WO2022181908A1 - 중합체 및 이를 이용한 유기 발광 소자 - Google Patents

중합체 및 이를 이용한 유기 발광 소자 Download PDF

Info

Publication number
WO2022181908A1
WO2022181908A1 PCT/KR2021/011754 KR2021011754W WO2022181908A1 WO 2022181908 A1 WO2022181908 A1 WO 2022181908A1 KR 2021011754 W KR2021011754 W KR 2021011754W WO 2022181908 A1 WO2022181908 A1 WO 2022181908A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
substituted
unsubstituted
formula
polymer
Prior art date
Application number
PCT/KR2021/011754
Other languages
English (en)
French (fr)
Inventor
김지훈
이재철
우유진
강성경
유승준
김동윤
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to EP21928202.7A priority Critical patent/EP4276129A1/en
Priority to CN202180092325.5A priority patent/CN116964125A/zh
Priority to US18/275,516 priority patent/US20240141107A1/en
Priority to JP2023544584A priority patent/JP2024503915A/ja
Publication of WO2022181908A1 publication Critical patent/WO2022181908A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/60Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule in which all the silicon atoms are connected by linkages other than oxygen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D165/00Coating compositions based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Coating compositions based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/114Poly-phenylenevinylene; Derivatives thereof
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/141Organic polymers or oligomers comprising aliphatic or olefinic chains, e.g. poly N-vinylcarbazol, PVC or PTFE
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/40Organosilicon compounds, e.g. TIPS pentacene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/631Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/13Morphological aspects
    • C08G2261/132Morphological aspects branched or hyperbranched
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/141Side-chains having aliphatic units
    • C08G2261/1412Saturated aliphatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/148Side-chains having aromatic units
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/16End groups
    • C08G2261/164End groups comprising organic end groups
    • C08G2261/1646End groups comprising organic end groups comprising aromatic or heteroaromatic end groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/316Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain bridged by heteroatoms, e.g. N, P, Si or B
    • C08G2261/3162Arylamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/334Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/41Organometallic coupling reactions
    • C08G2261/411Suzuki reactions
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/95Use in organic luminescent diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present specification relates to a polymer and an organic light emitting device formed using the same.
  • the organic light emitting phenomenon is one example in which electric current is converted into visible light by an internal process of a specific organic molecule.
  • the principle of the organic light emitting phenomenon is as follows. When the organic material layer is placed between the anode and the cathode, when a current is applied between the two electrodes, electrons and holes are injected into the organic material layer from the cathode and the anode, respectively. Electrons and holes injected into the organic material layer recombine to form excitons, and the excitons fall back to the ground state and emit light.
  • An organic electroluminescent device using this principle is generally a cathode, an anode, and an organic material layer positioned therebetween, for example, an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer.
  • pure organic materials or complex compounds in which organic materials and metals are complexed occupy most of the materials.
  • the hole injection material or the hole transport material an organic material having a p-type property, that is, an organic material that is easily oxidized and has an electrochemically stable state upon oxidation is mainly used.
  • the electron injection material or the electron transport material an organic material having an n-type property, that is, an organic material that is easily reduced and has an electrochemically stable state upon reduction is mainly used.
  • a material having both p-type and n-type properties that is, a material having a stable form in both oxidation and reduction states, is preferred, and a material with high luminous efficiency that converts excitons into light when formed desirable.
  • the material used in the organic light emitting device additionally has the following properties.
  • the material used in the organic light emitting device has excellent thermal stability. This is because joule heating occurs due to the movement of electric charges in the organic light emitting diode.
  • NPB N,N'-Di(1-naphthyl)-N,N'-diphenyl-(1,1'-biphenyl)-4,4'-diamine
  • the transition temperature has a value of 100° C. or less, there is a problem in that it is difficult to use the organic light emitting device that requires a high current.
  • a material used in the organic light emitting device must have an appropriate band gap and a Highest Occupied Molecular Orbital (HOMO) or Lowest Unoccupied Molecular Orbital (LUMO) energy level.
  • HOMO Highest Occupied Molecular Orbital
  • LUMO Lowest Unoccupied Molecular Orbital
  • PEDOT:PSS Poly(3,4-ethylenedioxythiophene) doped:poly(styrenesulfonic acid)
  • PEDOT:PSS Poly(3,4-ethylenedioxythiophene) doped:poly(styrenesulfonic acid)
  • LUMO energy of an organic material used as a light emitting layer material Since the LUMO energy level is lower than the level, it is difficult to manufacture an organic light emitting device with high efficiency and long life.
  • the material used for the organic light emitting device must have excellent chemical stability, charge mobility, and interfacial properties with an electrode or an adjacent layer. That is, the material used for the organic light emitting diode should be less deformed by moisture or oxygen.
  • the density of holes and electrons in the light emitting layer of the organic light emitting device should be balanced to maximize exciton formation.
  • the interface with the electrode including the metal or metal oxide should be good.
  • the material used in the organic light emitting device for the solution process should additionally have the following properties.
  • the layers subjected to solution processing must be solvent and material resistant to other layers.
  • a curing group is introduced like VNPB (N4,N4'-di(naphthalen-1-yl)-N4,N4'-bis(4-vinylphenyl)biphenyl-4,4'-diamine) to apply a solution and then heat treatment or
  • a material capable of forming a self-cross-linked polymer on a substrate through UV (ultraviolet) irradiation or forming a polymer with sufficient resistance to the next process is preferable, such as HATCN (Hexaazatriphenylenehexacarbonitrile). Materials which can themselves have solvent resistance are also desirable.
  • An object of the present specification is to provide a polymer and an organic light emitting device formed using the same.
  • An exemplary embodiment of the present specification provides a polymer represented by the following formula (1).
  • C is a substituted or unsubstituted arylene group; Or a substituted or unsubstituted divalent heterocyclic group,
  • E1 and E2 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; a substituted or unsubstituted alkyl group; a substituted or unsubstituted silyl group; a substituted or unsubstituted aryl group; a substituted or unsubstituted arylamine group; a substituted or unsubstituted siloxane group; crosslinking group; or a combination thereof,
  • a, b and c are each a mole fraction
  • a is a real number 0 ⁇ a ⁇ 1,
  • b is a real number of 0 ⁇ b ⁇ 1
  • c is a real number of 0 ⁇ c ⁇ 1
  • Ar1, Ar2, L1 and L2 are the same as or different from each other, and are each independently a substituted or unsubstituted arylene group,
  • R1 to R3 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted silyl group; a substituted or unsubstituted aryl group; a substituted or unsubstituted heterocyclic group; a substituted or unsubstituted arylamine group; Or a substituted or unsubstituted siloxane group,
  • n1 to n3 are each an integer of 1 to 4,
  • n is an integer of 3 or 4
  • Z is CRa; SiRa; N; Or a trivalent substituted or unsubstituted aryl group,
  • Z is C; Si; Or a tetravalent substituted or unsubstituted aryl group,
  • Ra is hydrogen; a substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group,
  • Y is a direct bond; a substituted or unsubstituted alkylene group; Or a substituted or unsubstituted arylene group,
  • Y is a direct bond; Or in the case of a substituted or unsubstituted alkylene group, Z is a trivalent or tetravalent substituted or unsubstituted aryl group,
  • Another exemplary embodiment of the present specification provides a polymer including a unit represented by the following formula (2) and a terminal group represented by the following formula (5).
  • Ar1, Ar2, L1 and L2 are the same as or different from each other, and are each independently a substituted or unsubstituted arylene group,
  • R1 to R3 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted silyl group; a substituted or unsubstituted aryl group; a substituted or unsubstituted heterocyclic group; a substituted or unsubstituted arylamine group; Or a substituted or unsubstituted siloxane group,
  • n1 to n3 are each an integer of 1 to 4,
  • E is hydrogen; heavy hydrogen; a substituted or unsubstituted alkyl group; a substituted or unsubstituted silyl group; a substituted or unsubstituted aryl group; a substituted or unsubstituted arylamine group; a substituted or unsubstituted siloxane group; crosslinking group; or a combination thereof,
  • Another embodiment of the present specification is a first electrode; a second electrode; and at least one organic material layer provided between the first electrode and the second electrode, wherein at least one of the organic material layers includes the polymer.
  • the polymer according to an exemplary embodiment of the present specification includes a tert-butyl group having a general formula divalent. Accordingly, the uniformity and solubility of the polymer to be prepared is improved.
  • the polymer according to an exemplary embodiment of the present specification may be applied to a hole transport layer of an organic light emitting device to improve performance and lifespan characteristics of the device.
  • FIG. 1 and 2 are diagrams illustrating the structure of an organic light emitting device according to some embodiments of the present specification.
  • 3 is a view showing the GPC measurement results of the polymers prepared in some embodiments of the present specification.
  • FIG. 4 is a view showing the film retention rate test results of the thin film formed with the coating composition 1 prepared in Experimental Example 2-1.
  • FIG. 5 is a view showing the test results of the film retention rate of the thin film formed with the coating composition 2 prepared in Comparative Example 2-1.
  • the present specification provides a polymer represented by the following formula (1).
  • C is a substituted or unsubstituted arylene group; Or a substituted or unsubstituted divalent heterocyclic group,
  • E1 and E2 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; a substituted or unsubstituted alkyl group; a substituted or unsubstituted silyl group; a substituted or unsubstituted aryl group; a substituted or unsubstituted arylamine group; a substituted or unsubstituted siloxane group; crosslinking group; or a combination thereof,
  • a, b and c are each a mole fraction
  • a is a real number 0 ⁇ a ⁇ 1,
  • b is a real number of 0 ⁇ b ⁇ 1
  • c is a real number of 0 ⁇ c ⁇ 1
  • Ar1, Ar2, L1 and L2 are the same as or different from each other, and are each independently a substituted or unsubstituted arylene group,
  • R1 to R3 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted silyl group; a substituted or unsubstituted aryl group; a substituted or unsubstituted heterocyclic group; a substituted or unsubstituted arylamine group; Or a substituted or unsubstituted siloxane group,
  • n1 to n3 are each an integer of 1 to 4,
  • n is an integer of 3 or 4
  • Z is CRa; SiRa; N; Or a trivalent substituted or unsubstituted aryl group,
  • Z is C; Si; Or a tetravalent substituted or unsubstituted aryl group,
  • Ra is hydrogen; a substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group,
  • Y is a direct bond; a substituted or unsubstituted alkylene group; Or a substituted or unsubstituted arylene group,
  • Y is a direct bond; Or in the case of a substituted or unsubstituted alkylene group, Z is a trivalent or tetravalent substituted or unsubstituted aryl group,
  • Chemical Formula 2 includes a tert-butyl group. Accordingly, the uniformity and solubility of the polymer to be prepared is improved. In addition, the polymer has the effect that the molecular weight can be controlled by adjusting the size of the alkyl group.
  • improving the uniformity of the polymer means that the molecular weight distribution (PDI) of the prepared polymer is narrow.
  • the molecular weight distribution (PDI) is calculated through the following formula (1).
  • PDI weight average molecular weight (Mw) / number average molecular weight (Mn)
  • the large molecular weight distribution of the polymer means that molecules of various molecular weights are distributed, which means that it is difficult to reproducibly synthesize the polymer. Therefore, the higher the molecular weight distribution, the lower the uniformity of the polymer.
  • the molecular weight of the polymer is measured by a gel permeation chromatography (GPC) method.
  • the polymer has a molecular weight distribution (PDI) of 1 to 10.
  • PDI molecular weight distribution
  • the polymer has a molecular weight distribution of 1 to 5. More preferably, the polymer has a molecular weight distribution of 1 to 3.
  • substitution means that a hydrogen atom bonded to a carbon atom of a compound is replaced with another substituent, and the position to be substituted is not limited as long as the position at which the hydrogen atom is substituted, that is, a position where the substituent is substitutable, is not limited, and when two or more are substituted , two or more substituents may be the same as or different from each other.
  • substituted or unsubstituted refers to deuterium; halogen group; an alkyl group; cycloalkyl group; alkoxy group; aryloxy group; amine group; aryl group; And it means that it is substituted with one or two or more substituents selected from the group consisting of a heterocyclic group, is substituted with a substituent to which two or more of the above exemplified substituents are connected, or does not have any substituents.
  • a substituent in which two or more substituents are connected may be a biphenyl group. That is, the biphenyl group may be an aryl group or may be interpreted as a substituent in which two phenyl groups are connected.
  • examples of the halogen group include fluorine (F), chlorine (Cl), bromine (Br) or iodine (I).
  • the alkyl group may be linear or branched, and the number of carbon atoms is not particularly limited, but is preferably 1 to 60. According to an exemplary embodiment, the number of carbon atoms in the alkyl group is 1 to 30.
  • Specific examples of the alkyl group include, but are not limited to, a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, an isobutyl group, a tert-butyl group, a pentyl group, a hexyl group, a heptyl group, an octyl group, and the like.
  • carbon number of a cycloalkyl group is not specifically limited, It is preferable that it is 3-60. According to an exemplary embodiment, the carbon number of the cycloalkyl group is 3 to 30. Specific examples of the cycloalkyl group include, but are not limited to, a cyclopropyl group, a cyclobutyl group, a cyclopentyl group, a cyclohexyl group, a cycloheptyl group, and a cyclooctyl group.
  • the alkoxy group may be a straight chain, branched chain or cyclic chain. Although the number of carbon atoms of the alkoxy group is not particularly limited, it is preferably from 1 to 30 carbon atoms. Specific examples of the alkoxy group include methoxy, ethoxy, n-propoxy, isopropoxy, n-butoxy, isobutoxy, tert-butoxy, sec-butoxy, n-pentyloxy, neopentyloxy, iso pentyloxy, n-hexyloxy, 3,3-dimethylbutyloxy, 2-ethylbutyloxy, n-octyloxy, n-nonyloxy, n-decyloxy, and the like, but is not limited thereto.
  • the fluoroalkoxy group means an alkoxy group substituted with F.
  • the amine group is -NH 2 ; an alkylamine group; an arylalkylamine group; arylamine group; an aryl heteroarylamine group; It may be selected from the group consisting of an alkylheteroarylamine group and a heteroarylamine group, but is not limited thereto.
  • the number of carbon atoms of the amine group is not particularly limited, but is preferably 1 to 60.
  • the number of carbon atoms of the aryl group is not particularly limited, but is preferably 6 to 60. According to an exemplary embodiment, the carbon number of the aryl group is 6 to 30.
  • the aryl group may be a monocyclic aryl group or a polycyclic aryl group. The monocyclic aryl group may be a phenyl group, a biphenyl group, a terphenyl group, and the like, but is not limited thereto.
  • the polycyclic aryl group may be a naphthyl group, an anthracenyl group, a phenanthrenyl group, a pyrenyl group, a perylenyl group, a triphenyl group, a chrysenyl group, a fluorenyl group, and the like, but is not limited thereto.
  • examples of the arylamine group include a substituted or unsubstituted monoarylamine group, a substituted or unsubstituted diarylamine group, or a substituted or unsubstituted triarylamine group.
  • the aryl group in the arylamine group may be a monocyclic aryl group or a polycyclic aryl group.
  • the arylamine group including two or more aryl groups may include a monocyclic aryl group, a polycyclic aryl group, or a monocyclic aryl group and a polycyclic aryl group at the same time.
  • the aryl group in the arylamine group may be selected from the examples of the aryl group described above.
  • the arylene group means that the aryl group has two bonding positions, that is, a divalent group. Except that each of these is a divalent group, the description of the aryl group described above may be applied.
  • the heterocyclic group includes one or more atoms other than carbon and heteroatoms, and specifically, the heteroatoms may include one or more atoms selected from the group consisting of O, N, Se and S, and the like.
  • the number of carbon atoms of the heterocyclic group is not particularly limited, but preferably has 2 to 30 carbon atoms.
  • the heterocyclic group may be monocyclic or polycyclic.
  • heterocyclic group examples include a thiophene group, a furan group, a pyrrole group, an imidazole group, a thiazole group, an oxazole group, an oxadiazole group, a pyridine group, a bipyridine group, a pyrimidine group, a triazine group, a triazole group, an acridine group.
  • pyridazine group pyrazine group, quinoline group, quinazoline group, quinoxaline group, phthalazine group, pyrido pyrimidine group, pyrido pyrazine group, pyrazino pyrazine group, isoquinoline group, indole group, carbazole group, benz Oxazole group, benzimidazole group, benzothiazole group, benzocarbazole group, benzothiophene group, dibenzothiophene group, benzofuran group, phenanthridine group, phenanthroline group, isoxazole group, thia There are a diazole group, a phenothiazine group, a dibenzofuran group, and the like, but is not limited thereto.
  • the divalent heterocycle may be monocyclic or polycyclic, meaning that there are two bonding positions in the heterocyclic group.
  • the divalent heterocyclic group includes, for example, a divalent thiophene group; a divalent carbazole group; divalent dibenzofuran group; and a divalent dibenzothiophene group, but is not limited thereto.
  • the aryloxy group is a group represented by -OR 200
  • R 200 is an aryl group.
  • the aryl group in the aryloxy group is the same as the example of the aryl group described above.
  • the aryloxy group includes a phenoxy group, benzyloxy, p-methylbenzyloxy, p-tolyloxy group, m-tolyloxy group, 3,5-dimethyl-phenoxy group, 2,4,6-trimethylphenoxy group, p -tert-butylphenoxy group, 3-biphenyloxy group, 4-biphenyloxy group, 1-naphthyloxy group, 2-naphthyloxy group, 4-methyl-1-naphthyloxy group, 5-methyl-2-naph tyloxy group, 1-anthryloxy group, 2-anthryloxy group, 9-anthryloxy group, 1-phenanthryloxy group, 3-phenanthryloxy group, 9-phenanan
  • the silyl group is a group represented by -SiR 201 R 202 R 203 , R 201 , R 202 and R 203 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; a substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group.
  • the silyl group includes a trimethylsilyl group, a triethylsilyl group, a t-butyldimethylsilyl group, a vinyldimethylsilyl group, a propyldimethylsilyl group, a triphenylsilyl group, a diphenylsilyl group and a phenylsilyl group, but is limited thereto. it is not
  • the siloxane group is -Si(R 204 ) 2 OSi(R 205 ) 3 Or a group represented by -OSi(R 204 ) 3 Si(R 205 ) 3 , wherein R 204 and R 205 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; a substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group.
  • the cross-linkable group may mean a reactive substituent that cross-links between compounds by exposure to heat, light and/or radiation.
  • Crosslinking may be generated by connecting radicals generated while decomposing carbon-carbon multiple bonds and cyclic structures by heat treatment, light irradiation, and/or radiation irradiation.
  • the cross-linkable group is any one of the following structures.
  • the "adjacent" group means a substituent substituted on an atom directly connected to the atom in which the substituent is substituted, a substituent sterically closest to the substituent, or another substituent substituted on the atom in which the substituent is substituted.
  • two substituents substituted at an ortho position in a benzene ring and two substituents substituted at the same carbon in an aliphatic ring may be interpreted as "adjacent" groups.
  • ring is a substituted or unsubstituted hydrocarbon ring; Or it means a substituted or unsubstituted heterocyclic ring.
  • mol fraction means the ratio of the number of moles of a given component to the total number of moles of all components.
  • L1 and L2 are the same as or different from each other, and each independently represents a substituted or unsubstituted arylene group having 6 to 30 carbon atoms.
  • L1 and L2 are the same as or different from each other, and each independently an arylene group having 6 to 30 carbon atoms.
  • L1 and L2 are the same as or different from each other, and each independently a substituted or unsubstituted phenylene group; a substituted or unsubstituted biphenylene group; Or a substituted or unsubstituted terphenylene group.
  • L1 and L2 are the same as or different from each other, and each independently a phenylene group; biphenylene group; or a terphenylene group.
  • Chemical Formula 2 is represented by the following Chemical Formula 2-1.
  • R1 to R3, Ar1, Ar2, and n1 to n3 are the same as defined in Formula 2,
  • R4 and R5 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen group; Or a substituted or unsubstituted alkyl group,
  • n1 and m2 are each an integer of 1 to 3
  • n4 and n5 are each an integer of 1 to 4,
  • n4 and n5 are each 2 or more, the substituents in each parenthesis are the same as or different from each other,
  • each of m1 and m2 is 2.
  • Chemical Formula 2 is represented by the following Chemical Formula 2-2.
  • R1 to R3, Ar1, Ar2, and n1 to n3 are the same as defined in Formula 2,
  • R4 and R5 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen group; Or a substituted or unsubstituted alkyl group,
  • n4 and n5 are each an integer of 1 to 4,
  • n4 and n5 are each 2 or more, the substituents in each parenthesis are the same as or different from each other,
  • Ar1 and Ar2 are the same as or different from each other, and each independently represents a substituted or unsubstituted C6-C30 arylene group.
  • Ar1 and Ar2 are the same as or different from each other, and each independently represents an arylene group having 6 to 30 carbon atoms.
  • Ar1 and Ar2 are the same as or different from each other, and each independently a substituted or unsubstituted phenylene group; a substituted or unsubstituted biphenylene group; Or a substituted or unsubstituted terphenylene group.
  • Ar1 and Ar2 are the same as or different from each other, and each independently a phenylene group; biphenylene group; or a terphenylene group.
  • Chemical Formula 2 is represented by the following Chemical Formula 2-3.
  • R1 to R3, Ar1, Ar2, and n1 to n3 are the same as defined in Formula 2,
  • R4 to R7 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen group; Or a substituted or unsubstituted alkyl group,
  • n4 to n7 are each an integer of 1 to 4,
  • n1, m2, h1 and h2 are each an integer of 1 to 3
  • R1 to R3 are hydrogen; or a substituted or unsubstituted alkyl group.
  • R1 to R3 are hydrogen; or a substituted or unsubstituted C 1 to C 10 alkyl group.
  • R1 to R3 are hydrogen; or an alkyl group.
  • R1 to R3 are hydrogen; methyl group; or a hexyl group.
  • R1 and R3 are hydrogen; or a methyl group.
  • R2 is a hexyl group.
  • R4 and R5 are each hydrogen.
  • h1 and h2 are each 2.
  • R6 and R7 are each hydrogen.
  • L1 and L2 are the same as or different from each other, and each independently represents a substituted or unsubstituted biphenyl group.
  • L1 and L2 are the same as or different from each other, and are each independently a biphenylene group.
  • Ar1 and Ar2 are the same as or different from each other, and each independently represents a substituted or unsubstituted biphenyl group.
  • Ar1 and Ar2 are the same as or different from each other, and each independently represents a biphenylene group.
  • Chemical Formula 2 has the following structure.
  • * is the point of attachment in the polymer.
  • a is a real number of 0 ⁇ a ⁇ 1 as a mole fraction. That is, the polymer necessarily contains A.
  • b is a real number of 0 ⁇ b ⁇ 1 as a mole fraction. That is, the polymer optionally comprises B.
  • B is a unit having three or four attachment points.
  • Y is a direct bond; or a substituted or unsubstituted arylene group.
  • Y is a direct bond; or a substituted or unsubstituted phenylene group.
  • Chemical Formula 3 is represented by any one of the following Chemical Formulas 3-1 to 3-4.
  • Z1 is CRa; SiRa; N; Or a trivalent substituted or unsubstituted aryl group,
  • Z2 and Z3 are the same as or different from each other, and each independently C; Si; Or a tetravalent substituted or unsubstituted aryl group,
  • L10 is a direct bond; Or a substituted or unsubstituted arylene group,
  • Ra is hydrogen; a substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group,
  • R10 to R20 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen group; cyano group; alkoxy group; aryloxy group; fluoroalkoxy group; siloxane group; a substituted or unsubstituted amine group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted aryl group; a substituted or unsubstituted heterocyclic group; or a cross-linkable group, adjacent groups may combine with each other to form a ring,
  • k1 is an integer from 1 to 4,
  • k2 is an integer from 1 to 5
  • Chemical Formula 3 is represented by Chemical Formula 3-1.
  • L10 is a substituted or unsubstituted arylene group.
  • Z1 is CH; SiH; N; or a substituted or unsubstituted trivalent aryl group.
  • Z1 is CH; SiH; N; or a substituted or unsubstituted trivalent phenyl group.
  • Z1 is N; or a trivalent phenyl group.
  • L10 is a direct bond; or a substituted or unsubstituted arylene group having 6 to 30 carbon atoms.
  • L10 is a direct bond; or an arylene group having 6 to 30 carbon atoms.
  • L10 is a direct bond; or a phenylene group.
  • L10 is a direct bond.
  • Chemical Formula 3 is represented by Chemical Formula 3-2.
  • Z2 is C; or Si.
  • B is represented by Formula 3-3.
  • Z3 is C; or Si.
  • Chemical Formula 3 is represented by Chemical Formula 3-4.
  • Chemical Formula 3 is represented by any one of the following structures.
  • R10 to R20 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen group; cyano group; alkoxy group; aryloxy group; fluoroalkoxy group; siloxane group; a substituted or unsubstituted amine group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted aryl group; a substituted or unsubstituted heterocyclic group; or a cross-linkable group, adjacent groups may combine with each other to form a ring,
  • k1 is an integer from 1 to 4,
  • k2 is an integer from 1 to 5
  • R10 to R20 are each hydrogen.
  • Chemical Formula 3 is represented by any one of the following structures.
  • * is the point of attachment in the polymer.
  • Chemical Formula 3 is represented by any one of the following structures.
  • * is the point of attachment in the polymer.
  • Chemical Formula 3 is represented by any one of the following structures.
  • * is the point of attachment in the polymer.
  • c is a real number of 0 ⁇ c ⁇ 1 as a mole fraction. That is, the polymer optionally comprises C.
  • C is a unit having two attachment points.
  • C is a substituted or unsubstituted arylene group; Or a substituted or unsubstituted divalent heterocyclic group,
  • C is an arylene group unsubstituted or substituted with deuterium or a crosslinking group; or a divalent heterocyclic group unsubstituted or substituted with deuterium or a crosslinking group.
  • C is any one of the following structures.
  • Y1 is S, O or NR100
  • R30 to R39 and R100 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; a substituted or unsubstituted alkyl group; a substituted or unsubstituted aryl group; or a cross-linkable group,
  • k3 is an integer of 1 or 2
  • k4 is an integer from 1 to 4,
  • k5 is an integer from 1 to 3
  • k6 is an integer from 1 to 8
  • C is any one of the following structures.
  • Y1 is S, O or NR100
  • R30 to R39 and R100 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; a substituted or unsubstituted alkyl group; a substituted or unsubstituted aryl group; or a cross-linkable group,
  • k3 is an integer of 1 or 2
  • k4 is an integer from 1 to 4,
  • k5 is an integer from 1 to 3
  • k6 is an integer from 1 to 8
  • C is any one of the following structures.
  • * is the point of attachment in the polymer.
  • E1 and E2 are end-capping units of the polymer.
  • E1 and E2 are units having only one attachment point.
  • E1 and E2 are the same as or different from each other, and each independently a substituted or unsubstituted alkyl group; a substituted or unsubstituted aryl group; crosslinking group; or a combination thereof.
  • E1 and E2 are the same as or different from each other, and each independently a substituted or unsubstituted C 1 to C 30 alkyl group; a substituted or unsubstituted aryl group having 6 to 30 carbon atoms; crosslinking group; or a combination thereof.
  • E1 and E2 are the same as or different from each other, and each independently a substituted or unsubstituted C 1 to C 10 alkyl group; a substituted or unsubstituted phenyl group; a substituted or unsubstituted biphenyl group; crosslinking group; or a combination thereof.
  • each of E1 and E2 is any one of the following structures.
  • * is the point of attachment in the polymer.
  • each of E1 and E2 has any one of the following structures.
  • * is the point of attachment in the polymer.
  • a, b and c are determined according to the equivalent ratio of the monomers used in the preparation of the polymer.
  • a is a real number of 0.4 or more.
  • a is a real number from 0.4 to 1.
  • a is a real number of 0.5 to 1.
  • a is a real number of 0.5 to 0.9.
  • a is a real number of 0.5 to 0.8.
  • b is a real number of 0 or more.
  • b is a real number of 0 to 0.5.
  • b is a real number of 0.1 to 0.4.
  • b is a real number of 0.1 to 0.3.
  • b is a real number of 0.1 to 0.3.
  • c is a real number of 0 to 0.2.
  • c is a real number from 0 to 0.1.
  • c 0.
  • a is a real number from 0.4 to 1
  • b is a real number from 0 to 0.4
  • c is a real number from 0 to 0.2.
  • a is a real number of 0.4 to 0.9
  • b is a real number of 0.1 to 0.4
  • c is a real number of 0 to 0.2.
  • the molar ratio of (A+B):(E1+E2) is 40:60 to 98:2.
  • An exemplary embodiment of the present specification provides a polymer including a unit represented by the following formula (2) and a terminal group represented by the formula (5).
  • Ar1, Ar2, L1 and L2 are the same as or different from each other, and are each independently a substituted or unsubstituted arylene group,
  • R1 to R3 are the same as or different from each other, and each independently hydrogen; heavy hydrogen; halogen group; a substituted or unsubstituted alkyl group; a substituted or unsubstituted silyl group; a substituted or unsubstituted aryl group; a substituted or unsubstituted heterocyclic group; a substituted or unsubstituted arylamine group; Or a substituted or unsubstituted siloxane group,
  • n1 to n3 are each an integer of 1 to 4,
  • E is hydrogen; heavy hydrogen; a substituted or unsubstituted alkyl group; a substituted or unsubstituted silyl group; a substituted or unsubstituted aryl group; a substituted or unsubstituted arylamine group; a substituted or unsubstituted siloxane group; crosslinking group; or a combination thereof,
  • the polymer represented by Formula 1 may be represented by a polymer including a unit represented by Formula 2 and a terminal group represented by Formula 5. Specifically, when b and c in Formula 1 are 0, the polymer represented by Formula 1 may be represented as a polymer including a unit represented by Formula 2 and a terminal group represented by Formula 5.
  • the polymer including a unit represented by Formula 2 and a terminal group represented by Formula 5 further includes a unit represented by Formula 3 below.
  • n is an integer of 3 or 4
  • Z is CRa; SiRa; N; Or a trivalent substituted or unsubstituted aryl group,
  • Z is C; Si; Or a tetravalent substituted or unsubstituted aryl group,
  • Ra is hydrogen; a substituted or unsubstituted alkyl group; Or a substituted or unsubstituted aryl group,
  • Y is a direct bond; a substituted or unsubstituted alkylene group; Or a substituted or unsubstituted arylene group,
  • Y is a direct bond; Or in the case of a substituted or unsubstituted alkylene group, Z is a trivalent or tetravalent substituted or unsubstituted aryl group,
  • an exemplary embodiment of the present specification provides a polymer including a unit represented by Formula 2, a unit represented by Formula 3, and a terminal group represented by Formula 5.
  • the polymer represented by Formula 1 may be represented by a polymer including a unit represented by Formula 2, a unit represented by Formula 3, and a terminal group represented by Formula 5.
  • the polymer represented by Formula 1 is a unit represented by Formula 2, a unit represented by Formula 3, and a unit represented by Formula 5 It can be expressed as a polymer comprising a terminal group.
  • the polymer including the unit represented by Formula 2 and the terminal group represented by Formula 5 further includes a unit represented by Formula 4 below.
  • C is a substituted or unsubstituted arylene group; Or a substituted or unsubstituted divalent heterocyclic group,
  • an exemplary embodiment of the present specification provides a polymer including a unit represented by Formula 2, a unit represented by Formula 4, and a terminal group represented by Formula 5.
  • the polymer represented by Formula 1 may be represented by a polymer including a unit represented by Formula 2, a unit represented by Formula 4, and a terminal group represented by Formula 5.
  • the polymer represented by Formula 1 is a unit represented by Formula 2, a unit represented by Formula 4, and a unit represented by Formula 5 It can be expressed as a polymer comprising a terminal group.
  • an exemplary embodiment of the present specification provides a polymer including a unit represented by Formula 2, a unit represented by Formula 3, a unit represented by Formula 4, and a terminal group represented by Formula 5.
  • the polymer represented by Formula 1 may be represented by a polymer including a unit represented by Formula 2, a unit represented by Formula 3, a unit represented by Formula 4, and a terminal group represented by Formula 5.
  • the polymer represented by Formula 1 is a unit represented by Formula 2, a unit represented by Formula 3, or a unit represented by Formula 4 and a polymer including a terminal group represented by Formula 5.
  • Formula 2 of the polymer including the unit represented by Formula 2 and the terminal group represented by Formula 5 is equally applicable to the description of Formula 2 described above in Formula 1 .
  • Formula 2 may be represented by Formula 2-1.
  • Formula 3 when the polymer including the unit represented by Formula 2 and the terminal group represented by Formula 5 further includes a unit represented by Formula 3, the description of Formula 3 is in Formula 1
