WO2022183460A1 - 一种利用个性化指标进行健康分析的系统及其使用方法 - Google Patents
一种利用个性化指标进行健康分析的系统及其使用方法 Download PDFInfo
- Publication number
- WO2022183460A1 WO2022183460A1 PCT/CN2021/079175 CN2021079175W WO2022183460A1 WO 2022183460 A1 WO2022183460 A1 WO 2022183460A1 CN 2021079175 W CN2021079175 W CN 2021079175W WO 2022183460 A1 WO2022183460 A1 WO 2022183460A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- user
- indicators
- health
- personalized
- factors
- Prior art date
Links
- 230000036541 health Effects 0.000 title claims abstract description 129
- 238000004458 analytical method Methods 0.000 title claims abstract description 110
- 238000000034 method Methods 0.000 title claims abstract description 49
- 238000013500 data storage Methods 0.000 claims abstract description 6
- 238000011156 evaluation Methods 0.000 claims description 29
- 239000003814 drug Substances 0.000 claims description 19
- 229940079593 drug Drugs 0.000 claims description 16
- 238000012544 monitoring process Methods 0.000 claims description 14
- 235000005911 diet Nutrition 0.000 claims description 11
- 230000037213 diet Effects 0.000 claims description 11
- 230000002068 genetic effect Effects 0.000 claims description 11
- 238000001356 surgical procedure Methods 0.000 claims description 9
- 238000003745 diagnosis Methods 0.000 claims description 7
- 201000010099 disease Diseases 0.000 claims description 7
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 7
- 230000005855 radiation Effects 0.000 claims description 7
- 238000003384 imaging method Methods 0.000 claims description 6
- 238000000554 physical therapy Methods 0.000 claims description 5
- 206010071368 Psychological trauma Diseases 0.000 claims description 4
- 208000007536 Thrombosis Diseases 0.000 claims description 4
- 230000004217 heart function Effects 0.000 claims description 4
- 230000023597 hemostasis Effects 0.000 claims description 4
- 230000003907 kidney function Effects 0.000 claims description 4
- 230000003908 liver function Effects 0.000 claims description 4
- 244000052769 pathogen Species 0.000 claims description 4
- 230000001717 pathogenic effect Effects 0.000 claims description 4
- 230000009325 pulmonary function Effects 0.000 claims description 4
- 230000028327 secretion Effects 0.000 claims description 4
- 230000029142 excretion Effects 0.000 claims description 3
- 239000013589 supplement Substances 0.000 claims description 3
- 230000003923 mental ability Effects 0.000 claims description 2
- 238000012549 training Methods 0.000 claims description 2
- 230000003340 mental effect Effects 0.000 claims 1
- 230000006378 damage Effects 0.000 abstract description 6
- 238000004364 calculation method Methods 0.000 abstract description 3
- 238000007689 inspection Methods 0.000 description 14
- 230000003862 health status Effects 0.000 description 11
- 238000005516 engineering process Methods 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 238000004422 calculation algorithm Methods 0.000 description 7
- 238000011161 development Methods 0.000 description 6
- 230000018109 developmental process Effects 0.000 description 6
- 230000035558 fertility Effects 0.000 description 6
- 210000000577 adipose tissue Anatomy 0.000 description 5
- 238000013473 artificial intelligence Methods 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 4
- 230000036760 body temperature Effects 0.000 description 4
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 4
- 238000007405 data analysis Methods 0.000 description 4
- 238000007726 management method Methods 0.000 description 4
- 230000006996 mental state Effects 0.000 description 4
- 229910052760 oxygen Inorganic materials 0.000 description 4
- 239000001301 oxygen Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 208000024891 symptom Diseases 0.000 description 4
- 206010020751 Hypersensitivity Diseases 0.000 description 3
- 208000026935 allergic disease Diseases 0.000 description 3
- 230000007815 allergy Effects 0.000 description 3
- 210000001124 body fluid Anatomy 0.000 description 3
- 239000010839 body fluid Substances 0.000 description 3
- 238000013135 deep learning Methods 0.000 description 3
- 230000007613 environmental effect Effects 0.000 description 3
- 235000012054 meals Nutrition 0.000 description 3
- 230000036651 mood Effects 0.000 description 3
- 230000035790 physiological processes and functions Effects 0.000 description 3
- 230000033764 rhythmic process Effects 0.000 description 3
- 238000012876 topography Methods 0.000 description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 2
- 102000003929 Transaminases Human genes 0.000 description 2
- 108090000340 Transaminases Proteins 0.000 description 2
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 2
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 2
- 230000009102 absorption Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 210000001772 blood platelet Anatomy 0.000 description 2
- 230000036772 blood pressure Effects 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 235000012000 cholesterol Nutrition 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- DDRJAANPRJIHGJ-UHFFFAOYSA-N creatinine Chemical compound CN1CC(=O)NC1=N DDRJAANPRJIHGJ-UHFFFAOYSA-N 0.000 description 2
- 238000007418 data mining Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 210000003743 erythrocyte Anatomy 0.000 description 2
- 230000004077 genetic alteration Effects 0.000 description 2
- 230000009395 genetic defect Effects 0.000 description 2
- 230000007614 genetic variation Effects 0.000 description 2
- 230000012010 growth Effects 0.000 description 2
- 230000036039 immunity Effects 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000009245 menopause Effects 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- 230000004973 motor coordination Effects 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 235000003715 nutritional status Nutrition 0.000 description 2
- 239000011591 potassium Substances 0.000 description 2
- 229910052700 potassium Inorganic materials 0.000 description 2
- 230000035935 pregnancy Effects 0.000 description 2
- 208000020016 psychiatric disease Diseases 0.000 description 2
- 230000008521 reorganization Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 230000036299 sexual function Effects 0.000 description 2
- 230000007958 sleep Effects 0.000 description 2
- 230000035943 smell Effects 0.000 description 2
- 238000007619 statistical method Methods 0.000 description 2
- 230000036410 touch Effects 0.000 description 2
- 150000003626 triacylglycerols Chemical class 0.000 description 2
- 229940116269 uric acid Drugs 0.000 description 2
- 206010028813 Nausea Diseases 0.000 description 1
- 208000002193 Pain Diseases 0.000 description 1
- 206010033557 Palpitations Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000000386 athletic effect Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000009534 blood test Methods 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 238000009535 clinical urine test Methods 0.000 description 1
- 238000002052 colonoscopy Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 229940109239 creatinine Drugs 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 210000004489 deciduous teeth Anatomy 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- 206010012601 diabetes mellitus Diseases 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- 239000002552 dosage form Substances 0.000 description 1
- 230000008451 emotion Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 206010016256 fatigue Diseases 0.000 description 1
- 230000005021 gait Effects 0.000 description 1
- 230000008821 health effect Effects 0.000 description 1
- 238000009532 heart rate measurement Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 150000002632 lipids Chemical class 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 210000004072 lung Anatomy 0.000 description 1
- 238000002483 medication Methods 0.000 description 1
- 230000005906 menstruation Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000008693 nausea Effects 0.000 description 1
- 230000000474 nursing effect Effects 0.000 description 1
- 230000035764 nutrition Effects 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 230000032696 parturition Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 230000008447 perception Effects 0.000 description 1
- 230000035479 physiological effects, processes and functions Effects 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 230000003860 sleep quality Effects 0.000 description 1
- 230000004622 sleep time Effects 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 230000003997 social interaction Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000002563 stool test Methods 0.000 description 1
- 230000026676 system process Effects 0.000 description 1
- 230000036346 tooth eruption Effects 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 230000002618 waking effect Effects 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16H—HEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
- G16H50/00—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics
- G16H50/30—ICT specially adapted for medical diagnosis, medical simulation or medical data mining; ICT specially adapted for detecting, monitoring or modelling epidemics or pandemics for calculating health indices; for individual health risk assessment
Definitions
- the present invention relates to the technical field of intelligent medical information processing, in particular to a system for performing health analysis using individualized indicators and a method for using the same.
- the existing examinations are usually compared with the medical standards of the indicators to determine whether the indicators are within the range of normal values. If it is not within the standard range, it indicates that there may be a problem with the health state of the inspection object, or the indicator represents the meaning of different health states in different ranges.
- the range of indicators and analysis methods given by medical standards are based on medical knowledge and practical experience, and the usual standards given based on large-scale population samples, they do not fully consider the actual situation of individuals, so there may be individual deviations. For some standard values, there is also a problem that the range is too large and cannot accurately and sensitively reflect the health status of the analysis object.
- the actual indicators of the human body are related to many factors, fully considering the influence of the user's genetics, physiological/psychological conditions, external environment and other factors on the relevant indicators, and analyzing the indicators according to the user's individual situation can more accurately evaluate the user's performance. actual health status. Therefore, there is an urgent need for a method of health analysis using personalized indicators, using real medical data to subdivide the target population/application scenarios and related parameter standards, fully grasp the individualized information of users, and establish personalized health indicators for users. Model, refined and intelligently analyzes whether user indicators are normal, so as to improve the accuracy of indicator inspection, improve medical level, and avoid damage caused by misdiagnosis.
- the main purpose of the present invention is: the existing medical index standards do not fully consider the actual situation of the individual, and the health analysis based on the comparison between the user index and the general index standard does not fully consider the individual differences, which may lead to the judgment of the user's health condition.
- Inaccurate, and then cause misdiagnosis provide a method for health analysis using individualized indicators, fully grasp the individualized information of users, use individual/group medical data, and use individual/group medical data.
- Subdivide establish a personalized health index model that conforms to users, and intelligently analyze the real clinical significance of user indicators, thereby improving the accuracy of index inspection and disease diagnosis, improving the level of individualized medical services, and avoiding damage caused by misdiagnosis.
- the present invention provides a system for health analysis using individualized indicators, including:
- a data storage unit for storing the user's personalized health indicator model
- a first information acquisition unit configured to acquire the user indicator to be analyzed
- the second information acquisition unit is used to acquire the actual information of the relevant elements of the user
- the analysis unit is configured to analyze and calculate the user index to be analyzed and the actual information of the relevant elements of the user based on the user's personalized health index model, and obtain the analysis result of the user index to be analyzed.
- the user personalized health indicator model is based on at least one of the user's personal historical indicator-related information, the relationship between the user's own factors and indicators, and the relationship between external factors and indicators. item analyzed.
