WO2022181447A1 - 炭素材料、その製造方法および電極活物質 - Google Patents
炭素材料、その製造方法および電極活物質 Download PDFInfo
- Publication number
- WO2022181447A1 WO2022181447A1 PCT/JP2022/006440 JP2022006440W WO2022181447A1 WO 2022181447 A1 WO2022181447 A1 WO 2022181447A1 JP 2022006440 W JP2022006440 W JP 2022006440W WO 2022181447 A1 WO2022181447 A1 WO 2022181447A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- carbon
- carbon material
- particles
- sulfur
- less
- Prior art date
Links
- 239000003575 carbonaceous material Substances 0.000 title claims abstract description 106
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 15
- 239000013543 active substance Substances 0.000 title 1
- 239000002245 particle Substances 0.000 claims abstract description 145
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 81
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 67
- 239000000725 suspension Substances 0.000 claims abstract description 31
- 239000003232 water-soluble binding agent Substances 0.000 claims abstract description 20
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 18
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 38
- 229910052717 sulfur Inorganic materials 0.000 claims description 29
- 239000011593 sulfur Substances 0.000 claims description 29
- 239000011164 primary particle Substances 0.000 claims description 27
- 239000011148 porous material Substances 0.000 claims description 20
- 239000008187 granular material Substances 0.000 claims description 19
- 239000007772 electrode material Substances 0.000 claims description 12
- 239000011163 secondary particle Substances 0.000 claims description 10
- 230000004931 aggregating effect Effects 0.000 claims description 2
- 238000011049 filling Methods 0.000 abstract description 6
- JDZCKJOXGCMJGS-UHFFFAOYSA-N [Li].[S] Chemical compound [Li].[S] JDZCKJOXGCMJGS-UHFFFAOYSA-N 0.000 description 22
- 239000002131 composite material Substances 0.000 description 20
- GJEAMHAFPYZYDE-UHFFFAOYSA-N [C].[S] Chemical compound [C].[S] GJEAMHAFPYZYDE-UHFFFAOYSA-N 0.000 description 18
- 238000009826 distribution Methods 0.000 description 18
- 238000000034 method Methods 0.000 description 18
- 239000000463 material Substances 0.000 description 15
- 239000000203 mixture Substances 0.000 description 15
- 238000001035 drying Methods 0.000 description 13
- 238000011156 evaluation Methods 0.000 description 13
- 238000001878 scanning electron micrograph Methods 0.000 description 13
- 238000001694 spray drying Methods 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 12
- 238000005469 granulation Methods 0.000 description 10
- 230000003179 granulation Effects 0.000 description 10
- 239000002904 solvent Substances 0.000 description 10
- 239000007789 gas Substances 0.000 description 9
- 239000007788 liquid Substances 0.000 description 9
- -1 polyethylene Polymers 0.000 description 9
- 239000003960 organic solvent Substances 0.000 description 8
- 239000007774 positive electrode material Substances 0.000 description 8
- 239000003792 electrolyte Substances 0.000 description 7
- 238000002360 preparation method Methods 0.000 description 7
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 6
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 6
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 6
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 239000006229 carbon black Substances 0.000 description 5
- 235000019241 carbon black Nutrition 0.000 description 5
- 230000001186 cumulative effect Effects 0.000 description 5
- 238000001514 detection method Methods 0.000 description 5
- 239000011888 foil Substances 0.000 description 5
- 239000003273 ketjen black Substances 0.000 description 5
- 229910052744 lithium Inorganic materials 0.000 description 5
- 229910003002 lithium salt Inorganic materials 0.000 description 5
- 159000000002 lithium salts Chemical class 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 238000002156 mixing Methods 0.000 description 5
- 239000007773 negative electrode material Substances 0.000 description 5
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 4
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 229910018091 Li 2 S Inorganic materials 0.000 description 4
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 4
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 239000012298 atmosphere Substances 0.000 description 4
- 229910001873 dinitrogen Inorganic materials 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 229910001416 lithium ion Inorganic materials 0.000 description 4
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 4
- 239000011255 nonaqueous electrolyte Substances 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 3
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- 150000001408 amides Chemical class 0.000 description 3
- 238000007599 discharging Methods 0.000 description 3
- 239000003759 ester based solvent Substances 0.000 description 3
- 239000004210 ether based solvent Substances 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011737 fluorine Substances 0.000 description 3
- 239000011261 inert gas Substances 0.000 description 3
- 229910003473 lithium bis(trifluoromethanesulfonyl)imide Inorganic materials 0.000 description 3
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 3
- 230000014759 maintenance of location Effects 0.000 description 3
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 description 3
- 229910052753 mercury Inorganic materials 0.000 description 3
- 229910044991 metal oxide Inorganic materials 0.000 description 3
- 150000004706 metal oxides Chemical class 0.000 description 3
- 239000011268 mixed slurry Substances 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000000523 sample Substances 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- HXVNBWAKAOHACI-UHFFFAOYSA-N 2,4-dimethyl-3-pentanone Chemical compound CC(C)C(=O)C(C)C HXVNBWAKAOHACI-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 2
- 238000004438 BET method Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 2
- 229910008029 Li-In Inorganic materials 0.000 description 2
- 229910006670 Li—In Inorganic materials 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 229910000676 Si alloy Inorganic materials 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 235000010724 Wisteria floribunda Nutrition 0.000 description 2
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 2
- 239000006230 acetylene black Substances 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 239000007833 carbon precursor Substances 0.000 description 2
- 239000003660 carbonate based solvent Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000006231 channel black Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 239000006232 furnace black Substances 0.000 description 2
- 239000005453 ketone based solvent Substances 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- 150000007524 organic acids Chemical class 0.000 description 2
- 235000005985 organic acids Nutrition 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000003002 pH adjusting agent Substances 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 238000002459 porosimetry Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000012798 spherical particle Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 235000000346 sugar Nutrition 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 2
- 239000006234 thermal black Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 1
- UUAMLBIYJDPGFU-UHFFFAOYSA-N 1,3-dimethoxypropane Chemical compound COCCCOC UUAMLBIYJDPGFU-UHFFFAOYSA-N 0.000 description 1
- PTTPXKJBFFKCEK-UHFFFAOYSA-N 2-Methyl-4-heptanone Chemical compound CC(C)CC(=O)CC(C)C PTTPXKJBFFKCEK-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- LELOWRISYMNNSU-UHFFFAOYSA-N Hydrocyanic acid Natural products N#C LELOWRISYMNNSU-UHFFFAOYSA-N 0.000 description 1
- 229920002153 Hydroxypropyl cellulose Polymers 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 1
- 229910013553 LiNO Inorganic materials 0.000 description 1
- 229910001290 LiPF6 Inorganic materials 0.000 description 1
- 229910012465 LiTi Inorganic materials 0.000 description 1
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 150000008044 alkali metal hydroxides Chemical class 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- 229910001860 alkaline earth metal hydroxide Inorganic materials 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000006258 conductive agent Substances 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229920003244 diene elastomer Polymers 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 150000002016 disaccharides Chemical class 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000010894 electron beam technology Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 1
- 230000003311 flocculating effect Effects 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- 229910021389 graphene Inorganic materials 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 239000002149 hierarchical pore Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 239000001863 hydroxypropyl cellulose Substances 0.000 description 1
- 235000010977 hydroxypropyl cellulose Nutrition 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 239000006233 lamp black Substances 0.000 description 1
- 229910001547 lithium hexafluoroantimonate(V) Inorganic materials 0.000 description 1
- 229910001540 lithium hexafluoroarsenate(V) Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- SWAIALBIBWIKKQ-UHFFFAOYSA-N lithium titanium Chemical compound [Li].[Ti] SWAIALBIBWIKKQ-UHFFFAOYSA-N 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- YQCIWBXEVYWRCW-UHFFFAOYSA-N methane;sulfane Chemical compound C.S YQCIWBXEVYWRCW-UHFFFAOYSA-N 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- QGLKJKCYBOYXKC-UHFFFAOYSA-N nonaoxidotritungsten Chemical compound O=[W]1(=O)O[W](=O)(=O)O[W](=O)(=O)O1 QGLKJKCYBOYXKC-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 238000000550 scanning electron microscopy energy dispersive X-ray spectroscopy Methods 0.000 description 1
- 238000010008 shearing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000005118 spray pyrolysis Methods 0.000 description 1
- 238000000992 sputter etching Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 229920005608 sulfonated EPDM Polymers 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- BFKJFAAPBSQJPD-UHFFFAOYSA-N tetrafluoroethene Chemical group FC(F)=C(F)F BFKJFAAPBSQJPD-UHFFFAOYSA-N 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 150000003624 transition metals Chemical class 0.000 description 1
- PBYZMCDFOULPGH-UHFFFAOYSA-N tungstate Chemical compound [O-][W]([O-])(=O)=O PBYZMCDFOULPGH-UHFFFAOYSA-N 0.000 description 1
- 229910001930 tungsten oxide Inorganic materials 0.000 description 1
- 238000001291 vacuum drying Methods 0.000 description 1
- 229920003169 water-soluble polymer Polymers 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/05—Preparation or purification of carbon not covered by groups C01B32/15, C01B32/20, C01B32/25, C01B32/30
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
- H01M4/364—Composites as mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/24—Electrodes characterised by structural features of the materials making up or comprised in the electrodes, e.g. form, surface area or porosity; characterised by the structural features of powders or particles used therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/22—Electrodes
- H01G11/30—Electrodes characterised by their material
- H01G11/32—Carbon-based
- H01G11/42—Powders or particles, e.g. composition thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/84—Processes for the manufacture of hybrid or EDL capacitors, or components thereof
- H01G11/86—Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/021—Physical characteristics, e.g. porosity, surface area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/028—Positive electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/621—Binders
- H01M4/622—Binders being polymers
- H01M4/623—Binders being polymers fluorinated polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- the present disclosure relates to carbon materials, methods for producing the same, and electrode active materials.
