WO2022185638A1 - 固体電解質材料およびこれを用いた電池 - Google Patents

固体電解質材料およびこれを用いた電池 Download PDF

Info

Publication number
WO2022185638A1
WO2022185638A1 PCT/JP2021/044438 JP2021044438W WO2022185638A1 WO 2022185638 A1 WO2022185638 A1 WO 2022185638A1 JP 2021044438 W JP2021044438 W JP 2021044438W WO 2022185638 A1 WO2022185638 A1 WO 2022185638A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid electrolyte
electrolyte material
material according
molar ratio
less
Prior art date
Application number
PCT/JP2021/044438
Other languages
English (en)
French (fr)
Inventor
和史 宮武
勇祐 西尾
敬 久保
哲也 浅野
章裕 酒井
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2023503381A priority Critical patent/JPWO2022185638A1/ja
Priority to EP21929196.0A priority patent/EP4303949A4/en
Priority to CN202180093872.5A priority patent/CN116888686A/zh
Publication of WO2022185638A1 publication Critical patent/WO2022185638A1/ja
Priority to US18/452,103 priority patent/US20230402647A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/008Halides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to solid electrolyte materials and batteries using the same.
  • Patent Literature 1 discloses an all-solid battery using a sulfide solid electrolyte.
  • Patent Document 2 discloses a solid electrolyte material represented by Li 6-3z Y z X 6 (where 0 ⁇ z ⁇ 2 is satisfied and X is Cl or Br).
  • the purpose of the present disclosure is to provide a new highly useful solid electrolyte material.
  • the solid electrolyte material of the present disclosure contains Li, Zr, Y, Cl, and O, the molar ratio of O to Y in the entire solid electrolyte material is more than 0 and 0.80 or less, and the solid electrolyte material The molar ratio of O to Y in the surface area of is greater than the molar ratio of O to Y in the entire solid electrolyte material.
  • the present disclosure provides a new solid electrolyte material with high utility.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a battery 1000 according to the second embodiment.
  • FIG. 2 is a graph showing X-ray diffraction patterns of solid electrolyte materials according to Examples 1 and 2 and Reference Examples 1 and 2.
  • FIG. 3 shows a schematic diagram of a pressure forming die 300 used to evaluate the ionic conductivity of solid electrolyte materials.
  • 4 is a graph showing a Cole-Cole plot obtained by impedance measurement of the solid electrolyte material according to Example 1.
  • FIG. FIG. 5 is a graph showing the initial discharge characteristics of the batteries according to Example 1 and Reference Example 2;
  • FIG. 6 is a graph showing the results of thermal analysis of solid electrolyte materials according to Examples 1-2 and Reference Examples 1-2.
  • the solid electrolyte material according to the first embodiment contains Li, Zr, Y, Cl, and O, the molar ratio of O to Y in the entire solid electrolyte material is more than 0 and 0.80 or less, and the solid electrolyte material The molar ratio of O to Y in the surface area of is greater than the molar ratio of O to Y in the entire solid electrolyte material.
  • the surface region of the solid electrolyte material according to the first embodiment means a region from the surface of the solid electrolyte material to a depth of about 5 nm inward.
  • the solid electrolyte material according to the first embodiment is a highly useful new solid electrolyte material.
  • the solid electrolyte material according to the first embodiment can have practical lithium ion conductivity and heat resistance, for example, high lithium ion conductivity and high heat resistance.
  • high lithium ion conductivity is, for example, 3 ⁇ 10 ⁇ 4 S/cm or more.
  • the solid electrolyte material according to the first embodiment can have an ionic conductivity of, for example, 3 ⁇ 10 ⁇ 4 S/cm or more.
  • the solid electrolyte material according to the first embodiment has high heat resistance means that the solid electrolyte material according to the first embodiment has, for example, a high melting point.
  • the high melting point is, for example, 478° C. or higher.
  • the melting point of the solid electrolyte material means the highest temperature among the melting points of the solid electrolyte material.
  • the solid electrolyte material according to the first embodiment does not substantially contain sulfur.
  • the fact that the solid electrolyte material according to the first embodiment does not substantially contain sulfur means that the solid electrolyte material does not contain sulfur as a constituent element except sulfur that is unavoidably mixed as an impurity. In this case, sulfur mixed as an impurity in the solid electrolyte material is, for example, 1 mol % or less. From the viewpoint of safety, it is desirable that the solid electrolyte material according to the first embodiment does not contain sulfur.
  • a solid electrolyte material that does not contain sulfur does not generate hydrogen sulfide even when exposed to the atmosphere, so it is excellent in safety.
  • the sulfide solid electrolyte disclosed in Patent Document 1 can generate hydrogen sulfide when exposed to the atmosphere.
  • the solid electrolyte material according to the first embodiment may consist essentially of Li, Zr, Y, Cl, and O.
  • the solid electrolyte material according to the first embodiment consists essentially of Li, Zr, Y, Cl, and O
  • the solid electrolyte material according to the first embodiment consists essentially of Li, Zr, Y, Cl, and O
  • the solid electrolyte material according to the first embodiment consists essentially of Li, Zr, Y, Cl, and O
  • the solid electrolyte material according to the first embodiment may consist of Li, Zr, Y, Cl, and O only.
  • the molar ratio of O to Y in the entire solid electrolyte material according to the first embodiment may be more than 0 and 0.40 or less.
  • the molar ratio of O to Y in the entire solid electrolyte material according to the first embodiment may be more than 0 and 0.30 or less.
  • the molar ratio of O to Y in the entire solid electrolyte material according to the first embodiment may be greater than 0 and 0.28 or less, or 0.12 or more and 0 0.28 or less.
  • the solid electrolyte material according to the first embodiment contains Mg, Ca, Zn, Sr, Ba, Al, Sc, Ga, Bi, La, Sm, Hf, Ta, and Nb. It may further include at least one selected from the group consisting of
  • the X-ray diffraction pattern of the solid electrolyte material according to the first embodiment can be obtained using Cu-K ⁇ .
  • the obtained X-ray diffraction pattern 15.5° or more and 15.7° or less, 16.6° or more and 16.8° or less, 17.4° or more and 17.6° or less, 20.1° or more and a diffraction angle 2 ⁇ range of 20.3° or less, 22.2° or more and 22.4° or less, 31.4° or more and 31.6° or less, and 48.9° or more and 49.1° or less
  • a diffraction peak may be present in each of the Such solid electrolyte materials have high lithium ion conductivity.
  • a diffraction peak in an X-ray diffraction pattern is also simply called a "peak".
  • the X-ray diffraction pattern of the solid electrolyte material according to the first embodiment was obtained by X It can be obtained by line diffraction measurements.
  • the angle of the peak is the angle indicating the maximum intensity of the mountain-shaped portion having an SN ratio of 3 or more and a half width of 10° or less.
  • the half-value width is the width represented by the difference between two diffraction angles at which the intensity is half the value of IMAX , where IMAX is the maximum intensity of the peak.
  • SNR is the ratio of signal S to background noise N.
  • a diffraction peak in the range of diffraction angles 2 ⁇ of 47.0° or more and 47.2° or less may be present.
  • the molar ratio of O to Y in the surface region of the solid electrolyte material may be 10 times or more greater than the molar ratio of O to Y in the entire solid electrolyte material.
  • the molar ratio of Zr to Y may be 0.8 or more and 1.1 or less.
  • the molar ratio of Li to Y may be 4.4 or more and 5.5 or less.
  • the molar ratio of Cl to Y may be 8.6 or more and 12.3 or less.
  • the molar ratio of Li to Y is 4.4 or more and 5.5 or less, and the molar ratio of Zr to Y is 0.8 or more and 1.1 or less. and the molar ratio of Cl to Y may be 8.6 or more and 12.3 or less.
  • the molar ratio of Li to Y is calculated by the formula: (substance amount of Li)/(substance amount of Y).
  • the molar ratio of Zr to Y is calculated by the formula: (Amount of substance of Zr)/(Amount of substance of Y).
  • the molar ratio of Cl to Y is calculated by the formula: (substance amount of Cl)/(substance amount of Y).
  • the molar ratio of Li to Y may be expressed as "molar ratio x”.
  • the molar ratio of Zr to Y is sometimes expressed as "molar ratio y.”
  • the molar ratio of Cl to Y is sometimes denoted as "molar ratio z.”
  • the molar ratio x is 4.96 or more and 4.99 or less
  • the molar ratio y is 0.90 or more and 0.94 or less
  • the ratio z may be greater than or equal to 9.52 and less than or equal to 11.16.
  • the shape of the solid electrolyte material according to the first embodiment is not limited. Examples of such shapes are acicular, spherical, or ellipsoidal.
  • the solid electrolyte material according to the first embodiment may be particles.
  • the solid electrolyte material according to the first embodiment may be formed to have a pellet or plate shape.
  • the solid electrolyte material according to the first embodiment when the shape of the solid electrolyte material according to the first embodiment is particulate (eg, spherical), the solid electrolyte material according to the first embodiment may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less. good. This allows the solid electrolyte material according to the first embodiment and other materials, such as active materials, to be well dispersed.
  • the median diameter of particles means the particle diameter (d50) corresponding to 50% of the cumulative volume in the volume-based particle size distribution.
  • a volume-based particle size distribution can be measured by a laser diffraction measurement device or an image analysis device.
  • the median diameter may be 0.5 ⁇ m or more and 10 ⁇ m or less. good.
  • the solid electrolyte material according to the first embodiment may have a smaller median diameter than the active material.
  • a solid electrolyte material according to the first embodiment can be manufactured by the following method.
  • raw material powders of halides are prepared and mixed so as to have the desired composition.
  • YCl3 raw powder, LiCl raw powder, and ZrCl4 raw powder are mixed.
  • the obtained mixed powder is fired in an inert gas atmosphere (for example, an argon atmosphere having a dew point of ⁇ 60° C. or lower) in which the oxygen concentration and water concentration are adjusted.
  • the firing temperature may be, for example, in the range of 200°C or higher and 650°C or lower.
  • the resulting reactant is left to stand in an atmosphere with a relatively high dew point (for example, an argon atmosphere with a dew point of -30°C), and then fired at a temperature below the melting point (for example, 400°C).
  • a relatively high dew point for example, an argon atmosphere with a dew point of -30°C
  • a temperature below the melting point for example, 400°C
  • the raw material powders may be mixed in a pre-adjusted molar ratio so as to compensate for compositional changes that may occur in the synthesis process.
  • the amount of oxygen in the solid electrolyte material is determined by selecting the raw material powder, the oxygen concentration in the atmosphere, the water concentration in the atmosphere, and the reaction time. A desired solid electrolyte material is thus obtained.
  • the oxygen contained in the solid electrolyte material according to the first embodiment is taken in from the above atmosphere having a relatively high dew point.
  • the composition of the solid electrolyte material can be determined, for example, by inductively coupled plasma-atomic emission spectrometry, ion chromatography, or non-dispersive infrared absorption.
  • the composition of Li, Zr, and Y can be determined by inductively coupled plasma atomic emission spectroscopy
  • the composition of Cl can be determined by ion chromatography
  • O can be measured by non-dispersive infrared absorption.
  • the second embodiment describes a battery using the solid electrolyte material according to the first embodiment.
  • a battery according to the second embodiment includes a positive electrode, a negative electrode, and an electrolyte layer.
  • the electrolyte layer is provided between the positive electrode and the negative electrode.