- the user indicators include: physical examination-related indicators, hematology-related indicators, thrombus and hemostasis-related indicators, excrement/secretion/body fluid-related indicators, kidney function Related indexes, liver function-related indexes, biochemical-related indexes, immunology-related indexes, genetics-related indexes, pathogen-related indexes, cardiac function-related indexes, pulmonary function-related indexes, psychological state-related indexes, mental state-related indexes, exercise ability-related indexes At least one of indicators, imaging-related indicators, and acoustic-related indicators.
- the user's own factors related to the indicators include: the user's crowd factors, genetic factors, physiological factors, psychological factors, physical factors, life status/life history, exercise situation , at least one of work and rest conditions, study conditions, work conditions, and disease conditions.
- a system for health analysis using personalized indicators as described above external factors related to indicators include: environment, drugs, medical equipment, diet, physical/psychological trauma, surgery, radiation, physiotherapy, rehabilitation, operation, examination, At least one of the psychological interventions.
- the personalized health indicator model further includes the relationship between time factors and indicators.
- a system for health analysis using personalized indicators as described above the system further includes collecting user indicators of users/user groups under various conditions, for analyzing the influence of user/user group own factors on indicators , the impact of external factors on indicators, the impact of time factors on indicators.
- the user-individualized health indicator model is a model of a user or a class of users.
- the system further includes a personalized indicator database
- the personalized indicator database includes the relevant rules, external factors and indicators of the relationship between the user/user group's own factors and indicators At least one of the related rules of the relationship and the related rules of the relationship between time factors and indicators.
- the system further includes a user personal information database, which includes the user's relevant information, which is used to obtain the actual information of the user's relevant elements. Or supplement the relevant information of the user.
- a system for health analysis using personalized indicators as described above relevant analysis results are applied to: physical examination, diagnosis, treatment plan selection/recommendation/monitoring/evaluation, drug use selection/recommendation/monitoring/evaluation, surgical plan selection/ Recommendation/monitoring/evaluation, health monitoring/evaluation, rehabilitation program selection/recommendation/monitoring/evaluation, physical/mental ability evaluation/evaluation, potential evaluation, training program, study, work, exercise at least one.
- the present invention also provides a method for using the above-mentioned system for performing health analysis by using the personalized indicator, including:
- the user index to be analyzed and the actual information of the relevant elements of the user are analyzed and calculated based on the user's personalized health index model, and the analysis result of the user index to be analyzed is obtained.
- the present invention provides a system for performing health analysis using individualized indicators and a method of using the same.
- the system for performing health analysis using individualized indicators includes a data storage unit, a first information acquisition unit, a second information acquisition unit and an analysis unit.
- the method of using personalized indicators for health analysis includes: establishing a user personalized health indicator model, acquiring the user indicators to be analyzed, acquiring the actual information of the relevant elements of the user, and basing the user indicators to be analyzed and the actual information of the relevant elements of the user based on the user's personality
- the health indicator model is used to analyze and calculate, and the analysis result of the user indicator to be analyzed is obtained.
- the target population/application scenarios and relevant parameter standards are subdivided by using massive medical data, and the individualized information of the user is fully grasped, and the user-specific information is established.
- Personalized health indicator model refined and intelligent analysis of whether user indicators are normal, so as to improve the accuracy of indicator inspection, improve medical level, and avoid damage caused by misdiagnosis.
- FIG. 1 is a block diagram of a system for performing health analysis using personalized indicators according to the present invention.
- FIG. 2 is a flow chart of a method for using a system for performing health analysis using personalized indicators according to the present invention.
- FIG. 1 is a block diagram of a system for performing health analysis using personalized indicators according to the present invention.
- a system for health analysis using personalized indicators includes:
- the data storage unit 11 is used to store the user's personalized health indicator model
- a first information obtaining unit 12 configured to obtain the user indicator to be analyzed
- the second information obtaining unit 13 is used to obtain the actual information of the relevant elements of the user;
- the analyzing unit 14 is configured to analyze and calculate the user index to be analyzed and the actual information of the relevant elements of the user based on the user's personalized health index model, and obtain an analysis result of the user index to be analyzed.
- user indicators may include: physical examination-related indicators, hematology-related indicators, thrombus and hemostasis-related indicators, excrement/secretion/body fluid-related indicators, kidney function-related indicators, liver function-related indicators, and biochemical-related indicators , immunology-related indexes, genetics-related indexes, pathogen-related indexes, cardiac function-related indexes, pulmonary function-related indexes, psychological state-related indexes, mental state-related indexes, exercise ability-related indexes, imaging-related indexes, and acoustic-related indexes At least one item, which may specifically include height, weight, body temperature, vision, hearing, blood sugar, red blood cells, white blood cells, platelets, uric acid, cholesterol, transaminases, calcium, iron, potassium, triglycerides, heart rate, body fat, lung capacity, imaging It can also include the ratios of various indicators such as: height/weight, height/waist circumference, etc., as well as
- the user-personalized health indicator model refers to a comprehensive analysis of at least one of the user's personal historical indicator-related information, the relationship between the user's own factors and indicators, and the relationship between external factors and indicators to obtain a health indicator model suitable for the user.
- the user-specific health indicator model can include the usual value or range of the indicator, the range division of the personalized indicator and the significance of the indicator in different ranges for analyzing the health status, the influence of the user's own factors on the indicator, the impact of external factors on the indicator, and the impact of the user's own factors on the indicator. At least one of the meanings of indicators in different ranges for analyzing health status under the condition of specific self-factors/external factors.
- the analysis and application of a single index and the analysis and application of a combination of multiple indexes of different clinical significance are included.
- relevant indicators are used to analyze and evaluate the health status and corresponding abilities of the analysis objects.
- Indicators represent different meanings in different ranges. By analyzing the scope of a single or multiple indicators, it can be obtained. corresponding results. Through the personalized health indicator model, it is possible to accurately analyze the user's health status and related ability level represented by the relevant indicators under different conditions.
- the relationship between the user's own factors and the index refers to the influence of the user's own factors on the index.
- the user's own factors that may affect the indicator can include: crowd factors such as nationality, race, gender, age, etc.; genetic factors such as genetics, genetic variation/alteration, genetic defects, genetic medical history, family medical history, etc.; physiological factors such as physical fitness , nutritional status, hearing, vision, taste, smell, touch, breathing, motor coordination, digestion, absorption, excretion, sexual function, fertility and other conditions and related abilities; psychological factors such as mental illness, mood, feeling, intelligence, attention physical factors such as height, weight, strength, speed, physical development, etc.; life status/life history factors such as work information, diet-related, learning information, exercise information, entertainment Information, work and rest information, etc.; disease factors such as diagnosis, symptoms, etc., can also include other factors that may affect indicators.
- External factors that may affect the indicator can include: environmental factors such as temperature, humidity, air pressure, season, longitude, latitude, altitude, air quality, topography, landform, oxygen content, light, ultraviolet rays, radiation, electromagnetic waves, noise, epidemics , plants, etc., and can also include factors such as drugs, medical devices, diet, physical/psychological trauma, surgery, radiation, physiotherapy, rehabilitation, operation, inspection, psychological intervention, and other external factors that may affect the index.
- Time factors such as year/season/month/rhythm/ten/week/day, morning/morning/noon/afternoon/evening/night, after getting up/before going to bed/after exercise/before eating, etc.
- the indicators of the user under various conditions can be collected by methods such as observation, inspection, and detection, and when the user-related indicators are in different ranges, the whole body, each system, each organ, each ministry, each organization,
- the real-time, short-term and long-term effects of various types of cells, various molecular levels, and various physiological functions and psychological conditions are used to analyze the normal/reasonable/healthy range of relevant indicators of users, and the possible health effects of indicators in different ranges. It can also be used to analyze the impact of the user's own factors on the indicator and/or the impact of external factors on the indicator, and the relationship between time factors and the indicator.
- the analysis of the impact of indicators includes: what factors will have an impact on the indicator, what impact these factors will have on the indicator and the degree of impact, and the actual health significance of the indicator in different ranges under different conditions.
- the influence of the user's own factors, external factors, and time factors on the indicators can be specifically described by establishing the relevant rules for the influence of the user's own factors on the indicators, the relevant rules for the influence of external factors on the indicators, and the relevant rules for the influence of time factors on the indicators.
- the user-personalized health indicator model is a model of a user or a class of users.
- it can be a model of a specific user, or a model of a group of people, such as an elderly male model with diabetes weighing 60-70 kg, a Hui female athlete model aged 16-18, etc., or a family model, Class models, troop models, etc.
- the model can be a static model, such as its own indicators, performance, characteristics, etc., or a dynamic model, such as: index changes after being affected/stimulated, after taking medicine, after eating, before going to bed, etc.
- the existing data can be classified based on different user groups, and a model of a type of user can be established, and then gradually refined, so that the classification of user groups becomes more and more Refinement, and ultimately, builds a user-personalized health indicator model for each individual user.
- Classification can be established based on professional/authoritative research results, literature, data, and experience, or based on information reorganization/information analysis/big data analysis, or through artificial intelligence deep learning, or through data mining. After the analysis is established, various models can also be continuously adjusted and improved during the use process.
- the relevant rules of the influence of the user's own factors on the index, and the relevant rules of the influence of external factors and time factors on the index are stored.
- the rules related to the influence of the user's own factors on the indicators may include: related rules of population factors, related rules of genetic factors, related rules of physiological factors, related rules of psychological factors, related rules of physical factors, related rules of life status/life history. At least one of a rule, a rule related to a disease condition.
- the relevant rules and elements of crowd factors may include: the possible impact of nationality, race, gender, age, etc. on various indicators, and may also include: the degree, ranking, effectiveness, user/ Physician/expert evaluation, etc.
- genetic factors may include: genetic genes, genetic variation/alteration, genetic defects, genetic medical history, family medical history, etc. may affect various indicators, and may also include: the impact of various factors affecting indicators on indicators degree, ranking, effectiveness, user/physician/expert evaluation, etc.
- the relevant rules and elements of physiological factors can include: physical fitness, nutritional status, hearing, vision, taste, smell, touch, breathing, motor coordination, digestion, absorption, excretion, sexual function, fertility and other conditions and related abilities.
