist as an active ingredient for treating cellular drug resistance to microtubule inhibitors.
  • the above pharmaceutical composition for cancer treatment may contain an effective amount of a ⁇ opioid receptor agonist for treating cellular drug resistance to microtubule inhibitors.
  • the ⁇ opioid receptor agonist is selected from the group consisting of spiradrine, nalfuraphine, ICI-199,441, LPK-26, BRL-52537, and GR-89696, and salts thereof. may be at least one.
  • the ⁇ opioid receptor agonist may be at least one of spiradrine and a salt thereof.
  • the salt may be a physiologically acceptable salt.
  • the microtubule inhibitor may be a taxane anticancer agent.
  • the taxane anticancer agent may be at least one selected from the group consisting of cabazitaxel, paclitaxel, and docetaxel.
  • the taxane anticancer agent may be cabazitaxel.
  • the cancer may be at least one selected from the group consisting of prostate cancer, bladder cancer, breast cancer, stomach cancer, and uterine cancer.
  • the cancer may be urological cancer.
  • the urological cancer may be at least one selected from prostate cancer, bladder cancer, kidney cancer, renal pelvic cancer, testicular cancer, and penile cancer.
  • the cancer may be prostate cancer.
  • the cancer may be breast cancer.
  • the cancer may be uterine cancer.
  • ⁇ opioid receptor agonist and a microtubule inhibitor in the manufacture of a pharmaceutical composition for treating cancer is provided.
  • the pharmaceutical composition for cancer treatment may contain a ⁇ opioid receptor agonist as an active ingredient for treating cellular drug resistance to microtubule inhibitors.
  • the pharmaceutical composition for treating cancer may contain an effective amount of a ⁇ opioid receptor agonist for treating cellular drug resistance to microtubule inhibitors.
  • the kappa opioid receptor agonist is at least one selected from the group consisting of spiradrine, nalfuraphine, ICI-199,441, LPK-26, BRL-52537, and GR-89696, and salts thereof. There may be.
  • the ⁇ opioid receptor agonist may be at least one of spiradrine and salts thereof.
  • the salt may be a physiologically acceptable salt.
  • the microtubule inhibitor may be a taxane anticancer agent.
  • the taxane anticancer agent may be at least one selected from the group consisting of cabazitaxel, paclitaxel, and docetaxel.
  • the taxane anticancer agent may be cabazitaxel.
  • the cancer may be at least one selected from the group consisting of prostate cancer, bladder cancer, breast cancer, stomach cancer, and uterine cancer.
  • the cancer may be urological cancer.
  • the urological cancer may be at least one selected from prostate cancer, bladder cancer, kidney cancer, renal pelvic cancer, testicular cancer, and penile cancer.
  • the cancer may be prostate cancer.
  • the cancer may be breast cancer.
  • the cancer may be uterine cancer.
  • a method of treating cancer comprising administering to a patient a ⁇ opioid receptor agonist and a microtubule inhibitor.
  • a ⁇ opioid receptor agonist may be administered to the patient as an active ingredient for treating cellular drug resistance to microtubule inhibitors.
  • the patient may be administered an effective amount of a ⁇ opioid receptor agonist to treat cellular drug resistance to microtubule inhibitors.
  • the ⁇ opioid receptor agonist is at least selected from the group consisting of spiradrine, nalfuraphine, ICI-199,441, LPK-26, BRL-52537, and GR-89696, and salts thereof. It may be one.
  • the ⁇ opioid receptor agonist may be at least one of spiradrine and a salt thereof.
  • the salt may be a physiologically acceptable salt.
  • the microtubule inhibitor may be a taxane anticancer agent.
  • the taxane anticancer agent may be at least one selected from the group consisting of cabazitaxel, paclitaxel, and docetaxel.
  • the taxane anticancer agent may be cabazitaxel.
  • the cancer may be at least one selected from the group consisting of prostate cancer, bladder cancer, breast cancer, stomach cancer, and uterine cancer.
  • the cancer may be urological cancer.
  • the urological cancer may be at least one selected from prostate cancer, bladder cancer, kidney cancer, renal pelvic cancer, testicular cancer, and penile cancer.
  • the cancer may be prostate cancer.
  • the cancer may be breast cancer.
  • the cancer may be uterine cancer.
  • the patient may be a human or a non-human animal.
  • means for enhancing the therapeutic effect of anticancer agents can be provided.
  • FIG. 1 is a table showing concomitant compounds used in Example 1.
  • FIG. FIG. 2 is a graph showing the relationship between the cabazitaxel concentration and the viability of DU145 cells that are not resistant to taxane anticancer drugs, according to Example 1.
  • 3 is a graph showing the relationship between cabazitaxel concentration and viability of docetaxel-resistant DU145 cells according to Example 1.
  • FIG. 4 is a graph showing the relationship between the concentration of cabazitaxel and the survival rate of cabazitaxel-resistant DU145 cells according to Example 1.
  • FIG. 5 is a table showing the IC 50 of cabazitaxel according to Example 1.
  • FIG. 6 is a graph showing the relationship between cabazitaxel concentration and viability of docetaxel-resistant PC3 cells according to Example 2.
  • FIG. 7 is a graph showing the relationship between the concentration of cabazitaxel and the survival rate of cabazitaxel-resistant PC3 cells according to Example 2.
  • FIG. 8 is a table showing the IC 50 of cabazitaxel according to Example 2.
  • FIG. 9 is a graph showing the relationship between paclitaxel concentration and viability of docetaxel-resistant PC3 cells according to Example 3.
  • FIG. 10 is a graph showing the relationship between the concentration of docetaxel and the viability of docetaxel-resistant PC3 cells according to Example 3.
  • FIG. 10 is a graph showing the relationship between the concentration of docetaxel and the viability of docetaxel-resistant PC3 cells according to Example 3.
  • FIG. 11 is a table showing the IC 50 of cabazitaxel in combination with a ⁇ opioid receptor agonist, according to Example 4.
  • FIG. 12 is a graph showing changes in mouse tumor size over time according to Example 5.
  • FIG. 13 is a graph showing the relationship between the concentration of paclitaxel and the survival rate of paclitaxel-resistant MCF7-TxR cells according to Example 7.
  • FIG. 14 is a graph showing the relationship between the docetaxel concentration and the viability of paclitaxel-resistant MCF7-TxR cells according to Example 7.
  • FIG. 15 is a graph showing the relationship between the concentration of paclitaxel and the viability of multidrug-resistant MES-SA/Dx5 cells according to Example 7.
  • FIG. 16 is a graph showing the relationship between docetaxel concentration and viability of multidrug-resistant MES-SA/Dx5 cells according to Example 7.
  • Therapeutic agents for cellular drug resistance to microtubule inhibitors include ⁇ opioid receptor agonists.
  • Microtubule inhibitors inhibit the depolymerization of cell microtubules and inhibit cell division. Microtubules play an important role in cell division. In cells, microtubules are polymerized with each other until metaphase of cell division. Late in cell division, microtubules depolymerize in cells. Microtubule inhibitors inhibit cell division by inhibiting the depolymerization of microtubules in cells.
  • Cancer cells multiply by repeating cell division. Since microtubule inhibitors inhibit cell division of cancer cells, they can also be used as anticancer agents. Microtubule inhibitors are, for example, taxane anticancer agents. Taxane anticancer agents have a taxane ring. Examples of taxane anticancer agents include cabazitaxel, paclitaxel, and docetaxel. Cancers targeted by taxane anticancer agents are, for example, urological cancers. Examples of urological cancers include prostate cancer, bladder cancer, kidney cancer, renal pelvic cancer, testicular cancer, and penile cancer. Cancers targeted by taxane anticancer agents are not limited to urological cancers, and may be breast cancer, uterine cancer, stomach cancer, ovarian cancer, non-small cell lung cancer, stomach cancer, esophageal cancer, and the like.
  • microtubule inhibitors When microtubule inhibitors are administered to cancer patients, cancer cells show drug resistance to microtubule inhibitors, treatment resistance appears, and the therapeutic effect of microtubule inhibitors tends to decrease. In contrast, kappa opioid receptor agonists treat patient resistance to microtubule inhibitors.
  • kappa opioid receptor agonists examples include spiradrine, nalfuraphine, ICI-199,441, LPK-26, BRL-52537, and GR-89696.
  • ⁇ opioid receptor agonists may be physiologically acceptable salts thereof.
  • spiradrine The IUPAC name of spiradrine (CAS number: 87151-85-7) is 2-(3,4-dichlorophenyl)-N-methyl-N-[(5R,7S,8S)-7-(pyrrolidin-1-yl) -1-oxaspiro[4.5]decan-8-yl]acetamide.
  • the chemical formula for spiradrine is C22H30Cl2N2O2 .
  • the chemical structural formula of spiradrine is shown below.
  • nalfurafine (CAS number: 152658-17-8) is (E)-N-[(4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-dihydroxy-1,2 ,4,5,6,7,7a,13-octahydro-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl]-3-(furan-3-yl)-N-methylprop-2- It is enamide.
