WO2022181407A1 - 加飾フィルム - Google Patents

加飾フィルム Download PDF

Info

Publication number
WO2022181407A1
WO2022181407A1 PCT/JP2022/006100 JP2022006100W WO2022181407A1 WO 2022181407 A1 WO2022181407 A1 WO 2022181407A1 JP 2022006100 W JP2022006100 W JP 2022006100W WO 2022181407 A1 WO2022181407 A1 WO 2022181407A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
liquid crystal
decorative
light
film
Prior art date
Application number
PCT/JP2022/006100
Other languages
English (en)
French (fr)
Inventor
真理子 平井
雅徳 大塚
晃宏 澁谷
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Priority to KR1020237028399A priority Critical patent/KR20230146545A/ko
Priority to US18/277,597 priority patent/US20240152015A1/en
Priority to EP22759446.2A priority patent/EP4300177A1/en
Priority to CN202280016969.0A priority patent/CN116981987A/zh
Publication of WO2022181407A1 publication Critical patent/WO2022181407A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1334Constructional arrangements; Manufacturing methods based on polymer dispersed liquid crystals, e.g. microencapsulated liquid crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/13731Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a field-induced phase transition
    • G02F1/13737Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on a field-induced phase transition in liquid crystals doped with a pleochroic dye
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133553Reflecting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/13439Electrodes characterised by their electrical, optical, physical properties; materials therefor; method of making
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/137Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering
    • G02F1/139Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells characterised by the electro-optical or magneto-optical effect, e.g. field-induced phase transition, orientation effect, guest-host interaction or dynamic scattering based on orientation effects in which the liquid crystal remains transparent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/20Inorganic coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/24Organic non-macromolecular coating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2255/00Coating on the layer surface
    • B32B2255/28Multiple coating on one surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/416Reflective
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2451/00Decorative or ornamental articles
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/04Materials and properties dye