- the possible impact of various indicators may also include: the degree, ranking, effectiveness, and evaluation of users/physicians/experts of various factors affecting the indicators on the indicators.
- the relevant rules and elements of psychological factors may include: the possible impact of mental illness, emotion, feeling, intelligence, attention, memory, perception, communication ability, expression ability, etc. on various indicators, and may also include: impact indicators.
- impact indicators The degree, ranking, effectiveness, and user/physician/expert evaluation of each factor's influence on the index.
- the relevant rules and elements of physical factors may include: the possible effects of height, weight, strength, speed, physical development, etc. on various indicators, and may also include: the degree, order, and effectiveness of the various factors affecting the indicators. Sex, user/physician/expert reviews, etc.
- Relevant rules and elements of living status/life history may include: work information, diet information, learning information, exercise information, entertainment information, work and rest information, etc. may affect various indicators, and may also include: various factors affecting indicators The degree of influence, ranking, effectiveness, user/physician/expert evaluation, etc. of the indicators.
- the relevant rules and elements of the exercise situation may include: exercise items, exercise time, exercise intensity, exercise frequency, exercise intensity, etc., which may affect various indicators.
- the relevant rules and elements of the work and rest situation may include: wake-up time, sleep time, work and rest habits, sleep quality and other factors that may affect various indicators.
- the relevant rules and elements of the learning situation may include: learning intensity, learning difficulty, learning time, learning methods and other factors that may affect various indicators.
- the relevant rules and elements of the work situation may include: the possible impact of factors such as work type, work intensity, and work time on various indicators.
- the relevant rules and elements of the disease situation may include: symptoms, diagnosis, indicators, feelings, medical history, medication history, allergy history, surgical history, etc., which may affect various indicators, and may also include: factors affecting indicators Degree of impact, ranking, effectiveness, user/physician/expert evaluation, etc.
- the relevant rules for the impact of external factors on indicators include: at least one of the environment, drugs, medical devices, diet, physical/psychological trauma, surgery, radiation, physical therapy, rehabilitation, operation, examination, and psychological intervention.
- the relevant rules and elements of environmental factors can include: temperature, humidity, air pressure, season, longitude, latitude, altitude, air quality, topography, landform, oxygen content, light, ultraviolet, radiation, electromagnetic waves, noise, epidemics, plants
- the possible impact on various indicators may also include: the degree, ranking, effectiveness, evaluation of users/physicians/experts, etc., of the factors affecting the indicators on the indicators.
- the relevant rules and elements of drug factors may include: the types of drugs used, ingredients, dosage forms, routes of administration, time of administration, frequency of administration, and doses of medications that may affect various indicators, and may also include: The degree, ranking, validity, and user/physician/expert evaluation of factors affecting the index.
- time factors and indicators can include: year/quarter/month/rhythm/ten/week/day, morning/am/noon/afternoon/evening/night, after waking up/before going to bed/after exercise/eating
- the possible impact of the former on various indicators may also include: the degree, ranking, effectiveness, and user/physician/expert evaluation of each factor affecting the indicator.
- the time information includes time element attributes related to natural rhythms such as: year, month, day, day/night, morning/am/noon/afternoon/evening/night, season, solar terms, lunar year/month/day etc.; time element attributes related to time, such as hours, minutes, hours, etc.; time element attributes related to personal work, rest and life rules, such as: getting up, before meals/during meals/after meals, before going to bed; with specific conditions/symptoms/indicators/ Mental state/physiological state/feel-related time element attributes such as: body temperature over a certain value, pain, fatigue, dizziness, palpitation, nausea, creatinine clearance over a certain value, blood pressure lower than a certain value, heart rate When it exceeds a certain value, when you feel depressed, when you feel fear, when you feel excited, etc.; the time element attributes related to the treatment method, such as: the day before a certain examination, 3 hours after a certain operation, when changing a certain medicine, after a certain physiotherapy
- the relevant rules of the influence of the user's own factors on the index, the relevant rules of the influence of external factors on the index, and the relevant rules of the influence of the time factor on the index may also include the situation that each element needs to be combined to take effect, and the relevant rules can be multiple
- the elements are defined according to the multi-level and/or/non-relationship and the comprehensive condition after the combination of the relationship defined by the relevant formula, and may also include the situation that the relevant rules are related to the time dimension.
- the relevant rules for the influence of the user's own factors, external factors, and time factors on the indicators can be obtained by collecting the indicators-related data of the user/user group under various conditions through observation, inspection, detection and other methods for calculation and analysis. It can be based on various medical manuals, guidelines, clinical treatment paths, formularies, pharmacopoeia, expert consensus, meeting minutes and consensus within medical associations/hospitals/departments, industry norms, textbooks, papers, works, inventions, scientific inferences, experiments Reports, test reports, data analysis reports, test reports, test reports, approval documents, relevant regulations, relevant guidelines, relevant policies, relevant systems, relevant catalogues, relevant literature materials, relevant doctors/nurses/pharmacists/nursing staff/patients/ Salesperson's evaluation/report, other literature materials, other professional/authoritative research results, can also be based on evidence-based medicine methods, or probability speculation based on existing data, and can also include various weights that need to be manually set /Various levels/various rankings and other sources, it
- the database can be updated by version, or it can be updated in real time according to actual data.
- the personalized indicator database can be a relational database or a non-relational database; it can be a table database or a graph database; the related data can be structured data or unstructured data.
- the data form of the personalized (health) indicator database may be in text, graph, audio, video or other suitable form.
- user indicators may include: physical examination-related indicators, hematology-related indicators, thrombus and hemostasis-related indicators, excrement/secretion/body fluid-related indicators, kidney function-related indicators, liver function-related indicators, and biochemical-related indicators , Immunology-related indicators, genetics-related indicators, pathogen-related indicators, cardiac function-related indicators, pulmonary function-related indicators, psychological state-related indicators, mental state-related indicators, exercise ability-related indicators, imaging-related indicators, and acoustic-related indicators.
- the sources of obtaining user indicators can be: the user's doctor's orders, medical records/electronic medical records, diagnostic reports, inspection/test results, monitoring results, nutritional assessment reports; the user's goals for study, work, life, exercise, etc. are self-reported or set in advance; Patient-related status and physiological functions; pre-set information such as time, season, hour, interval, cycle, etc.; pre-set ways to monitor changes in various physiological indicators.
- the actual information of the relevant elements of the user refers to the relevant rules of the influence of the user's own actual situation (own factors) on the index and the relevant rules of the influence of the external situation (external factors) on the index.
- the actual user information of the elements can include: basic information of the user, genetic related information, family health related information such as family medical history, medical history, allergy history, regional epidemiological history, medication history, surgery history, surgical plan usage history, study situation, work Situation, sports situation, family situation, living environment, hobbies, compliance situation, tolerance situation, medical insurance situation, and physical/psychological/study/work/physical fitness/sleep/exercise/mood/metabolism/vision/hearing/intelligence /Attention/diet/immunity/growth/development/memory/fertility status and rest time and other information.
- It can also include information such as temperature, humidity, air pressure, season, longitude, latitude, altitude, air quality, topography, landform, oxygen content, light, ultraviolet, radiation, electromagnetic waves, noise, epidemics, plants, etc., as well as user and indicators time information, etc.
- the source of obtaining the actual information of the user's relevant elements may be the user's personal information database, health records, family or family member health records, doctor's orders, medical records, drug records, prescriptions, electronic medical records, medical institution information systems, pharmacies/ Medical equipment store information system, medical records, treatment records, evaluation reports, consultation records, investigation records, work and rest records/plans, diet records/plans, shopping records/plans, medication records/plans, treatment records/plans, exercise records/plans , work records/plans, study records/plans, rehabilitation records/plans, health care records/plans, inspection/checklists, surgery plans/records, health management plans, bills of charges, clinical treatment paths, inspection/test results, surgery settings /records, genetic test results, can also be obtained from the usage/prescription/recommendation records of users/doctors/nurse/caregivers, and can also be obtained from various wearable devices, sensors, electronic devices, electronic positioning systems, weather forecast systems, electronic Temperature and humidity/air
- the missing information can also be provided or improved by the user, or the user/physician can be proactively prompted to observe, monitor, check, inquire, analyze, confirm, record whether there is a relevant situation or obtain relevant indicators/physicians with highly relevant information. Manifestations/feelings/symptoms/physiological changes.
- the assessment report includes physical, psychological, economic, credit, athletic ability, etc.
- Intelligent detection/analysis equipment includes: odor, image, sound, pulse, X-ray film, CT, MRI, ultrasound examination, brain wave, mass spectrometer, tongue analysis, fundus examination, gastroscope, colonoscopy, catheter, minimally invasive scope , heart rate, blood oxygen level, blood pressure, blood sugar, blood lipids, body temperature, blood test, urine test, stool test, pulse measurement/analysis equipment, weight/body fat scale, etc.
- the user index to be analyzed and the actual information of the relevant elements of the user are analyzed and calculated based on the user personalized health index model, and the analysis result of the user index to be analyzed is obtained.
- the relevant indicators/indicator combinations of the user conform to the normal values of the indicators under the conditions of the user's actual own factors, external factors, time factors, etc., or are within the normal range, it can be considered that the user indicators to be analyzed are If the analysis result is normal, if not, the analysis result of the user indicator to be analyzed is abnormal, and other corresponding analysis results are given according to the indicator range and its health significance under different conditions.
- the system for health analysis using personalized indicators of the present invention it is possible to intelligently analyze whether the user indicators are normal, or analyze the relevant status and abilities of the users, thereby improving the correct rate of indicator inspection, improving the medical level, and avoiding the lack of personalized indicators.
- the system for health analysis using individualized indicators of the present invention can be used for physical examination, diagnosis, treatment, rehabilitation, training, study, work, exercise, diet/nutrition, routine, medication, medical equipment, surgery, operation, physiotherapy, fertility Advice, management, testing, evaluation.
- the analysis results of user indicators obtained by using personalized indicators for health analysis can be used to remind, warn, restrict, prohibit, assist, and guide user/physician/expert diagnosis. It can also be used for the data base discussed by the user/physician/expert with the recommendation/management/guidance/consultation post or secondary recommendation/management/guidance/consultation center and the data base of the advanced post reply/automatic reply.
