WO2022185796A1 - 変位センサ - Google Patents

変位センサ Download PDF

Info

Publication number
WO2022185796A1
WO2022185796A1 PCT/JP2022/002844 JP2022002844W WO2022185796A1 WO 2022185796 A1 WO2022185796 A1 WO 2022185796A1 JP 2022002844 W JP2022002844 W JP 2022002844W WO 2022185796 A1 WO2022185796 A1 WO 2022185796A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
received
amount
level
adjustment value
Prior art date
Application number
PCT/JP2022/002844
Other languages
English (en)
French (fr)
Inventor
真人 佐野
真司 大野
涼子 中村
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN202280015416.3A priority Critical patent/CN116868025A/zh
Publication of WO2022185796A1 publication Critical patent/WO2022185796A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques

Definitions

  • the present disclosure relates to displacement sensors.
  • displacement sensors that measure the displacement, surface shape, etc. of an object to be measured using the principle of triangulation are known (see Patent Document 1, for example).
  • This type of displacement sensor irradiates an object with light from a light projecting part, receives the reflected light from the object with a light receiving part such as an image sensor, and outputs a measurement value signal obtained from the received light signal. Then, the displacement and surface shape of the object are measured.
  • a displacement sensor includes a light projecting unit including a light projecting element that projects light onto an object to be detected, a light projecting control circuit that controls the light projecting element, and a light reflected from the object to be detected.
  • An image sensor that receives light, a light reception control circuit that controls the image sensor, a light receiving unit that outputs an image signal corresponding to the reflected light received by the image sensor, and based on the light reception level of the image signal, a control unit that performs feedback control for adjusting an operation amount including at least one of the amount of light projected by the light projecting element and the amount of light received by the image sensor; and a storage unit that stores an adjustment value for the operation amount,
  • the controller performs the feedback control when the received light level is within the first range, and the received light level is equal to or higher than a first level larger than the first range, or equal to or lower than a second level smaller than the first range. When , the operation amount is adjusted by the adjustment value stored in the storage unit.
  • FIG. 1 is a block diagram showing the electrical configuration of the displacement sensor.
  • FIG. 2 is a flow chart of feedback control of the amount of light emitted and received.
  • FIG. 3 is a flowchart of tuning processing for the amount of light emitted and received.
  • FIG. 4 is an explanatory diagram showing the operation of the displacement sensor.
  • FIG. 5 is an explanatory diagram showing the operation of the displacement sensor.
  • FIG. 6 is an explanatory diagram showing processing of the displacement sensor.
  • FIG. 7 is an explanatory diagram showing processing of the displacement sensor.
  • FIG. 8 is an explanatory diagram showing processing of the displacement sensor.
  • FIG. 9 is an explanatory diagram showing processing of the displacement sensor.
  • FIG. 10 is an explanatory diagram showing processing of the displacement sensor.
  • FIG. 11 is an explanatory diagram showing processing of the displacement sensor.
  • a displacement sensor 10 shown in FIG. 1 projects detection light L1 onto an object W to be detected, and detects the displacement, shape, and the like of the object W to be detected.
  • the displacement sensor 10 has a light projecting section 11 , a light receiving section 12 , a control section 13 , a storage section 14 and an input/output section 15 .
  • the light projection unit 11 includes a light projection element 11a and a light projection control circuit 11b.
  • the light receiving section 12 includes an image sensor 12a and a light receiving control circuit 12b.
  • the light projecting element 11a projects the detection light L1 toward the object W to be detected.
  • Light projecting element 11a is, for example, a laser diode.
  • the light projection control circuit 11b controls the light projecting element 11a.
  • the detection light L1 projected from the light projecting element 11a is reflected by the object W to be detected.
  • the reflected light L ⁇ b>2 is incident on the image sensor 12 a of the light receiving section 12 .
  • the image sensor 12a has a plurality of light receiving cells 12s.
  • the image sensor 12a of this embodiment is a CMOS image sensor.
  • an element having a plurality of light receiving cells 12s such as a CCD image sensor and a PSD can be used.
  • the image sensor 12a converts the reflected light L2 received by each light receiving cell 12s into an electrical signal having a voltage level corresponding to the amount of received reflected light L2, and outputs the electrical signal.
  • the light receiving control circuit 12b controls the image sensor 12a.
  • the light reception control circuit 12b generates an electric signal output from the image sensor 12a, that is, an image signal S12 corresponding to the amount of reflected light L2 received by the image sensor 12a.
  • the light receiving section 12 outputs the image signal S12.
  • the image signal S12 includes the light reception level in each light receiving cell 12s of the image sensor 12a.
  • the received light level is a value proportional to the amount of received light in each light receiving cell 12s. That is, the image signal S12 is a time-series signal (light receiving waveform) corresponding to the light receiving amount distribution on the light receiving surface of the image sensor 12a.
  • the control section 13 Based on the image signal S12 from the light receiving section 12, the control section 13 detects the light receiving center position of the reflected light L2 on the image sensor 12a. Then, the control unit 13 measures the amount of displacement of the object W from the light receiving center position.
  • the displacement sensor 10 has a light projecting lens 21 and a light receiving lens 22.
  • the detection light L1 projected from the light projecting element 11a passes through the light projecting lens 21 and is applied to the object W to be detected.
  • the reflected light L2 reflected by the object W to be detected passes through the light receiving lens 22 and enters the image sensor 12a.
  • the image sensor 12a has a plurality of light receiving cells 12s.
  • the control unit 13 detects the light receiving center position O1 of the reflected light L2 from the object W indicated by the solid line. For example, the control unit 13 detects the position of the light-receiving cell 12s having the maximum light-receiving level (light-receiving amount) in the image signal S12 as the light-receiving central position O1. Further, in the image signal S12, when the amount of light received by the plurality of light receiving cells 12s is the saturation value, the control unit 13 detects the positions of the plurality of light receiving cells 12s having the saturation value as the light receiving center position O1.
  • the reflected light L2 from the object to be detected W is incident on the image sensor 12a at a position different from that of the reflected light L2 indicated by the solid line. That is, the light receiving center position O2 changes according to the distance from the displacement sensor 10 to the surface of the object W to be detected.
  • the control unit 13 detects the light receiving center position O2 of the reflected light L2. The difference between these light receiving center positions O1 and O2 corresponds to the amount of displacement of the object W to be detected.
  • the input/output unit 15 is configured to be able to communicate with an external device connected to the displacement sensor 10. Communication may be wired or wireless.
  • the input/output unit 15 transmits, for example, the detection result of the control unit 13 to an external device.
  • the input/output unit 15 also receives control signals, set values, and the like for the displacement sensor 10 .
  • the storage unit 14 stores various information when the control unit 13 performs various processing operations.
  • Information stored in the storage unit 14 includes set values and changed values in the displacement sensor 10 .
  • the set value and change value are values for adjusting the amount of light projected by the light projecting element 11a and the amount of light received by the image sensor 12a.
  • Values for adjusting the light projection amount include, for example, the light projection time for driving the light projecting element 11a, the drive voltage supplied to the light projecting element 11a, and the like.
  • Values for adjusting the amount of received light include, for example, the exposure time in the light receiving section 12, the amplification factor for amplifying the signal output from the light receiving section 12, and the like.
  • the set values and changed values include initial values, values received from an external device, values set by teaching processing, and the like.
  • the control unit 13 Based on the image signal S12 from the image sensor 12a, the control unit 13 performs a light emission/reception amount feedback control for adjusting the light emission amount (light emission time) of the light projecting element 11a and the light reception amount (exposure time) of the image sensor 12a. have a function.
  • the amount of reflected light L2 received by the image sensor 12a changes according to the state of reflection on the surface of the object W to be detected.
  • the control unit 13 detects the light receiving center position where the reflected light L2 is received by the image sensor 12a. When the amount of light received by the image sensor 12a is large or small, an error may occur in the position of the center of the detected light reception. Therefore, the control unit 13 adjusts the amount of light emitted and received so that the amount of light received is within the optimum value range (reference range).
  • the amount of light projection can be adjusted by adjusting the light projection time during which the detection light L1 is emitted from the light projecting element 11a.
  • the light projection control circuit 11b intermittently drives the light projection element 11a to pulse the detection light L1. The longer the detection light L1 is emitted, the greater the amount of projected light.
  • the control unit 13 sets the light projection time for the light projection control circuit 11b.
  • the amount of received light can be adjusted by adjusting the exposure time during which the image sensor 12a makes the reflected light L2 incident.
  • the light reception control circuit 12b controls the image sensor 12a so that the image sensor 12a is intermittently exposed.