  • At least one selected from the group consisting of the positive electrode, the electrolyte layer, and the negative electrode contains the solid electrolyte material according to the first embodiment.
  • the battery according to the second embodiment contains the solid electrolyte material according to the first embodiment, it has excellent charge/discharge characteristics.
  • FIG. 1 is a cross-sectional view showing a schematic configuration of a battery 1000 according to the second embodiment.
  • a battery 1000 includes a positive electrode 201 , an electrolyte layer 202 and a negative electrode 203 .
  • Electrolyte layer 202 is disposed between positive electrode 201 and negative electrode 203 .
  • the positive electrode 201 contains positive electrode active material particles 204 and solid electrolyte particles 100 .
  • the electrolyte layer 202 contains an electrolyte material.
  • the electrolyte material is, for example, a solid electrolyte material.
  • the negative electrode 203 contains negative electrode active material particles 205 and solid electrolyte particles 100 .
  • the solid electrolyte particles 100 are particles containing the solid electrolyte material according to the first embodiment.
  • the solid electrolyte particles 100 may be particles made of the solid electrolyte material according to the first embodiment, or particles containing the solid electrolyte material according to the first embodiment as a main component.
  • particles containing the solid electrolyte material according to the first embodiment as a main component means particles in which the component contained in the largest molar ratio is the solid electrolyte material according to the first embodiment.
  • the positive electrode 201 contains a material that can occlude and release metal ions (eg, lithium ions).
  • the positive electrode 201 contains, for example, a positive electrode active material (eg, positive electrode active material particles 204).
  • positive electrode active materials are lithium-containing transition metal oxides, transition metal fluorides, polyanion materials, fluorinated polyanion materials, transition metal sulfides, transition metal oxyfluorides, transition metal oxysulfides, or transition metal oxynitrides.
  • lithium-containing transition metal oxides are LiNi1 -dfCodAlfO2 (where 0 ⁇ d , 0 ⁇ f , and 0 ⁇ (d+f) ⁇ 1 ) or LiCoO2.
  • the positive electrode active material particles 204 may have a median diameter of 0.1 ⁇ m or more. Such good dispersion improves the charge/discharge characteristics of the battery 1000 .
  • the positive electrode active material particles 204 may have a median diameter of 100 ⁇ m or less. Due to the rapid diffusion of lithium, battery 1000 can operate at high power. As described above, the positive electrode active material particles 204 may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the positive electrode active material particles 204 may have a larger median diameter than the solid electrolyte particles 100 .
  • the ratio of the volume of the positive electrode active material particles 204 to the total volume of the positive electrode active material particles 204 and the solid electrolyte particles 100 is 0.30 or more and 0.95. There may be:
  • the positive electrode 201 may have a thickness of 10 ⁇ m or more and 500 ⁇ m or less.
  • the electrolyte layer 202 contains an electrolyte material.
  • the electrolyte material may be the solid electrolyte material according to the first embodiment.
  • the electrolyte layer 202 may be a solid electrolyte layer.
  • the electrolyte layer 202 may be composed only of the solid electrolyte material according to the first embodiment. Alternatively, it may be composed only of a solid electrolyte material different from the solid electrolyte material according to the first embodiment.
  • solid electrolyte materials different from the solid electrolyte material according to the first embodiment include Li 2 MgX′ 4 , Li 2 FeX′ 4 , Li(Al, Ga, In)X′ 4 , Li 3 (Al, Ga, In ) X′ 6 , or LiI.
  • X' is at least one selected from the group consisting of F, Cl, Br and I.
  • the notation "(A, B, C)" in the chemical formula means "at least one selected from the group consisting of A, B, and C".
  • “(Al, Ga, In)” is synonymous with “at least one selected from the group consisting of Al, Ga, and In.”
  • the solid electrolyte material according to the first embodiment is hereinafter referred to as the first solid electrolyte material.
  • a solid electrolyte material different from the solid electrolyte material according to the first embodiment is called a second solid electrolyte material.
  • the electrolyte layer 202 may contain not only the first solid electrolyte material but also the second solid electrolyte material.
  • the first solid electrolyte material and the second solid electrolyte material may be uniformly dispersed.
  • a layer made of the first solid electrolyte material and a layer made of the second solid electrolyte material may be stacked along the stacking direction of battery 1000 .
  • the electrolyte layer 202 may have a thickness of 1 ⁇ m or more and 100 ⁇ m or less in order to suppress a short circuit between the positive electrode 201 and the negative electrode 203 and increase the output of the battery.
  • the negative electrode 203 contains a material capable of intercalating and deintercalating metal ions (eg, lithium ions).
  • the negative electrode 203 contains, for example, a negative electrode active material (eg, negative electrode active material particles 205).
  • Examples of negative electrode active materials are metal materials, carbon materials, oxides, nitrides, tin compounds, or silicon compounds.
  • the metal material may be a single metal or an alloy.
  • Examples of metallic materials are lithium metal or lithium alloys.
  • Examples of carbon materials are natural graphite, coke, ungraphitized carbon, carbon fibers, spherical carbon, artificial graphite, or amorphous carbon. From the viewpoint of capacity density, suitable examples of negative electrode active materials are silicon (ie, Si), tin (ie, Sn), silicon compounds, or tin compounds.
  • the negative electrode active material particles 205 may have a median diameter of 0.1 ⁇ m or more. Such good dispersion improves the charge-discharge characteristics of the battery.
  • the negative electrode active material particles 205 may have a median diameter of 100 ⁇ m or less. Due to the rapid diffusion of lithium, the battery can operate at high power. As described above, the negative electrode active material particles 205 may have a median diameter of 0.1 ⁇ m or more and 100 ⁇ m or less.
  • the negative electrode active material particles 205 may have a larger median diameter than the solid electrolyte particles 100 .
  • the ratio of the volume of negative electrode active material particles 205 to the total volume of negative electrode active material particles 205 and solid electrolyte particles 100 is 0.30 or more and 0.95. It may be below.
  • the negative electrode 203 may have a thickness of 10 ⁇ m or more and 500 ⁇ m or less.
  • At least one selected from the group consisting of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 contains a second solid electrolyte material in order to enhance ionic conductivity, chemical stability, and electrochemical stability. may be
  • the second solid electrolyte material may be a halide solid electrolyte.
  • halide solid electrolytes are Li 2 MgX' 4 , Li 2 FeX' 4 , Li(Al,Ga,In)X' 4 , Li 3 (Al,Ga,In)X' 6 or LiI.
  • X' is at least one selected from the group consisting of F, Cl, Br and I.
  • the second solid electrolyte material may be a sulfide solid electrolyte.
  • sulfide solid electrolytes are Li 2 SP 2 S 5 , Li 2 S-SiS 2 , Li 2 S-B 2 S 3 , Li 2 S-GeS 2 , Li 3.25 Ge 0.25 P 0.75 S 4 , or Li10GeP2S12 . _
  • the second solid electrolyte material may be an oxide solid electrolyte.
  • oxide solid electrolytes are (i) NASICON - type solid electrolytes such as LiTi2(PO4)3 or elemental substitutions thereof; (ii) perovskite-type solid electrolytes such as (LaLi) TiO3 ; ( iii) LISICON - type solid electrolytes such as Li14ZnGe4O16 , Li4SiO4 , LiGeO4 , or elemental substitutions thereof; ( iv) garnet - type solid electrolytes such as Li7La3Zr2O12 or elemental substitutions thereof; or (v) Li 3 PO 4 or its N-substitution.
  • NASICON - type solid electrolytes such as LiTi2(PO4)3 or elemental substitutions thereof
  • perovskite-type solid electrolytes such as (LaLi) TiO3 ;
  • LISICON - type solid electrolytes such as Li14ZnGe4O16 , Li4SiO4 , LiGeO4
  • the second solid electrolyte material may be an organic polymer solid electrolyte.
  • organic polymer solid electrolytes are polymeric compounds and lithium salt compounds.
  • the polymer compound may have an ethylene oxide structure. Since a polymer compound having an ethylene oxide structure can contain a large amount of lithium salt, the ionic conductivity can be further increased.
  • lithium salts are LiPF6 , LiBF4 , LiSbF6 , LiAsF6 , LiSO3CF3, LiN(SO2CF3)2 , LiN ( SO2C2F5 ) 2 , LiN ( SO2CF3 ). ( SO2C4F9 ) , or LiC ( SO2CF3 ) 3 .
  • One lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used.
  • At least one selected from the group consisting of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 is a non-aqueous electrolyte, a gel electrolyte, or a It may contain an ionic liquid.
  • the non-aqueous electrolyte contains a non-aqueous solvent and a lithium salt dissolved in the non-aqueous solvent.
  • non-aqueous solvents examples include cyclic carbonate solvents, chain carbonate solvents, cyclic ether solvents, chain ether solvents, cyclic ester solvents, chain ester solvents, or fluorine solvents.
  • cyclic carbonate solvents are ethylene carbonate, propylene carbonate, or butylene carbonate.
  • linear carbonate solvents are dimethyl carbonate, ethyl methyl carbonate, or diethyl carbonate.
  • examples of cyclic ether solvents are tetrahydrofuran, 1,4-dioxane, or 1,3-dioxolane.
  • linear ether solvents are 1,2-dimethoxyethane or 1,2-diethoxyethane.
  • An example of a cyclic ester solvent is ⁇ -butyrolactone.
  • An example of a linear ester solvent is methyl acetate.
  • fluorosolvents are fluoroethylene carbonate, methyl fluoropropionate, fluorobenzene, fluoroethyl methyl carbonate, or fluorodimethylene carbonate.
  • non-aqueous solvent selected from these may be used alone. Alternatively, a mixture of two or more non-aqueous solvents selected from these may be used.
  • lithium salts are LiPF6 , LiBF4 , LiSbF6 , LiAsF6 , LiSO3CF3, LiN(SO2CF3)2 , LiN ( SO2C2F5 ) 2 , LiN ( SO2CF3 ). ( SO2C4F9 ) , or LiC ( SO2CF3 ) 3 .
  • One lithium salt selected from these may be used alone. Alternatively, a mixture of two or more lithium salts selected from these may be used.
  • the concentration of the lithium salt is, for example, in the range of 0.5 mol/liter or more and 2 mol/liter or less.
  • a polymer material impregnated with a non-aqueous electrolyte can be used as the gel electrolyte.
  • examples of polymeric materials are polyethylene oxide, polyacrylonitrile, polyvinylidene fluoride, polymethyl methacrylate, or polymers with ethylene oxide linkages.
  • ionic liquids examples include (i) aliphatic chain quaternary salts such as tetraalkylammonium or tetraalkylphosphonium; (ii) aliphatic cyclic ammoniums such as pyrrolidiniums, morpholiniums, imidazoliniums, tetrahydropyrimidiniums, piperaziniums, or piperidiniums; or (iii) nitrogen-containing heterogeneous compounds such as pyridiniums or imidazoliums. It is a ring aromatic cation.
  • Examples of anions contained in the ionic liquid are PF 6 ⁇ , BF 4 ⁇ , SbF 6 ⁇ , AsF 6 ⁇ , SO 3 CF 3 ⁇ , N(SO 2 CF 3 ) 2 ⁇ , N(SO 2 C 2 F 5 ) 2- , N( SO2CF3 ) ( SO2C4F9 ) - , or C ( SO2CF3 ) 3- .
  • the ionic liquid may contain a lithium salt.
  • At least one selected from the group consisting of the positive electrode 201, the electrolyte layer 202, and the negative electrode 203 may contain a binder for the purpose of improving adhesion between particles.
  • binders include polyvinylidene fluoride, polytetrafluoroethylene, polyethylene, polypropylene, aramid resin, polyamide, polyimide, polyamideimide, polyacrylonitrile, polyacrylic acid, polyacrylic acid methyl ester, polyacrylic acid ethyl ester, Polyacrylic acid hexyl ester, polymethacrylic acid, polymethacrylic acid methyl ester, polymethacrylic acid ethyl ester, polymethacrylic acid hexyl ester, polyvinyl acetate, polyvinylpyrrolidone, polyether, polyether sulfone, hexafluoropolypropylene, styrene-butadiene rubber , or carboxymethyl cellulose.
  • Copolymers can also be used as binders.
  • binders are tetrafluoroethylene, hexafluoroethylene, hexafluoropropylene, perfluoroalkyl vinyl ethers, vinylidene fluoride, chlorotrifluoroethylene, ethylene, propylene, pentafluoropropylene, fluoromethyl vinyl ether, acrylic acid , and hexadiene.
