WO2022181037A1 - インバータ制御装置、インバータ回路、モータモジュールおよびインバータ制御方法 - Google Patents

インバータ制御装置、インバータ回路、モータモジュールおよびインバータ制御方法 Download PDF

Info

Publication number
WO2022181037A1
WO2022181037A1 PCT/JP2021/048222 JP2021048222W WO2022181037A1 WO 2022181037 A1 WO2022181037 A1 WO 2022181037A1 JP 2021048222 W JP2021048222 W JP 2021048222W WO 2022181037 A1 WO2022181037 A1 WO 2022181037A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
section
phase pwm
divided section
signal
Prior art date
Application number
PCT/JP2021/048222
Other languages
English (en)
French (fr)
Inventor
耕太郎 片岡
Original Assignee
日本電産株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電産株式会社 filed Critical 日本電産株式会社
Priority to JP2023502117A priority Critical patent/JPWO2022181037A1/ja
Priority to CN202180094666.6A priority patent/CN116998104A/zh
Publication of WO2022181037A1 publication Critical patent/WO2022181037A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to an inverter control device, an inverter circuit, a motor module, and an inverter control method.
  • Patent Document 1 An inverter control device that controls a three-phase inverter is known (for example, Patent Document 1).
  • Patent Document 1 which of the two triangular waves is used for comparison with each phase and which phase is the maximum value or the minimum value according to the output voltage phase and the output current phase of the inverter. fixed or toggled.
  • the present invention has been made in view of the above problems, and its object is to provide an inverter control device, an inverter circuit, a motor module, and an inverter control method capable of simplifying a control program.
  • An exemplary inverter control device of the present invention controls a three-phase inverter with a two-phase modulation scheme.
  • the three-phase inverter has a first input terminal, a second input terminal, a capacitor, and three series bodies. A first voltage is applied to the first input terminal. A second voltage is applied to the second input terminal. The second voltage is lower than the first voltage.
  • the capacitor is connected between the first input terminal and the second input terminal.
  • the three series bodies have two semiconductor switching elements connected in series.
  • the inverter control device includes a signal generator.
  • the signal generation section generates three PWM signals to be input to the three serial bodies, respectively.
  • the PWM signal includes at least an anti-phase PWM section for applying an anti-phase PWM signal.
  • the anti-phase PWM signal is anti-phase with respect to the positive phase PWM signal.
  • the anti-phase PWM section is a section in which the normal phase PWM signal is applied to two phases out of three phases and the anti-phase PWM signal is applied to one phase out of three phases.
  • the signal generator selects a phase in which the current zero crossing occurs next in the anti-phase PWM section as the anti-phase PWM phase when viewed in the time axis direction.
  • An exemplary inverter circuit of the present invention includes the inverter control device described above, a first input terminal, a second input terminal, a capacitor, and three series bodies.
  • a first voltage is applied to the first input terminal.
  • a second voltage is applied to the second input terminal.
  • the second voltage is lower than the first voltage.
  • the capacitor is connected between the first input terminal and the second input terminal.
  • the three series bodies have two semiconductor switching elements connected in series.
  • An exemplary motor module of the present invention includes the inverter control device described above, a three-phase inverter, and a three-phase motor.
  • the three-phase inverter is controlled by the inverter control device.
  • the three-phase inverter is a two-phase modulation system.
  • the output of the inverter is input to the three-phase motor.
  • An exemplary inverter control method of the present invention is a method of controlling a three-phase inverter with a two-phase modulation system.
  • the three-phase inverter has a first input terminal, a second input terminal, a capacitor, and three series bodies. A first voltage is applied to the first input terminal. A second voltage is applied to the second input terminal. The second voltage is lower than the first voltage.
  • the capacitor is connected between the first input terminal and the second input terminal.
  • the three series bodies have two semiconductor switching elements connected in series. Three PWM signals are input to each of the three series bodies.
  • the PWM signal includes at least an anti-phase PWM section for applying an anti-phase PWM signal.
  • the anti-phase PWM signal is anti-phase with respect to the positive phase PWM signal.
  • the anti-phase PWM section is a section in which the normal phase PWM signal is applied to two phases out of three phases and the anti-phase PWM signal is applied to one phase out of three phases.
  • the inverter control method includes a selection step of selecting, as the anti-phase PWM phase, the phase in which the current zero crossing occurs next in the anti-phase PWM section when viewed in the direction of the time axis.
  • control program can be simplified.
  • FIG. 1 is a block diagram of a motor module according to an embodiment of the invention.
  • FIG. 2 is a circuit diagram showing an inverter section.
  • FIG. 3 is a diagram showing output voltage and output current.
  • FIG. 4 is a diagram showing output voltage and output current.
  • FIG. 5A is a diagram for explaining charge/discharge currents of a capacitor.
  • FIG. 5B is a diagram for explaining charge/discharge currents of a capacitor.
  • FIG. 5C is a diagram for explaining charge/discharge currents of a capacitor.
  • FIG. 6A is a diagram for explaining charge/discharge currents of a capacitor.
  • FIG. 6B is a diagram for explaining charge/discharge currents of a capacitor.
  • FIG. 6A is a diagram for explaining charge/discharge currents of a capacitor.
  • FIG. 6B is a diagram for explaining charge/discharge currents of a capacitor.
  • FIG. 6C is a diagram for explaining charge/discharge currents of a capacitor.
  • FIG. 7A is a diagram for explaining charge/discharge currents of a capacitor.
  • FIG. 7B is a diagram for explaining charge/discharge currents of a capacitor.
