WO2022185638A1 - 固体電解質材料およびこれを用いた電池 - Google Patents
固体電解質材料およびこれを用いた電池 Download PDFInfo
- Publication number
- WO2022185638A1 WO2022185638A1 PCT/JP2021/044438 JP2021044438W WO2022185638A1 WO 2022185638 A1 WO2022185638 A1 WO 2022185638A1 JP 2021044438 W JP2021044438 W JP 2021044438W WO 2022185638 A1 WO2022185638 A1 WO 2022185638A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- solid electrolyte
- electrolyte material
- material according
- molar ratio
- less
- Prior art date
Links
- 239000007784 solid electrolyte Substances 0.000 title claims abstract description 221
- 239000000463 material Substances 0.000 title claims abstract description 203
- 239000003792 electrolyte Substances 0.000 claims abstract description 21
- 229910052744 lithium Inorganic materials 0.000 claims abstract description 19
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 18
- 229910052801 chlorine Inorganic materials 0.000 claims abstract description 13
- 229910052727 yttrium Inorganic materials 0.000 claims abstract description 12
- 229910052726 zirconium Inorganic materials 0.000 claims abstract description 11
- 238000002441 X-ray diffraction Methods 0.000 claims description 19
- 229910052772 Samarium Inorganic materials 0.000 claims description 2
- 229910052797 bismuth Inorganic materials 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 229910052735 hafnium Inorganic materials 0.000 claims description 2
- 229910052746 lanthanum Inorganic materials 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 229910052758 niobium Inorganic materials 0.000 claims description 2
- 229910052712 strontium Inorganic materials 0.000 claims description 2
- 229910052715 tantalum Inorganic materials 0.000 claims description 2
- 229910052725 zinc Inorganic materials 0.000 claims description 2
- 239000002245 particle Substances 0.000 description 48
- 239000000843 powder Substances 0.000 description 16
- 239000007773 negative electrode material Substances 0.000 description 15
- 238000002844 melting Methods 0.000 description 14
- 230000008018 melting Effects 0.000 description 14
- 239000000203 mixture Substances 0.000 description 14
- 239000007774 positive electrode material Substances 0.000 description 14
- -1 transition metal sulfides Chemical class 0.000 description 13
- 239000012298 atmosphere Substances 0.000 description 11
- 229910003002 lithium salt Inorganic materials 0.000 description 11
- 239000012300 argon atmosphere Substances 0.000 description 10
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 10
- 159000000002 lithium salts Chemical class 0.000 description 10
- 239000000126 substance Substances 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 9
- 239000001301 oxygen Substances 0.000 description 9
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 8
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 8
- 229910001416 lithium ion Inorganic materials 0.000 description 8
- 239000011593 sulfur Substances 0.000 description 8
- 229910052717 sulfur Inorganic materials 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 6
- 229910052733 gallium Inorganic materials 0.000 description 6
- 229910052738 indium Inorganic materials 0.000 description 6
- 239000004570 mortar (masonry) Substances 0.000 description 6
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 6
- 239000011149 active material Substances 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 239000003125 aqueous solvent Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 239000002994 raw material Substances 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 4
- 229920002845 Poly(methacrylic acid) Polymers 0.000 description 4
- 229920002125 Sokalan® Polymers 0.000 description 4
- 229910007926 ZrCl Inorganic materials 0.000 description 4
- 239000002001 electrolyte material Substances 0.000 description 4
- 239000004210 ether based solvent Substances 0.000 description 4
- 239000011888 foil Substances 0.000 description 4
- 239000002608 ionic liquid Substances 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000004584 polyacrylic acid Substances 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000376 reactant Substances 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 239000002203 sulfidic glass Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000002076 thermal analysis method Methods 0.000 description 4
- 229910052723 transition metal Inorganic materials 0.000 description 4
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical compound S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 3
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical group C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 150000004820 halides Chemical class 0.000 description 3
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 3
- 238000002847 impedance measurement Methods 0.000 description 3
- 239000012535 impurity Substances 0.000 description 3
- 238000002354 inductively-coupled plasma atomic emission spectroscopy Methods 0.000 description 3
- 238000004255 ion exchange chromatography Methods 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 238000000465 moulding Methods 0.000 description 3
- 239000011255 nonaqueous electrolyte Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical group O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- 229910013131 LiN Inorganic materials 0.000 description 2
- 229910013385 LiN(SO2C2F5)2 Inorganic materials 0.000 description 2
- 229910013406 LiN(SO2CF3)2 Inorganic materials 0.000 description 2
- 229910001290 LiPF6 Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 239000003575 carbonaceous material Substances 0.000 description 2
- 150000005676 cyclic carbonates Chemical class 0.000 description 2
- 150000004292 cyclic ethers Chemical class 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003759 ester based solvent Substances 0.000 description 2
- 125000004494 ethyl ester group Chemical group 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000011245 gel electrolyte Substances 0.000 description 2
- 229910001547 lithium hexafluoroantimonate(V) Inorganic materials 0.000 description 2
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 description 2
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 2
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 2
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 229910021645 metal ion Inorganic materials 0.000 description 2
- 150000004702 methyl esters Chemical class 0.000 description 2
- 229910021382 natural graphite Inorganic materials 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920000447 polyanionic polymer Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 150000003377 silicon compounds Chemical class 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 150000003606 tin compounds Chemical class 0.000 description 2
- 229910000314 transition metal oxide Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- BQCIDUSAKPWEOX-UHFFFAOYSA-N 1,1-Difluoroethene Chemical compound FC(F)=C BQCIDUSAKPWEOX-UHFFFAOYSA-N 0.000 description 1
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 1
- LZDKZFUFMNSQCJ-UHFFFAOYSA-N 1,2-diethoxyethane Chemical compound CCOCCOCC LZDKZFUFMNSQCJ-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- HNSDLXPSAYFUHK-UHFFFAOYSA-N 1,4-bis(2-ethylhexyl) sulfosuccinate Chemical compound CCCCC(CC)COC(=O)CC(S(O)(=O)=O)C(=O)OCC(CC)CCCC HNSDLXPSAYFUHK-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 1
- 229910017008 AsF 6 Inorganic materials 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 239000002227 LISICON Substances 0.000 description 1
- 229910018111 Li 2 S-B 2 S 3 Inorganic materials 0.000 description 1
- 229910018127 Li 2 S-GeS 2 Inorganic materials 0.000 description 1
- 229910018133 Li 2 S-SiS 2 Inorganic materials 0.000 description 1
- 229910018119 Li 3 PO 4 Inorganic materials 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- 229910003405 Li10GeP2S12 Inorganic materials 0.000 description 1
- 229910005313 Li14ZnGe4O16 Inorganic materials 0.000 description 1
- 229910007860 Li3.25Ge0.25P0.75S4 Inorganic materials 0.000 description 1
- 229910002984 Li7La3Zr2O12 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910032387 LiCoO2 Inorganic materials 0.000 description 1
- 229910016104 LiNi1 Inorganic materials 0.000 description 1
- 229910000857 LiTi2(PO4)3 Inorganic materials 0.000 description 1