  • the description of Formula 3 above applies equally.
  • Formula 3 in the polymer comprising a unit represented by Formula 2, a unit represented by Formula 3, and a terminal group represented by Formula 5, Formula 3 may be represented by any one of Formulas 3-1 to 3-4 have.
  • Chemical Formulas 2 and 3 are equally applied to a polymer including a unit represented by Formula 2, a unit represented by Formula 3, a unit represented by Formula 4, and a terminal group represented by Formula 5.
  • C in Formula 4 is any one of the following structures.
  • C is equally applied to a polymer including a unit represented by Formula 2, a unit represented by Formula 3, a unit represented by Formula 4, and a terminal group represented by Formula 5.
  • E1 of Formula 1 applies equally to E in Formula 5.
  • E is an end-capping unit of the polymer, and may be represented by any one of the following structures.
  • E is equally applicable to a polymer including a unit represented by Formula 2, a unit represented by Formula 3, and a terminal group represented by Formula 5.
  • the description of E is equally applied to a polymer including a unit represented by Formula 2, a unit represented by Formula 3, a unit represented by Formula 4, and a terminal group represented by Formula 5.
  • the polymer is an alternating polymer, a block polymer, or a random polymer.
  • Formula 1 does not mean that A1, B1, and C1 are in order in the polymer.
  • A1, B1 and C1 may be in various orders.
  • the polymer may be E1-A1-B1-C1-E2, E1-A1-C1-B1-E2, E1-B1-A1-C1-E2, E1-B1-C1-A1-E2, E1-C1-A1 -B1-E2 or E1-C1-B1-A1-E2.
  • A1, B1, and C1 are not connected to one another in the polymer.
  • the polymer may be linked in various content ranges within the polymer, such as E1-A1-B1-A1-C1-E2, E1-A1-C1-B1-C1-E2, E1-A1-B1-C1-A1-E2, etc. have.
  • the content ranges of A1, B1 and C1 are determined according to the equivalent ratio of monomers used in the preparation of the polymer.
  • the weight average molecular weight (Mw) of the polymer is 30,000 g/mol to 100,000 g/mol. Specifically, it is 40,000 g/mol to 80,000 g/mol.
  • the weight average molecular weight of the polymer satisfies the above range, it can be applied to the device through a solution process, and exhibits an effect of maintaining the organic material layer after application to the device.
  • the unit represented by Formula 2, the unit represented by Formula 3, the unit represented by Formula 4, and the terminal group represented by Formula 5 may be distributed to optimize the properties of the polymer.
  • a1 is the mole fraction of the unit represented by Formula 2 in the polymer
  • b1 is the mole fraction of the unit represented by Formula 3
  • c1 is the mole fraction of the unit represented by Formula 4
  • a1 is a real number of 0.4 or more.
  • a1 is a real number of 0.4 or more and less than 1.
  • a1 is a real number greater than or equal to 0.5 and less than 1.
  • a1 is a real number of 0.5 to 0.9.
  • a1 is a real number of 0.5 to 0.8.
  • b1 is a real number of 0 or more.
  • b1 is a real number of 0 to 0.5.
  • b1 is a real number of 0.1 to 0.4.
  • b1 is a real number of 0.1 to 0.3.
  • c1 is a real number of 0 to 0.2.
  • c1 is a real number from 0 to 0.1.
  • c1 is 0.
  • e1 is a real number of 0.1 to 0.5.
  • e1 is a real number of 0.1 to 0.4.
  • e1 is a real number of 0.1 to 0.35.
  • a1 is a real number of 0.4 or more and less than 1
  • b1 is a real number of 0 to 0.5
  • c1 is a real number of 0 to 0.2
  • e1 is a real number of 0.1 to 0.5
  • a1+b1+ c1+e1 1.
  • a1 is a real number of 0.4 to 0.9
  • b1 is a real number of 0.1 to 0.4
  • c1 is a real number of 0 to 0.2
  • e1 is a real number of 0.1 to 0.5
  • a1+b1+c1 +e1 1.
  • a1 is a real number of 0.4 to 0.7
  • b1 is a real number of 0.1 to 0.3
  • c1 is a real number of 0 to 0.1
  • e1 is a real number of 0.2 to 0.4
  • a1+b1+c1 +e1 1.
  • the polymer is represented by any one of the following structures.
  • a1 is a real number of 0 ⁇ a1 ⁇ 1
  • b1 is a real number of 0 ⁇ b1 ⁇ 1
  • e1 is a real number of 0 ⁇ e1 ⁇ 1
  • a1+b1+e1 is 1.
  • a1 is a real number from 0.4 to 0.9
  • b1 is a real number from 0.1 to 0.4
  • e1 is a real number from 0.1 to 0.5
  • a1+b1+e1 is 1.
  • a1 is a real number from 0.4 to 0.8
  • b1 is a real number from 0.1 to 0.4
  • e1 is a real number from 0.1 to 0.5
  • a1+b1+e1 is 1.
  • a1, b1, and e1 are determined according to the equivalent weight of the monomer added during the preparation of the polymer.
  • the polymer may be prepared using a known polymerization technique.
  • a preparation method such as Suzuki, Yamamoto, Stille, a C-N coupling reaction using a metal catalyst and an arylation reaction using a metal catalyst may be applied.
  • the polymer may be substituted with deuterium.
  • deuterium may be substituted by applying a method using a precursor material.
  • deuterium can be displaced by treating undeuterated monomers and/or polymers with a deuterated solvent in the presence of a Lewis acid H/D exchange catalyst.
  • the molecular weight of the polymer can be controlled by adjusting the ratio of the monomers used. Also, in some embodiments, the molecular weight of the polymer may be controlled using a quenching reaction.
  • the polymer may be used as a hole transport material.
  • the polymer may be a 'hole transport polymer'.
  • the polymer may be formed into a layer through a solution process.
  • the term 'layer' is used interchangeably with the terms 'film' or 'film' and refers to a coating covering a desired area. This term is not limited by size. The area can be as large as an entire device, as small as a specific functional area, such as a real visual display, or as small as a single sub-pixel.
  • Layers and films can be formed by any conventional deposition technique, including vapor deposition, liquid deposition (continuous and discontinuous techniques), and thermal transfer. Continuous deposition techniques include, but are not limited to, spin coating, gravure coating, curtain coating, dip coating, slot-die coating, spray coating, and continuous nozzle coating. Discontinuous deposition techniques include, but are not limited to, inkjet printing, gravure printing, and screen printing.
  • the polymer has an intrinsic viscosity of less than 60 mL/g. This is particularly useful for inkjet printing applications, where the lower viscosity can result in a thicker solution being sprayed. Specifically, the polymer has an intrinsic viscosity of less than 50 mL/g, more specifically less than 40 mL/g, and more specifically less than 30 mL/g.
  • the intrinsic viscosity of the polymer is 20 mL/g or more and less than 60 mL/g, specifically 20 mL/g to 50 mL/g, more specifically 20 mL/g to 40 mL /g.
  • An exemplary embodiment of the present specification provides a coating composition comprising the above-described polymer.
  • the coating composition further comprises a solvent. In one embodiment of the present specification, the coating composition includes the polymer and the solvent.
  • the coating composition may be in a liquid state.
  • the "liquid phase” means a liquid state at room temperature and pressure.
  • the solvent does not dissolve the material applied to the lower layer.
  • a solvent that does not dissolve the material of the lower layer is used.
  • a solvent that does not dissolve the material of the lower layer first electrode, hole injection layer, etc.
  • the coating composition has improved solvent resistance during heat treatment after coating.
  • the coating composition is prepared using a solvent that dissolves the polymer and the layer is prepared by a solution process, it may have resistance to the same solvent after heat treatment.
  • the solvent included in the coating composition is, for example, chloroform, methylene chloride, 1,2-dichloroethane, 1,1,2-trichloroethane, chlorobenzene, o-dichlorobenzene, etc.
  • ether solvents such as tetrahydrofuran and dioxane
  • aromatic hydrocarbon solvents such as toluene, xylene, trimethylbenzene, and mesitylene
  • Ketone solvents such as acetone, methyl ethyl ketone, and cyclohexanone
  • ester solvents such as ethyl acetate, butyl acetate, and ethyl cellosolve acetate
  • Polyvalents such as ethylene glycol, ethylene glycol monobutyl ether, ethylene glycol monoethyl ether, ethylene glycol monomethyl ether, dimethoxyethane, propylene glycol, diethoxymethane, triethylene glycol monoethyl ether, glycerin, and 1,2-hexanediol alcohols and derivatives thereof; alcohol solvents such as methanol, ethanol, propanol, isopropanol and cyclohexanol
  • the solvent may be used alone or as a mixture of two or more solvents.
  • the boiling point of the solvent is preferably 40°C to 350°C, more preferably 80°C to 330°C, but is not limited thereto.
  • the concentration of the polymer in the coating composition is preferably 0.1 wt/v% to 20 wt/v%, more preferably 0.5 wt/v% to 10 wt/v%, but It is not limited.
  • An exemplary embodiment of the present specification is a first electrode
  • At least one organic material layer provided between the first electrode and the second electrode,
  • At least one layer of the organic material layer provides an organic light emitting device comprising the polymer.
  • the organic material layer of the organic light emitting device of the present specification may have a single-layer structure, but may have a multi-layer structure in which two or more organic material layers are stacked.
  • the organic light emitting device of the present invention has a structure including a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, an electron injection layer, a layer that simultaneously injects and transports holes, and a layer that simultaneously injects and transports electrons as an organic material layer.
  • the structure of the organic light emitting device is not limited thereto and may include a smaller number of organic layers.
  • the organic material layers may be formed of the same material or different materials.
  • the organic light emitting device includes a first electrode; a second electrode provided to face the first electrode; and a light emitting layer provided between the first electrode and the second electrode, and further comprising a single organic material layer between the light emitting layer and the first electrode, wherein the organic material layer includes the polymer.
  • the organic light emitting device includes a first electrode; a second electrode provided to face the first electrode; and a light emitting layer provided between the first electrode and the second electrode, and further comprising a multi-layered organic material layer between the light emitting layer and the first electrode, wherein at least one of the organic material layers includes the polymer.
  • the organic light emitting device includes a first electrode; a second electrode provided to face the first electrode; and a light emitting layer provided between the first electrode and the second electrode, and further comprising at least one of a hole injection layer, a hole transport layer, and an electron blocking layer between the light emitting layer and the first electrode, the hole injection layer and the hole At least one of the transport layer and the electron blocking layer includes the polymer.
  • the organic light emitting device includes a first electrode; a second electrode provided to face the first electrode; and a light emitting layer provided between the first electrode and the second electrode, and a hole injection layer and a hole transport layer between the first electrode and the light emitting layer, wherein at least one of the hole injection layer and the hole transport layer contains the polymer.
  • the organic light emitting device includes a first electrode; hole injection layer; hole transport layer; light emitting layer; and a second electrode sequentially provided, wherein at least one of the hole injection layer and the hole transport layer includes the polymer.
  • the organic light emitting device includes a first electrode; hole injection layer; hole transport layer; light emitting layer; and a structure in which a second electrode is sequentially stacked, and the hole injection layer or the hole transport layer includes the polymer.
  • the organic light emitting device includes a first electrode; hole injection layer; hole transport layer; light emitting layer; and a structure in which a second electrode is sequentially stacked, and the hole injection layer includes the polymer.
  • an additional organic material layer may be further included between the light emitting layer and the second electrode.
  • a single organic material layer may be further included between the light emitting layer and the second electrode.
  • a multi-layered organic material layer may be further included between the light emitting layer and the second electrode.
  • a hole blocking layer, an electron injection layer, an electron transport layer, and a layer for simultaneously injecting and transporting electrons may be further included between the light emitting layer and the second electrode.
  • the organic light emitting device includes a first electrode; hole injection layer; hole transport layer; light emitting layer; electron injection and transport layer; and the second electrode is sequentially stacked, and at least one of the hole injection layer and the hole transport layer includes the polymer.
  • the organic light emitting device includes a first electrode; hole injection layer; hole transport layer; light emitting layer; electron injection and transport layer; and a structure in which a second electrode is sequentially stacked, and the hole injection layer or the hole transport layer includes the polymer.
  • the organic light emitting device includes a first electrode; hole injection layer; hole transport layer; light emitting layer; electron injection and transport layer; and a structure in which a second electrode is sequentially stacked, and the hole injection layer includes the polymer.
  • the organic light emitting device includes a first electrode; hole injection layer; hole transport layer; light emitting layer; electron injection and transport layer; and a structure in which a second electrode is sequentially stacked, and the hole transport layer includes the polymer.
  • FIG. 1 the structure of the organic light emitting device according to an exemplary embodiment of the present specification is illustrated in FIG. 1 .
  • FIG. 1 illustrates a structure of an organic light emitting device in which a substrate 1, an anode 2, a light emitting layer 3, and a cathode 4 are sequentially stacked.
  • FIG. 2 is an organic light emitting diode in which a substrate 1, an anode 2, a hole injection layer 5, a hole transport layer 6, a light emitting layer 3, an electron injection and transport layer 7 and a cathode 4 are sequentially stacked.
  • the structure of the device is illustrated.
  • FIG. 1 and 2 illustrate an organic light emitting device, the structure of the organic light emitting device of the present invention is not limited thereto.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode
  • the second electrode is an anode
  • the organic light emitting device may be a normal type organic light emitting device in which an anode, one or more organic material layers, and a cathode are sequentially stacked on a substrate.
  • the organic light emitting device may be an inverted type organic light emitting device in which a cathode, one or more organic material layers, and an anode are sequentially stacked on a substrate.
  • the organic light emitting device of the present invention may be stacked in a structure as illustrated in the following example.
  • electroctron transport layer/electron injection layer may be replaced with “electron injection and transport layer”.
  • the organic light emitting device of the present specification may be manufactured using materials and methods known in the art, except that at least one layer of the organic material layer is prepared to include the polymer. Specifically, the organic light emitting device may be formed using a coating composition including the polymer at least one layer of the organic material layer.
  • the organic light emitting device of the present specification may be manufactured by sequentially stacking an anode, an organic material layer, and a cathode on a substrate.
  • a PVD (physical vapor deposition) method such as sputtering or e-beam evaporation
  • a metal or conductive metal oxide or an alloy thereof is deposited on a substrate to form an anode.
  • an organic material layer including a hole injection layer, a hole transport layer, a light emitting layer, and an electron injection and transport layer thereon, and then depositing a material that can be used as a cathode thereon.
  • an organic light emitting device may be manufactured by sequentially depositing a cathode material, an organic material layer, and an anode material on a substrate.
  • the present specification also provides a method of manufacturing an organic light emitting device formed using the coating composition.
  • the organic material layer formed using the coating composition is formed using spin coating.
  • the organic material layer formed using the coating composition is formed by a printing method.
  • the printing method includes, for example, inkjet printing, nozzle printing, offset printing, transfer printing, or screen printing, but is not limited thereto.
  • the coating composition according to an exemplary embodiment of the present specification is suitable for a solution process due to its structural characteristics, it can be formed by a printing method, thereby having an economical effect in terms of time and cost when manufacturing a device.
  • the step of forming the organic material layer formed using the coating composition comprises: coating the coating composition on the first electrode; and heat-treating or light-treating the coated coating composition.
  • the heat treatment time in the heat treatment step may be within 1 hour. Specifically, it may be within 30 minutes.
  • the atmosphere for heat-treating the organic material layer formed using the coating composition is preferably an inert gas atmosphere such as argon or nitrogen.
  • the organic material layer formed by using the coating composition including a heat treatment or light treatment step
  • resistance to solvents increases, so that a multilayer can be formed by repeatedly performing solution deposition and crosslinking methods, and stability is increased to increase device lifespan characteristics can increase
  • the organic material layer including the polymer is a hole injection layer, a hole transport layer, or a layer that simultaneously injects and transports holes.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode
  • the second electrode is an anode
  • the anode material a material having a large work function is generally preferred so that holes can be smoothly injected into the organic material layer.
  • the anode material include metals such as vanadium, chromium, copper, zinc, gold, or alloys thereof; metal oxides such as zinc oxide, indium oxide, indium tin oxide (ITO), and indium zinc oxide (IZO); combinations of metals and oxides such as ZnO:Al or SnO 2 :Sb; conductive polymers such as poly(3-methylthiophene), poly[3,4-(ethylene-1,2-dioxy)thiophene](PEDOT), polypyrrole, and polyaniline, but are not limited thereto.
  • the cathode material is preferably a material having a small work function to facilitate electron injection into the organic material layer.
  • the negative electrode material include metals such as magnesium, calcium, sodium, potassium, titanium, indium, yttrium, lithium, gadolinium, aluminum, silver, tin and lead, or alloys thereof; and a multi-layered material such as LiF/Al or LiO 2 /Al, but is not limited thereto.
  • the hole injection layer is a layer for injecting holes from the electrode, and as a hole injection material, it has the ability to transport holes, so that the hole injection effect at the anode, the light emitting layer or the light emitting material is excellent
  • a compound having an injection effect, preventing the movement of excitons generated in the light emitting layer to the electron injection layer or the electron injection material, and excellent in the ability to form a thin film is preferred.
  • the highest occupied molecular orbital (HOMO) of the hole injection material is preferably between the work function of the positive electrode material and the HOMO of the surrounding organic material layer.
  • the hole injection material examples include metal porphyrin, oligothiophene, arylamine-based organic material, hexanitrile hexaazatriphenylene-based organic material, quinacridone-based organic material, and perylene-based organic material. of organic substances, anthraquinones, polyaniline and polythiophene-based conductive polymers, and the like, but are not limited thereto.
  • the hole transport layer is a layer that receives holes from the hole injection layer and transports holes to the light emitting layer, and as a hole transport material, holes are transported from the anode or the hole injection layer and transferred to the light emitting layer. As a material with high hole mobility, it is suitable.
  • the hole transport layer includes the polymer.
  • the light emitting layer includes an organic compound.
  • the organic compound is a material capable of emitting light in the visible ray region by receiving and bonding holes and electrons from the hole transport layer and the electron transport layer, respectively, and a material having good quantum efficiency for fluorescence or phosphorescence is preferable.
  • Specific examples include 8-hydroxy-quinoline aluminum complex (Alq 3 ); carbazole-based compounds; dimerized styryl compounds; BAlq; 10-hydroxybenzo quinoline-metal compounds; compounds of the benzoxazole, benzthiazole and benzimidazole series; Poly(p-phenylenevinylene) (PPV)-based polymers; spiro compounds; polyfluorene; Rubrene and the like, but are not limited thereto.
  • Alq 3 8-hydroxy-quinoline aluminum complex
  • carbazole-based compounds dimerized styryl compounds
  • BAlq 10-hydroxybenzo quinoline-metal compounds
  • compounds of the benzoxazole, benzthiazole and benzimidazole series Poly(p-phenylenevinylene) (PPV)-based polymers
  • spiro compounds polyfluorene; Rubrene and the like, but are not limited thereto.
  • the light emitting layer may include a host material and a dopant material.
  • the host material includes a condensed aromatic ring derivative or a heterocyclic compound containing compound.
  • condensed aromatic ring derivatives include anthracene derivatives, pyrene derivatives, naphthalene derivatives, pentacene derivatives, phenanthrene compounds, fluoranthene compounds, etc.
  • heterocyclic-containing compounds include carbazole derivatives, dibenzofuran derivatives, ladder type Furan compounds, pyrimidine derivatives, and the like, but are not limited thereto.
  • the dopant material examples include an aromatic amine derivative, a strylamine compound, a boron complex, a fluoranthene compound, and a metal complex.
  • the aromatic amine derivative is a condensed aromatic ring derivative substituted with a substituted or unsubstituted arylamino group, and includes fluorene, benzofluorene, pyrene, anthracene, chrysene, periplanthene, etc. substituted with an arylamino group.
  • the arylamine compound is a compound in which at least one arylvinyl group is substituted with a substituted or unsubstituted arylamine, and one or two or more substituents selected from the group consisting of an aryl group, a silyl group, an alkyl group, a cycloalkyl group, and an arylamino group substituted or unsubstituted.
  • the styrylamine compound includes, but is not limited to, styrylamine, styryldiamine, styryltriamine, and styryltetraamine.
  • the metal complex includes an iridium complex, a platinum complex, and the like, but is not limited thereto.
  • the host material is an anthracene derivative
  • the dopant material is a benzofluorene-based compound substituted with an arylamine group.
  • the host material is a deuterated anthracene derivative
  • the dopant material is a bis(diarylamino)benzophylluorene-based compound.
  • the light emitting layer includes quantum dots.
  • the light emitting layer may include a matrix resin and quantum dots, and the type and content of quantum dots may be those known in the art.
  • the HOMO energy level is lower than when the organic compound is included in the emission layer, so the common layer must also exhibit a low HOMO energy level. Since the compound according to an exemplary embodiment of the present specification exhibits a low HOMO energy level by including a halogen group, it is possible to introduce quantum dots into the light emitting layer.
  • the common layer is a hole injection layer, a hole transport layer, a layer that simultaneously injects and transports holes, an electron injection layer, an electron transport layer, or a layer that simultaneously injects and transports electrons.
  • the electron transport layer is a layer that receives electrons from the electron injection layer and transports electrons to the light emitting layer.
  • Materials with high electron mobility are suitable. Specific examples include Al complex of 8-hydroxyquinoline; complexes comprising Alq 3 ; organic radical compounds; hydroxyflavone-metal complexes, and the like, but are not limited thereto.
  • the electron transport layer may be used with any desired cathode material as used in accordance with the prior art.
  • suitable cathode materials are conventional materials having a low work function and followed by an aluminum layer or a silver layer. Specifically, cesium, barium, calcium, ytterbium and samarium, followed in each case by an aluminum layer or a silver layer.
  • the electron injection layer is a layer that injects electrons from the electrode, has the ability to transport electrons, has an electron injection effect from the cathode, has an excellent electron injection effect on the light emitting layer or the light emitting material , a compound that prevents the movement of excitons generated in the light emitting layer to the hole injection layer and is excellent in the ability to form a thin film is preferable.
  • fluorenone anthraquinodimethane, diphenoquinone, thiopyran dioxide, oxazole, oxadiazole, triazole, imidazole, perylene tetracarboxylic acid, preorenylidene methane, anthrone, bathocuproine (BCP) and the like, and derivatives thereof, metal complex compounds, nitrogen-containing 5-membered ring derivatives, and the like, but are not limited thereto.
  • 8-hydroxyquinolinato lithium, bis(8-hydroxyquinolinato)zinc, bis(8-hydroxyquinolinato)copper, and bis(8 -Hydroxyquinolinato)manganese tris(8-hydroxyquinolinato)aluminum, tris(2-methyl-8-hydroxyquinolinato)aluminum, tris(8-hydroxyquinolinato)gallium, bis (10-hydroxybenzo [h] quinolinato) beryllium, bis (10-hydroxybenzo [h] quinolinato) zinc, bis (2-methyl-8-quinolinato) chlorogallium, bis (2- Methyl-8-quinolinato)(o-crezolato)gallium, bis(2-methyl-8-quinolinato)(1-naphtolato)aluminum, bis(2-methyl-8-quinolinato)(2 -naphtolato) gallium, etc., but is not limited thereto.
  • the hole blocking layer is a layer that blocks the holes from reaching the cathode, and may generally be formed under the same conditions as the hole injection layer.
  • the hole injection layer there are oxadiazole derivatives, triazole derivatives, phenanthroline derivatives, BCP, aluminum complex, and the like, but is not limited thereto.
  • the polymer represented by Formula 1 includes a compound having fluorine as a substituent.
  • the polymer represented by Formula 1 when the polymer represented by Formula 1 is included in the hole transport layer, at least one of the bank layer, the hole injection layer, and the light emitting layer adjacent to the hole transport layer contains fluorine.
  • the organic light emitting device may be a top emission type, a back emission type, or a double side emission type depending on the material used.
  • compound A-2 (41.0 g, 1.00 eq) and the previously prepared compound A-1 (50.0 g, 3.0 eq) were dissolved in xylene (200 mL).
  • sodium tert-butoxide (40.0 g, 5.00 eq) and bis (tri-tert-butylphosphine) palladium (0) (2.1 g, 0.05 eq) are added, and at 120 ° C. It was refluxed for 3 hours. After the reaction was terminated by injecting distilled water, the organic solvent was extracted with ethyl acetate and distilled water, and precipitated with toluene and hexane to obtain Compound B-1 as a white solid.
  • the second solution was put into a Schlenk tube and stirred at 50° C. for 30 minutes.
  • the first solution was further added to a Schlenk tube and stirred at 50° C. for 3 hours.
  • the dried solid was dissolved in toluene (1% wt/v) and purified by passing through a column containing silica gel and basic aluminum oxide (6 g each). Polymer 1-1 was prepared by triturating the obtained toluene solution in acetone.
  • Polymer Q was prepared in the same manner as in (5) of Synthesis Example 1, except that compound Q-1 was used instead of compound D-1 in (5) of Synthesis Example 1.
  • Polymer W was prepared in the same manner as in (5) of Synthesis Example 1, except that Compound W-1 was used instead of Compound D-1 in (5) of Synthesis Example 1.
  • the peak molecular weight (Mp), number average molecular weight (Mn), weight average molecular weight (Mw) and molecular weight distribution (PDI) was measured.
  • the peak molecular weight (Mp) means the molecular weight most widely distributed.
  • a peak molecular weight (Mp), a number average molecular weight (Mn), and a weight average were performed in the same manner as in Experimental Example 1-1 except that the polymer of Table 1 was used instead of the polymer 1-1 in Experimental Example 1-1.
  • Molecular weight (Mw) and molecular weight distribution (PDI) were measured.
  • a peak molecular weight (Mp), a number average molecular weight (Mn), and a weight average were performed in the same manner as in Experimental Example 1-1 except that the polymer of Table 1 was used instead of the polymer 1-1 in Experimental Example 1-1.
  • Molecular weight (Mw) and molecular weight distribution (PDI) were measured.
  • FIG. 3 the GPC results measured in Experimental Example 1-1 and Comparative Example 1-1 are shown in FIG. 3 .
  • (a) is a GPC measurement result of Comparative Example 1-1 (polymer Q)
  • (b) to (d) are GPC measurement results of Experimental Example 1-1 (polymer 1-1), respectively.
  • PDI weight average molecular weight (Mw) / number average molecular weight (Mn)
  • a large molecular weight distribution means that molecules of various molecular weights are distributed, which means that it is difficult to reproducibly synthesize a polymer.
  • Comparative Example 1-1 is larger than that of Experimental Examples 1-1 to 1-6. From this, it can be seen that in the polymer Q (Comparative Example 1-1), polymers of various molecular weights are distributed. That is, it can be seen that it is difficult to synthesize polymer Q reproducibly.
  • Comparative Example 1-1 Mw of Comparative Example 1-1 is larger than that of Experimental Examples 1-1 to 1-6.
  • polymer Q Comparative Example 1-1 is affected by viscosity due to a high molecular weight when manufacturing an inkjet device, so that it will not be easy to fabricate an organic light emitting device using fine pixels.
  • Polymer 1 prepared in Synthesis Example 1 was dissolved in toluene at a concentration of 2 wt% to prepare a coating composition 1.
  • a coating composition 2 was prepared by dissolving the following compound C-1 prepared in (3) of Synthesis Example 1 in toluene at a concentration of 2 wt%.
  • the coating compositions 1 and 2 were respectively spin-coated on glass to form a thin film, and then UV-vis absorption was measured. Again, this thin film was immersed in cyclohexanone for 3 minutes, dried, and UV-vis absorption was measured. Thin film retention was confirmed by comparing the size of the maximum peak of UV absorption before and after immersion.
  • 5 is a view showing the test results of the film retention rate of the thin film formed of the coating composition 2.
  • the thin film retention rate is 100%. That is, it can be confirmed that the polymer according to an exemplary embodiment of the present specification has excellent solvent resistance.
  • the following polymer was formed and dissolved in a solvent, but it was not dissolved in the solvent, so it was impossible to measure the thin film retention.
  • HIL used the material described in US7,351,358B2. Specifically, a hole injection material prepared from an aqueous dispersion of an electrically conductive polymer and a polymeric fluorinated sulfonic acid was used.
  • the host used the deuterated anthracene compound described in WO2011-028216A1.
  • a glass substrate coated with indium tin oxide (ITO) to a thickness of 1,500 ⁇ was placed in distilled water in which detergent was dissolved and washed with ultrasonic waves.
  • ITO indium tin oxide
  • a product manufactured by Fischer Co. was used as the detergent
  • distilled water that was secondarily filtered with a filter manufactured by Millipore Co. was used as the distilled water.
  • ultrasonic washing was performed for 10 minutes by repeating twice with distilled water.
  • ultrasonic washing was performed with a solvent of isopropyl alcohol and acetone and dried, and then the substrate was washed for 5 minutes and then dried.
  • ITO Immediately before device fabrication, cleaned and patterned ITO was treated with UV ozone for 10 min. After ozone treatment, an aqueous dispersion of HIL was spin-coated on the ITO surface, and the solvent was removed through heat treatment to form a hole injection layer with a thickness of about 40 nm. A toluene solution in which 1.5 wt% of the polymer 1-1 prepared in Synthesis Example 1 was dissolved in 1.5 wt% was spin-coated on the hole injection layer formed above, and the solvent was removed through heat treatment to form a hole transport layer with a thickness of about 100 nm formed.
  • a methyl benzoate solution in which a host and a dopant (host:dopant 93:7(wt%)) were dissolved at a concentration of 2.0wt% was spin-coated on the hole transport layer to form an emission layer with a thickness of about 100nm. Thereafter, after transferring to a vacuum evaporator, BCP was vacuum-deposited to a thickness of 35 nm on the light emitting layer to form an electron injection and transport layer. A cathode was formed by sequentially depositing LiF to a thickness of 1 nm and aluminum to a thickness of 100 nm on the electron injection and transport layer.
  • the deposition rate of lithium fluoride (LiF) on the cathode was maintained at 0.3 ⁇ /sec, and the deposition rate of aluminum was maintained at 2 ⁇ /sec, and the vacuum degree during deposition was 2 x 10 -7 torr to 5 x 10 -8 torr was maintained.
  • An organic light emitting diode was manufactured in the same manner as in Example 1, except that Polymer 2-1 was used instead of Polymer 1-1 in Example 1.
  • An organic light emitting diode was manufactured in the same manner as in Example 1, except that Polymer 3-1 was used instead of Polymer 1-1 in Example 1.
  • An organic light emitting diode was manufactured in the same manner as in Example 1, except that Polymer 4-1 was used instead of Polymer 1-1 in Example 1.
  • An organic light emitting diode was manufactured in the same manner as in Example 1, except that Polymer 5-1 was used instead of Polymer 1-1 in Example 1.
  • An organic light emitting diode was manufactured in the same manner as in Example 1, except that Polymer 6-1 was used instead of Polymer 1-1 in Example 1.
  • An organic light emitting diode was manufactured in the same manner as in Experimental Example 3-1, except that Polymer Q prepared in Comparative Synthesis Example 1 was used instead of Polymer 1 in Example 1.
  • An organic light emitting diode was manufactured in the same manner as in Experimental Example 3-1, except that Polymer W prepared in Comparative Synthesis Example 2 was used instead of Polymer 1 in Example 1.
  • the polymer according to an exemplary embodiment of the present specification shows a low driving voltage and excellent efficiency when applied to an organic light emitting device (Experimental Examples 3-1 to 3-6) even though it has a low molecular weight. can be checked Through this, it can be confirmed that the polymer according to an exemplary embodiment of the present specification can prepare a homogeneous polymer by including a tert-butyl group, and thus exhibit excellent performance when applied to a device.
  • the unit of Formula 2 included in the polymer according to an exemplary embodiment of the present specification includes N instead of a tert-butyl group (Comparative Example 3-2), the energy level of the applied layer changes (HOMO energy level rises) ), it can be seen that the unit of Formula 2 exhibits higher driving voltage and lower efficiency than when the unit of Formula 2 includes a tert-butyl group (Experimental Examples 3-1 to 3-6).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Electroluminescent Light Sources (AREA)
  • Polymerisation Methods In General (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