  • FIG. 7C is a diagram for explaining charge/discharge currents of a capacitor.
  • FIG. 8 is a diagram showing output voltage and output current.
  • FIG. 9 is a diagram showing output voltage and output current.
  • FIG. 10 is a diagram showing output voltage and output current.
  • FIG. 11 is a diagram showing output voltage and output current.
  • FIG. 12 is a diagram showing output voltage and output current.
  • FIG. 13A is a diagram for explaining charge/discharge currents of a capacitor.
  • FIG. 13B is a diagram for explaining charge/discharge currents of a capacitor.
  • FIG. 13C is a diagram for explaining charge/discharge currents of a capacitor.
  • FIG. 14A is a diagram for explaining charge/discharge currents of a capacitor;
  • FIG. 14B is a diagram for explaining charge/discharge currents of a capacitor.
  • FIG. 14C is a diagram for explaining charge/discharge currents of a capacitor.
  • FIG. 15 is a diagram showing output voltage and output current.
  • FIG. 16 is a diagram showing output voltage and output current.
  • FIG. 17 is a diagram showing sections to which the reversed-phase PWM is applied and phases to which the reversed-phase PWM signal is applied in each divided section.
  • FIG. 18 is a flow chart showing an inverter control method.
  • FIG. 1 is a block diagram of a motor module 200 according to an embodiment of the invention.
  • FIG. 2 is a circuit diagram showing the inverter section 110. As shown in FIG.
  • the motor module 200 includes a motor drive circuit 100 and a three-phase motor M.
  • a three-phase motor M is driven by a motor drive circuit 100 .
  • the three-phase motor M is, for example, a brushless DC motor.
  • a three-phase motor M has a U-phase, a V-phase and a W-phase.
  • the motor drive circuit 100 corresponds to an example of an "inverter circuit".
  • the motor drive circuit 100 controls driving of the three-phase motor M using a two-phase modulation method.
  • the motor drive circuit 100 includes an inverter section 110 and an inverter control device 12 .
  • the inverter unit 110 corresponds to an example of a “three-phase inverter”.
  • the inverter unit 110 is controlled by the inverter control device 12 .
  • the inverter unit 110 is of a two-phase modulation type and has three phases.
  • the inverter section 110 has three output terminals 102 .
  • the three output terminals 102 include an output terminal 102u, an output terminal 102v, and an output terminal 102w.
  • the three output terminals 102 output three-phase output voltages and three-phase output currents to the three-phase motor M.
  • FIG. More specifically, the output terminal 102u outputs the U-phase output voltage Vu and the U-phase output current Iu to the three-phase motor M.
  • Output terminal 102v outputs V-phase output voltage Vv and V-phase output current Iv to three-phase motor M.
  • the output terminal 102w outputs the W-phase output voltage Vw and the W-phase output current Iw to the three-phase motor M.
  • the output of the inverter unit 110 is input to the three-phase motor M.
  • the inverter section 110 includes a first input terminal P, a second input terminal N, a capacitor C, and three series bodies 112 .
  • Inverter section 110 further includes a DC voltage source B.
  • the DC voltage source B may be provided outside the inverter section 110 .
  • a first voltage V1 is applied to the first input terminal P.
  • a first input terminal P is connected to a DC voltage source B;
  • a second voltage V2 is applied to the second input terminal N.
  • a second input terminal N is connected to a DC voltage source B;
  • the second voltage V2 is lower than the first voltage V1.
  • a capacitor C is connected between the first input terminal P and the second input terminal N.
  • the semiconductor switching element is, for example, an IGBT (insulated gate bipolar transistor). Note that the semiconductor switching element may be another transistor such as a field effect transistor.
  • the three series bodies 112 include a series body 112u, a series body 112v, and a series body 112w. The three series bodies 112 are connected in parallel with each other. Each of the three series bodies 112 is connected to the first input terminal P at one end. Each of the three series bodies 112 is connected to the second input terminal N at the other end.
  • a rectifying element D is connected in parallel to each of these semiconductor switching elements, with the first input terminal P side (upper side of the paper) as a cathode and the second input terminal N side (lower side of the paper) as an anode. If a field effect transistor is used as the semiconductor switching element, a parasitic diode may be used as this rectifying element.
  • Each of the three series bodies 112 has a first semiconductor switching element and a second semiconductor switching element.
  • the series body 112u has a first semiconductor switching element Up and a second semiconductor switching element Un.
  • Series body 112v has a first semiconductor switching element Vp and a second semiconductor switching element Vn.
  • the series body 112w has a first semiconductor switching element Wp and a second semiconductor switching element Wn.
  • the first semiconductor switching element Up, the first semiconductor switching element Vp, and the first semiconductor switching element Wp are connected to the first input terminal P.
  • the first semiconductor switching element Up, the first semiconductor switching element Vp, and the first semiconductor switching element Wp are semiconductor switching elements on the high voltage side.
  • the second semiconductor switching element Un, the second semiconductor switching element Vn, and the second semiconductor switching element Wn are connected to the second input terminal N.
  • the second semiconductor switching element Un, the second semiconductor switching element Vn, and the second semiconductor switching element Wn are semiconductor switching elements on the low voltage side.
  • the first semiconductor switching element and the second semiconductor switching element are connected at the connection point 114 .
  • the first semiconductor switching element Up and the second semiconductor switching element Un are connected at a connection point 114u.
  • the first semiconductor switching element Vp and the second semiconductor switching element Vn are connected at a connection point 114v.
  • the first semiconductor switching element Wp and the second semiconductor switching element Wn are connected at a connection point 114w.