  • a mixture of two or more selected from these may be used as the binder.
  • At least one selected from the positive electrode 201 and the negative electrode 203 may contain a conductive aid in order to increase electronic conductivity.
  • Examples of conductive aids are (i) graphites such as natural or artificial graphite; (ii) carbon blacks such as acetylene black or ketjen black; (iii) conductive fibers such as carbon or metal fibers; (iv) carbon fluoride, (v) metal powders such as aluminum; (vi) conductive whiskers such as zinc oxide or potassium titanate; (vii) conductive metal oxides such as titanium oxide; or (viii) conductive polymeric compounds such as polyaniline, polypyrrole, or polythiophene. From the viewpoint of cost reduction, the above (i) or (ii) may be used.
  • Examples of the shape of the battery according to the second embodiment are coin-shaped, cylindrical, rectangular, sheet-shaped, button-shaped, flat-shaped, and laminated.
  • a material for forming a positive electrode, a material for forming an electrolyte layer, and a material for forming a negative electrode are prepared, and the positive electrode, the electrolyte layer, and the negative electrode are arranged in this order by a known method. It may also be manufactured by making laminated laminates.
  • Example 1 [Preparation of Solid Electrolyte Material]
  • a dry argon atmosphere having a dew point of ⁇ 60° C. or less and an oxygen concentration of 0.1% by volume or less
  • YCl 3 , ZrCl 4 and LiCl as raw material powders were converted to YCl 3 : ZrCl 4 :LiCl was prepared to have a molar ratio of about 1:1:5.
  • These raw powders were ground and mixed in a mortar.
  • the resulting mixture was calcined at 550° C. for 2 hours in a closed SUS container in a dry argon atmosphere, and then pulverized in a mortar.
  • the resulting reactants were placed in an atmosphere having a dew point of ⁇ 30° C. and an oxygen concentration of 20.9% by volume or less for about 10 minutes. Then, in a dry argon atmosphere, the powder was calcined at 400° C. for 1 hour in a sealed SUS container, and then pulverized in a mortar. Thus, a solid electrolyte material according to Example 1 was obtained.
  • composition analysis of solid electrolyte material The contents of Li and Y per unit weight of the solid electrolyte material according to Example 1 were measured by high frequency inductively coupled plasma atomic emission spectrometry using a high frequency inductively coupled plasma atomic emission spectrometer (iCAP7400 manufactured by Thermo Fisher Scientific). was done.
  • the Cl content of the solid electrolyte material according to Example 1 was measured by ion chromatography using an ion chromatograph (ICS-2000 manufactured by Dionex). Based on the contents of Li, Zr, Y, and Cl obtained from these measurement results, the molar ratio of Li:Zr:Y:Cl was calculated. As a result, the solid electrolyte material according to Example 1 had a Li:Zr:Y:Cl molar ratio of 4.96:0.94:1.0:11.16.
  • the mass of O with respect to the mass of the entire solid electrolyte material according to Example 1 was measured by a non-dispersive infrared absorption method using an oxygen/nitrogen/hydrogen analyzer (manufactured by Horiba, EMGA-930). As a result, the mass of O with respect to the mass of the entire solid electrolyte material according to Example 1 was 0.10%. Based on this, the molar ratio of O to Y was calculated. As a result, the molar ratio of O to Y in the solid electrolyte material according to Example 1 was 0.12.
  • the molar ratio of O to Y in the surface region of the solid electrolyte material according to Example 1 was measured by X-ray photoelectron spectroscopy using a scanning X-ray photoelectron spectrometer (PHI Quantera SXM manufactured by ULVAC-PHI). .
  • An Al beam was used as the X-ray source.
  • the molar ratio of O to Y in the surface region of the solid electrolyte material according to Example 1 was 4.64.
  • Surface area in this disclosure means the area measured in this way.
  • the surface region of the solid electrolyte material according to the first embodiment was about 5 nm inward from the surface of the solid electrolyte material.
  • a thermal analyzer (Q1000, manufactured by TA Instruments) was used to measure the melting point.
  • the solid electrolyte material (about 5 mg) according to Example 1 was weighed and heated from room temperature to 550° C. at a heating rate of 10 K/min. An endothermic peak was observed at that time.
  • a two-dimensional graph was created with temperature on the horizontal axis and calorific value on the vertical axis. A straight line connects two points on the graph where the solid electrolyte material neither generates heat nor absorbs heat, and this was used as a baseline.
  • FIG. 6 is a graph showing the results of thermal analysis of the solid electrolyte material according to Example 1.
  • the X-ray diffraction pattern of the solid electrolyte material according to Example 1 was measured using an X-ray diffractometer (MiniFlex 600, manufactured by RIGAKU) in a dry environment with a dew point of -45°C or lower. Cu-K ⁇ radiation (wavelength 1.5405 ⁇ and 1.5444 ⁇ ) was used as the X-ray source.
  • FIG. 1 is a graph showing an X-ray diffraction pattern of the solid electrolyte material according to Example 1.
  • FIG. 3 shows a schematic diagram of a pressure forming die 300 used to evaluate the ionic conductivity of solid electrolyte materials.
  • the pressure forming die 300 had a punch upper part 301 , a frame mold 302 and a punch lower part 303 .
  • the frame form 302 was made of insulating polycarbonate. Both the punch upper portion 301 and the punch lower portion 303 were made of electronically conductive stainless steel.
  • the ionic conductivity of the solid electrolyte material according to Example 1 was measured by the following method.
  • the solid electrolyte material powder 101 according to Example 1 was filled inside the pressure molding die 300 . Inside the pressing die 300 , a pressure of 300 MPa was applied to the solid electrolyte material powder 101 according to Example 1 using the upper part of the punch 301 .
  • the solid electrolyte material according to Example 1 was measured at room temperature using a potentiostat (Princeton Applied Research, VersaSTAT 4) via the upper punch 301 and the lower punch 303. was measured. Although not shown, a working electrode and a potential measuring terminal were connected to the punch upper portion 301 , and a counter electrode and a reference electrode were connected to the punch lower portion 303 .
  • FIG. 4 is a graph showing a Cole-Cole plot obtained by impedance measurement of the solid electrolyte material according to Example 1.
  • the real value of the impedance at the measurement point where the absolute value of the phase of the complex impedance was the smallest was regarded as the resistance value of the solid electrolyte material according to Example 1 against ion conduction. See the arrow R SE shown in FIG. 4 for the real value.
  • S is the contact area of the solid electrolyte material with the punch upper part 301 (equal to the cross-sectional area of the hollow part of the frame mold 302 in FIG. 3).
  • R SE is the resistance value of the solid electrolyte material in impedance measurement.
  • t is the thickness of the solid electrolyte material to which pressure is applied (equal to the thickness of the layer formed from the solid electrolyte material powder 101 in FIG. 3).
  • the solid electrolyte material according to Example 1 100 mg
  • the above mixture (10.0 mg)
  • aluminum powder (14.7 mg) are stacked in order, Got a body.
  • a pressure of 300 MPa was applied to the laminate to form a positive electrode and a solid electrolyte layer.
  • the solid electrolyte layer had a thickness of 500 ⁇ m.
  • Example 1 The battery according to Example 1 was placed in a constant temperature bath at 25°C. A cell according to Example 1 was charged at a current density of 85 ⁇ A/cm 2 until a voltage of 3.7 V was reached. This current density corresponds to a 0.05C rate. The cell according to Example 1 was then discharged, also at a current density of 85 ⁇ A/cm 2 , until a voltage of 1.9 V was reached.
  • the battery according to Example 1 had an initial discharge capacity of 559 ⁇ Ah.
  • FIG. 5 is a graph showing the initial discharge characteristics of the battery according to Example 1.
  • Example 2 As in Example 1, except that the time the reactants were placed in an atmosphere having a dew point of ⁇ 30° C. and an oxygen concentration of 20.9% by volume or less was 45 minutes instead of about 10 minutes. , a solid electrolyte material according to Example 2 was obtained.
  • Example 2 In the same manner as in Example 1, the element ratio (molar ratio), melting point, X-ray diffraction, and ionic conductivity of the solid electrolyte material according to Example 2 were measured. The measurement results are shown in Tables 1 and 2. 2 is a graph showing an X-ray diffraction pattern of the solid electrolyte material according to Example 2. FIG. 6 is a graph showing the results of thermal analysis of the solid electrolyte material according to Example 2. FIG.
  • the mass of O with respect to the mass of the entire solid electrolyte material according to Example 2 was 0.44%.
  • a battery according to Example 2 was obtained in the same manner as in Example 1 using the solid electrolyte material according to Example 2.
  • a charge/discharge test was performed in the same manner as in Example 1 using the battery of Example 2.
  • the battery according to Example 2 like the battery according to Example 1, charged and discharged well.
  • ⁇ Reference example 2> As in Example 1, except that the time the reactants were placed in an atmosphere with a dew point of ⁇ 30° C. and an oxygen concentration of 20.9% by volume or less was 540 minutes instead of about 10 minutes. , a solid electrolyte material according to Reference Example 2 was obtained.
  • Example 2 In the same manner as in Example 1, the element ratio (molar ratio), melting point, X-ray diffraction, and ionic conductivity of the solid electrolyte materials according to Reference Examples 1 and 2 were measured. The measurement results are shown in Tables 1 and 2. 2 is a graph showing X-ray diffraction patterns of solid electrolyte materials according to Reference Examples 1 and 2. FIG. 6 is a graph showing the results of thermal analysis of solid electrolyte materials according to Reference Examples 1 and 2. FIG. The melting point of the solid electrolyte material according to Reference Example 2 could not be measured.
  • the mass of O with respect to the mass of the entire solid electrolyte material according to Reference Examples 1 and 2 was 0.02% and 8.93%, respectively.
  • a battery according to Reference Example 2 was obtained in the same manner as in Example 1 using the solid electrolyte material according to Reference Example 2.
  • FIG. 5 is a graph showing the initial discharge characteristics of the battery according to Reference Example 2.
  • the solid electrolyte materials according to Examples 1 and 2 have a high ion conductivity of 3 ⁇ 10 ⁇ 4 S/cm or more near room temperature.
  • the solid electrolyte materials according to Examples 1 and 2 have higher melting points than the solid electrolyte material according to Reference Example 1. That is, the solid electrolyte materials according to Examples 1 and 2 have higher heat resistance than the solid electrolyte material according to Reference Example 1.
  • the higher the molar ratio of O to Y the higher the melting point.
  • the molar ratio of O to Y increases, the ionic conductivity of the solid electrolyte material significantly decreases.
  • the molar ratio of O to Y in the surface region of the solid electrolyte material is at least 10 times greater than the molar ratio of O to Y in the solid electrolyte material as a whole.
  • the batteries according to Examples 1 and 2 were charged and discharged at 25°C.
  • the solid electrolyte material according to the present disclosure has practical lithium ion conductivity and is suitable for providing batteries that can be charged and discharged satisfactorily.
  • the solid electrolyte material of the present disclosure is used, for example, in all-solid lithium ion secondary batteries.
  • REFERENCE SIGNS LIST 100 solid electrolyte particles 101 solid electrolyte material powder 201 positive electrode 202 electrolyte layer 203 negative electrode 204 positive electrode active material particles 205 negative electrode active material particles 300 pressure molding die 301 frame mold 302 lower punch 303 upper punch 1000 battery