본 명세서는 중합체 및 이를 이용한 유기 발광 소자에 관한 것이다.

Description

중합체 및 이를 이용한 유기 발광 소자
본 출원은 본 출원은 2021년 2월 26일에 한국특허청에 제출된 한국 특허 출원 제10-2021-0026474호의 출원일의 이익을 주장하며, 그 내용 전부는 본 명세서에 포함된다.
본 명세서는 중합체 및 이를 이용하여 형성된 유기 발광 소자에 관한 것이다.
유기 발광 현상은 특정 유기 분자의 내부 프로세스에 의하여 전류가 가시광으로 전환되는 예의 하나이다. 유기 발광 현상의 원리는 다음과 같다. 양극과 음극 사이에 유기물층을 위치시켰을 때, 두 전극 사이에 전류를 걸어주게 되면 음극과 양극으로부터 각각 전자와 정공이 유기물층으로 주입된다. 유기물층으로 주입된 전자와 정공은 재결합하여 엑시톤(exciton)을 형성하고, 이 엑시톤이 다시 바닥 상태로 떨어지면서 빛이 나게 된다. 이러한 원리를 이용하는 유기전계 발광소자는 일반적으로 음극과 양극 및 그 사이에 위치한 유기물층, 예컨대 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층을 포함하는 유기물층으로 구성될 수 있다.
유기 발광소자에서 사용되는 물질로는 순수 유기 물질 또는 유기 물질과 금속이 착물을 이루는 착화합물이 대부분을 차지하고 있으며, 용도에 따라 정공 주입 물질, 정공 수송 물질, 발광 물질, 전자 수송 물질, 전자 주입 물질 등으로 구분될 수 있다. 여기서, 정공 주입 물질이나 정공 수송 물질로는 p-타입의 성질을 가지는 유기 물질, 즉 쉽게 산화가 되고 산화시 전기화학적으로 안정한 상태를 가지는 유기물이 주로 사용되고 있다. 한편, 전자 주입 물질이나 전자 수송 물질로는 n-타입 성질을 가지는 유기 물질, 즉 쉽게 환원이 되고 환원시 전기화학적으로 안정한 상태를 가지는 유기물이 주로 사용되고 있다. 발광 물질로는 p-타입 성질과 n-타입 성질을 동시에 가진 물질, 즉 산화와 환원 상태에서 모두 안정한 형태를 갖는 물질이 바람직하며, 엑시톤이 형성되었을 때 이를 빛으로 전환하는 발광 효율이 높은 물질이 바람직하다.
위에서 언급한 외에, 유기 발광 소자에서 사용되는 물질은 다음과 같은 성질을 추가적으로 갖는 것이 바람직하다.
첫째로, 유기 발광 소자에서 사용되는 물질은 열적 안정성이 우수한 것이 바람직하다. 유기 발광 소자내에서는 전하들의 이동에 의한 줄열(joule heating)이 발생하기 때문이다. 현재 정공수송층 물질로 주로 사용되는 NPB(N,N'-Di(1-나프틸)-N,N'-디페닐-(1,1'-비페닐)-4,4'-디아민)는 유리 전이 온도가 100℃이하의 값을 가지므로, 높은 전류를 필요로 하는 유기 발광소자에는 사용하기 힘든 문제가 있다.
둘째로, 저전압 구동 가능한 고효율의 유기 발광 소자를 얻기 위해서는 유기 발광 소자내로 주입된 정공 또는 전자들이 원활하게 발광층으로 전달되는 동시에, 주입된 정공과 전자들이 발광층 밖으로 빠져나가지 않도록 하여야 한다. 이를 위해서 유기 발광소자에 사용되는 물질은 적절한 밴드갭(band gap)과 HOMO(Highest Occupied Molecular Orbital) 또는 LUMO(Lowest Unoccupied Molecular Orbital) 에너지 준위를 가져야 한다. 현재 용액 도포법에 의해 제조되는 유기 발광 소자에서 정공 수송 물질로 사용되는 PEDOT:PSS(Poly(3,4-ethylenedioxythiophene) doped:poly(styrenesulfonic acid))의 경우, 발광층 물질로 사용되는 유기물의 LUMO 에너지 준위에 비하여 LUMO 에너지 준위가 낮기 때문에 고효율, 장수명의 유기 발광 소자 제조에 어려움이 있다.
이외에도 유기 발광 소자에 사용되는 물질은 화학적 안정성, 전하이동도, 전극이나 인접한 층과의 계면 특성 등이 우수하여야 한다. 즉, 유기 발광 소자에 사용되는 물질은 수분이나 산소에 의한 물질의 변형이 적어야 한다. 또한, 적절한 정공 또는 전자 이동도를 가짐으로써 유기 발광 소자의 발광층에서 정공과 전자의 밀도가 균형을 이루도록 하여 엑시톤 형성을 극대화할 수 있어야 한다. 그리고, 소자의 안정성을 위해 금속 또는 금속 산화물을 포함한 전극과의 계면을 좋게 할 수 있어야 한다.
위에서 언급한 외에, 용액공정용 유기 발광 소자에서 사용되는 물질은 다음과 같은 성질을 추가적으로 가져야한다.
첫째로, 저장 가능한 균질한 용액을 형성해야만 한다. 상용화된 증착공정용 물질의 경우 결정성이 좋아서 용액에 잘 녹지 않거나 용액을 형성하더라도 결정이 쉽게 잡히기 때문에 저장기간에 따라 용액의 농도 구배가 달라지거나 불량 소자를 형성 할 가능성이 크다.
둘째로, 용액공정이 이루어지는 층들은 다른 층에 대하여 용매 및 물질 내성이 있어야 한다. 이를 위하여 VNPB(N4,N4'-디(나프탈렌-1-일)-N4,N4'-비스(4- 비닐페닐)비페닐 -4,4'-디아민) 처럼 경화기를 도입하여 용액 도포 후 열처리 혹은 UV (ultraviolet)조사를 통하여 기판 위에서 자체적으로 가교 결합된 고분자를 형성 또는 다음 공정에 충분한 내성을 가지는 고분자를 형성할 수 있는 물질이 바람직하며, HATCN (헥사아자트리페닐렌 헥사카보니트릴 : Hexaazatriphenylenehexacarbonitrile)처럼 자체적으로 용매 내성을 가질 수 있는 물질도 바람직하다.
따라서, 당 기술 분야에서는 상기와 같은 요건을 갖춘 유기물의 개발이 요구되고 있다.
본 명세서는 중합체 및 이를 이용하여 형성된 유기 발광 소자를 제공하고자 한다.
본 명세서의 일 실시상태는 하기 화학식 1로 표시되는 중합체를 제공한다.
[화학식 1]
Figure PCTKR2021011754-appb-img-000001
상기 화학식 1에 있어서,
A는 하기 화학식 2로 표시되고,
B는 하기 화학식 3으로 표시되며,
C는 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 2가의 헤테로고리기이고,
E1 및 E2는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 아릴아민기; 치환 또는 비치환된 실록산기; 가교결합성기; 또는 이들의 조합이고,
a, b 및 c는 각각 몰분율로서,
a은 0<a≤1의 실수이고,
b는 0≤b<1의 실수이며,
c는 0≤c<1의 실수이고,
a+b+c는 1이며,
[화학식 2]
Figure PCTKR2021011754-appb-img-000002
상기 화학식 2에 있어서,
Ar1, Ar2, L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴렌기이고,
R1 내지 R3는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 헤테로고리기; 치환 또는 비치환된 아릴아민기; 또는 치환 또는 비치환된 실록산기이며,
n1 내지 n3는 각각 1 내지 4의 정수이고,
n1 내지 n3가 각각 2 이상일 경우, 각각의 괄호 안의 치환기는 서로 같거나 상이하며,
*은 중합체 내의 부착지점이고,
[화학식 3]
Figure PCTKR2021011754-appb-img-000003
상기 화학식 3에 있어서,
m은 3 또는 4의 정수이고,
m이 3일 경우, Z는 CRa; SiRa; N; 또는 3가의 치환 또는 비치환된 아릴기이고,
m이 4일 경우, Z는 C; Si; 또는 4가의 치환 또는 비치환된 아릴기이며,
Ra는 수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
Y는 직접결합; 치환 또는 비치환된 알킬렌기; 또는 치환 또는 비치환된 아릴렌기이며,
Y가 직접결합; 또는 치환 또는 비치환된 알킬렌기일 경우, Z는 3가 또는 4가의 치환 또는 비치환된 아릴기이고,
*은 중합체 내의 부착지점이다.
본 명세서의 또 하나의 실시상태는 하기 화학식 2로 표시되는 단위 및 하기 화학식 5로 표시되는 말단기를 포함하는 중합체를 제공한다.
[화학식 2]
Figure PCTKR2021011754-appb-img-000004
[화학식 5]
Figure PCTKR2021011754-appb-img-000005
상기 화학식 2 및 5에 있어서,
Ar1, Ar2, L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴렌기이고,
R1 내지 R3는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 헤테로고리기; 치환 또는 비치환된 아릴아민기; 또는 치환 또는 비치환된 실록산기이며,
n1 내지 n3는 각각 1 내지 4의 정수이고,
n1 내지 n3가 각각 2 이상일 경우, 각각의 괄호 안의 치환기는 서로 같거나 상이하며,
E는 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 아릴아민기; 치환 또는 비치환된 실록산기; 가교결합성기; 또는 이들의 조합이고,
*은 중합체 내의 부착지점이다.
본 명세서의 또 하나의 실시상태는 제1 전극; 제2 전극; 및 상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하고, 상기 유기물층 중 1층 이상은 상기 중합체를 포함하는 것인 유기 발광 소자를 제공한다.
본 명세서의 일 실시상태에 따른 중합체는 화학식 2가 터트-부틸(tert-butyl)기를 포함한다. 이에 따라, 제조되는 중합체의 균일도 및 용해도가 향상된다.
또한, 본 명세서의 일 실시상태에 따른 중합체는 유기 발광 소자의 정공수송층에 적용되어, 소자의 성능 및 수명특성을 향상시킬 수 있다.
도 1 및 2는 본 명세서의 몇몇 실시상태에 따른 유기 발광 소자의 구조를 예시한 도이다.
도 3은 본 명세서의 몇몇 실시상태에서 제조된 중합체들의 GPC 측정 결과를 나타낸 도이다.
도 4는 실험예 2-1에서 제조된 코팅 조성물 1로 형성한 박막의 막유지율 실험 결과를 나타낸 도이다.
도 5는 비교예 2-1에서 제조된 코팅 조성물 2로 형성한 박막의 막유지율 실험 결과를 나타낸 도이다.
1: 기판
2: 양극
3: 발광층
4: 음극
5: 정공주입층
6: 정공수송층
7: 전자주입 및 수송층
이하, 본 명세서에 대하여 더욱 상세하게 설명한다.
본 명세서는 하기 화학식 1로 표시되는 중합체를 제공한다.
[화학식 1]
Figure PCTKR2021011754-appb-img-000006
상기 화학식 1에 있어서,
A는 하기 화학식 2로 표시되고,
B는 하기 화학식 3으로 표시되며,
C는 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 2가의 헤테로고리기이고,
E1 및 E2는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 아릴아민기; 치환 또는 비치환된 실록산기; 가교결합성기; 또는 이들의 조합이고,
a, b 및 c는 각각 몰분율로서,
a은 0<a≤1의 실수이고,
b는 0≤b<1의 실수이며,
c는 0≤c<1의 실수이고,
a+b+c는 1이며,
[화학식 2]
Figure PCTKR2021011754-appb-img-000007
상기 화학식 2에 있어서,
Ar1, Ar2, L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴렌기이고,
R1 내지 R3는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 헤테로고리기; 치환 또는 비치환된 아릴아민기; 또는 치환 또는 비치환된 실록산기이며,
n1 내지 n3는 각각 1 내지 4의 정수이고,
n1 내지 n3가 각각 2 이상일 경우, 각각의 괄호 안의 치환기는 서로 같거나 상이하며,
*은 중합체 내의 부착지점이고,
[화학식 3]
Figure PCTKR2021011754-appb-img-000008
상기 화학식 3에 있어서,
m은 3 또는 4의 정수이고,
m이 3일 경우, Z는 CRa; SiRa; N; 또는 3가의 치환 또는 비치환된 아릴기이고,
m이 4일 경우, Z는 C; Si; 또는 4가의 치환 또는 비치환된 아릴기이며,
Ra는 수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
Y는 직접결합; 치환 또는 비치환된 알킬렌기; 또는 치환 또는 비치환된 아릴렌기이며,
Y가 직접결합; 또는 치환 또는 비치환된 알킬렌기일 경우, Z는 3가 또는 4가의 치환 또는 비치환된 아릴기이고,
*은 중합체 내의 부착지점이다.
상기 중합체에 있어서, 화학식 2는 터트-부틸기를 포함한다. 이에 따라, 제조되는 중합체의 균일도 및 용해도가 향상된다. 또한, 상기 중합체는 알킬기의 사이즈 조절을 통해 분자량 조절이 가능한 효과가 있다.
본 명세서에 있어서, 상기 중합체의 균일도가 향상된다는 것은 제조된 중합체의 분자량 분포(PDI)가 좁다는 것을 의미한다.
본 명세서에 있어서, 상기 분자량 분포(PDI)는 하기 식 (1)을 통해 계산된다.
식 (1): PDI = 중량 평균 분자량(Mw)/수 평균 분자량(Mn)
중합체의 분자량 분포가 큰 것은 다양한 분자량의 분자들이 분포 되어있다는 것을 의미 하며, 이는 고분자를 재현성 있게 합성하는 것이 어렵다는 것을 의미 한다. 따라서, 분자량 분포가 클수록 중합체의 균일도는 저하된다.
본 명세서의 일 실시상태에 있어서, 상기 중합체의 분자량은 겔 투과 크로마토그래피(Gel Permeation Chromatography, GPC)방법으로 측정된다.
본 명세서의 일 실시상태에 있어서, 상기 중합체는 1 내지 10의 분자량 분포(PDI)를 가진다. 바람직하게는 상기 중합체는 1 내지 5의 분자량 분포를 가진다. 보다 바람직하게는 상기 중합체는 1 내지 3의 분자량 분포를 가진다.
본 명세서에서 어떤 부재가 다른 부재 "상에" 위치하고 있다고 할 때, 이는 어떤 부재가 다른 부재에 접해 있는 경우뿐 아니라 두 부재 사이에 또 다른 부재가 존재하는 경우도 포함한다.
본 명세서에서 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.
본 명세서에서 치환기의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
상기 "치환"이라는 용어는 화합물의 탄소 원자에 결합된 수소 원자가 다른 치환기로 바뀌는 것을 의미하며, 치환되는 위치는 수소 원자가 치환되는 위치 즉, 치환기가 치환 가능한 위치라면 한정하지 않으며, 2 이상 치환되는 경우, 2 이상의 치환기는 서로 동일하거나 상이할 수 있다.
본 명세서에서 "치환 또는 비치환된" 이라는 용어는 중수소; 할로겐기; 알킬기; 시클로알킬기; 알콕시기; 아릴옥시기; 아민기; 아릴기; 및 헤테로고리기로 이루어진 군에서 선택된 1 또는 2 이상의 치환기로 치환되었거나 상기 예시된 치환기 중 2 이상의 치환기가 연결된 치환기로 치환되거나, 또는 어떠한 치환기도 갖지 않는 것을 의미한다. 예컨대, "2 이상의 치환기가 연결된 치환기"는 바이페닐기일 수 있다. 즉, 바이페닐기는 아릴기일 수도 있고, 2개의 페닐기가 연결된 치환기로 해석될 수도 있다.
상기 치환기들의 예시들은 아래에서 설명하나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 할로겐기의 예로는 불소(F), 염소(Cl), 브롬(Br) 또는 요오드(I)가 있다.
본 명세서에 있어서, 알킬기는 직쇄 또는 분지쇄일 수 있고, 탄소수는 특별히 한정되지 않으나 1 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 알킬기의 탄소수는 1 내지 30이다. 상기 알킬기의 구체적인 예로는 메틸기, 에틸기, 프로필기, 이소프로필기, 부틸기, 이소부틸기, tert-부틸기, 펜틸기, 헥실기, 헵틸기, 옥틸기 등이 있으나, 이들에 한정되지 않는다.
본 명세서에 있어서, 시클로알킬기의 탄소수는 특별히 한정되지 않으나, 3 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 시클로알킬기의 탄소수는 3 내지 30이다. 상기 시클로알킬기의 구체적인 예로는 시클로프로필기, 시클로부틸기, 시클로펜틸기, 시클로헥실기, 시클로헵틸기, 시클로옥틸기 등이 있으나, 이에 한정되지 않는다.
본 명세서에 있어서, 알콕시기는 직쇄, 분지쇄 또는 고리쇄일 수 있다. 상기 알콕시기의 탄소수는 특별히 한정되지 않으나, 탄소수 1 내지 30인 것이 바람직하다. 상기 알콕시기의 구체적인 예로는 메톡시, 에톡시, n-프로폭시, 이소프로폭시, n-부톡시, 이소부톡시, tert-부톡시, sec-부톡시, n-펜틸옥시, 네오펜틸옥시, 이소펜틸옥시, n-헥실옥시, 3,3-디메틸부틸옥시, 2-에틸부틸옥시, n-옥틸옥시, n-노닐옥시, n-데실옥시 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 플루오로알콕시기는 F로 치환된 알콕시기를 의미한다.
본 명세서에 있어서, 아민기는 -NH2; 알킬아민기; 아릴알킬아민기; 아릴아민기; 아릴헤테로아릴아민기; 알킬헤테로아릴아민기 및 헤테로아릴아민기로 이루어진 군으로부터 선택될 수 있으며, 이에 한정되지 않는다. 상기 아민기의 탄소수는 특별히 한정되지 않으나 1 내지 60인 것이 바람직하다.
본 명세서에 있어서, 아릴기의 탄소수는 특별히 한정되지 않으나 6 내지 60인 것이 바람직하다. 일 실시상태에 따르면, 상기 아릴기의 탄소수는 6 내지 30이다. 본 명세서의 일 실시상태에 있어서, 상기 아릴기는 단환식 아릴기 또는 다환식 아릴기일 수 있다. 상기 단환식 아릴기로는 페닐기, 바이페닐기, 터페닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다. 상기 다환식 아릴기로는 나프틸기, 안트라세닐기, 페난트레닐기, 파이레닐기, 페릴레닐기, 트리페닐기, 크라이세닐기, 플루오레닐기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴아민기의 예로는 치환 또는 비치환된 모노아릴아민기, 치환 또는 비치환된 디아릴아민기, 또는 치환 또는 비치환된 트리아릴아민기가 있다. 상기 아릴아민기 중의 아릴기는 단환식 아릴기일 수 있고, 다환식 아릴기일 수 있다. 상기 아릴기를 2 이상 포함하는 아릴아민기는 단환식 아릴기, 다환식 아릴기, 또는 단환식 아릴기와 다환식 아릴기를 동시에 포함할 수 있다. 예컨대, 상기 아릴아민기 중의 아릴기는 전술한 아릴기의 예시 중에서 선택될 수 있다.
본 명세서에 있어서, 아릴렌기는 아릴기에 결합 위치가 두 개 있는 것 즉 2가기를 의미한다. 이들은 각각 2가기인 것을 제외하고는 전술한 아릴기의 설명이 적용될 수 있다.
본 명세서에 있어서, 헤테로고리기는 탄소가 아닌 원자, 이종원자를 1 이상 포함하는 것으로서, 구체적으로 상기 이종 원자는 O, N, Se 및 S 등으로 이루어진 군에서 선택되는 원자를 1 이상 포함할 수 있다. 상기 헤테로고리기의 탄소수는 특별히 한정되지 않으나, 탄소수 2 내지 30인 것이 바람직하다. 본 명세서의 일 실시상태에 있어서, 상기 헤테로고리기는 단환식 또는 다환식일 수 있다. 헤테로고리기의 예로는 티오펜기, 퓨란기, 피롤기, 이미다졸기, 티아졸기, 옥사졸기, 옥사디아졸기, 피리딘기, 바이피리딘기, 피리미딘기, 트리아진기, 트리아졸기, 아크리딘기, 피리다진기, 피라진기, 퀴놀린기, 퀴나졸린기, 퀴녹살린기, 프탈라진기, 피리도 피리미딘기, 피리도 피라진기, 피라지노 피라진기, 이소퀴놀린기, 인돌기, 카바졸기, 벤즈옥사졸기, 벤즈이미다졸기, 벤조티아졸기, 벤조카바졸기, 벤조티오펜기, 디벤조티오펜기, 벤조퓨란기, 페난트리딘기(phenanthridine), 페난쓰롤린기(phenanthroline), 이소옥사졸기, 티아디아졸기, 페노티아진기 및 디벤조퓨란기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 2가의 헤테로고리는 단환 또는 다환일 수 있으며, 상기 헤테로고리기에서 결합 위치가 두개 있는 것을 의미한다. 예컨대, 상기 2가의 헤테로고리기는 예컨대 2가의 티오펜기; 2가의 카바졸기; 2가의 디벤조퓨란기; 및 2가의 디벤조티오펜기 등이 될 수 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 아릴옥시기는 -OR200으로 표시되는 기로서, R200은 아릴기이다. 아릴옥시기 중의 아릴기는 전술한 아릴기의 예시와 같다. 구체적으로 아릴옥시기로는 페녹시기, 벤질옥시, p-메틸벤질옥시, p-토릴옥시기, m-토릴옥시기, 3,5-디메틸-페녹시기, 2,4,6-트리메틸페녹시기, p-tert-부틸페녹시기, 3-바이페닐옥시기, 4-바이페닐옥시기, 1-나프틸옥시기, 2-나프틸옥시기, 4-메틸-1-나프틸옥시기, 5-메틸-2-나프틸옥시기, 1-안트릴옥시기, 2-안트릴옥시기, 9-안트릴옥시기, 1-페난트릴옥시기, 3-페난트릴옥시기, 9-페난트릴옥시기 등이 있으나, 이에만 한정되는 것은 아니다.
본 명세서에 있어서, 실릴기는 -SiR201R202R203로 표시되는 기로서, R201, R202 및R203은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이다. 상기 실릴기로는 트리메틸실릴기, 트리에틸실릴기, t-부틸디메틸실릴기, 비닐디메틸실릴기, 프로필디메틸실릴기, 트리페닐실릴기, 디페닐실릴기 및 페닐실릴기 등이 있으나, 이에 한정되는 것은 아니다.
본 명세서에 있어서, 실록산기는 -Si(R204)2OSi(R205)3 또는 -OSi(R204)3Si(R205)3로 표시되는 기로서, R204 및 R205는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이다.
본 명세서에 있어서, 가교결합성기는 열, 광 및/또는 방사선에 노출시킴으로써, 화합물 간에 가교를 시키는 반응성 치환기를 의미할 수 있다. 가교는 열처리, 광조사 및/또는 방사선 조사에 의하여, 탄소-탄소 다중결합, 환형 구조가 분해되면서 생성된 라디칼이 연결되면서 생성될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 가교결합성기는 하기 구조 중 어느 하나이다.
Figure PCTKR2021011754-appb-img-000009
상기 구조에 있어서,
Figure PCTKR2021011754-appb-img-000010
는 다른 치환기 또는 결합부에 결합되는 부위를 의미한다.
본 명세서에 있어서, "인접한" 기는 해당 치환기가 치환된 원자와 직접 연결된 원자에 치환된 치환기, 해당 치환기와 입체구조적으로 가장 가깝게 위치한 치환기, 또는 해당 치환기가 치환된 원자에 치환된 다른 치환기를 의미할 수 있다. 예컨대, 벤젠고리에서 오르토(ortho)위치로 치환된 2개의 치환기 및 지방족 고리에서 동일 탄소에 치환된 2개의 치환기는 서로 "인접한" 기로 해석될 수 있다.
본 명세서에 있어서, 인접한 기가 서로 결합하여 형성되는 고리에서, "고리"는 치환 또는 비치환된 탄화수소고리; 또는 치환 또는 비치환된 헤테로고리를 의미한다.
본 명세서에 있어서, “몰분율”은 모든 성분들의 총 몰수 대비 주어진 성분의 몰수의 비를 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 탄소수 6 내지 30의 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 페닐렌기; 치환 또는 비치환된 비페닐렌기; 또는 치환 또는 비치환된 터페닐렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 페닐렌기; 비페닐렌기; 또는 터페닐렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2는 하기 화학식 2-1로 표시된다.
[화학식 2-1]
Figure PCTKR2021011754-appb-img-000011
상기 화학식 2-1에 있어서,
R1 내지 R3, Ar1, Ar2 및 n1 내지 n3는 화학식 2에서 정의한 바와 동일하고,
R4 및 R5는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 또는 치환 또는 비치환된 알킬기이며,
m1 및 m2는 각각 1 내지 3의 정수이고,
m1 및 m2가 각각 2 이상일 경우, 각각의 괄호 안의 구조는 서로 같거나 상이하며,
n4 및 n5는 각각 1 내지 4의 정수이고,
n4 및 n5가 각각 2 이상일 경우, 각각의 괄호 안의 치환기는 서로 같거나 상이하며,
*은 중합체 내의 부착지점이다.
본 명세서의 일 실시상태에 있어서, 상기 m1 및 m2는 각각 2이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2는 하기 화학식 2-2로 표시된다.
[화학식 2-2]