  • connection point 114 in each of the three series bodies 112 is connected to the three output terminals 102 .
  • a connection point 114u in the series body 112u is connected to the output terminal 102u.
  • a connection point 114v in the series body 112v is connected to the output terminal 102v.
  • a connection point 114w in the series body 112w is connected to the output terminal 102w.
  • a PWM signal is input to the first semiconductor switching element Up, the first semiconductor switching element Vp, and the first semiconductor switching element Wp.
  • a PWM signal is output from the signal generator 120 .
  • the PWM signal input to the first semiconductor switching element Up may be referred to as "UpPWM signal”.
  • the PWM signal input to the first semiconductor switching element Vp may be referred to as "Vp PWM signal”.
  • a PWM signal input to the first semiconductor switching element Wp may be referred to as a "Wp PWM signal”.
  • the first semiconductor switching element Up, the first semiconductor switching element Vp, and the first semiconductor switching element Wp are switched on and off at a predetermined PWM cycle.
  • the first semiconductor switching element Up, the first semiconductor switching element Vp, and the first semiconductor switching element Wp are turned on when the UpPWM signal, the VpPWM signal, and the WpPWM signal are at HIGH level, respectively.
  • the first semiconductor switching element Up, the first semiconductor switching element Vp and the first semiconductor switching element Wp are turned off when the UpPWM signal, the VpPWM signal and the WpPWM signal are at LOW level, respectively.
  • a PWM signal is input to the second semiconductor switching element Un, the second semiconductor switching element Vn, and the second semiconductor switching element Wn.
  • a PWM signal is output from the signal generator 120 .
  • the PWM signal input to the second semiconductor switching element Un may be referred to as "UnPWM signal”.
  • the PWM signal input to the second semiconductor switching element Vn may be referred to as "Vn PWM signal”.
  • a PWM signal input to the second semiconductor switching element Wn may be referred to as a "Wn PWM signal”.
  • the second semiconductor switching element Un, the second semiconductor switching element Vn, and the second semiconductor switching element Wn are switched on and off at a predetermined PWM cycle.
  • the second semiconductor switching element Un, the second semiconductor switching element Vn, and the second semiconductor switching element Wn are turned on when the UnPWM signal, the VnPWM signal, and the WnPWM signal are at HIGH level, respectively.
  • the second semiconductor switching element Un, the second semiconductor switching element Vn, and the second semiconductor switching element Wn are turned off when the UnPWM signal, the VnPWM signal, and the WnPWM signal are at LOW level, respectively.
  • the inverter control device 12 includes a signal generator 120.
  • Signal generator 120 has carrier generator 122 , voltage command value generator 124 , and comparator 126 .
  • the signal generator 120 is a hardware circuit configured by a processor such as a CPU (Central Processing Unit) and an ASIC (Application Specific Integrated Circuit).
  • the processor of signal generation unit 120 functions as carrier generation unit 122, voltage command value generation unit 124, and comparison unit 126 by executing computer programs stored in the storage device.
  • the signal generation section 120 controls the inverter section 110 . Specifically, the signal generation unit 120 controls the inverter unit 110 by generating a PWM signal and outputting the PWM signal. More specifically, signal generator 120 generates three PWM signals to be input to each of three serial bodies 112 .
  • the carrier generator 122 generates a carrier signal.
  • a carrier signal is, for example, a triangular wave. Note that the carrier signal may be a sawtooth wave.
  • the voltage command value generation unit 124 generates a voltage command value.
  • a voltage command value corresponds to a voltage value output from the motor drive circuit 100 . That is, voltage command value generation unit 124 generates voltage values corresponding to output voltage Vu, output voltage Vv, and output voltage Vw as voltage command values.
  • the comparator 126 generates a PWM signal by comparing the carrier signal and the voltage command value.
  • FIG. 3 is a diagram showing output voltage and output current.
  • the upper diagram in FIG. 3 shows the output voltage Vu, the output voltage Vv, and the output voltage Vw.
  • the output voltage Vu is indicated by a solid line
  • the output voltage Vv is indicated by a broken line
  • the output voltage Vw is indicated by a dashed line.
  • the vertical axis of FIG. 3 represents the voltage value normalized by the input voltage V1-V2, and the output voltage of each phase takes a value in the range of 0-1. This value also represents the duty value, which is the ratio of the ON time of the first semiconductor switching element of each phase to the PWM cycle.
  • the horizontal axis of FIG. 3 represents the electrical rotation angle of the motor in degrees.
  • the lower diagram in FIG. 3 shows the output current Iu, the output current Iv, and the output current Iw.
  • the output current Iu is indicated by a solid line
  • the output current Iv is indicated by a broken line
  • the output current Iw is indicated by a one-dot chain line.
  • the horizontal axis of FIG. 3 represents the electrical rotation angle of the motor in degrees.
  • the output voltage waveform has a period in which one of the three phases is fixed to be off.
  • Fixed off indicates that the first semiconductor switching element is continuously turned off and the second semiconductor switching element is continuously turned on over a period of a plurality of PWM cycles. More specifically, the output voltage Vu is fixed off between 210 electrical degrees and 330 electrical degrees. The output voltage Vv is fixed off at an electrical angle of 0 to 90 electrical degrees and at an electrical angle of 210 to 330 electrical degrees. The output voltage Vw is fixed to off between an electrical angle of 210 degrees and an electrical angle of 330 degrees.
  • a modulation method having a period in which one of the three phases of the output voltage waveform is fixed to be off as shown in FIG.