Definitions

  • the present invention relates to a decorative film including a light control layer and a reflective layer.
  • PDLC polymer dispersed liquid crystal
  • Patent Document 1 discloses a display device provided with a decorative film capable of displaying information by transmitting light projected from one surface side to the other surface side. According to the device, information of the display device can be displayed when the display device is displayed (when the power is turned on), and the design of the decorative film can be visually recognized when the display device is not displayed (when the power is turned off). can be done.
  • a display device provided with a decorative film capable of displaying information by transmitting light projected from one surface side to the other surface side.
  • information of the display device can be displayed when the display device is displayed (when the power is turned on), and the design of the decorative film can be visually recognized when the display device is not displayed (when the power is turned off). can be done.
  • the present invention was made to solve the above problems, and its main purpose is to provide a technique for switching the appearance of a product.
  • a polymer dispersed liquid crystal comprising a first transparent conductive film and droplets comprising a polymer matrix and a liquid crystal compound and a dichroic dye dispersed in the polymer matrix and a second transparent conductive film in this order from the viewer side; and a reflective layer provided on the side opposite to the viewer side of the light control layer.
  • the light modulating layer has a haze of 50% or more when no voltage is applied.
  • the light modulating layer has a haze of 15% or less when a voltage is applied.
  • the decorative film further includes a decorative layer on the viewing side of the reflective layer.
  • the reflective layer has a total light reflectance of 50% or more.
  • the decorative film of the present invention is provided with a reflective layer on the side opposite to the visible side of the light control layer (hereinafter sometimes referred to as "back side"), and the light control layer contains a dichroic liquid crystal in liquid crystal droplets.
  • a light-modulating layer with a PDLC layer containing a dye is used.
  • a decorative film according to an embodiment of the present invention is a highly conductive film comprising a first transparent conductive film, a polymer matrix, and liquid droplets comprising a liquid crystal compound and a dichroic dye dispersed in the polymer matrix.
  • a light control layer having a molecule dispersed liquid crystal layer and a second transparent conductive film in this order from the viewing side; and a reflective layer provided on the side opposite to the viewing side of the light control layer.
  • the decorative film may further include at least one decorative layer on the viewing side of the reflective layer depending on the application.
  • the light modulating layer may be one layer, or may be used in a form in which a plurality of layers are stacked.
  • FIG. 1(a) to (c) are schematic cross-sectional views of a decorative film according to one embodiment of the present invention.
  • the decorative film 100a shown in FIG. 1(a) includes a first transparent conductive film 12, a polymer matrix, and liquid droplets containing a liquid crystal compound and a dichroic dye dispersed in the polymer matrix. It includes a light control layer 10 having a PDLC layer 14 and a second transparent conductive film 16 in this order from the visible side, and a reflective layer 20 provided on the back side of the light control layer 10 .
  • the decorative film 100a in which the light control layer 10 is in a transparent state is observed from the viewing side, the light reflected by the reflection layer 20 and transmitted through the light control layer 10 can be recognized.
  • the appearance of the reflective layer 20 can be recognized as the appearance of the decorative film 100a.
  • the decorative film 100a in which the light control layer 10 is in the scattering state the light scattered and colored by the light control layer 10 after being reflected by the reflection layer 20 can be recognized.
  • the decorative film 100a can have a red and opaque appearance.
  • the decorative film 100b shown in FIG. 1(b) includes a first transparent conductive film 12, a polymer matrix, and droplets containing a liquid crystal compound and a dichroic dye dispersed in the polymer matrix.
  • a light control layer 10 having a PDLC layer 14 and a second transparent conductive film 16 in this order from the viewing side, a reflective layer 20 provided on the back side of the light control layer 10, the light control layer 10 and the reflection and a decorative layer 30 disposed between the layer 20.
  • the decorative film 100b can have a yellow appearance.
  • the decorative film 100b in which the light control layer 10 is in the scattering state after being reflected by the reflective layer 20, the light transmitted through the decorative layer 30 and scattered and colored by the light control layer 10 is recognized. obtain.
  • the decorative film 100b when the decorative layer 30 is yellow and the light control layer 10 contains a red dichroic dye, the decorative film 100b can have an orange and opaque appearance.
  • the decorative film 100c shown in FIG. 1(c) includes a first transparent conductive film 12, a polymer matrix, and droplets containing a liquid crystal compound and a dichroic dye dispersed in the polymer matrix.
  • a light control layer 10 having a PDLC layer 14 and a second transparent conductive film 16 in this order from the viewing side, a reflective layer 20 provided on the back side of the light control layer 10, and the light control layer 10 are visually recognized.
  • a rear-side decorative layer 30b arranged between the light-modulating layer 10 and the reflective layer 20 .
  • the decorative film 100c in which the light control layer 10 is in a transparent state is observed from the viewing side, the light reflected by the reflective layer 20 and transmitted through the rear side decorative layer 30b, the light control layer 10, and the visible side decorative layer 30a can be seen. can be recognized. Therefore, for example, when the viewer-side decorative layer 30a exhibits a yellow color and the rear-side decorative layer 30b exhibits a red pattern, the appearance of the decorative film 100c is an orange pattern displayed on a yellow background. can be recognized.
  • the decorative film 100c in which the light control layer 10 is in the scattering state after being reflected by the reflective layer 20, it is transmitted through the back side decorative layer 30b, then scattered and colored by the light control layer 10, Furthermore, the light transmitted through the visual recognition side decorative layer 30a can be recognized. Therefore, for example, when the viewer-side decorative layer 30a exhibits a yellow color, the back-side decorative layer 30b exhibits a red pattern, and the light control layer 10 contains a red dichroic dye, the decorative film 100c is opaque. May have an orange appearance.
  • the decorative film may include a decorative layer only on the viewing side of the light control layer.
  • the decorative film can contain any appropriate additional component as long as the effects of the present invention can be obtained. Additional components include, for example, a protective layer, a surface treatment layer (hard coat layer, etc.), an adhesive layer, a locally decorated decorative layer, and the like.
  • the decorative film may have a total light reflectance of, for example, 20% or more, preferably 30% to 95%, and more preferably 40% to 95% when the light modulating layer is in a transparent state.
  • the decorative film also has a total light reflectance of, for example, 15% or less, preferably 0.1% to 12%, more preferably 0.1% to 10% when the light control layer is in a scattering state. obtain. According to the decorative film having such a reflectance, even when there is no incident light from the back side, it is possible to exhibit decorativeness by utilizing the reflected light.
  • a decorative film using a reflective layer having transparency has a total light transmittance of, for example, 0.1% to 50%, preferably 0.1% to 30%, when the light control layer is in a transparent state. can.
  • the decorative film may also have a total light transmittance of eg 0.1% to 30%, preferably 0.1% to 15% when the light management layer is in the scattering state. According to the decorative film having such a transmittance, the incident light from the back side can be used in addition to the reflected light to exhibit decorativeness.
  • the decorative film can be long.
  • long shape means an elongated shape whose length is sufficiently long relative to its width. Including shape.
  • the overall thickness of the decorative film can be, for example, 50 ⁇ m to 500 ⁇ m, preferably 100 ⁇ m to 300 ⁇ m.
  • the light control layer comprises a first transparent conductive film, a polymer dispersed liquid crystal layer containing liquid droplets containing a polymer matrix, a liquid crystal compound dispersed in the polymer matrix, and a dichroic dye. , and a second transparent conductive film in this order from the viewing side.
  • the total thickness of the light modulating layer is, for example, 50 ⁇ m to 250 ⁇ m, preferably 80 ⁇ m to 200 ⁇ m.
  • the light modulating layer can have a total light transmittance of, for example, 70% or more, preferably 75% to 99%, more preferably 80% to 99% in a transparent state.
  • the light management layer may have a haze in the transparent state of, for example, 15% or less, preferably 0.1% to 10%, more preferably 0.1% to 7%. If the total light transmittance and haze of the light modulating layer in the transparent state are within the above ranges, the reflective layer or the back-side decorative layer can be favorably recognized.
  • the light modulating layer may have a total light transmittance of, for example, 60% or more, preferably 70% to 99%, more preferably 80% to 99% in the scattering state.
  • the light management layer may have a haze in the scattering state of, for example, 50% or more, preferably 60% to 99%, more preferably 70% to 99%. If the total light transmittance and haze of the light-modulating layer in the scattering state are within the above ranges, the appearance of the reflecting layer and/or the decorative layer can have an appearance in which the color tone of the light-modulating layer is added.
  • the haze is, for example, 70% or more, preferably 80% or more, the reflective layer or the back-side decorative layer can be suitably shielded.
  • the ratio of the transmittance at a wavelength of 380 nm to 700 nm to the transmittance at a wavelength of 550 nm of the light modulating layer is preferably 1 to 1.3, more preferably 1 to 1.1. If the transmittance ratio in the transparent state is within this range, light can be transmitted without causing coloring due to the light control layer.
  • the light modulating layer is in a transparent state when a voltage is applied to the PDLC layer, and is in a scattering state when no voltage is applied (normal mode).
  • the liquid crystal compound and the dichroic dye are not oriented when no voltage is applied, coloring caused by the dichroic dye and scattering caused by the liquid crystal compound occur, resulting in a colored and opaque appearance.
  • the liquid crystal compound and the dichroic dye are oriented. As a result, the coloring caused by the dichroic dye and the scattering caused by the liquid crystal compound are suppressed, resulting in a colorless or lightly colored transparent film compared to when no voltage is applied. Appearance can be presented.
  • the light modulating layer is in a scattering state when voltage is applied to the PDLC layer, and is in a transparent state when no voltage is applied (reverse mode).