  • the chemical formula for nalfurafine is C28H32N2O5 .
  • the chemical structural formula of nalfurafine is shown below.
  • ICI-199,441 (CAS number: 115199-84-3) is 2-(3,4-Dichlorophenyl)-N-methyl-N-[(1S)-1-phenyl-2-(1- pyrrolidinyl)ethyl]acetamide.
  • the chemical formula for ICI-199,441 is C 21 H 24 Cl 2 N 2 O.
  • the chemical structural formula of ICI-199,441 is:
  • LPK-26 The IUPAC name of LPK-26 (CAS number: 492451-07-7) is 2-(3,4-dichlorophenyl)-N-[(2S)-1-(2,5-dihydropyrrol-1-yl)-3 -methylbutan-2-yl]-N-methylacetamide.
  • the chemical formula for LPK-26 is C 18 H 24 Cl 2 N 2 O.
  • the chemical structural formula of LPK-26 is shown below.
  • BRL-52537 (CAS number: 130497-33-5) is 2-(3,4-dichlorophenyl)-1-[(2S)-2-(pyrrolidin-1-ylmethyl)piperidin-1-yl] is ethanol.
  • the chemical formula for BRL-52537 is C 18 H 24 Cl 2 N 2 O.
  • the chemical structural formula of BRL-52537 is shown below.
  • GR-89696 The IUPAC name of GR-89696 (CAS number: 126766-32-3) is methyl 4-[2-(3,4-dichlorophenyl)acetyl]-3-(pyrrolidin-1-ylmethyl)piperazine-1-carboxylate .
  • the chemical formula for GR-89696 is C 19 H 25 Cl 2 N 3 O 3 .
  • the chemical structural formula of GR-89696 is shown below.
  • a therapeutic agent for cellular drug resistance to a microtubule inhibitor according to an embodiment of the present invention can be formulated in a pharmaceutically acceptable dosage form.
  • therapeutic agents for cellular drug resistance to microtubule inhibitors can be formulated into injections, solutions, suspensions, tablets, capsules, pills, granules, syrups, suppositories, inhalants, and sprays.
  • injectables include, for example, injectable solutions, sterile powders for injection, and concentrates for injection.
  • a pharmaceutical composition for cancer treatment contains a ⁇ opioid receptor agonist and a microtubule inhibitor.
  • Kappa opioid receptor agonists and microtubule inhibitors are described above.
  • the kappa opioid receptor agonist and microtubule inhibitor may be administered simultaneously or separately to the cancer patient.
  • the kappa opioid receptor agonist and microtubule inhibitor may be administered to cancer patients at different times and on different days.
  • the kappa opioid receptor agonist and microtubule inhibitor may be administered to cancer patients at the same or different times.
  • a pharmaceutical composition for cancer treatment according to an embodiment of the present invention can be formulated into a pharmaceutically acceptable dosage form.
  • pharmaceutical compositions for treating cancer can be formulated into injections, solutions, suspensions, tablets, capsules, pills, granules, syrups, suppositories, inhalants, and sprays.
  • injectables include, for example, injectable solutions, sterile powders for injection, and concentrates for injection.
  • the ⁇ opioid receptor agonist and the microtubule inhibitor may be formulated separately or together.
  • Example 1 DU145 cells (ATCC), an androgen-independent human prostate cancer cell line that lacks androgen receptors, paclitaxel- and docetaxel-resistant DU145_TxR cells, and docetaxel- and cabazitaxel-resistant DU145_CxR cells were prepared.
  • DU145_TxR and DU145_CxR cells were prepared according to Prostate, 2007, 67(9), p. 955-967.
  • Cells were seeded in wells of 96-well plates at a cell number of 1 ⁇ 10 4 cells/well.
  • a DMEM medium supplemented with 10% FBS was used as the medium.
  • 24 hours after seeding the cells any of 0 nmol/L, 1 nmol/L, 3 nmol/L, 10 nmol/L, 30 nmol/L, and 100 nmol/L of cabazitaxel and any of the concomitant compounds described in FIG.
  • the medium was replaced with medium containing heels.
  • the concentration of the compound used in combination was set to a concentration at which the survival rate of the cells was 90% or more when the compound used alone was added to the cells.
  • PC3 cells ATCC
  • an androgen-independent human prostate cancer cell line with no androgen receptor paclitaxel- and docetaxel-resistant PC3_TxR cells
  • docetaxel- and cabazitaxel-resistant PC3_CxR cells were prepared.
  • DMSO and either 0.1 ⁇ mol/L, 1 ⁇ mol/L, or 10 ⁇ mol/L of spiradrine were prepared as concomitant compounds.
  • Cabazitaxel was given to the cells under the same conditions as in Example 1 except that these cells and the combined compound were used, and the cell viability under each condition was determined. The results are shown in FIGS. 6 and 7.
  • FIG. 6 and 7 The results are shown in FIGS. 6 and 7.
  • Example 3 Paclitaxel and docetaxel resistant PC3_TxR cells were provided. DMSO and either 3 ⁇ mol/L or 10 ⁇ mol/L of spiradrine were prepared as concomitant compounds. Paclitaxel or docetaxel was applied to the cells under the same conditions as in Example 1, except that these cells and the combined compound were used, and the cell survival rate under each condition was determined. The results are shown in FIGS. 9 and 10. FIG.
  • Example 4 Cabazitaxel-resistant DU145_CxR and PC3_CxR cells were prepared. DMSO and 10 ⁇ mol/L of spiradrine, nalfurafine, ICI-199,441, LPK-26, BRL-52537 and GR-89696 were prepared as concomitant compounds. Cabazitaxel was given to the cells under the same conditions as in Examples 1 and 2 except that these combined compounds were used, and the IC50 of cabazitaxel was determined from the cell viability under each condition and is shown in FIG.
  • mice Forty 5-week-old severe combined immunodeficiency (SCID) male mice were purchased from Clea Japan (Tokyo, Japan). After an acclimation period, 3 ⁇ 10 6 PC3_CxR cells were mixed with 50% Matrigel (Corning, NY, USA) and implanted subcutaneously on the dorsal side of SCID mice. After the tumors of the mice were large enough to measure the length, 36 mice, with the exception of 4 that had insufficient tumor growth, were subdivided into 6 mice so that the average tumor size in each group was approximately equal. divided into groups.
  • SCID severe combined immunodeficiency
  • the first group was the control group, the second group was administered 5 mg/kg cabazitaxel alone, the third group was administered 2 mg/kg spiradrine alone, and the fourth group was 5 mg/kg cabazitaxel. and 2 mg/kg of spiradrine, a fifth group of 5 mg/kg of spiradrine alone, and a sixth group of 5 mg/kg of cabazitaxel and 5 mg/kg of spiradrine. did.
  • cabazitaxel was dissolved in 20 ⁇ L of DMSO and administered intraperitoneally once a week.
  • the 1st, 3rd and 5th groups without cabazitaxel were intraperitoneally administered with 20 ⁇ L of DMSO alone at the same frequency as the 2nd, 4th and 6th groups with cabazitaxel.
  • spiradrine was dissolved in 20 ⁇ L of distilled water and administered intraperitoneally twice a week.
  • the protocol was approved by the Animal Care and Use Committee of Kanazawa University graduate School of Medicine.
  • mice co-administered with spiradrine and cabazitaxel were smaller than in mice administered with spiradrine or cabazitaxel alone. Also, tumor size in mice co-administered with 5 mg/kg spiradrine and cabazitaxel was smaller than in mice co-administered with 2 mg/kg spiradrine and cabazitaxel.
  • Example 6 Using MCF-7 cells, a breast cancer cell line, as a parent cell line, establishment of a paclitaxel-resistant cell line was initiated. DMEM medium containing 10% FCS was used as the medium. Paclitaxel was added to the medium at a concentration of 1 nmol/L, and the medium was changed once every two or three days until the cells became confluent. When the cells became confluent, the cells were passaged, and the paclitaxel concentration was increased to 3 nmol/L, followed by cell culture. Thereafter, the concentration of paclitaxel was gradually increased in the same manner, and the cells were continued to be cultured while cryopreserving a part of the cells for each subculture.
  • a cell line that proliferated even with 12 nmol/L paclitaxel was established.
  • concentration was increased and the cells did not proliferate, cryopreserved cells were cultured with paclitaxel at a concentration that reliably proliferates and subcultured.
  • the established cell line was called MCF7-TxR cells.
  • Example 7 MCF7-TxR cells established in Example 6, multidrug-resistant uterine cancer line MES-SA/Dx5 cells containing paclitaxel and docetaxel, MCF-7 cells which are the parent strain of MCF7-TxR cells, and MES-SA/ MES-SA cells, the parent strain of Dx5 cells, were prepared.
  • MES-SA/Dx5 cells see Harker WG, Sikic BI. Multidrug (pleiotropic) resistance in doxorubicin-selected variants of the human sarcoma cell line MES-SA. Cancer Res.
  • DMEM medium supplemented with 10% FBS was used as the medium for MCF-7 cells and MCF7-TxR cells.
  • RPMI1640 medium supplemented with 10% FBS was used for MES-SA cells and MCF7-TxR cells. 4 hours after seeding the cells, either 0 nmol/L, 1 nmol/L, 3 nmol/L, 10 nmol/L, 30 nmol/L, and 100 nmol/L paclitaxel or docetaxel and DMSO or 3 ⁇ mol/L spiradrine The medium was replaced with medium containing
  • a reagent for colorimetric analysis (CellTiter 96 AQueous One Solution Cell Proliferation Assay kit, Promega, G3581) for measuring the number of viable cells was added directly to the culture solution and allowed to react for 1 hour. Absorbance was measured at 490 nm. The cell viability in each condition was calculated with the cell viability in the case of adding 0 nmol/L cabazitaxel and DMSO as 100%.