  • the signal generator 120 divides one electrical angle cycle into a plurality of divided sections.
  • the signal generation unit 120 divides one cycle of the electrical angle into a plurality of division intervals at each current zero crossing. Specifically, the signal generation unit 120 divides one electrical angle cycle into a first divided section T1, a second divided section T2, a third divided section T3, a fourth divided section T4, a fifth divided section T5, It is divided into a sixth division section T6.
  • the first divided section T1, the second divided section T2, the third divided section T3, the fourth divided section T4, the fifth divided section T5, and the sixth divided section T6 are referred to as the divided section T may be collectively referred to as
  • the present invention is not limited to the case where the signal generator 120 divides completely into the divided sections T at the current zero-crossing points.
  • the signal generation unit 120 may divide into division intervals T near the current zero cross.
  • the current zero-crossing point may be detected directly by means of a current sensor or the like, or may be obtained by prediction from computation.
  • the second divided section T2 follows the first divided section T1.
  • a third segment T3 follows the second segment T2.
  • the fourth segment T4 follows the third segment T3.
  • the fifth segment T5 follows the fourth segment T4.
  • the sixth segment T6 follows the fifth segment T5.
  • the first divided section T1 has an electrical angle of 20 degrees to 80 electrical degrees.
  • the second divided section T2 has an electrical angle of 80 degrees to 140 electrical degrees.
  • the third divided section T3 has an electrical angle of 140 degrees to 200 electrical degrees.
  • the fourth divided section T4 has an electrical angle of 200 degrees to 260 electrical degrees.
  • the fifth division section T5 has an electrical angle of 260 degrees to 320 electrical degrees.
  • the sixth division section T6 has an electrical angle of 320 degrees to 360 electrical degrees.
  • the first divided section T1 is a section in which only the V-phase output current Iv is negative.
  • the second divided section T2 is a section in which only the U-phase output current Iu is positive.
  • the third divided section T3 is a section in which only the W-phase output current Iw is negative.
  • the fourth divided section T4 is a section in which only the V-phase output current Iv is positive.
  • the fifth divided section T5 is a section in which only the U-phase output current Iu is negative.
  • the sixth divided section T6 is a section in which only the W-phase output current Iw is positive.
  • the PWM signal includes at least an anti-phase PWM section to which the anti-phase PWM signal is applied.
  • the anti-phase PWM signal is anti-phase with respect to the positive phase PWM signal.
  • the opposite phases for example, when the U phase and the V phase are switching, there is a state in which only the first semiconductor switching element Up is turned on and a state in which only the first semiconductor switching element Vp is turned on in one PWM period. indicates that the phase should be shifted so that More preferably, the opposite phases are a state in which both the first semiconductor switching element Up and the first semiconductor switching element Vp are on, and a state in which both the first semiconductor switching element Up and the first semiconductor switching element Vp are off. A state is phase shifted so that it does not exist within the PWM1 period.
  • out of phase indicates 180 degrees out of phase.
  • the negative-phase PWM section is a section in which the positive-phase PWM signal is applied to two of the three phases and the negative-phase PWM signal is applied to one of the three phases.
  • the signal generator 120 determines, for each of the plurality of divided intervals T, either a positive-phase PWM interval or a negative-phase PWM interval in which positive-phase PWM signals are applied to all three phases.
  • the signal generator 120 applies the anti-phase PWM section in the first divisional section T1, the third divisional section T3 and the fifth divisional section T5.
  • the signal generator 120 applies the positive phase PWM section to all phases.
  • the signal generation unit 120 selects the phase in which the current zero cross occurs next in the anti-phase PWM section as the anti-phase PWM phase when viewed in the direction of the time axis. Specifically, in the first divided section T1, which is the anti-phase PWM section, the W phase that generates the current zero crossing next in the time axis direction is selected as the anti-phase PWM phase. In the third divided section T3, which is the anti-phase PWM section, the U phase that causes the current zero cross next in the time axis direction is selected as the anti-phase PWM phase. In the fifth divided section T5, which is the reversed-phase PWM section, the V-phase in which the current zero-cross occurs next in the direction of the time axis is selected as the reversed-phase PWM phase.
  • the signal generator 120 switches the phase to which the negative-phase PWM signal is applied in the negative-phase PWM section to the positive-phase PWM signal at the zero-crossing of the current.
  • the phase in which the current zero crossing occurs indicates the phase in which the absolute value of the current is the smallest when viewed in the direction of the time axis.
  • the present invention is not limited to switching the phase, to which the negative-phase PWM signal is applied in the negative-phase PWM section, completely to the positive-phase PWM signal at the current zero-crossing point.
  • the signal generator 120 may switch the phase to which the negative-phase PWM signal is applied in the negative-phase PWM section to the positive-phase PWM signal near the current zero cross.
  • the current zero-crossing point may be detected directly by means of a current sensor or the like, or may be obtained by prediction from computation.
  • FIG. 4 is a diagram showing output voltage and output current.
  • 5A to 7C are diagrams for explaining charge/discharge currents of the capacitor C.
  • the phases of the three-phase output currents are different from the phases of the three-phase output voltages (output voltage Vu, output voltage Vv, and output voltage Vw). is also delayed by 20 degrees.
  • FIGS. 5A to 5C are diagrams showing sections in which the electrical angle is 140 degrees to 200 degrees in the section (A).
  • a positive-phase PWM signal is input to the first semiconductor switching element Up.
  • a positive-phase PWM signal is input to the first semiconductor switching element Vp.
  • a LOW level signal is input to the first semiconductor switching element Wp.