- a lithium-sulfur battery is a secondary battery with a high energy density per unit mass, and uses, for example, a mesoporous sulfur-carbon composite in which sulfur is arranged in mesopores.
- Lithium-sulfur batteries which are lighter than conventional lithium-ion batteries, are expected to be used, for example, in large-scale power equipment applications such as electric vehicles, and in aviation applications such as drones. is required.
- Japanese Patent Publication No. 2019-513673 proposes a carbon-sulfur composite having a hierarchical pore structure and a method for producing the same.
- Japanese Patent Application Laid-Open No. 2016-141592 proposes porous carbon-based spherical particles and a method for producing the same.
- Japanese Patent Application Laid-Open No. 2014-42910 proposes a spherical carbon catalyst granule and a method for producing the same.
- An object of one aspect of the present disclosure is to provide a carbon material with excellent filling properties and a large specific surface area.
- a first aspect is a carbon material having a circularity of greater than 0.83 and a specific surface area of 400 m 2 /g or more.
- a second mode is to prepare a suspension containing first carbon particles having a specific surface area of 50 m 2 /g or more, a water-soluble binder, and water, and obtain granules from the suspension. and obtaining second carbon particles by heat-treating the granules, wherein the second carbon particles are made of a carbon material having a circularity of greater than 0.83 and a specific surface area of 400 m 2 /g or more. manufacturing method.
- a third aspect is an electrode active material containing the carbon material.
- FIG. 1 is an example of a scanning electron microscope (SEM) image of the carbon material obtained in Example 1.
- FIG. 1 is an example of a cross-sectional SEM image of a carbon material obtained in Example 1.
- FIG. It is an example of an SEM image of a commercially available porous carbon material.
- It is an example of a cross-sectional SEM image of a commercially available porous carbon material.
- 4 is an example of a SEM image of the carbon material obtained in Example 2.
- FIG. 4 is an example of a cross-sectional SEM image of the carbon material obtained in Example 2.
- the term "process” is not only an independent process, but even if it cannot be clearly distinguished from other processes, it is included in this term as long as the intended purpose of the process is achieved.
- the content of each component in the composition means the total amount of the plurality of substances present in the composition unless otherwise specified when there are multiple substances corresponding to each component in the composition.
- the upper and lower limits of the numerical ranges described herein can be combined by arbitrarily selecting the numerical values exemplified as the numerical ranges.
- BEST MODE FOR CARRYING OUT THE INVENTION An embodiment of the present invention will be described below with reference to the drawings. However, the embodiments shown below exemplify the carbon material, the method for producing the same, and the electrode active material for embodying the technical idea of the present invention, and the present invention is the carbon material shown below, the It is not limited to manufacturing methods and electrode active materials.
- the carbon material according to the present embodiment may have a circularity greater than 0.83 and a specific surface area of 400 m 2 /g or more.
- the carbon material may be porous spherical particles, or may be secondary particles formed by agglomeration of a plurality of primary particles.
- a porous carbon material having a degree of circularity of a predetermined value or more, for example, when imparting a desired functional component, tends to impart uniformity to each particle, and can reduce unevenness in the imparted amount between particles. can. Thereby, for example, the action of the functional ingredient can be stabilized over time.
- the specific surface area is large, the number of reaction fields per mass is increased, and the desired effect can be sufficiently achieved with a small amount.
- the circularity of the carbon material may be greater than 0.83, preferably 0.86 or greater, more preferably 0.9 or greater, or 0.93 or greater. Note that the upper limit of circularity is 1.
- the degree of circularity is an index representing the roundness of the contour shape of the particle, and approaches 1 as the particle is closer to a circle. The degree of circularity can be obtained, for example, by planarly viewing the contour shape of the particle.
- the degree of circularity is the ratio of the major axis of the contour shape of the carbon material divided by the minor axis (length ratio ⁇ ) and the major axis D e of the smooth approximate ellipse calculated from the particle image area of the contour shape of the carbon material.
- the diameter of the smooth approximate ellipse is twice the square root of the value obtained by dividing the product of the particle image area and the length ratio by the circular constant, and the circle equivalent diameter is divided by the major diameter of the smooth approximate ellipse.
- the circularity of the carbon material can be obtained as an arithmetic mean value thereof.
- the specific surface area of the carbon material may be 400 m 2 /g or more, preferably 500 m 2 /g or more, more preferably 600 m 2 /g or more, or 650 m 2 /g or more.
- the upper limit of the specific surface area may be, for example, 3000 m 2 /g or less, preferably 2500 m 2 /g or less, or 2000 m 2 /g or less.
- the specific surface area of the carbon material is measured by the BET method based on the BET (Brunauer Emmett Teller) theory. Specifically, for example, it is measured by a one-point method using nitrogen gas.
- the pore volume of the carbon material may be, for example, 1.5 cm 3 /g or more and 3 cm 3 /g or less, preferably 1.6 cm 3 /g or more, or It may be 1.7 cm 3 /g or more, and preferably 2.8 cm 3 /g or less, or 2.4 cm 3 /g or less.
- the amount of the functional ingredient imparted per carbon weight may be increased when imparting the functional ingredient to the carbon material.
- Pore volume is measured, for example, using a mercury porosimetry method.
- the pore diameter of the carbon material may be, for example, 1 nm or more and 150 nm or less, preferably 120 nm or less, or 100 nm or less, and preferably 2 nm or more, or 20 nm or more, as a peak pore diameter of 0.2 ⁇ m or less. It can be.
- the pore diameter of the carbon material is within the above range, the pores of the carbon material may be more easily impregnated with the functional component when the functional component is imparted to the carbon material. Especially when sulfur is added, it tends to be added more efficiently.
- the pore diameter of the carbon material is measured using, for example, a mercury porosimetry method.
- the carbon material may contain secondary particles formed by aggregating a plurality of primary particles.
- the average particle diameter of the primary particles constituting the secondary particles may be, for example, 1 nm or more and 200 nm or less, preferably 5 nm or more or 10 nm or more, and preferably 150 nm or less or 100 nm or less. .
- the average particle size of the primary particles can be, for example, the average particle size D SEM based on electron microscopy. The average particle size based on electron microscopic observation of primary particles is measured as follows.
- the primary particles that make up the secondary particles are observed at a magnification ranging from 20,000 times to 100,000 times depending on the particle size.
- Select 30 primary particles whose contours can be confirmed calculate the sphere-equivalent diameter from the contours of the selected primary particles using image processing software, and calculate the arithmetic mean value of the obtained sphere-equivalent diameters as the electron microscope of the primary particles.
- An average particle size based on observations is determined.
- the primary particles may have particles attached to their surfaces that have a smaller average particle size than the primary particles. Further, in one aspect, the primary particles may be aggregates of particles having an average particle size smaller than the primary particles.
- the average particle size of particles having an average particle size smaller than that of the primary particles described above may be measured based on electron microscopic observation in the same manner as described above. Being able to confirm the contour of the primary particles means that the entire contour of the primary particles can be traced on the image.