  • the exposure time is lengthened, the time during which the reflected light L2 is incident on the image sensor 12a is lengthened, that is, the amount of light received is increased.
  • the control unit 13 sets the exposure time for the light receiving control circuit 12b.
  • the control unit 13 has a function of executing tuning processing.
  • the tuning process is, for example, a process of storing adjustment values for the object W2 shown in FIG.
  • the object to be detected W2 has a plurality of portions with different reflectances, and the reflectances are non-uniform.
  • the object to be detected W2 has a portion WA made of a high reflectance material (for example, metal such as aluminum) and a portion WB made of a low reflectance material (for example, black resin).
  • the light reception level may be too small in the first measurement after the measurement portion is changed from the high reflectance portion WA to the low reflectance portion WB.
  • the control unit 13 stores in the storage unit 14, as a first adjustment value, a value set so that the amount of light received by the image sensor 12a approaches the optimum value range. Therefore, when the received light level becomes excessive, the operation amount, that is, at least one of the amount of light emitted and the amount of received light is adjusted with the first adjustment value stored in the storage unit 14, thereby shortening the time required for adjusting the amount of received light. can.
  • the control unit 13 stores in the storage unit 14, as a second adjustment value, a value set so that the amount of light received by the image sensor 12a approaches the optimum value range. Therefore, when the received light level becomes too small, the operation amount, that is, at least one of the amount of light emitted and the amount of received light is adjusted with the second adjustment value stored in the storage unit 14, thereby shortening the time required for adjusting the amount of received light. can.
  • FIG. 3 shows tuning processing of the amount of light emitted and received.
  • the first work is set.
  • the first work is a high reflectance work.
  • the part WA of the object to be detected W2 shown in FIG. 5 is set as the first workpiece.
  • step 52 the controller 13 performs feedback control on the first received light amount of the workpiece.
  • step 53 the controller 13 determines whether or not the amount of received light is the optimum value based on the received light level. That is, the control unit 13 determines whether or not the amount of received light adjusted by the feedback control in step 52 is the optimum value. If the received light amount is the optimum value (determination: YES), the process proceeds to step 54 .
  • control unit 13 stores the light reception level corresponding to the adjusted light reception amount as an adjustment value (first adjustment value) for the first workpiece.
  • control unit 13 stores the first adjustment value in storage unit 14 of FIG.
  • step 55 set the second work.
  • the second work is a low reflectance work.
  • the part WB of the object to be detected W2 shown in FIG. 5 is set as the second work.
  • step 56 the controller 13 performs feedback control on the second workpiece light receiving amount.
  • step 57 the controller 13 determines whether or not the amount of received light is the optimum value based on the level of received light. That is, the control unit 13 determines whether or not the amount of received light adjusted by the feedback control in step 56 is the optimum value. If the received light amount is the optimum value (determination: YES), the process proceeds to step 58 .
  • control unit 13 stores the light reception level corresponding to the adjusted light reception amount as an adjustment value (second adjustment value) for the second workpiece.
  • control unit 13 stores the second adjustment value in storage unit 14 of FIG.
  • step 53 determines whether or not the amount of received light can be adjusted. If the amount of received light can be adjusted (determination: YES), the controller 13 proceeds to step 52 and performs feedback control. On the other hand, if the amount of received light cannot be adjusted (determination: NO), the controller 13 proceeds to step 60, executes error processing, and ends the process. For example, in the error termination process, the control unit 13 notifies, via the input/output unit 15 of FIG. It should be noted that in the error termination process, an error may be displayed on a display unit (not shown).
  • step 61 the controller 13 determines whether or not the amount of received light can be adjusted. If the amount of received light can be adjusted (determination: YES), the controller 13 proceeds to step 56 and performs feedback control. On the other hand, if the amount of received light cannot be adjusted (determination: NO), the controller 13 proceeds to step 62, executes error processing, and ends the process. For example, in the error termination process, the control unit 13 notifies, via the input/output unit 15 of FIG. It should be noted that in the error termination process, an error may be displayed on a display unit (not shown).
  • FIG. 2 shows the feedback control of the amount of light emitted and received.
  • the control unit 13 acquires the light reception level.
  • step 32 the control unit 13 determines whether or not the received light amount is within the optimum value range based on the received light level. If the amount of received light is within the optimum value range (determination: YES), the controller 13 proceeds to step 31 . On the other hand, when the received light amount is not within the optimum value range (determination NO), the control unit 13 proceeds to step 33 .
  • the control unit 13 determines whether or not tuning is valid.
  • mode information is stored in the storage unit 14 shown in FIG.
  • Mode information includes information (flags) indicating whether tuning is enabled or disabled.
  • the control unit 13 determines whether or not tuning is valid based on the mode information.
  • the control unit 13 proceeds to step 34 if tuning is valid (determination: YES), and proceeds to step 38 if tuning is not valid (determination: NO).
  • the control unit 13 may determine that tuning is invalid when at least one of the first adjustment value and the second adjustment value is a predetermined value in the storage unit 14 shown in FIG.
  • the predetermined value for example, a value that cannot be set as the first adjustment value and the second adjustment value, such as "0" can be used.
  • the control unit 13 determines whether or not the light reception level is equal to or greater than the predetermined value X1.
  • the predetermined value X1 is the first level above the optimum value range. This first level is the saturation level or a level close to the saturation level. If the received light level is greater than or equal to the predetermined value X1 (determination: YES), the controller 13 proceeds to step 35 .
  • the control unit 13 adjusts the amount of light emitted and received.
  • the control unit 13 uses the set value at saturation, that is, the first adjustment value set using the work with high reflectance.
  • the control unit 13 reads out the first adjustment value from the storage unit 14 shown in FIG.
  • the first adjustment value includes an adjustment value for adjusting at least one of the amount of projected light and the amount of received light as a manipulated variable.
  • the control unit 13 adjusts the amount of light emitted and received using the first adjustment value.
  • step 31 After adjusting the amount of light emitted and received, the controller 13 proceeds to step 31 .
  • step 34 when the received light level is less than the predetermined value X ⁇ b>1 (determination: NO), the control section 13 proceeds to step 36 .
  • the control unit 13 determines whether or not the received light level is equal to or lower than the predetermined value X2.
  • the predetermined value X2 is a second level less than the optimum value range. This second level is a level close to the zero level. If the received light level is equal to or less than the predetermined value X2 (determination: YES), the controller 13 proceeds to step 37 .
  • the control unit 13 adjusts the amount of light emitted and received.
  • the control unit 13 uses the set value without the amount of received light, that is, the second adjustment value set using the low reflectance workpiece.
  • the control unit 13 reads out the second adjustment value from the storage unit 14 shown in FIG.
  • the second adjustment value includes an adjustment value for adjusting at least one of the amount of projected light and the amount of received light as the manipulated variable.
  • the control unit 13 adjusts the amount of light emitted and received using the second adjustment value.
  • step 31 After adjusting the amount of light emitted and received, the controller 13 proceeds to step 31 .
  • step 36 if the received light level is not equal to or lower than the predetermined value X2 (determination: NO), the controller 13 proceeds to step .
  • the control unit 13 determines whether or not the received light level is greater than the optimum value range. If the received light level is greater than the optimum value range (determination: YES), the controller 13 proceeds to step 39 .
  • the control unit 13 reduces the amount of light emitted and received. For example, the control unit 13 subtracts a predetermined change value from the current set values (projection time, exposure time) for the light projecting unit 11 and the light receiving unit 12 as new set values. Set to 12.
  • the change value may be a constant value or a variable value.
  • control unit 13 sets the value obtained by multiplying the current value of the amount of light projected and received by a coefficient (decrease coefficient) for decreasing the amount of light projected and received as a new setting value, and adjusts the amount of light projected and received.
  • the reduction factor is a value less than "1", for example "0.8". Note that the reduction coefficient can also be changed according to the received light level and the optimum value range. For example, the greater the difference between the received light level and the optimum value range, the smaller the reduction coefficient.
  • step 38 if the received light level is equal to or less than the optimum value range (determination: NO), the controller 13 proceeds to step 40 .
  • the controller 13 increases the amount of light emitted and received.
  • the control unit 13 adds a predetermined change value to the current set values (projection time, exposure time) for the light projecting unit 11 and the light receiving unit 12 as new set values. Set to 12.
  • the change value may be a constant value or a variable value.
  • the change value for decreasing the amount of projected and received light and the changed value for increasing the amount of projected and received light may be the same value or may be different.