  • the Up gate signal and the Vp gate signal are at HIGH level, as shown in FIG. 5A. Also, the Wp gate signal is at the LOW level. Therefore, the first semiconductor switching element Up and the first semiconductor switching element Vp are on, and the first semiconductor switching element Wp is off. On the other hand, the second semiconductor switching element Un and the second semiconductor switching element Vn are off, and the second semiconductor switching element Wn is on. Therefore, the discharge current from capacitor C increases.
  • the Up gate signal, Vp gate signal, and Wp gate signal are at LOW level, as shown in FIG. 5B. Therefore, the first semiconductor switching element Up, the first semiconductor switching element Vp and the first semiconductor switching element Wp are off. On the other hand, the second semiconductor switching element Un, the second semiconductor switching element Vn and the second semiconductor switching element Wn are on. Therefore, the charging current to capacitor C increases.
  • FIGS. 6A to 6C are diagrams showing sections in which the electrical angle is 140 degrees to 200 degrees in the section (A).
  • reverse-phase PWM signals are input to the first semiconductor switching element Up.
  • a positive-phase PWM signal is input to the first semiconductor switching element Vp.
  • a LOW level signal is input to the first semiconductor switching element Wp.
  • the Vp gate signal is at HIGH level as shown in FIG. 6A.
  • the Up gate signal and the Wp gate signal are at the LOW level. Therefore, the first semiconductor switching element Vp is on, and the first semiconductor switching element Up and the first semiconductor switching element Wp are off.
  • the second semiconductor switching element Vn is off, and the second semiconductor switching element Un and the second semiconductor switching element Wn are on. Therefore, compared to the case of FIG. 5A, the inverter current is distributed, and the charge/discharge current of the capacitor C can be suppressed.
  • the Up gate signal is at HIGH level, as shown in FIG. 6B.
  • the Vp gate signal and the Wp gate signal are at the LOW level. Therefore, the first semiconductor switching element Up is on, and the first semiconductor switching element Vp and the first semiconductor switching element Wp are off.
  • the second semiconductor switching element Un is off, and the second semiconductor switching element Vn and the second semiconductor switching element Wn are on. Therefore, as compared with the case of FIG. 5B, the inverter current is distributed, and the charge/discharge current of the capacitor C can be suppressed.
  • 7A to 7C are diagrams showing the section of the section (B) in which the electrical angle is 80 degrees to 140 degrees.
  • a positive-phase PWM signal is input to the first semiconductor switching element Up.
  • a reverse-phase PWM signal is input to the first semiconductor switching element Vp.
  • a LOW level signal is input to the first semiconductor switching element Wp.
  • the Up gate signal is at HIGH level, as shown in FIG. 7A. Also, the Vp gate signal and the Wp gate signal are at the LOW level. Therefore, the first semiconductor switching element Up is on, and the first semiconductor switching element Vp and the first semiconductor switching element Wp are off. On the other hand, the second semiconductor switching element Un is off, and the second semiconductor switching element Vn and the second semiconductor switching element Wn are on.
  • the Vp gate signal is at HIGH level as shown in FIG. 7B.
  • the Up gate signal and the Wp gate signal are at the LOW level. Therefore, the first semiconductor switching element Vp is on, and the first semiconductor switching element Up and the first semiconductor switching element Wp are off.
  • the second semiconductor switching element Vn is off, and the second semiconductor switching element Un and the second semiconductor switching element Wn are on. In this case, a reverse current flow to the capacitor C occurs, and the charging/discharging current of the capacitor C increases. Therefore, it is preferable to apply a PWM waveform with positive phases as shown in FIG. 5C to the section (B).
  • FIG. 8 is a diagram showing output voltage and output current.
  • the phases of the three-phase output currents are different from the phases of the three-phase output voltages (output voltage Vu, output voltage Vv, and output voltage Vw). 40 degrees delayed.
  • Section (C) corresponds to the period from when the off stationary phase is switched to when the current zero crossing occurs.
  • FIG. 9 is a diagram showing output voltage and output current.
  • FIG. 9 is a diagram showing a case where the rotation direction of the motor M is CW rotation (clockwise rotation). That is, the direction of rotation is the direction in which the electrical angle goes from 0 degrees to 360 degrees.
  • the phases of the three-phase output currents are different from the phases of the three-phase output voltages (output voltage Vu, output voltage Vv, and output voltage Vw). 40 degrees delayed.
  • Anti-phase PWM sections are applied in the first divided section T1, the third divided section T3, and the fifth divided section T5.
  • the phase in which the current zero-cross occurs next in the direction of the time axis is selected as the anti-phase PWM phase.
  • the positive phase PWM signal is applied to the V phase and the U phase among the three phases
  • the reverse phase PWM signal is applied to the W phase among the three phases. Therefore, as shown in FIG. 9, the phase of the three-phase output current lags behind the three-phase output voltage by more than 30 degrees, and the section (C) where it is preferable not to apply the reverse-phase PWM signal has occurred.
  • the W-phase to which the reversed-phase PWM signal was applied before the section (C) is continuously turned off during the section (C), and the U-phase and V-phase are switched during the section (C).
  • a positive phase PWM signal is automatically applied to . Therefore, there is no need to distinguish between cases in which the current phase delay exceeds 30 degrees and cases in which it does not. Therefore, the control program can be simplified.
  • the positive-phase PWM signal is applied to the V-phase and W-phase of the three phases, and the reverse-phase PWM signal is applied to the U-phase of the three phases. Therefore, the positive phase PWM signal is automatically applied to the switching V-phase and W-phase in the section (C) as in the first divided section T1.