- the system for health analysis using personalized indicators of the present invention also includes the analysis results of the user indicators and the actual situation of the user, giving the user-related health status analysis results, and reminding the user/physician of various conditions that may be caused by the user indicators, Risks and how they are detected/discovered, and how to deal with them.
- the various data obtained by the system for health analysis using individualized indicators of the present invention may be all data or data with certain conditions set as required, for example: data in a certain time period, data in a certain period of time data of each hospital/department/doctor, etc.
- the system for performing health analysis using individualized indicators further includes the use of a multi-dimensional element attribute dictionary of user indicators to process the user indicators to be analyzed, the actual information of relevant elements of users, etc. from different sources, different data structures, different Description, matching/comparison of data of different data standards with relevant information and rules in personalized (health) index database, including fuzzy matching algorithm.
- the multi-dimensional element attribute dictionary of the user index contains at least one of the standard dictionary, the synonym correspondence dictionary, and the fuzzy matching dictionary for each element attribute related to the user index, including the synonym, structure, combination and Correspondence and other data.
- Comparing the obtained information with the relevant information and rules in the personalized (health) index database can be by using the obtained original information and the synonyms of each item in the multi-dimensional attribute dictionary of the user index in the personalized (health) index database.
- the corresponding dictionary is compared, or the obtained original information can be first converted into corresponding standard dictionaries and then compared with the personalized (health) index database, or the obtained original information can be fuzzy matched with each dictionary of the personalized (health) index database. Control use, or a combination of the above methods.
- the multi-dimensional element attribute dictionary of user indicators can be established separately or included in the personalized (health) indicator database.
- speech recognition technology in addition to using the multi-dimensional element attribute dictionary of user indicators for matching, speech recognition technology, semantic recognition technology, translation of different languages, OCR recognition technology, virtual reality technology, augmented reality technology, gesture recognition technology and other methods can also be used for matching. Processes the matching/comparison of the acquired information with the relevant information and rules in the personalized (health) indicator database.
- the system for health analysis using individualized indicators may further include a user personal information database, which is used to provide or supplement the relevant information of the user when acquiring the actual information of the relevant elements of the user.
- the user's personal information database includes user-related information, including: basic user information, genetic-related information, family health-related information such as family medical history, medical history, allergy history, regional epidemiological history, medication history, surgery history, study situation, work Situation, sports situation, family situation, living environment, hobbies, compliance situation, tolerance situation, medical insurance situation, and physical/psychological/study/work/physical fitness/sleep/exercise/mood/metabolism/vision/hearing/intelligence /Attention/diet/immunity/growth/development/memory/fertility status and rest time and other information.
- the data acquisition method of the user's personal information database includes acquisition from other information systems, equipment or databases or analysis after access, or manual entry, or new data that is continuously acquired and analyzed during the use of database-related information. , or a combination of the above methods.
- various analysis results, evaluations, reports and other output information of the system for health analysis using personalized indicators can be manually completed by professionals according to the personalized (health) indicator database and various data, or in the system It can be done manually with the support of the system, or it can be done automatically by the system, or it can be done automatically by artificial intelligence, or it can be done by combining the system/artificial intelligence part with the manual part.
- the application/output of relevant analysis results can be in the form of reminders, notifications, reports, reports, system permission restrictions, system process restrictions, control of related systems/equipment/files/authorities, etc.;
- the system is connected to achieve; it can also be an application that provides results, and the user manually realizes the relevant results.
- the encryption algorithms include symmetric encryption algorithms and/or asymmetric encryption algorithms, such as: large integer factorization problem encryption algorithms, discrete logarithm problem encryption algorithms, elliptic curve encryption algorithms, such as blockchain technology, etc.
- the encryption hardware can Encryption can be performed by using a key, a dongle, an encrypted hard disk, etc., and also in combination with user equipment hardware, network address, etc., or the above methods can be combined with each other for encryption.