Landscapes

  • Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Chemical & Material Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Organic Chemistry (AREA)
  • Emergency Medicine (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

κオピオイド受容体アゴニストを含む、微小管阻害剤に対する細胞の薬剤耐性の治療剤。

Description

ガン治療薬
  本発明は、微小管阻害剤に対する細胞の薬剤耐性の治療剤、及びガン治療用医薬品組成物に関する。
 ガンの化学療法において用いられる抗ガン剤として、タキサン系抗ガン剤がある。タキサン系抗ガン剤として、パクリタキセル及びドセタキセルがある。ガン患者にパクリタキセル及びドセタキセルを投与すると、患者のガン細胞に薬剤耐性が現れ、患者に治療抵抗性が生じ、治療効果が低下する傾向にある。また、タキサン系抗ガン剤として、カバジタキセルがある。例えば、カバジタキセルは、ドセタキセルを含む前治療歴のある前立腺ガン患者に対しても治療効果を発揮する。しかし、カバジタキセルに対しても、ガン細胞に薬剤耐性が現れ、患者に治療抵抗性が生じ、治療効果が低下する傾向にある(例えば、特許文献1参照。)。
特許第6735484号
 前立腺ガンに限らず、あらゆるガンに対する抗ガン剤の治療効果を高める手段が求められている。そこで、本発明は、抗ガン剤の治療効果を高める手段を提供することを目的の一つとする。
 本発明の態様によれば、κオピオイド受容体アゴニストを含む、微小管阻害剤に対する細胞の薬剤耐性の治療剤が提供される。
 上記の微小管阻害剤に対する細胞の薬剤耐性の治療剤が、κオピオイド受容体アゴニストを有効成分として含んでいてもよい。
 上記の微小管阻害剤に対する細胞の薬剤耐性の治療剤が、微小管阻害剤に対する細胞の薬剤耐性を治療するための有効量のκオピオイド受容体アゴニストを含んでいてもよい。
 上記の微小管阻害剤に対する細胞の薬剤耐性の治療剤において、κオピオイド受容体アゴニストが、スピラドリン、ナルフラフィン、ICI-199,441、LPK-26、BRL-52537、及びGR-89696、並びにこれらの塩からなる群から選択される少なくとも1つであってもよい。
 上記の微小管阻害剤に対する細胞の薬剤耐性の治療剤において、κオピオイド受容体アゴニストが、スピラドリン及びその塩の少なくともいずれかであってもよい。
 上記の微小管阻害剤に対する細胞の薬剤耐性の治療剤において、塩が生理学的に許容される塩であってもよい。
 上記の微小管阻害剤に対する細胞の薬剤耐性の治療剤において、微小管阻害剤が、タキサン系抗ガン剤であってもよい。
 上記の微小管阻害剤に対する細胞の薬剤耐性の治療剤において、タキサン系抗ガン剤が、カバジタキセル、パクリタキセル、及びドセタキセルからなる群から選択される少なくとも1つであってもよい。
 上記の微小管阻害剤に対する細胞の薬剤耐性の治療剤において、タキサン系抗ガン剤が、カバジタキセルであってもよい。
 上記の微小管阻害剤に対する細胞の薬剤耐性の治療剤において、ガンが、前立腺ガン、膀胱ガン、乳ガン、胃ガン、及び子宮ガンからなる群から選択される少なくとも1つであってもよい。
 上記の微小管阻害剤に対する細胞の薬剤耐性の治療剤において、ガンが、泌尿器ガンであってもよい。泌尿器ガンが、前立腺ガン、膀胱ガン、腎ガン、腎盂尿管ガン、精巣ガン、及び陰茎ガンから選択される少なくとも1つであってもよい。
 上記の微小管阻害剤に対する細胞の薬剤耐性の治療剤において、ガンが、前立腺ガンであってもよい。ガンが、乳ガンであってもよい。ガンが、子宮ガンであってもよい。
 上記の微小管阻害剤に対する細胞の薬剤耐性の治療剤が、ガン患者に投与されてもよい。患者が、ヒトであってもよいし、非ヒト動物であってもよい。
 また、本発明の態様によれば、微小管阻害剤に対する細胞の薬剤耐性の治療剤の製造における、κオピオイド受容体アゴニストの使用が提供される。
 上記の使用において、微小管阻害剤に対する細胞の薬剤耐性の治療剤が、κオピオイド受容体アゴニストを有効成分として含んでいてもよい。
 上記の使用において、微小管阻害剤に対する細胞の薬剤耐性の治療剤が、微小管阻害剤に対する細胞の薬剤耐性を治療するための有効量のκオピオイド受容体アゴニストを含んでいてもよい。
 上記の使用において、κオピオイド受容体アゴニストが、スピラドリン、ナルフラフィン、ICI-199,441、LPK-26、BRL-52537、及びGR-89696、並びにこれらの塩からなる群から選択される少なくとも1つであってもよい。
 上記の使用において、κオピオイド受容体アゴニストが、スピラドリン及びその塩の少なくともいずれかであってもよい。
 上記の使用において、塩が生理学的に許容される塩であってもよい。
 上記の使用において、微小管阻害剤が、タキサン系抗ガン剤であってもよい。
 上記の使用において、タキサン系抗ガン剤が、カバジタキセル、パクリタキセル、及びドセタキセルからなる群から選択される少なくとも1つであってもよい。
 上記の使用において、タキサン系抗ガン剤が、カバジタキセルであってもよい。
 上記の使用において、ガンが、前立腺ガン、膀胱ガン、乳ガン、胃ガン、及び子宮ガンからなる群から選択される少なくとも1つであってもよい。
 上記の使用において、ガンが、泌尿器ガンであってもよい。泌尿器ガンが、前立腺ガン、膀胱ガン、腎ガン、腎盂尿管ガン、精巣ガン、及び陰茎ガンから選択される少なくとも1つであってもよい。
 上記の使用において、ガンが、前立腺ガンであってもよい。ガンが、乳ガンであってもよい。ガンが、子宮ガンであってもよい。
 上記の使用において、微小管阻害剤に対する細胞の薬剤耐性の治療剤が、ガン患者に投与されてもよい。患者が、ヒトであってもよいし、非ヒト動物であってもよい。
 また、本発明の態様によれば、患者にκオピオイド受容体アゴニストを投与することを含む、微小管阻害剤に対する細胞の薬剤耐性の治療方法が提供される。
 上記の微小管阻害剤に対する細胞の薬剤耐性の治療方法において、患者に、有効成分としてのκオピオイド受容体アゴニストを投与してもよい。
 上記の微小管阻害剤に対する細胞の薬剤耐性の治療方法において、患者に、微小管阻害剤に対する細胞の薬剤耐性を治療するための有効量のκオピオイド受容体アゴニストを投与してもよい。
 上記の微小管阻害剤に対する細胞の薬剤耐性の治療方法において、κオピオイド受容体アゴニストが、スピラドリン、ナルフラフィン、ICI-199,441、LPK-26、BRL-52537、及びGR-89696、並びにこれらの塩からなる群から選択される少なくとも1つであってもよい。
 上記の微小管阻害剤に対する細胞の薬剤耐性の治療方法において、κオピオイド受容体アゴニストが、スピラドリン及びその塩の少なくともいずれかであってもよい。
 上記の微小管阻害剤に対する細胞の薬剤耐性の治療方法において、塩が生理学的に許容される塩であってもよい。
 上記の微小管阻害剤に対する細胞の薬剤耐性の治療方法において、微小管阻害剤が、タキサン系抗ガン剤であってもよい。
 上記の微小管阻害剤に対する細胞の薬剤耐性の治療方法において、タキサン系抗ガン剤が、カバジタキセル、パクリタキセル、及びドセタキセルからなる群から選択される少なくとも1つであってもよい。
 上記の微小管阻害剤に対する細胞の薬剤耐性の治療方法において、タキサン系抗ガン剤が、カバジタキセルであってもよい。
 上記の微小管阻害剤に対する細胞の薬剤耐性の治療方法において、ガンが、前立腺ガン、膀胱ガン、乳ガン、胃ガン、及び子宮ガンからなる群から選択される少なくとも1つであってもよい。
 上記の微小管阻害剤に対する細胞の薬剤耐性の治療方法において、ガンが、泌尿器ガンであってもよい。泌尿器ガンが、前立腺ガン、膀胱ガン、腎ガン、腎盂尿管ガン、精巣ガン、及び陰茎ガンから選択される少なくとも1つであってもよい。
 上記の微小管阻害剤に対する細胞の薬剤耐性の治療方法において、ガンが、前立腺ガンであってもよい。ガンが、乳ガンであってもよい。ガンが、子宮ガンであってもよい。
 上記の微小管阻害剤に対する細胞の薬剤耐性の治療方法において、患者がガン患者であってもよい。患者が、ヒトであってもよいし、非ヒト動物であってもよい。
 また、本発明の態様によれば、κオピオイド受容体アゴニストと、微小管阻害剤と、を含む、ガン治療用医薬品組成物が提供される。
 上記のガン治療用医薬品組成物が、κオピオイド受容体アゴニストを、微小管阻害剤に対する細胞の薬剤耐性を治療する有効成分として含んでいてもよい。
 上記のガン治療用医薬品組成物が、微小管阻害剤に対する細胞の薬剤耐性を治療するための有効量のκオピオイド受容体アゴニストを含んでいてもよい。
 上記のガン治療用医薬品組成物において、κオピオイド受容体アゴニストが、スピラドリン、ナルフラフィン、ICI-199,441、LPK-26、BRL-52537、及びGR-89696、並びにこれらの塩からなる群から選択される少なくとも1つであってもよい。
 上記のガン治療用医薬品組成物において、κオピオイド受容体アゴニストが、スピラドリン及びその塩の少なくともいずれかであってもよい。