- the secondary particles may have a ratio D 50 /D SEM of 50% particle size D 50 in the volume-based cumulative particle size distribution to the average particle size D SEM based on electron microscopic observation, for example, 10 or more.
- the ratio D 50 /D SEM is, for example, 10 or more and 2000 or less, preferably 50 or more, more preferably 100 or more.
- the ratio D 50 /D SEM is preferably 1000 or less, more preferably 400 or less. When the ratio D 50 /D SEM is within the above range, the particle strength of the secondary particles may be increased.
- the primary particles may be hollow particles.
- the porosity may be, for example, 10% or more, preferably 20% or more, 40% or more, 50% or more, 60% or more, 70% or more, or 80% or more.
- the upper limit of the porosity may be, for example, 95% or less.
- the carbon material tends to have a larger specific surface area.
- the volume average particle size of the carbon material is, for example, 1 ⁇ m or more and 30 ⁇ m or less, preferably 2 ⁇ m or more or 3 ⁇ m or more, and more preferably 25 ⁇ m or less or 20 ⁇ m or less.
- the volume average particle size of the carbon material is within the above range, the fluidity is good, and when an electrode for a secondary battery is produced, for example, the omnipresent distribution of particles is suppressed, and a homogeneous electrode tends to be produced. Durability and output characteristics may be further improved.
- the volume average particle size is the 50% particle size D50 corresponding to the cumulative 50 % from the small particle size side in the volume-based cumulative particle size distribution.
- the volume-based cumulative particle size distribution is measured under wet conditions using a laser diffraction particle size distribution analyzer.
- the carbon material may have a narrow particle size distribution.
- the particle size distribution is obtained by dividing the difference between the 90 % particle size D90 and the 10 % particle size D10 in the volume-based cumulative particle size distribution by the 50 % particle size D50 (( D90 - D10)/ D50 ). , for example, may be 6 or less, preferably 4 or less, more preferably 2 or less.
- the lower limit of the particle size distribution is, for example, 0.05 or more.
- the ratio (D 90 ⁇ D 10 )/D 50 representing the particle size distribution is an index indicating the variation in particle size of individual particles in the particle group constituting the carbon material, and the smaller the value, the smaller the variation in particle size. Represents If the particle size distribution of the carbon material is within the above range, the functional component can easily adhere uniformly when the functional component containing another element is adhered to the surface of the carbon material.
- the carbon material may further contain other elements in addition to carbon.
- other elements include typical elements such as nitrogen and oxygen, transition metal elements, and the like.
- the carbon content in the carbon material may be, for example, 70% by mass or more, preferably 80% by mass or more, or 90% by mass or more, and may consist essentially of carbon.
- substantially intends not to exclude other elements that are unavoidably mixed.
- carbon materials include general adsorbents, negative electrode materials for lithium-ion batteries, electrode materials for capacitors, sulfur carriers for positive electrode materials for lithium-sulfur batteries, catalyst carriers for air batteries, fuel cells, etc. can be mentioned.
- a method for producing a carbon material includes a preparation step of preparing a suspension containing first carbon particles having a specific surface area of 50 m 2 /g or more, a water-soluble binder, and water, and obtaining granules from the suspension.
- a granulation step and a heat treatment step of heat-treating the granules to obtain the second carbon particles may be included.
- the obtained second carbon particles have a circularity of more than 0.83 and a specific surface area of 400 m 2 /g or more, and constitute the target carbon material.
- First carbon particles having a predetermined specific surface area are aggregated using a water-soluble binder to form granules, which are then heat-treated to form second carbon particles, which are aggregates of the first carbon particles,
- a carbon material having a predetermined degree of circularity and a predetermined specific surface area can be efficiently produced.
- a suspension containing primary carbon particles, a water-soluble binder, and water is prepared.
- a suspension is prepared as a dispersion of primary carbon particles in a liquid medium containing water.
- the dispersed state of the first carbon particles in the suspension may be such that individual particles of the first carbon particles are dispersed independently, or are dispersed including independent individual particles and aggregates of particles. good too. Further, the dispersed state of the first carbon particles in the suspension may be a state in which the suspension can be subjected to spray drying.
- the first carbon particles may have a specific surface area of, for example, 50 m 2 /g or more, preferably 200 m 2 /g or more, more preferably 400 m 2 /g or more, or 500 m 2 /g or more.
- the upper limit of the specific surface area may be, for example, 2000 m 2 /g or less.
- the specific surface area of the first carbon particles is measured by the BET method described above.
- the average particle diameter of the first carbon particles may be, for example, 1 nm or more and 200 nm or less, preferably 5 nm or more or 10 nm or more, and preferably 150 nm or less or 100 nm or less.
- the average particle diameter of the first carbon particles is measured, for example, by electron microscopic observation.
- the first carbon particles may be hollow particles or solid particles, and from the viewpoint of the specific surface area of the carbon material, they may be hollow particles.
- hollow particles mean particles having cavities inside the particles.
- the porosity of the hollow particles may be, for example, 10% or more, preferably 20% or more, 40% or more, 50% or more, 60% or more, 70% or more, or 80% or more.
- the upper limit of the porosity may be, for example, 95% or less.
- solid particles mean particles filled with carbon atoms, with almost no voids inside the particles.
- the carbon content in the first carbon particles may be, for example, 70% by mass or more, preferably 80% by mass or more, or 85% by mass or more, and may consist essentially of carbon. .
- “substantially” intends not to exclude other elements that are unavoidably mixed.
- the first carbon particles include carbon black such as acetylene black, furnace black, channel black, thermal black, and ketjen black.
- a carbon material obtained by pulverizing a carbon material obtained by heating an organic compound in an inert atmosphere may be used.
- the first carbon particles may contain at least one selected from the group consisting of these carbon blacks, and may contain at least Ketjenblack.
- the first carbon particles may be composed of one type of carbon black, or may be composed of two or more types of carbon black.
- the content of the first carbon particles in the suspension may be, for example, 0.1% by mass or more and 50% by mass or less, preferably 0.2% by mass or more, or 0.2% by mass or more, relative to the total mass of the suspension. It is 5% by mass or more, and preferably 30% by mass or less, or 20% by mass or less. If the content of the first carbon particles is within the above range, a better suspension state can be obtained, granulation treatment such as spray drying can be carried out more efficiently, and desired granules can be obtained. tend to be vulnerable.
- the water-soluble binder may be a substance that is soluble in water and capable of binding the first carbon particles together in a dry state.
- the solubility of the water-soluble binder in water is, for example, 1 g or more and 500 g or less, preferably 10 g or more, more preferably 50 g or more, and preferably 450 g or less in 100 g of pure water at 25°C. , more preferably 400 g or less.
- water-soluble binders tend to adhere more uniformly to the surface of the first carbon particles when dried.
- water-soluble binders include monosaccharides typified by glucose, sugars including disaccharides and polysaccharides typified by sucrose, and highly water-soluble binders typified by polyvinyl alcohol and polyethylene glycol.
- examples include water-soluble surfactants that uniformly disperse molecules and first carbon particles.
- the water-soluble binder may contain at least one selected from the group consisting of sugars, water-soluble polymers and water-soluble surfactants.
- a water-soluble binder may be used individually by 1 type, or may be used in combination of 2 or more type.
- the content of the water-soluble binder in the suspension may be, for example, 0.1% by mass or more and 50% by mass or less, preferably 0.2% by mass or more, or 0% by mass, relative to the total mass of the suspension. .5% by mass or more, and preferably 20% by mass or less, or 10% by mass or less.
- the content ratio of the water-soluble binder to the first carbon particles may be, for example, 0.05 or more and 10 or less, preferably 0.1 or more, and preferably 5 or less. If the content of the water-soluble binder is within the above range, a better suspension state can be obtained, granulation treatment such as spray drying can be carried out more efficiently, and the desired granules can be produced. tend to be easier to obtain.
- the liquid medium that constitutes the suspension contains at least water.
- the liquid medium may further contain a water-soluble organic solvent in addition to water, if necessary.
- water-soluble organic solvents include alcohol solvents such as methanol, ethanol, propanol and isopropanol, ketone solvents such as acetone and methyl ethyl ketone, and nitrile solvents such as acetonitrile.
- the content of water in the liquid medium may be, for example, 50% by mass or more, preferably 80% by mass or more, and may be substantially only water.
- the suspension may further contain other ingredients as necessary.
- Other components include, for example, pH adjusters, surfactants, metal oxides, and the like.
- pH adjusters include inorganic acids such as hydrochloric acid, nitric acid, phosphoric acid and sulfuric acid; organic acids such as acetic acid, citric acid and oxalic acid; inorganic bases such as alkali metal hydroxides and alkaline earth metal hydroxides; etc.