- the data transmission method of the system using personalized indicators for health analysis can be data line method, wired network, wireless transmission method, radio frequency identification method, magnetic card reading and writing method, mobile hard disk method, NFC method, barcode method, QR code, etc.
- Wireless transmission methods include: infrared, bluetooth, wifi, microwave, visible light wave, telecommunication wireless network, ultrasonic/sound wave, radio, etc.
- the system for performing health analysis using individualized indicators can be used as a stand-alone machine, or can be accessed by external hardware such as mobile hard disks, boxes, cards, etc. for users to use, or can be installed on a local server to support local users. It can also be installed on a private cloud server to support private cloud users, or it can be installed on the Internet to provide services to Internet users.
- FIG. 2 is a flow chart of a method for using a system for performing health analysis using personalized indicators according to the second embodiment of the present invention. As shown in the figure, a method of using a system for performing health analysis by using individualized indicators of the present invention includes:
- the user index to be analyzed and the actual information of the relevant elements of the user are analyzed and calculated based on the user's personalized health index model, and the analysis result of the user index to be analyzed is obtained.
- the method of using a system for performing health analysis using individualized indicators of the present invention corresponds to the technical features of a system for performing health analysis using individualized indicators of the present invention. The description of the analyzed system will not be repeated here.
- the system for performing health analysis using personalized indicators includes: a data storage unit, a first information acquisition unit, and a second information acquisition unit and analysis units.
- the method of using personalized indicators for health analysis includes: establishing a user personalized health indicator model, acquiring the user indicators to be analyzed, acquiring the actual information of the relevant elements of the user, and basing the user indicators to be analyzed and the actual information of the relevant elements of the user based on the user's personality
- the health indicator model is used to analyze and calculate, and the analysis result of the user indicator to be analyzed is obtained.
- the target population/application scenarios and relevant parameter standards are subdivided by using massive medical data, and the individualized information of the user is fully grasped, and the user-specific information is established.
- Personalized health indicator model refined and intelligent analysis of whether user indicators are normal, so as to improve the accuracy of indicator inspection, improve medical level, and avoid damage caused by misdiagnosis.
Landscapes
- Medical Informatics (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- Health & Medical Sciences (AREA)
- Pathology (AREA)
- Databases & Information Systems (AREA)
- Data Mining & Analysis (AREA)
- Biomedical Technology (AREA)
- Epidemiology (AREA)
- General Health & Medical Sciences (AREA)
- Primary Health Care (AREA)
- Medical Treatment And Welfare Office Work (AREA)
- Measuring And Recording Apparatus For Diagnosis (AREA)
Abstract
一种利用个性化指标进行健康分析的系统及其使用方法,利用个性化指标进行健康分析的系统包括:数据存储单元(11),第一信息获取单元(12),第二信息获取单元(13)和分析单元(14)。利用个性化指标进行健康分析的方法包括:建立用户个性化健康指标模型(S1),获取待分析的用户指标(S2),获取用户的相关要素实际信息(S3),将待分析的用户指标和用户的相关要素实际信息基于用户个性化健康指标模型进行分析计算,得出待分析的用户指标的分析结果(S4)。通过利用个性化指标进行健康分析的系统及其使用方法,能够精细化智能分析用户指标是否正常,从而提高指标检查的准确率,避免误诊造成的损害。
Description
本发明涉及智能化医疗信息处理的技术领域,特别是涉及一种利用个性化指标进行健康分析的系统及其使用方法。
随着科学技术的不断发展,人们的生活水平越来越高,对于健康的重视程度也不断提高。为了解用户的健康状况,医生/监护人/相关机构/用户自己会通过各种检查/检验/监测/试验/询问/观察/计算/分析等方法获取用户的各种指标,用于发现疾病或者评估用户的健康状态。
现有的检查在获取自身指标后,通常会与指标的医学标准进行比较,以确定指标是否在正常值的范围之内。如果不在标准范围内,则提示检查对象的健康状态可能出现了问题,或者指标在不同的范围代表不同的健康状态的意义。但是,由于医学标准给出的指标范围和分析方法,是根据医学知识和实际经验,基于大规模人群样本给出的通常的标准,并没有充分考虑个体的实际情况,因而可能存在个体化偏差,对一些标准值也存在范围过大,不能够精准和灵敏反映分析对象健康状况的问题。
实际人体的各项指标与很多因素有关,充分考虑用户的遗传、生理/心理状况、外部环境等因素对相关指标的影响,根据用户的个体化情况对指标进行分析,能够更精准的评估用户的实际健康状况。因而迫切需要一种利用个性化指标进行健康分析的方法,利用真实医疗数据,对目标人群/应用场景和相关参数标准进行细分,充分掌握用户的个体化信息,建立针对用户的个性化健康指标模型,精细化智能分析用户指标是否正常,从而提高指标检查的正确率,提升医疗水平,避免误诊造成的损害。
发明内容
本发明的主要目的是:针对现有医学指标的标准没有充分考虑个体的实际情况,根据用户指标与通用指标标准对比而进行的健康分析没有充分考虑个性化差异,从而可能导致对用户健康情况判断失准,进而造成误诊的情况,提供一种利用个性化指标进行健康分析的方法,充分掌握用户的个体化信息,利用个体/群体医疗数据,对个体/群体在不同条件时的相关指标参数标准进行细分,建立符合用户的个性化健康指标模型,智能分析用户指标真实的临床意义,从而提高指标检查和疾病诊断的精准度,提升个体化医疗服务水平,避免误诊造成的损害。
为实现上述目的,本发明提供了一种利用个性化指标进行健康分析的系统,包括:
数据存储单元,用于存储用户个性化健康指标模型;
第一信息获取单元,用于获取待分析的用户指标;
第二信息获取单元,用于获取用户的相关要素实际信息;
分析单元,用于将待分析的用户指标和用户的相关要素实际信息基于用户个性化健康指标模型进行分析计算,得出待分析的用户指标的分析结果。
如上所述的一种利用个性化指标进行健康分析的系统,所述用户个性化健康指标模型是根据用户个人的历史指标相关信息、用户自身因素与指标的关系、外部因素与指标的关系至少一项分析得到。
如上所述的一种利用个性化指标进行健康分析的系统,所述用户指标包括:体格检查相关指标、血液学相关指标、血栓与止血相关指标、排泄物/分泌物/体液相关指标、肾脏功能相关指标、肝脏功能相关指标、生物化学相关指标、免疫学相关指标、遗传学相关指标、病原体相关指标、心脏功能相关指标、肺功能相关指标、心理状态相关指标、精神状态相关指标、运动能力相关指标、影像学相关指标、声学相关指标中的至少一项。
如上所述的一种利用个性化指标进行健康分析的系统,与指标相关的用户自身因素包括:用户的人群因素、遗传因素、生理因素、心 理因素、身体因素、生活状态/生活史、运动情况、作息情况、学习情况、工作情况、疾病情况中的至少一项。
如上所述的一种利用个性化指标进行健康分析的系统,与指标相关的外部因素包括:环境、药物、医疗器械、饮食、生理/心理创伤、手术、辐射、理疗、康复、操作、检查、心理干预中的至少一项。
如上所述的一种利用个性化指标进行健康分析的系统,所述个性化健康指标模型还包括时间因素与指标的关系。
如上所述的一种利用个性化指标进行健康分析的系统,所述系统还包括收集用户/用户群体在各种条件下的用户指标,用于分析得出用户/用户群体自身因素对指标的影响、外部因素对指标的影响、时间因素对指标的影响。
如上所述的一种利用个性化指标进行健康分析的系统,所述用户个性化健康指标模型是一个用户或一类用户的模型。
如上所述的一种利用个性化指标进行健康分析的系统,所述系统还包括个性化指标数据库,所述个性化指标数据库包括用户/用户群体自身因素与指标关系的相关规则、外部因素与指标关系的相关规则、时间因素与指标关系的相关规则至少一项。
如上所述的一种利用个性化指标进行健康分析的系统,所述系统还包括用户个人信息数据库,所述用户个人信息数据库中包括用户的 相关信息,用于获取用户的相关要素实际信息时提供或补充用户的相关信息。
如上所述的一种利用个性化指标进行健康分析的系统,相关分析结果应用于:体检、诊断、治疗方案选择/推荐/监测/评价、药物使用选择/推荐/监测/评价、手术方案选择/推荐/监测/评价、健康监测/评估、康复方案选择/推荐/监测/评价、生理/心理能力评价/评估、潜力评估、训练方案、学习、工作、运动至少一项。
本发明还提供一种如上所述的利用个性化指标进行健康分析的系统的使用方法,包括:
建立用户个性化健康指标模型;
获取待分析的用户指标;
获取用户的相关要素实际信息;