  • the alignment film provided on the surface of the transparent electrode layer aligns the liquid crystal compound and the dichroic dye when no voltage is applied, and exhibits a colorless or lightly colored transparent appearance. The orientation of the dichroic dye is disturbed, resulting in coloring and scattering, which can result in a darker colored and opaque appearance than when no voltage is applied.
  • the degree of light scattering in the light control layer changes according to the applied voltage.
  • the voltage (driving voltage) applied to the PDLC layer when switching between the transparent state and the scattering state is, for example, 100V or less, preferably 1V to 30V.
  • the first transparent conductive film 12 typically includes a first transparent substrate 12a and a first transparent provided on one side of the first transparent substrate 12a.
  • the first transparent electrode layer 12b is disposed on the PDLC layer 14 side.
  • the first transparent conductive film may further have any appropriate functional layer.
  • Such functional layers include a refractive index adjusting layer, an antireflection layer, a hard coat layer, and the like.
  • a hard coat layer may be provided, for example, on one side or both sides of the first transparent substrate.
  • the refractive index adjusting layer can be provided, for example, on the first transparent substrate side of the first transparent electrode layer.
  • an alignment film may be provided on the surface of the first transparent electrode layer opposite to the first transparent substrate.
  • the surface resistance value of the first transparent conductive film is preferably 0.1 ⁇ /square to 1000 ⁇ /square, more preferably 0.5 ⁇ /square to 300 ⁇ /square, and still more preferably 1 ⁇ /square to 200 ⁇ /square. / ⁇ .
  • the haze of the first transparent conductive film is preferably 5% or less, more preferably 3% or less, still more preferably 0.01% to 1%.
  • the total light transmittance of the first transparent conductive film is preferably 70% or higher, more preferably 80% or higher, and even more preferably 85% or higher.
  • the first transparent base material is formed from any suitable material. Specifically, a glass base material or a polymer base material is preferably used, and a polymer base material is more preferable.
  • the polymer base material is typically a polymer film containing a thermoplastic resin as a main component.
  • thermoplastic resins include cycloolefin resins such as polynorbornene; acrylic resins; polyester resins such as polyethylene terephthalate resins; polycarbonate resins; and cellulose resins. Among them, cycloolefin-based resins and polyethylene terephthalate-based resins are preferably used. You may use the said thermoplastic resin individually or in combination of 2 or more types.
  • the thickness of the first transparent substrate is preferably 20 ⁇ m to 200 ⁇ m, more preferably 30 ⁇ m to 100 ⁇ m.
  • the first transparent electrode layer can be formed using, for example, metal oxides such as indium tin oxide (ITO), zinc oxide (ZnO), tin oxide (SnO 2 ).
  • the metal oxide may be an amorphous metal oxide or a crystallized metal oxide.
  • the first transparent electrode layer may be formed of metal nanowires such as silver nanowires (AgNW), carbon nanotubes (CNT), organic conductive films, metal layers, or laminates thereof.
  • the first transparent electrode layer can be patterned into a desired shape depending on the purpose.
  • the thickness of the first transparent electrode layer is preferably 0.01 ⁇ m to 0.10 ⁇ m, more preferably 0.01 ⁇ m to 0.045 ⁇ m.
  • the first transparent electrode layer can typically be provided on one surface of the first transparent substrate using a method such as sputtering. After the metal oxide layer is formed by sputtering, it can be crystallized by annealing. Annealing is performed, for example, by heat treatment at 120° C. to 300° C. for 10 minutes to 120 minutes.
  • the second transparent conductive film 16 typically includes a second transparent substrate 16a and a second transparent provided on one side of the second transparent substrate 16a.
  • the second transparent electrode layer 16b is disposed on the PDLC layer 14 side.
  • the second transparent conductive film may further have any appropriate functional layer.
  • Such functional layers include a refractive index adjusting layer, an antireflection layer, a hard coat layer, and the like.
  • a hard coat layer may be provided, for example, on one side or both sides of the second transparent substrate.
  • the refractive index adjusting layer can be provided, for example, on the second transparent substrate side of the second transparent electrode layer.
  • an alignment film may be provided on the surface of the second transparent electrode layer opposite to the second transparent substrate.
  • the surface resistance value of the second transparent conductive film is preferably 0.1 ⁇ / ⁇ to 1000 ⁇ / ⁇ , more preferably 0.5 ⁇ / ⁇ to 300 ⁇ / ⁇ , and still more preferably 1 ⁇ / ⁇ to 200 ⁇ . / ⁇ .
  • the haze of the second transparent conductive film is preferably 5% or less, more preferably 3% or less, still more preferably 0.1% to 1%.
  • the total light transmittance of the second transparent conductive film is preferably 70% or higher, more preferably 80% or higher, and even more preferably 85% or higher.
  • the same description as the first transparent electrode layer and the first transparent substrate can be applied to the second transparent electrode layer and the second transparent substrate, respectively.
  • the first transparent conductive film and the second transparent conductive film may have the same configuration or different configurations.
  • the PDLC layer comprises a polymer matrix and droplets comprising a liquid crystal compound and a dichroic dye dispersed in the polymer matrix.
  • the average particle diameter of the droplets when viewed from the direction perpendicular to the main surface of the PDLC layer is, for example, 0.3 ⁇ m or more, preferably 1 ⁇ m or more. Also, the average particle size of the droplets is, for example, 7 ⁇ m or less, preferably 5 ⁇ m or less. If the average particle size is too small, the scattering properties on the long wavelength side may be insufficient, resulting in undesirable coloring. On the other hand, if the average particle size is too large, the scattering in the visible light region becomes insufficient, and efficient scattering properties cannot be obtained. Note that the average particle diameter d of the droplets is the volume average particle diameter.
  • a non-polymerized liquid crystal compound having a directional refractive index can be preferably used.
  • the birefringence ⁇ n of the liquid crystal compound is more preferably 0.15 to 0.3. When the birefringence of the liquid crystal compound is within the above range, efficient scattering of visible light can be obtained.
  • the dielectric anisotropy of the liquid crystal compound may be positive or negative.
  • Liquid crystal compounds can be, for example, nematic, smectic, or cholesteric liquid crystal compounds. It is preferable to use a nematic type liquid crystal compound because excellent transparency can be achieved in the transparent state.
  • Nematic type liquid crystal compounds include biphenyl-based compounds, phenylbenzoate-based compounds, cyclohexylbenzene-based compounds, azoxybenzene-based compounds, azobenzene-based compounds, azomethine-based compounds, terphenyl-based compounds, biphenylbenzoate-based compounds, cyclohexylbiphenyl-based compounds, Examples include phenylpyridine-based compounds, cyclohexylpyrimidine-based compounds, cholesterol-based compounds, and fluorine-based compounds.
  • dichroic dye Any appropriate dichroic dye can be used as the dichroic dye depending on the desired appearance, toning properties, transparency, and the like.
  • a dichroic dye may be used individually by 1 type, and may be used in combination of 2 or more types.
  • Dichroic dyes include dichroic direct dyes composed of iodine and disazo compounds, dichroic direct dyes composed of trisazo and tetrakis azo compounds, liquid crystalline azo dyes, polycyclic dyes, and sulfonic acid group-containing (azo ) dyes.
  • dichroic direct dyes composed of iodine and disazo compounds
  • dichroic direct dyes composed of trisazo and tetrakis azo compounds
  • liquid crystalline azo dyes crystalline azo dyes
  • polycyclic dyes sulfonic acid group-containing (azo ) dyes.
  • sulfonic acid group-containing (azo ) dyes As a specific example, C.I. I. direct. Yellow 12, C.I. I. direct. Yellow 28, C.I. I. direct. Yellow 44, C.I. I. direct. Yellow 142, C.I. I. direct. Orange 26, C.I. I. direct. Orange 39, C.I. I. direct. Orange
  • dyes developed for polarizing films as disclosed in WO2009/057676, WO2007/145210, WO2006/057214 and JP-A-2004-251963 can also be used depending on the purpose. These dyes can be used as free acids, or alkali metal salts (eg, Na salts, K salts, Li salts), ammonium salts, and salts of amines.
  • the total content of the liquid crystal compound and the dichroic dye in the PDLC layer is, for example, 20% to 70% by weight, preferably 40% to 60% by weight. In one embodiment, the content of the dichroic dye in the PDLC layer is, for example, 0.1% to 5% by weight, preferably 0.5% to 1% by weight, relative to the liquid crystal compound.
  • the resin that forms the polymer matrix can be appropriately selected according to the light transmittance, the refractive index of the liquid crystal compound, the adhesion to the transparent conductive film, and the like.
  • water-soluble or water-dispersible resins such as urethane-based resins, polyvinyl alcohol-based resins, polyethylene-based resins, polypropylene-based resins, acrylic-based resins, liquid crystal polymers, (meth)acrylic-based resins, silicone-based resins, and epoxy-based resins , fluorine-based resins, polyester-based resins, and polyimide resins.
  • water-soluble or water-dispersible urethane resins and acrylic resins are preferably used.
  • the content of the polymer matrix-forming resin in the PDLC layer is, for example, 30% to 80% by weight, preferably 40% to 60% by weight.
  • the thickness of the PDLC layer is, for example, 3 ⁇ m to 30 ⁇ m, preferably 5 ⁇ m to 20 ⁇ m.
  • the photochromic layer can be made by any suitable method. Specific examples include production methods of emulsion system and polymerization-induced phase separation system.
  • a method for producing an emulsion-type light control layer includes, for example, coating an emulsion coating solution containing a polymer matrix-forming resin, a liquid crystal compound, and a dichroic dye on the transparent electrode layer surface of one of the transparent conductive films. Forming a coating layer, and drying the coating layer to cause the polymer matrix-forming resin to form a polymer matrix.
  • the emulsion coating liquid is preferably an emulsion containing a polymer matrix-forming resin in a continuous phase and a liquid crystal compound and a dichroic dye in a dispersed phase. water, an aqueous organic solvent, or a mixture thereof) in the continuous phase, and the liquid crystal compound and the dichroic dye in the dispersed phase.
  • a PDLC layer having a configuration in which droplets containing a liquid crystal compound and a dichroic dye are dispersed in a polymer matrix can be formed.
  • the light modulating layer is obtained by laminating the other transparent conductive film on the formed PDLC layer.
  • a liquid crystal dispersion containing capsules (liquid crystal capsules) containing a liquid crystal compound and a dichroic dye controlled in advance to a predetermined particle size and particle size distribution by a film emulsification method or the like is prepared.
  • An emulsion coating solution can be prepared by mixing a liquid crystal dispersion and a polymer matrix-forming resin.
  • a liquid crystal dispersion containing liquid crystal capsules having a predetermined particle size and uniform particle size distribution can be prepared.
  • the dichroic dye is prevented from dissolving into the polymer matrix side, and the dichroic ratio is high.
  • a photochromatic layer can be obtained.