- metal oxides include oxides containing transition metals such as titanium oxide and tungsten oxide.
- the metal oxide may also contain a compound compounded with an alkali metal, an alkaline earth metal, or the like.
- composite compounds include lithium titanate and lithium tungstate.
- the suspension may contain organic acids as pH adjusters. When the suspension contains a pH adjuster, its content may be appropriately selected according to the desired pH.
- the suspension can be prepared, for example, by mixing primary carbon particles, a water-soluble binder, a liquid medium containing water, and, if necessary, other components such as a pH adjuster.
- a mixing method a commonly used mixing method such as a bead mill, a ball mill, a homogenizer, or a shearing mixer such as a planetary mixer can be used.
- the suspension is granulated to obtain granules.
- the granulation process may be, for example, spray drying.
- Granulation treatment is not limited to spray drying, for example, a method of adding a flocculant to a suspension to granulate, filtering and separating and drying, emulsifying and flocculating the suspension to granulate, filtering and separating A drying method or the like may also be used.
- Granules are formed by binding a plurality of first carbon particles with a water-soluble binder.
- spray drying refers to drying the suspension while scattering it into particles having a small particle size by utilizing gas flow so as to obtain a particulate product.
- drying device that can be used for spray-drying in the granulation process
- one having a spraying function and a drying function can be selected.
- various drying devices such as a so-called spray drying device, a flash drying device, a fluidized bed drying device, and the like can be mentioned.
- the conditions for spray drying may be appropriately selected according to the desired particle size of the granules.
- the drying temperature in spray drying may be, for example, 80° C. or higher and 150° C. or lower.
- gas is supplied to the drying equipment for spraying and drying the suspension.
- the type of gas to be supplied may be, for example, the atmosphere, or an inert gas such as a rare gas such as nitrogen gas or argon gas. When an inert gas is used, spray drying is facilitated regardless of the type of liquid medium of the suspension.
- the granules obtained in the granulation step are heat treated to obtain the carbon material as the second carbon particles.
- the water-soluble binder contained in the granules is, for example, carbonized to bind the first carbon particles to each other to form the second carbon particles.
- the heat treatment step may be performed in the same step as the granulation step described above.
- a heat treatment step may be included as part of the granulation step by a spray pyrolysis method or the like.
- the temperature in the heat treatment step may be, for example, 400°C or higher and 2000°C or lower, preferably 500°C or higher or 550°C or higher, and preferably 1500°C or lower or 1300°C or lower.
- the heat treatment time may be, for example, 3 hours or more and 48 hours or less, preferably 4 hours or more, and preferably 24 hours or less.
- the heat treatment atmosphere may be an inert gas such as nitrogen gas or rare gas such as argon gas.
- the heat treatment atmosphere may have an oxygen concentration of 20% by volume or less, preferably 1% by volume or less.
- the heat treatment may be performed using, for example, a box furnace, roller hearth kiln, rotary kiln, or the like.
- Electrode Active Material contains the carbon material described above.
- the carbon material has a shape with a high degree of circularity while having a relatively large specific surface area. Thereby, when applying a carbon material to an electrode active material, the outstanding filling property can be shown.
- Electrode active materials containing carbon materials can be applied, for example, to negative electrode active materials for lithium ion batteries, electrode active materials for electric double layer capacitors, fuel cells, and the like. Further, for example, by supporting a material containing a sulfur element on a carbon material, it can be applied to a positive electrode active material of a lithium-sulfur battery.
- the positive electrode active material for lithium-sulfur batteries includes the carbon material described above and a material containing elemental sulfur attached to the carbon material.
- the material containing elemental sulfur may adhere to the voids of the carbon material.
- the carbon material has a large specific surface area, so that the battery capacity can be increased. Further, by having a predetermined degree of circularity, the material containing elemental sulfur adheres more uniformly, adhesion unevenness between particles is suppressed, and the cycle characteristics of the battery are improved. Furthermore, it is excellent in filling property when forming an electrode.
- Materials containing elemental sulfur include, for example, elemental sulfur and polysulfides generated during charging and discharging processes of lithium-sulfur batteries.
- Specific examples of materials containing elemental sulfur include S 8 , Li 2 S 8 , Li 2 S 6 , Li 2 S 4 , and Li 2 S 2 . From the viewpoint of yield, elemental sulfur (S 8 ) is preferred. preferable.
- the content of the material containing the sulfur element arranged in the voids of the carbon material in the sulfur-carbon composite is, for example, 25 mass as a ratio of the mass of the material containing the sulfur element to the total mass of the carbon material and the material containing the sulfur element. % or more and 95 mass % or less, preferably 50 mass % or more and 90 mass % or less, more preferably 67 mass % or more and 80 mass % or less. Note that "67% by mass” is the content when the mixing ratio of sulfur and carbon is 2:1.
- the content of the material containing elemental sulfur may be, for example, 25% by mass or more, preferably 50% by mass, or 67% by mass or more, and may be, for example, 95% by mass or less, preferably 90% by mass or less, or 80% by mass or less. % by mass or less.
- the content of the material containing elemental sulfur is within these ranges, the decrease in capacity of the sulfur-carbon composite is reduced.
- the coefficient of variation (CV) of the detection amount ratio of sulfur element and carbon element in the sulfur-carbon composite is, for example, less than 0.64, preferably 0.6 or less, or 0.5 or less, more preferably 0.4 It is below.
- the lower limit of the coefficient of variation may be, for example, 0.05 or more.
- the coefficient of variation (CV) of the detection amount ratio of the sulfur element and the carbon element is the average value t1 of the detection amount ratio of the sulfur element and the carbon element for any 50 particles of the sulfur-carbon composite, and the standard deviation ⁇ 1 of the detection amount ratio is a value ( ⁇ 1/t1) obtained by dividing .
- the fact that the variation coefficient of the detection amount ratio of the sulfur element and the carbon element is within the above range means that the sulfur content of each particle of the sulfur-carbon composite is small and the sulfur-carbon composite is homogeneous. is considered to indicate
- the average value of the detected amount ratio of the sulfur element and the carbon element used to calculate the coefficient of variation is calculated as the arithmetic mean of the detected amount ratio in each particle by selecting arbitrary 50 particles for the sulfur-carbon composite. be.
- the standard deviation of the detected amount ratio of sulfur element and carbon element is calculated from the obtained average value and the detected amount ratio of each particle.
- Detected amount ratios in sulfur-carbon compounds may be measured using, for example, a scanning electron microscope (SEM)/energy dispersive X-ray spectrometer (EDX) instrument.
- Positive electrode for lithium-sulfur battery (hereinafter also simply referred to as "positive electrode”) is a current collector and a positive electrode composition layer disposed on the current collector and containing the positive electrode active material for lithium-sulfur battery described above. and The positive electrode is manufactured by applying an electrode composition containing the positive electrode active material described above, a liquid medium, a binder, a conductive aid, etc. onto a current collector, followed by drying and pressure molding. .
- organic solvent or water may be used as the liquid medium depending on the application.
- organic solvents include amide solvents such as N-methyl-2-pyrrolidone (NMP), ketone solvents such as diisopropyl ketone, diisobutyl ketone and methyl ethyl ketone, hydrocarbon solvents such as heptane, tetrahydrofuran, dimethoxyethane, and dioxolane. and other ether solvents, amine solvents such as diethylenetriamine, and ester solvents.
- NMP N-methyl-2-pyrrolidone
- ketone solvents such as diisopropyl ketone, diisobutyl ketone and methyl ethyl ketone
- hydrocarbon solvents such as heptane, tetrahydrofuran, dimethoxyethane, and dioxolane.
- ether solvents such as heptane, tetrahydrofuran,
- a binder is, for example, a material that aids adhesion between a positive electrode active material and a conductive aid, and adhesion of an electrode composition to a current collector.
- binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, hydroxypropyl cellulose, regenerated cellulose, polyvinyl pyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene propylene diene rubber ( EPDM), sulfonated EPDM, styrene-butylene rubber, fluororubber, and various copolymers.
- the content of the binder may be, for example, 0.05% by mass or more and 50% by mass or less with respect to the total mass of the electrode composition.
- a conductive aid is a material that improves the electrical conductivity of, for example, the positive electrode composition layer.
- Conductive agents include, for example, modified graphene, natural graphite, graphite such as artificial graphite, acetylene black, ketjen black, channel black, furnace black, lamp black, thermal black, carbon black, carbon fiber, metal fiber, etc.