Figure PCTKR2021011754-appb-img-000012
상기 화학식 2-2에 있어서,
R1 내지 R3, Ar1, Ar2 및 n1 내지 n3는 화학식 2에서 정의한 바와 동일하고,
R4 및 R5는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 또는 치환 또는 비치환된 알킬기이며,
n4 및 n5는 각각 1 내지 4의 정수이고,
n4 및 n5가 각각 2 이상일 경우, 각각의 괄호 안의 치환기는 서로 같거나 상이하며,
*은 중합체 내의 부착지점이다.
본 명세서의 일 실시상태에 있어서, 상기 Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 탄소수 6 내지 30의 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 페닐렌기; 치환 또는 비치환된 비페닐렌기; 또는 치환 또는 비치환된 터페닐렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 페닐렌기; 비페닐렌기; 또는 터페닐렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2는 하기 화학식 2-3으로 표시된다.
[화학식 2-3]
Figure PCTKR2021011754-appb-img-000013
상기 화학식 2-3에 있어서,
R1 내지 R3, Ar1, Ar2 및 n1 내지 n3는 화학식 2에서 정의한 바와 동일하고,
R4 내지 R7은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 또는 치환 또는 비치환된 알킬기이며,
n4 내지 n7은 각각 1 내지 4의 정수이고,
n4 내지 n7이 각각 2 이상일 경우, 각각의 괄호 안의 치환기는 서로 같거나 상이하며,
m1, m2, h1 및 h2는 각각 1 내지 3의 정수이고,
m1, m2, h1 및 h2가 각각 2 이상일 경우, 각각의 괄호 안의 구조는 서로 같거나 상이하며,
*은 중합체 내의 부착지점이다.
본 명세서의 일 실시상태에 있어서, 상기 R1 내지 R3는 수소; 또는 치환 또는 비치환된 알킬기이다.
본 명세서의 일 실시상태에 있어서, 상기 R1 내지 R3는 수소; 또는 치환 또는 비치환된 탄소수 1 내지 10의 알킬기이다.
본 명세서의 일 실시상태에 있어서, 상기 R1 내지 R3는 수소; 또는 알킬기이다.
본 명세서의 일 실시상태에 있어서, 상기 R1 내지 R3는 수소; 메틸기; 또는 헥실기이다.
본 명세서의 일 실시상태에 있어서, 상기 R1 및 R3는 수소; 또는 메틸기이다.
본 명세서의 일 실시상태에 있어서, 상기 R2는 헥실기이다.
본 명세서의 일 실시상태에 있어서, 상기 R4 및 R5는 각각 수소이다.
본 명세서의 일 실시상태에 있어서, 상기 h1 및 h2는 각각 2이다.
본 명세서의 일 실시상태에 있어서, 상기 R6 및 R7은 각각 수소이다.
본 명세서의 일 실시상태에 있어서, 상기 L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 비페닐기이다.
본 명세서의 일 실시상태에 있어서, 상기 L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 비페닐렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 비페닐기이다.
본 명세서의 일 실시상태에 있어서, 상기 Ar1 및 Ar2는 서로 같거나 상이하고, 각각 독립적으로 비페닐렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2는 하기 구조이다.
Figure PCTKR2021011754-appb-img-000014
상기 구조에 있어서, *은 중합체 내의 부착지점이다.
본 명세서의 일 실시상태에 있어서, 상기 a는 몰분율로서 0<a≤1의 실수 이다. 즉, 상기 중합체는 A를 반드시 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 b는 몰분율로서 0≤b<1의 실수 이다. 즉, 상기 중합체는 B를 선택적으로 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 B는 3개 또는 4개의 부착 지점을 갖는 단위이다.
본 명세서의 일 실시상태에 있어서, 상기 Y는 직접결합; 또는 치환 또는 비치환된 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 Y는 직접결합; 또는 치환 또는 비치환된 페닐렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 3은 하기 화학식 3-1 내지 3-4 중 어느 하나로 표시된다.
[화학식 3-1]
Figure PCTKR2021011754-appb-img-000015
[화학식 3-2]
Figure PCTKR2021011754-appb-img-000016
[화학식 3-3]
Figure PCTKR2021011754-appb-img-000017
[화학식 3-4]
Figure PCTKR2021011754-appb-img-000018
상기 화학식 3-1 내지 3-4에 있어서,
Z1은 CRa; SiRa; N; 또는 3가의 치환 또는 비치환된 아릴기이고,
Z2 및 Z3는 서로 같거나 상이하고, 각각 독립적으로 C; Si; 또는 4가의 치환 또는 비치환된 아릴기이며,
L10은 직접결합; 또는 치환 또는 비치환된 아릴렌기이고,
Ra는 수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
R10 내지 R20은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 알콕시기; 아릴옥시기; 플루오로알콕시기; 실록산기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 헤테로고리기; 또는 가교결합성기이고, 인접한 기들이 서로 결합하여 고리를 형성할 수 있으며,
k1은 1 내지 4의 정수이고,
k2는 1 내지 5의 정수이며,
k1이 2 이상일 경우 괄호 안의 치환기는 서로 같거나 상이하고,
k2가 2 이상일 경우 괄호 안의 치환기는 서로 같거나 상이하며,
*은 중합체 내의 부착지점이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 3은 상기 화학식 3-1로 표시된다.
본 명세서의 일 실시상태에 있어서, 상기 Z1이 CRa 또는 SiRa이고, Ra가 치환 또는 비치환된 아릴기일 경우, L10은 치환 또는 비치환된 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 Z1은 CH; SiH; N; 또는 치환 또는 비치환된 3가의 아릴기이다.
본 명세서의 일 실시상태에 있어서, 상기 Z1은 CH; SiH; N; 또는 치환 또는 비치환된 3가의 페닐기이다.
본 명세서의 일 실시상태에 있어서, 상기 Z1은 N; 또는 3가의 페닐기이다.
본 명세서의 일 실시상태에 있어서, 상기 L10은 직접결합; 또는 치환 또는 비치환된 탄소수 6 내지 30의 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 L10은 직접결합; 또는 탄소수 6 내지 30의 아릴렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 L10은 직접결합; 또는 페닐렌기이다.
본 명세서의 일 실시상태에 있어서, 상기 L10은 직접결합이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 3은 상기 화학식 3-2로 표시된다.
본 명세서의 일 실시상태에 있어서, 상기 Z2는 C; 또는 Si이다.
본 명세서의 일 실시상태에 있어서, 상기 B는 상기 화학식 3-3으로 표시된다.
본 명세서의 일 실시상태에 있어서, 상기 Z3는 C; 또는 Si이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 3은 상기 화학식 3-4로 표시된다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 3은 하기 구조 중 어느 하나로 표시된다.
Figure PCTKR2021011754-appb-img-000019
상기 구조에 있어서,
R10 내지 R20은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 알콕시기; 아릴옥시기; 플루오로알콕시기; 실록산기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 헤테로고리기; 또는 가교결합성기이고, 인접한 기들이 서로 결합하여 고리를 형성할 수 있으며,
k1은 1 내지 4의 정수이고,
k2는 1 내지 5의 정수이며,
k1이 2 이상일 경우 괄호 안의 치환기는 서로 같거나 상이하고,
k2가 2 이상일 경우 괄호 안의 치환기는 서로 같거나 상이하며,
*은 중합체 내의 부착지점이다.
본 명세서의 일 실시상태에 있어서, 상기 R10 내지 R20은 각각 수소이다.
구체적으로, 상기 화학식 3은 하기 구조 중 어느 하나로 표시된다.
Figure PCTKR2021011754-appb-img-000020
상기 구조에 있어서, *은 중합체 내의 부착지점이다.
보다 구체적으로, 상기 화학식 3은 하기 구조 중 어느 하나로 표시된다.
Figure PCTKR2021011754-appb-img-000021
상기 구조에 있어서, *은 중합체 내의 부착지점이다.
보다 구체적으로, 상기 화학식 3은 하기 구조 중 어느 하나로 표시된다.
Figure PCTKR2021011754-appb-img-000022
상기 구조에 있어서, *은 중합체 내의 부착지점이다.
본 명세서의 일 실시상태에 있어서, 상기 c는 몰분율로서 0≤c<1의 실수 이다. 즉, 상기 중합체는 C를 선택적으로 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 C는 2개의 부착 지점을 갖는 단위이다.
본 명세서의 일 실시상태에 있어서, 상기 C는 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 2가의 헤테로고리기이고,
본 명세서의 일 실시상태에 있어서, 상기 C는 중수소 또는 가교결합성기로 치환 또는 비치환된 아릴렌기; 또는 중수소 또는 가교결합성기로 치환 또는 비치환된 2가의 헤테로고리기이다.
본 명세서의 일 실시상태에 있어서, 상기 C는 하기 구조 중 어느 하나이다.
Figure PCTKR2021011754-appb-img-000023
상기 구조에 있어서,
Y1은 S, O 또는 NR100이고,
R30 내지 R39 및 R100은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 가교결합성기이며,
k3은 1 또는 2의 정수이고,
k4는 1 내지 4의 정수이며,
k5는 1 내지 3의 정수이고,
k6는 1 내지 8의 정수이며,
k3 내지 k6이 각각 2 이상일 경우, 각각의 괄호 안의 치환기는 서로 같거나 상이하고,
*은 중합체 내의 부착지점이다.
구체적으로, 상기 C는 하기 구조 중 어느 하나이다.
Figure PCTKR2021011754-appb-img-000024
상기 구조에 있어서,
Y1은 S, O 또는 NR100이고,
R30 내지 R39 및 R100은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 또는 가교결합성기이며,
k3은 1 또는 2의 정수이고,
k4는 1 내지 4의 정수이며,
k5는 1 내지 3의 정수이고,
k6는 1 내지 8의 정수이며,
k3 내지 k6이 각각 2 이상일 경우, 각각의 괄호 안의 치환기는 서로 같거나 상이하고,
*은 중합체 내의 부착지점이다.
보다 구체적으로, 상기 C는 하기 구조 중 어느 하나이다.
Figure PCTKR2021011754-appb-img-000025
상기 구조에 있어서, *은 중합체 내의 부착지점이다.
본 명세서의 일 실시상태에 있어서, 상기 E1 및 E2는 중합체의 말단-캡핑(end-capping) 단위이다.
본 명세서의 일 실시상태에 있어서, 상기 E1 및 E2는 1개의 부착 지점만 갖는 단위이다.
본 명세서의 일 실시상태에 있어서, 상기 E1 및 E2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 가교결합성기; 또는 이들의 조합이다.
본 명세서의 일 실시상태에 있어서, 상기 E1 및 E2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 30의 알킬기; 치환 또는 비치환된 탄소수 6 내지 30의 아릴기; 가교결합성기; 또는 이들의 조합이다.
본 명세서의 일 실시상태에 있어서, 상기 E1 및 E2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 10의 알킬기; 치환 또는 비치환된 페닐기; 치환 또는 비치환된 비페닐기; 가교결합성기; 또는 이들의 조합이다.
본 명세서의 일 실시상태에 있어서, 상기 E1 및 E2는 각각 하기 구조 중 어느 하나이다.
Figure PCTKR2021011754-appb-img-000026
상기 구조에 있어서, *은 중합체 내의 부착지점이다.
보다 구체적으로, 상기 E1 및 E2는 각각 하기 구조 중 어느 하나이다.
Figure PCTKR2021011754-appb-img-000027
상기 구조에 있어서, *은 중합체 내의 부착지점이다.
본 명세서의 일 실시상태에 있어서, 상기 a, b 및 c는 중합체의 제조시 사용되는 단량체의 당량비에 따라 결정된다.
본 명세서의 일 실시상태에 있어서, a는 0.4 이상의 실수이다.
본 명세서의 일 실시상태에 있어서, a는 0.4 내지 1의 실수이다.
본 명세서의 일 실시상태에 있어서, a는 0.5 내지 1의 실수이다.
본 명세서의 일 실시상태에 있어서, a는 0.5 내지 0.9의 실수이다.
본 명세서의 일 실시상태에 있어서, a는 0.5 내지 0.8의 실수이다.
본 명세서의 일 실시상태에 있어서, b는 0 이상의 실수이다.
본 명세서의 일 실시상태에 있어서, b는 0 내지 0.5의 실수이다.
본 명세서의 일 실시상태에 있어서, b는 0.1 내지 0.4의 실수이다.
본 명세서의 일 실시상태에 있어서, b는 0.1 내지 0.3의 실수이다.
본 명세서의 일 실시상태에 있어서, b는 0.1 내지 0.3의 실수이다.
본 명세서의 일 실시상태에 있어서, c는 0 내지 0.2의 실수이다.
본 명세서의 일 실시상태에 있어서, c는 0 내지 0.1의 실수이다.
본 명세서의 일 실시상태에 있어서, c는 0이다.
본 명세서의 일 실시상태에 있어서, a은 0.4 내지 1의 실수이고, b는 0 내지 0.4의 실수이며, c는 0 내지 0.2의 실수이다.
본 명세서의 일 실시상태에 있어서, a은 0.4 내지 0.9의 실수이고, b는 0.1 내지 0.4의 실수이며, c는 0 내지 0.2의 실수이다.
본 명세서의 일 실시상태에 있어서, (A+B):(E1+E2)의 몰비는 40:60 내지 98:2이다.
본 명세서의 일 실시상태는 하기 화학식 2로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체를 제공한다.
[화학식 2]
Figure PCTKR2021011754-appb-img-000028
[화학식 5]
Figure PCTKR2021011754-appb-img-000029
상기 화학식 2 및 5에 있어서,
Ar1, Ar2, L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴렌기이고,
R1 내지 R3는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 헤테로고리기; 치환 또는 비치환된 아릴아민기; 또는 치환 또는 비치환된 실록산기이며,
n1 내지 n3는 각각 1 내지 4의 정수이고,
n1 내지 n3가 각각 2 이상일 경우, 각각의 괄호 안의 치환기는 서로 같거나 상이하며,
E는 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 아릴아민기; 치환 또는 비치환된 실록산기; 가교결합성기; 또는 이들의 조합이고,
*은 중합체 내의 부착지점이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 중합체는 상기 화학식 2로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체로 표현될 수 있다. 구체적으로, 상기 화학식 1의 b 및 c가 0인 경우, 상기 화학식 1로 표시되는 중합체는 상기 화학식 2로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체로 표현될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체는 하기 화학식 3으로 표시되는 단위를 더 포함한다.
[화학식 3]
Figure PCTKR2021011754-appb-img-000030
상기 화학식 3에 있어서,
m은 3 또는 4의 정수이고,
m이 3일 경우, Z는 CRa; SiRa; N; 또는 3가의 치환 또는 비치환된 아릴기이고,
m이 4일 경우, Z는 C; Si; 또는 4가의 치환 또는 비치환된 아릴기이며,
Ra는 수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
Y는 직접결합; 치환 또는 비치환된 알킬렌기; 또는 치환 또는 비치환된 아릴렌기이며,
Y가 직접결합; 또는 치환 또는 비치환된 알킬렌기일 경우, Z는 3가 또는 4가의 치환 또는 비치환된 아릴기이고,
*은 중합체 내의 부착지점이다.
즉, 본 명세서의 일 실시상태는 상기 화학식 2로 표시되는 단위, 화학식 3으로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체를 제공한다.
이때, 상기 화학식 1로 표시되는 중합체는 상기 화학식 2로 표시되는 단위, 화학식 3으로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체로 표현될 수 있다.
구체적으로, 상기 화학식 1의 b가 0 초과 1 미만의 실수이고, c가 0인 경우, 상기 화학식 1로 표시되는 중합체는 상기 화학식 2로 표시되는 단위, 화학식 3으로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체로 표현될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체는 하기 화학식 4로 표시되는 단위를 더 포함한다.
[화학식 4]
Figure PCTKR2021011754-appb-img-000031
상기 화학식 4에 있어서,
C는 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 2가의 헤테로고리기이고,
*은 중합체 내의 부착지점이다.
즉, 본 명세서의 일 실시상태는 상기 화학식 2로 표시되는 단위, 화학식 4로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체를 제공한다.
이때, 상기 화학식 1로 표시되는 중합체는 상기 화학식 2로 표시되는 단위, 화학식 4로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체로 표현될 수 있다.
구체적으로, 상기 화학식 1의 b가 0이고, c가 0 초과 1 미만의 실수인 경우, 상기 화학식 1로 표시되는 중합체는 상기 화학식 2로 표시되는 단위, 화학식 4로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체로 표현될 수 있다.
또한, 본 명세서의 일 실시상태는 상기 화학식 2로 표시되는 단위, 화학식 3으로 표시되는 단위, 화학식 4로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체를 제공한다.
이때, 상기 화학식 1로 표시되는 중합체는 상기 화학식 2로 표시되는 단위, 화학식 3으로 표시되는 단위, 화학식 4로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체로 표현될 수 있다.
구체적으로, 상기 화학식 1의 b 및 c가 각각 0 초과 1 미만의 실수인 경우, 상기 화학식 1로 표시되는 중합체는 상기 화학식 2로 표시되는 단위, 화학식 3으로 표시되는 단위, 화학식 4로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체로 표현될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체의 화학식 2에 대한 설명은 화학식 1에서 전술한 화학식 2에 대한 설명이 동등하게 적용된다. 예컨대, 상기 화학식 2로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체에 있어서, 상기 화학식 2는 상기 화학식 2-1로 표시될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체가 화학식 3으로 표시되는 단위를 더 포함할 경우, 화학식 3에 대한 설명은 화학식 1에서 전술한 화학식 3에 대한 설명이 동등하게 적용된다. 예컨대, 상기 화학식 2로 표시되는 단위, 화학식 3으로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체에 있어서, 상기 화학식 3은 상기 화학식 3-1 내지 3-4 중 어느 하나로 표시될 수 있다.
상기 화학식 2 및 3에 대한 설명은 화학식 2로 표시되는 단위, 화학식 3으로 표시되는 단위, 화학식 4로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체에서도 동등하게 적용된다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체가 화학식 4를 더 포함할 경우, 화학식 4의 C에 대한 설명은 화학식 1에서 정의한 C의 정의가 동등하게 적용된다. 예컨대, 상기 화학식 2로 표시되는 단위, 화학식 4로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체에 있어서, 화학식 4의 C는 하기 구조 중 어느 하나이다.
Figure PCTKR2021011754-appb-img-000032
상기 C에 대한 설명은 화학식 2로 표시되는 단위, 화학식 3으로 표시되는 단위, 화학식 4로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체에서도 동등하게 적용된다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체에 있어서, 상기 화학식 5의 E는 화학식 1의 E1에 대한 설명이 동등하게 적용된다. 예컨대, 상기 화학식 2로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체에 있어서 E는 중합체의 말단-캡핑(end-capping) 단위이며, 하기 구조 중 어느 하나로 표시될 수 있다.
Figure PCTKR2021011754-appb-img-000033
상기 E에 대한 설명은 화학식 2로 표시되는 단위, 화학식 3으로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체에도 동등하게 적용된다. 또한, 상기 E에 대한 설명은 설명은 화학식 2로 표시되는 단위, 화학식 3으로 표시되는 단위, 화학식 4로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체에도 동등하게 적용된다.
본 명세서의 일 실시상태에 있어서, 상기 중합체는 교대 중합체, 블록 중합체 또는 랜덤 중합체이다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1은 중합체 내에서 A1, B1 및 C1이 순서대로 있는 것만 의미하는 것은 아니다. 구체적으로, 중합체 내에서 상기 A1, B1 및 C1은 다양한 순서로 있을 수 있다. 예컨대, 상기 중합체는 E1-A1-B1-C1-E2, E1-A1-C1-B1-E2, E1-B1-A1-C1-E2, E1-B1-C1-A1-E2, E1-C1-A1-B1-E2 또는 E1-C1-B1-A1-E2 순일 수 있다.
또한, 상기 화학식 1은 중합체 내에서 A1, B1 및 C1이 하나씩만 연결되는 구조는 아니다. 예컨대, 상기 중합체는 E1-A1-B1-A1-C1-E2, E1-A1-C1-B1-C1-E2, E1-A1-B1-C1-A1-E2 등 중합체 내에서 다양한 함량범위로 연결될 수 있다. 이때, 상기 A1, B1 및 C1의 함량 범위는 중합체의 제조시 사용되는 단량체의 당량비에 따라 결정된다.
본 명세서의 일 실시상태에 있어서, 상기 중합체의 중량 평균 분자량(Mw)은 30,000g/mol 내지 100,000g/mol이다. 구체적으로, 40,000g/mol 내지 80,000g/mol이다.