  • a liquid crystal dispersion containing liquid crystal capsules having a desired particle size is obtained by passing a liquid mixture of a liquid crystal compound, a dichroic dye, and a dispersion medium multiple times through a porous film having through holes.
  • the number of times of passing through the porous membrane can be, for example, 10 times or more.
  • the pore diameter of the porous film is preferably approximately equal to approximately 3 times the desired diameter of the liquid crystal capsule.
  • the flow rate of the dispersion when passing through the porous membrane may be, for example, 10 mL/min/cm 2 to 150 mL/min/cm 2 , preferably 30 mL/min/cm 2 to 90 mL/min/cm 2 .
  • the membrane emulsification method reference can be made to disclosures such as JP-A-4-355719 and JP-A-2015-40994 (these are incorporated herein by reference).
  • a method for producing a light-modulating layer using a polymerization-induced phase separation method includes, for example, coating a radiation-curable polymer matrix-forming resin, a liquid crystal compound, and a dichroic dye on the transparent electrode layer surface of one of the transparent conductive films. forming a coating layer by applying a liquid, laminating the other transparent conductive film on the coating layer to form a laminate, and irradiating the laminate with radiation to form a polymer matrix Phase separation of the polymeric matrix from the liquid crystal compound and the dichroic dye by polymerizing the forming resin.
  • the coating liquid is preferably in a homogeneous phase.
  • a coating liquid may be filled between a pair of laminated transparent conductive films via a spacer, and then phase separation may be performed by irradiation.
  • the reflective layer reflects light incident from the viewing side of the decorative film.
  • the reflective layer may be transmissive (ie, the reflective layer may be a semi-transmissive reflective layer).
  • the total light reflectance of the reflective layer is, for example, 50% or more, preferably 60% or more, more preferably 70% to 95%.
  • the reflective layer When the reflective layer has transparency, its total light reflectance may be, for example, 30% to 60%, preferably 40% to 50%, and its total light transmittance may be, for example, 40% to 70%, preferably can be 50% to 60%.
  • the reflective layer may be a specular reflective layer or a diffuse reflective layer.
  • specular reflection layer it is possible to increase the change in appearance of the decorative film between the transparent state and the scattering state of the light control layer.
  • the specular reflectance of the reflective layer may be, for example, 25% or more, preferably 40% to 95%.
  • a reflective layer having metallic luster it is possible to impart metallic luster to the appearance of the decorative film.
  • the reflective layer include vapor deposition of aluminum, silver, etc. on a base material such as a resin sheet with high reflectance (for example, an acrylic plate), a thin metal plate such as aluminum or stainless steel, a metal foil, or a resin film such as polyester.
  • a base material such as a resin sheet with high reflectance (for example, an acrylic plate), a thin metal plate such as aluminum or stainless steel, a metal foil, or a resin film such as polyester.
  • a resin film having voids formed therein for example, an acrylic plate
  • a thin metal plate such as aluminum or stainless steel
  • a metal foil or a resin film such as polyester.
  • the thickness of the reflective layer can be appropriately set according to the application.
  • the thickness of the reflective layer is, for example, 20 ⁇ m to 300 ⁇ m, preferably 30 ⁇ m to 100 ⁇ m.
  • the decoration layer contains a coloring material so as to display desired display contents (eg, designs, patterns, characters, etc.).
  • the decorative layer can be, for example, a colored layer containing a matrix and a coloring material mixed in the matrix, or a printed layer printed on at least part of the surface of the base film.
  • the total light transmittance of the decorative layer is, for example, 40% to 90%, preferably 50% to 90%, more preferably 60% to 90%.
  • coloring material can be used as the coloring material depending on the display content of the decorative layer.
  • suitable coloring materials include anthraquinone-based, triphenylmethane-based, naphthoquinone-based, thioindigo-based, perinone-based, perylene-based, squarylium-based, cyanine-based, porphyrin-based, azaporphyrin-based, phthalocyanine-based, subphthalocyanine-based, and quinizarin-based coloring materials.
  • a pigment may also be used as a coloring material.
  • pigments include black pigments (carbon black, bone black, graphite, iron black, titanium black, etc.), azo pigments, phthalocyanine pigments, polycyclic pigments (quinacridone-based, perylene-based, perinone-based, isoindolinone-based, isoindoline-based, dioxazine-based, thioindigo-based, anthraquinone-based, quinophthalone-based, metal complex-based, diketopyrrolopyrrole-based, etc.), dye lake-based pigments, white/extender pigments (titanium oxide, zinc oxide, sulfide zinc, clay, talc, barium sulfate, calcium carbonate, etc.), chromatic pigments (yellow, cadmium, chrome vermilion, nickel titanium, chrome titanium, yellow iron oxide, red iron oxide, zinc chromate, red lead, ultramarine blue, Prussian blue,
  • a preferred example of the matrix is a resin film.
  • Any appropriate resin can be used as the resin constituting the resin film.
  • the resin may be a thermoplastic resin, a thermosetting resin, or an active energy ray-curable resin.
  • Active energy ray-curable resins include electron beam-curable resins, ultraviolet-curable resins, and visible light-curable resins.
  • resins include epoxies, (meth)acrylates (e.g., methyl methacrylate, butyl acrylate), norbornene, polyethylene, poly(vinyl butyral), poly(vinyl acetate), polyureas, polyurethanes, aminosilicone (AMS), Polyphenylmethylsiloxanes, polyphenylalkylsiloxanes, polydiphenylsiloxanes, polydialkylsiloxanes, silsesquioxanes, silicone fluorides, vinyl- and hydride-substituted silicones, styrenic polymers (e.g., polystyrene, aminopolystyrene (APS), poly( acrylonitrile ethylene styrene) (AES)), polymers crosslinked with difunctional monomers (e.g.
  • polyester-based polymers e.g. polyethylene terephthalate
  • cellulosic polymers e.g. triacetyl cellulose
  • vinyl chloride-based polymers e.g. polyethylene terephthalate
  • amide-based polymers e.g. triacetyl cellulose
  • imide-based polymers vinyl alcohol-based polymers
  • epoxy-based polymers epoxy-based polymers
  • silicone-based polymers e.g., acrylic urethane-based polymers.
  • the mixing ratio of the coloring material in the matrix can be any appropriate ratio depending on the type of coloring material, desired light absorption characteristics, and the like.
  • the mixing ratio of the coloring material is, for example, 0.01 to 100 parts by weight, more preferably 0.01 to 50 parts by weight, per 100 parts by weight of the matrix material.
  • the decorative layer is attached to the light control layer via, for example, an adhesive layer or an adhesive layer.
  • the decorative layer can be formed by applying a curable resin composition containing a coloring material to the surface of the light control layer and curing the composition.
  • the printing method is not particularly limited, and examples include inkjet printing, gravure printing, offset printing, and silk screen printing.
  • the base film on which the printed layer is printed examples include a transparent resin film or a colored layer in which the matrix is a resin film.
  • a decorative layer is printed on the outer surface of the light control layer, a transparent conductive film having a structure of [printed layer/transparent substrate/transparent electrode layer] is produced, and the transparent conductive film is used for adjustment. It is possible, for example, to produce an optical layer.
  • a reflective layer may be used as a base film.
  • the decorative film includes both the viewer-side decorative layer and the back-side decorative layer, they may have the same configuration or different configurations.
  • the decorative film described in Section A is attached to an arbitrary location on a product, building material, or the like, and can exhibit a decorative function or a display function using external light. Also, when a semi-transmissive reflective layer is used, it can function as a smart mirror by combining with a display or the like.
  • Thickness Measured using a digital micrometer (manufactured by Anritsu, product name “KC-351C”).
  • the aperture size is set to 30 ⁇ m, and the volume is divided into 256 at equal intervals from 0.6 ⁇ m to 18 ⁇ m on a logarithmic basis, and the volume of each discretized particle size is obtained. A volume average particle size was calculated.
  • Total light transmittance The total light transmittance was measured using a haze meter in accordance with JIS K 7136:2000.
  • Total light reflectance Total light reflectance was measured using CM-26dg manufactured by Konica Minolta.
  • Example 1 (First and second transparent conductive films) An ITO layer was formed on one side of a PET substrate (thickness: 50 ⁇ m) by a sputtering method to obtain a transparent conductive film having a structure of [transparent substrate/transparent electrode layer (surface resistance: 100 ⁇ )].
  • Liquid crystal compound (1) 50 parts, yellow dichroic dye (manufactured by Hayashibara Co., Ltd., product name "G-470”) 0.5 parts, pure water 49 parts and dispersant (Daiichi Kogyo Seiyaku Co., Ltd., product name " 0.5 parts of Neugen ET159”) was mixed and coarsely dispersed by stirring with a homogenizer at 100 rpm for 10 minutes.
  • the crude dispersion is passed through a separation membrane with a uniform particle size distribution (“SPG Pumping Connector” manufactured by SPG Techno Co., Ltd., pore size 5 ⁇ m) at room temperature at a flow rate of 80 mL / min so as to pass through the membrane from the outside to the inside. / cm2 . This operation was performed 10 times.
  • the volume average particle size of the liquid crystal capsules in the obtained liquid crystal dispersion was 2.5 ⁇ m.
  • a reflective layer with a printed layer was obtained by performing red printing on the substrate-side surface of a mirror film (manufactured by Toray Industries, Inc., reflectance: 68%) having a structure of [metallic luster layer/transparent PET substrate].
  • the printed layer-attached reflective layer was attached to the back side of the light control layer via an acrylic pressure-sensitive adhesive layer so that the printed layer side faced the light control layer.
  • a decorative film having a structure of [light control layer/printed layer (decorative layer)/reflective layer] was obtained.
  • the voltage application state is a state in which an AC voltage of 30 V is applied to the light control layer using an AC power supply "EC750SA" manufactured by NF Circuit Design Block.
  • the decorative films of Examples exhibited different appearances with a marked change in color tone between the applied state and the non-applied state. Specifically, in an opaque state (scattering state) in which no voltage was applied, a mixture of red due to the printed layer and yellow due to the color development of the light control layer appeared, and the decorative film exhibited an opaque orange color. When an AC voltage was applied here to drive the light control layer to a transparent state, the metallic luster caused by the reflective layer and the red color caused by the printed layer were combined, and the decorative film exhibited a glossy red color.
  • the decorative film of the present invention can be suitably used as a decorative display medium or the like.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Dispersion Chemistry (AREA)
  • Liquid Crystal (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、製品の外観を切り替える技術を提供する。本発明の実施形態による加飾フィルム(100)は、第1の透明導電性フィルム(12)と、高分子マトリクスおよび該高分子マトリクス中に分散した液晶化合物と二色性染料とを含む液滴を含む高分子分散型液晶層(14)と、第2の透明導電性フィルム(16)と、を視認側からこの順に備える、調光層(10)と、該調光層(10)の視認側と反対側に設けられた反射層(20)と、を含む。