- 239000002228 NASICON Substances 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical group CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910018286 SbF 6 Inorganic materials 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 229910010252 TiO3 Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 1
- 229910009523 YCl3 Inorganic materials 0.000 description 1
- 229910007932 ZrCl4 Inorganic materials 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 235000019241 carbon black Nutrition 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 150000005678 chain carbonates Chemical class 0.000 description 1
- 239000000571 coke Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009831 deintercalation Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- NJLLQSBAHIKGKF-UHFFFAOYSA-N dipotassium dioxido(oxo)titanium Chemical compound [K+].[K+].[O-][Ti]([O-])=O NJLLQSBAHIKGKF-UHFFFAOYSA-N 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 239000002223 garnet Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- AHAREKHAZNPPMI-UHFFFAOYSA-N hexa-1,3-diene Chemical compound CCC=CC=C AHAREKHAZNPPMI-UHFFFAOYSA-N 0.000 description 1
- HCDGVLDPFQMKDK-UHFFFAOYSA-N hexafluoropropylene Chemical group FC(F)=C(F)C(F)(F)F HCDGVLDPFQMKDK-UHFFFAOYSA-N 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000010191 image analysis Methods 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000009830 intercalation Methods 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 239000001989 lithium alloy Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- MHAIQPNJLRLFLO-UHFFFAOYSA-N methyl 2-fluoropropanoate Chemical compound COC(=O)C(C)F MHAIQPNJLRLFLO-UHFFFAOYSA-N 0.000 description 1
- 239000011812 mixed powder Substances 0.000 description 1
- PYLWMHQQBFSUBP-UHFFFAOYSA-N monofluorobenzene Chemical compound FC1=CC=CC=C1 PYLWMHQQBFSUBP-UHFFFAOYSA-N 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 229920000123 polythiophene Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 150000003839 salts Chemical group 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 125000005207 tetraalkylammonium group Chemical group 0.000 description 1
- 125000005497 tetraalkylphosphonium group Chemical group 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 229910021561 transition metal fluoride Inorganic materials 0.000 description 1
- PCMOZDDGXKIOLL-UHFFFAOYSA-K yttrium chloride Chemical compound [Cl-].[Cl-].[Cl-].[Y+3] PCMOZDDGXKIOLL-UHFFFAOYSA-K 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
- DUNKXUFBGCUVQW-UHFFFAOYSA-J zirconium tetrachloride Chemical compound Cl[Zr](Cl)(Cl)Cl DUNKXUFBGCUVQW-UHFFFAOYSA-J 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0561—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
- H01M10/0562—Solid materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/0071—Oxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
- H01M2300/0065—Solid electrolytes
- H01M2300/0068—Solid electrolytes inorganic
- H01M2300/008—Halides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present disclosure relates to solid electrolyte materials and batteries using the same.
- Patent Literature 1 discloses an all-solid battery using a sulfide solid electrolyte.
- Patent Document 2 discloses a solid electrolyte material represented by Li 6-3z Y z X 6 (where 0 ⁇ z ⁇ 2 is satisfied and X is Cl or Br).
- the purpose of the present disclosure is to provide a new highly useful solid electrolyte material.
- the solid electrolyte material of the present disclosure contains Li, Zr, Y, Cl, and O, the molar ratio of O to Y in the entire solid electrolyte material is more than 0 and 0.80 or less, and the solid electrolyte material The molar ratio of O to Y in the surface area of is greater than the molar ratio of O to Y in the entire solid electrolyte material.
- the present disclosure provides a new solid electrolyte material with high utility.
- FIG. 1 is a cross-sectional view showing a schematic configuration of a battery 1000 according to the second embodiment.
- FIG. 2 is a graph showing X-ray diffraction patterns of solid electrolyte materials according to Examples 1 and 2 and Reference Examples 1 and 2.
- FIG. 3 shows a schematic diagram of a pressure forming die 300 used to evaluate the ionic conductivity of solid electrolyte materials.
- 4 is a graph showing a Cole-Cole plot obtained by impedance measurement of the solid electrolyte material according to Example 1.
- FIG. FIG. 5 is a graph showing the initial discharge characteristics of the batteries according to Example 1 and Reference Example 2;
- FIG. 6 is a graph showing the results of thermal analysis of solid electrolyte materials according to Examples 1-2 and Reference Examples 1-2.
- the solid electrolyte material according to the first embodiment contains Li, Zr, Y, Cl, and O, the molar ratio of O to Y in the entire solid electrolyte material is more than 0 and 0.80 or less, and the solid electrolyte material The molar ratio of O to Y in the surface area of is greater than the molar ratio of O to Y in the entire solid electrolyte material.
- the surface region of the solid electrolyte material according to the first embodiment means a region from the surface of the solid electrolyte material to a depth of about 5 nm inward.
- the solid electrolyte material according to the first embodiment is a highly useful new solid electrolyte material.
- the solid electrolyte material according to the first embodiment can have practical lithium ion conductivity and heat resistance, for example, high lithium ion conductivity and high heat resistance.
- high lithium ion conductivity is, for example, 3 ⁇ 10 ⁇ 4 S/cm or more.
- the solid electrolyte material according to the first embodiment can have an ionic conductivity of, for example, 3 ⁇ 10 ⁇ 4 S/cm or more.
- the solid electrolyte material according to the first embodiment has high heat resistance means that the solid electrolyte material according to the first embodiment has, for example, a high melting point.
- the high melting point is, for example, 478° C. or higher.
- the melting point of the solid electrolyte material means the highest temperature among the melting points of the solid electrolyte material.
- the solid electrolyte material according to the first embodiment does not substantially contain sulfur.
- the fact that the solid electrolyte material according to the first embodiment does not substantially contain sulfur means that the solid electrolyte material does not contain sulfur as a constituent element except sulfur that is unavoidably mixed as an impurity. In this case, sulfur mixed as an impurity in the solid electrolyte material is, for example, 1 mol % or less. From the viewpoint of safety, it is desirable that the solid electrolyte material according to the first embodiment does not contain sulfur.
- a solid electrolyte material that does not contain sulfur does not generate hydrogen sulfide even when exposed to the atmosphere, so it is excellent in safety.
- the sulfide solid electrolyte disclosed in Patent Document 1 can generate hydrogen sulfide when exposed to the atmosphere.
- the solid electrolyte material according to the first embodiment may consist essentially of Li, Zr, Y, Cl, and O.
- the solid electrolyte material according to the first embodiment consists essentially of Li, Zr, Y, Cl, and O
- the solid electrolyte material according to the first embodiment consists essentially of Li, Zr, Y, Cl, and O
- the solid electrolyte material according to the first embodiment consists essentially of Li, Zr, Y, Cl, and O
- the solid electrolyte material according to the first embodiment may consist of Li, Zr, Y, Cl, and O only.
- the molar ratio of O to Y in the entire solid electrolyte material according to the first embodiment may be more than 0 and 0.40 or less.
- the molar ratio of O to Y in the entire solid electrolyte material according to the first embodiment may be more than 0 and 0.30 or less.
- the molar ratio of O to Y in the entire solid electrolyte material according to the first embodiment may be greater than 0 and 0.28 or less, or 0.12 or more and 0 0.28 or less.
- the solid electrolyte material according to the first embodiment contains Mg, Ca, Zn, Sr, Ba, Al, Sc, Ga, Bi, La, Sm, Hf, Ta, and Nb. It may further include at least one selected from the group consisting of
- the X-ray diffraction pattern of the solid electrolyte material according to the first embodiment can be obtained using Cu-K ⁇ .