중합체의 중량 평균 분자량이 상기 범위를 만족할 경우, 용액 공정을 통해 소자에 적용 가능하고, 소자에 적용 후 유기물층이 유지되는 효과를 나타낸다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 2로 표시되는 단위, 화학식 3으로 표시되는 단위, 화학식 4로 표시되는 단위 및 화학식 5로 표시되는 말단기는 중합체의 특성이 최적화되도록 분포될 수 있다.
본 명세서의 일 실시상태에 있어서, 중합체 내 화학식 2로 표시되는 단위의 몰분율을 a1, 화학식 3으로 표시되는 단위의 몰분율을 b1, 화학식 4로 표시되는 단위의 몰분율을 c1, 화학식 5로 표시되는 단위의 몰분율을 e1이라고 하였을 때, a1, b1, c1 및 e1은 각각 실수이고, 0<a1<1, 0≤b1<1, 0≤c1<1. 0<e1<1이며, a1+b1+c1+e1=1이다.
본 명세서의 일 실시상태에 있어서, a1은 0.4 이상의 실수이다.
본 명세서의 일 실시상태에 있어서, a1은 0.4 이상 1 미만의 실수이다.
본 명세서의 일 실시상태에 있어서, a1은 0.5 이상 1 미만의 실수이다.
본 명세서의 일 실시상태에 있어서, a1은 0.5 내지 0.9의 실수이다.
본 명세서의 일 실시상태에 있어서, a1은 0.5 내지 0.8의 실수이다.
본 명세서의 일 실시상태에 있어서, b1은 0 이상의 실수이다.
본 명세서의 일 실시상태에 있어서, b1은 0 내지 0.5의 실수이다.
본 명세서의 일 실시상태에 있어서, b1은 0.1 내지 0.4의 실수이다.
본 명세서의 일 실시상태에 있어서, b1은 0.1 내지 0.3의 실수이다.
본 명세서의 일 실시상태에 있어서, c1은 0 내지 0.2의 실수이다.
본 명세서의 일 실시상태에 있어서, c1은 0 내지 0.1의 실수이다.
본 명세서의 일 실시상태에 있어서, c1은 0이다.
본 명세서의 일 실시상태에 있어서, 상기 e1은 0.1 내지 0.5의 실수이다.
본 명세서의 일 실시상태에 있어서, 상기 e1은 0.1 내지 0.4의 실수이다.
본 명세서의 일 실시상태에 있어서, 상기 e1은 0.1 내지 0.35의 실수이다.
본 명세서의 일 실시상태에 있어서, a1은 0.4 이상 1 미만의 실수이고, b1은 0 내지 0.5의 실수이며, c1은 0 내지 0.2의 실수이고, e1은 0.1 내지 0.5의 실수이며, a1+b1+c1+e1=1이다.
본 명세서의 일 실시상태에 있어서, a1은 0.4 내지 0.9의 실수이고, b1은 0.1 내지 0.4의 실수이며, c1은 0 내지 0.2의 실수이고, e1은 0.1 내지 0.5의 실수이며, a1+b1+c1+e1=1이다.
본 명세서의 일 실시상태에 있어서, a1은 0.4 내지 0.7의 실수이고, b1은 0.1 내지 0.3의 실수이며, c1은 0 내지 0.1의 실수이고, e1은 0.2 내지 0.4의 실수이며, a1+b1+c1+e1=1이다.
본 명세서의 일 실시상태에 있어서, 상기 중합체는 하기 구조 중 어느 하나로 표시된다.
Figure PCTKR2021011754-appb-img-000034
Figure PCTKR2021011754-appb-img-000035
Figure PCTKR2021011754-appb-img-000036
Figure PCTKR2021011754-appb-img-000037
Figure PCTKR2021011754-appb-img-000038
Figure PCTKR2021011754-appb-img-000039
Figure PCTKR2021011754-appb-img-000040
Figure PCTKR2021011754-appb-img-000041
Figure PCTKR2021011754-appb-img-000042
Figure PCTKR2021011754-appb-img-000043
Figure PCTKR2021011754-appb-img-000044
Figure PCTKR2021011754-appb-img-000045
Figure PCTKR2021011754-appb-img-000046
Figure PCTKR2021011754-appb-img-000047
Figure PCTKR2021011754-appb-img-000048
Figure PCTKR2021011754-appb-img-000049
상기 구조에 있어서, a1은 0<a1<1의 실수이고, b1은 0≤b1<1의 실수이며, e1은 0<e1<1의 실수이고, a1+b1+e1은 1이다.
구체적으로, 상기 구조에 있어서, a1은 0.4 내지 0.9의 실수이고, b1은 0.1 내지 0.4의 실수이며, e1은 0.1 내지 0.5의 실수이고, a1+b1+e1은 1이다.
보다 구체적으로, 상기 구조에 있어서, a1은 0.4 내지 0.8의 실수이고, b1은 0.1 내지 0.4의 실수이며, e1은 0.1 내지 0.5의 실수이고, a1+b1+e1은 1이다.
상기 구조에 있어서, a1, b1 및 e1은 중합체의 제조시 투입되는 단량체의 당량에 따라 결정된다.
본 명세서의 일 실시상태에 있어서, 상기 중합체는 공지의 중합 기술을 사용하여 제조될 수 있다. 예컨대, 스즈키(Suzuki), 야마모토(Yamamoto), 스틸(Stille), 금속 촉매 사용 C-N 커플링 반응 및 금속 촉매 사용 아릴화 반응과 같은 제조방법이 적용될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 중합체는 중수소로 치환될 수 있다. 이때, 중수소는 전구체 재료를 사용하는 방식을 적용하여 치환시킬 수 있다. 예컨대, 루이스 산 H/D 교환 촉매의 존재 하에서 중수소화되지 않은 단량체 및/또는 중합체를 중수소화된 용매 처리함으로써 중수소를 치환시킬 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 중합체의 분자량은 사용된 단량체의 비를 조절하여 제어할 수 있다. 또한, 일부 실시상태에 있어서, 상기 중합체의 분자량은 켄칭(quenching) 반응을 사용하여 제어될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 중합체는 정공수송재료로 사용될 수 있다. 예컨대, 상기 중합체는 '정공수송용 중합체'일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 중합체는 용액 공정을 통하여 층으로 형성될 수 있다. 용어 '층' 은 용어 '막' 또는 '필름'과 상호 교환가능하게 사용되며, 원하는 영역을 덮는 코팅을 지칭한다. 이 용어는 크기에 의해 제한되지 않는다. 상기 영역은 전체 소자만큼 크거나, 실제 시각 디스플레이와 같은 특정 기능 영역만큼 작거나, 또는 단일 서브픽셀(sub-pixel)만큼 작을 수 있다. 층 및 필름은 증착, 액체 침착(연속 및 불연속 기술) 및 열전사를 포함하는 임의의 통상적인 침착 기술에 의해 형성될 수 있다. 연속 침착 기술은 스핀 코팅, 그라비어 코팅, 커튼 코팅, 딥 코팅, 슬롯-다이 코팅, 분무 코팅, 및 연속 노즐 코팅을 포함하지만 이로 한정되지 않는다. 불연속 침착 기술은 잉크젯 인쇄, 그라비어 인쇄 및 스크린 인쇄를 포함하지만 이로 한정되지 않는다.
본 명세서의 일 실시상태에 있어서, 상기 중합체는 고유 점도가 60 mL/g 미만이다. 이는 잉크젯 인쇄 응용을 위해 특히 유용한데, 더 낮은 점도로 인해 더 진한 용액이 분사되게 할 수 있다. 구체적으로, 상기 중합체는 고유 점도가 50 mL/g 미만, 보다 구체적으로는 40 mL/g 미만, 보다 구체적으로는 30 mL/g 미만이다.
본 명세서의 일 실시상태에 있어서, 상기 중합체의 고유 점도는 20 mL/g 이상 60 mL/g 미만, 구체적으로는 20 mL/g 내지 50 mL/g, 보다 구체적으로는 20 mL/g 내지 40 mL/g이다.
본 명세서의 일 실시상태는 전술한 중합체를 포함하는 코팅 조성물을 제공한다.
본 명세서의 일 실시상태에 있어서, 상기 코팅 조성물은 용매를 더 포함한다. 본 명세서의 일 실시상태에 있어서, 상기 코팅 조성물은 상기 중합체 및 용매를 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 코팅 조성물은 액상일 수 있다. 상기 "액상"은 상온 및 상압에서 액체 상태인 것을 의미한다.
본 명세서의 일 실시상태에 있어서, 상기 용매는 하부 층에 적용되는 물질을 용해하지 않는 것이 바람직하다.
본 명세서의 일 실시상태에 있어서, 상기 코팅 조성물이 유기 발광 소자의 유기물층에 적용될 경우, 하부 층의 물질을 용해하지 않는 용매를 사용한다. 예컨대, 상기 코팅 조성물이 정공수송층에 적용될 경우, 하부 층(제1 전극, 정공주입층 등)의 물질을 용해하지 않는 용매를 사용한다. 이에 따라, 용액 공정으로 정공수송층의 도입이 가능한 장점이 있다.
본 명세서의 일 실시상태에 있어서, 상기 코팅 조성물은 코팅 후 열처리시 용매 내성이 향상된다.
예컨대, 상기 중합체를 용해시키는 용매를 사용하여 코팅 조성물을 제조하고 용액 공정으로 층을 제조하였더라도, 열처리 후에는 동일한 용매에 대하여 내성을 가질 수 있다.
따라서, 상기 중합체를 이용하여 유기물층을 형성한 후에 열처리 과정을 거치면 다른 유기물층 적용시 용액 공정이 가능하다.
본 명세서의 일 실시상태에 있어서, 상기 코팅 조성물에 포함되는 용매는 예컨대, 클로로포름, 염화메틸렌, 1,2-디클로로에탄, 1,1,2-트리클로로에탄, 클로로벤젠, o-디클로로벤젠 등의 염소계 용매; 테트라히드로푸란, 디옥산 등의 에테르계 용매; 톨루엔, 크실렌, 트리메틸벤젠, 메시틸렌 등의 방향족 탄화수소계 용매; 아세톤, 메틸에틸케톤, 시클로헥사논 등의 케톤계 용매; 아세트산에틸, 아세트산부틸, 에틸셀로솔브아세테이트 등의 에스테르계 용매; 에틸렌글리콜, 에틸렌글리콜모노부틸에테르, 에틸렌글리콜모노에틸에테르, 에틸렌글리콜모노메틸에테르, 디메톡시에탄, 프로필렌글리콜, 디에톡시메탄, 트리에틸렌글리콜모노에틸에테르, 글리세린, 1,2-헥산디올 등의 다가 알코올 및 그의 유도체; 메탄올, 에탄올, 프로판올, 이소프로판올, 시클로헥산올 등의 알코올계 용매; 디메틸술폭시드 등의 술폭시드계 용매; N-메틸-2-피롤리돈, N,N-디메틸포름아미드 등의 아미드계 용매; 메틸 벤조에이트, 부틸 벤조에이트, 3-페녹시 벤조에이트 등의 벤조에이트계 용매; 및 테트랄린 등의 용매가 예시되나, 본 명세서의 일 실시상태에 따른 중합체를 용해 또는 분산시킬 수 있는 용매라면 가능하며, 이들로 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 용매는 1종 단독으로 사용하거나, 또는 2종 이상의 용매를 혼합하여 사용할 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 용매의 비점은 바람직하게 40℃ 내지 350℃ 더욱 바람직하게는 80℃ 내지 330℃이나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 코팅 조성물 내 상기 중합체의 농도는 바람직하게 0.1 wt/v% 내지 20 wt/v%, 더욱 바람직하게는 0.5 wt/v% 내지 10 wt/v% 이나, 이에 한정되는 것은 아니다.
본 명세서의 일 실시상태는 실시상태는 제1 전극;
상기 제1 전극과 대향하여 구비된 제2 전극; 및
상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하고,
상기 유기물층 중 1층 이상은 상기 중합체를 포함하는 것인 유기 발광 소자를 제공한다.
본 명세서의 유기 발광 소자의 유기물층은 단층 구조로 이루어질 수도 있으나, 2층 이상의 유기물층이 적층된 다층 구조로 이루어질 수 있다. 예컨대, 본 발명의 유기 발광 소자는 유기물층으로서 정공주입층, 정공수송층, 발광층, 전자수송층, 전자주입층, 정공주입 및 수송을 동시에 하는 층, 전자주입 및 수송을 동시에 하는 층 등을 포함하는 구조를 가질 수 있다. 그러나 유기 발광 소자의 구조는 이에 한정되지 않고 더 적은 수의 유기층을 포함할 수 있다.
상기 유기 발광 소자가 복수개의 유기물층을 포함하는 경우, 상기 유기물층은 동일한 물질 또는 다른 물질로 형성될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 제1 전극과 제2 전극 사이에 구비된 발광층을 포함하고, 상기 발광층과 제1 전극 사이에 단층의 유기물층을 더 포함하며, 상기 유기물층이 상기 중합체를 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 제1 전극과 제2 전극 사이에 구비된 발광층을 포함하고, 상기 발광층과 제1 전극 사이에 다층의 유기물층을 더 포함하며, 상기 유기물층 중 1층 이상이 상기 중합체를 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 제1 전극과 제2 전극 사이에 구비된 발광층을 포함하고, 상기 발광층과 제1 전극 사이에 정공주입층, 정공수송층 및 전자차단층 중 1층 이상을 더 포함하며, 상기 정공주입층, 정공수송층 및 전자차단층 중 1층 이상이 상기 중합체를 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 제1 전극; 상기 제1 전극과 대향하여 구비된 제2 전극; 및 제1 전극과 제2 전극 사이에 구비된 발광층을 포함하고, 상기 제1 전극과 발광층 사이에 정공주입층 및 정공수송층을 포함하며, 상기 정공주입층 및 정공수송층 중 1층 이상이 상기 중합체를 포함한다.
본 명세서의 일 실시상태에 있어서 상기 유기 발광 소자는 제1 전극; 정공주입층; 정공수송층; 발광층; 및 제2 전극이 순차적으로 구비된 구조이며, 상기 정공주입층 및 정공수송층 중 1층 이상이 상기 중합체를 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 제1 전극; 정공주입층; 정공수송층; 발광층; 및 제2 전극이 순차적으로 적층된 구조이고, 상기 정공주입층 또는 정공수송층이 상기 중합체를 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 제1 전극; 정공주입층; 정공수송층; 발광층; 및 제2 전극이 순차적으로 적층된 구조이고, 상기 정공주입층이 상기 중합체를 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 발광층과 제2 전극 사이에 추가의 유기물층이 더 포함될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 발광층과 제2 전극 사이에 단층의 유기물층이 더 포함될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 발광층과 제2 전극 사이에 다층의 유기물층이 더 포함될 수 있다. 예컨대, 상기 발광층과 제2 전극 사이에 정공차단층, 전자주입층, 전자수송층 및 전자주입과 수송을 동시에 하는 층 중 1층 이상이 더 포함될 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 제1 전극; 정공주입층; 정공수송층; 발광층; 전자주입 및 수송층; 및 제2 전극이 순차적으로 적층된 구조이고, 상기 정공주입층 및 정공수송층 중 1층 이상이 상기 중합체를 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 제1 전극; 정공주입층; 정공수송층; 발광층; 전자주입 및 수송층; 및 제2 전극이 순차적으로 적층된 구조이고, 상기 정공주입층 또는 정공수송층이 상기 중합체를 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 제1 전극; 정공주입층; 정공수송층; 발광층; 전자주입 및 수송층; 및 제2 전극이 순차적으로 적층된 구조이고, 상기 정공주입층이 상기 중합체를 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 유기 발광 소자는 제1 전극; 정공주입층; 정공수송층; 발광층; 전자주입 및 수송층; 및 제2 전극이 순차적으로 적층된 구조이고, 상기 정공수송층이 상기 중합체를 포함한다.
예컨대, 본 명세서의 일 실시상태에 따른 유기 발광 소자의 구조는 도 1에 예시되어 있다.
도 1에는 기판(1), 양극(2), 발광층(3) 및 음극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다.
도 2에는 기판(1), 양극(2), 정공주입층(5), 정공수송층(6), 발광층(3), 전자주입 및 수송층(7) 및 음극(4)이 순차적으로 적층된 유기 발광 소자의 구조가 예시되어 있다.
상기 도 1 및 2는 유기 발광 소자를 예시한 것으로, 본 발명의 유기 발광 소자의 구조는 이에 한정되지 않는다.
본 명세서의 일 실시상태에 있어서, 상기 제1 전극은 양극이고, 상기 제2 전극은 음극이다. 또 하나의 실시상태에 있어서, 상기 제1 전극은 음극이고, 상기 제2 전극은 양극이다.
또 하나의 실시상태에 있어서, 유기 발광 소자는 기판 상에 양극, 1층 이상의 유기물층 및 음극이 순차적으로 적층된 구조(normal type)의 유기 발광 소자일 수 있다.
또 하나의 실시상태에 있어서, 유기 발광 소자는 기판 상에 음극, 1층 이상의 유기물층 및 양극이 순차적으로 적층된 역방향 구조(inverted type)의 유기 발광 소자일 수 있다.
본 발명의 유기 발광 소자는 하기 예시와 같은 구조로 적층될 수 있다.
(1) 양극/정공수송층/발광층/음극
(2) 양극/정공주입층/정공수송층/발광층/음극
(3) 양극/정공주입층/정공버퍼층/정공수송층/발광층/음극
(4) 양극/정공수송층/발광층/전자수송층/음극
(5) 양극/정공수송층/발광층/전자수송층/전자주입층/음극
(6) 양극/정공주입층/정공수송층/발광층/전자수송층/음극
(7) 양극/정공주입층/정공수송층/발광층/전자수송층/전자주입층/음극
(8) 양극/정공주입층/정공버퍼층/정공수송층/발광층/전자수송층/음극
(9) 양극/정공주입층/정공버퍼층/정공수송층/발광층/전자수송층/전자주입층 /음극
(10) 양극/ 정공수송층/전자억제층/발광층/전자수송층/음극
(11) 양극/ 정공수송층/전자억제층/발광층/전자수송층/전자주입층/음극
(12) 양극/정공주입층/정공수송층/전자억제층/발광층/전자수송층/음극
(13) 양극/정공주입층/정공수송층/전자억제층/발광층/전자수송층/전자주입 층/음극
(14) 양극/정공수송층/발광층/정공억제층/전자수송층/음극
(15) 양극/정공수송층/발광층/ 정공억제층/전자수송층/전자주입층/음극
(16) 양극/정공주입층/정공수송층/발광층/정공억제층/전자수송층/음극
(17) 양극/정공주입층/정공수송층/발광층/정공억제층/전자수송층/전자주입층/음극
(18) 양극/정공주입층/정공수송층/전자억제층/발광층/정공저지층/전자주입층 및 수송층/음극
상기 구조에 있어서, “전자수송층/전자주입층”은 “전자주입 및 수송층”으로 대체될 수 있다.
본 명세서의 유기 발광 소자는 유기물층 중 1층 이상이 상기 중합체를 포함하도록 제조되는 것을 제외하고는 당 기술분야에 알려져 있는 재료와 방법으로 제조될 수 있다. 구체적으로, 상기 유기 발광 소자는 유기물층 중 1층 이상이 상기 중합체를 포함하는 코팅 조성물을 이용하여 형성될 수 있다.
예컨대, 본 명세서의 유기 발광 소자는 기판 상에 양극, 유기물층 및 음극을 순차적으로 적층시킴으로써 제조할 수 있다. 이 때 스퍼터링법(sputtering)이나 전자빔 증발법(e-beam evaporation)과 같은 PVD(physical Vapor Deposition)방법을 이용하여, 기판 상에 금속 또는 전도성을 가지는 금속 산화물 또는 이들의 합금을 증착시켜 양극을 형성하고, 그 위에 정공주입층, 정공수송층, 발광층 및 전자 주입 및 수송층을 포함하는 유기물층을 형성한 후, 그 위에 음극으로 사용할 수 있는 물질을 증착시킴으로써 제조될 수 있다. 이와 같은 방법 외에도, 기판 상에 음극 물질부터 유기물층, 양극 물질을 차례로 증착시켜 유기 발광 소자를 만들 수 있다.
본 명세서는 또한, 상기 코팅 조성물을 이용하여 형성된 유기 발광 소자의 제조 방법을 제공한다.
구체적으로 본 명세서의 일 실시상태에 있어서, 기판을 준비하는 단계; 상기 기판 상에 제1 전극 형성하는 단계; 상기 제1 전극 상에 1층 이상의 유기물층을 형성하는 단계; 및 상기 유기물층 상에 제2 전극을 형성하는 단계를 포함하고, 상기 유기물층 중 1 층 이상은 상기 코팅 조성물을 이용하여 형성된다.
본 명세서의 일 실시상태에 있어서, 상기 코팅 조성물을 이용하여 형성된 유기물층은 스핀 코팅을 이용하여 형성된다.
또 다른 실시상태에 있어서, 상기 코팅 조성물을 이용하여 형성된 유기물층은 인쇄법에 의하여 형성된다.
본 명세서의 상태에 있어서, 상기 인쇄법은 예컨대, 잉크젯 프린팅, 노즐 프린팅, 오프셋 프린팅, 전사 프린팅 또는 스크린 프린팅 등이 있으나, 이를 한정하지 않는다.
본 명세서의 일 실시상태에 따른 코팅 조성물은 구조적인 특성으로 용액공정이 적합하여 인쇄법에 의하여 형성될 수 있으므로 소자의 제조 시에 시간 및 비용적으로 경제적인 효과가 있다.
본 명세서의 일 실시상태에 있어서, 상기 코팅 조성물을 이용하여 형성된 유기물층을 형성하는 단계는 상기 제1 전극 상에 상기 코팅 조성물을 코팅하는 단계; 및 상기 코팅된 코팅 조성물을 열처리 또는 광처리 하는 단계를 포함한다.
또 하나의 실시상태에 있어서, 상기 열처리하는 단계에서의 열처리 시간은 1시간 이내일 수 있다. 구체적으로 30분 이내일 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 코팅 조성물을 이용하여 형성된 유기물층을 열처리하는 분위기는 아르곤, 질소 등의 불활성 기체 분위기인 것이 바람직하다.
상기 코팅 조성물을 이용하여 형성된 유기물층이 열처리 또는 광처리 단계를 포함하여 형성된 경우에는 용매에 대한 저항성이 증가하여 용액 증착 및 가교 방법을 반복 수행하여 다층을 형성할 수 있으며, 안정성이 증가하여 소자의 수명 특성을 증가시킬 수 있다.
본 명세서의 일 실시상태에 있어서, 상기 중합체를 포함하는 유기물층은 정공주입층, 정공수송층 또는 정공주입과 정공수송을 동시에 하는 층이다.
본 명세서의 일 실시상태에 있어서, 상기 제1 전극은 양극이고, 제2 전극은 음극이다.
또 하나의 일 실시상태에 따르면, 상기 제1 전극은 음극이고, 제2 전극은 양극이다.
본 명세서의 일 실시상태에 있어서, 상기 양극 물질로는 통상 유기물층으로 정공주입이 원활할 수 있도록 일함수가 큰 물질이 바람직하다. 본 발명에서 사용될 수 있는 양극 물질의 구체적인 예로는 바나듐, 크롬, 구리, 아연, 금과 같은 금속 또는 이들의 합금; 아연 산화물, 인듐 산화물, 인듐주석 산화물(ITO), 인듐아연 산화물(IZO)과 같은 금속 산화물; ZnO:Al 또는 SnO2:Sb와 같은 금속과 산화물의 조합; 폴리(3-메틸티오펜), 폴리[3,4-(에틸렌-1,2-디옥시)티오펜](PEDOT), 폴리피롤 및 폴리아닐린과 같은 전도성 고분자 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 음극 물질로는 통상 유기물층으로 전자 주입이 용이하도록 일함수가 작은 물질인 것이 바람직하다. 음극 물질의 구체적인 예로는 마그네슘, 칼슘, 나트륨, 칼륨, 티타늄, 인듐, 이트륨, 리튬, 가돌리늄, 알루미늄, 은, 주석 및 납과 같은 금속 또는 이들의 합금; LiF/Al 또는 LiO2/Al과 같은 다층 구조 물질 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 정공주입층은 전극으로부터 정공을 주입하는 층으로, 정공주입 물질로는 정공을 수송하는 능력을 가져 양극에서의 정공주입효과, 발광층 또는 발광재료에 대하여 우수한 정공주입 효과를 갖고, 발광층에서 생성된 여기자의 전자주입층 또는 전자주입재료에의 이동을 방지하며, 박막 형성 능력이 우수한 화합물이 바람직하다. 또한, 정공주입 물질의 HOMO(highest occupied molecular orbital)는 양극 물질의 일함수와 주변 유기물층의 HOMO 사이인 것이 바람직하다. 정공주입 물질의 구체적인 예로는 금속 포피린(porphyrin), 올리고티오펜, 아릴아민 계열의 유기물, 헥사니트릴헥사아자트리페닐렌 계열의 유기물, 퀴나크리돈(quinacridone)계열의 유기물, 페릴렌(perylene) 계열의 유기물, 안트라퀴논 및 폴리아닐린과 폴리티오펜 계열의 전도성 고분자 등이 있으나, 이들에만 한정 되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 정공수송층은 정공주입층으로부터 정공을 수취하여 발광층까지 정공을 수송하는 층으로, 정공수송 물질로는 양극이나 정공주입층으로부터 정공을 수송 받아 발광층으로 옮겨줄 수 있는 물질로 정공에 대한 이동성이 큰 물질이 적합하다. 본 명세서의 일 실시상태에 있어서, 상기 정공수송층은 상기 중합체를 포함한다.