Description

加飾フィルム
 本発明は、調光層と反射層とを含む加飾フィルムに関する。
 一対の透明導電性フィルム間に高分子分散型液晶(Polymer Dispersed Liquid Crystal;以下、「PDLC」と称する場合がある)層が挟持された構成を有する調光素子は、電圧の印加量に応じて、透過光の散乱度合いを変化させることができ、例えば、電圧印加状態と無印加状態とを切り替えることにより、光を散乱させる状態(散乱状態)と光を透過させる状態(非散乱状態または透明状態)とを切り替えることができる。このような調光素子は、その調光機能を利用して、ブラインドやカーテン用途、ディスプレイ用途、投射スクリーン用途等の種々の用途への適用が検討されている。
 また、近年、購買者の満足度をより向上させる観点から、製品の開発に当たっては、機能性に加えて意匠性も重視される。例えば、特許文献1には、一方の面側から投射された光を他方の面側に透過して情報を表示することができる加飾フィルムを備える表示装置が開示されており、このような表示装置によれば、表示装置の表示時(電源ON時)には表示装置の情報を表示することができ、表示装置の非表示時(電源OFF時)には加飾フィルムの意匠を視認することができる。このように、製品の外観、例えば、色や色調を切り替える技術については、さらなる進展が求められている。
特開2020-067565号公報
 本発明は、上記問題を解決するためになされたものであり、その主たる目的は、製品の外観を切り替える技術を提供することにある。
 本発明の1つの局面によれば、第1の透明導電性フィルムと、高分子マトリクスおよび該高分子マトリクス中に分散した液晶化合物と二色性染料とを含む液滴を含む高分子分散型液晶層と、第2の透明導電性フィルムと、を視認側からこの順に備える、調光層と;該調光層の視認側と反対側に設けられた反射層と;を含む、加飾フィルムが提供される。
 1つの実施形態において、電圧無印加時の上記調光層のヘイズが50%以上である。
 1つの実施形態において、電圧印加時の上記調光層のヘイズが15%以下である。
 1つの実施形態において、上記加飾フィルムは、上記反射層の視認側に加飾層をさらに含む。
 1つの実施形態において、上記反射層の全光線反射率が、50%以上である。
 本発明の加飾フィルムは、調光層の視認側と反対側(以下、「背面側」と称する場合がある)に反射層を備え、該調光層として、液晶液滴内に二色性染料を含むPDLC層を有する調光層を用いる。このような構成とすることにより、調光層が透明状態においては、反射層で反射された光がそのまま視認される一方で、調光層が散乱状態においては、反射層で反射された光が散乱されるとともに、二色性染料由来の色が加味される。その結果、本発明の加飾フィルムは、電圧印加状態と無印加状態とにおいて、異なる外観を呈することができる。また、調光層の背面側に反射層を設け、その反射光を利用することにより、背面側からの入射光がない構成であっても上記外観を呈することができる。
(a)~(c)はそれぞれ、本発明の1つの実施形態における加飾フィルムの概略断面図である。
 以下、本発明の好ましい実施形態について説明するが、本発明はこれらの実施形態には限定されない。なお、本明細書中で、数値範囲を表す「~」は、その上限および下限の数値を含む。
A.加飾フィルム
 本発明の実施形態による加飾フィルムは、第1の透明導電性フィルムと、高分子マトリクスおよび該高分子マトリクス中に分散した液晶化合物と二色性染料とを含む液滴を含む高分子分散型液晶層と、第2の透明導電性フィルムと、を視認側からこの順に有する、調光層と;該調光層の視認側と反対側に設けられた反射層と;を含む。加飾フィルムは、用途等に応じて、反射層の視認側に少なくとも1つの加飾層をさらに含み得る。調光層は1層でもよいし複数層を重ねて使用する形態でもよい。
 図1(a)~(c)はそれぞれ、本発明の1つの実施形態における加飾フィルムの概略断面図である。図1(a)に示される加飾フィルム100aは、第1の透明導電性フィルム12と、高分子マトリクスおよび該高分子マトリクス中に分散した液晶化合物と二色性染料とを含む液滴を含むPDLC層14と、第2の透明導電性フィルム16と、を視認側からこの順に有する調光層10と、調光層10の背面側に設けられた反射層20とを含む。調光層10が透明状態である加飾フィルム100aを視認側から観察すると、反射層20で反射され、調光層10を透過した光が認識され得る。よって、反射層20の外観が加飾フィルム100aの外観として認識され得る。一方、調光層10が散乱状態である加飾フィルム100aによれば、反射層20で反射された後、調光層10で散乱および着色された光が認識され得る。よって、例えば、調光層10が赤色の二色性染料を含む場合、加飾フィルム100aは、赤色で不透明な外観を呈し得る。
 図1(b)に示される加飾フィルム100bは、第1の透明導電性フィルム12と、高分子マトリクスおよび該高分子マトリクス中に分散した液晶化合物と二色性染料とを含む液滴を含むPDLC層14と、第2の透明導電性フィルム16と、を視認側からこの順に有する調光層10と、調光層10の背面側に設けられた反射層20と、調光層10と反射層20との間に配置された加飾層30とを含む。調光層10が透明状態である加飾フィルム100bを視認側から観察すると、反射層20で反射され、加飾層30および調光層10を透過した光が認識される。よって、例えば、加飾層30が黄色の着色層である場合、加飾フィルム100bは、黄色の外観を呈し得る。一方、調光層10が散乱状態である加飾フィルム100bによれば、反射層20で反射された後、加飾層30を透過し、調光層10で散乱および着色された光が認識され得る。よって、例えば、加飾層30が黄色を呈し、調光層10が赤色の二色性染料を含む場合、加飾フィルム100bは、橙色で不透明な外観を呈し得る。
 図1(c)に示される加飾フィルム100cは、第1の透明導電性フィルム12と、高分子マトリクスおよび該高分子マトリクス中に分散した液晶化合物と二色性染料とを含む液滴を含むPDLC層14と、第2の透明導電性フィルム16と、を視認側からこの順に有する調光層10と、調光層10の背面側に設けられた反射層20と、調光層10の視認側に配置された視認側加飾層30aと、調光層10と反射層20との間に配置された背面側加飾層30bとを含む。調光層10が透明状態である加飾フィルム100cを視認側から観察すると、反射層20で反射され、背面側加飾層30b、調光層10および視認側加飾層30aを透過した光が認識され得る。よって、例えば、視認側加飾層30aが黄色を呈し、背面側加飾層30bが赤色の図柄を呈する場合、黄色の背景色に橙色の図柄が表示された外観が加飾フィルム100cの外観として認識され得る。一方、調光層10が散乱状態である加飾フィルム100cによれば、反射層20で反射された後、背面側加飾層30bを透過し、次いで、調光層10で散乱および着色され、さらに視認側加飾層30aを透過した光が認識され得る。よって、例えば、視認側加飾層30aが黄色を呈し、背面側加飾層30bが赤色の図柄を呈し、調光層10が赤色の二色性染料を含む場合、加飾フィルム100cは不透明な橙色の外観を呈し得る。
 加飾フィルムの構成は上記図示例に限定されない。例えば、加飾フィルムは、調光層の視認側のみに加飾層を含んでもよい。また、本発明の効果が得られる限りにおいて、加飾フィルムは、任意の適切な追加の構成要素を含むことができる。追加の構成要素としては、例えば、保護層、表面処理層(ハードコート層等)、粘着剤層、局所的に装飾が施された加飾層等が挙げられる。
 加飾フィルムは、調光層が透明状態である場合に、例えば20%以上、好ましくは30%~95%、より好ましくは40%~95%の全光線反射率を有し得る。加飾フィルムはまた、調光層が散乱状態である場合に、例えば15%以下、好ましくは0.1%~12%、より好ましくは0.1%~10%の全光線反射率を有し得る。このような反射率を有する加飾フィルムによれば、背面側からの入射光がない場合であっても反射光を利用して加飾性を発揮することができる。
 透過性を有する反射層を用いた加飾フィルムは、調光層が透明状態である場合に、例えば0.1%~50%、好ましくは0.1%~30%の全光線透過率を有し得る。当該加飾フィルムはまた、調光層が散乱状態である場合に、例えば0.1%~30%、好ましくは0.1%~15%の全光線透過率を有し得る。このような透過率を有する加飾フィルムによれば、反射光に加えて背面側からの入射光を利用して加飾性を発揮することができる。
 加飾フィルムは長尺状であり得る。なお、本明細書において「長尺状」とは、幅に対して長さが十分に長い細長形状を意味し、例えば、幅に対して長さが10倍以上、好ましくは20倍以上の細長形状を含む。
 加飾フィルムの全体厚みは、例えば50μm~500μm、好ましくは100μm~300μmであり得る。
 以下、加飾フィルムの構成要素について具体的に説明する。
A-1.調光層
 調光層は、第1の透明導電性フィルムと、高分子マトリクスおよび該高分子マトリクス中に分散した液晶化合物と二色性染料とを含む液滴を含む高分子分散型液晶層と、第2の透明導電性フィルムと、を視認側からこの順に有する。
 調光層の全体厚みは、例えば50μm~250μm、好ましくは80μm~200μmである。
 調光層は、透明状態において、例えば70%以上、好ましくは75%~99%、より好ましくは80%~99%の全光線透過率を有し得る。また、調光層は、透明状態において、例えば15%以下、好ましくは0.1%~10%、より好ましくは0.1%~7%のヘイズを有し得る。透明状態における調光層の全光線透過率およびヘイズが当該範囲であれば、反射層または背面側加飾層を好適に認識することができる。
 調光層は、散乱状態において、例えば60%以上、好ましくは70%~99%、より好ましくは80%~99%の全光線透過率を有し得る。また、調光層は、散乱状態において、例えば50%以上、好ましくは60%~99%、より好ましくは70%~99%のヘイズを有し得る。散乱状態における調光層の全光線透過率およびヘイズが当該範囲であれば、反射層および/または加飾層の外観に調光層の色調が加味された外観を呈することができる。また、ヘイズが例えば70%以上、好ましくは80%以上である場合には、反射層または背面側加飾層を好適に遮蔽することができる。
 透明状態において、調光層の波長550nmにおける透過率に対する波長380nm~700nmの透過率の比率は、好ましくは1~1.3、より好ましくは1~1.1である。透明状態における透過率比が当該範囲であれば、調光層由来の色付きを生じさせることなく、光を透過させることができる。
 1つの実施形態において、調光層は、PDLC層に電圧が印加された状態で透明状態となり、電圧が印加されていない状態で散乱状態となる(ノーマルモード)。当該実施形態においては、電圧無印加時には液晶化合物および二色性染料が配向していないために、二色性染料に起因する着色および液晶化合物に起因する散乱が生じて着色のある不透明な外観を呈する。一方、電圧印加時には液晶化合物および二色性染料が配向する結果、二色性染料に起因する着色および液晶化合物に起因する散乱が抑制されて、無色または電圧無印加時よりも薄く着色した透明な外観を呈することができる。
 別の実施形態において、調光層は、PDLC層に電圧が印加された状態で散乱状態となり、電圧が印加されていない状態で透明状態となる(リバースモード)。当該実施形態においては、透明電極層表面に設けられた配向膜によって電圧無印加時に液晶化合物および二色性染料が配向して無色または薄く着色した透明な外観を呈し、電圧の印加によって液晶化合物および二色性染料の配向が乱れて、着色および散乱が生じる結果、電圧無印加時よりも濃く着色した不透明な外観を呈し得る。
 上記のとおり、調光層の光の散乱度合い(結果として、ヘイズ)は、印加される電圧に応じて変化する。透明状態と散乱状態とを切り替える際にPDLC層に印加される電圧(駆動電圧)は、例えば100V以下、好ましくは1V~30Vである。
A-1-1.第1の透明導電性フィルム