- the obtained X-ray diffraction pattern 15.5° or more and 15.7° or less, 16.6° or more and 16.8° or less, 17.4° or more and 17.6° or less, 20.1° or more and a diffraction angle 2 ⁇ range of 20.3° or less, 22.2° or more and 22.4° or less, 31.4° or more and 31.6° or less, and 48.9° or more and 49.1° or less
- a diffraction peak may be present in each of the Such solid electrolyte materials have high lithium ion conductivity.
- a diffraction peak in an X-ray diffraction pattern is also simply called a "peak".
- the X-ray diffraction pattern of the solid electrolyte material according to the first embodiment was obtained by X It can be obtained by line diffraction measurements.
- the angle of the peak is the angle indicating the maximum intensity of the mountain-shaped portion having an SN ratio of 3 or more and a half width of 10° or less.
- the half-value width is the width represented by the difference between two diffraction angles at which the intensity is half the value of IMAX , where IMAX is the maximum intensity of the peak.
- SNR is the ratio of signal S to background noise N.
- a diffraction peak in the range of diffraction angles 2 ⁇ of 47.0° or more and 47.2° or less may be present.
- the molar ratio of O to Y in the surface region of the solid electrolyte material may be 10 times or more greater than the molar ratio of O to Y in the entire solid electrolyte material.
- the molar ratio of Zr to Y may be 0.8 or more and 1.1 or less.
- the molar ratio of Li to Y may be 4.4 or more and 5.5 or less.
- the molar ratio of Cl to Y may be 8.6 or more and 12.3 or less.
- the molar ratio of Li to Y is 4.4 or more and 5.5 or less, and the molar ratio of Zr to Y is 0.8 or more and 1.1 or less. and the molar ratio of Cl to Y may be 8.6 or more and 12.3 or less.
- the molar ratio of Li to Y is calculated by the formula: (substance amount of Li)/(substance amount of Y).
- the molar ratio of Zr to Y is calculated by the formula: (Amount of substance of Zr)/(Amount of substance of Y).
- the molar ratio of Cl to Y is calculated by the formula: (substance amount of Cl)/(substance amount of Y).
- the molar ratio of Li to Y may be expressed as "molar ratio x”.
- the molar ratio of Zr to Y is sometimes expressed as "molar ratio y.”
- the molar ratio of Cl to Y is sometimes denoted as "molar ratio z.”
- the molar ratio x is 4.96 or more and 4.99 or less
- the molar ratio y is 0.90 or more and 0.94 or less
- the ratio z may be greater than or equal to 9.52 and less than or equal to 11.16.
- the shape of the solid electrolyte material according to the first embodiment is not limited. Examples of such shapes are acicular, spherical, or ellipsoidal.
- the solid electrolyte material according to the first embodiment may be particles.
- the solid electrolyte material according to the first embodiment may be formed to have a pellet or plate shape.
- the solid electrolyte material according to the first embodiment when the shape of the solid electrolyte material according to the first embodiment is particulate (eg, spherical), the solid electrolyte material according to the first embodiment may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less. good. This allows the solid electrolyte material according to the first embodiment and other materials, such as active materials, to be well dispersed.
- the median diameter of particles means the particle diameter (d50) corresponding to 50% of the cumulative volume in the volume-based particle size distribution.
- a volume-based particle size distribution can be measured by a laser diffraction measurement device or an image analysis device.
- the median diameter may be 0.5 ⁇ m or more and 10 ⁇ m or less. good.
- the solid electrolyte material according to the first embodiment may have a smaller median diameter than the active material.
- a solid electrolyte material according to the first embodiment can be manufactured by the following method.
- raw material powders of halides are prepared and mixed so as to have the desired composition.
- YCl3 raw powder, LiCl raw powder, and ZrCl4 raw powder are mixed.
- the obtained mixed powder is fired in an inert gas atmosphere (for example, an argon atmosphere having a dew point of ⁇ 60° C. or lower) in which the oxygen concentration and water concentration are adjusted.
- the firing temperature may be, for example, in the range of 200°C or higher and 650°C or lower.
- the resulting reactant is left to stand in an atmosphere with a relatively high dew point (for example, an argon atmosphere with a dew point of -30°C), and then fired at a temperature below the melting point (for example, 400°C).
- a relatively high dew point for example, an argon atmosphere with a dew point of -30°C
- a temperature below the melting point for example, 400°C
- the raw material powders may be mixed in a pre-adjusted molar ratio so as to compensate for compositional changes that may occur in the synthesis process.
- the amount of oxygen in the solid electrolyte material is determined by selecting the raw material powder, the oxygen concentration in the atmosphere, the water concentration in the atmosphere, and the reaction time. A desired solid electrolyte material is thus obtained.
- the oxygen contained in the solid electrolyte material according to the first embodiment is taken in from the above atmosphere having a relatively high dew point.
- the composition of the solid electrolyte material can be determined, for example, by inductively coupled plasma-atomic emission spectrometry, ion chromatography, or non-dispersive infrared absorption.
- the composition of Li, Zr, and Y can be determined by inductively coupled plasma atomic emission spectroscopy
- the composition of Cl can be determined by ion chromatography
- O can be measured by non-dispersive infrared absorption.
- the second embodiment describes a battery using the solid electrolyte material according to the first embodiment.
- a battery according to the second embodiment includes a positive electrode, a negative electrode, and an electrolyte layer.
- the electrolyte layer is provided between the positive electrode and the negative electrode.
- At least one selected from the group consisting of the positive electrode, the electrolyte layer, and the negative electrode contains the solid electrolyte material according to the first embodiment.
- the battery according to the second embodiment contains the solid electrolyte material according to the first embodiment, it has excellent charge/discharge characteristics.
- FIG. 1 is a cross-sectional view showing a schematic configuration of a battery 1000 according to the second embodiment.
- a battery 1000 includes a positive electrode 201 , an electrolyte layer 202 and a negative electrode 203 .
- Electrolyte layer 202 is disposed between positive electrode 201 and negative electrode 203 .
- the positive electrode 201 contains positive electrode active material particles 204 and solid electrolyte particles 100 .
- the electrolyte layer 202 contains an electrolyte material.
- the electrolyte material is, for example, a solid electrolyte material.
- the negative electrode 203 contains negative electrode active material particles 205 and solid electrolyte particles 100 .
- the solid electrolyte particles 100 are particles containing the solid electrolyte material according to the first embodiment.
- the solid electrolyte particles 100 may be particles made of the solid electrolyte material according to the first embodiment, or particles containing the solid electrolyte material according to the first embodiment as a main component.
- particles containing the solid electrolyte material according to the first embodiment as a main component means particles in which the component contained in the largest molar ratio is the solid electrolyte material according to the first embodiment.
- the positive electrode 201 contains a material that can occlude and release metal ions (eg, lithium ions).
- the positive electrode 201 contains, for example, a positive electrode active material (eg, positive electrode active material particles 204).
- positive electrode active materials are lithium-containing transition metal oxides, transition metal fluorides, polyanion materials, fluorinated polyanion materials, transition metal sulfides, transition metal oxyfluorides, transition metal oxysulfides, or transition metal oxynitrides.