본 명세서의 일 실시상태에 있어서, 상기 발광층은 유기화합물을 포함한다. 상기 유기화합물은 정공수송층과 전자수송층으로부터 정공과 전자를 각각 수송받아 결합시킴으로써 가시광선 영역의 빛을 낼 수 있는 물질로서, 형광이나 인광에 대한 양자 효율이 좋은 물질이 바람직하다. 구체적인 예로는 8-히드록시-퀴놀린 알루미늄 착물(Alq3); 카르바졸 계열 화합물; 이량체화 스티릴(dimerized styryl) 화합물; BAlq; 10-히드록시벤조 퀴놀린-금속 화합물; 벤족사졸, 벤즈티아졸 및 벤즈이미다졸 계열의 화합물; 폴리(p-페닐렌비닐렌)(PPV) 계열의 고분자; 스피로(spiro) 화합물; 폴리플루오렌; 루브렌 등이 있으나, 이들에만 한정되는 것은 아니다.
본 명세서의 일 실시상태에 있어서, 상기 발광층은 호스트 재료 및 도펀트 재료를 포함할 수 있다. 호스트 재료는 축합 방향족환 유도체 또는 헤테로환 함유 화합물 등이 있다. 예컨대, 축합방향족환 유도체로는 안트라센 유도체, 피렌 유도체, 나프탈렌 유도체, 펜타센 유도체, 페난트렌 화합물, 플루오란텐 화합물 등이 있고, 헤테로환 함유 화합물로는 카바졸 유도체, 디벤조퓨란 유도체, 래더형 퓨란 화합물, 피리미딘 유도체 등이 있으나, 이에 한정되지 않는다. 도펀트 재료로는 방향족 아민 유도체, 스트릴아민 화합물, 붕소 착체, 플루오란텐 화합물, 금속 착체 등이 있다. 예컨대, 방향족 아민 유도체로는 치환 또는 비치환된 아릴아미노기로 치환된 축합 방향족환 유도체로서, 아릴아미노기로 치환된 플루오렌, 벤조플루오렌, 피렌, 안트라센, 크리센, 페리플란텐 등이 있으며, 스티릴아민 화합물로는 치환 또는 비치환된 아릴아민에 적어도 1개의 아릴비닐기가 치환되어 있는 화합물로, 아릴기, 실릴기, 알킬기, 시클로알킬기 및 아릴아미노기로 이루어진 군에서 1 또는 2이상 선택되는 치환기가 치환 또는 비치환된다. 구체적으로, 스트릴아민 화합물은 스티릴아민, 스티릴디아민, 스티릴트리아민, 스티릴테트라아민 등이 있으나, 이에 한정되지 않는다. 또한, 금속 착체로는 이리듐 착체, 백금 착체 등이 있으나, 이에 한정되지 않는다.
본 명세서의 일 실시상태에 있어서, 상기 호스트 재료는 안트라센 유도체이고, 상기 도펀트 재료는 아릴아민기로 치환된 벤조플루오렌계 화합물이다. 구체적으로, 상기 호스트 재료는 중수소화된 안트라센 유도체이고, 상기 도펀트 재료는 비스(디아릴아미노)벤조필루오렌계 화합물이다.
본 명세서의 일 실시상태에 있어서, 상기 발광층은 퀀텀닷을 포함한다. 예컨대, 상기 발광층은 매트리스 수지 및 퀀텀닷을 포함할 수 있으며, 퀀텀닷의 종류 및 함량은 당 기술분야에 알려진 것을 이용할 수 있다.
발광층에 퀀텀닷을 포함할 경우, 발광층에 유기화합물을 포함하는 경우 보다 낮은 HOMO 에너지 레벨을 나타내므로 공통층 역시 낮은 HOMO 에너지 레벨을 나타내어야 한다. 본 명세서의 일 실시상태에 따른 화합물은 할로겐기를 포함함으로써 낮은 HOMO 에너지 레벨을 나타내므로, 발광층에 퀀텀닷의 도입이 가능하다.
본 명세서의 일 실시상태에 있어서, 상기 공통층은 정공주입층, 정공수송층, 정공주입과 정공수송을 동시에 하는 층, 전자주입층, 전자수송층, 또는 전자주입과 전자수송을 동시에 하는 층이다.
본 명세서의 일 실시상태에 있어서, 상기 전자수송층은 전자주입층으로부터 전자를 수취하여 발광층까지 전자를 수송하는 층으로 전자 수송 물질로는 음극으로부터 전자를 잘 주입 받아 발광층으로 옮겨줄 수 있는 물질로서, 전자에 대한 이동성이 큰 물질이 적합하다. 구체적인 예로는 8-히드록시퀴놀린의 Al착물; Alq3를 포함한 착물; 유기 라디칼 화합물; 히드록시플라본-금속 착물 등이 있으나, 이들에만 한정되는 것은 아니다. 전자수송층은 종래기술에 따라 사용된 바와 같이 임의의 원하는 음극 물질과 함께 사용할 수 있다. 특히, 적절한 음극 물질의 예는 낮은 일함수를 가지고 알루미늄층 또는 실버층이 뒤따르는 통상적인 물질이다. 구체적으로, 세슘, 바륨, 칼슘, 이테르븀 및 사마륨이고, 각 경우 알루미늄 층 또는 실버층이 뒤따른다.
본 명세서의 일 실시상태에 있어서, 상기 전자주입층은 전극으로부터 전자를 주입하는 층으로, 전자를 수송하는 능력을 갖고, 음극으로부터의 전자주입 효과, 발광층 또는 발광 재료에 대하여 우수한 전자주입 효과를 가지며, 발광층에서 생성된 여기자의 정공주입층에의 이동을 방지하고, 또한, 박막형성능력이 우수한 화합물이 바람직하다. 구체적으로는 플루오레논, 안트라퀴노다이메탄, 다이페노퀴논, 티오피란 다이옥사이드, 옥사졸, 옥사다이아졸, 트리아졸, 이미다졸, 페릴렌테트라카복실산, 프레오레닐리덴 메탄, 안트론, bathocuproine(BCP) 등과 그들의 유도체, 금속 착체 화합물 및 함질소 5원환 유도체 등이 있으나, 이에 한정되지 않는다.
본 명세서의 일 실시상태에 있어서, 상기 금속 착체 화합물로서는 8-하이드록시퀴놀리나토 리튬, 비스(8-하이드록시퀴놀리나토)아연, 비스(8-하이드록시퀴놀리나토)구리, 비스(8-하이드록시퀴놀리나토)망간, 트리스(8-하이드록시퀴놀리나토)알루미늄, 트리스(2-메틸-8-하이드록시퀴놀리나토)알루미늄, 트리스(8-하이드록시퀴놀리나토)갈륨, 비스(10-하이드록시벤조[h]퀴놀리나토)베릴륨, 비스(10-하이드록시벤조[h]퀴놀리나토)아연, 비스(2-메틸-8-퀴놀리나토)클로로갈륨, 비스(2-메틸-8-퀴놀리나토)(o-크레졸라토)갈륨, 비스(2-메틸-8-퀴놀리나토)(1-나프톨라토)알루미늄, 비스(2-메틸-8-퀴놀리나토)(2-나프톨라토)갈륨 등이 있으나, 이에 한정되지 않는다.
본 명세서의 일 실시상태에 있어서, 상기 정공저지층은 정공의 음극 도달을 저지하는 층으로, 일반적으로 정공주입층과 동일한 조건으로 형성될 수 있다. 구체적으로 옥사디아졸 유도체나 트리아졸 유도체, 페난트롤린 유도체, BCP, 알루미늄 착물 (aluminum complex) 등이 있으나, 이에 한정되지 않는다.
본 명세서의 일 실시상태에 있어서, 상기 화학식 1로 표시되는 중합체; 또는 화학식 2로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체가 포함되는 유기물층과 인접한 층, 예컨대 뱅크층은 치환기로 불소를 갖는 화합물을 포함한다.
예컨대, 상기 화학식 1로 표시되는 중합체가 정공수송층에 포함될 때, 정공수송층과 인접한 뱅크층, 정공주입층 및 발광층 중 하나 이상은 불소를 포함한다.
상기와 같이 상기 화학식 1로 표시되는 중합체; 또는 화학식 2로 표시되는 단위 및 화학식 5로 표시되는 말단기를 포함하는 중합체가 포함되는 유기물층과 인접한 층이 불소를 포함할 경우, 불소로 인해 dipole moment가 달라지므로 균일한 층을 형성할 수 있는 효과가 있다.
본 명세서에 따른 유기 발광 소자는 사용되는 재료에 따라 전면 발광형, 후면 발광형 또는 양면 발광형일 수 있다.
이하, 본 명세서를 구체적으로 설명하기 위해 실시예를 들어 상세하기 설명하기로 한다. 그러나, 본 명세서에 따른 실시예들은 여러가지 다른 형태로 변형될 수 있으며, 본 출원의 범위가 아래에서 상술하는 실시예들에 한정되는 것으로 해석되지 않는다. 본 출원의 실시예들은 당업계에서 평균적인 지식을 가진 자에게 본 명세서를 보다 완전하게 설명하기 위해 제공되는 것이다.
합성예 1. 중합체 1-1의 제조
Figure PCTKR2021011754-appb-img-000050
(1) 화합물 A-1의 제조
콘덴서가 장착된 둥근 플라스크에 화합물 q-1 (50.0 g, 1.00 eq), 화합물 q-2 (65.2 g, 1.35 eq), K2CO3 (78.7 g, 2.5 eq) 및 비스(트리-터트-부틸포스핀)팔라듐(0) (1.74 g, 0.015 eq)을 투입한 후, 테트라하이드로퓨란(THF) (500 mL) 및 증류수 (300 mL)를 각각 주입하고, 60℃로 승온하여 6시간 동안 교반하였다. 증류수를 주입하여 반응을 종료한 뒤, 유기 용매를 추출한 뒤 감압 농축하여 액체 상태의 화합물 A-1 (50.1 g)를 제조하였다.
(2) 화합물 B-1의 제조
콘덴서가 장착된 둥근 플라스크에, 화합물 A-2 (41.0 g, 1.00 eq)와 앞서 제조한 화합물 A-1 (50.0 g, 3.0 eq)을 자일렌(200 mL)에 용해시켰다. 완전히 용해되면 소듐 터트-부톡사이드(sodium tert-butoxide) (40.0 g, 5.00 eq)와 비스(트리-터트-부틸포스핀)팔라듐(0)(2.1 g, 0.05 eq)를 투입하고, 120℃에서 3시간 동안 환류하였다. 증류수를 주입하여 반응을 종료한 뒤, 에틸 아세테이트와 증류수로 유기 용매를 추출하고, 톨루엔과 헥산으로 침전시켜 흰색 고체인 화합물 B-1을 수득하였다.
(3) 화합물 C- 1 의 제조
콘덴서가 장착된 둥근 플라스크에, 앞서 제조한 화합물 B-1 (15.1 g, 1.00 eq), 4-브로모-4'-아이오도-1,1'-비페닐 (13.16 g, 2.50 eq) 및 소듐 터트-부톡사이드 (7.0 g, 5.00 eq)를 톨루엔 (200 mL)에 용해시켰다. 완전히 용해되면 트리스(디벤질리덴아세톤)디팔라듐(0) (0.67 g, 0.05 eq) 및 1,1'-비스(디페닐포스피노)페로센 (0.81 g, 0.10 eq)을 투입하고, 90℃에서 8시간 동안 환류시켰다. 증류수를 주입하여 반응을 종료한 뒤, 에틸 아세테이트와 증류수로 유기 용매를 추출하고, 컬럼크로마토크래피를 통해 99.7% 순도의 화합물 C-1을 수득하였다.
(4) 화합물 D-1의 제조
콘덴서가 장착된 둥근 플라스크에서 화합물 C-1 10.00 g(1.00 eq), 비스(피나코라토)디보론(Bis(pinacolato)diboron) 14 g(2.00 eq) 및 포타슘 터트-부톡사이드(potassium tert-butoxide) 1.60g(3.00eq)를 톨루엔 200mL에 용해시켰다. 완전히 용해되면 [1,1'-비스(디페닐포스피노)페로센]디클로로팔라듐(II)([1,1′-Bis(diphenylphosphino)ferrocene]dichloropalladium(II)) 0.20 g(0.04 eq)를 투입한 뒤 90℃에서 8시간 환류시켰다. DI 워터(DI water)를 통해 반응을 종료한 뒤, 에틸 아세테이트(ethyl acetate)와 증류수로 유기 용매를 추출하고, 컬럼크로마토크래피를 통해 99.3% 순도의 화합물 D-1를 수득하였다.
(5) 중합체 1-1의 제조
Figure PCTKR2021011754-appb-img-000051
화합물 D-1 (0.765 mmol), 4,4''-디브로모-5'-(4-브로모페닐)-1,1':3',1''-터페닐 (0.158 mmol) 및 4-브로모-4'-프로필-1,1'-비페닐 (0.369 mmol)을 둥근 플라스크에 넣고 톨루엔 (11 mL)에 용해시켜 제1 용액을 제조하였다.
50mL 슈렌크 튜브(Schlenk tube)에 비스(1,5-사이클로옥타다이엔)니켈(0)(2.42 mmol)을 투입하였다. 2,2'-다이피리딜(2.42 mmol) 및 1,5-사이클로옥타다이엔(2.42 mmol)을 신틸레이션 바이알에 투입한 뒤 N,N'-다이메틸포름아미드(5.5 mL) 및 톨루엔(11 mL)에 용해시켜 제2 용액을 제조하였다.
상기 제2 용액을 슈렌크 튜브에 투입하고 50℃에서 30분 동안 교반시켰다. 상기 제1 용액을 슈렌크 튜브에 추가로 투입하고 50℃에서 3시간 동안 교반하였다. HCl과 메탄올(메탄올:HCl = 95:5 (v:v))을 천천히 적가하여 반응을 종료한 뒤, 45분 동안 교반하고, 생성된 고체를 필터하였다. 건조된 고체를 톨루엔에 용해시키고(1% wt/v), 실리카 겔과 염기성 산화알루미늄(각 6 g)을 함유한 컬럼에 통과시켜 정제하였다. 수득한 톨루엔 용액을 아세톤에 트리츄레이팅(triturating)하여 중합체 1-1을 제조하였다.
합성예 2. 중합체 2-1의 제조
Figure PCTKR2021011754-appb-img-000052
상기 합성예 1의 (5)에서 4,4''-디브로모-5'-(4-브로모페닐)-1,1':3',1''-터페닐 대신 3,3''-디브로모-5'-(3-브로모페닐)-1,1':3',1''-터페닐을 사용한 것을 제외하고는, 합성예 1의 제조 방법과 동일한 방법으로 중합체 2-1를 제조하였다.
합성예 3. 중합체 3-1의 제조
Figure PCTKR2021011754-appb-img-000053
상기 합성예 1의 (5)에서 4,4''-디브로모-5'-(4-브로모페닐)-1,1':3',1''-터페닐 대신 1,3,5-트리브로모벤젠을 사용한 것을 제외하고는, 합성예 1의 제조 방법과 동일한 방법으로 중합체 3-1을 제조하였다.
합성예 4: 중합체 4-1의 제조
Figure PCTKR2021011754-appb-img-000054
상기 합성예 1의 (5)에서 4,4''-디브로모-5'-(4-브로모페닐)-1,1':3',1''-터페닐 대신 트리스(4-브로모페닐)(페닐)실란을 사용한 것을 제외하고는, 합성예 1의 제조 방법과 동일한 방법으로 중합체 4-1을 제조하였다.
합성예 5: 중합체 5-1의 제조
Figure PCTKR2021011754-appb-img-000055
상기 합성예 1의 (5)에서 4,4''-디브로모-5'-(4-브로모페닐)-1,1':3',1''-터페닐 대신 테트라키스(4-브로모페닐)실란을 사용한 것을 제외하고는, 합성예 1의 제조 방법과 동일한 방법으로 중합체 5-1을 제조하였다.
합성예 6: 중합체 6-1의 제조
Figure PCTKR2021011754-appb-img-000056
상기 합성예 1의 (5)에서 4,4''-디브로모-5'-(4-브로모페닐)-1,1':3',1''-터페닐 대신 트리스(4-브로모페닐)아민을 사용한 것을 제외하고는, 합성예 1의 제조 방법과 동일한 방법으로 중합체 6-1을 제조하였다.
비교 합성예 1. 비교 중합체 Q의 제조
Figure PCTKR2021011754-appb-img-000057
상기 합성예 1의 (5)에서 화합물 D-1 대신 화합물 Q-1을 사용한 것을 제외하고는 합성예 1의 (5)와 동일한 방법으로 중합체 Q를 제조하였다.
비교 합성예 2. 비교 중합체 W의 제조
Figure PCTKR2021011754-appb-img-000058
상기 합성예 1의 (5)에서 화합물 D-1 대신 화합물 W-1을 사용한 것을 제외하고는 합성예 1의 (5)와 동일한 방법으로 중합체 W를 제조하였다.
< 실험예 1> 분자량 분포 측정
실험예 1-1.
GPC(Agilent 사, PLgel HFIPGEL 컬럼)를 이용하여, 합성예 1에서 제조된 중합체 1-1의 피크(peak) 분자량(Mp), 수 평균 분자량(Mn), 중량 평균 분자량(Mw) 및 분자량 분포(PDI)를 측정하였다. 이때, 피크 분자량(Mp)는 가장 많이 분포하는 분자량을 의미한다.
실험예 1-2 내지 1-6.
상기 실험예 1-1에서 중합체 1-1 대신 하기 표 1의 중합체를 사용한 것을 제외하고는 실험예 1-1과 동일한 방법으로 피크(peak) 분자량(Mp), 수 평균 분자량(Mn), 중량 평균 분자량(Mw) 및 분자량 분포(PDI)를 측정하였다.
비교예 1-1 및 1-2.
상기 실험예 1-1에서 중합체 1-1 대신 하기 표 1의 중합체를 사용한 것을 제외하고는 실험예 1-1과 동일한 방법으로 피크(peak) 분자량(Mp), 수 평균 분자량(Mn), 중량 평균 분자량(Mw) 및 분자량 분포(PDI)를 측정하였다.
상기 실험예 1-1 내지 1-6, 비교예 1-1 및 1-2에서 측정된 GPC 결과를 하기 표 1에 나타내었다.
또한, 실험예 1-1 및 비교예 1-1에서 측정된 GPC 결과를 도 3에 나타내었다. 도 3에서 (a)는 비교예 1-1(중합체 Q)의 GPC 측정 결과이며, (b) 내지 (d)는 각각 실험예 1-1(중합체 1-1)의 GPC 측정 결과이다.
식 (1): PDI = 중량 평균 분자량(Mw)/수 평균 분자량(Mn)
중합체 a1:b1:e1
(몰비)
Mp Mn Mw PDI
실험예
1-1
중합체
1-1
53.7 : 18.3 : 28.0 29,026 24,317 58,489 2.41
실험예
1-2
중합체
2-1
53.7 : 18.3 : 28.0 24,859 27,213 52,131 1.91
실험예
1-3
중합체
3-1
57.0 : 17.9 : 25.1 24,213 25,490 57,807 2.26
실험예
1-4
중합체
4-1
57.6 : 19.4 : 23.0 24,118 25,371 55,576 2.19
실험예
1-5
중합체
5-1
56.4 : 17.6 : 26.0 25,433 26,227 56,016 2.13
실험예
1-6
중합체
6-1
55.7 : 18.3 : 26.0 24,070 24,738 53,686 2.17
비교예
1-1
중합체
Q
53.7 : 18.3 : 28.0 27,070 27,883 143,679 5.15
비교예
1-2
중합체
W
56.4 : 17.6 : 26.0 24,333 25,411 57,618 2.26
중량 평균 분자량(Mw)이 클수록 동일한 용매에 대하여 상대적으로 높은 점도를 나타내므로, 미세 픽셀을 사용하는 OLED 소자 제작이 어려워지게 된다.
또한, 분자량 분포가 큰 것은 다양한 분자량의 분자들이 분포되어 있다는 것을 의미하며, 이는 고분자를 재현성 있게 합성하는 것이 어렵다는 것을 의미한다.
상기 표 1로부터 비교예 1-1의 PDI가 실험예 1-1 내지 1-6에 비하여 큰 것을 확인할 수 있다. 이로부터 중합체 Q(비교예 1-1)는 다양한 분자량의 중합체들이 분포되어있다는 것을 알 수 있다. 즉, 중합체 Q는 재현성 있게 합성하는 것이 어려움을 알 수 있다.
또한, 상기 표 1로부터 비교예 1-1의 Mw가 실험예 1-1 내지 1-6에 비하여 큰 것을 확인할 수 있다. 이를 통해, 중합체 Q(비교예 1-1)는 잉크젯 소자 제작시 높은 분자량으로 인해 점도에 영향을 받아, 미세 픽셀을 사용하는 유기 발광 소자 제작이 용이하지 못할 것임을 예측할 수 있다.
요컨대, 상기 표 1로부터 본 명세서의 실시상태에 따른 중합체(실시예 1-1 내지 1-6)의 경우 터트-부틸기를 포함함으로써, 직쇄의 알킬기를 포함하는 중합체(비교예 1-1)보다 낮은 분자량 및 낮은 PDI를 나타내는 것을 확인할 수 있고, 이로부터 본 명세서의 실시상태에 따른 중합체는 homogeneous한 중합체의 제조가 가능하며 유기발광소자에 적용이 용이함을 알 수 있다.
실험예 2. 박막 유지율 측정
실험예 2-1.
상기 합성예 1에서 제조된 중합체 1을 톨루엔에 2wt% 농도로 녹여 코팅 조성물 1을 제조하였다.
비교예 2-1.
상기 합성예 1의 (3)에서 제조된 하기 화합물 C-1을 톨루엔에 2wt% 농도로 녹여 코팅 조성물 2를 제조하였다.
Figure PCTKR2021011754-appb-img-000059
상기 코팅 조성물 1 및 2를 각각 유리에 스핀 코팅하여 박막을 형성한 후 UV-vis absorption을 측정하였다. 다시 이 박막을 시클로헥사논(cyclohexanone)에 3분 동안 담근 후 건조하고 UV-vis absorption를 측정하였다. 담그기 전 후의 UV 흡수의 최대 피크(peak)의 크기 비교로 박막 유지율을 확인하였다.
도 4는 코팅 조성물 1로 형성한 박막의 막유지율 실험 결과를 나타낸 도이다.
도 5는 코팅 조성물 2로 형성한 박막의 막유지율 실험 결과를 나타낸 도이다.
도 4 및 5에서 (a)는 박막을 형성한 직후(시클로헥사논에 3분 동안 담그기 전)의 UV 측정 결과이며, (b)는 박막을 시클로헥사논에 3분 동안 담근 후의 UV 측정 결과이다.
도 4를 통해 코팅 조성물 1로 형성한 박막의 경우 박막 유지율이 100%인 것을 확인할 수 있다. 즉, 본 명세서의 일 실시상태에 따른 중합체는 용매 내성이 우수한 것을 확인할 수 있다.
반면에, 도 5를 통해 코팅 조성물 2로 형성한 박막의 경우 박막 손실률이 큰 것을 확인할 수 있다. 즉, 화합물 C-1(단량체)의 경우 용매 내성이 없는 것을 확인할 수 있다.
비교예 2-2.
화합물 C-1 단독 중합체의 박막 유지율 측정을 위하여, 하기 중합체를 형성하고 용매에 용해시켜보았으나, 용매에 용해되지 않아 박막 유지율 측정이 불가능하였다.
Figure PCTKR2021011754-appb-img-000060
(n: 2 내지 10,000의 정수)
실험예 3. 유기 발광 소자의 제조
실험예 3-1.
(1) 재료
도펀트는 US8,465,848B2에 기재된 비스(다이아릴아미노)벤조플루오렌계 화합물을 사용하였다.
HIL은 US7,351,358B2에 기재된 재료를 사용하였다. 구체적으로, 전기 전도성 중합체 및 중합체성 플루오르화 설폰산의 수성 분산액으로부터 제조되는 정공주입 재료를 사용하였다.
호스트는 WO2011-028216A1에 기재된 중수소화된 안트라센 화합물을 사용하였다.
(2) 소자 제작
ITO(indium tin oxide)가 1,500Å의 두께로 박막 코팅된 유리 기판을 세제를 녹인 증류수에 넣고 초음파로 세척하였다. 이때, 세제로는 피셔사 (Fischer Co.) 제품을 사용하였으며, 증류수로는 밀리포어사(Millipore Co.) 제품의 필터(Filter)로 2차로 걸러진 증류수를 사용하였다. ITO를 30분간 세척한 후, 증류수로 2회 반복하여 초음파 세척을 10분간 진행하였다. 증류수 세척이 끝난 후, 이소프로필알콜, 아세톤의 용제로 초음파 세척을 하고 건조시킨 후, 상기 기판을 5분간 세정한 후 건조하였다.
소자 제작 직전에 세정되고 패턴화된 ITO를 UV 오존으로 10분 동안 처리 하였다. 오존처리 후 HIL의 수성 분산액을 ITO 표면 위에 스핀-코팅 하고 열처리를 통해 용매를 제거하여 약 40nm 두께의 정공주입층을 형성하였다. 상기에서 형성된 정공주입층 상에 상기 합성예 1에서 제조한 중합체 1-1이 1.5wt% 용해된 톨루엔(toluene) 용액을 스핀-코팅하고, 열처리를 통해 용매를 제거하여 약 100nm 두께의 정공수송층을 형성하였다. 정공수송층 상에 2.0wt% 농도로 호스트 및 도펀트(호스트:도펀트=93:7(wt%))가 용해된 메틸 벤조에이트 용액을 스핀-코팅하여 약 100nm 두께의 발광층을 형성하였다. 이후, 진공증착기로 이송한 후, 상기 발광층 상에 BCP를 35nm의 두께로 진공 증착하여 전자주입 및 수송층을 형성하였다. 상기 전자주입 및 수송층 상에 순차적으로 1nm 두께로 LiF와 100nm 두께로 알루미늄을 증착하여 캐소드를 형성하였다.
상기의 과정에서 캐소드의 리튬플루오라이드(LiF)의 증착 속도는 0.3 Å/sec, 알루미늄은 2 Å/sec의 증착 속도를 유지하였으며, 증착시 진공도는 2 x 10-7 torr 내지 5 x 10-8 torr를 유지하였다.
실험예 3-2.
상기 실시예 1에서 중합체 1-1 대신 중합체 2-1을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
실험예 3-3.
상기 실시예 1에서 중합체 1-1 대신 중합체 3-1을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
실험예 3-4.
상기 실시예 1에서 중합체 1-1 대신 중합체 4-1을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
실험예 3-5.
상기 실시예 1에서 중합체 1-1 대신 중합체 5-1을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
실험예 3-6.
상기 실시예 1에서 중합체 1-1 대신 중합체 6-1을 사용한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 유기 발광 소자를 제조하였다.
비교예 3-1.
상기 실시예 1에서 중합체 1 대신 비교 합성예 1에서 제조된 중합체 Q를 사용한 것을 제외하고는 실험예 3-1과 동일한 방법으로 유기 발광 소자를 제조하였다.
비교예 3-2.
상기 실시예 1에서 중합체 1 대신 비교 합성예 2에서 제조된 중합체 W를 사용한 것을 제외하고는 실험예 3-1과 동일한 방법으로 유기 발광 소자를 제조하였다.
상기 실험예 3-1 내지 3-6, 비교예 3-1 및 3-2에서 제조한 유기 발광 소자에 대하여, 10 mA/cm2의 전류 밀도에서, 구동 전압, 발광 효율, 전력 효율, 외부 양자 효율, 휘도, 색좌표 및 CE/CIEy를 하기 표 2에 나타내었다. 상기 외부양자효율은 (방출된 광자 수)/(주입된 전하운반체 수)로 구하였고, 상기 색좌표는 C.I.E 색도도(Commission Internationale de L'Eclairage, 1931)에 따른 x 및 y 좌표이고, CE/CIEy는 발광효율(cd/A)을 색좌표(y) 값으로 나눈 값이다.