- Conductive fibers, graphene, carbon materials such as carbon nanotubes, and the like are included.
- the content of the conductive aid may be, for example, 0.5% by mass or more and 30% by mass or less with respect to the total mass of the electrode composition.
- Examples of current collectors include metals such as copper, stainless steel, aluminum, nickel, and titanium, composite materials in which the surface of copper, stainless steel, etc. is treated with carbon, nickel, titanium, silver, etc., and carbon foil. be done.
- metals such as copper, stainless steel, aluminum, nickel, and titanium
- composite materials in which the surface of copper, stainless steel, etc. is treated with carbon, nickel, titanium, silver, etc., and carbon foil. be done.
- aluminum or carbon foil is preferable as a light current collector.
- the current collector can also increase the adhesive strength of the positive electrode composition layer and the like by forming fine unevenness on the surface thereof.
- various forms such as film, sheet, foil, net, porous body, foam, and non-woven fabric are possible.
- the thickness of the current collector may be, for example, 3 ⁇ m or more and 500 ⁇ m or less.
- a lithium-sulfur battery includes the positive electrode for a lithium-sulfur battery described above.
- a lithium-sulfur battery includes a positive electrode for a lithium-sulfur battery, a negative electrode, an electrolyte disposed between the positive electrode and the negative electrode, and the like.
- a lithium-sulfur battery may optionally include a separator. Electrolytes may be included in positive electrodes, negative electrodes and separators for lithium-sulfur batteries.
- Negative Electrode A known negative electrode may be used as the negative electrode that constitutes the lithium-sulfur battery.
- negative electrode materials constituting the negative electrode include Li metal, Li—Si alloy, Li—Al alloy, Li—In alloy, lithium titanate (eg, Li 4 Ti 5 O 12 and LiTi 2 O 4 ), and lithium titanium. It may be a composite oxide (eg, Li 4 Ti 5-x Mn x O 12 ; 0 ⁇ x ⁇ 0.3), Li x C (x ⁇ 6), or the like. In these negative electrode materials, part of lithium may be replaced with other alkali metals. Li metal, Li—Si alloy, Li—Al alloy, Li—In alloy, Li x C (x ⁇ 6), and the like are preferable as the negative electrode material. These materials allow high voltages to be extracted from lithium-sulfur batteries.
- a known material may be used for the separator, and examples thereof include porous polyethylene and polypropylene. Also, a known separator may be coated and used.
- the electrolyte may contain a lithium salt, and may be appropriately selected from lithium salts used in conventional lithium ion batteries.
- the lithium salt may contain an anion containing, for example, elemental fluorine. LiPF6 , LiBF4 , LiSbF6 , LiAsF6 , LiSO3CF3 , LiN( SO2CF3 ) 2 ( LiTFSI), etc. can specifically be mentioned as the lithium salt containing the anion containing a fluorine element.
- the electrolyte may also contain a lithium salt containing no elemental fluorine, such as lithium nitrate and LiClO 4 . One of these electrolytes can be used alone, or two or more of them can be used in combination.
- the electrolyte may contain an organic solvent.
- an organic solvent a carbonate-based solvent, an ether-based solvent, an ester-based solvent, an amide-based solvent, a nitrile-based solvent, or a sulfur-containing solvent may be used.
- a solvent may be used.
- Organic solvents include, for example, carbonate-based solvents such as propion carbonate, ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate; 1,3-dioxolane, 1,2-dimethoxyethane, 1,3-dimethoxypropane; , 3-tetrafluoropropyldifluoromethyl ether, ether solvents such as tetrahydrofuran, ester solvents such as methyl formate, methyl acetate and ⁇ -butyrolactone, amide solvents such as N,N-dimethylacetamide and N,N-dimethylformamide , sulfolane, dimethylsulfoxide, and sulfur-containing solvents such as 1,3-propanesultone.
- carbonate-based solvents such as propion carbonate, ethylene carbonate, dimethyl carbonate, and ethyl methyl carbonate
- 1,3-dioxolane 1,2-dimethoxyethane, 1,3-d
- Example 1 Preparation of Carbon Material
- Ketjenblack manufactured by Lion Corporation; carbon ECP600JD
- sucrose 5 g
- sucrose 5 g
- citric acid 2.5 g
- water was added to adjust to 1000 g to obtain a mixed solution.
- 400 g of zirconia beads ( ⁇ 0.65 mm) and the mixed solution were placed in a 2 L plastic bottle and wet-dispersed overnight to obtain a mixed slurry 1 as a suspension.
- the obtained mixed slurry 1 was supplied together with air as a supply gas, and was sprayed by a spray drying apparatus to obtain a carbon precursor 1 as a granule.
- Carbon precursor 1 was heat-treated at 700° C. for 10 hours in a nitrogen atmosphere to obtain carbon material 1 .
- the Ketjenblack used had an average particle size of 34 nm and a specific surface area of 1270 m 2 /g.
- Comparative example 1 A mixture was obtained by mixing 4.5 g of sulfur (98%; Fuji Film Wako Pure Chemical Industries) and 1.5 g of Knobel (registered trademark) (manufactured by Toyo Tanso Co., Ltd.), which is a commercially available porous carbon material. The obtained mixture was heated in a heat-resistant and pressure-resistant container at 170° C. for 15 hours to obtain a sulfur-carbon composite in which sulfur was attached to the carbon material. The content of sulfur located in the pores of the carbon material in the sulfur-carbon composite was 75% by mass.
- Example 1 The carbon material 1 obtained in Example 1 and the porous carbon material used in Comparative Example 1 were each dispersed in an epoxy resin and cured by heating to prepare samples for evaluation.
- the sample for evaluation was cross-sectionally processed with an ion milling device (IM4000PLUS manufactured by Hitachi High-Technologies Corporation; acceleration voltage of 6 kV).
- An electron beam image (magnification: 4000x) of the cross section of the prepared evaluation sample after the cross section treatment was taken using a scanning electron microscope (SEM), and 10 to 30 secondary particles whose contours could be confirmed were selected. .
- the equivalent circle diameter which is the diameter of a circle having the same area as the particle image area of the contour shape of the secondary particle.
- the major axis and the minor axis were obtained from the contour shape, and the length ratio was calculated as a value obtained by dividing the major axis by the minor axis.
- the major diameter of the smooth approximate ellipse is twice the square root of the value obtained by dividing the product of the particle image area and the length ratio by the circular constant, and the circle equivalent diameter is divided by the major diameter of the smooth approximate ellipse.
- Circularity was determined and the circularity was calculated as an arithmetic mean value thereof. Table 2 shows the results.
- Example 1 SEM image of the carbon material 1 obtained in Example 1 is shown in FIG. 1, and the cross-sectional SEM image is shown in FIG. Further, an SEM image of a commercially available porous carbon material is shown in FIG. 3, and a cross-sectional SEM image is shown in FIG.
- Pore Size Distribution A pore volume of 0.2 ⁇ m or less and a peak pore size were measured using a mercury intrusion porosimeter (POREMASTER-60 manufactured by Anton Paar (former company name: Quantachrome)).
- the specific surface area was measured by a nitrogen gas adsorption method (one-point method) using a BET specific surface area measuring device (Macsorb manufactured by Mountec).
- Average Particle Size of Primary Particles Using a scanning electron microscope (SEM), an SEM image was obtained at a magnification ranging from 20,000 to 100,000 times depending on the particle size so that the primary particles that make up the secondary particles can be identified. On the SEM image, select 30 primary particles whose contours can be confirmed, calculate the sphere-equivalent diameter from the contours of the selected primary particles using image processing software, and calculate the arithmetic average value of the obtained sphere-equivalent diameters. The average particle size of primary particles was obtained.
- SEM scanning electron microscope
- Particle size distribution Volume-based particle size distribution was measured using a laser diffraction particle size distribution apparatus (MASTERSIZER 2000 manufactured by Malvern). The volume average particle diameter was calculated as the 50 % particle diameter D50 where the volume integrated value from the small particle diameter side in the volume-based particle size distribution is 50%. In addition, 10 % particle size D10 and 90 % particle size D90 are calculated as values where the volume integrated value from the small particle size side is 10 % and 90%, and the difference between D90 and D10 is divided by D50 . Then, the particle size distribution was calculated.
- carbon material 1 had a higher degree of circularity than the commercially available porous carbon material.
- the pore volume with a pore diameter of 0.2 ⁇ m or less was also larger.