- lithium-containing transition metal oxides are LiNi1 -dfCodAlfO2 (where 0 ⁇ d , 0 ⁇ f , and 0 ⁇ (d+f) ⁇ 1 ) or LiCoO2.
- the positive electrode active material particles 204 may have a median diameter of 0.1 ⁇ m or more. Such good dispersion improves the charge/discharge characteristics of the battery 1000 .
- the positive electrode active material particles 204 may have a median diameter of 100 ⁇ m or less. Due to the rapid diffusion of lithium, battery 1000 can operate at high power. As described above, the positive electrode active material particles 204 may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less.
- the positive electrode active material particles 204 may have a larger median diameter than the solid electrolyte particles 100 .
- the ratio of the volume of the positive electrode active material particles 204 to the total volume of the positive electrode active material particles 204 and the solid electrolyte particles 100 is 0.30 or more and 0.95. There may be:
- the positive electrode 201 may have a thickness of 10 ⁇ m or more and 500 ⁇ m or less.
- the electrolyte layer 202 contains an electrolyte material.
- the electrolyte material may be the solid electrolyte material according to the first embodiment.
- the electrolyte layer 202 may be a solid electrolyte layer.
- the electrolyte layer 202 may be composed only of the solid electrolyte material according to the first embodiment. Alternatively, it may be composed only of a solid electrolyte material different from the solid electrolyte material according to the first embodiment.
- solid electrolyte materials different from the solid electrolyte material according to the first embodiment include Li 2 MgX′ 4 , Li 2 FeX′ 4 , Li(Al, Ga, In)X′ 4 , Li 3 (Al, Ga, In ) X′ 6 , or LiI.
- X' is at least one selected from the group consisting of F, Cl, Br and I.
- the notation "(A, B, C)" in the chemical formula means "at least one selected from the group consisting of A, B, and C".
- “(Al, Ga, In)” is synonymous with “at least one selected from the group consisting of Al, Ga, and In.”
- the solid electrolyte material according to the first embodiment is hereinafter referred to as the first solid electrolyte material.
- a solid electrolyte material different from the solid electrolyte material according to the first embodiment is called a second solid electrolyte material.
- the electrolyte layer 202 may contain not only the first solid electrolyte material but also the second solid electrolyte material.
- the first solid electrolyte material and the second solid electrolyte material may be uniformly dispersed.
- a layer made of the first solid electrolyte material and a layer made of the second solid electrolyte material may be stacked along the stacking direction of battery 1000 .
- the electrolyte layer 202 may have a thickness of 1 ⁇ m or more and 100 ⁇ m or less in order to suppress a short circuit between the positive electrode 201 and the negative electrode 203 and increase the output of the battery.
- the negative electrode 203 contains a material capable of intercalating and deintercalating metal ions (eg, lithium ions).
- the negative electrode 203 contains, for example, a negative electrode active material (eg, negative electrode active material particles 205).
- Examples of negative electrode active materials are metal materials, carbon materials, oxides, nitrides, tin compounds, or silicon compounds.
- the metal material may be a single metal or an alloy.
- Examples of metallic materials are lithium metal or lithium alloys.
- Examples of carbon materials are natural graphite, coke, ungraphitized carbon, carbon fibers, spherical carbon, artificial graphite, or amorphous carbon. From the viewpoint of capacity density, suitable examples of negative electrode active materials are silicon (ie, Si), tin (ie, Sn), silicon compounds, or tin compounds.
- the negative electrode active material particles 205 may have a median diameter of 0.1 ⁇ m or more. Such good dispersion improves the charge-discharge characteristics of the battery.
- the negative electrode active material particles 205 may have a median diameter of 100 ⁇ m or less. Due to the rapid diffusion of lithium, the battery can operate at high power. As described above, the negative electrode active material particles 205 may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less.
- the negative electrode active material particles 205 may have a larger median diameter than the solid electrolyte particles 100 .
- the ratio of the volume of negative electrode active material particles 205 to the total volume of negative electrode active material particles 205 and solid electrolyte particles 100 is 0.30 or more and 0.95. It may be below.
- the negative electrode 203 may have a thickness of 10 ⁇ m or more and 500 ⁇ m or less.
- At least one selected from the group consisting of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 contains a second solid electrolyte material in order to enhance ionic conductivity, chemical stability, and electrochemical stability. may be
- the second solid electrolyte material may be a halide solid electrolyte.
- halide solid electrolytes are Li 2 MgX' 4 , Li 2 FeX' 4 , Li(Al,Ga,In)X' 4 , Li 3 (Al,Ga,In)X' 6 or LiI.
- X' is at least one selected from the group consisting of F, Cl, Br and I.
- the second solid electrolyte material may be a sulfide solid electrolyte.
- sulfide solid electrolytes are Li 2 SP 2 S 5 , Li 2 S-SiS 2 , Li 2 S-B 2 S 3 , Li 2 S-GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , or Li10GeP2S12 . _
- the second solid electrolyte material may be an oxide solid electrolyte.
- oxide solid electrolytes are (i) NASICON - type solid electrolytes such as LiTi2(PO4)3 or elemental substitutions thereof; (ii) perovskite-type solid electrolytes such as (LaLi) TiO3 ; ( iii) LISICON - type solid electrolytes such as Li14ZnGe4O16 , Li4SiO4 , LiGeO4 , or elemental substitutions thereof; ( iv) garnet - type solid electrolytes such as Li7La3Zr2O12 or elemental substitutions thereof; or (v) Li 3 PO 4 or its N-substitution.
- NASICON - type solid electrolytes such as LiTi2(PO4)3 or elemental substitutions thereof
- perovskite-type solid electrolytes such as (LaLi) TiO3 ;
- LISICON - type solid electrolytes such as Li14ZnGe4O16 , Li4SiO4 , LiGeO4
- the second solid electrolyte material may be an organic polymer solid electrolyte.
- organic polymer solid electrolytes are polymeric compounds and lithium salt compounds.
- the polymer compound may have an ethylene oxide structure. Since a polymer compound having an ethylene oxide structure can contain a large amount of lithium salt, the ionic conductivity can be further increased.
- lithium salts are LiPF6 , LiBF4 , LiSbF6 , LiAsF6 , LiSO3CF3, LiN(SO2CF3)2 , LiN ( SO2C2F5 ) 2 , LiN ( SO2CF3 ). ( SO2C4F9 ) , or LiC ( SO2CF3 ) 3 .
- One lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used.
- At least one selected from the group consisting of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 is a non-aqueous electrolyte, a gel electrolyte, or a It may contain an ionic liquid.
- the non-aqueous electrolyte contains a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
- non-aqueous solvents examples include cyclic carbonate solvents, chain carbonate solvents, cyclic ether solvents, chain ether solvents, cyclic ester solvents, chain ester solvents, or fluorine solvents.
- cyclic carbonate solvents are ethylene carbonate, propylene carbonate, or butylene carbonate.
- linear carbonate solvents are dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate.
- examples of cyclic ether solvents are tetrahydrofuran, 1,4-dioxane, or 1,3-dioxolane.
- linear ether solvents are 1,2-dimethoxyethane or 1,2-diethoxyethane.
- An example of a cyclic ester solvent is ⁇ -butyrolactone.