 上記のガン治療用医薬品組成物において、塩が生理学的に許容される塩であってもよい。
 上記のガン治療用医薬品組成物において、微小管阻害剤が、タキサン系抗ガン剤であってもよい。
 上記のガン治療用医薬品組成物において、タキサン系抗ガン剤が、カバジタキセル、パクリタキセル、及びドセタキセルからなる群から選択される少なくとも1つであってもよい。
 上記のガン治療用医薬品組成物において、タキサン系抗ガン剤が、カバジタキセルであってもよい。
 上記のガン治療用医薬品組成物において、ガンが、前立腺ガン、膀胱ガン、乳ガン、胃ガン、及び子宮ガンからなる群から選択される少なくとも1つであってもよい。
 上記のガン治療用医薬品組成物において、ガンが、泌尿器ガンであってもよい。泌尿器ガンが、前立腺ガン、膀胱ガン、腎ガン、腎盂尿管ガン、精巣ガン、及び陰茎ガンから選択される少なくとも1つであってもよい。
 上記のガン治療用医薬品組成物において、ガンが、前立腺ガンであってもよい。ガンが、乳ガンであってもよい。ガンが、子宮ガンであってもよい。
 また、本発明の態様によれば、ガン治療用医薬品組成物の製造における、κオピオイド受容体アゴニストと、微小管阻害剤と、の使用が提供される。
 上記の使用において、ガン治療用医薬品組成物が、κオピオイド受容体アゴニストを、微小管阻害剤に対する細胞の薬剤耐性を治療する有効成分として含んでいてもよい。
 上記の使用において、ガン治療用医薬品組成物が、微小管阻害剤に対する細胞の薬剤耐性を治療するための有効量のκオピオイド受容体アゴニストを含んでいてもよい。
 上記の使用において、κオピオイド受容体アゴニストが、スピラドリン、ナルフラフィン、ICI-199,441、LPK-26、BRL-52537、及びGR-89696、並びにこれらの塩からなる群から選択される少なくとも1つであってもよい。
 上記の使用において、κオピオイド受容体アゴニストが、スピラドリン及びその塩の少なくともいずれかであってもよい。
 上記の使用において、塩が生理学的に許容される塩であってもよい。
 上記の使用において、微小管阻害剤が、タキサン系抗ガン剤であってもよい。
 上記の使用において、タキサン系抗ガン剤が、カバジタキセル、パクリタキセル、及びドセタキセルからなる群から選択される少なくとも1つであってもよい。
 上記の使用において、タキサン系抗ガン剤が、カバジタキセルであってもよい。
 上記の使用において、ガンが、前立腺ガン、膀胱ガン、乳ガン、胃ガン、及び子宮ガンからなる群から選択される少なくとも1つであってもよい。
 上記の使用において、ガンが、泌尿器ガンであってもよい。泌尿器ガンが、前立腺ガン、膀胱ガン、腎ガン、腎盂尿管ガン、精巣ガン、及び陰茎ガンから選択される少なくとも1つであってもよい。
 上記の使用において、ガンが、前立腺ガンであってもよい。ガンが、乳ガンであってもよい。ガンが、子宮ガンであってもよい。
 また、本発明の態様によれば、患者に、κオピオイド受容体アゴニストと、微小管阻害剤と、を投与することを含む、ガンの治療方法が提供される。
 上記のガンの治療方法において、患者に、κオピオイド受容体アゴニストを、微小管阻害剤に対する細胞の薬剤耐性を治療する有効成分として投与してもよい。
 上記のガンの治療方法において、患者に、微小管阻害剤に対する細胞の薬剤耐性を治療するための有効量のκオピオイド受容体アゴニストを投与してもよい。
 上記のガンの治療方法において、κオピオイド受容体アゴニストが、スピラドリン、ナルフラフィン、ICI-199,441、LPK-26、BRL-52537、及びGR-89696、並びにこれらの塩からなる群から選択される少なくとも1つであってもよい。
 上記のガンの治療方法において、κオピオイド受容体アゴニストが、スピラドリン及びその塩の少なくともいずれかであってもよい。
 上記のガンの治療方法において、塩が生理学的に許容される塩であってもよい。
 上記のガンの治療方法において、微小管阻害剤が、タキサン系抗ガン剤であってもよい。
 上記のガンの治療方法において、タキサン系抗ガン剤が、カバジタキセル、パクリタキセル、及びドセタキセルからなる群から選択される少なくとも1つであってもよい。
 上記のガンの治療方法において、タキサン系抗ガン剤が、カバジタキセルであってもよい。
 上記のガンの治療方法において、ガンが、前立腺ガン、膀胱ガン、乳ガン、胃ガン、及び子宮ガンからなる群から選択される少なくとも1つであってもよい。
 上記のガンの治療方法において、ガンが、泌尿器ガンであってもよい。泌尿器ガンが、前立腺ガン、膀胱ガン、腎ガン、腎盂尿管ガン、精巣ガン、及び陰茎ガンから選択される少なくとも1つであってもよい。
 上記のガンの治療方法において、ガンが、前立腺ガンであってもよい。ガンが、乳ガンであってもよい。ガンが、子宮ガンであってもよい。
 上記のガンの治療方法において、患者が、ヒトであってもよいし、非ヒト動物であってもよい。
  本発明によれば、抗ガン剤の治療効果を高める手段を提供可能である。
図1は、実施例1で使用された併用化合物を示す表である。 図2は、実施例1に係る、カバジタキセルの濃度と、タキサン系抗ガン剤に対して抵抗性でないDU145細胞の生存率と、の関係を示すグラフである。 図3は、実施例1に係る、カバジタキセルの濃度と、ドセタキセル抵抗性のDU145細胞の生存率と、の関係を示すグラフである。 図4は、実施例1に係る、カバジタキセルの濃度と、カバジタキセル抵抗性のDU145細胞の生存率と、の関係を示すグラフである。 図5は、実施例1に係る、カバジタキセルのIC50を示す表である。 図6は、実施例2に係る、カバジタキセルの濃度と、ドセタキセル抵抗性のPC3細胞の生存率と、の関係を示すグラフである。 図7は、実施例2に係る、カバジタキセルの濃度と、カバジタキセル抵抗性のPC3細胞の生存率と、の関係を示すグラフである。 図8は、実施例2に係る、カバジタキセルのIC50を示す表である。 図9は、実施例3に係る、パクリタキセルの濃度とドセタキセル抵抗性のPC3細胞の生存率と、の関係を示すグラフである。 図10は、実施例3に係る、ドセタキセルの濃度とドセタキセル抵抗性のPC3細胞の生存率と、の関係を示すグラフである。 図11は、実施例4に係る、κオピオイド受容体アゴニスト併用時のカバジタキセルのIC50を示す表である。 図12は、実施例5に係る、マウスの腫瘍サイズの経時変化を示すグラフである。 図13は、実施例7に係る、パクリタキセルの濃度と、パクリタキセル抵抗性のMCF7-TxR細胞の生存率と、の関係を示すグラフである。 図14は、実施例7に係る、ドセタキセルの濃度と、パクリタキセル抵抗性のMCF7-TxR細胞の生存率と、の関係を示すグラフである。 図15は、実施例7に係る、パクリタキセルの濃度と、多剤抵抗性のMES-SA/Dx5細胞の生存率と、の関係を示すグラフである。 図16は、実施例7に係る、ドセタキセルの濃度と、多剤抵抗性のMES-SA/Dx5細胞の生存率と、の関係を示すグラフである。
 本発明の実施形態に係る微小管阻害剤に対する細胞の薬剤耐性の治療剤は、κオピオイド受容体アゴニストを含む。
 微小管阻害剤は、細胞の微小管の脱重合を阻害し、細胞分裂を阻害する。微小管は、細胞分裂に重要な役割を果たす。細胞において、細胞分裂の中期までは、微小管どうしが重合している。細胞分裂の後期になると、細胞において微小管が脱重合する。微小管阻害剤は、細胞における微小管の脱重合を阻害することによって、細胞分裂を阻害する。
 ガン細胞は細胞分裂を繰り返して増殖する。微小管阻害剤は、ガン細胞の細胞分裂を阻害するため、抗ガン剤としても利用可能である。微小管阻害剤は、例えば、タキサン系抗ガン剤である。タキサン系抗ガン剤は、タキサン環を有する。タキサン系抗ガン剤の例としては、カバジタキセル、パクリタキセル、及びドセタキセルが挙げられる。タキサン系抗ガン剤が対象とするガンは、例えば、泌尿器ガンである。泌尿器ガンの例としては、前立腺ガン、膀胱ガン、腎ガン、腎盂尿管ガン、精巣ガン、及び陰茎ガンが挙げられる。タキサン系抗ガン剤が対象とするガンは、泌尿器ガンに限定されず、乳ガン、子宮ガン、胃ガン、卵巣ガン、非小細胞肺ガン、胃ガン、及び食道ガン等であってもよい。
 ガン患者に微小管阻害剤を投与すると、ガン細胞が微小管阻害剤に薬剤抵抗性を示し、治療抵抗性が現れ、微小管阻害剤の治療効果が低下していく傾向にある。これに対し、κオピオイド受容体アゴニストは、微小管阻害剤に対する患者の治療抵抗性を治療する。
 κオピオイド受容体アゴニストの例としては、スピラドリン、ナルフラフィン、ICI-199,441、LPK-26、BRL-52537、及びGR-89696が挙げられる。κオピオイド受容体アゴニストは、これらの生理学的に許容される塩であってもよい。
 スピラドリン(CAS番号:87151-85-7)のIUPAC名は、2-(3,4-dichlorophenyl)-N-methyl-N-[(5R,7S,8S)-7-(pyrrolidin-1-yl)-1-oxaspiro[4.5]decan-8-yl]acetamideである。スピラドリンの化学式は、C2230Cl222である。スピラドリンの化学構造式は、以下である。
Figure JPOXMLDOC01-appb-C000001
 