  • the positive phase PWM signal is applied to the U phase and W phase among the three phases, and the negative phase PWM signal is applied to the V phase among the three phases. Therefore, the positive phase PWM signal is automatically applied to the switching U-phase and W-phase in the section (C), as in the first divided section T1.
  • FIG. 10 is a diagram showing output voltage and output current.
  • FIG. 10 is a diagram showing a case where the rotation direction of the motor M is CCW rotation (counterclockwise rotation). That is, the direction of rotation is the direction in which the electrical angle goes from 360 degrees to 0 degrees.
  • the phases of the three-phase output currents are different from the phases of the three-phase output voltages (output voltage Vu, output voltage Vv, and output voltage Vw). 40 degrees delayed.
  • Anti-phase PWM sections are applied in the first divided section T1, the third divided section T3, and the fifth divided section T5.
  • the phase in which the current zero-cross occurs next in the direction of the time axis is selected as the anti-phase PWM phase.
  • the positive phase PWM signal is applied to the V phase and W phase among the three phases
  • the reverse phase PWM signal is applied to the U phase among the three phases. Therefore, as shown in FIG. 10, the phase of the three-phase output current lags behind the three-phase output voltage by more than 30 degrees, and a section (C) where it is preferable not to apply the reverse-phase PWM signal has occurred.
  • the positive phase PWM signal is applied to the U phase and W phase among the three phases, and the negative phase PWM signal is applied to the V phase among the three phases. Therefore, the positive phase PWM signal is automatically applied to the switching U-phase and W-phase in the section (C), as in the first divided section T1.
  • the positive phase PWM signal is applied to the U phase and V phase among the three phases, and the negative phase PWM signal is applied to the W phase among the three phases. Therefore, the positive phase PWM signal is automatically applied to the switching U-phase and V-phase in the section (C), like the first divided section T1.
  • the inverter control device 12 can change the phase order of the three-phase output waveforms. Therefore, the degree of freedom of control can be increased.
  • the direction of rotation of the motor can be switched.
  • the signal generator 120 switches the phase to which the negative-phase PWM signal is applied in the negative-phase PWM section to the positive-phase PWM signal at the zero-crossing of the current. Therefore, the control program can be simplified.
  • the signal generation unit 120 determines, for each of the plurality of divided intervals T, either a positive-phase PWM interval or a negative-phase PWM interval in which positive-phase PWM signals are applied to all three phases. Therefore, the control program can be simplified.
  • the signal generation unit 120 divides one cycle of the electrical angle into division intervals T at each zero-crossing of the current. Therefore, the control program can be simplified.
  • the signal generation unit 120 divides one electrical angle cycle into a first divided section T1, a second divided section T2, a third divided section T3, a fourth divided section T4, a fifth divided section T5, and a third divided section T5. It is divided into 6 divided sections T6. Therefore, the control program can be simplified.
  • the signal generator 120 applies the anti-phase PWM section in the first divided section T1, the third divided section T3, and the fifth divided section T5.
  • the signal generator 120 applies the positive phase PWM section to all phases. Therefore, it is possible to control the off-fixed mode (Min type).
  • FIG. 11 is a diagram showing output voltage and output current.
  • the upper diagram of FIG. 11 shows the output voltage Vu, the output voltage Vv, and the output voltage Vw.
  • the output voltage Vu is indicated by a solid line
  • the output voltage Vv is indicated by a broken line
  • the output voltage Vw is indicated by a dashed line.
  • the vertical axis of FIG. 11 represents the voltage value normalized by the input voltage V1-V2, and the output voltage of each phase takes a value in the range of 0-1. This value also represents the duty value, which is the ratio of the ON time of the first semiconductor switching element of each phase to the PWM period.
  • the horizontal axis of FIG. 11 represents the electrical rotation angle of the motor, and the unit is degrees.
  • the lower diagram in FIG. 11 shows the output current Iu, the output current Iv, and the output current Iw.
  • the output current Iu is indicated by a solid line
  • the output current Iv is indicated by a broken line
  • the output current Iw is indicated by a dashed line.
  • the horizontal axis of FIG. 11 represents the electrical rotation angle of the motor, and the unit is degrees.
  • the output voltage waveform has a period during which one of the three phases is fixed to be on.
  • Fixed on indicates that the first semiconductor switching element is continuously turned on and the second semiconductor switching element is continuously turned off over a period of a plurality of PWM cycles. More specifically, the output voltage Vu is fixed to ON at an electrical angle of 30 degrees to 150 electrical degrees. The output voltage Vv is fixed to ON between 150 electrical degrees and 270 electrical degrees. The output voltage Vw is fixed to ON at an electrical angle of 0 to 30 electrical degrees and at an electrical angle of 270 to 360 electrical degrees.
  • a modulation method having a period in which one of the three phases of the output voltage waveform is fixed to be on as shown in FIG.
  • the signal generator 120 applies anti-phase PWM sections in the second divided section T2, the fourth divided section T4, and the sixth divided section T6.
  • a positive phase PWM section is applied in the first divided section T1, the third divided section T3 and the fifth divided section T5. Therefore, it is possible to control the on-fixed mode (Max type).
  • the signal generator 120 also selects the phase in which the current zero-cross occurs next in the anti-phase PWM section as the anti-phase PWM phase when viewed in the direction of the time axis.
  • the second divided section T2 which is the anti-phase PWM section
  • the V phase that causes the current zero crossing next in the time axis direction is selected as the anti-phase PWM phase.