- An example of a linear ester solvent is methyl acetate.
- fluorosolvents are fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, or fluorodimethylene carbonate.
- non-aqueous solvent selected from these may be used alone. Alternatively, a mixture of two or more non-aqueous solvents selected from these may be used.
- lithium salts are LiPF6 , LiBF4 , LiSbF6 , LiAsF6 , LiSO3CF3, LiN(SO2CF3)2 , LiN ( SO2C2F5 ) 2 , LiN ( SO2CF3 ). ( SO2C4F9 ) , or LiC ( SO2CF3 ) 3 .
- One lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used.
- the concentration of the lithium salt is, for example, in the range of 0.5 mol/liter or more and 2 mol/liter or less.
- a polymer material impregnated with a non-aqueous electrolyte can be used as the gel electrolyte.
- examples of polymeric materials are polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, or polymers with ethylene oxide linkages.
- ionic liquids examples include (i) aliphatic chain quaternary salts such as tetraalkylammonium or tetraalkylphosphonium; (ii) aliphatic cyclic ammoniums such as pyrrolidiniums, morpholiniums, imidazoliniums, tetrahydropyrimidiniums, piperaziniums, or piperidiniums; or (iii) nitrogen-containing heterogeneous compounds such as pyridiniums or imidazoliums. It is a ring aromatic cation.
- Examples of anions contained in the ionic liquid are PF 6 ⁇ , BF 4 ⁇ , SbF 6 ⁇ , AsF 6 ⁇ , SO 3 CF 3 ⁇ , N(SO 2 CF 3 ) 2 ⁇ , N(SO 2 C 2 F 5 ) 2- , N( SO2CF3 ) ( SO2C4F9 ) - , or C ( SO2CF3 ) 3- .
- the ionic liquid may contain a lithium salt.
- At least one selected from the group consisting of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 may contain a binder for the purpose of improving adhesion between particles.
- binders include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, Polyacrylic acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyether sulfone, hexafluoropolypropylene, styrene-butadiene rubber , or carboxymethyl cellulose.
- Copolymers can also be used as binders.
- binders are tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ethers, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid , and hexadiene.
- a mixture of two or more selected from these may be used as the binder.
- At least one selected from the positive electrode 201 and the negative electrode 203 may contain a conductive aid in order to increase electronic conductivity.
- Examples of conductive aids are (i) graphites such as natural or artificial graphite; (ii) carbon blacks such as acetylene black or ketjen black; (iii) conductive fibers such as carbon or metal fibers; (iv) carbon fluoride, (v) metal powders such as aluminum; (vi) conductive whiskers such as zinc oxide or potassium titanate; (vii) conductive metal oxides such as titanium oxide; or (viii) conductive polymeric compounds such as polyaniline, polypyrrole, or polythiophene. From the viewpoint of cost reduction, the above (i) or (ii) may be used.
- Examples of the shape of the battery according to the second embodiment are coin-shaped, cylindrical, rectangular, sheet-shaped, button-shaped, flat-shaped, and laminated.
- a material for forming a positive electrode, a material for forming an electrolyte layer, and a material for forming a negative electrode are prepared, and the positive electrode, the electrolyte layer, and the negative electrode are arranged in this order by a known method. It may also be manufactured by making laminated laminates.
- Example 1 [Preparation of Solid Electrolyte Material]
- a dry argon atmosphere having a dew point of ⁇ 60° C. or less and an oxygen concentration of 0.1% by volume or less
- YCl 3 , ZrCl 4 and LiCl as raw material powders were converted to YCl 3 : ZrCl 4 :LiCl was prepared to have a molar ratio of about 1:1:5.
- These raw powders were ground and mixed in a mortar.
- the resulting mixture was calcined at 550° C. for 2 hours in a closed SUS container in a dry argon atmosphere, and then pulverized in a mortar.
- the resulting reactants were placed in an atmosphere having a dew point of ⁇ 30° C. and an oxygen concentration of 20.9% by volume or less for about 10 minutes. Then, in a dry argon atmosphere, the powder was calcined at 400° C. for 1 hour in a sealed SUS container, and then pulverized in a mortar. Thus, a solid electrolyte material according to Example 1 was obtained.
- composition analysis of solid electrolyte material The contents of Li and Y per unit weight of the solid electrolyte material according to Example 1 were measured by high frequency inductively coupled plasma atomic emission spectrometry using a high frequency inductively coupled plasma atomic emission spectrometer (iCAP7400 manufactured by Thermo Fisher Scientific). was done.
- the Cl content of the solid electrolyte material according to Example 1 was measured by ion chromatography using an ion chromatograph (ICS-2000 manufactured by Dionex). Based on the contents of Li, Zr, Y, and Cl obtained from these measurement results, the molar ratio of Li:Zr:Y:Cl was calculated. As a result, the solid electrolyte material according to Example 1 had a Li:Zr:Y:Cl molar ratio of 4.96:0.94:1.0:11.16.
- the mass of O with respect to the mass of the entire solid electrolyte material according to Example 1 was measured by a non-dispersive infrared absorption method using an oxygen/nitrogen/hydrogen analyzer (manufactured by Horiba, EMGA-930). As a result, the mass of O with respect to the mass of the entire solid electrolyte material according to Example 1 was 0.10%. Based on this, the molar ratio of O to Y was calculated. As a result, the molar ratio of O to Y in the solid electrolyte material according to Example 1 was 0.12.
- the molar ratio of O to Y in the surface region of the solid electrolyte material according to Example 1 was measured by X-ray photoelectron spectroscopy using a scanning X-ray photoelectron spectrometer (PHI Quantera SXM manufactured by ULVAC-PHI). .
- An Al beam was used as the X-ray source.
- the molar ratio of O to Y in the surface region of the solid electrolyte material according to Example 1 was 4.64.
- Surface area in this disclosure means the area measured in this way.
- the surface region of the solid electrolyte material according to the first embodiment was about 5 nm inward from the surface of the solid electrolyte material.
- a thermal analyzer (Q1000, manufactured by TA Instruments) was used to measure the melting point.
- the solid electrolyte material (about 5 mg) according to Example 1 was weighed and heated from room temperature to 550° C. at a heating rate of 10 K/min. An endothermic peak was observed at that time.
- a two-dimensional graph was created with temperature on the horizontal axis and calorific value on the vertical axis. A straight line connects two points on the graph where the solid electrolyte material neither generates heat nor absorbs heat, and this was used as a baseline.
- FIG. 6 is a graph showing the results of thermal analysis of the solid electrolyte material according to Example 1.
- the X-ray diffraction pattern of the solid electrolyte material according to Example 1 was measured using an X-ray diffractometer (MiniFlex 600, manufactured by RIGAKU) in a dry environment with a dew point of -45°C or lower. Cu-K ⁇ radiation (wavelength 1.5405 ⁇ and 1.5444 ⁇ ) was used as the X-ray source.
- FIG. 1 is a graph showing an X-ray diffraction pattern of the solid electrolyte material according to Example 1.
- FIG. 3 shows a schematic diagram of a pressure forming die 300 used to evaluate the ionic conductivity of solid electrolyte materials.
- the pressure forming die 300 had a punch upper part 301 , a frame mold 302 and a punch lower part 303 .