 第1の透明導電性フィルム12は、代表的には、第1の透明基材12aと、第1の透明基材12aの一方の側に設けられた第1の透明電極層12bとを有し、第1の透明電極層12bがPDLC層14側となるように配置される。必要に応じて、第1の透明導電性フィルムは、任意の適切な機能層をさらに有していてもよい。このような機能層としては、屈折率調整層、反射防止層、ハードコート層等が挙げられる。ハードコート層は、例えば、第1の透明基材の片側または両側に設けられ得る。屈折率調整層は、例えば、第1の透明電極層の第1の透明基材側に設けられ得る。さらに、駆動モードに応じて、第1の透明電極層の第1の透明基材と反対側表面に配向膜が設けられてもよい。
 第1の透明導電性フィルムの表面抵抗値は、好ましくは0.1Ω/□~1000Ω/□であり、より好ましくは0.5Ω/□~300Ω/□であり、さらに好ましくは1Ω/□~200Ω/□である。
 第1の透明導電性フィルムのヘイズは、好ましくは5%以下であり、より好ましくは3%以下であり、さらに好ましくは0.01%~1%である。
 第1の透明導電性フィルムの全光線透過率は、好ましくは70%以上であり、より好ましくは80%以上であり、さらに好ましくは85%以上である。
 第1の透明基材は、任意の適切な材料から形成される。具体的には、ガラス基材または高分子基材が好ましく用いられ、高分子基材がより好ましい。
 上記高分子基材は、代表的には熱可塑性樹脂を主成分とする高分子フィルムである。熱可塑性樹脂としては、例えば、ポリノルボルネン等のシクロオレフィン系樹脂;アクリル系樹脂;ポリエチレンテレフタレート系樹脂等のポリエステル系樹脂;ポリカーボネート樹脂;セルロース系樹脂等が挙げられる。なかでも、シクロオレフィン系樹脂またはポリエチレンテレフタレート系樹脂が好ましく用いられ得る。上記熱可塑性樹脂は、単独で、または2種以上組み合わせて用いてもよい。
 第1の透明基材の厚みは、好ましくは20μm~200μmであり、より好ましくは30μm~100μmである。
 第1の透明電極層は、例えば、インジウム錫酸化物(ITO)、酸化亜鉛(ZnO)、酸化錫(SnO)等の金属酸化物を用いて形成され得る。この場合、金属酸化物は、アモルファス金属酸化物であってもよく、結晶化金属酸化物であってもよい。あるいは、第1の透明電極層は、銀ナノワイヤー(AgNW)等の金属ナノワイヤ、カーボンナノチューブ(CNT)、有機導電膜、金属層またはこれらの積層体によって形成され得る。第1の透明電極層は、目的に応じて、所望の形状にパターニングされ得る。
 第1の透明電極層の厚みは、好ましくは0.01μm~0.10μmであり、より好ましくは0.01μm~0.045μmである。
 第1の透明電極層は、代表的には、スパッタ等の方法を用いて、第1の透明基材の一方の面に設けられ得る。スパッタリングによって金属酸化物層を形成後、アニーリングすることにより結晶化することができる。アニーリングは、例えば120℃~300℃、10分~120分熱処理することにより行われる。
A-1-2.第2の透明導電性フィルム
 第2の透明導電性フィルム16は、代表的には、第2の透明基材16aと、第2の透明基材16aの一方の側に設けられた第2の透明電極層16bとを有し、第2の透明電極層16bがPDLC層14側となるように配置される。必要に応じて、第2の透明導電性フィルムは、任意の適切な機能層をさらに有していてもよい。このような機能層としては、屈折率調整層、反射防止層、ハードコート層等が挙げられる。ハードコート層は、例えば、第2の透明基材の片側または両側に設けられ得る。屈折率調整層は、例えば、第2の透明電極層の第2の透明基材側に設けられ得る。さらに、駆動モードに応じて、第2の透明電極層の第2の透明基材と反対側表面に配向膜が設けられてもよい。
 第2の透明導電性フィルムの表面抵抗値は、好ましくは0.1Ω/□~1000Ω/□であり、より好ましくは0.5Ω/□~300Ω/□であり、さらに好ましくは1Ω/□~200Ω/□である。
 第2の透明導電性フィルムのヘイズは、好ましくは5%以下であり、より好ましくは3%以下であり、さらに好ましくは0.1%~1%である。
 第2の透明導電性フィルムの全光線透過率は、好ましくは70%以上であり、より好ましくは80%以上であり、さらに好ましくは85%以上である。
 第2の透明電極層および第2の透明基材についてはそれぞれ、第1の透明電極層および第1の透明基材と同様の説明を適用することができる。第1の透明導電性フィルムと第2の透明導電性フィルムとは、同じ構成であってもよく、異なる構成であってもよい。
A-1-3.高分子分散型液晶層
 PDLC層は、高分子マトリクスおよび該高分子マトリクス中に分散した液晶化合物と二色性染料とを含む液滴を含む。
 PDLC層の主面に垂直な方向から見た場合の上記液滴の平均粒子径は、例えば0.3μm以上であり、好ましくは1μm以上である。また、液滴の平均粒子径は、例えば7μm以下であり、好ましくは5μm以下である。当該平均粒子径が小さすぎると、長波長側の散乱性が不十分となり所望しない色付きが生じ得る。一方、当該平均粒子径が大きすぎると、可視光域における散乱が不十分となり、効率のよい散乱性が得られない。なお、液滴の平均粒子径dは、体積平均粒子径である。
 液晶化合物としては、波長589nmにおいて0.1~0.4の複屈折Δn(=n-n;nは液晶化合物分子の長軸方向の屈折率、nは液晶化合物分子の短軸方向の屈折率)を有する非重合型の液晶化合物が好ましく用いられ得る。液晶化合物の複屈折Δnは、より好ましくは0.15~0.3である。液晶化合物の複屈折が上記範囲内である場合、効率よく可視光内での散乱を得ることができる。
 液晶化合物の誘電異方性は、正でも負でもよい。液晶化合物は、例えば、ネマティック型、スメクティック型、コレステリック型液晶化合物であり得る。透明状態において優れた透明性を実現できることから、ネマティック型液晶化合物を用いることが好ましい。ネマティック型液晶化合物としては、ビフェニル系化合物、フェニルベンゾエート系化合物、シクロヘキシルベンゼン系化合物、アゾキシベンゼン系化合物、アゾベンゼン系化合物、アゾメチン系化合物、ターフェニル系化合物、ビフェニルベンゾエート系化合物、シクロヘキシルビフェニル系化合物、フェニルピリジン系化合物、シクロヘキシルピリミジン系化合物、コレステロール系化合物、フッ素系化合物等が挙げられる。
 二色性染料としては、所望される外観、調色性、透過性等に応じて任意の適切な二色性染料が用いられ得る。二色性染料は一種のみを単独で用いてもよく、二種以上を組み合わせて用いてもよい。
 二色性染料としては、ヨウ素、ジスアゾ化合物からなる二色性直接染料、トリスアゾ、テトラキスアゾ化合物等からなる二色性直接染料、液晶性アゾ色素、多環式染料、スルホン酸基を有する(アゾ)染料が挙げられる。具体例としては、C.I.ダイレクト.イエロー12、C.I.ダイレクト.イエロー28、C.I.ダイレクト.イエロー44、C.I.ダイレクト.イエロー142、C.I.ダイレクト.オレンジ26、C.I.ダイレクト.オレンジ39、C.I.ダイレクト.オレンジ71、C.I.ダイレクト.オレンジ107、C.I.ダイレクト.レッド2、C.I.ダイレクト.レッド31、C.I.ダイレクト.レッド39、C.I.ダイレクト.レッド79、C.I.ダイレクト.レッド81、C.I.ダイレクト.レッド117、C.I.ダイレクト.レッド247、C.I.ダイレクト.グリーン80、C.I.ダイレクト.グリーン59、C.I.ダイレクト.ブルー1、C.I.ダイレクト.ブルー71、C.I.ダイレクト.ブルー78、C.I.ダイレクト.ブルー168、C.I.ダイレクト.ブルー202、C.I.ダイレクト.バイオレット9、C.I.ダイレクト.バイオレット51、C.I.ダイレクト.ブラウン106、C.I.ダイレクト.ブラウン223が挙げられる。また、目的に応じて、WO2009/057676、WO2007/145210、WO2006/057214および特開2004-251963号公報に開示されているような偏光フィルム用に開発された染料を用いることもできる。これらの染料は遊離酸、あるいはアルカリ金属塩(例えばNa塩、K塩、Li塩)、アンモニウム塩、アミン類の塩として用いられ得る。
 PDLC層における液晶化合物と二色性染料の合計含有割合は、例えば20重量%~70重量%、好ましくは40重量%~60重量%である。1つの実施形態において、PDLC層における二色性染料の含有割合は、例えば液晶化合物に対し0.1重量%~5重量%、好ましくは0.5重量%~1重量%である。
 上記高分子マトリクスを形成する樹脂としては、光透過率、上記液晶化合物の屈折率、透明導電性フィルムとの密着力等に応じて適切に選択され得る。例えば、ウレタン系樹脂、ポリビニルアルコール系樹脂、ポリエチレン系樹脂、ポリプロピレン系樹脂、アクリル系樹脂等の水溶性樹脂または水分散性樹脂および液晶ポリマー、(メタ)アクリル系樹脂、シリコーン系樹脂、エポキシ系樹脂、フッ素系樹脂、ポリエステル系樹脂、ポリイミド樹脂等の硬化型樹脂が挙げられる。なかでも、水溶性または水分散性のウレタン系樹脂およびアクリル系樹脂が好ましく用いられ得る。
 PDLC層における高分子マトリクス形成用樹脂の含有割合は、例えば30重量%~80重量%、好ましくは40重量%~60重量%である。
 PDLC層の厚みは、例えば3μm~30μmであり、好ましくは5μm~20μmである。
A-1-4.調光層の作製方法
 調光層は、任意の適切な方法で作製され得る。具体例としては、エマルション方式および重合誘起相分離方式の作製方法が挙げられる。
 エマルション方式の調光層の作製方法は、例えば、一方の透明導電性フィルムの透明電極層面に、高分子マトリクス形成用樹脂、液晶化合物および二色性染料を含むエマルション塗工液を塗工して塗工層を形成すること、および、該塗工層を乾燥させて該高分子マトリクス形成用樹脂に高分子マトリクスを形成させること、を含む。該エマルション塗工液は、好ましくは高分子マトリクス形成用樹脂を連続相に含み、液晶化合物および二色性染料を分散相に含むエマルションであり、例えば、高分子マトリクス形成用樹脂と塗工溶剤(水、水性有機溶剤またはこれらの混合液等)との混合液を連続相に含み、液晶化合物および二色性染料を分散相に含むエマルションであり得る。エマルション化された塗工液を塗工および乾燥することにより、高分子マトリクス中に液晶化合物および二色性染料を含む液滴が分散された構成を有するPDLC層が形成され得る。代表的には、形成されたPDLC層上に他方の透明導電性フィルムを積層することにより、調光層が得られる。
 上記エマルション方式を用いる場合は、膜乳化法等により予め所定の粒子径および粒子径分布に制御された液晶化合物および二色性染料を含むカプセル(液晶カプセル)を含む液晶分散液を作製し、当該液晶分散液と高分子マトリクス形成用樹脂とを混合してエマルション塗工液を調製することができる。膜乳化法によれば、所定の粒子径を有し、かつ、粒度分布が揃った液晶カプセルを含む液晶分散液が調製され得る。また、乳化により予め粒子化した液晶化合物と二色性染料とを高分子マトリクス形成用樹脂に分散することにより、高分子マトリクス側への二色性染料の溶け込みが防止され、二色比の高い調光層が得られ得る。
 上記膜乳化法においては、液晶化合物と二色性染料と分散媒との混合液に、貫通孔を有する多孔膜を複数回通過させることによって所望の粒子径を有する液晶カプセルを含む液晶分散液が得られ得る。多孔膜を通過させる回数は、例えば10回以上とすることができる。多孔膜の孔径は、液晶カプセルに所望される径の略等倍~略3倍程度であることが好ましい。また、多孔膜を通過させる際の分散液の流速は、例えば10mL/分/cm~150mL/分/cm、好ましくは30mL/分/cm~90mL/分/cmであってよい。膜乳化法の詳細については、特開平4-355719号公報、特開2015-40994号公報(これらは、本明細書に参考として援用される)等の開示を参照することができる。