 ナルフラフィン(CAS番号:152658-17-8)のIUPAC名は、(E)-N-[(4R,4aS,7R,7aR,12bS)-3-(cyclopropylmethyl)-4a,9-dihydroxy-1,2,4,5,6,7,7a,13-octahydro-4,12-methanobenzofuro[3,2-e]isoquinolin-7-yl]-3-(furan-3-yl)-N-methylprop-2-enamideである。ナルフラフィンの化学式は、C283225である。
ナルフラフィンの化学構造式は、以下である。
Figure JPOXMLDOC01-appb-C000002
 
 ICI-199,441(CAS番号:115199-84-3)のIUPAC名は、2-(3,4-Dichlorophenyl)-N-methyl-N-[(1S)-1-phenyl-2-(1-pyrrolidinyl)ethyl]acetamideである。ICI-199,441の化学式は、C2124Cl22Oである。ICI-199,441の化学構造式は、以下である。
Figure JPOXMLDOC01-appb-C000003
 
 LPK-26(CAS番号:492451-07-7)のIUPAC名は、2-(3,4-dichlorophenyl)-N-[(2S)-1-(2,5-dihydropyrrol-1-yl)-3-methylbutan-2-yl]-N-methylacetamideである。LPK-26の化学式は、C1824Cl22Oである。LPK-26の化学構造式は、以下である。
Figure JPOXMLDOC01-appb-C000004
 
 BRL-52537(CAS番号:130497-33-5)のIUPAC名は、2-(3,4-dichlorophenyl)-1-[(2S)-2-(pyrrolidin-1-ylmethyl)piperidin-1-yl]ethanoneである。BRL-52537の化学式は、C1824Cl22Oである。BRL-52537の化学構造式は、以下である。
Figure JPOXMLDOC01-appb-C000005
 
 GR-89696(CAS番号:126766-32-3)のIUPAC名は、methyl 4-[2-(3,4-dichlorophenyl)acetyl]-3-(pyrrolidin-1-ylmethyl)piperazine-1-carboxylateである。GR-89696の化学式は、C1925Cl233である。GR-89696の化学構造式は、以下である。
Figure JPOXMLDOC01-appb-C000006
 