- the frame form 302 was made of insulating polycarbonate. Both the punch upper portion 301 and the punch lower portion 303 were made of electronically conductive stainless steel.
- the ionic conductivity of the solid electrolyte material according to Example 1 was measured by the following method.
- the solid electrolyte material powder 101 according to Example 1 was filled inside the pressure molding die 300 . Inside the pressing die 300 , a pressure of 300 MPa was applied to the solid electrolyte material powder 101 according to Example 1 using the upper part of the punch 301 .
- the solid electrolyte material according to Example 1 was measured at room temperature using a potentiostat (Princeton Applied Research, VersaSTAT 4) via the upper punch 301 and the lower punch 303. was measured. Although not shown, a working electrode and a potential measuring terminal were connected to the punch upper portion 301 , and a counter electrode and a reference electrode were connected to the punch lower portion 303 .
- FIG. 4 is a graph showing a Cole-Cole plot obtained by impedance measurement of the solid electrolyte material according to Example 1.
- the real value of the impedance at the measurement point where the absolute value of the phase of the complex impedance was the smallest was regarded as the resistance value of the solid electrolyte material according to Example 1 against ion conduction. See the arrow R SE shown in FIG. 4 for the real value.
- S is the contact area of the solid electrolyte material with the punch upper part 301 (equal to the cross-sectional area of the hollow part of the frame mold 302 in FIG. 3).
- R SE is the resistance value of the solid electrolyte material in impedance measurement.
- t is the thickness of the solid electrolyte material to which pressure is applied (equal to the thickness of the layer formed from the solid electrolyte material powder 101 in FIG. 3).
- the solid electrolyte material according to Example 1 100 mg
- the above mixture (10.0 mg)
- aluminum powder (14.7 mg) are stacked in order, Got a body.
- a pressure of 300 MPa was applied to the laminate to form a positive electrode and a solid electrolyte layer.
- the solid electrolyte layer had a thickness of 500 ⁇ m.
- Example 1 The battery according to Example 1 was placed in a constant temperature bath at 25°C. A cell according to Example 1 was charged at a current density of 85 ⁇ A/cm 2 until a voltage of 3.7 V was reached. This current density corresponds to a 0.05C rate. The cell according to Example 1 was then discharged, also at a current density of 85 ⁇ A/cm 2 , until a voltage of 1.9 V was reached.
- the battery according to Example 1 had an initial discharge capacity of 559 ⁇ Ah.
- FIG. 5 is a graph showing the initial discharge characteristics of the battery according to Example 1.
- Example 2 As in Example 1, except that the time the reactants were placed in an atmosphere having a dew point of ⁇ 30° C. and an oxygen concentration of 20.9% by volume or less was 45 minutes instead of about 10 minutes. , a solid electrolyte material according to Example 2 was obtained.
- Example 2 In the same manner as in Example 1, the element ratio (molar ratio), melting point, X-ray diffraction, and ionic conductivity of the solid electrolyte material according to Example 2 were measured. The measurement results are shown in Tables 1 and 2. 2 is a graph showing an X-ray diffraction pattern of the solid electrolyte material according to Example 2. FIG. 6 is a graph showing the results of thermal analysis of the solid electrolyte material according to Example 2. FIG.
- the mass of O with respect to the mass of the entire solid electrolyte material according to Example 2 was 0.44%.
- a battery according to Example 2 was obtained in the same manner as in Example 1 using the solid electrolyte material according to Example 2.
- a charge/discharge test was performed in the same manner as in Example 1 using the battery of Example 2.
- the battery according to Example 2 like the battery according to Example 1, charged and discharged well.
- ⁇ Reference example 2> As in Example 1, except that the time the reactants were placed in an atmosphere with a dew point of ⁇ 30° C. and an oxygen concentration of 20.9% by volume or less was 540 minutes instead of about 10 minutes. , a solid electrolyte material according to Reference Example 2 was obtained.
- Example 2 In the same manner as in Example 1, the element ratio (molar ratio), melting point, X-ray diffraction, and ionic conductivity of the solid electrolyte materials according to Reference Examples 1 and 2 were measured. The measurement results are shown in Tables 1 and 2. 2 is a graph showing X-ray diffraction patterns of solid electrolyte materials according to Reference Examples 1 and 2. FIG. 6 is a graph showing the results of thermal analysis of solid electrolyte materials according to Reference Examples 1 and 2. FIG. The melting point of the solid electrolyte material according to Reference Example 2 could not be measured.
- the mass of O with respect to the mass of the entire solid electrolyte material according to Reference Examples 1 and 2 was 0.02% and 8.93%, respectively.
- a battery according to Reference Example 2 was obtained in the same manner as in Example 1 using the solid electrolyte material according to Reference Example 2.
- FIG. 5 is a graph showing the initial discharge characteristics of the battery according to Reference Example 2.
- the solid electrolyte materials according to Examples 1 and 2 have a high ion conductivity of 3 ⁇ 10 ⁇ 4 S/cm or more near room temperature.
- the solid electrolyte materials according to Examples 1 and 2 have higher melting points than the solid electrolyte material according to Reference Example 1. That is, the solid electrolyte materials according to Examples 1 and 2 have higher heat resistance than the solid electrolyte material according to Reference Example 1.
- the higher the molar ratio of O to Y the higher the melting point.
- the molar ratio of O to Y increases, the ionic conductivity of the solid electrolyte material significantly decreases.
- the molar ratio of O to Y in the surface region of the solid electrolyte material is at least 10 times greater than the molar ratio of O to Y in the solid electrolyte material as a whole.
- the batteries according to Examples 1 and 2 were charged and discharged at 25°C.
- the solid electrolyte material according to the present disclosure has practical lithium ion conductivity and is suitable for providing batteries that can be charged and discharged satisfactorily.
- the solid electrolyte material of the present disclosure is used, for example, in all-solid lithium ion secondary batteries.