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Conductive Materials (AREA)
  • Secondary Cells (AREA)

Abstract

本開示の固体電解質材料は、Li、Zr、Y、Cl、およびOを含み、前記固体電解質材料の全体におけるYに対するOのモル比は、0超かつ0.80以下であり、前記固体電解質材料の表面領域におけるYに対するOのモル比は、前記固体電解質材料の全体におけるYに対するOのモル比よりも大きい。本開示の電池1000は、正極201と、負極203と、正極201および負極203の間に設けられた電解質層202と、を備える。正極201、負極203、および電解質層202からなる群より選択される少なくとも1つは、本開示の固体電解質材料を含有する。

Description

固体電解質材料およびこれを用いた電池
 本開示は、固体電解質材料およびこれを用いた電池に関する。
 特許文献1は、硫化物固体電解質が用いられた全固体電池を開示している。特許文献2は、Li6-3zz6(0<z<2が充足され、かつ、Xは、ClまたはBrである)により表される固体電解質材料を開示している。
特開2011-129312号公報 国際公開第2018/025582号
 本開示の目的は、有用性が高い新たな固体電解質材料を提供することにある。
 本開示の固体電解質材料は、Li、Zr、Y、Cl、およびOを含み、前記固体電解質材料の全体におけるYに対するOのモル比は、0超かつ0.80以下であり、前記固体電解質材料の表面領域におけるYに対するOのモル比は、前記固体電解質材料の全体におけるYに対するOのモル比よりも大きい。
 本開示は、有用性が高い新たな固体電解質材料を提供する。
図1は、第2実施形態による電池1000の概略構成を示す断面図である。 図2は、実施例1から2および参考例1から2による固体電解質材料のX線回折パターンを示すグラフである。 図3は、固体電解質材料のイオン伝導度を評価するために用いられる加圧成形ダイス300の模式図を示す。 図4は、実施例1による固体電解質材料のインピーダンス測定により得られたCole-Coleプロットを示すグラフである。 図5は、実施例1および参考例2による電池の初期放電特性を示すグラフである。 図6は、実施例1から2および参考例1から2による固体電解質材料の熱分析の結果を示すグラフである。
 以下、本開示の実施形態について、図面を参照しながら説明する。
 (第1実施形態)
 第1実施形態による固体電解質材料は、Li、Zr、Y、Cl、およびOを含み、固体電解質材料の全体におけるYに対するOのモル比は、0超かつ0.80以下であり、固体電解質材料の表面領域におけるYに対するOのモル比は、固体電解質材料の全体におけるYに対するOのモル比よりも大きい。
 ここで、第1実施形態による固体電解質材料の表面領域とは、固体電解質材料の表面から内部方向へ深さ約5nmまでの領域を意味する。
 第1実施形態による固体電解質材料は、有用性が高い新たな固体電解質材料である。第1実施形態による固体電解質材料は、例えば実用的なリチウムイオン伝導度および耐熱性を有することができ、例えば高いリチウムイオン伝導度および高い耐熱性を有する。ここで、高いリチウムイオン伝導度とは、例えば、3×10-4S/cm以上である。すなわち、第1実施形態による固体電解質材料は、例えば、3×10-4S/cm以上のイオン伝導度を有し得る。「第1実施形態による固体電解質材料が高い耐熱性を有する」とは、第1実施形態による固体電解質材料が例えば高い融点を有することを意味する。ここで、高い融点とは、例えば478℃以上である。固体電解質材料が多相材料である場合、固体電解質材料の融点とは、当該固体電解質材料が有する融点のうち、最も高い温度を意味する。
 第1実施形態による固体電解質材料は、充放電特性に優れた全固体電池を得るために用いられ得る。全固体電池は、一次電池でもよく、あるいは二次電池でもよい。
 第1実施形態による固体電解質材料には、実質的に硫黄が含まれないことが望ましい。第1実施形態による固体電解質材料に実質的に硫黄が含まれないとは、当該固体電解質材料が、不純物として不可避に混入した硫黄を除き、構成元素として硫黄を含まないことを意味する。この場合、固体電解質材料に不純物として混入される硫黄は、例えば1モル%以下である。安全性の観点から、第1実施形態による固体電解質材料には、硫黄が含まれないことが望ましい。硫黄を含有しない固体電解質材料は、大気に曝露されても、硫化水素は発生しないので、安全性に優れる。特許文献1に開示された硫化物固体電解質は、大気中に曝露されると、硫化水素が発生し得る。
 第1実施形態による固体電解質材料は、実質的に、Li、Zr、Y、Cl、およびOからなっていてもよい。「第1実施形態による固体電解質材料が、実質的に、Li、Zr、Y、Cl、およびOからなる」とは、第1実施形態による固体電解質材料において、固体電解質材料を構成する全元素の物質量の合計に対する、Li、Zr、Y、Cl、およびOの物質量の合計の比(すなわち、モル分率)が、90%以上であることを意味する。一例として、当該比は95%以上であってもよい。第1実施形態による固体電解質材料は、Li、Zr、Y、Cl、およびOのみからなっていてもよい。
 固体電解質材料のイオン伝導度を高めるために、第1実施形態による固体電解質材料の全体におけるYに対するOのモル比は、0超かつ0.60以下であってもよい。
 固体電解質材料のイオン伝導度を高めるために、第1実施形態による固体電解質材料の全体におけるYに対するOのモル比は、0超かつ0.40以下であってもよい。
 固体電解質材料のイオン伝導度を高めるために、第1実施形態による固体電解質材料の全体におけるYに対するOのモル比は、0超かつ0.30以下であってもよい。
 固体電解質材料のイオン伝導度を高めるために、第1実施形態による固体電解質材料の全体におけるYに対するOのモル比は、0超かつ0.28以下であってもよく、0.12以上かつ0.28以下であってもよい。
 固体電解質材料のイオン伝導度を高めるために、第1実施形態による固体電解質材料は、Mg、Ca、Zn、Sr、Ba、Al、Sc、Ga、Bi、La、Sm、Hf、Ta、およびNbからなる群より選択される少なくとも1つをさらに含んでいてもよい。
 第1実施形態による固体電解質材料のX線回折パターンは、Cu-Kαを用いて取得され得る。得られたX線回折パターンにおいて、15.5°以上かつ15.7°以下、16.6°以上かつ16.8°以下、17.4°以上かつ17.6°以下、20.1°以上かつ20.3°以下、22.2°以上かつ22.4°以下、31.4°以上かつ31.6°以下、および48.9°以上かつ49.1°以下である回折角2θの範囲のそれぞれに回折ピークが存在していてもよい。このような固体電解質材料は、高いリチウムイオン伝導度を有する。
 X線回折パターンにおける回折ピークは、単に「ピーク」とも呼ばれる。
 第1実施形態による固体電解質材料のX線回折パターンは、Cu-Kα線(波長1.5405Åおよび1.5444Å、すなわち、波長0.15405nmおよび0.15444nm)を用いて、θ-2θ法によるX線回折測定によって取得され得る。
 ピークの角度とは、SN比の値が3以上で、かつ半値幅が10°以下である山状の部分の最大強度を示す角度である。半値幅とは、ピークの最大強度をIMAXとしたとき、強度がIMAXの半分の値となる2つの回折角の差で表される幅である。SN比は、バックグラウンドノイズNに対する信号Sの比である。
 Cu-Kαを用いたX線回折測定によって得られた第1実施形態による固体電解質材料X線回折パターンにおいて、47.0°以上かつ47.2°以下である回折角2θの範囲にさらに回折ピークが存在していてもよい。
 固体電解質材料のイオン伝導度を高めるために、固体電解質材料の表面領域におけるYに対するOのモル比は、固体電解質材料の全体におけるYに対するOのモル比よりも10倍以上大きくてもよい。
 固体電解質材料のイオン伝導度を高めるために、Yに対するZrのモル比は、0.8以上かつ1.1以下であってもよい。
 固体電解質材料のイオン伝導度を高めるために、Yに対するLiのモル比は、4.4以上かつ5.5以下であってもよい。
 固体電解質材料のイオン伝導度を高めるために、Yに対するClのモル比は、8.6以上かつ12.3以下であってもよい。
 固体電解質材料のイオン伝導度を高めるために、Yに対するLiのモル比は、4.4以上かつ5.5以下であり、Yに対するZrのモル比は、0.8以上かつ1.1以下であり、かつ、Yに対するClのモル比は、8.6以上かつ12.3以下であってもよい。
 Yに対するLiのモル比は、数式:(Liの物質量)/(Yの物質量)によって算出される。Yに対するZrのモル比は、数式:(Zrの物質量)/(Yの物質量)によって算出される。Yに対するClのモル比は、数式:(Clの物質量)/(Yの物質量)によって算出される。以下、Yに対するLiのモル比が、「モル比x」と表記されることがある。Yに対するZrのモル比が、「モル比y」と表記されることがある。Yに対するClのモル比が、「モル比z」と表記されることがある。
 固体電解質材料のイオン伝導度をさらに高めるために、モル比xは、4.96以上かつ4.99以下であり、モル比yは、0.90以上かつ0.94以下であり、かつ、モル比zは、9.52以上かつ11.16以下であってもよい。
 第1実施形態による固体電解質材料の形状は、限定されない。当該形状の例は、針状、球状、または楕円球状である。第1実施形態による固体電解質材料は、粒子であってもよい。第1実施形態による固体電解質材料は、ペレットまたは板の形状を有するように形成されてもよい。