  • control unit 13 sets the value obtained by multiplying the current value of the amount of light projected and received by a coefficient (increase coefficient) for increasing the amount of light projected and received as a new amount of light projected and received.
  • the increase factor is a value greater than "1", such as "1.2". Note that the increase coefficient can also be changed according to the received light level and the optimum value range. For example, the larger the difference between the received light level and the optimum value range, the larger the increase coefficient.
  • 6 and 7 show received light waveforms in the image sensor 12a.
  • the horizontal axis represents the cell position of the light receiving cell 12s
  • the vertical axis represents the amount of received light (light receiving level).
  • the hatched area H1 indicates the optimum value range for the object W with a large amount of reflection.
  • the hatched area H2 indicates the optimum value range for the object W with a small amount of reflection.
  • the optimum value range may be the same amount of received light.
  • received light waveforms F11 and F21 indicated by solid lines indicate waveforms suitable for peak position detection.
  • Received light waveforms F12 and F22 indicated by dashed-dotted lines indicate when the received light amount (received light level) is lower than the optimum value range.
  • the manipulated variable the amount of projected light and the amount of received light
  • Received light waveforms F13 and F23 indicated by two-dot chain lines indicate when the amount of received light (received light level) is higher than the optimum value range.
  • the manipulated variable (the amount of projected light and the amount of received light) is decreased so as to approach the received light waveforms F11 and F21.
  • the linear portion indicates that the amount of received light is saturated in many light receiving cells 12s.
  • the area H21 indicates the optimum value range of the amount of received light
  • the area H22 indicates the range of saturated state
  • the area H23 indicates the range of insufficient amount of received light.
  • a range between the region H22 and the region H23 corresponds to the first range.
  • the first range is a range that is larger than the second level (predetermined value X2) of the received light level and smaller than the first level (predetermined value X1) of the received light level.
  • the first range is set larger than the region H21, that is, the optimal value range of the received light amount (light received level).
  • a point P11 indicates the light projection time when the portion WB of the object W2 shown in FIG. 5 is measured.
  • a point P12 indicates the optimum light projection time for the part WA.
  • the part WA of the object W2 to be detected shown in FIG. 5 is measured.
  • the portion WA since the portion WA has a high reflectance, the amount of light received is saturated as indicated by point P21.
  • the amount of received light is gradually decreased by repeating feedback control as shown at points P21, P22, and P23 shown in FIG. 9, and is within the optimum value range.
  • the amount of received light (received light level) at point P21 shown in FIG. 8 is saturated, so the light projection time is adjusted by one adjustment using the first adjustment value.
  • the control unit 13 obtains the light reception level from the image signal S12 by A/D conversion (analog-digital conversion), for example.
  • this light receiving level is the maximum value of the input range (maximum value of A/D conversion)
  • the light receiving cell 12s is a saturated cell.
  • the control unit 13 counts the number of saturated cells and determines whether or not the count value (the number of saturated cells) is equal to or greater than a predetermined value N.
  • the predetermined value N is set corresponding to a received light level that can be brought close to the optimum value range in a short time in feedback control that increases or decreases the amount of received light in a stepwise manner.
  • the received light level (the amount of received light) can be made smaller than the saturation value by several times of feedback control, and can be brought within the optimum value range or close to the optimum value range.
  • the amount of received light is saturated at time T21.
  • Time T22 shows the received light waveform after several times of feedback control. In this case, the received light level is in a saturated state.
  • Time T23 shows the received light waveform after several times of feedback control.
  • the peak value is higher than the optimum value range. However, since the peak value is known, the peak of the received light waveform is set within the optimum value range, as in the received light waveform shown at time T24. In this way, it takes time to bring the amount of received light (the level of received light) closer to the optimum value range.
  • the displacement sensor 10 of the present embodiment uses the first adjustment value stored in the storage unit 14 when the number of saturated cells is equal to or greater than the predetermined number N, so that the operation amount (the amount of light emitted and the amount of received light) can be easily adjusted to the optimum value. It can be within the range or close to the optimal value range.
  • the adjustment time can be shortened. Then, stable measurement results can be obtained in a short time.
  • FIG. 10 shows the measurement state and received light waveforms when conveying a plurality of objects W2 to be detected. At times T11, T12, T13, T14, and T15, the area WA, the area WB, the transport path, the area WA, and the area WB are measured.
  • the control unit 13 uses the second adjustment value to increase the amount of received light in the received light waveform, as shown at time T12+1.
  • the control unit 13 can measure the region WB based on this received light waveform.
  • the control unit 13 uses the first adjustment value to decrease the amount of received light in the received light waveform, as shown at time T14+1. Based on this received light waveform, the control unit 13 can measure the site WA.
  • the control unit 13 sets the first adjustment value and the second adjustment value by tuning the amount of light emitted and received, and stores them in the storage unit 14 . Therefore, in the tuning process, the first adjustment value and the second adjustment value can be easily set by setting the object W2 to be detected.
  • the control unit 13 causes the storage unit 14 to store the adjustment values adjusted by the feedback control as the first adjustment value and the second adjustment value in the process of tuning the amount of light emitted and received. Therefore, it is possible to easily set and store the first adjustment value and the second adjustment value suitable for the workpiece when performing feedback control.
  • the displacement sensor 10 includes a light projecting section 11 including a light projecting element 11a, a light receiving section 12 including an image sensor 12a, a control section 13, and a storage section .
  • the light receiving unit 12 outputs an image signal S12 corresponding to the reflected light L2 from the object W received by the image sensor 12a.
  • the control unit 13 Based on the light receiving level of the image signal S12 output from the light receiving unit 12, the control unit 13 performs feedback control to adjust the operation amount including at least one of the amount of light projected by the light projecting element 11a and the amount of light received by the image sensor 12a. Run.
  • the control unit 13 executes feedback control when the light reception level is within the first range.
  • the control unit 13 adjusts the operation amount using the first adjustment value and the second adjustment value stored in the storage unit 14 when it is equal to or greater than the predetermined value X1 which is larger than the first range or equal to or smaller than the predetermined value X2 which is smaller than the first range. .
  • the amount of received light is adjusted by adjusting the operation amount, that is, at least one of the amount of light emitted and the amount of received light, using the first adjustment value and the second adjustment value stored in the storage unit 14. can be shortened.
  • the control unit 13 sets the first adjustment value and the second adjustment value by tuning the amount of light emitted and received, and stores them in the storage unit 14 . Therefore, in the tuning process, the first adjustment value and the second adjustment value can be easily set by setting the object W2 to be detected.
  • the control unit 13 causes the storage unit 14 to store the adjustment values adjusted by the feedback control as the first adjustment value and the second adjustment value in the process of tuning the amount of light emitted and received. Therefore, it is possible to easily set and store the first adjustment value and the second adjustment value suitable for the workpiece when performing feedback control.
  • the control unit 13 adjusts the set light projection time for the light projection unit 11 . This makes it possible to easily adjust the amount of light projected by the light projecting element 11a.
  • the control section 13 adjusts the set exposure time for the light receiving section 12 . This makes it possible to easily adjust the amount of light received by the image sensor 12a.
  • the detection object W2 having the parts WA and WB is used, but the detection object may have either one of the parts WA and WB.
  • the object to be detected may be made of a material with a low reflectance
  • the transport line for conveying the object and the tape holding the object may be made of a material with a high reflectance. Even in such a case, it is possible to shorten the time for adjusting the amount of received light, as in the above-described embodiment.
  • the object to be detected may have a plurality of at least one of the parts WA and WB. Further, the object to be detected may have at least one or more portions having a reflectance different from that of the portions WA and WB.
  • All features disclosed in the specification and/or claims are for the purposes of the original disclosure and claimed independently of any combination of features in the embodiments and/or claims. They are intended to be disclosed separately and independently of each other for the purpose of limiting the scope of the invention.
  • Statements representing all numerical ranges or collections of elements are for the purposes of the initial disclosure and for the purposes of limiting the claimed invention, and specifically as limitations on numerical ranges, all possible Intermediate values or intermediate components are disclosed.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Optical Distance (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