  • the W phase that causes the current zero crossing next in the direction of the time axis is selected as the anti-phase PWM phase.
  • the sixth divided section T6 which is the anti-phase PWM section, the U phase that causes the current zero crossing next in the direction of the time axis is selected as the anti-phase PWM phase.
  • FIG. 12 is a diagram showing output voltage and output current.
  • the upper diagram of FIG. 12 shows the output voltage Vu, the output voltage Vv, and the output voltage Vw.
  • the output voltage Vu is indicated by a solid line
  • the output voltage Vv is indicated by a broken line
  • the output voltage Vw is indicated by a dashed line.
  • the vertical axis of FIG. 12 represents the voltage value normalized by the input voltage V1-V2, and the output voltage of each phase takes a value in the range of 0-1. This value also represents the duty value, which is the ratio of the ON time of the first semiconductor switching element of each phase to the PWM period.
  • the horizontal axis of FIG. 12 represents the electrical rotation angle of the motor, and the unit is degrees.
  • the lower diagram in FIG. 12 shows the output current Iu, the output current Iv, and the output current Iw.
  • the output current Iu is indicated by a solid line
  • the output current Iv is indicated by a broken line
  • the output current Iw is indicated by a dashed line.
  • the horizontal axis of FIG. 12 represents the electrical rotation angle of the motor, and the unit is degrees.
  • the output voltage waveform has a period in which one of the three phases is fixed on and a period in which one of the three phases is fixed off. More specifically, the output voltage Vu is fixed to be on between an electrical angle of 80 degrees and an electrical angle of 140 degrees. The output voltage Vu is fixed off at an electrical angle of 260 degrees to 320 electrical degrees. The output voltage Vv is fixed on at an electrical angle of 200 degrees to 260 electrical degrees. The output voltage Vv is fixed to OFF at an electrical angle of 20 degrees to 80 electrical degrees. The output voltage Vw is fixed to ON at an electrical angle of 0 to 20 electrical degrees and at an electrical angle of 320 to 360 electrical degrees. The output voltage Vw is fixed to OFF between an electrical angle of 140 degrees and an electrical angle of 200 degrees.
  • the output voltage waveform has a period in which one of the three phases is fixed on and a period in which one of the three phases is fixed to off. type) modulation method.
  • the ON-OFF fixed mode (Max-Min type) modulation method is a modulation method that switches between the ON fixed mode (Max type) and the OFF fixed mode (Min type) every 60 degree section.
  • FIGS. 12 to 14C are diagrams for explaining charging and discharging currents of the capacitor C.
  • FIG. 13A to 14C are diagrams for explaining charging and discharging currents of the capacitor C.
  • the phases of the three-phase output currents are different from the phases of the three-phase output voltages (output voltage Vu, output voltage Vv, and output voltage Vw). is also delayed by 20 degrees.
  • FIGS. 13A to 13C are diagrams showing sections in which the electrical angle is 140 degrees to 200 degrees in the section (A).
  • a positive-phase PWM signal is input to the first semiconductor switching element Vp.
  • a reverse-phase PWM signal is input to the first semiconductor switching element Up.
  • a LOW level signal is input to the first semiconductor switching element Wp.
  • the Vp gate signal is at HIGH level, as shown in FIG. 13A.
  • the Up gate signal and the Wp gate signal are at the LOW level. Therefore, the first semiconductor switching element Vp is on, and the first semiconductor switching element Up and the first semiconductor switching element Wp are off.
  • the second semiconductor switching element Vn is off, and the second semiconductor switching element Un and the second semiconductor switching element Wn are on. Therefore, compared to the case of FIG. 5A, the inverter current is distributed, and the charge/discharge current of the capacitor C can be suppressed.
  • the anti-phase PWM is applied not only to the section (A) but also to the section (B).
  • FIGS. 14A to 14C are diagrams showing sections in which the electrical angle is 0 degrees to 20 degrees and 320 degrees to 360 degrees in the section (B).
  • a positive-phase PWM signal is input to the first semiconductor switching element Vp.
  • a reverse-phase PWM signal is input to the first semiconductor switching element Up.
  • a LOW level signal is input to the first semiconductor switching element Wp.
  • the Vp gate signal and Wp gate signal are at HIGH level, as shown in FIG. 14A.
  • the Up gate signal is at the LOW level. Therefore, the first semiconductor switching element Vp and the first semiconductor switching element Wp are on, and the first semiconductor switching element Up is off.
  • the second semiconductor switching element Vn and the second semiconductor switching element Wn are off, and the second semiconductor switching element Un is on. In this case, a reverse current to the capacitor C does not occur. Therefore, the charge/discharge current of the capacitor C can be suppressed.
  • the Up gate signal and Wp gate signal are at HIGH level, as shown in FIG. 14B. Also, the Vp gate signal is at the LOW level. Therefore, the first semiconductor switching element Up and the first semiconductor switching element Wp are on, and the first semiconductor switching element Vp is off. On the other hand, the second semiconductor switching element Un and the second semiconductor switching element Wn are off, and the second semiconductor switching element Vn is on. In this case, a reverse current flow to the capacitor C occurs, and the charging/discharging current of the capacitor C increases. In this case, a reverse current to the capacitor C does not occur. Therefore, the charge/discharge current of the capacitor C can be suppressed.
  • FIG. 15 is a diagram showing output voltage and output current.
  • FIG. 15 is a diagram showing a case where the rotation direction of the motor M is CW rotation (clockwise rotation). That is, the direction of rotation is the direction in which the electrical angle goes from 0 degrees to 360 degrees.