- the detected amount of sulfur element was divided by the detected amount of carbon element to calculate the detected amount ratio (S/C ratio) of sulfur element and carbon element. From the obtained detected amount ratios, the arithmetic mean value t1 and the standard deviation ⁇ 1 of the detected amount ratios for all particles were calculated. At this time, the standard deviation ⁇ 1 is the STDEV. Calculated using the P function. A coefficient of variation CV ( ⁇ 1/t1) was determined from the arithmetic mean t1 and standard deviation ⁇ 1 of the detected amount ratios thus obtained. Table 2 shows the results.
- Preparation of Positive Electrode 80 parts by mass of the sulfur-carbon composite obtained in Example 1 and Comparative Example 1, 16 parts by mass of PVDF, and 4 parts by mass of carbon nanotubes were dispersed and dissolved in NMP to prepare a slurry. The prepared slurry was applied to a current collector and dried to obtain a dried product. An aluminum foil coated with carbon was used as a current collector. The dried product was compression-molded with a roll press so that the density of the active material layer was 0.63 g/cm 3 , and then cut into a predetermined size to obtain a positive electrode.
- Non-Aqueous Electrolyte A non-aqueous electrolyte was prepared as follows. 1,3-dioxolane (DOL) and 1,2-dimethoxyethane (DME) were mixed in a volume ratio of 5:5. Lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) was dissolved in the obtained mixed solvent so that its concentration was 1.0 mol/L. Subsequently, lithium nitrate (LiNO 3 ) was dissolved to a concentration of 0.2 mol/L to prepare a non-aqueous electrolyte.
- DIOL 1,3-dioxolane
- DME 1,2-dimethoxyethane
- LiTFSI Lithium bis(trifluoromethanesulfonyl)imide
- LiNO 3 lithium nitrate
- Lithium-Sulfur Secondary Battery A lead electrode was attached to the positive electrode obtained above, a separator made of porous polypropylene (Celgard 2400) was arranged, and they were housed in a bag-like laminate pack. After storage, the components were vacuum-dried at 50° C. to remove water adsorbed on each member. After vacuum drying, the negative electrode metal lithium placed on the SUS foil is placed in a laminate pack facing the positive electrode via porous polypropylene, and the non-aqueous electrolyte is injected and sealed to form a battery for evaluation. , a laminate type lithium-sulfur secondary battery was obtained. Using the obtained battery for evaluation, the following battery characteristics were evaluated.
- the battery for evaluation obtained as described above was placed in a constant temperature bath at 25° C., and an evaluation test of the cycle capacity retention rate was performed.
- the charging/discharging voltage ranged from 1.8V to 3.0V.
- the discharge current was the current value for taking out the 0.2C capacity.
- a discharge capacity Qcyc(1) (mAh/g) was measured in the first cycle immediately after the discharge was started. After that, charging and discharging were repeated, and the discharge capacity Qcyc(30) at the 30th cycle was measured.
- Table 3 shows the results.
- the discharge capacity was calculated in terms of conversion per mass of sulfur.
- Example 2 Preparation of Carbon Material A carbon material 2 was obtained in the same manner as in Example 1, except that the supply ratio of the mixed slurry 1 and the supply gas was changed.
- the obtained carbon material 2 had a circularity of 0.94, a specific surface area of 885 m 2 /g, a volume average particle diameter of 9.6 ⁇ m, and a particle size distribution of 1.42.
- a SEM image of the carbon material 2 obtained in Example 2 is shown in FIG. 5, and a cross-sectional SEM image is shown in FIG.
- carbon material 2 which has a high degree of circularity, had a higher filling property than the commercially available porous carbon material of the comparative example when compressed with the same press pressure.
- the powder resistance of carbon material 2 was lower than that of the commercially available porous carbon material, and the electrical conductivity was also superior.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Power Engineering (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Composite Materials (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本実施形態にかかる炭素材料は、円形度が0.83より大きくてよく、比表面積が400m2/g以上であってよい。炭素材料は多孔質性の球状粒子であってよく、複数の一次粒子が凝集して構成される二次粒子であってよい。円形度が所定値以上の多孔質炭素材料は、例えば、所望の機能性成分を付与する場合に、各粒子における付与性が均一になりやすく、粒子間における被付与量のムラを低減することができる。これにより、例えば、機能性成分の作用を経時的により安定させることができる。また、比表面積が大きいことで、質量あたりの反応場が多くなり、少量で所望の効果を十分に達成することができる。
円形度=dHA/De
既述の炭素材料は、例えば、以下のような製造方法で製造することができる。炭素材料の製造方法は、比表面積が50m2/g以上である第1炭素粒子、水溶性結着剤及び水を含む懸濁液を準備する準備工程と、懸濁液から造粒体を得る造粒工程と、造粒体を熱処理して第2炭素粒子を得る熱処理工程と、を含んでいてよい。得られる第2炭素粒子は、円形度が0.83より大きく、比表面積が400m2/g以上であり、目的とする炭素材料を構成する。
電極活物質は、上述した炭素材料を含んで構成される。炭素材料は比較的大きな比表面積を有していながら、円形度が高い形状を有している。これにより、炭素材料を電極活物質に適用する際に、優れた充填性を示すことができる。
リチウム硫黄電池用正極活物質は、上述の炭素材料と、炭素材料に付着する硫黄元素を含む材料とを含む。硫黄元素を含む材料は炭素材料が有する空隙に付着していてもよい。炭素材料は比表面積が大きいことで、電池容量を大きくすることができる。また所定の円形度を有していることで、硫黄元素を含む材料がより均一に付着し、粒子間における付着ムラが抑制され、電池におけるサイクル特性が向上する。さらに電極を形成する際の充填性に優れる。
リチウム硫黄電池用正極(以下、単に「正極」ともいう)は、集電体と、集電体上に配置され、上述したリチウム硫黄電池用正極活物質を含む正極組成物層とを備える。正極は、上述の正極活物質と、液媒体と、結着剤と、導電助剤等とを含む電極組成物を、集電体上に塗布し、乾燥及び加圧成形することで製造される。