変位センサ(10)は、投光素子(11a)を含む投光部(11)と、イメージセンサ(12a)を含む受光部と、制御部(13)と、記憶部(14)とを備える。受光部(12)は、イメージセンサ(12a)が受光する被検出物(W)からの反射光(L2)に応じた画像信号(S12)を出力する。制御部(13)は、受光部から出力される画像信号(S12)の受光レベルに基づいて、投光素子(11a)の投光量およびイメージセンサ(12a)の受光量の少なくとも1つを含む操作量を調整するフィードバック制御を実行する。制御部(13)は、受光レベルが第1範囲のときはフィードバック制御を実行する。制御部(13)は、第1範囲より大きな所定値(X1)以上、または第1範囲より小さな所定値(X2)以下のときは、記憶部(14)に記憶した第1調整値、第2調整値により操作量を調整する。

Description

変位センサ
 本開示は、変位センサに関する。
 従来、変位センサとして、測定する対象物の変位や表面形状等を三角測量の原理を用いて測定するものが知られている(たとえば、特許文献1参照)。この種の変位センサは、投光部から光を対象物に照射させて、その対象物からの反射光をイメージセンサ等の受光部にて受光し、その受光信号から得られる測定値信号を出力して対象物の変位や表面形状等の測定を行うものである。
特開2013-011566号公報
 ところで、対象物の測定部位毎で反射率が急変するような場合では、フィードバック調整を複数回行った後でやっと受光量が安定してくるため、複数回のフィードバック調整を経ての測定が必要となる。しかしながら、単純に複数回のフィードバック調整を行う構成としただけでは、受光量が安定するまでの調整時間がかかり、その過渡期において正確な測定結果が得られない虞があった。
 本開示の一態様による変位センサは、被検出物に投光する投光素子と、前記投光素子を制御する投光制御回路とを含む投光部と、前記被検出物からの反射光を受光するイメージセンサと、前記イメージセンサを制御する受光制御回路とを含み、前記イメージセンサが受光する前記反射光に応じた画像信号を出力する受光部と、前記画像信号の受光レベルに基づいて、前記投光素子の投光量および前記イメージセンサの受光量の少なくとも1つを含む操作量を調整するフィードバック制御を実行する制御部と、前記操作量に対する調整値を記憶する記憶部と、を備え、前記制御部は、前記受光レベルが第1範囲内のときは前記フィードバック制御を行い、前記受光レベルが前記第1範囲よりも大きな第1レベル以上、または前記第1範囲よりも小さな第2レベル以下のときは、前記記憶部に記憶した前記調整値により前記操作量を調整する。
 本開示の一態様によれば、調整時間を短縮することができる変位センサを提供することができる。
図1は、変位センサの電気的構成を示すブロック図である。 図2は、投受光量フィードバック制御のフローチャートである。 図3は、投受光量のチューニング処理のフローチャートである。 図4は、変位センサの動作を示す説明図である。 図5は、変位センサの動作を示す説明図である。 図6は、変位センサの処理を示す説明図である。 図7は、変位センサの処理を示す説明図である。 図8は、変位センサの処理を示す説明図である。 図9は、変位センサの処理を示す説明図である。 図10は、変位センサの処理を示す説明図である。 図11は、変位センサの処理を示す説明図である。
 以下、一実施形態を添付図面にしたがって説明する。
 図1に示す変位センサ10は、検出光L1を被検出物Wに投光し、被検出物Wの変位や形状等を検出するものである。
 図1に示すように、変位センサ10は、投光部11、受光部12、制御部13、記憶部14、入出力部15を有している。
 投光部11は、投光素子11aと投光制御回路11bとを含む。受光部12は、イメージセンサ12aと受光制御回路12bとを含む。投光素子11aは、被検出物Wに向けて検出光L1を投光するものである。投光素子11aは、たとえばレーザダイオードである。投光制御回路11bは、投光素子11aを制御する。投光素子11aから投光された検出光L1は、被検出物Wにて反射する。その反射光L2は、受光部12のイメージセンサ12aに入射する。
 図4、図5に示すように、イメージセンサ12aは、複数の受光セル12sを有する。本実施形態のイメージセンサ12aは、CMOSイメージセンサである。なお、イメージセンサ12aとして、CCDイメージセンサ、PSD等の複数の受光セル12sを有する素子を用いることができる。イメージセンサ12aは、各受光セル12sにて受光した反射光L2を、その反射光L2の受光量に応じた電圧レベルの電気信号に変換して出力する。
 受光制御回路12bは、イメージセンサ12aを制御する。受光制御回路12bは、イメージセンサ12aから出力される電気信号、つまりイメージセンサ12aが受光する反射光L2の光量に応じた画像信号S12を生成する。受光部12は、その画像信号S12を出力する。画像信号S12は、イメージセンサ12aの各受光セル12sにおける受光レベルを含む。受光レベルは各受光セル12sにおける受光量に比例した値である。つまり、画像信号S12は、イメージセンサ12aの受光面における受光量分布に相当する時系列の信号(受光波形)である。
 制御部13は、受光部12からの画像信号S12に基づいて、イメージセンサ12aにおける反射光L2の受光中心位置を検出する。そして、制御部13は、その受光中心位置から被検出物Wの変位量を測定する。
 図4に示すように、変位センサ10は、投光レンズ21及び受光レンズ22を有している。投光素子11aから投光される検出光L1は、投光レンズ21を透過して被検出物Wに照射される。被検出物Wにて反射した反射光L2は、受光レンズ22を透過してイメージセンサ12aに入射する。イメージセンサ12aは、複数の受光セル12sを有している。
 制御部13は、実線で示す被検出物Wによる反射光L2の受光中心位置O1を検出する。たとえば、制御部13は、画像信号S12において最大となる受光レベル(受光量)の受光セル12sの位置を受光中心位置O1として検出する。また、制御部13は、画像信号S12において、複数の受光セル12sの受光量が飽和値である場合、飽和値となる複数の受光セル12sの位置を受光中心位置O1として検出する。
 次に、被検出物Wが一点鎖線にて示す位置に変位した場合、その被検出物Wによる反射光L2は、イメージセンサ12aにおいて、実線で示す反射光L2と異なる位置に入射する。つまり、受光中心位置O2は、変位センサ10から被検出物Wの表面までの距離に応じて変化する。制御部13は、この反射光L2の受光中心位置O2を検出する。これら受光中心位置O1,O2の差が、被検出物Wの変位量に対応する。なお、変位センサ10に対して被検出物Wを検出光L1の光軸と直交する方向に相対移動させることにより、被検出物Wの有無や被検出物Wの表面形状、等を検出することもできる。
 入出力部15は、変位センサ10に接続される外部機器との間で通信可能に構成されている。通信は、有線通信または無線通信である。入出力部15は、たとえば制御部13における検出結果を外部機器に向けて送信する。また、入出力部15は、変位センサ10に対する制御信号、設定値、等を受信する。