- REFERENCE SIGNS LIST 100 solid electrolyte particles 101 solid electrolyte material powder 201 positive electrode 202 electrolyte layer 203 negative electrode 204 positive electrode active material particles 205 negative electrode active material particles 300 pressure molding die 301 frame mold 302 lower punch 303 upper punch 1000 battery
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Conductive Materials (AREA)
- Secondary Cells (AREA)
Abstract
Description
第1実施形態による固体電解質材料は、Li、Zr、Y、Cl、およびOを含み、固体電解質材料の全体におけるYに対するOのモル比は、0超かつ0.80以下であり、固体電解質材料の表面領域におけるYに対するOのモル比は、固体電解質材料の全体におけるYに対するOのモル比よりも大きい。
第1実施形態による固体電解質材料は、下記の方法により製造され得る。
以下、第2実施形態が説明される。第1実施形態において説明された事項は、適宜、省略され得る。
(i)LiTi2(PO4)3またはその元素置換体のようなNASICON型固体電解質、
(ii)(LaLi)TiO3のようなペロブスカイト型固体電解質、
(iii)Li14ZnGe4O16、Li4SiO4、LiGeO4、またはその元素置換体のようなLISICON型固体電解質、
(iv)Li7La3Zr2O12またはその元素置換体のようなガーネット型固体電解質、
または
(v)Li3PO4またはそのN置換体
である。
(i)テトラアルキルアンモニウムまたはテトラアルキルホスホニウムのような脂肪族鎖状4級塩類、
(ii)ピロリジニウム類、モルホリニウム類、イミダゾリニウム類、テトラヒドロピリミジニウム類、ピペラジニウム類、またはピペリジニウム類のような脂肪族環状アンモニウム、または
(iii)ピリジニウム類またはイミダゾリウム類のような含窒ヘテロ環芳香族カチオンである。
(i)天然黒鉛または人造黒鉛のようなグラファイト類、
(ii)アセチレンブラックまたはケッチェンブラックのようなカーボンブラック類、
(iii)炭素繊維または金属繊維のような導電性繊維類、
(iv)フッ化カーボン、
(v)アルミニウムのような金属粉末類、
(vi)酸化亜鉛またはチタン酸カリウムのような導電性ウィスカー類、
(vii)酸化チタンのような導電性金属酸化物、または
(viii)ポリアニリン、ポリピロール、またはポリチオフェンのような導電性高分子化合物
である。低コスト化の観点から、上記の(i)または(ii)が使用されてもよい。
[固体電解質材料の作製]
-60℃以下の露点および0.1体積%以下の酸素濃度を有するアルゴン雰囲気(以下、「乾燥アルゴン雰囲気」という。)中で、原料粉としてYCl3、ZrCl4、およびLiClが、YCl3:ZrCl4:LiCl=1:1:5程度のモル比となるように用意された。これらの原料粉が、乳鉢中で粉砕され、混合された。得られた混合物は、乾燥アルゴン雰囲気中で、SUS製密閉容器の中で、550℃で2時間焼成された後、乳鉢中で粉砕された。得られた反応物は、-30℃の露点および20.9体積%以下の酸素濃度を有する雰囲気中で、約10分間静置された。次いで、乾燥アルゴン雰囲気中で、SUS製密閉容器の中で、400℃で1時間焼成された後、乳鉢中で粉砕された。このようにして、実施例1による固体電解質材料が得られた。
実施例1による固体電解質材料の単位重量あたりのLiおよびYの含有量は、高周波誘導結合プラズマ発光分光分析装置(Thermo Fisher Scientific製、iCAP7400)を用いて、高周波誘導結合プラズマ発光分光分析法により測定された。実施例1による固体電解質材料のClの含有量は、イオンクロマトグラフ装置(Dionex製、ICS-2000)を用いて、イオンクロマトグラフィー法により測定された。これらの測定結果から得られたLi、Zr、Y、およびClの含有量をもとに、Li:Zr:Y:Clのモル比が算出された。その結果、実施例1による固体電解質材料は、4.96:0.94:1.0:11.16のLi:Zr:Y:Clのモル比を有していた。
融点の測定には、熱分析装置(T.A.インスツルメント製、Q1000)が用いられた。窒素雰囲気中で、実施例1による固体電解質材料(約5mg)を測り取り、10K/minの昇温速度で常温から550℃まで加熱した。そのときの吸熱ピークが観測された。得られたデータをもとに、横軸を温度、縦軸を発熱量として二次元グラフが作成された。固体電解質材料が発熱も吸熱もしていないグラフ上の2点を直線で結び、これをベースラインとした。次いで、吸熱ピークの変曲点における接線とベースラインの交点を融点とした。その結果、実施例1による固体電解質材料の融点は、480.4℃であった。図6は、実施例1による固体電解質材料の熱分析の結果を示すグラフである。
-45℃以下の露点を有するドライ環境で、X線回折装置(RIGAKU社、MiniFlex600)を用いて、実施例1による固体電解質材料のX線回折パターンが測定された。X線源として、Cu-Kα線(波長1.5405Åおよび1.5444Å)が使用された。
図3は、固体電解質材料のイオン伝導度を評価するために用いられる加圧成形ダイス300の模式図を示す。
σ=(RSE×S/t)-1 ・・・(1)
ここで、σは、イオン伝導度である。Sは、固体電解質材料のパンチ上部301との接触面積(図3において、枠型302の中空部の断面積に等しい)である。RSEは、インピーダンス測定における固体電解質材料の抵抗値である。tは、圧力が印加された固体電解質材料の厚み(図3において、固体電解質材料の粉末101から形成される層の厚みに等しい)である。
乾燥アルゴン雰囲気中で、実施例1による固体電解質材料および活物質であるLiCoO2が、70:30の体積比率となるように用意された。これらの材料がメノウ乳鉢中で混合された。このようにして、混合物が得られた。
実施例1による電池は、25℃の恒温槽に配置された。85μA/cm2の電流密度で、3.7Vの電圧に達するまで、実施例1による電池が充電された。当該電流密度は、0.05Cレートに相当する。次に、同じく85μA/cm2の電流密度で、1.9Vの電圧に達するまで、実施例1による電池が放電された。
-30℃の露点および20.9体積%以下の酸素濃度を有する雰囲気中で反応物が静置された時間を、約10分間ではなく45分間としたこと以外は、実施例1と同様にして、実施例2による固体電解質材料が得られた。
乾燥アルゴン雰囲気中で、原料粉としてYCl3、ZrCl4、およびLiClが、YCl3:ZrCl4:LiCl=1:1:5程度のモル比となるように用意された。これらの原料粉が、乳鉢中で粉砕され、混合された。得られた混合物は、乾燥アルゴン雰囲気中で、SUS製密閉容器の中で、550℃で2時間焼成された後、乳鉢中で粉砕された。このようにして、参考例1による固体電解質材料が得られた。
-30℃の露点および20.9体積%以下の酸素濃度を有する雰囲気中で反応物が静置された時間を、約10分間ではなく540分間としたこと以外は、実施例1と同様にして、参考例2による固体電解質材料が得られた。
表1から明らかなように、実施例1および2による固体電解質材料は、室温近傍において、3×10-4S/cm以上の高いイオン伝導性を有する。実施例1および2による固体電解質材料は、参考例1による固体電解質材料よりも高い融点を有する。すなわち、実施例1および2による固体電解質材料は、参考例1による固体電解質材料よりも高い耐熱性を有する。Yに対するOのモル比が大きいほど、融点が高くなった。一方、Yに対するOのモル比が大きくなると、固体電解質材料のイオン伝導度が大幅に低下してしまう。
101 固体電解質材料の粉末
201 正極
202 電解質層
203 負極
204 正極活物質粒子
205 負極活物質粒子
300 加圧成形ダイス
301 枠型
302 パンチ下部
303 パンチ上部
1000 電池
Claims (9)
- Li、Zr、Y、Cl、およびOを含む固体電解質材料であって、
前記固体電解質材料の全体におけるYに対するOのモル比は、0超かつ0.80以下であり、
前記固体電解質材料の表面領域におけるYに対するOのモル比は、前記固体電解質材料の全体におけるYに対するOのモル比よりも大きい、
固体電解質材料。 - 前記固体電解質材料の全体におけるYに対するOのモル比は、0超かつ0.28以下である、
請求項1に記載の固体電解質材料。 - 前記固体電解質材料の全体におけるYに対するOのモル比は、0.12以上かつ0.28以下である、
請求項2に記載の固体電解質材料。 - Mg、Ca、Zn、Sr、Ba、Al、Sc、Ga、Bi、La、Sm、Hf、Ta、およびNbからなる群より選択される少なくとも1つをさらに含む、
請求項1から3のいずれか一項に記載の固体電解質材料。 - 前記固体電解質材料の表面領域におけるYに対するOのモル比は、前記固体電解質材料の全体におけるYに対するOのモル比よりも10倍以上大きい、
請求項1から4のいずれか一項に記載の固体電解質材料。 - Cu-Kαを用いたX線回折測定によって得られたX線回折パターンにおいて、15.5°以上かつ15.7°以下、16.6°以上かつ16.8°以下、17.4°以上かつ17.6°以下、20.1°以上かつ20.3°以下、22.2°以上かつ22.4°以下、31.4°以上かつ31.6°以下、および48.9°以上かつ49.1°以下である回折角2θの範囲のそれぞれにピークが存在する、
請求項1から5のいずれか一項に記載の固体電解質材料。 - 前記X線回折パターンにおいて、47.0°以上かつ47.2°以下である回折角2θの範囲にさらにピークが存在する、
請求項6に記載の固体電解質材料。 - Yに対するLiのモル比は、4.4以上かつ5.5以下であり、