 例えば、第1実施形態による固体電解質材料の形状が粒子状(例えば、球状)である場合、第1実施形態による固体電解質材料は、0.1μm以上かつ100μm以下のメジアン径を有していてもよい。これにより、第1実施形態による固体電解質材料および他の材料、例えば活物質が良好に分散し得る。粒子のメジアン径は、体積基準の粒度分布における体積累積50%に相当する粒径(d50)を意味する。体積基準の粒度分布は、レーザー回折測定装置または画像解析装置により測定され得る。
 第1実施形態による固体電解質材料のイオン伝導性を高め、かつ、第1実施形態による固体電解質材料および活物質を良好に分散させるために、メジアン径は0.5μm以上かつ10μm以下であってもよい。
 第1実施形態による固体電解質材料および活物質をさらに良好に分散させるために、第1実施形態による固体電解質材料は、活物質よりも小さいメジアン径を有していてもよい。
 <固体電解質材料の製造方法>
 第1実施形態による固体電解質材料は、下記の方法により製造され得る。
 まず、目的の組成を有するように、ハロゲン化物の原料粉が用意され、混合される。
 一例として、Li、Zr、Y、Cl、およびOからなる固体電解質材料を合成する場合、YCl3原料粉、LiCl原料粉、およびZrCl4原料粉が混合される。得られた混合粉は、酸素濃度および水分濃度が調整された不活性ガス雰囲気(例えば、-60℃以下の露点を有するアルゴン雰囲気)中で焼成される。焼成温度は、たとえば200℃以上かつ650℃以下の範囲内であってもよい。
 得られた反応物は、比較的高い露点を有する雰囲気(例えば、-30℃の露点を有するアルゴン雰囲気)中で静置された後、融点以下の温度(例えば、400℃)で焼成される。
 合成プロセスにおいて生じ得る組成変化を相殺するように、あらかじめ調整されたモル比で原料粉は混合されてもよい。原料粉、雰囲気中の酸素濃度、雰囲気中の水分濃度、および反応時間の選択により、固体電解質材料中の酸素量が決定される。このようにして、所望の固体電解質材料が得られる。
 第1実施形態による固体電解質材料に含まれる酸素は、上記の比較的高い露点を有する雰囲気から取り込まれると考えられる。
 固体電解質材料の組成は、例えば、誘導結合プラズマ発光分光分析法、イオンクロマトグラフィー法、または非分散型赤外線吸収法により決定することができる。例えば、Li、Zr、およびYの組成は誘導結合プラズマ発光分光分析法により決定され、Clの組成はイオンクロマトグラフィー法により決定され、Oは非分散型赤外線吸収法により測定され得る。
 (第2実施形態)
 以下、第2実施形態が説明される。第1実施形態において説明された事項は、適宜、省略され得る。
 第2実施形態では、第1実施形態による固体電解質材料を用いた電池が説明される。
 第2実施形態による電池は、正極、負極、および電解質層を備える。電解質層は、正極および負極の間に設けられている。正極、電解質層、および負極からなる群より選択される少なくとも1つは、第1実施形態による固体電解質材料を含有する。
 第2実施形態による電池は、第1実施形態による固体電解質材料を含有するため、優れた充放電特性を有する。
 図1は、第2実施形態による電池1000の概略構成を示す断面図である。
 電池1000は、正極201、電解質層202、および負極203を備える。電解質層202は、正極201および負極203の間に配置されている。
 正極201は、正極活物質粒子204および固体電解質粒子100を含有する。
 電解質層202は、電解質材料を含有する。電解質材料は、例えば、固体電解質材料である。
 負極203は、負極活物質粒子205および固体電解質粒子100を含有する。
 固体電解質粒子100は、第1実施形態による固体電解質材料を含む粒子である。固体電解質粒子100は、第1実施形態による固体電解質材料からなる粒子、または、第1実施形態による固体電解質材料を主たる成分として含有する粒子であってもよい。ここで、第1実施形態による固体電解質材料を主たる成分として含有する粒子とは、モル比で最も多く含まれる成分が第1実施形態による固体電解質材料である粒子を意味する。
 正極201は、金属イオン(例えば、リチウムイオン)を吸蔵および放出可能な材料を含有する。正極201は、例えば、正極活物質(例えば、正極活物質粒子204)を含有する。
 正極活物質の例は、リチウム含有遷移金属酸化物、遷移金属フッ化物、ポリアニオン材料、フッ素化ポリアニオン材料、遷移金属硫化物、遷移金属オキシフッ化物、遷移金属オキシ硫化物、または遷移金属オキシ窒化物である。リチウム含有遷移金属酸化物の例は、LiNi1-d-fCodAlf2(ここで、0<d、0<f、かつ0<(d+f)<1)またはLiCoO2である。
 正極201において、正極活物質粒子204および固体電解質粒子100を良好に分散させるために、正極活物質粒子204は、0.1μm以上のメジアン径を有していてもよい。当該良好な分散により、電池1000の充放電特性が向上する。正極活物質粒子204内でリチウムを速やかに拡散させるために、正極活物質粒子204は、100μm以下のメジアン径を有していてもよい。リチウムの速やかな拡散のため、電池1000は、高い出力で動作できる。上記の通り、正極活物質粒子204は、0.1μm以上かつ100μm以下のメジアン径を有していてもよい。
 正極201において、正極活物質粒子204および固体電解質粒子100を良好に分散させるために、正極活物質粒子204は、固体電解質粒子100よりも大きいメジアン径を有していてもよい。
 電池1000のエネルギー密度および出力を高めるために、正極201において、正極活物質粒子204および固体電解質粒子100の体積の合計に対する正極活物質粒子204の体積の比は、0.30以上かつ0.95以下あってもよい。
 電池1000のエネルギー密度および出力を高めるために、正極201は、10μm以上かつ500μm以下の厚みを有していてもよい。
 電解質層202は、電解質材料を含有する。当該電解質材料は、第1実施形態による固体電解質材料であってもよい。電解質層202は、固体電解質層であってもよい。
 電解質層202は、第1実施形態による固体電解質材料のみから構成されていてもよい。もしくは、第1実施形態による固体電解質材料とは異なる固体電解質材料のみから構成されていてもよい。
 第1実施形態による固体電解質材料とは異なる固体電解質材料の例は、Li2MgX’4、Li2FeX’4、Li(Al,Ga,In)X’4、Li3(Al,Ga,In)X’6、またはLiIである。ここで、X’は、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。
 本開示において、化学式中の表記「(A,B,C)」は、「A、B、およびCからなる群より選択される少なくとも1つ」を意味する。例えば、「(Al,Ga,In)」は、「Al、Ga、およびInからなる群より選択される少なくとも1つ」と同義である。
 以下、第1実施形態による固体電解質材料は、第1固体電解質材料と呼ばれる。第1実施形態による固体電解質材料とは異なる固体電解質材料は、第2固体電解質材料と呼ばれる。
 電解質層202は、第1固体電解質材料だけでなく、第2固体電解質材料も含有していてもよい。第1固体電解質材料および第2固体電解質材料は、均一に分散していてもよい。第1固体電解質材料からなる層および第2固体電解質材料からなる層が、電池1000の積層方向に沿って積層されていてもよい。
 正極201および負極203の間の短絡を抑制し、かつ、電池の出力を高めるために、電解質層202は、1μm以上かつ100μm以下の厚みを有していてもよい。
 負極203は、金属イオン(例えば、リチウムイオン)を吸蔵および放出可能な材料を含有する。負極203は、例えば、負極活物質(例えば、負極活物質粒子205)を含有する。
 負極活物質の例は、金属材料、炭素材料、酸化物、窒化物、錫化合物、または珪素化合物である。金属材料は、単体の金属であってもよく、合金であってもよい。金属材料の例は、リチウム金属またはリチウム合金である。炭素材料の例は、天然黒鉛、コークス、黒鉛化途上炭素、炭素繊維、球状炭素、人造黒鉛、または非晶質炭素である。容量密度の観点から、負極活物質の好適な例は、珪素(すなわち、Si)、錫(すなわち、Sn)、珪素化合物、または錫化合物である。
 負極203において、負極活物質粒子205および固体電解質粒子100を良好に分散させるために、負極活物質粒子205は、0.1μm以上のメジアン径を有していてもよい。当該良好な分散により、電池の充放電特性が向上する。負極活物質粒子205内でリチウムを速やかに拡散させるために、負極活物質粒子205は、100μm以下のメジアン径を有していてもよい。リチウムの速やかな拡散のため、電池は高い出力で動作できる。上記の通り、負極活物質粒子205は、0.1μm以上かつ100μm以下のメジアン径を有していてもよい。
 負極203において、負極活物質粒子205および固体電解質粒子100を良好に分散させるために、負極活物質粒子205は、固体電解質粒子100よりも大きいメジアン径を有していてもよい。
 電池1000のエネルギー密度および出力を高めるために、負極203において、負極活物質粒子205および固体電解質粒子100の体積の合計に対する負極活物質粒子205の体積の比は、0.30以上かつ0.95以下であってもよい。
 電池1000のエネルギー密度および出力を高めるために、負極203は、10μm以上かつ500μm以下の厚みを有していてもよい。
 イオン伝導性、化学的安定性、および電気化学的安定性を高めるために、正極201、電解質層202、および負極203からなる群より選択される少なくとも1つは、第2固体電解質材料を含有していてもよい。
 第2固体電解質材料は、ハロゲン化物固体電解質であってもよい。
 ハロゲン化物固体電解質の例は、Li2MgX’4、Li2FeX’4、Li(Al,Ga,In)X’4、Li3(Al,Ga,In)X’6、またはLiIである。ここで、X’は、F、Cl、Br、およびIからなる群より選択される少なくとも1つである。