将待分析的用户指标和用户的相关要素实际信息基于用户个性化健康指标模型进行分析计算,得出待分析的用户指标的分析结果。
本发明的一种利用个性化指标进行健康分析的系统及其使用方法,利用个性化指标进行健康分析的系统包括:数据存储单元,第一信息获取单元,第二信息获取单元和分析单元。利用个性化指标进行健康分析的方法包括:建立用户个性化健康指标模型,获取待分析的用户指标,获取用户的相关要素实际信息,将待分析的用户指标和用 户的相关要素实际信息基于用户个性化健康指标模型进行分析计算,得出待分析的用户指标的分析结果。通过本发明的一种利用个性化指标进行健康分析的系统及其使用方法,利用海量医疗数据,对目标人群/应用场景和相关参数标准进行细分充分掌握用户的个体化信息,建立针对用户的个性化健康指标模型,精细化智能分析用户指标是否正常,从而提高指标检查的准确率,提升医疗水平,避免误诊造成的损害。
图1为本发明一种利用个性化指标进行健康分析的系统的框图。
图2为本发明一种利用个性化指标进行健康分析的系统的使用方法的流程图。
为进一步阐述本发明达成预定目的所采取的技术手段及功效,以下结合附图及实施例,对本发明的具体实施方式,详细说明如下。
本发明第一实施例参阅图1。图1为本发明一种利用个性化指标进行健康分析的系统的框图。如图所示,一种利用个性化指标进行健康分析的系统,包括:
数据存储单元11,用于存储用户个性化健康指标模型;
第一信息获取单元12,用于获取待分析的用户指标;
第二信息获取单元13,用于获取用户的相关要素实际信息;
分析单元14,用于将待分析的用户指标和用户的相关要素实际信息基于用户个性化健康指标模型进行分析计算,得出待分析的用户指标的分析结果。
首先,建立用户个性化健康指标模型。
在本发明中,用户指标可以包括:体格检查相关指标、血液学相关指标、血栓与止血相关指标、排泄物/分泌物/体液相关指标、肾脏功能相关指标、肝脏功能相关指标、生物化学相关指标、免疫学相关指标、遗传学相关指标、病原体相关指标、心脏功能相关指标、肺功能相关指标、心理状态相关指标、精神状态相关指标、运动能力相关指标、影像学相关指标、声学相关指标中的至少一项,具体可以包括身高、体重、体温、视力、听力、血糖、红细胞、白细胞、血小板、尿酸、胆固醇、转氨酶、钙、铁、钾、三酸甘油酯、心率、体脂、肺活量、影像学、声学、智力、心理、运动能力等医学指标,还可以包括各种指标的比率如:身高/体重、身高/腰围等,也可以包括各种健康表现、感受、标准如:肤色、舌苔、眼底、体脂、皮肤、肤色、发质、力量,还可以包括与用户身体健康有关的其他指标。
用户个性化健康指标模型是指根据用户个人的历史指标相关信息、用户自身因素与指标的关系、外部因素与指标的关系至少一项综合分析得到适合用户自身的健康指标模型。
用户个性化健康指标模型可以包括指标通常的值或范围,个性化指标的范围划分以及指标在不同范围对分析健康状况的意义,用户自身因素对指标的影响,外部因素对指标的影响,在用户特定自身因素/外部因素条件下指标在不同范围对分析健康状况的意义至少一项。在本发明中,包括单项指标的分析应用和不同临床意义的多项指标组合的分析应用。
通常在医疗、运动、工作等方面的会使用相关指标来分析、评估分析对象的健康状况和相应能力,指标在不同范围区间代表不同的意义,通过分析单项或多项指标所在的范围可以得出相应的结果。通过个性化健康指标模型,可以精准的分析用户在不同条件下相关指标所代表的的健康状况和相关能力水平。
用户自身因素与指标的关系是指用户自身的各种要素对指标产生的影响。可能会影响指标的用户自身的要素可以包括:人群因素如国籍、种族、性别、年龄等;遗传因素如遗传基因、遗传基因变异/改变、遗传缺陷、遗传病史、家族病史等;生理因素如体能、营养状况、听力、视力、味觉、嗅觉、触觉、呼吸、运动协调、消化、吸收、排泄、性功能、生育等状况和相关能力的水平;心理因素如心理疾病、情绪、感受、智力、注意力、记忆力、感知力、沟通能力、表达能力 等;身体因素如身高、体重、力量、速度、身体发育情况等;生活状态/生活史因素如工作信息、饮食相关、学习信息、运动信息、娱乐信息、作息信息等;疾病因素如诊断、症状等,还可以包括其他可能影响指标的自身要素。
外部因素与指标的关系是指外部的各种要素对指标产生的影响。可能会影响指标的外部要素可以包括:环境因素如温度、湿度、气压、季节、经度、纬度、海拔、空气质量、地形、地貌、含氧量、光照、紫外线、辐射、电磁波、噪音、流行病、植物等,还可以包括药物、医疗器械、饮食、生理/心理创伤、手术、辐射、理疗、康复、操作、检查、心理干预等因素,以及其他可能影响指标的外部要素。
时间因素如年/季/月/节律/旬/周/天、早晨/上午/中午/下午/晚间/夜间、起床后/睡觉前/运动后/吃饭前等与指标的关系。
在本发明中,可以通过观察、检查、检测等方法收集用户在各种条件下的指标,以及用户相关指标在不同范围区间时对身体的整体、各系统、各器官、各部委、各组织、各类细胞、各类分子层面以及各项生理功能、心理状况的实时影响、短期影响和长期影响,用于分析用户的相关指标的正常/合理/健康范围,以及指标在不同范围区间可能对健康状况带来的影响,确定指标在各范围区间的健康相关意义,还可以用于分析得出用户自身因素对指标的影响和/或外部因素对指标的影响以及时间因素与指标的关系。也可以结合包括:生理学、病理学、遗传学、药理学、心理学、环境科学等人体健康相关知识体系 研究出的中各项因素对人体相关指标的影响来建立、推测、调整相关关系。指标影响的分析包括:哪些因素会对指标产生影响,这些因素会对指标产生什么影响以及影响的程度,以及在不同条件下指标在不同范围时的实际健康意义。可以通过建立用户自身因素对指标的影响的相关规则和外部因素对指标的影响的相关规则、时间因素对指标影响的相关规则来具体描述用户自身因素、外部因素、时间因素对指标的影响。
在获取各维度要素的组合后,进行数据集合,评估是否有共性特征,对有共性特征的要素组合,使用各种相关统计学方法、大数据监测等方法建立用户个性化健康指标模型。在本发明中,用户个性化健康指标模型是一个用户或一类用户的模型。例如:可以是某个特定用户的模型,或者是一类人群的模型如患有糖尿病的体重60-70公斤的老年男性模型、年龄16-18岁的回族女性运动员模型等,还可以家庭模型、班级模型、部队模型等。模型可以是静态模型,如:自身指标、表现、特征等,也可以是动态模型,如:受到影响/刺激后的指标变化、服药后、吃饭后、睡觉前等。
为了提高建立用户个性化健康指标模型的效率,在本发明中,可以先对已有数据基于不同用户群体来分类,建立一类用户的模型,再慢慢细化,使用户群体分类越来越细化,最终,建立针对每个个人用户的用户个性化健康指标模型。分类可以是基于专业性/权威性的研究结果、文献、资料、经验建立,也可以基于信息重整/信息分析/大 数据分析建立,也可以通过人工智能深度学习建立,还可以通过数据挖据分析后建立,各种模型也可以在使用过程中不断调整及完善。
在本发明中,通过建立个性化指标数据库,来存储用户自身因素对指标的影响的相关规则、外部因素、时间因素对指标的影响的相关规则。
用户自身因素对指标的影响的相关规则可以包括:人群因素的相关规则、遗传因素的相关规则、生理因素的相关规则、心理因素的相关规则、身体因素的相关规则、生活状态/生活史的相关规则、疾病情况的相关规则中的至少一项。
人群因素的相关规则及其要素可以包括:国籍、种族、性别、年龄等对各种指标可能产生的影响,还可以包括:影响指标的各因素对指标影响的程度、排序、有效性、用户/医师/专家的评价等。
遗传因素的相关规则及其要素可以包括:遗传基因、遗传基因变异/改变、遗传缺陷、遗传病史、家族病史等对各种指标可能产生的影响,还可以包括:影响指标的各因素对指标影响的程度、排序、有效性、用户/医师/专家的评价等。
生理因素的相关规则及其要素可以包括:体能、营养状况、听力、视力、味觉、嗅觉、触觉、呼吸、运动协调、消化、吸收、排泄、性功能、生育等状况和相关能力的水平对各种指标可能产生的影响,还 可以包括:影响指标的各因素对指标影响的程度、排序、有效性、用户/医师/专家的评价等。
心理因素的相关规则及其要素可以包括:心理疾病、情绪、感受、智力、注意力、记忆力、感知力、沟通能力、表达能力等对各种指标可能产生的影响,还可以包括:影响指标的各因素对指标影响的程度、排序、有效性、用户/医师/专家的评价等。
身体因素的相关规则及其要素可以包括:身高、体重、力量、速度、身体发育情况等对各种指标可能产生的影响,还可以包括:影响指标的各因素对指标影响的程度、排序、有效性、用户/医师/专家的评价等。
生活状态/生活史的相关规则及其要素可以包括:工作信息、饮食信息、学习信息、运动信息、娱乐信息、作息信息等对各种指标可能产生的影响,还可以包括:影响指标的各因素对指标影响的程度、排序、有效性、用户/医师/专家的评价等。
运动情况的相关规则及其要素可以包括:运动项目、运动时间、运动强度、运动频率、运动强度等对各种指标可能产生的影响。
作息情况的相关规则及其要素可以包括:起床时间、睡眠时间、作息习惯、睡眠质量等因素对各种指标可能产生的影响。
学习情况的相关规则及其要素可以包括:学习强度、学习难度、学习时间、学习方式等因素对各种指标可能产生的影响。
工作情况的相关规则及其要素可以包括:工作种类、工作强度、工作时间等因素对各种指标可能产生的影响。
疾病情况的相关规则及其要素可以包括:症状、诊断、指标、感受、病史、用药史、过敏史、手术史等对各种指标可能产生的影响,还可以包括:影响指标的各因素对指标影响的程度、排序、有效性、用户/医师/专家的评价等。
外部因素对指标的影响的相关规则包括:环境、药物、医疗器械、饮食、生理/心理创伤、手术、辐射、理疗、康复、操作、检查、心理干预中的至少一项。
环境因素的相关规则及其要素可以包括:温度、湿度、气压、季节、经度、纬度、海拔、空气质量、地形、地貌、含氧量、光照、紫外线、辐射、电磁波、噪音、流行病、植物等对各种指标可能产生的影响,还可以包括:影响指标的各因素对指标影响的程度、排序、有效性、用户/医师/专家的评价等。
药物因素的相关规则及其要素可以包括:使用药物的种类、成分、剂型、给药途径、用药时间、用药频率、用药剂量等对各种指标可能产生的影响,还可以包括:影响指标的各因素对指标影响的程度、排序、有效性、用户/医师/专家的评价等。
时间因素与指标关系的相关规则及其要素可以包括:年/季/月/节律/旬/周/天、早晨/上午/中午/下午/晚间/夜间、起床后/睡觉前/运动后/吃饭前等对各种指标可能产生的影响,还可以包括:影响指标的各因素对指标影响的程度、排序、有效性、用户/医师/专家的评价等。
在本发明中,时间信息包括与自然节律相关时间要素属性如:年、月、日、日间/夜间、早晨/上午/中午/下午/晚间/夜间、季节、节气、阴历年/月/日等;与时辰相关时间要素属性如:小时、分钟、时辰等;与个人作息生活规律相关时间要素属性如:起床、餐前/餐中/餐后、睡前;与特定病情/症状/指标/心理状态/生理状态/感受相关时间要素属性如:体温超过某值时、疼痛时、疲倦时、眩晕时、心慌时、恶心时、肌酐清除率超过某值时、血压低于某值时、心率超过某值时、情绪低落时、感觉恐惧、亢奋时等;与治疗方法相关的时间要素属性如:某检查前一天、某手术后3小时、换某药时、某理疗项目后等;与患者年龄/发育阶段相关的时间要素属性如:出生后2周、乳牙萌出后、青春期发育后、停经后半年、更年期等;与患者生理周期相关的时间要素属性如:月经第一天等;与患者生育/性生活相关的时间要素属性如:夫妻同房后24小时、准备怀孕前3月、怀孕24周、生产后3天等;与患者工作/活动/运动/学习相关时间要素属性如:坐车前、坐船前、高空操作前、长时间阅读后等。
在本发明中,用户自身因素对指标的影响的相关规则和外部因素对指标的影响的相关规则、时间因素对指标的影响的相关规则还可以包括各要素需要组合生效的情况,相关规则可由多要素之间按照多层次的与/或/非关系以及由相关公式定义的关系组合之后的综合条件定义,还可以包括相关规则与时间维度有关的情况。
在本发明中,用户自身因素、外部因素、时间因素对指标的影响的相关规则可以通过观察、检查、检测等方法收集用户/用户群体在各种条件下的指标相关数据进行计算分析得到,也可以基于各种医学手册、指南、临床治疗路径、处方集、药典、专家共识、医联体/医院/科室内部的会议纪要及共识、行业规范、教材、论文、著作、发明、科学推论、实验报告、试验报告、数据分析报告、测试报告、检测报告、审批文件、相关法规、相关指导意见、相关政策、相关制度、相关目录、相关文献资料、相关医生/护士/药师/护理人员/患者/售货员的评价/报告、其他文献资料、其他具有专业性/权威性的研究结果,还可以基于循证医学的方法,或基于现有数据的概率推测,还可以包括需要人工设定的各种权重/各种等级/各种排序等来源建立,也可以包括基于信息重整/信息分析/大数据分析建立,也可以包括通过人工智能深度学习建立,也可以包括通过数据挖掘分析后得出,也可以包括通过数据统计分析/人工智能深度学习后得经过人工设定出的规则和指标,也可以是通过上述方法组合建立,因而在实际使用过程中具有指导性。数据库可以是按版本更新,也可以是根据实际数据实时更新。个性化指标数据库可以是关系型数据库,也可以是非关系型 数据库;可以是表数据库,也可以是图数据库;相关数据可以是结构化数据,也可以是非结构化数据。个性化(健康)指标数据库的数据形式可以是文本、图表、音频、视频或其他适合的形式。
然后,获取待分析的用户指标。