 記憶部14は、制御部13の各種の処理動作を行う際の各種の情報を記憶する。記憶部14に記憶される情報は、変位センサ10における設定値、変更値を含む。設定値、変更値は、投光素子11aにおける投光量、イメージセンサ12aにおける受光量を調整するための値である。投光量を調整する値として、たとえば、投光素子11aを駆動する投光時間、投光素子11aに供給する駆動電圧、等を含む。受光量を調整する値として、たとえば、受光部12における露光時間、受光部12から出力される信号を増幅する増幅率、等を含む。また、設定値、変更値は、初期値、外部機器から受信した値、ティーチング処理により設定した値、等を含む。
 制御部13は、イメージセンサ12aからの画像信号S12に基づいて、投光素子11aの投光量(投光時間)、イメージセンサ12aの受光量(露光時間)を調整する投受光量フィードバック制御を行う機能を有している。イメージセンサ12aにおける反射光L2の受光量は、被検出物Wの表面における反射の状態に応じて変化する。上述したように、制御部13は、イメージセンサ12aにおいて反射光L2を受光する受光中心位置を検出する。イメージセンサ12aにおける受光量が多いまたは少ない場合、検出する受光中心位置に誤差が生じる場合がある。このため、制御部13は、受光量を最適値範囲(基準範囲)内とするように、投受光量を調整する。
 投光量の調整は、投光素子11aから検出光L1を出射する投光時間により調整することができる。投光制御回路11bは、投光素子11aを間欠的に駆動し、検出光L1をパルス状とする。検出光L1を出射する時間が長いほど、投光量が多くなる。制御部13は、投光時間を投光制御回路11bに対して設定する。
 受光量の調整は、イメージセンサ12aが反射光L2を入射させる露光時間により調整することができる。受光制御回路12bは、イメージセンサ12aが間欠的に露光するようにイメージセンサ12aを制御する。露光時間を長くすると、イメージセンサ12aへ反射光L2が入射している時間が長くなる、つまり受光量が多くなる。制御部13は、露光時間を受光制御回路12bに対して設定する。
 また、制御部13は、チューニング処理を実行する機能を有している。チューニング処理は、たとえば、図5に示す被検出物W2に対する調整値を記憶する処理である。被検出物W2は、反射率が互いに異なる複数の部分を有し、反射率が不均一なものである。具体的には、被検出物W2は、高反射率の材料(例えばアルミなどの金属)からなる部位WAと、低反射率の材料(例えば黒色樹脂)からなる部位WBとを有する。
 このような被検出物W2において、測定部分が高反射率の部位WAから低反射率の部位WBに変更された最初の測定では、受光レベルが過小となる場合がある。このような被検出物W2について、チューニング処理において、制御部13は、イメージセンサ12aにおける受光量を最適値範囲に近づけるように設定した値を第1調整値として記憶部14に記憶する。したがって、受光レベルが過大となった場合、記憶部14に記憶した第1調整値にて操作量、つまり投光量と受光量の少なくとも1つを調整することにより、受光量調整にかかる時間が短くできる。
 また、被検出物W2において、測定部分が低反射率の部位WBから高反射率の部位WAに変更された最初の測定では、測定部分の反射率が急変し、受光レベルが過大となる場合がある。このような被検出物W2について、チューニング処理において、制御部13は、イメージセンサ12aにおける受光量を最適値範囲に近づけるように設定した値を第2調整値として記憶部14に記憶する。したがって、受光レベルが過小となった場合、記憶部14に記憶した第2調整値にて操作量、つまり投光量と受光量の少なくとも1つを調整することにより、受光量調整にかかる時間が短くできる。
 [チューニング処理]
 図3は、投受光量のチューニング処理を示す。
 先ず、ステップ51において、1つ目のワークをセットする。1つ目のワークは、高反射率のワークである。たとえば、図5に示す被検出物W2の部位WAを1つ目のワークとしてセットする。
 次に、ステップ52において、制御部13は、1つ目のワーク受光量に対してフィードバック制御を実施する。
 次に、ステップ53において、制御部13は、受光レベルに基づいて、受光量が最適値か否かを判定する。つまり、制御部13は、ステップ52のフィードバック制御により調整した受光量が最適値か否かを判定する。受光量が最適値である場合(判定:YES)、ステップ54へ移行する。
 ステップ54において、制御部13は、調整した受光量に対応する受光レベルを1つ目ワークの調整値(第1調整値)として保存する。たとえば、制御部13は、第1調整値を図1の記憶部14に記憶する。
 次に、ステップ55において、2つ目のワークをセットする。2つ目のワークは、低反射率のワークである。たとえば、図5に示す被検出物W2の部位WBを2つ目のワークとしてセットする。
 次に、ステップ56において、制御部13は、2つ目のワーク受光量に対してフィードバック制御を実施する。
 次に、ステップ57において、制御部13は、受光レベルに基づいて受光量が最適値か否かを判定する。つまり、制御部13は、ステップ56のフィードバック制御により調整した受光量が最適値か否かを判定する。受光量が最適値である場合(判定:YES)、ステップ58へ移行する。
 ステップ58において、制御部13は、調整した受光量に対応する受光レベルを2つ目ワークの調整値(第2調整値)として保存する。たとえば、制御部13は、第2調整値を図1の記憶部14に記憶する。
 そして、制御部13は、チューニング処理を終了する。
 制御部13は、ステップ53において受光量が最適値ではない場合(判定:NO)、ステップ59へ移行する。ステップ59において、制御部13は、受光量の調整が可能か否かを判定する。受光量の調整が可能な場合(判定:YES)、制御部13は、ステップ52に移行し、フィードバック制御を実施する。一方、受光量の調整が可能ではない場合(判定:NO)、制御部13は、ステップ60に移行し、エラー処理を実行し、処理を終了する。たとえば、制御部13は、エラー終了処理において、受光量調整が不可能である旨、第1調整値が記憶できなかった旨、等を図1の入出力部15を介して通知する。なお、エラー終了処理において、図示しない表示部にエラーである旨を表示するようにしてもよい。
 また、制御部13は、ステップ57において受光量が最適値ではない場合(判定:NO)、ステップ61へ移行する。ステップ61において、制御部13は、受光量の調整が可能か否かを判定する。受光量の調整が可能な場合(判定:YES)、制御部13は、ステップ56に移行し、フィードバック制御を実施する。一方、受光量の調整が可能ではない場合(判定:NO)、制御部13は、ステップ62に移行し、エラー処理を実行し、処理を終了する。たとえば、制御部13は、エラー終了処理において、受光量調整が不可能である旨、第2調整値が記憶できなかった旨、等を図1の入出力部15を介して通知する。なお、エラー終了処理において、図示しない表示部にエラーである旨を表示するようにしてもよい。
 [投受光量フィードバック制御]
 図2は、投受光量フィードバック制御を示す。
 先ず、ステップ31において、制御部13は、受光レベルを取得する。
 次に、ステップ32において、制御部13は、受光レベルに基づいて受光量が最適値範囲内か否かを判定する。受光量が最適値範囲内の場合(判定:YES)、制御部13は、ステップ31に移行する。一方、受光量が最適値範囲内ではない場合(判定NO)、制御部13は、ステップ33に移行する。