 第2固体電解質材料は、硫化物固体電解質であってもよい。
 硫化物固体電解質の例は、Li2S-P25、Li2S-SiS2、Li2S-B23、Li2S-GeS2、Li3.25Ge0.250.754、またはLi10GeP212である。
 第2固体電解質材料は、酸化物固体電解質であってもよい。
 酸化物固体電解質の例は、
(i)LiTi2(PO43またはその元素置換体のようなNASICON型固体電解質、
(ii)(LaLi)TiO3のようなペロブスカイト型固体電解質、
(iii)Li14ZnGe416、Li4SiO4、LiGeO4、またはその元素置換体のようなLISICON型固体電解質、
(iv)Li7La3Zr212またはその元素置換体のようなガーネット型固体電解質、
または
(v)Li3PO4またはそのN置換体
である。
 第2固体電解質材料は、有機ポリマー固体電解質であってもよい。
 有機ポリマー固体電解質の例は、高分子化合物およびリチウム塩の化合物である。高分子化合物はエチレンオキシド構造を有していてもよい。エチレンオキシド構造を有する高分子化合物は、リチウム塩を多く含有することができるため、イオン導電率をより高めることができる。
 リチウム塩の例は、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、またはLiC(SO2CF33である。これらから選択される1種のリチウム塩が、単独で使用されてもよい。あるいは、これらから選択される2種以上のリチウム塩の混合物が使用されてもよい。
 正極201、電解質層202、および負極203からなる群より選択される少なくとも1つは、リチウムイオンの授受を容易にし、電池1000の出力特性を向上する目的で、非水電解液、ゲル電解質、またはイオン液体を含んでいてもよい。
 非水電解液は、非水溶媒および当該非水溶媒に溶けたリチウム塩を含有する。
 非水溶媒の例は、環状炭酸エステル溶媒、鎖状炭酸エステル溶媒、環状エーテル溶媒、鎖状エーテル溶媒、環状エステル溶媒、鎖状エステル溶媒、またはフッ素溶媒である。環状炭酸エステル溶媒の例は、エチレンカーボネート、プロピレンカーボネート、またはブチレンカーボネートである。鎖状炭酸エステル溶媒の例は、ジメチルカーボネート、エチルメチルカーボネート、またはジエチルカーボネーである。環状エーテル溶媒の例は、テトラヒドロフラン、1,4-ジオキサン、または1,3-ジオキソランである。鎖状エーテル溶媒の例は、1,2-ジメトキシエタンまたは1,2-ジエトキシエタンである。環状エステル溶媒の例は、γ-ブチロラクトンである。鎖状エステル溶媒の例は、酢酸メチルである。フッ素溶媒の例は、フルオロエチレンカーボネート、フルオロプロピオン酸メチル、フルオロベンゼン、フルオロエチルメチルカーボネート、またはフルオロジメチレンカーボネートである。
 これらから選択される1種の非水溶媒が、単独で使用されてもよい。あるいは、これらから選択される2種以上の非水溶媒の混合物が使用されてもよい。
 リチウム塩の例は、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF32、LiN(SO2252、LiN(SO2CF3)(SO249)、またはLiC(SO2CF33である。これらから選択される1種のリチウム塩が、単独で使用されてもよい。あるいは、これらから選択される2種以上のリチウム塩の混合物が使用されてもよい。
 リチウム塩の濃度は、例えば、0.5mol/リットル以上かつ2mol/リットル以下の範囲にある。
 ゲル電解質として、非水電解液を含浸させたポリマー材料が使用され得る。ポリマー材料の例は、ポリエチレンオキシド、ポリアクリルニトリル、ポリフッ化ビニリデン、ポリメチルメタクリレート、またはエチレンオキシド結合を有するポリマーである。
 イオン液体に含まれるカチオンの例は、
(i)テトラアルキルアンモニウムまたはテトラアルキルホスホニウムのような脂肪族鎖状4級塩類、
(ii)ピロリジニウム類、モルホリニウム類、イミダゾリニウム類、テトラヒドロピリミジニウム類、ピペラジニウム類、またはピペリジニウム類のような脂肪族環状アンモニウム、または
(iii)ピリジニウム類またはイミダゾリウム類のような含窒ヘテロ環芳香族カチオンである。
 イオン液体に含まれるアニオンの例は、PF6 -、BF4 -、SbF6 -、AsF6 -、SO3CF3 -、N(SO2CF32 -、N(SO2252 -、N(SO2CF3)(SO249-、またはC(SO2CF33 -である。
 イオン液体はリチウム塩を含有してもよい。
 正極201、電解質層202、および負極203からなる群より選択される少なくとも1つには、粒子同士の密着性を向上する目的で、結着剤を含有していてもよい。
 結着剤の例は、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、アラミド樹脂、ポリアミド、ポリイミド、ポリアミドイミド、ポリアクリルニトリル、ポリアクリル酸、ポリアクリル酸メチルエステル、ポリアクリル酸エチルエステル、ポリアクリル酸ヘキシルエステル、ポリメタクリル酸、ポリメタクリル酸メチルエステル、ポリメタクリル酸エチルエステル、ポリメタクリル酸ヘキシルエステル、ポリ酢酸ビニル、ポリビニルピロリドン、ポリエーテル、ポリエーテルサルフォン、ヘキサフルオロポリプロピレン、スチレンブタジエンゴム、またはカルボキシメチルセルロースである。共重合体もまた、結着剤として用いられ得る。このような結着剤の例は、テトラフルオロエチレン、ヘキサフルオロエチレン、ヘキサフルオロプロピレン、パーフルオロアルキルビニルエーテル、フッ化ビニリデン、クロロトリフルオロエチレン、エチレン、プロピレン、ペンタフルオロプロピレン、フルオロメチルビニルエーテル、アクリル酸、およびヘキサジエンからなる群より選択された2種以上の材料の共重合体である。これらのうちから選択された2種以上の混合物を結着剤として使用してもよい。
 正極201および負極203から選択される少なくとも1つは、電子導電性を高めるために、導電助剤を含有していてもよい。
 導電助剤の例は、
(i)天然黒鉛または人造黒鉛のようなグラファイト類、
(ii)アセチレンブラックまたはケッチェンブラックのようなカーボンブラック類、
(iii)炭素繊維または金属繊維のような導電性繊維類、
(iv)フッ化カーボン、
(v)アルミニウムのような金属粉末類、
(vi)酸化亜鉛またはチタン酸カリウムのような導電性ウィスカー類、
(vii)酸化チタンのような導電性金属酸化物、または
(viii)ポリアニリン、ポリピロール、またはポリチオフェンのような導電性高分子化合物
である。低コスト化の観点から、上記の(i)または(ii)が使用されてもよい。
 第2実施形態による電池の形状の例は、コイン型、円筒型、角型、シート型、ボタン型、扁平型、または積層型である。
 第2実施形態による電池は、例えば、正極形成用の材料、電解質層形成用の材料、および負極形成用の材料を準備し、公知の方法で、正極、電解質層、および負極がこの順で配置された積層体を作製することによって製造してもよい。
 以下、実施例および参考例を参照しながら、本開示がより詳細に説明される。
 <実施例1>
 [固体電解質材料の作製]
 -60℃以下の露点および0.1体積%以下の酸素濃度を有するアルゴン雰囲気(以下、「乾燥アルゴン雰囲気」という。)中で、原料粉としてYCl3、ZrCl4、およびLiClが、YCl3:ZrCl4:LiCl=1:1:5程度のモル比となるように用意された。これらの原料粉が、乳鉢中で粉砕され、混合された。得られた混合物は、乾燥アルゴン雰囲気中で、SUS製密閉容器の中で、550℃で2時間焼成された後、乳鉢中で粉砕された。得られた反応物は、-30℃の露点および20.9体積%以下の酸素濃度を有する雰囲気中で、約10分間静置された。次いで、乾燥アルゴン雰囲気中で、SUS製密閉容器の中で、400℃で1時間焼成された後、乳鉢中で粉砕された。このようにして、実施例1による固体電解質材料が得られた。
 [固体電解質材料の組成分析]
 実施例1による固体電解質材料の単位重量あたりのLiおよびYの含有量は、高周波誘導結合プラズマ発光分光分析装置(Thermo Fisher Scientific製、iCAP7400)を用いて、高周波誘導結合プラズマ発光分光分析法により測定された。実施例1による固体電解質材料のClの含有量は、イオンクロマトグラフ装置(Dionex製、ICS-2000)を用いて、イオンクロマトグラフィー法により測定された。これらの測定結果から得られたLi、Zr、Y、およびClの含有量をもとに、Li:Zr:Y:Clのモル比が算出された。その結果、実施例1による固体電解質材料は、4.96:0.94:1.0:11.16のLi:Zr:Y:Clのモル比を有していた。
 実施例1による固体電解質材料全体の質量に対するOの質量が、酸素・窒素・水素分析装置(堀場製作所製、EMGA-930)を用いて、非分散型赤外線吸収法により測定された。その結果、実施例1による固体電解質材料全体の質量に対するOの質量は0.10%であった。これをもとに、Yに対するOのモル比が算出された。その結果、実施例1による固体電解質材料のYに対するOのモル比は、0.12であった。
 実施例1による固体電解質材料の表面領域におけるYに対するOのモル比は、走査型X線光電子分光分析装置(アルバック・ファイ製、PHI Quantera SXM)を用いて、X線光電子分光法により測定された。X線源は、Al線が使用された。その結果、実施例1による固体電解質材料の表面領域におけるYに対するOのモル比は、4.64であった。本開示における表面領域は、このようにして測定された領域を意味する。第1実施形態による固体電解質材料の表面領域は、当該固体電解質材料の表面から内部方向へ5nm程度であった。