在本发明中,用户指标可以包括:体格检查相关指标、血液学相关指标、血栓与止血相关指标、排泄物/分泌物/体液相关指标、肾脏功能相关指标、肝脏功能相关指标、生物化学相关指标、免疫学相关指标、遗传学相关指标、病原体相关指标、心脏功能相关指标、肺功能相关指标、心理状态相关指标、精神状态相关指标、运动能力相关指标、影像学相关指标、声学相关指标。具体包括身高、体重、体温、视力、听力、血糖、红细胞、白细胞、血小板、尿酸、胆固醇、转氨酶、钙、铁、钾、三酸甘油酯、心率、体脂、肺活量、影像学、声学、智力、心理、运动能力等医学指标,还可以包括各种指标的比率如:身高/体重、身高/腰围等,也可以包括各种健康表现、感受、标准如:肤色、舌苔、眼底、体脂、皮肤、肤色、发质、力量,还可以包括与用户身体健康有关的其他指标。
获取用户指标的来源可以是:用户的医嘱、病历/电子病历、诊断报告、检查/检验结果、监测结果、营养评估报告;用户学习、工作、生活、运动等状态的目标自述或事先设定;患者相关状态、生理功能;事先设定的时间、季节、时辰、间隔、周期等信息;事先设定的监测各项生理指标的变化等途径。
再然后,获取用户的相关要素实际信息。
获取用户的相关要素实际信息是指根据用户自身实际情况(自身因素)对指标的影响的相关规则和外部情况(外部因素)对指标的影响的相关规则所获取的与可能会影响指标的各相关要素的用户实际信息,可以包括:用户的基本信息、遗传相关信息、家族健康相关信息如家族病史、病史、过敏史、区域流行病史、用药史、手术史、手术方案使用史、学习情况、工作情况、运动情况、家庭情况、生活环境、兴趣爱好、依从性情况、耐受情况、医疗保险情况,以及生理/心理/学习/工作/体能/睡眠/运动/情绪/代谢/视力/听力/智力/注意力/饮食/免疫/生长发育/记忆力/生育能力状况和作息时间等信息。还可以包括温度、湿度、气压、季节、经度、纬度、海拔、空气质量、地形、地貌、含氧量、光照、紫外线、辐射、电磁波、噪音、流行病、植物等信息,以及与用户及指标有关的时间信息等等。
在本发明中,获取用户的相关要素实际信息的来源可以是用户个人信息数据库、健康档案、家庭或家族成员健康记录、医嘱、病历、药历、处方、电子病历、医疗机构信息系统、药店/医疗器械店信息系统、就医记录、治疗记录、评估报告、咨询记录、调查记录、作息记录/计划、饮食记录/计划、购物记录/计划、用药记录/计划、治疗记录/计划、运动记录/计划、工作记录/计划、学习记录/计划、康复记录/计划、保健记录/计划、检验/检查单、手术计划/记录、健康管理计划、收费单、临床治疗路径、检查/检验结果、手术设定/记录、 基因检测结果,也可以从用户/医生/护士/看护人的使用/处方/推荐记录获得,也可以是由各种穿戴设备、传感器、电子设备、电子定位系统、天气预报系统、电子温湿度/气压检测设备、智能音箱、智能家居系统、智能监视/监测系统、智能眼镜、智能马桶、智能地面、智能秤、智能检测/分析设备、电子输液系统、手术机器人、人脸识别分析、指纹识别、语音识别、步态识别、定位系统、社交平台等设备或系统提供,也可以是由用户生活、学习、工作、运动、出行、社交、购物、饮食、作息、娱乐等信息通过大数据分析得到,也可由用户的人种/家族/区域/年龄/婚姻/生育等相关信息分析得到。缺失信息也可以由用户提供或完善相关信息,也可以是将相关性高的信息主动提示用户/医师去观察、监测、检查、问询、分析、确认、记录是否出现相关情况或获取相关指标/表现/感受/症状/生理改变。评估报告包括生理、心理、经济、信用、运动能力等。智能检测/分析设备包括:气味、图像、声音、脉象、X光片、CT、核磁、超声波检查、脑电波、质谱分析仪、舌诊分析、眼底检查、胃镜、肠镜、导管、微创镜、心率、血氧量、血压、血糖、血脂、体温、血液检查、尿液检查、粪便检查、脉博测量/分析设备、体重/体脂称等。
之后,将待分析的用户指标和用户的相关要素实际信息基于用户个性化健康指标模型进行分析计算,得出待分析的用户指标的分析结果。
将待分析的用户指标和用户的相关要素实际信息依据用户个性化健康指标模型进行分析计算,先确定指标通常的值或范围,以及指标在不同范围对健康状况的意义,然后确定用户自身因素、外部因素、时间因素对指标的影响,以及指标在不同条件下值或范围对健康状况的意义。根据用户相关要素信息以及指标/指标组合的值,结合个性化健康指标模型,分析得出指标/指标组合的健康相关意义。如:根据用户的实际情况,用户的相关指标/指标组合符合用户实际自身因素和外部因素、时间因素等条件下的指标的正常值或在正常范围之内,则可以认为待分析的用户指标的分析结果为正常,如果否,则待分析的用户指标的分析结果为异常,并根据在不同条件下的指标范围及其健康意义给出相应其他分析结果。
通过本发明的利用个性化指标进行健康分析的系统,可以智能分析用户指标是否正常,或者分析用户的相关状态、能力,从而提高指标检查的正确率,提升医疗水平,避免由于没有个性化的指标标准而造成的误诊,以及由于误诊而造成的对用户的损害,或者对用户状态的误判。
本发明的利用个性化指标进行健康分析的系统可以用于体检、诊断、治疗、康复、训练、学习、工作、运动、饮食/营养、作息、用药、医疗器械、手术、操作、理疗、生育的建议、管理、检测、评价。利用个性化指标进行健康分析的方法得出的对用户指标的分析结果,可以用于提醒、警告、限制、禁止、协助、指导用户/医师/专家诊断。 也可以用于用户/医师/专家与推荐/管理/指导/咨询岗位或二级推荐/管理/指导/咨询中心讨论的数据基础以及高级岗位回复/自动回复的数据基础。也可以事后作为医师/专家等人员专业水平评价/专业规范性评价/绩效评价/绩效考核的依据。例如:利用个性化指标进行治疗,可以避免可能存在指标范围的个体化偏差,以及一些标准值存在范围过大,不够精准的问题,精确分析适合该用户的治疗方法,采用适合的药物和医疗器械,提高治疗的效果。
本发明的利用个性化指标进行健康分析的系统还包括针对用户指标的分析结果和用户的实际情况,给出用户相关的健康状况分析结果,提醒用户/医师,用户指标可能导致的各种状况、风险及其检测/发现的方法,以及相关应对方法。
本发明的利用个性化指标进行健康分析的系统所获取的各种数据,可以是全部的数据,也可以根据需要设定某些条件的数据,例如:某个时间段内的数据、用户在某个医院/科室/医生的数据等。
在本发明中,利用个性化指标进行健康分析的系统还包括使用用户指标多维度要素属性字典,用以处理待分析的用户指标、用户的相关要素实际信息等来自不同来源、不同数据结构、不同描述、不同数据标准的数据与个性化(健康)指标数据库中的相关信息和规则的匹配/比对,含模糊匹配算法。用户指标多维度要素属性字典其中包含用户指标相关各要素属性的标准字典、异名对应字典、模糊匹配字典中的至少一个,包括上述各项涉及的各维度要素属性的异名、结构、 组合以及相互对应关系等数据。将获取的信息与个性化(健康)指标数据库中的相关信息和规则进行比对可以是使用获取的原始信息与个性化(健康)指标数据库中用户指标多维度属性字典所带的各项目异名对应字典进行对照,也可是首先将获取的原始信息转换对应各标准字典后再与个性化(健康)指标数据库进行对照,或者将获取的原始信息与个性化(健康)指标数据库各字典进行模糊匹配对照使用,或者是上述方法的组合。用户指标多维度要素属性字典可以单独建立,也可以包括在个性化(健康)指标数据库中。
在本发明中,除了采用用户指标多维度要素属性字典进行匹配,还可以通过语音识别技术、语义识别技术、不同语言的翻译、OCR识别技术、虚拟现实技术、增强现实技术、手势识别技术等方法处理获取的信息与个性化(健康)指标数据库中相关信息和规则的匹配/比对。
在本发明中,利用个性化指标进行健康分析的系统还可以包括用户个人信息数据库,用于获取用户的相关要素实际信息时提供或补充用户的相关信息。用户个人信息数据库中包括用户的相关信息,其内容包括:用户基本信息、遗传相关信息、家族健康相关信息如家族病史、病史、过敏史、区域流行病史、用药史、手术史、学习情况、工作情况、运动情况、家庭情况、生活环境、兴趣爱好、依从性情况、耐受情况、医疗保险情况,以及生理/心理/学习/工作/体能/睡眠/运 动/情绪/代谢/视力/听力/智力/注意力/饮食/免疫/生长发育/记忆力/生育能力状况和作息时间等信息。
用户个人信息数据库的数据获取方法包括从其他信息系统、设备或者数据库中获取或接入后分析得到,或由手工录入,或者是在数据库相关信息使用过程中不断的获取和分析出的新的数据,也可以是上述方法的组合。
在本发明中,利用个性化指标进行健康分析的系统的各项分析结果以及评估、报告以及其他输出信息,可以由专业人员根据个性化(健康)指标数据库以及各项数据人工完成,或者在系统的支持下人工完成,也可以让系统自动完成,也可以由人工智能自动完成,也可以系统/人工智能完成部分与手工完成部分结合的方式完成。相关分析结果应用/输出的形式可以是提醒、通知、报表、报告、系统权限限制、系统流程限制、相关系统/设备/文件/权限的控制等功能实现;也可以是提供相关接口,与其他管理系统对接实现;也可以是提供结果,由用户手工实现相关结果的应用。
在本发明中,利用个性化指标进行健康分析的系统的用户、专家以及相关角色的身份识别、确认、登录、电子签章,以及个人信息、医嘱信息和各项分析结果的储存、传输和应用,可以通过各种方法进行加密,防止相关身份/权限被盗用或者信息泄露。其中加密算法包括对称加密算法和/或非对称加密算法,例如:大整数分解问题类加密算法、离散对数问题类加密算法、椭圆曲线类加密算法,具体如区 块链技术等,加密硬件可以采用密钥、加密狗、加密硬盘等,还可以结合用户设备硬件、网络地址等进行加密,还可以是上述方法相互结合进行加密。
在本发明中,利用个性化指标进行健康分析的系统的数据传输方式可以是数据线方式、有线网络、无线传输方式、射频识别方式、磁卡读写方式、移动硬盘方式、NFC方式、条形码方式、二维码方式等。无线传输方式包括:红外、蓝牙、wifi、微波、可见光波、电信无线网络、超声波/声波、无线电等方式。
在本发明中,利用个性化指标进行健康分析的系统可以以单机使用,也可以是以移动硬盘、盒子、卡等接入式外部硬件供用户使用,也可以安装在本地服务器支持本地用户使用,也可以安装在私有云服务器支持私有云用户使用,也可以安装在互联网面向互联网用户提供服务。
如图2为本发明第二实施例一种利用个性化指标进行健康分析的系统的使用方法的流程图。如图所示,本发明的一种利用个性化指标进行健康分析的系统的使用方法包括:
建立用户个性化健康指标模型;
获取待分析的用户指标;
获取用户的相关要素实际信息;
将待分析的用户指标和用户的相关要素实际信息基于用户个性化健康指标模型进行分析计算,得出待分析的用户指标的分析结果。
本发明的一种利用个性化指标进行健康分析的系统的使用方法与本发明的一种利用个性化指标进行健康分析的系统的技术特征一一对应,可以参照前述一种利用个性化指标进行健康分析的系统的说明,在此不再赘述。
综上所述,本发明的一种利用个性化指标进行健康分析的系统及其使用方法,利用个性化指标进行健康分析的系统包括:数据存储单元,第一信息获取单元,第二信息获取单元和分析单元。利用个性化指标进行健康分析的方法包括:建立用户个性化健康指标模型,获取待分析的用户指标,获取用户的相关要素实际信息,将待分析的用户指标和用户的相关要素实际信息基于用户个性化健康指标模型进行分析计算,得出待分析的用户指标的分析结果。通过本发明的一种利用个性化指标进行健康分析的系统及其使用方法,利用海量医疗数据,对目标人群/应用场景和相关参数标准进行细分充分掌握用户的个体化信息,建立针对用户的个性化健康指标模型,精细化智能分析用户指标是否正常,从而提高指标检查的准确率,提升医疗水平,避免误诊造成的损害。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精 神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
Claims (12)
- 一种利用个性化指标进行健康分析的系统,包括:数据存储单元,用于存储用户个性化健康指标模型;第一信息获取单元,用于获取待分析的用户指标;第二信息获取单元,用于获取用户的相关要素实际信息;分析单元,用于将待分析的用户指标和用户的相关要素实际信息基于用户个性化健康指标模型进行分析计算,得出待分析的用户指标的分析结果。
- 根据权利要求1所述的一种利用个性化指标进行健康分析的系统,其特征在于:所述用户个性化健康指标模型是根据用户个人的历史指标相关信息、用户自身因素与指标的关系、外部因素与指标的关系至少一项分析得到。
- 根据权利要求1所述的一种利用个性化指标进行健康分析的系统,其特征在于:所述用户指标包括:体格检查相关指标、血液学相关指标、血栓与止血相关指标、排泄物/分泌物/体液相关指标、肾脏功能相关指标、肝脏功能相关指标、生物化学相关指标、免疫学相关指标、遗传学相关指标、病原体相关指标、心脏功能相关指标、肺功能相关指标、心理状态相关指标、精神状态相关 指标、运动能力相关指标、影像学相关指标、声学相关指标中的至少一项。
- 根据权利要求2所述的一种利用个性化指标进行健康分析的系统,其特征在于:与指标相关的用户自身因素包括:用户的人群因素、遗传因素、生理因素、心理因素、身体因素、生活状态/生活史、运动情况、作息情况、学习情况、工作情况、疾病情况中的至少一项。
- 根据权利要求2所述的一种利用个性化指标进行健康分析的系统,其特征在于:与指标相关的外部因素包括:环境、药物、医疗器械、饮食、生理/心理创伤、手术、辐射、理疗、康复、操作、检查、心理干预中的至少一项。
- 根据权利要求1所述的一种利用个性化指标进行健康分析的系统,其特征在于:所述个性化健康指标模型还包括时间因素与指标的关系。
- 根据权利要求1所述的一种利用个性化指标进行健康分析的系统,其特征在于:所述系统还包括收集用户/用户群体在各种条件下的用户指标,用于分析得出用户/用户群体自身因素对指标的影响、外部因素对指标的影响、时间因素对指标的影响。
- 根据权利要求1所述的一种利用个性化指标进行健康分析的系统,其特征在于:所述用户个性化健康指标模型是一个用户或一类用户的模型。