Yに対するZrのモル比は、0.8以上かつ1.1以下であり、かつ
Yに対するClのモル比は、8.6以上かつ12.3以下である、
請求項1から7のいずれか一項に記載の固体電解質材料。 - 正極と、
負極と、
前記正極および前記負極の間に設けられた電解質層と、を備え、
前記正極、前記負極、および前記電解質層からなる群より選択される少なくとも1つは、請求項1から8のいずれか一項に記載の固体電解質材料を含有する、
電池。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023503381A JPWO2022185638A1 (ja) | 2021-03-02 | 2021-12-03 | |
EP21929196.0A EP4303949A4 (en) | 2021-03-02 | 2021-12-03 | SOLID ELECTROLYTE MATERIAL AND BATTERY |
CN202180093872.5A CN116888686A (zh) | 2021-03-02 | 2021-12-03 | 固体电解质材料及使用该固体电解质材料的电池 |
US18/452,103 US20230402647A1 (en) | 2021-03-02 | 2023-08-18 | Solid electrolyte material and battery using same |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-033001 | 2021-03-02 | ||
JP2021033001 | 2021-03-02 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US18/452,103 Continuation US20230402647A1 (en) | 2021-03-02 | 2023-08-18 | Solid electrolyte material and battery using same |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022185638A1 true WO2022185638A1 (ja) | 2022-09-09 |
Family
ID=83154207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/044438 WO2022185638A1 (ja) | 2021-03-02 | 2021-12-03 | 固体電解質材料およびこれを用いた電池 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20230402647A1 (ja) |
EP (1) | EP4303949A4 (ja) |
JP (1) | JPWO2022185638A1 (ja) |
CN (1) | CN116888686A (ja) |
WO (1) | WO2022185638A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011129312A (ja) | 2009-12-16 | 2011-06-30 | Toyota Motor Corp | 硫化物固体電解質材料の製造方法、硫化物固体電解質材料およびリチウム電池 |
WO2018025582A1 (ja) | 2016-08-04 | 2018-02-08 | パナソニックIpマネジメント株式会社 | 固体電解質材料、および、電池 |
WO2021002052A1 (ja) * | 2019-07-04 | 2021-01-07 | パナソニックIpマネジメント株式会社 | 固体電解質材料およびこれを用いた電池 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7418014B2 (ja) * | 2018-12-26 | 2024-01-19 | パナソニックIpマネジメント株式会社 | 固体電解質材料およびそれを用いた電池 |
-
2021
- 2021-12-03 WO PCT/JP2021/044438 patent/WO2022185638A1/ja active Application Filing
- 2021-12-03 CN CN202180093872.5A patent/CN116888686A/zh active Pending
- 2021-12-03 EP EP21929196.0A patent/EP4303949A4/en active Pending
- 2021-12-03 JP JP2023503381A patent/JPWO2022185638A1/ja active Pending
-
2023
- 2023-08-18 US US18/452,103 patent/US20230402647A1/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011129312A (ja) | 2009-12-16 | 2011-06-30 | Toyota Motor Corp | 硫化物固体電解質材料の製造方法、硫化物固体電解質材料およびリチウム電池 |
WO2018025582A1 (ja) | 2016-08-04 | 2018-02-08 | パナソニックIpマネジメント株式会社 | 固体電解質材料、および、電池 |
WO2021002052A1 (ja) * | 2019-07-04 | 2021-01-07 | パナソニックIpマネジメント株式会社 | 固体電解質材料およびこれを用いた電池 |
Non-Patent Citations (1)
Title |
---|
See also references of EP4303949A4 |
Also Published As
Publication number | Publication date |
---|---|
EP4303949A4 (en) | 2024-08-14 |
CN116888686A (zh) | 2023-10-13 |
US20230402647A1 (en) | 2023-12-14 |
JPWO2022185638A1 (ja) | 2022-09-09 |
EP4303949A1 (en) | 2024-01-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7542196B2 (ja) | ハロゲン化物固体電解質材料およびこれを用いた電池 | |
JP7418014B2 (ja) | 固体電解質材料およびそれを用いた電池 | |
JP7535712B2 (ja) | 固体電解質材料およびこれを用いた電池 | |
WO2020137155A1 (ja) | 固体電解質材料およびそれを用いた電池 | |
JP7478989B2 (ja) | 固体電解質材料およびこれを用いた電池 | |
JP7496509B2 (ja) | 固体電解質材料およびこれを用いた電池 | |
JP7555031B2 (ja) | 固体電解質材料およびこれを用いた電池 | |
WO2021199641A1 (ja) | 固体電解質材料およびこれを用いた電池 | |
WO2021199550A1 (ja) | 固体電解質材料およびこれを用いた電池 | |
JP7535711B2 (ja) | 固体電解質材料およびこれを用いた電池 | |
WO2023013232A1 (ja) | 固体電解質材料およびそれを用いた電池 | |
US20220352546A1 (en) | Solid electrolyte material and battery using same | |
WO2021153018A1 (ja) | 固体電解質材料およびこれを用いた電池 | |
JP7478988B2 (ja) | 固体電解質材料およびこれを用いた電池 | |
WO2021199619A1 (ja) | 固体電解質材料およびこれを用いた電池 | |
WO2021199640A1 (ja) | 固体電解質材料およびこれを用いた電池 | |
JP7442144B2 (ja) | 固体電解質材料およびそれを用いた電池 | |
JP7417952B2 (ja) | 固体電解質材料およびそれを用いた電池 | |
WO2022185638A1 (ja) | 固体電解質材料およびこれを用いた電池 | |
WO2022185637A1 (ja) | 固体電解質材料およびこれを用いた電池 | |
WO2022185639A1 (ja) | 固体電解質材料およびこれを用いた電池 | |
WO2022259782A1 (ja) | 固体電解質材料およびそれを用いた電池 | |
WO2022264659A1 (ja) | 固体電解質材料および電池 | |
WO2021199642A1 (ja) | 固体電解質材料およびこれを用いた電池 | |
WO2022249760A1 (ja) | 固体電解質材料およびそれを用いた電池 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21929196 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023503381 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180093872.5 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202347056720 Country of ref document: IN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2021929196 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2021929196 Country of ref document: EP Effective date: 20231002 |