 組成分析において、Yに対して0.01%未満のモル分率である元素は、不純物として見なされた。
 [融点の測定]
 融点の測定には、熱分析装置(T.A.インスツルメント製、Q1000)が用いられた。窒素雰囲気中で、実施例1による固体電解質材料(約5mg)を測り取り、10K/minの昇温速度で常温から550℃まで加熱した。そのときの吸熱ピークが観測された。得られたデータをもとに、横軸を温度、縦軸を発熱量として二次元グラフが作成された。固体電解質材料が発熱も吸熱もしていないグラフ上の2点を直線で結び、これをベースラインとした。次いで、吸熱ピークの変曲点における接線とベースラインの交点を融点とした。その結果、実施例1による固体電解質材料の融点は、480.4℃であった。図6は、実施例1による固体電解質材料の熱分析の結果を示すグラフである。
 [X線回折]
 -45℃以下の露点を有するドライ環境で、X線回折装置(RIGAKU社、MiniFlex600)を用いて、実施例1による固体電解質材料のX線回折パターンが測定された。X線源として、Cu-Kα線(波長1.5405Åおよび1.5444Å)が使用された。
 X線回折測定の結果、実施例1による固体電解質材料のX線回折パターンにおいて、15.62°、16.69°、17.52°、20.21°、22.30°31.50°、35.74°、47.05°、および49.05°にピークが存在していた。図2は、実施例1による固体電解質材料のX線回折パターンを示すグラフである。
 [イオン伝導度の評価]
 図3は、固体電解質材料のイオン伝導度を評価するために用いられる加圧成形ダイス300の模式図を示す。
 加圧成形ダイス300は、パンチ上部301、枠型302、およびパンチ下部303を具備していた。枠型302は、絶縁性ポリカーボネートから形成されていた。パンチ上部301およびパンチ下部303は、いずれも電子伝導性のステンレスから形成されていた。
 図3に示される加圧成形ダイス300を用いて、下記の方法により、実施例1による固体電解質材料のイオン伝導度が測定された。
 乾燥アルゴン雰囲気中で、実施例1による固体電解質材料の粉末101が加圧成形ダイス300の内部に充填された。加圧成形ダイス300の内部で、実施例1による固体電解質材料の粉末101に、パンチ上部301を用いて300MPaの圧力が印加された。
 圧力が印加されたまま、パンチ上部301およびパンチ下部303を介して、ポテンショスタット(Princeton Applied Research社、VersaSTAT4)を用いて、電気化学的インピーダンス測定法により、室温において、実施例1による固体電解質材料のインピーダンスが測定された。図示されていないが、作用極および電位測定用端子がパンチ上部301に接続され、対極および参照極がパンチ下部303に接続された。
 図4は、実施例1による固体電解質材料のインピーダンス測定により得られたCole-Coleプロットを示すグラフである。
 図4において、複素インピーダンスの位相の絶対値が最も小さい測定点でのインピーダンスの実数値が、実施例1による固体電解質材料のイオン伝導に対する抵抗値と見なされた。当該実数値については、図4において示される矢印RSEを参照せよ。当該抵抗値を用いて、以下の数式(1)に基づいて、イオン伝導度が算出された。
 σ=(RSE×S/t)-1 ・・・(1)
 ここで、σは、イオン伝導度である。Sは、固体電解質材料のパンチ上部301との接触面積(図3において、枠型302の中空部の断面積に等しい)である。RSEは、インピーダンス測定における固体電解質材料の抵抗値である。tは、圧力が印加された固体電解質材料の厚み(図3において、固体電解質材料の粉末101から形成される層の厚みに等しい)である。
 25℃で測定された、実施例1による固体電解質材料のイオン伝導度は、1.1×10-3S/cmであった。
 [電池の作製]
 乾燥アルゴン雰囲気中で、実施例1による固体電解質材料および活物質であるLiCoO2が、70:30の体積比率となるように用意された。これらの材料がメノウ乳鉢中で混合された。このようにして、混合物が得られた。
 9.5mmの内径を有する絶縁性の筒の中で、実施例1による固体電解質材料(100mg)、上述の混合物(10.0mg)、およびアルミニウム粉末(14.7mg)が、順に積層され、積層体が得られた。積層体に300MPaの圧力が印加され、正極および固体電解質層が形成された。固体電解質層は、500μmの厚みを有していた。
 次に、固体電解質層に、金属In箔が積層された。固体電解質層は、金属In箔および正極の間に挟まれていた。金属In箔は、200μmの厚みを有していた。次に、金属In箔に80MPaの圧力が印加され、負極が形成された。
 ステンレス鋼から形成された集電体が正極および負極に取り付けられ、次いで、当該集電体に集電リードが取り付けられた。最後に、絶縁性フェルールを用いて、絶縁性の筒の内部が外気雰囲気から遮断され、筒の内部が密閉された。このようにして、実施例1による電池が得られた。
 [充放電試験]
 実施例1による電池は、25℃の恒温槽に配置された。85μA/cm2の電流密度で、3.7Vの電圧に達するまで、実施例1による電池が充電された。当該電流密度は、0.05Cレートに相当する。次に、同じく85μA/cm2の電流密度で、1.9Vの電圧に達するまで、実施例1による電池が放電された。
 充放電試験の結果、実施例1による電池は、559μAhの初期放電容量を有していた。
 図5は、実施例1による電池の初期放電特性を示すグラフである。
 <実施例2>
 -30℃の露点および20.9体積%以下の酸素濃度を有する雰囲気中で反応物が静置された時間を、約10分間ではなく45分間としたこと以外は、実施例1と同様にして、実施例2による固体電解質材料が得られた。
 実施例1と同様にして、実施例2による固体電解質材料の元素比(モル比)、融点、X線回折、およびイオン伝導度が測定された。測定結果は、表1および表2に示される。図2は、実施例2による固体電解質材料のX線回折パターンを示すグラフである。図6は、実施例2による固体電解質材料の熱分析の結果を示すグラフである。
 実施例2による固体電解質材料全体の質量に対するOの質量は、0.44%であった。
 実施例2による固体電解質材料を用いて、実施例1と同様にして、実施例2による電池が得られた。
 実施例2による電池を用いて、実施例1と同様にして、充放電試験が実施された。実施例2による電池は、実施例1による電池と同様に、良好に充電および放電された。
 <参考例1>
 乾燥アルゴン雰囲気中で、原料粉としてYCl3、ZrCl4、およびLiClが、YCl3:ZrCl4:LiCl=1:1:5程度のモル比となるように用意された。これらの原料粉が、乳鉢中で粉砕され、混合された。得られた混合物は、乾燥アルゴン雰囲気中で、SUS製密閉容器の中で、550℃で2時間焼成された後、乳鉢中で粉砕された。このようにして、参考例1による固体電解質材料が得られた。
 <参考例2>
 -30℃の露点および20.9体積%以下の酸素濃度を有する雰囲気中で反応物が静置された時間を、約10分間ではなく540分間としたこと以外は、実施例1と同様にして、参考例2による固体電解質材料が得られた。
 実施例1と同様にして、参考例1および2による固体電解質材料の元素比(モル比)、融点、X線回折、およびイオン伝導度が測定された。測定結果は、表1および表2に示される。図2は、参考例1および2による固体電解質材料のX線回折パターンを示すグラフである。図6は、参考例1および2による固体電解質材料の熱分析の結果を示すグラフである。なお、参考例2による固体電解質材料の融点は測定できなかった。
 参考例1および2による固体電解質材料全体の質量に対するOの質量は、それぞれ、0.02%および8.93%であった。
 参考例2による固体電解質材料を用いて、実施例1と同様にして、参考例2による電池が得られた。
 参考例2による電池を用いて、実施例1と同様にして、充放電試験が実施された。参考例2による固体電解質材料の初期放電容量は、1mAh以下であった。すなわち、参考例2による電池は、充電も放電もされなかった。図5は、参考例2による電池の初期放電特性を示すグラフである。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 <考察>
 表1から明らかなように、実施例1および2による固体電解質材料は、室温近傍において、3×10-4S/cm以上の高いイオン伝導性を有する。実施例1および2による固体電解質材料は、参考例1による固体電解質材料よりも高い融点を有する。すなわち、実施例1および2による固体電解質材料は、参考例1による固体電解質材料よりも高い耐熱性を有する。Yに対するOのモル比が大きいほど、融点が高くなった。一方、Yに対するOのモル比が大きくなると、固体電解質材料のイオン伝導度が大幅に低下してしまう。
 実施例1および2による固体電解質材料において、固体電解質材料の表面領域におけるYに対するOのモル比は、固体電解質材料全体におけるYに対するOのモル比よりも10倍以上大きい。
 実施例1および2による電池は、25℃において充電および放電された。
 実施例1および2による固体電解質材料は、硫黄を含有しないため、硫化水素が発生しない。
 以上のように、本開示による固体電解質材料は、実用的なリチウムイオン伝導度を有し、良好に充電および放電可能な電池を提供するために適切である。
 本開示の固体電解質材料は、例えば、全固体リチウムイオン二次電池において利用される。
 100 固体電解質粒子
 101 固体電解質材料の粉末
 201 正極
 202 電解質層
 203 負極
 204 正極活物質粒子
 205 負極活物質粒子
 300 加圧成形ダイス
 301 枠型
 302 パンチ下部
 303 パンチ上部
 1000 電池