 ステップ33において、制御部13は、チューニング有効か否かを判定する。たとえば、図1に示す記憶部14には、モード情報が記憶されている。モード情報は、チューニングが有効か無効かを示す情報(フラグ)を含む。制御部13は、モード情報に基づいて、チューニング有効か否かを判定する。制御部13は、チューニング有効の場合(判定:YES)にステップ34に移行し、チューニング有効ではない場合(判定:NO)にステップ38に移行する。なお、制御部13は、図1に示す記憶部14において、第1調整値と第2調整値の少なくとも一方が所定の値の場合に、チューニングが無効と判定するようにしてもよい。所定の値は、たとえば、第1調整値および第2調整値として設定され得ない値、例えば「0」を用いることができる。
 ステップ34において、制御部13は、受光レベルが所定値X1以上か否かを判定する。所定値X1は、最適値範囲よりも大きな第1レベルである。この第1レベルは、飽和レベルまたは飽和レベルに近いレベルである。受光レベルが所定値X1以上の場合(判定:YES)、制御部13は、ステップ35に移行する。
 ステップ35において、制御部13は、投受光量調整を行う。このとき、制御部13は、飽和時設定値、つまり高反射率のワークを用いて設定した第1調整値を用いる。制御部13は、図1に示す記憶部14から第1調整値を読み出し、投光部11に対する投光量調整と、受光部12に対する受光量調整と、を行う。第1調整値は、操作量として投光量と受光量の少なくとも一方を調整する調整値を含む。制御部13は、第1調整値により、投受光量調整を行う。
 投受光量調整を行うと、制御部13は、ステップ31に移行する。
 ステップ34において、受光レベルが所定値X1未満の場合(判定:NO)、制御部13は、ステップ36に移行する。
 ステップ36において、制御部13は、受光レベルが所定値X2以下か否かを判定する。所定値X2は、最適値範囲よりも小さな第2レベルである。この第2レベルは、ゼロレベルに近いレベルである。受光レベルが所定値X2以下の場合(判定:YES)、制御部13は、ステップ37に移行する。
 ステップ37において、制御部13は、投受光量調整を行う。このとき、制御部13は、受光量なし設定値、つまり低反射率のワークを用いて設定した第2調整値を用いる。制御部13は、図1に示す記憶部14から第2調整値を読み出し、投光部11に対する投光量調整と、受光部12に対する受光量調整とを行う。第2調整値は、操作量として投光量と受光量の少なくとも一方を調整する調整値を含む。制御部13は、第2調整値により、投受光量調整を行う。
 投受光量調整を行うと、制御部13は、ステップ31に移行する。
 ステップ36において、受光レベルが所定値X2以下ではない場合(判定:NO)、制御部13はステップ38に移行する。
 ステップ38において、制御部13は、受光レベルが最適値範囲より大きいか否かを判定する。受光レベルが最適値範囲より大きい場合(判定:YES)、制御部13は、ステップ39に移行する。
 ステップ39において、制御部13は、投受光量減とする。たとえば、制御部13は、投光部11と受光部12に対する現在の設定値(投光時間、露光時間)から所定の変更値を減算した結果を新たな設定値として投光部11と受光部12に設定する。変更値は、一定の値であってもよく、可変された値であってもよい。
 また、制御部13は、投受光量の現在値に対して投受光量を減少させる係数(減少係数)を乗算した結果の値を新たな設定値として設定し、投受光量を調整する。減少係数は、たとえば「0.8」のように、「1」未満の値である。なお、減少係数は、受光レベルと最適値範囲に応じて変更することもできる。たとえば、受光レベルと最適値範囲との差が大きいほど減少係数を小さくする。そして、制御部13は、投受光量を減少させると、ステップ31に移行する。
 一方、ステップ38において、受光レベルが最適値範囲以下である場合(判定:NO)、制御部13は、ステップ40に移行する。
 ステップ40において、制御部13は、投受光量増とする。たとえば、制御部13は、投光部11および受光部12に対する現在の設定値(投光時間、露光時間)に所定の変更値を加算した結果を新たな設定値として投光部11と受光部12に設定する。変更値は、一定の値であってもよく、可変された値であってもよい。なお、投受光量減とするときの変更値と投受光量増とするときの変更値は同じ値であってもよく、また異なっていてもよい。
 また、制御部13は、投受光量の現在値に対して投受光量を増加させる係数(増加係数)を乗算した結果の値を新たな投受光量として設定する。増加係数は、たとえば「1.2」のように、「1」より大きい値である。なお、増加係数は、受光レベルと最適値範囲に応じて変更することもできる。たとえば、受光レベルと最適値範囲との差が大きいほど増加係数を大きくする。そして、制御部13は、投受光量を増加させると、ステップ31に移行する。
 (作用)
 次に、本実施形態の変位センサ10の作用を説明する。
 図6、図7は、イメージセンサ12aにおける受光波形を示す。図6、図7において、横軸は受光セル12sのセル位置、縦軸は受光量(受光レベル)である。図6において、ハッチングを付した領域H1は、反射量が多い被検出物Wに対する最適値範囲を示す。図7において、ハッチングを付した領域H2は、反射量が少ない被検出物Wに対する最適値範囲を示す。なお、最適値範囲は、同じ受光量であってもよい。
 図6、図7において、実線で示す受光波形F11,F21は、ピーク位置の検出に適した波形を示す。一点鎖線で示す受光波形F12,F22は、受光量(受光レベル)が最適値範囲よりも低いときを示す。この場合、受光波形F11,F21に近づけるように操作量(投光量、受光量)を増加させる。二点鎖線で示す受光波形F13,F23は、受光量(受光レベル)が最適値範囲よりも高いときを示す。この場合、受光波形F11,F21に近づけるように操作量(投光量、受光量)を減少させる。図6に示す受光波形F13において、直線状の部分は、多くの受光セル12sにおいて受光量が飽和していることを示している。
 図8、図9は、被検出物Wの反射率と調整値との関係を示す。なお、図8、図9は、調整値として投光時間の調整を用いた場合を示す。図8、図9において、領域H21は受光量の最適値範囲、領域H22は飽和状態の範囲、領域H23は受光量不足の範囲を示す。領域H22と領域H23との間の範囲が第1範囲に相当する。一例では、第1範囲は、受光レベルの第2レベル(所定値X2)よりも大きく且つ受光レベルの第1レベル(所定値X1)よりも小さい範囲である。一例では、第1範囲は、領域H21、つまり受光量(受光レベル)の最適値範囲より大きく設定される。
 図8、図9において、点P11は、図5に示す被検出物W2の部位WBを測定したときの投光時間を示す。点P12は、部位WAに対して最適な投光時間を示す。この調整状態において、次に、図5に示す被検出物W2の部位WAを測定する。この場合、部位WAは高反射率であるため、点P21に示すように、受光量は飽和状態となる。
 フィードバック制御のみを実施する場合、図9に示す点P21,P22,P23のように、フィードバック制御を繰り返すことによって受光量を徐々に減少させ、最適値範囲内とする。一方、本実施形態の変位センサ10では、図8に示す点P21の受光量(受光レベル)が飽和しているため、第1調整値により1回の調整で投光時間を調整する。