 本発明の実施形態に係る微小管阻害剤に対する細胞の薬剤耐性の治療剤は、薬学的に許容される剤形に製剤化することができる。例えば、微小管阻害剤に対する細胞の薬剤耐性の治療剤は、注射剤、溶液、懸濁液、錠剤、カプセル、ピル、顆粒、シロップ、坐剤、吸入剤、及びスプレーに製剤化することができる。注射剤は、例えば、注射液、注射用滅菌粉末、及び注射用濃縮液を含む。
 また、本発明の実施形態に係るガン治療用医薬品組成物は、κオピオイド受容体アゴニストと、微小管阻害剤と、を含む。κオピオイド受容体アゴニスト及び微小管阻害剤は、上述したとおりである。κオピオイド受容体アゴニスト及び微小管阻害剤は、ガン患者に同時に投与されてもよいし、別々に投与されてもよい。κオピオイド受容体アゴニスト及び微小管阻害剤は、ガン患者に、異なる時間、異なる日に投与されてもよい。κオピオイド受容体アゴニスト及び微小管阻害剤は、ガン患者に、同じ回数投与されてもよいし、異なる回数投与されてもよい。
 本発明の実施形態に係るガン治療用医薬品組成物は、薬学的に許容される剤形に製剤化することができる。例えば、ガン治療用医薬品組成物は、注射剤、溶液、懸濁液、錠剤、カプセル、ピル、顆粒、シロップ、坐剤、吸入剤、及びスプレーに製剤化することができる。注射剤は、例えば、注射液、注射用滅菌粉末、及び注射用濃縮液を含む。本発明の実施形態に係るガン治療用医薬品組成物において、κオピオイド受容体アゴニストと、微小管阻害剤と、は、分けて製剤化してもよいし、一緒に製剤化してもよい。
 上記のように本発明を実施形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施形態、実施例及び運用技術が明らかになるはずである。本発明はここでは記載していない様々な実施形態等を包含するということを理解すべきである。
 (実施例1)
 アンドロゲン受容体が無いアンドロゲン非依存性ヒト前立腺ガン細胞株のDU145細胞(ATCC)と、パクリタキセル及びドセタキセル抵抗性のDU145_TxR細胞と、ドセタキセル及びカバジタキセル抵抗性のDU145_CxR細胞を用意した。DU145_TxR細胞及びDU145_CxR細胞は、Prostate、2007年、第67巻(第9号)、p.955‐967の記載を参照して樹立した。
 96ウェルプレートのウェルに、細胞を1×104細胞/ウェルの細胞数で播種した。培地には10%FBSを加えたDMEM培地を用いた。細胞を播種してから24時間後、0nmol/L、1nmol/L、3nmol/L、10nmol/L、30nmol/L、及び100nmol/Lのいずれかのカバジタキセルと、図1に記載の併用化合物のいずれかと、を含む培地を用いて、培地を交換した。なお、併用化合物の濃度は、併用化合物を単独で細胞に添加した場合に、細胞の生存率が90%以上となる濃度に設定した。
 培地交換してから48時間後、生細胞数を測定する比色定量分析用試薬(CellTiter 96 AQueous One Solution Cell Proliferation Assay kit、Promega、G3581)を培養液に直接加え、1時間反応させた後、490nmにおける吸光度を測定した。0nmol/LのカバジタキセルとDMSOを加えた場合の細胞の生存率を100%として、各条件の細胞生存率を算出した。結果を図2、図3、及び図4に示す。
 図2に示すように、タキサン系抗ガン剤に対して抵抗性でないDU145細胞に対しては、カバジタキセルの効果は、いずれの併用化合物を用いても変わらなかった。これに対し、図3及び図4に示すように、パクリタキセル及びドセタキセル抵抗性のDU145_TxR細胞と、ドセタキセル及びカバジタキセル抵抗性のDU145_CxR細胞に対しては、スピラドリン(U-62066)と併用されたカバジタキセルの効果が、他の併用化合物と併用されたカバジタキセルの効果を上回った。図2、図3、及び図4のグラフから算出されるカバジタキセルのIC50を図5に示す。DMSOと比較して、スピラドリンと併用することにより、カバジタキセルのIC50が顕著に低下した。
 (実施例2)
 アンドロゲン受容体が無いアンドロゲン非依存性ヒト前立腺ガン細胞株のPC3細胞(ATCC)、パクリタキセル及びドセタキセル抵抗性のPC3_TxR細胞と、ドセタキセル及びカバジタキセル抵抗性のPC3_CxR細胞を用意した。併用化合物として、DMSO、並びに0.1μmol/L、1μmol/L、及び10μmol/Lのいずれかのスピラドリンを用意した。これらの細胞と併用化合物を用いた以外は、実施例1と同様の条件で細胞にカバジタキセルを与え、各条件の細胞生存率を求めた。結果を図6及び図7に示す。
 図6及び図7に示すように、パクリタキセル及びドセタキセル抵抗性のPC3_TxR細胞と、ドセタキセル及びカバジタキセル抵抗性のPC3_CxR細胞に対して、スピラドリンの濃度に依存して、カバジタキセルの効果が上昇した。図6及び図7のグラフから算出されるカバジタキセルのIC50を図8に示す。DMSOと比較して、スピラドリンと併用することにより、カバジタキセルのIC50が顕著に低下した。
 (実施例3)
 パクリタキセル及びドセタキセル抵抗性のPC3_TxR細胞を用意した。併用化合物として、DMSO、並びに、3μmol/L、及び10μmol/Lのいずれかのスピラドリンを用意した。これらの細胞と併用化合物を用いた以外は、実施例1と同様の条件で細胞にパクリタキセルあるいはドセタキセルを与え、各条件の細胞生存率を求めた。結果を図9及び図10に示す。
 図9及び図10に示すように、パクリタキセル及びドセタキセル抵抗性のPC3_TxR細胞に対して、スピラドリンの濃度に依存して、パクリタキセル及びドセタキセルの効果が上昇した。
 (実施例4)
 カバジタキセル抵抗性のDU145_CxR細胞及びPC3_CxR細胞を用意した。併用化合物として、DMSO、並びに10μmol/Lのスピラドリン、ナルフラフィン、ICI-199,441、LPK-26、BRL-52537及びGR-89696を用意した。これらの併用化合物を用いた以外は、実施例1及び2と同様の条件で細胞にカバジタキセルを与え、各条件の細胞生存率からカバジタキセルのIC50を求め図11に示す。
 図11に示すように、カバジタキセル抵抗性のDU145_CxR細胞及びPC3_CxR細胞に対して、スピラドリン、ナルフラフィン、ICI-199,441、LPK-26、BRL-52537及びGR-89696のそれぞれの併用により、カバジタキセルの効果が上昇した。
 (実施例5)
 5週齢の重症複合免疫不全症(SCID)のオスのマウス40匹をクレアジャパン(東京、日本)から購入した。順化期間の後、3×106個のPC3_CxR細胞を50%マトリゲル(コーニング、ニューヨーク州、米国)と混合し、SCIDマウスの背側皮下に移植した。マウスの腫瘍が長さを測定するのに十分な大きさとなった後、腫瘍の発育が不十分であった4匹を除いた36匹を、各グループの平均腫瘍サイズがほぼ等しくなるように6群に分けた。
 1番目の群を対照群、2番目の群を5mg/kgのカバジタキセルのみを投与する群、3番目の群を2mg/kgのスピラドリンのみを投与する群、4番目の群を5mg/kgのカバジタキセルと2mg/kgのスピラドリンを併用投与する群、5番目の群を5mg/kgのスピラドリンのみを投与する群、6番目の群を5mg/kgのカバジタキセルと5mg/kgのスピラドリンを併用投与する群とした。
 カバジタキセルを投与する2、4、6番目の群には、週1回、カバジタキセルを20μLのDMSOで溶解し腹腔内投与した。
 カバジタキセルを投与しない1、3、5番目の群には、2、4、6番目の群にカバジタキセルを投与する頻度と同一の頻度で、20μLのDMSOのみを腹腔内投与した。
 スピラドリンを投与する3、4、5、6番目の群には、週2回、スピラドリンを20μLの蒸留水で溶解し腹腔内投与した。
 図12に示すように、継時的に、腫瘍のサイズとマウスの体重を、それぞれノギスと体重計を使用して同時に測定した。腫瘍サイズV(cm3)は、腫瘍の長径をA(cm)、腫瘍の短径をI(cm)として、以下の式を用いて算出した
  V=A×I×I×0.5
 3週間にわたって体重に基づいてマウスに薬剤を投与し、その後、各群において最も腫瘍径の小さなマウスを除外して、各群において5匹の腫瘍サイズの平均値を算出し、図12に示した。なお、当該プロトコルは、金沢大学大学院医学研究科の動物実験委員会によって承認された。
 図12に示すように、スピラドリンとカバジタキセルを併用投与されたマウスにおける腫瘍サイズは、スピラドリン又はカバジタキセルのみを投与されたマウスにおける腫瘍サイズより小さくなった。また、5mg/kgのスピラドリンとカバジタキセルを併用投与されたマウスにおける腫瘍サイズは、2mg/kgのスピラドリンとカバジタキセルを併用投与されたマウスにおける腫瘍サイズより小さくなった。
 (実施例6)
 親株として乳ガン細胞株であるMCF-7細胞を用いて、パクリタキセル耐性株の樹立を開始した。培地は、10%FCSを含有したDMEM培地を用いた。パクリタキセルを1nmol/Lの濃度で培地に添加し、細胞がコンフルエントになるまで、2、3日に1回培地交換を行った。細胞がコンフルエントになった時に細胞を継代し、パクリタキセルの濃度を3nmol/Lに増加させて、引き続き細胞の培養をおこなった。その後、同様に、徐々にパクリタキセルの濃度を上げ、継代毎に細胞の一部を凍結保存しながら、細胞の培養を続け、最終的には12nmol/Lのパクリタキセルでも増殖する細胞株を樹立した。なお濃度を上昇させて細胞が増殖しなくなった場合には、凍結保存の細胞を用いて、確実に増殖する濃度のパクリタキセルで培養し、継代を行った。樹立された細胞株を、MCF7-TxR細胞と称した。
 (実施例7)
 実施例6で樹立したMCF7-TxR細胞と、パクリタキセル及びドセタキセルを含む多剤耐性子宮がん株MES-SA/Dx5細胞と、MCF7-TxR細胞の親株であるMCF-7細胞と、MES-SA/Dx5細胞の親株であるMES-SA細胞を用意した。MES-SA/Dx5細胞については、Harker WG, Sikic BI. Multidrug (pleiotropic) resistance in doxorubicin-selected variants of the human sarcoma cell line MES-SA. Cancer Res. (1985) 45:4091-4096及びChen G, Duran GE, Steger KA, Lacayo NJ, Jaffrezou JP, Dumontet C, Sikic BI. Multidrug-resistant human sarcoma cells with a mutant P-glycoprotein, altered phenotype, and resistance to cyclosporins. J Biol Chem. (1997) 272:5974-5982を参照されたい。
 384ウェルプレートに4×10細胞/ウェルの濃度で細胞を播種した。MCF-7細胞及びMCF7-TxR細胞の培地には10%FBSを加えたDMEM培地を使用した。MES-SA細胞及びMCF7-TxR細胞には10%FBSを加えたRPMI1640培地を使用した。細胞を播種してから4時間後、0nmol/L、1nmol/L、3nmol/L、10nmol/L、30nmol/L、及び100nmol/Lのいずれかのパクリタキセル又はドセタキセルと、DMSO又は3μmol/Lのスピラドリンと、を含む培地を用いて培地を交換した。
 培地交換してから48時間後、生細胞数を測定する比色定量分析用試薬(CellTiter 96 AQueous One Solution Cell Proliferation Assay kit、Promega、G3581)を培養液に直接加え、1時間反応させた後、490nmにおける吸光度を測定した。0nmol/LのカバジタキセルとDMSOを加えた場合の細胞の生存率を100%として、各条件の細胞生存率を算出した。
 図13に示すように、薬剤耐性でないMCF-7細胞の培地にパクリタキセルを加えた場合、パクリタキセルの効果は、DMSOを併用した場合と、スピラドリンを併用した場合とで、ほぼ同じであった。パクリタキセル耐性であるMCF7-TxR細胞の培地にパクリタキセルを加えた場合、パクリタキセルの効果は、DMSOを併用した場合と比較して、スピラドリンを併用した場合の方が、高かった。
 図14に示すように、薬剤耐性でないMCF-7細胞の培地にドセタキセルを加えた場合、ドセタキセルの効果は、DMSOを併用した場合と、スピラドリンを併用した場合とで、ほぼ同じであった。パクリタキセル耐性であるMCF7-TxR細胞の培地にドセタキセルを加えた場合、ドセタキセルの効果は、DMSOを併用した場合と比較して、スピラドリンを併用した場合の方が、が高かった。当該結果は、微小管阻害剤を変えても細胞が薬剤耐性を維持すること、κオピオイド受容体アゴニストは複数の微小管阻害剤に対して耐性の細胞の耐性を低下させることを示している。
 図15に示すように、薬剤耐性でないMES-SA細胞の培地にパクリタキセルを加えた場合、パクリタキセルの効果は、DMSOを併用した場合と、スピラドリンを併用した場合とで、ほぼ同じであった。多剤耐性であるMES-SA/Dx5細胞の培地にパクリタキセルを加えた場合、パクリタキセルの効果は、DMSOを併用した場合と比較して、スピラドリンを併用した場合の方が、高かった。
 図16に示すように、薬剤耐性でないMES-SA細胞の培地にドセタキセルを加えた場合、ドセタキセルの効果は、DMSOを併用した場合と、スピラドリンを併用した場合とで、ほぼ同じであった。多剤耐性であるMES-SA/Dx5細胞の培地にドセタキセルを加えた場合、ドセタキセルの効果は、DMSOを併用した場合と比較して、スピラドリンを併用した場合の方が、高かった。
 