 重合誘起相分離方式の調光層の作製方法は、例えば、一方の透明導電性フィルムの透明電極層面に、放射線硬化型の高分子マトリクス形成用樹脂、液晶化合物および二色性染料を含む塗工液を塗工して塗工層を形成すること、塗工層上に他方の透明導電性フィルムを積層して積層体を形成すること、および、該積層体に放射線を照射して高分子マトリクス形成用樹脂を重合させることにより高分子マトリクスと液晶化合物および二色性染料とを相分離させること、を含む。塗工液は、好ましくは均一相状態である。代替的には、スペーサーを介して積層された一対の透明導電性フィルム間に塗工液を充填し、その後、放射線照射による相分離が行われ得る。
A-2.反射層
 反射層は、加飾フィルムの視認側から入射した光を反射する。反射層は透過性を有していてもよい(すなわち、反射層は半透過性反射層であってもよい)。
 反射層の全光線反射率は、例えば50%以上であり、好ましくは60%以上であり、より好ましくは70%~95%である。
 反射層が透過性を有する場合、その全光線反射率は、例えば30%~60%、好ましくは40%~50%であり得、また、全光線透過率は、例えば40%~70%、好ましくは50%~60%であり得る。
 反射層としては、任意の適切な構成が採用され得る。例えば、反射層は、鏡面反射層であってもよく拡散反射層であってもよい。鏡面反射層を用いることにより、調光層が透明状態と散乱状態とにおける加飾フィルムの外観の変化を大きくすることができる。反射層の鏡面反射率は、例えば25%以上、好ましくは40%~95%であり得る。また、金属光沢を有する反射層を用いることにより、加飾フィルムの外観に金属光沢感を付与することができる。
 反射層の具体例としては、反射率の高い樹脂シート(例えば、アクリル板)、アルミニウム、ステンレス等の金属薄板または金属箔、ポリエステル等の樹脂フィルム等の基材にアルミニウム、銀等を蒸着した蒸着シート、ポリエステル等の樹脂フィルム等の基材とアルミニウム等の金属箔との積層体、内部に空孔(ボイド)が形成された樹脂フィルムが挙げられる。
 反射層の厚みは、用途等に応じて適切に設定され得る。反射層の厚みは、例えば20μm~300μmであり、好ましくは30μm~100μmである。
A-3.加飾層
 加飾層は、所望の表示内容(例えば、意匠、図柄、文字等)を表示するように色材を含む。加飾層は、例えば、マトリクスと該マトリクス中に混合された色材とを含む着色層、または、基材フィルムの表面の少なくとも一部に印刷された印刷層であり得る。
 加飾層の全光線透過率は、例えば40%~90%、好ましくは50%~90%、より好ましくは60%~90%である。
 色材としては、加飾層の表示内容に応じて任意の適切な色材が用いられ得る。色材の具体例としては、アントラキノン系、トリフェニルメタン系、ナフトキノン系、チオインジゴ系、ペリノン系、ペリレン系、スクアリリウム系、シアニン系、ポルフィリン系、アザポルフィリン系、フタロシアニン系、サブフタロシアニン系、キニザリン系、ポリメチン系、ローダミン系、オキソノール系、キノン系、アゾ系、キサンテン系、アゾメチン系、キナクリドン系、ジオキサジン系、ジケトピロロピロール系、アントラピリドン系、イソインドリノン系、インダンスロン系、インジゴ系、チオインジゴ系、キノフタロン系、キノリン系、トリフェニルメタン系等の染料が挙げられる。
 また、色材として、顔料を用いてもよい。顔料の具体例としては、例えば、黒色顔料(カーボンブラック、ボーンブラック、グラファイト、鉄黒、チタンブラック等)、アゾ系顔料、フタロシアニン系顔料、多環式顔料(キナクリドン系、ペリレン系、ペリノン系、イソインドリノン系、イソインドリン系、ジオキサジン系、チオインジゴ系、アントラキノン系、キノフタロン系、金属錯体系、ジケトピロロピロール系等)、染料レーキ系顔料、白色・体質顔料(酸化チタン、酸化亜鉛、硫化亜鉛、クレー、タルク、硫酸バリウム、炭酸カルシウム等)、有彩顔料(黄鉛、カドミニウム系、クロムバーミリオン、ニッケルチタン、クロムチタン、黄色酸化鉄、ベンガラ、ジンククロメート、鉛丹、群青、紺青、コバルトブルー、クロムグリーン、酸化クロム、バナジン酸ビスマス等)、光輝材顔料(パール顔料、アルミ顔料、ブロンズ顔料等)、蛍光顔料(硫化亜鉛、硫化ストロンチウム、アルミン酸ストロンチウム等)等が挙げられる。
 マトリクスとしては、樹脂フィルムが好ましく例示できる。樹脂フィルムを構成する樹脂としては、任意の適切な樹脂を用いることができる。具体的には、樹脂は、熱可塑性樹脂であってもよく、熱硬化性樹脂であってもよく、活性エネルギー線硬化性樹脂であってもよい。活性エネルギー線硬化性樹脂としては、電子線硬化型樹脂、紫外線硬化型樹脂、可視光線硬化型樹脂が挙げられる。樹脂の具体例としては、エポキシ、(メタ)アクリレート(例えば、メチルメタクリレート、ブチルアクリレート)、ノルボルネン、ポリエチレン、ポリ(ビニルブチラール)、ポリ(ビニルアセテート)、ポリ尿素、ポリウレタン、アミノシリコーン(AMS)、ポリフェニルメチルシロキサン、ポリフェニルアルキルシロキサン、ポリジフェニルシロキサン、ポリジアルキルシロキサン、シルセスキオキサン、フッ化シリコーン、ビニルおよび水素化物置換シリコーン、スチレン系ポリマー(例えば、ポリスチレン、アミノポリスチレン(APS)、ポリ(アクリルニトリルエチレンスチレン)(AES))、二官能性モノマーと架橋したポリマー(例えば、ジビニルベンゼン)、ポリエステル系ポリマー(例えば、ポリエチレンテレフタレート)、セルロース系ポリマー(例えば、トリアセチルセルロース)、塩化ビニル系ポリマー、アミド系ポリマー、イミド系ポリマー、ビニルアルコール系ポリマー、エポキシ系ポリマー、シリコーン系ポリマー、アクリルウレタン系ポリマーが挙げられる。これらは、単独で用いてもよく、組み合わせて(例えば、ブレンド、共重合)用いてもよい。これらの樹脂は膜を形成後に延伸、加熱、加圧といった処理を施してもよい。
 マトリクス中への色材の配合割合は、色材の種類、所望の光吸収特性等に応じて、任意の適切な割合とされ得る。色材の配合割合は、マトリクス材料100重量部に対して、例えば、0.01重量部~100重量部であり、より好ましくは0.01重量部~50重量部である。
 マトリクスが樹脂フィルムである場合の加飾層は、例えば、粘着剤層または接着剤層を介して調光層に貼り合わせられる。あるいは、色材を含む硬化性樹脂組成物を調光層表面に塗工し、硬化させることによって形成され得る。
 加飾層が印刷層である場合、印刷方法としては特に限定されず、例えば、インクジェット印刷、グラビア印刷、オフセット印刷、シルクスクリーン印刷等が挙げられる。
 印刷層を印刷する基材フィルムとしては、透明樹脂フィルムまたは上記マトリクスが樹脂フィルムである着色層が挙げられる。また、調光層を構成する透明導電性フィルムを基材フィルムとして用いてもよい。例えば、調光層の外表面に加飾層を印刷すること、[印刷層/透明基材/透明電極層]の構成を有する透明導電性フィルムを作製し、該透明導電性フィルムを用いて調光層を作製すること等が可能である。さらにまた、反射層を基材フィルムとして用いてもよい。
 加飾フィルムが、視認側加飾層と背面側加飾層との両方を含む場合、これらは同じ構成であってもよく、異なる構成を有していてもよい。
B.加飾フィルムの用途
 A項に記載の加飾フィルムは、製品や建材等の任意の場所に貼付され、外光を利用して装飾機能または表示機能を発揮し得る。また、半透過反射層を使用した場合はディスプレイ等と組み合わせることによりスマートミラーとしての機能を発揮し得る。
 以下、実施例により本発明を具体的に説明するが、本発明はこれら実施例になんら限定されるものではない。各特性の測定方法は以下の通りである。また、特に明記しない限り、実施例および比較例における「部」および「%」は重量基準である。
(1)厚み
 デジタルマイクロメーター(アンリツ社製、製品名「KC-351C」)を用いて測定した。
(2)液晶分散液中の液晶カプセルの体積平均粒子径
 電解質水溶液(コールター社製、「アイソトンII」)200mlに液晶分散液を0.1重量%添加し、得られた混合液を測定試料としてマルチサイザー3(コールター社製、アパーチャーサイズ=20μm)を用いて、0.4μmから12μmまで対数基準で等間隔に256分割し離散化した粒子径ごとの体積の統計を取り、体積平均粒子径を算出した。なお、12μm以上の粒子が存在している場合は、アパーチャーサイズを30μmとし、0.6μmから18μmまで対数基準で等間隔に256分割し離散化した粒子径ごとの体積の統計を取ることで、体積平均粒子径を算出した。
(3)色相
 色相は、分光光度計(日立ハイテクサイエンス社製、UH-4150)を用いて測定した。各サンプルにおけるx、yを測定し、n=3の平均値を算出した。
(4)全光線透過率
 全光線透過率は、JIS K 7136:2000に準拠し、ヘイズメータを用いて測定した。 
(5)全光線反射率
 全光線反射率は、コニカミノルタ社製CM-26dgを用いて測定した。
[実施例1]
(第1および第2の透明導電性フィルム)
 PET基材(厚み:50μm)の片面に、スパッタ法によりITO層を形成して、[透明基材/透明電極層(表面抵抗:100Ω)]の構成を有する透明導電性フィルムを得た。
(液晶化合物の作製)
 下記の組成の化合物を150℃で20分混合し、その後室温に徐冷することにより、Δn=0.20、粘度=21cP、Δε=10.1、液晶温度=3℃~52℃の液晶化合物(1)を得た。
Figure JPOXMLDOC01-appb-C000001
(液晶分散液の作製)
 液晶化合物(1)50部、黄色の二色性染料(林原社製、製品名「G-470」)0.5部、純水49部および分散剤(第一工業製薬社製、製品名「ノイゲンET159」)0.5部を混合し、ホモジナイザーにて100rpmで10分攪拌して粗分散した。粗分散液を、粒度分布の揃った分離膜(エス・ピー・ジーテクノ社製、「SPGポンピングコネクター」、細孔径5μm)に、室温にて膜の外から内に通過するように流速80mL/分/cmの速度で透過させた。この操作を10回実施した。得られた液晶分散液中の液晶カプセルの体積平均粒子径は2.5μmであった。
(エマルション塗工液の作製)
 上記膜乳化によって得られた液晶分散液50部とウレタンエマルション溶液(楠本化成社製、製品名「NeoRez R967」、溶剤=水、固形分濃度40%)50部とを混合し、エマルション塗工液を作製した。
(調光層の作製)
 上記エマルション塗工液を、第1の透明導電性フィルムの透明電極層側表面に塗布し、40℃で乾燥させて、10μm厚のPDLC層(ノーマルモード)を形成した。その後、透明電極層側表面がPDLC層に対向するように、第2の透明導電性フィルムをPDLC層に積層することにより、調光層を作製した。
(加飾フィルムの作製)
 [金属光沢層/透明PET基材]の構成を有する鏡面フィルム(東レ社製、反射率:68%)の基材側表面に赤色印刷を行って印刷層付反射層を得た。当該印刷層付反射層を印刷層側が調光層と対向するようにアクリル系粘着剤層を介して調光層の背面側に貼り合わせた。これにより、[調光層/印刷層(加飾層)/反射層]の構成を有する加飾フィルムを得た。
 実施例で得られた加飾フィルムに関して、各特性を評価した。結果を表1に示す。なお、電圧印加状態とは、エヌエフ回路設計ブロック社製の交流電源「EC750SA」を用いて調光層に30Vの交流電圧を印加した状態である。
Figure JPOXMLDOC01-appb-T000002
 表1に示されるとおり、実施例の加飾フィルムは、電圧の印加状態と無印加状態とにおいて、色調が顕著に変化しており、異なる外観を呈した。具体的には、電圧を印加しない不透明の状態(散乱状態)では、印刷層に起因する赤色と調光層の発色に伴う黄色の混色が表れ、加飾フィルムは不透明な橙色を呈した。ここに交流電圧を印加し、調光層を駆動して透明状態にすると、反射層に起因する金属光沢と印刷層に起因する赤色とが合わされ、加飾フィルムは光沢のある赤色を呈した。
 本発明の加飾フィルムは、加飾性を有する表示媒体等として好適に用いられ得る。
10  調光層
12  第1の透明導電性フィルム
14  PDLC層
16  第2の透明導電性フィルム
20  反射層
30  加飾層
100 加飾フィルム