 制御部13は、たとえばA/D変換(アナログ-デジタル変換)にて画像信号S12から受光レベルを得る。この受光レベルが入力範囲の最大値(A/D変換の最大値)である場合、その受光セル12sは飽和セルである。制御部13は、飽和セルの数をカウントし、そのカウント値(飽和セル数)が所定値N以上か否かを判定する。所定値Nは、受光量をステップ的に増減するフィードバック制御において短時間で最適値範囲に近づけることが可能な受光レベルに対応して設定されている。たとえば、受光量の最大値(ピーク値)が飽和レベルを僅かに超えた場合、数個の受光セル12sが飽和セルとなる。この場合、数回のフィードバック制御によって受光レベル(受光量)を飽和値よりも小さくすることができ、最適値範囲内とする、または最適値範囲に近づけることができる。
 一方、図6の二点鎖線で示す受光波形F13のように、飽和セル数が多いと、受光レベルの最大値(ピーク値)が飽和値よりも極めて大きく、フィードバック制御を繰り返しても、飽和値を下回らせることすらできない場合がある。
 図11に示すように、時刻T21において受光量が飽和している。時刻T22は、数回のフィードバック制御の後の受光波形を示す。この場合、受光レベルは飽和している状態にある。時刻T23は、更に数回のフィードバック制御の後の受光波形を示す。この受光波形においても、ピーク値は最適値範囲よりも高い。しかし、ピーク値が判るため、時刻T24にて示す受光波形のように、受光波形のピークを最適値範囲内とする。このように、受光量(受光レベル)を最適値範囲に近づけるのに時間を要する。
 本実施形態の変位センサ10は、飽和セル数が所定数N以上の場合に、記憶部14に記憶した第1調整値を用いることで、操作量(投光量、受光量)を容易に最適値範囲内または最適値範囲に近づけることができる。また、1回の調整により操作量(投光量、受光量)を調整できるため、調整時間を短くできる。そして、安定した測定結果を短時間で得られるようになる。
 図10は、複数の被検出物W2を搬送する際の測定状態と受光波形とを示す。
 時刻T11,T12,T13,T14,T15において、部位WA、部位WB、搬送路、部位WA、部位WBを測定する。
 時刻T11において部位WAを測定した状態では、時刻T12において部位WBを測定する際に光量不足となる。このため、制御部13は、時刻T12+1に示すように、第2調整値を用いて受光波形の受光量を増加させる。この受光波形により、制御部13は、部位WBを測定できる。
 次に、時刻T13では、被検出物W2がなく、搬送路による反射光を受光する。
 次に、時刻T14では、被検出物W2の部位WAを測定する。このとき、第2調整値によって受光量を増加させた状態にあるため、部位WAにおける受光波形は飽和状態となる。このため、制御部13は、時刻T14+1に示すように、第1調整値を用いて受光波形の受光量を減少させる。この受光波形により、制御部13は、部位WAを測定できる。
 制御部13は、投受光量のチューニング処理により、第1調整値と第2調整値を設定し、記憶部14に記憶する。このため、チューニング処理において、検出対象となる被検出物W2をセットすることにより、容易に第1調整値と第2調整値とを設定することができる。
 制御部13は、投受光量のチューニング処理において、フィードバック制御によって調整した調整値を第1調整値、第2調整値として記憶部14に記憶させる。このため、フィードバック制御する際のワークに適した第1調整値、第2調整値を容易に設定して記憶させることができる。
 以上記述したように、本実施形態によれば、以下の効果を奏する。
 (1)変位センサ10は、投光素子11aを含む投光部11と、イメージセンサ12aを含む受光部12と、制御部13と、記憶部14とを備える。受光部12は、イメージセンサ12aが受光する被検出物Wからの反射光L2に応じた画像信号S12を出力する。制御部13は、受光部12から出力される画像信号S12の受光レベルに基づいて、投光素子11aの投光量およびイメージセンサ12aの受光量の少なくとも1つを含む操作量を調整するフィードバック制御を実行する。制御部13は、受光レベルが第1範囲のときはフィードバック制御を実行する。制御部13は、第1範囲より大きな所定値X1以上、または第1範囲より小さな所定値X2以下のときは、記憶部14に記憶した第1調整値、第2調整値により操作量を調整する。受光レベルが過大または過小となった場合、記憶部14に記憶した第1調整値、第2調整値にて操作量、つまり投光量と受光量の少なくとも1つを調整することにより、受光量調整にかかる時間が短くできる。
 (2)制御部13は、投受光量のチューニング処理により、第1調整値と第2調整値を設定し、記憶部14に記憶する。このため、チューニング処理において、検出対象となる被検出物W2をセットすることにより、容易に第1調整値と第2調整値とを設定することができる。
 (3)制御部13は、投受光量のチューニング処理において、フィードバック制御によって調整した調整値を第1調整値、第2調整値として記憶部14に記憶させる。このため、フィードバック制御する際のワークに適した第1調整値、第2調整値を容易に設定して記憶させることができる。
 (4)制御部13は、投光部11に対して設定投光時間を調整する。これにより、容易に投光素子11aの投光量を調整できる。
 (5)制御部13は、受光部12に対して設定露光時間を調整する。これにより、容易にイメージセンサ12aの受光量を調整できる。
 [変更例]
 実施の形態に関する説明は、本開示に関する変位センサが取り得る形態の例示であり、その形態を制限することを意図していない。本開示は実施の形態以外に例えば以下に示される実施の形態の変形例、および、相互に矛盾しない少なくとも2つの変形例が組み合わせられた形態を取り得る。
 ・上記実施形態では、図5に示すように、部位WA,WBを有する被検出物W2としたが、部位WA,WBの何れか一方を有する被検出物としてもよい。たとえば、被検出物は低反射率の材料から構成され、その被検出物を搬送する搬送ラインや被検出物を保持するテープ等が高反射率の材料から構成されているものとしてもよい。このような場合であっても、上記実施形態と同様に、受光量の調整時間を短縮できる。
 ・上記実施形態に対して、被検出物は、部位WA,WBの少なくとも一方を複数備えるものであってもよい。また、被検出物は、部位WA,WBと異なる反射率の部位を少なくとも1つ以上備えるものであってもよい。
 ・明細書及び/又は特許請求の範囲に開示された全ての特徴は、当初の開示の目的のために、ならびに、実施形態及び/又は特許請求の範囲における特徴の組み合わせから独立して特許請求の範囲に記載の発明を限定する目的のために、互いに別個にかつ独立して開示されることを意図したものである。全ての数値範囲又は構成要素の集合を表す記載は、当初の開示の目的のため、ならびに特許請求の範囲に記載の発明を限定する目的のために、特に数値範囲の限定として、全ての可能な中間値又は中間的構成要素を開示するものである。
 10 変位センサ
 11 投光部
 11a 投光素子
 11b 投光制御回路
 12 受光部
 12a イメージセンサ
 12b 受光制御回路
 12s 受光セル
 12s12s 受光セル
 13 制御部
 14 記憶部
 15 入出力部
 S12 画像信号
 W,W2 被検出物
 WA 部位
 WB 部位