- 根据权利要求1所述的一种利用个性化指标进行健康分析的系统,其特征在于:所述系统还包括个性化指标数据库,所述个性化指标数据库包括用户/用户群体自身因素与指标关系的相关规则、外部因素与指标关系的相关规则、时间因素与指标关系的相关规则至少一项。
- 根据权利要求1所述的一种利用个性化指标进行健康分析的系统,其特征在于:所述系统还包括用户个人信息数据库,所述用户个人信息数据库中包括用户的相关信息,用于获取用户的相关要素实际信息时提供或补充用户的相关信息。
- 根据权利要求1所述的一种利用个性化指标进行健康分析的系统,其特征在于:相关分析结果应用于:体检、诊断、治疗方案选择/推荐/监测/评价、药物使用选择/推荐/监测/评价、手术方案选择/推荐/监测/评价、健康监测/评估、康复方案选择/推荐/监测/评价、生理/心理能力评价/评估、潜力评估、训练方案、学习、工作、运动至少一项。
- 一种权利要求1-11中任一权利要求所述的利用个性化指标进行健康分析的系统的使用方法,其特征在于,所述方法包括:建立用户个性化健康指标模型;获取待分析的用户指标;获取用户的相关要素实际信息;将待分析的用户指标和用户的相关要素实际信息基于用户个性化健康指标模型进行分析计算,得出待分析的用户指标的分析结果。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/079175 WO2022183460A1 (zh) | 2021-03-04 | 2021-03-04 | 一种利用个性化指标进行健康分析的系统及其使用方法 |
CN202180000420.8A CN113168919A (zh) | 2021-03-04 | 2021-03-04 | 一种利用个性化指标进行健康分析的系统及其使用方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/CN2021/079175 WO2022183460A1 (zh) | 2021-03-04 | 2021-03-04 | 一种利用个性化指标进行健康分析的系统及其使用方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022183460A1 true WO2022183460A1 (zh) | 2022-09-09 |
Family
ID=76875943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/079175 WO2022183460A1 (zh) | 2021-03-04 | 2021-03-04 | 一种利用个性化指标进行健康分析的系统及其使用方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN113168919A (zh) |
WO (1) | WO2022183460A1 (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115631871A (zh) * | 2022-12-22 | 2023-01-20 | 北京大学第三医院(北京大学第三临床医学院) | 一种药物相互作用等级的确定方法和装置 |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115171840B (zh) * | 2022-06-22 | 2023-03-24 | 哈尔滨海吉雅科技有限公司 | 一种个性化体验套餐生成系统及生成方法 |
CN115870989B (zh) * | 2022-12-30 | 2023-06-20 | 重庆电子工程职业学院 | 基于pvdf凝胶基机器人柔性关节的评价系统 |
CN118711807A (zh) * | 2023-03-25 | 2024-09-27 | 曹庆恒 | 一种虚拟健康系统及其使用方法 |
CN116525123B (zh) * | 2023-06-29 | 2023-09-08 | 安徽省儿童医院(安徽省新华医院、安徽省儿科医学研究所、复旦大学附属儿科医院安徽医院) | 一种基于分析模型的医疗检查落地要素反馈系统及方法 |
CN116784804A (zh) * | 2023-07-19 | 2023-09-22 | 湖南云医链生物科技有限公司 | 一种未病分析评估系统 |
CN117038100B (zh) * | 2023-10-09 | 2024-03-15 | 深圳市乗名科技有限公司 | 一种基于iot技术的健康管理系统 |
CN118116590A (zh) * | 2024-02-23 | 2024-05-31 | 昆明医科大学第一附属医院(云南省皮肤病医院) | 一种地中海贫血基因异常人群分类及健康管理系统 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102521500A (zh) * | 2011-12-06 | 2012-06-27 | 中国电子科技集团公司第十五研究所 | 健康数据分析系统及方法 |
US20150025903A1 (en) * | 2012-01-20 | 2015-01-22 | Martin Mueller-Wolf | "indima apparatus" system, method and computer program product for individualized and collaborative health care |
CN106326654A (zh) * | 2016-08-24 | 2017-01-11 | 北京辛诺创新科技有限公司 | 基于大数据云分析的健康预测系统、智能终端和服务器 |
CN109065160A (zh) * | 2018-05-31 | 2018-12-21 | 广东省科技基础条件平台中心 | 一种基于验查数据与医学共识的健康引导模型的建立方法 |
US20200227172A1 (en) * | 2019-01-14 | 2020-07-16 | Bradley A. Perkins | Determining indicators of individual health |
CN111899874A (zh) * | 2020-07-17 | 2020-11-06 | 上海聚音信息科技有限公司 | 基于用户模型的健康管理系统及方法 |
CN112185561A (zh) * | 2020-09-28 | 2021-01-05 | 平安医疗健康管理股份有限公司 | 用户画像的生成方法、装置和计算机设备 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107506602A (zh) * | 2017-09-07 | 2017-12-22 | 北京海融兴通信息安全技术有限公司 | 一种大数据健康预测系统 |
-
2021
- 2021-03-04 CN CN202180000420.8A patent/CN113168919A/zh active Pending
- 2021-03-04 WO PCT/CN2021/079175 patent/WO2022183460A1/zh active Application Filing
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102521500A (zh) * | 2011-12-06 | 2012-06-27 | 中国电子科技集团公司第十五研究所 | 健康数据分析系统及方法 |
US20150025903A1 (en) * | 2012-01-20 | 2015-01-22 | Martin Mueller-Wolf | "indima apparatus" system, method and computer program product for individualized and collaborative health care |
CN106326654A (zh) * | 2016-08-24 | 2017-01-11 | 北京辛诺创新科技有限公司 | 基于大数据云分析的健康预测系统、智能终端和服务器 |
CN109065160A (zh) * | 2018-05-31 | 2018-12-21 | 广东省科技基础条件平台中心 | 一种基于验查数据与医学共识的健康引导模型的建立方法 |
US20200227172A1 (en) * | 2019-01-14 | 2020-07-16 | Bradley A. Perkins | Determining indicators of individual health |
CN111899874A (zh) * | 2020-07-17 | 2020-11-06 | 上海聚音信息科技有限公司 | 基于用户模型的健康管理系统及方法 |
CN112185561A (zh) * | 2020-09-28 | 2021-01-05 | 平安医疗健康管理股份有限公司 | 用户画像的生成方法、装置和计算机设备 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115631871A (zh) * | 2022-12-22 | 2023-01-20 | 北京大学第三医院(北京大学第三临床医学院) | 一种药物相互作用等级的确定方法和装置 |
Also Published As
Publication number | Publication date |
---|---|
CN113168919A (zh) | 2021-07-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2022183460A1 (zh) | 一种利用个性化指标进行健康分析的系统及其使用方法 | |
Enderby et al. | Therapy outcome measures for rehabilitation professionals: speech and language therapy, physiotherapy, occupational therapy | |
WO2020229705A1 (en) | Remote health monitoring system and method for hospitals and cities | |
US9460264B2 (en) | Devices, systems, and methods for automated data collection | |
US20220246299A1 (en) | Electronic patient advisor and healthcare system for remote management of chronic conditions | |
CN110853723A (zh) | 一种智能药品指导的方法、系统和设备 | |
CN113921124A (zh) | 一种医疗费用管理方法及系统 | |
CN110797115A (zh) | 一种智能推荐医疗检查及检验的方法、系统和设备 | |
CN113871026A (zh) | 一种医疗风险评估系统及方法 | |
CN111223546A (zh) | 一种治疗方案智能审核的方法、系统和设备 | |
CN111145916A (zh) | 一种智能推荐手术方案的方法、系统和设备 | |
JP2016157430A (ja) | 被験者の健康状態を予測する方法およびシステム | |
CN113130026A (zh) | 一种互联网处方审核的系统、方法和计算机介质 | |
CN111223543A (zh) | 一种治疗方案智能指导的方法、系统和设备 | |
JP6969831B1 (ja) | 情報処理方法、情報処理装置及びコンピュータプログラム | |
CN111933247A (zh) | 一种药物相互作用智能管理的方法、系统和设备 | |
CN111161886A (zh) | 一种手术方案智能指导的方法、系统和设备 | |
CN111028915A (zh) | 一种手术方案智能审核的方法、系统和设备 | |
CN113506622A (zh) | 一种智能诊断分析系统及其使用方法 | |
CN111028936A (zh) | 一种医疗检查及检验合理合规性分析的方法、系统和设备 | |
CN115116569A (zh) | 一种用于提供癌症数字化疾病管理的数字化系统 | |
CN113314226A (zh) | 一种过敏反应智能分析的系统、方法和设备 | |
CN113808699A (zh) | 一种治疗方案智能比较系统及其使用方法 | |
Jang et al. | Assessment of Frailty Index at 66 years of Age and Association with Age-Related diseases, disability, and Death over 10 years in Korea | |
CN111128401A (zh) | 一种智能推荐手术项目的方法、系统和设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21928543 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21928543 Country of ref document: EP Kind code of ref document: A1 |