Claims (20)

  1.  κオピオイド受容体アゴニストを含む、微小管阻害剤に対する細胞の薬剤耐性の治療剤。
  2.  前記κオピオイド受容体アゴニストが、スピラドリン、ナルフラフィン、ICI-199,441、LPK-26、BRL-52537、及びGR-89696、並びにこれらの塩からなる群から選択される少なくとも1つである、請求項1に記載の微小管阻害剤に対する細胞の薬剤耐性の治療剤。
  3.  前記κオピオイド受容体アゴニストが、スピラドリン及びその塩の少なくともいずれかである、請求項1又は2に記載の微小管阻害剤に対する細胞の薬剤耐性の治療剤。
  4.  前記微小管阻害剤が、タキサン系抗ガン剤である、請求項1から3のいずれか1項に記載の微小管阻害剤に対する細胞の薬剤耐性の治療剤。
  5.  前記タキサン系抗ガン剤が、カバジタキセル、パクリタキセル、及びドセタキセルからなる群から選択される少なくとも1つである、請求項4に記載の微小管阻害剤に対する細胞の薬剤耐性の治療剤。
  6.  前記タキサン系抗ガン剤が、カバジタキセルである、請求項4又は5に記載の微小管阻害剤に対する細胞の薬剤耐性の治療剤。
  7.  前記ガンが、前立腺ガン、膀胱ガン、乳ガン、胃ガン、及び子宮ガンからなる群から選択される少なくとも1つである、請求項4から6のいずれか1項に記載の微小管阻害剤に対する細胞の薬剤耐性の治療剤。
  8.  前記ガンが、前立腺ガンである、請求項4から7のいずれか1項に記載の微小管阻害剤に対する細胞の薬剤耐性の治療剤。
  9.  前記ガンが、乳ガンである、請求項4から7のいずれか1項に記載の微小管阻害剤に対する細胞の薬剤耐性の治療剤。
  10.  前記ガンが、子宮ガンである、請求項4から7のいずれか1項に記載の微小管阻害剤に対する細胞の薬剤耐性の治療剤。
  11.  κオピオイド受容体アゴニストと、微小管阻害剤と、を含む、ガン治療用医薬品組成物。
  12.  前記κオピオイド受容体アゴニストが、スピラドリン、ナルフラフィン、ICI-199,441、LPK-26、BRL-52537、及びGR-89696、並びにこれらの塩からなる群から選択される少なくとも1つである、請求項11に記載のガン治療用医薬品組成物。
  13.  前記κオピオイド受容体アゴニストが、スピラドリン及びその塩の少なくともいずれかである、請求項11又は12に記載のガン治療用医薬品組成物。
  14.  前記微小管阻害剤が、タキサン系抗ガン剤である、請求項11から13のいずれか1項に記載のガン治療用医薬品組成物。
  15.  前記タキサン系抗ガン剤が、カバジタキセル、パクリタキセル、及びドセタキセルからなる群から選択される少なくとも1つである、請求項14に記載のガン治療用医薬品組成物。
  16.  前記タキサン系抗ガン剤が、カバジタキセルである、請求項14又は15に記載のガン治療用医薬品組成物。
  17.  前記ガンが、前立腺ガン、膀胱ガン、乳ガン、胃ガン、及び子宮ガンからなる群から選択される少なくとも1つである、請求項11から16のいずれか1項に記載のガン治療用医薬品組成物。
  18.  前記ガンが、前立腺ガンである、請求項11から17のいずれか1項に記載のガン治療用医薬品組成物。
  19.  前記ガンが、乳ガンである、請求項11から17のいずれか1項に記載のガン治療用医薬品組成物。
  20.  前記ガンが、子宮ガンである、請求項11から17のいずれか1項に記載のガン治療用医薬品組成物。
PCT/JP2022/006631 2021-03-04 2022-02-18 ガン治療薬 WO2022185952A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202280007861.5A CN116615242A (zh) 2021-03-04 2022-02-18 癌症治疗药
US18/548,891 US20240156781A1 (en) 2021-03-04 2022-02-18 Cancer therapeutic agent
EP22763008.4A EP4302779A1 (en) 2021-03-04 2022-02-18 Cancer therapeutic agent