Claims (7)

  1.  被検出物に投光する投光素子と、前記投光素子を制御する投光制御回路とを含む投光部と、
     前記被検出物からの反射光を受光するイメージセンサと、前記イメージセンサを制御する受光制御回路とを含み、前記イメージセンサが受光する前記反射光に応じた画像信号を出力する受光部と、
     前記画像信号の受光レベルに基づいて、前記投光素子の投光量および前記イメージセンサの受光量の少なくとも1つを含む操作量を調整するフィードバック制御を実行する制御部と、
     前記操作量に対する調整値を記憶する記憶部と、
     を備え、
     前記制御部は、
     前記受光レベルが第1範囲内のときは前記フィードバック制御を行い、
     前記受光レベルが前記第1範囲よりも大きな第1レベル以上、または前記第1範囲よりも小さな第2レベル以下のときは、前記記憶部に記憶した前記調整値により前記操作量を調整する、
     変位センサ。
  2.  前記制御部は、前記フィードバック制御において、前記受光レベルを基準範囲内とするように前記操作量を制御するものであり、前記第1範囲は前記基準範囲より大きく設定されている、請求項1に記載の変位センサ。
  3.  前記調整値は、前記画像信号が飽和しているときの第1調整値と、前記反射光を受光していないときの第2調整値とを含み、
     前記画像信号における飽和セル数が所定個数以上のときに前記受光レベルが前記第1レベル以上であると判定して前記第1調整値を前記操作量に設定し、
     前記受光レベルが所定値以下のときに前記受光レベルが前記第2レベル以下と判定して前記第2調整値を前記操作量に設定する、
     請求項1または請求項2に記載の変位センサ。
  4.  前記制御部は、チューニング処理を実行して前記第1調整値と前記第2調整値とを前記記憶部に記憶させる、請求項3に記載の変位センサ。
  5.  前記制御部は、前記チューニング処理において、
     第1ワークに対する受光レベルに基づいて前記フィードバック制御を行ったときの調整値を前記第1調整値として前記記憶部に記憶させ、
     第2ワークに対する受光レベルに基づいて前記フィードバック制御を行ったときの調整値を前記第2調整値として前記記憶部に記憶させる、
     請求項4に記載の変位センサ。
  6.  前記投光制御回路は、パルス光を投光するように前記投光素子の投光時間を制御するものであり、
     前記制御部は、前記投光制御回路に対する前記投光素子の投光時間を調整する、請求項1から請求項5のいずれか一項に記載の変位センサ。
  7.  前記受光制御回路は、前記イメージセンサの露光時間を制御するものであり、
     前記制御部は、前記イメージセンサの露光時間により前記受光量を調整する、請求項1から請求項6のいずれか一項に記載の変位センサ。
PCT/JP2022/002844 2021-03-03 2022-01-26 変位センサ WO2022185796A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280015416.3A CN116868025A (zh) 2021-03-03 2022-01-26 位移传感器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021033477A JP2022134385A (ja) 2021-03-03 2021-03-03 変位センサ
JP2021-033477 2021-03-03

Publications (1)

Publication Number Publication Date
WO2022185796A1 true WO2022185796A1 (ja) 2022-09-09

Family

ID=83154972

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/002844 WO2022185796A1 (ja) 2021-03-03 2022-01-26 変位センサ

Country Status (3)

Country Link
JP (1) JP2022134385A (ja)
CN (1) CN116868025A (ja)
WO (1) WO2022185796A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304832A (ja) * 2000-04-24 2001-10-31 Keyence Corp 光学式角度測定装置
JP2006010361A (ja) * 2004-06-22 2006-01-12 Keyence Corp 光学式変位計

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001304832A (ja) * 2000-04-24 2001-10-31 Keyence Corp 光学式角度測定装置
JP2006010361A (ja) * 2004-06-22 2006-01-12 Keyence Corp 光学式変位計

Also Published As

Publication number Publication date
JP2022134385A (ja) 2022-09-15
CN116868025A (zh) 2023-10-10

Similar Documents

Publication Publication Date Title
CN111198360B (zh) 激光雷达及其控制方法
WO2012032805A1 (ja) 変位センサ
WO2022185796A1 (ja) 変位センサ
JP2013535676A (ja) 距離測定用装置
JPH06109841A (ja) 距離検出方法
EP1106963A2 (en) Distance measuring device and method for adjusting photodetection unit
JP2001349943A (ja) レーザ測距装置、レーザ測距方法及び計測装置
JPH0346508A (ja) 光学式位置測定装置
CN112639392A (zh) 光学测量装置及光学测量方法
JPH0562882U (ja) 距離測定装置
JPH0562883U (ja) 距離測定装置
JPS6227688A (ja) 距離設定用光電スイツチ
JPH02171608A (ja) 距離・角度測定装置
CN117872326A (zh) 一种激光调整电路、方法及介质
JP2529049B2 (ja) 光学式変位計
JPH08240655A (ja) 信号処理方法およびその装置
JP2814389B2 (ja) 距離測定装置
JP4844134B2 (ja) 距離計測装置
JP2545311B2 (ja) レ―ザ―光による水中測距装置
JP2001050711A (ja) 光学式変位計
KR101663702B1 (ko) 레이저 빔 품질 향상 장치
JPH01206212A (ja) 距離測定装置
JPS62245105A (ja) 微小寸法測定装置
JP2007152356A (ja) レーザ加工装置及びレーザ加工装置の製造方法
CN112731340A (zh) 角度测量方法、反射镜系统及激光雷达

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22762855

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280015416.3

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22762855

Country of ref document: EP

Kind code of ref document: A1