정공
수송층
구동
전압
(V)
발광
효율
(cd/A)
전력
효율
(lm/W)
외부
양자
효율
(QE)
(%)
휘도
(cd/m2)
색좌표
(x)
색좌표
(y)
CE/CIEy
실험예
3-1
중합체
1-1
5.32 4.87 2.87 6.12 486.50 0.140 0.097 49.92
실험예
3-2
중합체
2-1
5.25 4.74 2.83 6.07 473.76 0.141 0.095 50.11
실험예
3-3
중합체
3-1
5.18 4.72 2.87 6.00 472.35 0.141 0.096 49.27
실험예
3-4
중합체
4-1
5.20 4.70 2.84 6.02 469.84 0.141 0.095 49.70
실험예
3-5
중합체
5-1
4.86 4.51 2.92 6.75 1000.00 0.134 0.081 55.77
실험예
3-6
중합체
6-1
5.03 4.49 2.81 6.69 1000.00 0.135 0.081 55.31
비교예
3-1
중합체
Q
7.81 1.21 0.49 1.41 121.05 0.150 0.107 11.31
비교예
3-2
중합체
W
7.23 4.34 1.89 4.82 434.13 0.139 0.117 36.99
상기 표 2로부터, 실험예 3-1 내지 3-6이 비교예 3-1에 비하여 낮은 구동 전압 및 우수한 효율을 나타내는 것을 확인할 수 있다.
이를 표 1과 종합하여 볼 때, 본 명세서의 일 실시상태에 따른 중합체는 낮은 분자량을 가짐에도 유기 발광 소자에 적용시(실험예 3-1 내지 3-6) 낮은 구동 전압 및 우수한 효율을 나타내는 것을 확인할 수 있다. 이를 통해, 본 명세서의 일 실시상태에 따른 중합체가 tert-butyl기를 포함함으로써 homogeneous한 중합체를 제조할 수 있고, 이에 따라 소자에 적용시 우수한 성능을 나타냄을 확인할 수 있다.
또한, 상기 표 2로부터, 실험예 3-1 내지 3-6이 비교예 3-2에 비하여 낮은 구동 전압 및 우수한 효율을 나타내는 것을 확인할 수 있다.
이를 통해, 본 명세서의 일 실시상태에 따른 중합체에 포함되는 화학식 2의 단위가 tert-butyl기 대신 N을 포함할 경우(비교예 3-2) 적용된 층의 에너지 레벨이 변화(HOMO 에너지 레벨이 상승)되어, 화학식 2의 단위가 tert-butyl기를 포함하는 경우(실험예 3-1 내지 3-6)보다 높은 구동전압 및 낮은 효율을 나타내는 것을 확인할 수 있다.
이상을 통해 본 발명의 바람직한 실시예(정공수송층)에 대하여 설명하였지만, 본 발명은 이에 한정되는 것이 아니고 특허청구범위와 발명의 상세한 설명의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하며 이 또한 발명의 범주에 속한다.