Claims (9)

  1.  Li、Zr、Y、Cl、およびOを含む固体電解質材料であって、
     前記固体電解質材料の全体におけるYに対するOのモル比は、0超かつ0.80以下であり、
     前記固体電解質材料の表面領域におけるYに対するOのモル比は、前記固体電解質材料の全体におけるYに対するOのモル比よりも大きい、
    固体電解質材料。
  2.  前記固体電解質材料の全体におけるYに対するOのモル比は、0超かつ0.28以下である、
    請求項1に記載の固体電解質材料。
  3.  前記固体電解質材料の全体におけるYに対するOのモル比は、0.12以上かつ0.28以下である、
    請求項2に記載の固体電解質材料。
  4.  Mg、Ca、Zn、Sr、Ba、Al、Sc、Ga、Bi、La、Sm、Hf、Ta、およびNbからなる群より選択される少なくとも1つをさらに含む、
    請求項1から3のいずれか一項に記載の固体電解質材料。
  5.  前記固体電解質材料の表面領域におけるYに対するOのモル比は、前記固体電解質材料の全体におけるYに対するOのモル比よりも10倍以上大きい、
    請求項1から4のいずれか一項に記載の固体電解質材料。
  6.  Cu-Kαを用いたX線回折測定によって得られたX線回折パターンにおいて、15.5°以上かつ15.7°以下、16.6°以上かつ16.8°以下、17.4°以上かつ17.6°以下、20.1°以上かつ20.3°以下、22.2°以上かつ22.4°以下、31.4°以上かつ31.6°以下、および48.9°以上かつ49.1°以下である回折角2θの範囲のそれぞれにピークが存在する、
    請求項1から5のいずれか一項に記載の固体電解質材料。
  7.  前記X線回折パターンにおいて、47.0°以上かつ47.2°以下である回折角2θの範囲にさらにピークが存在する、
    請求項6に記載の固体電解質材料。
  8.  Yに対するLiのモル比は、4.4以上かつ5.5以下であり、
     Yに対するZrのモル比は、0.8以上かつ1.1以下であり、かつ
     Yに対するClのモル比は、8.6以上かつ12.3以下である、
    請求項1から7のいずれか一項に記載の固体電解質材料。
  9.  正極と、
     負極と、
     前記正極および前記負極の間に設けられた電解質層と、を備え、
     前記正極、前記負極、および前記電解質層からなる群より選択される少なくとも1つは、請求項1から8のいずれか一項に記載の固体電解質材料を含有する、
    電池。
PCT/JP2021/044438 2021-03-02 2021-12-03 固体電解質材料およびこれを用いた電池 WO2022185638A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023503381A JPWO2022185638A1 (ja) 2021-03-02 2021-12-03
EP21929196.0A EP4303949A4 (en) 2021-03-02 2021-12-03 SOLID ELECTROLYTE MATERIAL AND BATTERY
CN202180093872.5A CN116888686A (zh) 2021-03-02 2021-12-03 固体电解质材料及使用该固体电解质材料的电池
US18/452,103 US20230402647A1 (en) 2021-03-02 2023-08-18 Solid electrolyte material and battery using same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-033001 2021-03-02
JP2021033001 2021-03-02

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/452,103 Continuation US20230402647A1 (en) 2021-03-02 2023-08-18 Solid electrolyte material and battery using same

Publications (1)

Publication Number Publication Date
WO2022185638A1 true WO2022185638A1 (ja) 2022-09-09

Family

ID=83154207

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/044438 WO2022185638A1 (ja) 2021-03-02 2021-12-03 固体電解質材料およびこれを用いた電池

Country Status (5)

Country Link
US (1) US20230402647A1 (ja)
EP (1) EP4303949A4 (ja)
JP (1) JPWO2022185638A1 (ja)
CN (1) CN116888686A (ja)
WO (1) WO2022185638A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129312A (ja) 2009-12-16 2011-06-30 Toyota Motor Corp 硫化物固体電解質材料の製造方法、硫化物固体電解質材料およびリチウム電池
WO2018025582A1 (ja) 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
WO2021002052A1 (ja) * 2019-07-04 2021-01-07 パナソニックIpマネジメント株式会社 固体電解質材料およびこれを用いた電池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7418014B2 (ja) * 2018-12-26 2024-01-19 パナソニックIpマネジメント株式会社 固体電解質材料およびそれを用いた電池

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011129312A (ja) 2009-12-16 2011-06-30 Toyota Motor Corp 硫化物固体電解質材料の製造方法、硫化物固体電解質材料およびリチウム電池
WO2018025582A1 (ja) 2016-08-04 2018-02-08 パナソニックIpマネジメント株式会社 固体電解質材料、および、電池
WO2021002052A1 (ja) * 2019-07-04 2021-01-07 パナソニックIpマネジメント株式会社 固体電解質材料およびこれを用いた電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4303949A4

Also Published As

Publication number Publication date
EP4303949A4 (en) 2024-08-14
CN116888686A (zh) 2023-10-13
US20230402647A1 (en) 2023-12-14
JPWO2022185638A1 (ja) 2022-09-09
EP4303949A1 (en) 2024-01-10

Similar Documents

Publication Publication Date Title
JP7542196B2 (ja) ハロゲン化物固体電解質材料およびこれを用いた電池
JP7418014B2 (ja) 固体電解質材料およびそれを用いた電池
JP7535712B2 (ja) 固体電解質材料およびこれを用いた電池
WO2020137155A1 (ja) 固体電解質材料およびそれを用いた電池
JP7478989B2 (ja) 固体電解質材料およびこれを用いた電池
JP7496509B2 (ja) 固体電解質材料およびこれを用いた電池
JP7555031B2 (ja) 固体電解質材料およびこれを用いた電池
WO2021199641A1 (ja) 固体電解質材料およびこれを用いた電池
WO2021199550A1 (ja) 固体電解質材料およびこれを用いた電池
JP7535711B2 (ja) 固体電解質材料およびこれを用いた電池
WO2023013232A1 (ja) 固体電解質材料およびそれを用いた電池
US20220352546A1 (en) Solid electrolyte material and battery using same
WO2021153018A1 (ja) 固体電解質材料およびこれを用いた電池
JP7478988B2 (ja) 固体電解質材料およびこれを用いた電池
WO2021199619A1 (ja) 固体電解質材料およびこれを用いた電池
WO2021199640A1 (ja) 固体電解質材料およびこれを用いた電池
JP7442144B2 (ja) 固体電解質材料およびそれを用いた電池
JP7417952B2 (ja) 固体電解質材料およびそれを用いた電池
WO2022185638A1 (ja) 固体電解質材料およびこれを用いた電池
WO2022185637A1 (ja) 固体電解質材料およびこれを用いた電池
WO2022185639A1 (ja) 固体電解質材料およびこれを用いた電池
WO2022259782A1 (ja) 固体電解質材料およびそれを用いた電池
WO2022264659A1 (ja) 固体電解質材料および電池
WO2021199642A1 (ja) 固体電解質材料およびこれを用いた電池
WO2022249760A1 (ja) 固体電解質材料およびそれを用いた電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21929196

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023503381

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180093872.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 202347056720

Country of ref document: IN

WWE Wipo information: entry into national phase

Ref document number: 2021929196

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021929196

Country of ref document: EP

Effective date: 20231002