Claims (5)

  1.  第1の透明導電性フィルムと、高分子マトリクスおよび該高分子マトリクス中に分散した液晶化合物と二色性染料とを含む液滴を含む高分子分散型液晶層と、第2の透明導電性フィルムと、を視認側からこの順に備える、調光層と、
     該調光層の視認側と反対側に設けられた反射層と、を含む、加飾フィルム。
  2.  電圧無印加時の前記調光層のヘイズが50%以上である、請求項1に記載の加飾フィルム。
  3.  電圧印加時の前記調光層のヘイズが15%以下である、請求項1または2に記載の加飾フィルム。
  4.  前記反射層の視認側に加飾層をさらに含む、請求項1から3のいずれかに記載の加飾フィルム。
  5.  前記反射層の全光線反射率が、50%以上である、請求項1から4のいずれかに記載の加飾フィルム。
     
PCT/JP2022/006100 2021-02-25 2022-02-16 加飾フィルム WO2022181407A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020237028399A KR20230146545A (ko) 2021-02-25 2022-02-16 가식 필름
US18/277,597 US20240152015A1 (en) 2021-02-25 2022-02-16 Decorative film
EP22759446.2A EP4300177A1 (en) 2021-02-25 2022-02-16 Decorative film
CN202280016969.0A CN116981987A (zh) 2021-02-25 2022-02-16 装饰膜

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021028192A JP2022129506A (ja) 2021-02-25 2021-02-25 加飾フィルム
JP2021-028192 2021-02-25

Publications (1)

Publication Number Publication Date
WO2022181407A1 true WO2022181407A1 (ja) 2022-09-01

Family

ID=83049269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006100 WO2022181407A1 (ja) 2021-02-25 2022-02-16 加飾フィルム

Country Status (7)

Country Link
US (1) US20240152015A1 (ja)
EP (1) EP4300177A1 (ja)
JP (1) JP2022129506A (ja)
KR (1) KR20230146545A (ja)
CN (1) CN116981987A (ja)
TW (1) TW202243892A (ja)
WO (1) WO2022181407A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355719A (ja) 1991-06-03 1992-12-09 Nippon Sheet Glass Co Ltd 液晶素子の製造方法
JPH0895011A (ja) * 1994-09-28 1996-04-12 Dainippon Ink & Chem Inc 液晶デバイス及びこれを用いた液晶表示装置
JPH0961801A (ja) * 1995-08-22 1997-03-07 Dainippon Printing Co Ltd 光変調素子
JP2004251963A (ja) 2003-02-18 2004-09-09 Sumitomo Chem Co Ltd 染料系偏光板
WO2006057214A1 (ja) 2004-11-24 2006-06-01 Nippon Kayaku Kabushiki Kaisha アゾ化合物およびそれらを含有する染料系偏光膜または偏光板
WO2007145210A1 (ja) 2006-06-13 2007-12-21 Nippon Kayaku Kabushiki Kaisha アゾ化合物及びそれらを含有する染料系偏光膜
WO2009057676A1 (ja) 2007-11-02 2009-05-07 Nippon Kayaku Kabushiki Kaisha アゾ化合物及びそれらを含有する染料系偏光膜
JP2015040994A (ja) 2013-08-22 2015-03-02 独立行政法人産業技術総合研究所 液晶分散液の製造方法
JP2018066935A (ja) * 2016-10-21 2018-04-26 凸版印刷株式会社 調光フィルム及びそれを用いた調光装置
JP2019157492A (ja) * 2018-03-13 2019-09-19 凸版印刷株式会社 テント
WO2020090173A1 (ja) * 2018-10-30 2020-05-07 Jnc株式会社 液晶複合体および液晶調光素子

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0529672B1 (en) * 1991-08-30 1997-11-05 Ag Technology Co. Ltd. Liquid crystal display element and liquid crystal display apparatus using the same
AU6785598A (en) * 1997-03-28 1998-10-22 James L. Fergason Microencapsulated liquid crystal and a method and system for using same
JP7286943B2 (ja) 2018-10-24 2023-06-06 大日本印刷株式会社 加飾フィルムおよび表示装置
EP3839617B1 (fr) * 2019-12-17 2024-06-26 The Swatch Group Research and Development Ltd Dispositif d affichage à cristaux liquides

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04355719A (ja) 1991-06-03 1992-12-09 Nippon Sheet Glass Co Ltd 液晶素子の製造方法
JPH0895011A (ja) * 1994-09-28 1996-04-12 Dainippon Ink & Chem Inc 液晶デバイス及びこれを用いた液晶表示装置
JPH0961801A (ja) * 1995-08-22 1997-03-07 Dainippon Printing Co Ltd 光変調素子
JP2004251963A (ja) 2003-02-18 2004-09-09 Sumitomo Chem Co Ltd 染料系偏光板
WO2006057214A1 (ja) 2004-11-24 2006-06-01 Nippon Kayaku Kabushiki Kaisha アゾ化合物およびそれらを含有する染料系偏光膜または偏光板
WO2007145210A1 (ja) 2006-06-13 2007-12-21 Nippon Kayaku Kabushiki Kaisha アゾ化合物及びそれらを含有する染料系偏光膜
WO2009057676A1 (ja) 2007-11-02 2009-05-07 Nippon Kayaku Kabushiki Kaisha アゾ化合物及びそれらを含有する染料系偏光膜
JP2015040994A (ja) 2013-08-22 2015-03-02 独立行政法人産業技術総合研究所 液晶分散液の製造方法
JP2018066935A (ja) * 2016-10-21 2018-04-26 凸版印刷株式会社 調光フィルム及びそれを用いた調光装置
JP2019157492A (ja) * 2018-03-13 2019-09-19 凸版印刷株式会社 テント
WO2020090173A1 (ja) * 2018-10-30 2020-05-07 Jnc株式会社 液晶複合体および液晶調光素子

Also Published As

Publication number Publication date
CN116981987A (zh) 2023-10-31
US20240152015A1 (en) 2024-05-09
JP2022129506A (ja) 2022-09-06
TW202243892A (zh) 2022-11-16
EP4300177A1 (en) 2024-01-03
KR20230146545A (ko) 2023-10-19

Similar Documents

Publication Publication Date Title
US6999142B2 (en) Reflective cholesteric liquid crystal display with complementary light-absorbing layer
CN102307724B (zh) 光控膜和多层光学膜叠堆
JPH10239684A (ja) 反射型液晶表示装置
WO2005116735A1 (en) Reflective liquid crystal display with infrared reflection
JP2006221070A (ja) 反射型スクリーン
JP2001509520A (ja) 改善された輝度及び色特性を有するカラーリング媒体
WO2022039078A1 (ja) 意匠性フィルムおよび意匠性成形体
JP2020129055A (ja) 視野角制御フィルム、バックライトユニットおよび液晶表示装置
JPH03209425A (ja) カラー液晶ディスプレイ
WO2005052676A1 (en) Liquid crystal display with broadband reflection
CN113874761B (zh) 光学层叠体和液晶显示装置
JP7478722B2 (ja) 透過型スクリーンおよび映像表示装置
WO2022181407A1 (ja) 加飾フィルム
WO2022181406A1 (ja) 加飾フィルム
JPH1096917A (ja) 反射型液晶表示体
CN109581565A (zh) 反射式滤光器件、显示面板、显示装置及控制方法
JP3952219B2 (ja) 反射型液晶表示素子
JPH1184371A (ja) 液晶表示装置
WO2022030296A1 (ja) 視野角制御フィルム、バックライトユニットおよび液晶表示装置
JP2001180200A (ja) 光学積層体
JPH0368920A (ja) 液晶光学装置及びその駆動方法
KR100213182B1 (ko) 마이크로 칼라 렌즈를 채용한 액정표시소자
JP2762783B2 (ja) カラー表示素子およびその駆動方法
JPH04268534A (ja) 複層液晶表示装置
JPH06289381A (ja) 液晶電気光学装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22759446

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18277597

Country of ref document: US

ENP Entry into the national phase

Ref document number: 20237028399

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280016969.0

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022759446

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022759446

Country of ref document: EP

Effective date: 20230925