Claims (10)

  1. 하기 화학식 1로 표시되는 중합체:
    [화학식 1]
    Figure PCTKR2021011754-appb-img-000061
    상기 화학식 1에 있어서,
    A는 하기 화학식 2로 표시되고,
    B는 하기 화학식 3으로 표시되며,
    C는 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 2가의 헤테로고리기이고,
    E1 및 E2는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 아릴아민기; 치환 또는 비치환된 실록산기; 가교결합성기; 또는 이들의 조합이고,
    a, b 및 c는 각각 몰분율로서,
    a은 0<a≤1의 실수이고,
    b는 0≤b<1의 실수이며,
    c는 0≤c<1의 실수이고,
    a+b+c는 1이며,
    [화학식 2]
    Figure PCTKR2021011754-appb-img-000062
    상기 화학식 2에 있어서,
    Ar1, Ar2, L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴렌기이고,
    R1 내지 R3는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 헤테로고리기; 치환 또는 비치환된 아릴아민기; 또는 치환 또는 비치환된 실록산기이며,
    n1 내지 n3는 각각 1 내지 4의 정수이고,
    n1 내지 n3가 각각 2 이상일 경우, 각각의 괄호 안의 치환기는 서로 같거나 상이하며,
    *은 중합체 내의 부착지점이고,
    [화학식 3]
    Figure PCTKR2021011754-appb-img-000063
    상기 화학식 3에 있어서,
    m은 3 또는 4의 정수이고,
    m이 3일 경우, Z는 CRa; SiRa; N; 또는 3가의 치환 또는 비치환된 아릴기이고,
    m이 4일 경우, Z는 C; Si; 또는 4가의 치환 또는 비치환된 아릴기이며,
    Ra는 수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
    Y는 직접결합; 치환 또는 비치환된 알킬렌기; 또는 치환 또는 비치환된 아릴렌기이며,
    Y가 직접결합; 또는 치환 또는 비치환된 알킬렌기일 경우, Z는 3가 또는 4가의 치환 또는 비치환된 아릴기이고,
    *은 중합체 내의 부착지점이다.
  2. 청구항 1에 있어서,
    상기 E1 및 E2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 가교결합성기; 또는 이들의 조합인 것인 중합체.
  3. 하기 화학식 2로 표시되는 단위 및 하기 화학식 5로 표시되는 말단기를 포함하는 중합체:
    [화학식 2]
    Figure PCTKR2021011754-appb-img-000064
    [화학식 5]
    Figure PCTKR2021011754-appb-img-000065
    상기 화학식 2 및 5에 있어서,
    Ar1, Ar2, L1 및 L2는 서로 같거나 상이하고, 각각 독립적으로 치환 또는 비치환된 아릴렌기이고,
    R1 내지 R3는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 헤테로고리기; 치환 또는 비치환된 아릴아민기; 또는 치환 또는 비치환된 실록산기이며,
    n1 내지 n3는 각각 1 내지 4의 정수이고,
    n1 내지 n3가 각각 2 이상일 경우, 각각의 괄호 안의 치환기는 서로 같거나 상이하며,
    E는 수소; 중수소; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 실릴기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 아릴아민기; 치환 또는 비치환된 실록산기; 가교결합성기; 또는 이들의 조합이고,
    *은 중합체 내의 부착지점이다.
  4. 청구항 3에 있어서,
    상기 중합체는 하기 화학식 3으로 표시되는 단위를 더 포함하는 것인 중합체:
    [화학식 3]
    Figure PCTKR2021011754-appb-img-000066
    상기 화학식 3에 있어서,
    m은 3 또는 4의 정수이고,
    m이 3일 경우, Z는 CRa; SiRa; N; 또는 3가의 치환 또는 비치환된 아릴기이고,
    m이 4일 경우, Z는 C; Si; 또는 4가의 치환 또는 비치환된 아릴기이며,
    Ra는 수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
    Y는 직접결합; 치환 또는 비치환된 알킬렌기; 또는 치환 또는 비치환된 아릴렌기이며,
    Y가 직접결합; 또는 치환 또는 비치환된 알킬렌기일 경우, Z는 3가 또는 4가의 치환 또는 비치환된 아릴기이고,
    *은 중합체 내의 부착지점이다.
  5. 청구항 3에 있어서,
    상기 중합체는 하기 화학식 4로 표시되는 단위를 더 포함하는 것인 중합체:
    [화학식 4]
    Figure PCTKR2021011754-appb-img-000067
    상기 화학식 4에 있어서,
    C는 치환 또는 비치환된 아릴렌기; 또는 치환 또는 비치환된 2가의 헤테로고리기이고,
    *은 중합체 내의 부착지점이다.
  6. 청구항 1 내지 5 중 어느 한 항에 있어서,
    상기 화학식 2는 하기 화학식 2-1로 표시되는 것인 중합체:
    [화학식 2-1]
    Figure PCTKR2021011754-appb-img-000068
    상기 화학식 2-1에 있어서,
    R1 내지 R3, Ar1, Ar2 및 n1 내지 n3는 화학식 2에서 정의한 바와 동일하고,
    R4 및 R5는 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 또는 치환 또는 비치환된 알킬기이며,
    m1 및 m2는 각각 1 내지 3의 정수이고,
    m1 및 m2가 각각 2 이상일 경우, 각각의 괄호 안의 구조는 서로 같거나 상이하며,
    n4 및 n5는 각각 1 내지 4의 정수이고,
    n4 및 n5가 각각 2 이상일 경우, 각각의 괄호 안의 치환기는 서로 같거나 상이하며,
    *은 중합체 내의 부착지점이다.
  7. 청구항 1, 2 및 4 중 어느 한 항에 있어서,
    상기 화학식 3은 하기 화학식 3-1 내지 3-4 중 어느 하나로 표시되는 것인 중합체:
    [화학식 3-1]
    Figure PCTKR2021011754-appb-img-000069
    [화학식 3-2]
    Figure PCTKR2021011754-appb-img-000070
    [화학식 3-3]
    Figure PCTKR2021011754-appb-img-000071
    [화학식 3-4]
    Figure PCTKR2021011754-appb-img-000072
    상기 화학식 3-1 내지 3-4에 있어서,
    Z1은 CRa; SiRa; N; 또는 3가의 치환 또는 비치환된 아릴기이고,
    Z2 및 Z3는 서로 같거나 상이하고, 각각 독립적으로 C; Si; 또는 4가의 치환 또는 비치환된 아릴기이며,
    L10은 직접결합; 또는 치환 또는 비치환된 아릴렌기이고,
    Ra는 수소; 치환 또는 비치환된 알킬기; 또는 치환 또는 비치환된 아릴기이고,
    R10 내지 R20은 서로 같거나 상이하고, 각각 독립적으로 수소; 중수소; 할로겐기; 시아노기; 알콕시기; 아릴옥시기; 플루오로알콕시기; 실록산기; 치환 또는 비치환된 아민기; 치환 또는 비치환된 알킬기; 치환 또는 비치환된 아릴기; 치환 또는 비치환된 헤테로고리기; 또는 가교결합성기이고, 인접한 기들이 서로 결합하여 고리를 형성할 수 있으며,
    k1은 1 내지 4의 정수이고,
    k2는 1 내지 5의 정수이며,
    k1이 2 이상일 경우 괄호 안의 치환기는 서로 같거나 상이하고,
    k2가 2 이상일 경우 괄호 안의 치환기는 서로 같거나 상이하며,
    *은 중합체 내의 부착지점이다.
  8. 청구항 1 내지 5 중 어느 한 항에 있어서,
    상기 중합체의 중량 평균 분자량은 30,000g/mol 내지 100,000g/mol 인 것인 중합체.
  9. 제1 전극;
    제2 전극; 및
    상기 제1 전극과 상기 제2 전극 사이에 구비된 1층 이상의 유기물층을 포함하고,
    상기 유기물층 중 1층 이상은 청구항 1 내지 5 중 어느 한 항에 따른 중합체를 포함하는 것인 유기 발광 소자.
  10. 청구항 9에 있어서,
    상기 중합체를 포함하는 유기물층은 정공주입층, 정공수송층 또는 정공주입과 정공수송을 동시에 하는 층인 것인 유기 발광 소자.
PCT/KR2021/011754 2021-02-26 2021-09-01 중합체 및 이를 이용한 유기 발광 소자 WO2022181908A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21928202.7A EP4276129A1 (en) 2021-02-26 2021-09-01 Polymer and organic light-emitting device using same
CN202180092325.5A CN116964125A (zh) 2021-02-26 2021-09-01 聚合物和使用其的有机发光器件
US18/275,516 US20240141107A1 (en) 2021-02-26 2021-09-01 Polymer and Organic Light-Emitting Device Using Same
JP2023544584A JP2024503915A (ja) 2021-02-26 2021-09-01 重合体およびこれを用いた有機発光素子

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0026474 2021-02-26
KR20210026474 2021-02-26

Publications (1)

Publication Number Publication Date
WO2022181908A1 true WO2022181908A1 (ko) 2022-09-01

Family

ID=83048564

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/011754 WO2022181908A1 (ko) 2021-02-26 2021-09-01 중합체 및 이를 이용한 유기 발광 소자

Country Status (6)

Country Link
US (1) US20240141107A1 (ko)
EP (1) EP4276129A1 (ko)
JP (1) JP2024503915A (ko)
KR (1) KR102601561B1 (ko)
CN (1) CN116964125A (ko)
WO (1) WO2022181908A1 (ko)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070120876A (ko) * 2006-06-20 2007-12-26 후지제롯쿠스 가부시끼가이샤 유기 전계발광소자
US7351358B2 (en) 2004-03-17 2008-04-01 E.I. Du Pont De Nemours And Company Water dispersible polypyrroles made with polymeric acid colloids for electronics applications
WO2011028216A1 (en) 2009-09-03 2011-03-10 E. I. Du Pont De Nemours And Company Deuterated compounds for electronic applications
KR20130021446A (ko) * 2010-06-17 2013-03-05 이 아이 듀폰 디 네모아 앤드 캄파니 전기활성 재료
US8465848B2 (en) 2006-12-29 2013-06-18 E I Du Pont De Nemours And Company Benzofluorenes for luminescent applications
WO2015089027A1 (en) * 2013-12-12 2015-06-18 E. I. Du Pont De Nemours And Company Solvent-resistant hole transport layers
KR20160131947A (ko) * 2015-05-06 2016-11-16 이 아이 듀폰 디 네모아 앤드 캄파니 정공 수송 재료
WO2019105327A1 (zh) * 2017-11-28 2019-06-06 广州华睿光电材料有限公司 有机复合薄膜及其在有机电子器件中的应用
KR20210026474A (ko) 2019-08-30 2021-03-10 황재훈 2개의 수납공간이 구비된 포장상자

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003230308A1 (en) 2002-05-07 2003-11-11 Lg Chem, Ltd. New organic compounds for electroluminescence and organic electroluminescent devices using the same
KR20140116526A (ko) * 2008-12-04 2014-10-02 이 아이 듀폰 디 네모아 앤드 캄파니 전기활성 재료
US9525134B1 (en) * 2015-08-11 2016-12-20 E I Du Pont De Nemours And Company Hole transport materials
KR102470867B1 (ko) * 2018-07-09 2022-11-24 주식회사 엘지화학 공중합체, 이를 포함하는 코팅 조성물, 이를 이용한 유기 발광 소자 및 이의 제조방법
KR102470868B1 (ko) * 2018-07-24 2022-11-24 주식회사 엘지화학 중합체, 이를 포함하는 코팅 조성물, 이를 이용한 유기 발광 소자 및 이의 제조방법

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7351358B2 (en) 2004-03-17 2008-04-01 E.I. Du Pont De Nemours And Company Water dispersible polypyrroles made with polymeric acid colloids for electronics applications
KR20070120876A (ko) * 2006-06-20 2007-12-26 후지제롯쿠스 가부시끼가이샤 유기 전계발광소자
US8465848B2 (en) 2006-12-29 2013-06-18 E I Du Pont De Nemours And Company Benzofluorenes for luminescent applications
WO2011028216A1 (en) 2009-09-03 2011-03-10 E. I. Du Pont De Nemours And Company Deuterated compounds for electronic applications
KR20130021446A (ko) * 2010-06-17 2013-03-05 이 아이 듀폰 디 네모아 앤드 캄파니 전기활성 재료
WO2015089027A1 (en) * 2013-12-12 2015-06-18 E. I. Du Pont De Nemours And Company Solvent-resistant hole transport layers
KR20160131947A (ko) * 2015-05-06 2016-11-16 이 아이 듀폰 디 네모아 앤드 캄파니 정공 수송 재료
WO2019105327A1 (zh) * 2017-11-28 2019-06-06 广州华睿光电材料有限公司 有机复合薄膜及其在有机电子器件中的应用
KR20210026474A (ko) 2019-08-30 2021-03-10 황재훈 2개의 수납공간이 구비된 포장상자

Also Published As

Publication number Publication date
EP4276129A1 (en) 2023-11-15
KR20220122451A (ko) 2022-09-02
US20240141107A1 (en) 2024-05-02
CN116964125A (zh) 2023-10-27
KR102601561B1 (ko) 2023-11-13
JP2024503915A (ja) 2024-01-29

Similar Documents

Publication Publication Date Title
WO2018186670A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021010656A1 (ko) 유기 발광 소자
WO2021010767A1 (ko) 화합물, 이를 포함하는 코팅 조성물 및 이를 이용한 유기 발광 소자
WO2018190666A1 (ko) 헤테로고리 화합물 및 이를 포함하는 유기 발광 소자
WO2020256480A1 (ko) 유기 발광 소자
WO2020060271A1 (ko) 화합물, 이를 포함하는 조성물 및 이를 포함한 유기 발광 소자
WO2021172664A1 (ko) 유기 발광 소자
WO2018230848A1 (ko) 화합물, 이를 포함하는 코팅 조성물, 이를 이용한 유기 발광 소자 및 이의 제조방법
WO2019225985A1 (ko) 유기 발광 소자
WO2019168365A1 (ko) 중합체, 이를 포함하는 코팅 조성물 및 이를 이용한 유기 발광 소자
WO2021154041A1 (ko) 화합물, 이를 포함하는 코팅 조성물, 이를 이용한 유기 발광 소자 및 이의 제조방법
WO2019225989A1 (ko) 화합물, 이를 포함하는 코팅 조성물 및 유기 발광 소자
WO2019168322A1 (ko) 중합체, 이를 포함하는 코팅 조성물 및 이를 이용한 유기 발광 소자
WO2021172905A1 (ko) 유기 발광 소자
WO2021029709A1 (ko) 유기 발광 소자
WO2017095141A1 (ko) 카바졸 유도체 및 이를 이용한 유기 발광 소자
WO2021145639A1 (ko) 중합체 및 이를 이용한 유기 발광 소자
WO2022239962A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2019066337A1 (ko) 화합물, 이를 포함하는 코팅 조성물, 이를 이용한 유기 발광 소자 및 이의 제조방법
WO2021101112A1 (ko) 화합물 및 이를 포함하는 유기 발광 소자
WO2021194148A1 (ko) 신규한 고분자 및 이를 이용한 유기 발광 소자
WO2017073931A1 (ko) 스피로형 화합물 및 이를 포함하는 유기 발광 소자
WO2020153654A1 (ko) 화합물 및 이를 포함하는 유기발광소자
WO2022181908A1 (ko) 중합체 및 이를 이용한 유기 발광 소자
WO2019225987A1 (ko) 화합물, 이를 포함하는 코팅 조성물 및 유기 발광 소자

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928202

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023544584

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202180092325.5

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 18275516

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2021928202

Country of ref document: EP

Effective date: 20230808

NENP Non-entry into the national phase

Ref country code: DE