リチウム硫黄電池は、上記リチウム硫黄電池用正極を備える。リチウム硫黄電池は、リチウム硫黄電池用正極と、負極と、正極と負極の間に配置される電解質等を備えて構成される。リチウム硫黄電池は、必要に応じてセパレータを備えてもよい。電解質は、リチウム硫黄電池用正極、負極及びセパレータ中に含まれていてよい。
リチウム硫黄電池を構成する負極としては、公知のものを用いればよい。負極を構成する負極材料としては、例えば、Li金属、Li-Si合金、Li-Al合金、Li-In合金、チタン酸リチウム(例えば、Li4Ti5O12およびLiTi2O4)、リチウムチタン複合酸化物(例えば、Li4Ti5-xMnxO12;0<x≦0.3)、LixC(x≦6)等であってよい。これらの負極材料はリチウムの一部が他のアルカリ金属に置換されていてもよい。負極材料としては、Li金属、Li-Si合金、Li-Al合金、Li-In合金、LixC(x≦6)等が好ましい。これらの材料であれば、リチウム硫黄電池から高い電圧を取り出すことができる。
セパレータは公知の材料を用いればよく、例えば、多孔性のポリエチレン、ポリプロピレン等が挙げられる。また、公知のセパレータをコーティングして使用してもよい。
電解質は、リチウム塩を含んでいればよく、従来のリチウムイオン電池に用いられているリチウム塩から適宜選択すればよい。リチウム塩は、例えばフッ素元素を含むアニオンを含んでいてよい。フッ素元素を含むアニオンを含むリチウム塩として具体的には、LiPF6、LiBF4、LiSbF6、LiAsF6、LiSO3CF3、LiN(SO2CF3)2(LiTFSI)などを挙げることができる。また、電解質は、硝酸リチウム、LiClO4等のフッ素元素を含まないリチウム塩を含んでいてもよい。電解質はこれらの中から1種を単独で、あるいは2種以上を組み合わせて用いることができる。電解質は有機溶剤を含んでいてもよい。有機溶剤としては、カーボネート系溶剤、エーテル系溶剤、エステル系溶剤、アミド系溶剤、ニトリル系溶剤、含硫黄溶剤を用いてもよく、また上記有機溶剤の一部の原子をフッ素原子に置換した有機溶剤を用いてもよい。有機溶剤としては、例えば、プロピオンカーボネート、エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート等のカーボネート系溶剤、1,3-ジオキソラン、1,2-ジメトキシエタン、1,3-ジメトキシプロパン、2,2,3,3-テトラフルオロプロピルジフルオロメチルエーテル、テトラヒドロフラン等のエーテル系溶剤、ギ酸メチル、酢酸メチル、γ-ブチロラクトン等のエステル系溶剤、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド等のアミド系溶剤、スルホラン、ジメチルスルホキシド、1,3-プロパンサルトン等の含硫黄溶剤などを挙げることができる。
炭素材料の調製
ケッチェンブラック(ライオン社製;カーボンECP600JD)10g、ショ糖5g、およびクエン酸2.5gに、水を加えて1000gに調整して混合液を得た。2Lポリ瓶にジルコニアビーズ(Φ0.65mm)400gと混合液を入れて、一晩湿式分散させて、懸濁液として混合スラリー1を得た。得られた混合スラリー1を供給ガスとしての大気とともに供給し、噴霧乾燥装置で噴霧することで造粒体としてカーボン前駆体1を得た。カーボン前駆体1を窒素雰囲気下で700℃、10時間熱処理して、炭素材料1を得た。なお、使用したケッチェンブラックは、平均粒径が34nm、比表面積が1270m2/gであった。
硫黄(98%;富士フイルム和光純薬工業)4.5gと、炭素材料1の1.5gとを混合して混合物を得た。得られた混合物を耐熱耐圧容器内で150℃、3時間加熱して、炭素材料に硫黄が付着した硫黄-炭素複合物を得た。硫黄-炭素複合物における炭素材料の空隙に配置される硫黄の含有量率は75質量%であった
硫黄(98%;富士フイルム和光純薬工業)4.5gと、市販の多孔質炭素材料であるクノーベル(登録商標)(東洋炭素社製)の1.5gとを混合して混合物を得た。得られた混合物を耐熱耐圧容器内で170℃、15時間加熱して、炭素材料に硫黄が付着した硫黄-炭素複合物を得た。硫黄-炭素複合物における炭素材料の空隙に配置される硫黄の含有は75質量%であった。
実施例1で得られた炭素材料1、ならびに比較例1で用いた多孔質炭素材料をそれぞれエポキシ樹脂に分散して、加熱硬化させることで評価用試料を作製した。評価用試料をイオンミリング装置(日立ハイテクノロジーズ社製IM4000PLUS;加速電圧6kV)により、断面処理を実施した。作製した断面処理後の評価用試料の断面について、走査電子顕微鏡(SEM)を用いて電子線像(倍率;4000倍)を撮影し、輪郭が確認できる10から30個の二次粒子を選択した。選択したそれぞれの粒子について画像処理ソフトウエア(ImageJ)を用いて、二次粒子の輪郭形状の粒子画像面積と同じ面積を有する円の直径である円相当径を求めた。また、上記の輪郭形状から長径と短径を求め、長径を短径で除した値として長短比を算出した。上述の粒子画像面積と長短比との積を円周率で除した値の平方根の2倍を平滑近似楕円の長径とし、円相当径を平滑近似楕円の長径で除した値として個々の粒子の円形度を求め、それらの算術平均値として円形度を算出した。結果を表2に示す。また実施例1で得られた炭素材料1のSEM画像を図1に、断面SEM画像を図2に示す。さらに市販の多孔質炭素材料のSEM画像を図3に、断面SEM画像を図4に示す。
水銀圧入式ポロシメータ(アントンパール(旧社名:カンタクローム)社製POREMASTER―60)を用いて、0.2μm以下の細孔容積とピーク細孔径を測定した。
比表面積は、BET比表面積測定装置(マウンテック社製Macsorb)を用いて、窒素ガス吸着法(1点法)により測定した
走査電子顕微鏡(SEM)を用い、粒径に応じて20000倍から100000倍の範囲の倍率で、二次粒子を構成する一次粒子が確認できるSEM画像を得た。SEM画像上で、輪郭が確認できる一次粒子を30個選択し、選択された一次粒子の輪郭から画像処理ソフトウエアを用いて球換算径を算出し、得られた球換算径の算術平均値として一次粒子の平均粒径を求めた。
レーザー回折式粒径分布装置(Malvern社製MASTERSIZER 2000)を用いて体積基準の粒度分布を測定した。体積平均粒径は、体積基準の粒度分布における小粒径側からの体積積算値が50%となる50%粒径D50として算出した。また、小粒径側からの体積積算値が10%および90%になる値として10%粒径D10および90%粒径D90を算出し、D90とD10の差をD50で除して粒度分布を算出した。
実施例および比較例で得られた硫黄-炭素複合物をそれぞれカーボンテープに付着させた後、任意の50粒子に対して、SEM-EDX分析(SEM装置;JEOL社製JEOL-IT100:加速電圧15kV、EDX装置;Oxford社製E-MAX80;加速電圧15kV)を行い、検出された硫黄元素と炭素元素の検出量比率について平均値と標準偏差を算出し、粒子毎のばらつきを評価した。
実施例1および比較例1で得られた硫黄-炭素複合物80質量部、PVDF16質量部、およびカーボンナノチューブ4質量部をNMPに分散、溶解し、スラリーを調製した。調製したスラリーを、集電体に塗布して乾燥し、乾燥品を得た。集電体は、カーボンで被覆されたアルミニウム箔を用いた。乾燥品をロールプレス機で、活物質層の密度が0.63g/cm3になるように圧縮成形した後、所定のサイズに裁断することにより、正極を得た。
非水電解液の作製は以下のように実施した。1,3-ジオキソラン(DOL)と1,2-ジメトキシエタン(DME)を体積比5:5で混合した。得られた混合溶媒にビス(トリフルオロメタンスルホニル)イミドリチウム(LiTFSI)をその濃度が1.0mol/Lとなるように溶解させた。続いて硝酸リチウム(LiNO3)をその濃度が0.2mol/Lとなるように溶解して、非水電解液を作製した。
上記で得られた正極にリード電極を取り付け、多孔性ポリプロピレン(セルガード2400)からなるセパレータを配し、袋状のラミネートパックにそれらを収納した。収納後50℃で真空乾燥して各部材に吸着した水分を除去した。真空乾燥後、SUS箔上に配した負極の金属リチウムを、多孔性ポリプロピレンを介して正極と対向してラミネートパック内に配置し、非水電解液を注入、封止して、評価用電池としてのラミネートタイプのリチウム硫黄二次電池を得た。得られた評価用電池を用い、以下の電池特性の評価を行った。
上記のように得られた評価用電池を25℃の恒温槽に設置し、サイクル容量維持率の評価試験を実施した。充放電電圧は1.8Vから3.0Vの範囲で実施した。放電電流は0.2C容量を取り出すときの電流値を流した。放電を開始した直後の1サイクル目の放電容量Qcyc(1)(mAh/g)を測定した。以下充電と放電を繰り返し、30サイクル目の放電容量Qcyc(30)を測定した。得られたQcyc(1)でQcyc(30)を除して30サイクル後の容量維持率Pcyc(=100×Qcyc(30)/Qcyc(1))(%)を算出した。結果を表3に示す。なお、放電容量は硫黄の質量あたり換算で算出した。
炭素材料の調製
混合スラリー1と供給ガスの供給比を変更したこと以外は、実施例1と同様の方法で、炭素材料2を得た。
炭素材料2と市販の多孔質炭素材料のそれぞれについて、表4に示すプレス圧力を印加して圧縮成型して圧縮成型物を得た。それぞれのプレス圧力における圧縮成型物の厚みをマイクロメーターで測定して算出される体積で、使用した炭素材料の質量を除して圧縮成型物の密度を算出した。また、それぞれのプレス圧力における圧縮成型物の粉体抵抗について、日東精工アナリテック(旧社名:三菱化学アナリテック)社製MCP―PD51)を用いて四探針法により評価を行った。結果を表4に示す。
Claims (10)
- 円形度が0.83より大きく、比表面積が400m2/g以上である炭素材料。
- 体積平均粒径が、1μm以上30μm以下である請求項1に記載の炭素材料。
- 細孔径が0.2μm以下の細孔容積が、1.5cm3/g以上3cm3/g以下である請求項1または2に記載の炭素材料。
- 炭素を含む一次粒子が複数集合してなる二次粒子を含む請求項1から3のいずれか1項に記載の炭素材料。
- 前記一次粒子の平均粒径が1nm以上200nm以下である請求項4に記載の炭素材料。
- 請求項1から5のいずれか1項に記載の炭素材料を含む電極活物質。
- 前記炭素材料に硫黄元素をさらに含む請求項6に記載の電極活物質。
- 比表面積が50m2/g以上である第1炭素粒子、水溶性結着剤及び水を含む懸濁液を準備することと、
前記懸濁液から造粒体を得ることと、
前記造粒体を熱処理して第2炭素粒子を得ることと、を含み、
前記第2炭素粒子は、円形度が0.83より大きく、比表面積が400m2/g以上である炭素材料の製造方法。 - 前記第1炭素粒子は、中空粒子を含む請求項8に記載の製造方法。
- 前記第1炭素粒子の比表面積が400m2/g以上である請求項9に記載の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22759486.8A EP4299514A1 (en) | 2021-02-25 | 2022-02-17 | Carbon material, method for producing same, and electrode active substance |
CN202280016610.3A CN116917230A (zh) | 2021-02-25 | 2022-02-17 | 碳材料、其制造方法及电极活性物质 |