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021034337 2021-03-04
JP2021-034337 2021-03-04

Publications (1)

Publication Number Publication Date
WO2022185952A1 true WO2022185952A1 (ja) 2022-09-09

Family

ID=83154341

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006631 WO2022185952A1 (ja) 2021-03-04 2022-02-18 ガン治療薬

Country Status (5)

Country Link
US (1) US20240156781A1 (ja)
EP (1) EP4302779A1 (ja)
JP (1) JP2022135967A (ja)
CN (1) CN116615242A (ja)
WO (1) WO2022185952A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0435484B2 (ja) 1982-09-16 1992-06-11 Showa Denko Kk
JP2011512338A (ja) * 2008-02-18 2011-04-21 ラボラトリオス・デル・デエレ・エステベ・エセ・ア シグマ受容体リガンドに結合する化合物の、化学療法の結果発生する神経因性疼痛の治療用への使用
JP2020516591A (ja) * 2017-04-14 2020-06-11 ジエンス ヘンルイ メデイシンカンパニー リミテッドJiangsu Hengrui Medicine Co.,Ltd. Morアゴニストおよびkorアゴニストを含有する医薬組成物、およびその用途

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0435484B2 (ja) 1982-09-16 1992-06-11 Showa Denko Kk
JP2011512338A (ja) * 2008-02-18 2011-04-21 ラボラトリオス・デル・デエレ・エステベ・エセ・ア シグマ受容体リガンドに結合する化合物の、化学療法の結果発生する神経因性疼痛の治療用への使用
JP2020516591A (ja) * 2017-04-14 2020-06-11 ジエンス ヘンルイ メデイシンカンパニー リミテッドJiangsu Hengrui Medicine Co.,Ltd. Morアゴニストおよびkorアゴニストを含有する医薬組成物、およびその用途

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ATIGARI DIANA VIVIAN, PATON KELLY FRANCES, UPRETY RAJENDRA, VÁRADI ANDRÁS, ALDER AMY FRANCES, SCOULLER BRITTANY, MILLER JOHN H., M: "The mixed kappa and delta opioid receptor agonist, MP1104, attenuates chemotherapy-induced neuropathic pain", NEUROPHARMACOLOGY, ELSEVIER, AMSTERDAM, NL, vol. 185, 1 March 2021 (2021-03-01), AMSTERDAM, NL, pages 108445, XP055964027, ISSN: 0028-3908, DOI: 10.1016/j.neuropharm.2020.108445 *
CAS , no. 130497-33-5
CAS, no. 126766-32-3
CHEN GDURAN GESTEGER KALACAYO NJJAFFREZOU JPDUMONTET CSIKIC BI: "Multidrug-resistant human sarcoma cells with a mutant P-glycoprotein, altered phenotype, and resistance to cyclosporins", J BIOL CHEM, vol. 272, 1997, pages 5974 - 5982, XP002130474, DOI: 10.1074/jbc.272.9.5974
HARKER WGSIKIC BI: "Multidrug (pleiotropic) resistance in doxorubicin-selected variants of the human sarcoma cell line MES-SA", CANCER RES, vol. 45, 1985, pages 4091 - 4096
HIDAKA, TAKAO: "Taxane-Based Drugs", YAKKYOKU = JOURNAL OF PRACTICAL PHARMACY, NANZANDO, JP, vol. 62, no. 11, 1 January 2011 (2011-01-01), JP , pages 88 - 92, XP009539359, ISSN: 0044-0035 *
PATON K.F., KUMAR N., CROWLEY R.S., HARPER J.L., PRISINZANO T.E., KIVELL B.M.: "The analgesic and anti-inflammatory effects of Salvinorin A analogue β-tetrahydropyran Salvinorin B in mice", EUROPEAN JOURNAL OF PAIN, SAUNDERS, LONDON, GB, vol. 21, no. 6, 1 July 2017 (2017-07-01), GB , pages 1039 - 1050, XP055964026, ISSN: 1090-3801, DOI: 10.1002/ejp.1002 *
PROSTATE, vol. 67, no. 9, 2007, pages 955 - 967

Also Published As

Publication number Publication date
EP4302779A1 (en) 2024-01-10
US20240156781A1 (en) 2024-05-16
JP2022135967A (ja) 2022-09-15
CN116615242A (zh) 2023-08-18

Similar Documents

Publication Publication Date Title
JP2021059579A (ja) 癌を処置するための医薬組合せ
RU2423980C2 (ru) Комбинации, включающие эпотилоны и ингибиторы протеинтирозинкиназы и их фармацевтическое применение
NZ605887A (en) Pharmaceutical dosage form comprising 6’-fluoro-(n-methyl- or n,n-dimethyl-)-4-phenyl-4’,9’-dihydro-3’h-spiro[cyclohexane-1,1’-pyrano[3,4,b]indol]-4-amine for the treatment of neuropathic pain
KR101848131B1 (ko) 저용량 이리노테칸염산염 수화물을 함유하는 항종양제
TWI674898B (zh) Mcl-1抑制劑及紫杉烷化合物之組合,及其用途及醫藥組合物
JP5514123B2 (ja) 卵巣癌を治療するための、パクリタキセルを含む配合剤
MX2011009498A (es) Combinaciones farmaceuticas que comprenden rdea119/bay 869766 para el tratamiento de canceres especificos.
JP2014144979A (ja) 治療におけるアポトーシスを増加させるための有糸分裂の阻害剤
WO2022185952A1 (ja) ガン治療薬
RU2015114967A (ru) Производные ингенола, применяемые для лечения рака
RU2657604C2 (ru) Противоопухолевый агент, включающий гидрат гидрохлорида иринотекана
MX2022002555A (es) Conjugados de farmaco de anticuerpo de union a receptor de tipo ii de la hormona anti-mulleriana humana (amhrii) y uso de los mismos en el tratamiento de canceres.
WO2020099542A1 (en) Combination of a mcl-1 inhibitor and midostaurin, uses and pharmaceutical compositions thereof
CN102319260A (zh) 顺铂联合伊曲康唑异构体在制备治疗肺癌药物中的应用
CN105753724A (zh) 用于杀伤癌细胞的几种化合物
CN111821303A (zh) 沃替西汀及其盐在制备抗肿瘤药物中的应用
KR20190103317A (ko) Mcl-1 억제제와 탁산 화합물의 조합물, 이의 용도 및 약학적 조성물
CN108187055A (zh) 一种具有协同增效作用的抗癌组合物
US8183285B2 (en) Therapeutic agent for irritable bowel syndrome and methods thereof
RU2010125711A (ru) Меквитазин для лечения или предотвращения патологий, в которых задействованы н4 рецепторы гистамина
JPH03163017A (ja) 抗癌活性増強剤
WO2005007155A1 (ja) 医薬組成物
JPH11217338A (ja) キノリン誘導体を用いる医薬品の効果改善および増強剤
NZ622112B2 (en) Scheme for administering n-hydroxy-4-{2-[3-(n,n-dimethylaminomethyl)­benzofuran-2-ylcarbonylamino]ethoxy}benzamide

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22763008

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280007861.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18548891

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022763008

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022763008

Country of ref document: EP

Effective date: 20231004