US18/547,869 US20240304788A1 (en) | 2021-02-25 | 2022-02-17 | Carbon material, method for producing carbon material, and electrode active substance |
JP2023502336A JPWO2022181447A1 (ja) | 2021-02-25 | 2022-02-17 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021029069 | 2021-02-25 | ||
JP2021-029069 | 2021-02-25 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2022181447A1 true WO2022181447A1 (ja) | 2022-09-01 |
Family
ID=83049367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/006440 WO2022181447A1 (ja) | 2021-02-25 | 2022-02-17 | 炭素材料、その製造方法および電極活物質 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240304788A1 (ja) |
EP (1) | EP4299514A1 (ja) |
JP (1) | JPWO2022181447A1 (ja) |
CN (1) | CN116917230A (ja) |
WO (1) | WO2022181447A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4376114A3 (en) * | 2022-11-25 | 2024-09-18 | LG Energy Solution, Ltd. | Positive electrode active material, lithium-sulfur battery comprising the same and manufacturing method thereof |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014042910A (ja) | 2012-08-01 | 2014-03-13 | Toyo Ink Sc Holdings Co Ltd | 炭素触媒造粒体、炭素触媒造粒体の製造方法、及び該炭素触媒造粒体を用いた触媒インキ並びに燃料電池 |
CN103663450A (zh) * | 2013-12-19 | 2014-03-26 | 中国科学院过程工程研究所 | 一种高比表面积碳微球及其制备方法 |
JP2015198164A (ja) * | 2014-04-01 | 2015-11-09 | 旭化成株式会社 | 非水系リチウム型蓄電素子 |
JP2015198169A (ja) * | 2014-04-01 | 2015-11-09 | 旭化成株式会社 | Edlc用電極及びedlc |
JP2016141592A (ja) | 2015-02-02 | 2016-08-08 | 日立化成株式会社 | 多孔質炭素系球状粒子及びその製造方法 |
JP2017509120A (ja) * | 2014-03-13 | 2017-03-30 | ブルー ソリューション | リチウム硫黄電池 |
JP2021029069A (ja) | 2019-08-09 | 2021-02-25 | ファナック株式会社 | 回転子の製造方法及び回転部材 |
WO2021241747A1 (ja) * | 2020-05-28 | 2021-12-02 | 昭和電工株式会社 | 複合炭素粒子およびその用途 |
-
2022
- 2022-02-17 CN CN202280016610.3A patent/CN116917230A/zh active Pending
- 2022-02-17 WO PCT/JP2022/006440 patent/WO2022181447A1/ja active Application Filing
- 2022-02-17 US US18/547,869 patent/US20240304788A1/en active Pending
- 2022-02-17 JP JP2023502336A patent/JPWO2022181447A1/ja active Pending
- 2022-02-17 EP EP22759486.8A patent/EP4299514A1/en active Pending
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014042910A (ja) | 2012-08-01 | 2014-03-13 | Toyo Ink Sc Holdings Co Ltd | 炭素触媒造粒体、炭素触媒造粒体の製造方法、及び該炭素触媒造粒体を用いた触媒インキ並びに燃料電池 |
CN103663450A (zh) * | 2013-12-19 | 2014-03-26 | 中国科学院过程工程研究所 | 一种高比表面积碳微球及其制备方法 |
JP2017509120A (ja) * | 2014-03-13 | 2017-03-30 | ブルー ソリューション | リチウム硫黄電池 |
JP2015198164A (ja) * | 2014-04-01 | 2015-11-09 | 旭化成株式会社 | 非水系リチウム型蓄電素子 |
JP2015198169A (ja) * | 2014-04-01 | 2015-11-09 | 旭化成株式会社 | Edlc用電極及びedlc |
JP2016141592A (ja) | 2015-02-02 | 2016-08-08 | 日立化成株式会社 | 多孔質炭素系球状粒子及びその製造方法 |
JP2021029069A (ja) | 2019-08-09 | 2021-02-25 | ファナック株式会社 | 回転子の製造方法及び回転部材 |
WO2021241747A1 (ja) * | 2020-05-28 | 2021-12-02 | 昭和電工株式会社 | 複合炭素粒子およびその用途 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP4376114A3 (en) * | 2022-11-25 | 2024-09-18 | LG Energy Solution, Ltd. | Positive electrode active material, lithium-sulfur battery comprising the same and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
CN116917230A (zh) | 2023-10-20 |
EP4299514A1 (en) | 2024-01-03 |
JPWO2022181447A1 (ja) | 2022-09-01 |
US20240304788A1 (en) | 2024-09-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6732298B2 (ja) | 炭素−硫黄複合体、この製造方法、これを含む正極及びリチウム−硫黄電池 | |
EP3667779B1 (en) | Sulfur-carbon composite, preparation method thereof, and lithium secondary battery comprising same | |
JP7389100B2 (ja) | 酸化チタン-炭素ナノチューブ-硫黄(TiO2-x-CNT-S)複合体及びその製造方法 | |
JP6583404B2 (ja) | リチウムイオン電池用アノード材料、該アノード材料を含む負極及びリチウムイオン電池 | |
JP2018006164A (ja) | 蓄電デバイスの電極用チタン酸リチウム粉末および活物質材料、並びにそれを用いた蓄電デバイス | |
WO2009015175A2 (en) | Porous network negative electrodes for non-aqueous electrolyte secondary battery | |
US11978888B2 (en) | Ceria-carbon-sulfur composite, method for preparing same, and positive electrode and lithium-sulfur battery comprising same | |
JP6961980B2 (ja) | リチウム二次電池用複合活物質およびその製造方法 | |
JP7118139B2 (ja) | 硫黄‐炭素複合体、その製造方法及びこれを含むリチウム二次電池 | |
WO2022181447A1 (ja) | 炭素材料、その製造方法および電極活物質 | |
JP2010067365A (ja) | 非水電解質二次電池の正極用組成物の製造方法 | |
WO2020110942A1 (ja) | リチウムイオン二次電池用負極及びリチウムイオン二次電池 | |
JP7062085B2 (ja) | 硫黄-炭素複合体及びその製造方法 | |
JP7167299B2 (ja) | 硫黄-炭素複合体、この製造方法、これを含むリチウム二次電池用正極及びリチウム二次電池 | |
JP2015219989A (ja) | リチウムイオン2次電池用負極活物質およびその製造方法 | |
JP6621586B2 (ja) | 導電性カーボンの製造方法、この導電性カーボンを含む電極材料の製造方法、及びこの電極材料を用いた電極の製造方法 | |
JP6648848B1 (ja) | リチウムイオン二次電池用正極材料、リチウムイオン二次電池用正極、リチウムイオン二次電池 | |
JP6500173B2 (ja) | 正極活物質、正極、及び二次電池 | |
WO2021177291A1 (ja) | 二次電池電極用添加剤 | |
KR102589238B1 (ko) | 리튬이온전지용 음극재 및 이의 제조방법 | |
WO2023210515A1 (ja) | リチウム硫黄電池用炭素材料及びその製造方法 | |
JP6570413B2 (ja) | 非水電解質二次電池用負極電極及びそれを含む非水電解質二次電池 | |
JP2023511598A (ja) | リチウム‐硫黄電池用正極スラリー、これを利用して製造されたリチウム‐硫黄電池用正極及びこれを含むリチウム‐硫黄電池 | |
KR20240078312A (ko) | 리튬-황 전지용 양극 및 고에너지 밀도 특성을 갖는 리튬-황 전지 | |
KR20240101314A (ko) | 다공성 탄소재 및 이를 포함하는 리튬황 전지와 그 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22759486 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023502336 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280016610.3 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18547869 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022759486 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022759486 Country of ref document: EP Effective date: 20230925 |