  • the phases of the three-phase output currents are different from the phases of the three-phase output voltages (output voltage Vu, output voltage Vv, and output voltage Vw). 40 degrees delayed.
  • the signal generator 120 applies the anti-phase PWM section. . Therefore, it is possible to control on-off fixed mode (Min-Max type).
  • the phase in which the current zero-cross occurs next in the direction of the time axis is selected as the anti-phase PWM phase.
  • the positive phase PWM signal is applied to the V phase and the U phase among the three phases, and the reverse phase PWM signal is applied to the W phase among the three phases.
  • the normal phase PWM signal is applied to the U phase and W phase among the three phases, and the reverse phase PWM signal is applied to the V phase among the three phases.
  • the positive phase PWM signal is applied to the V phase and W phase among the three phases, and the reverse phase PWM signal is applied to the U phase among the three phases.
  • the positive phase PWM signal is applied to the V phase and the U phase among the three phases, and the negative phase PWM signal is applied to the W phase among the three phases.
  • the normal phase PWM signal is applied to the U phase and W phase among the three phases, and the reverse phase PWM signal is applied to the V phase among the three phases.
  • the positive phase PWM signal is applied to the V phase and W phase among the three phases, and the reverse phase PWM signal is applied to the U phase among the three phases.
  • the inverter control device 12 has a fixed ON mode (Max type) and a fixed OFF mode (Min type).
  • the signal generator 120 switches between a fixed ON mode (Max type) and a fixed OFF mode (Min type) at each current zero crossing. Therefore, the control program can be simplified.
  • the waveform of the on-fixed mode (Max type) is applied to the division section T in which only one phase is positive current.
  • the waveform of the on-fixed mode (Max type) is applied to the second divided section T2, the fourth divided section T4, and the sixth divided section T6.
  • the off-fixed mode (Min type) waveform is applied to the divided section T in which only one phase has a negative current.
  • the OFF fixed mode (Min type) waveform is applied to the first divided section T1, the third divided section T3, and the fifth divided section T5.
  • FIG. 16 is a diagram showing output voltage and output current.
  • FIG. 16 is a diagram showing a case where the rotation direction of the motor M is CCW rotation (counterclockwise rotation). That is, the direction of rotation is the direction in which the electrical angle goes from 360 degrees to 0 degrees.
  • the phases of the three-phase output currents are different from the phases of the three-phase output voltages (output voltage Vu, output voltage Vv, and output voltage Vw). 40 degrees delayed.
  • the signal generator 120 applies the anti-phase PWM section. .
  • the phase in which the current zero-cross occurs next in the direction of the time axis is selected as the anti-phase PWM phase.
  • the positive phase PWM signal is applied to the V phase and W phase among the three phases
  • the reverse phase PWM signal is applied to the U phase among the three phases.
  • the normal phase PWM signal is applied to the U phase and V phase among the three phases
  • the reverse phase PWM signal is applied to the W phase among the three phases.
  • the normal phase PWM signal is applied to the U phase and W phase among the three phases
  • the reverse phase PWM signal is applied to the V phase among the three phases.
  • the positive phase PWM signal is applied to the V phase and W phase among the three phases, and the reverse phase PWM signal is applied to the U phase among the three phases.
  • the normal phase PWM signal is applied to the U phase and V phase among the three phases, and the reverse phase PWM signal is applied to the W phase among the three phases.
  • the normal phase PWM signal is applied to the U phase and W phase among the three phases, and the reverse phase PWM signal is applied to the V phase among the three phases.
  • the inverter control device 12 has a fixed ON mode (Max type) and a fixed OFF mode (Min type).
  • the signal generator 120 switches between a fixed ON mode (Max type) and a fixed OFF mode (Min type) for each current zero crossing.
  • (Max type) waveform is applied.
  • the waveform of the on-fixed mode (Max type) is applied to the second divided section T2, the fourth divided section T4, and the sixth divided section T6.
  • the off-fixed mode (Min type) waveform is applied to the divided section T in which only one phase has a negative current.
  • the OFF fixed mode (Min type) waveform is applied to the first divided section T1, the third divided section T3, and the fifth divided section T5.
  • FIG. 17 is a diagram showing sections to which the reversed-phase PWM is applied and phases to which the reversed-phase PWM signal is applied in each divided section.
  • the reverse phase PWM signal is applied to the W phase in the first divided section T1.
  • the reverse phase PWM signal is applied to the U phase.
  • the reverse phase PWM signal is applied to the V phase.
  • the reverse phase PWM signal is applied to the U phase in the first divided section T1.
  • the reverse phase PWM signal is applied to the V phase.
  • the reverse phase PWM signal is applied to the W phase.
  • the reverse phase PWM signal is applied to the V phase in the second divided section T2.
  • the reverse phase PWM signal is applied to the W phase.
  • the reverse phase PWM signal is applied to the U phase.
  • the reverse phase PWM signal is applied to the W phase in the second divided section T2.
  • a reverse-phase PWM signal is applied to the U-phase in the fourth divided section T4.
  • the reverse phase PWM signal is applied to the V phase.
  • a reverse phase PWM signal is applied to the W phase in the first divided section T1.
  • the reverse phase PWM signal is applied to the V phase.
  • the reverse phase PWM signal is applied to the U phase.
  • the reverse phase PWM signal is applied to the W phase.
  • the reverse phase PWM signal is applied to the V phase.
  • the reverse phase PWM signal is applied to the U phase.
  • the reverse phase PWM signal is applied to the U phase in the first divided section T1.
  • the reverse phase PWM signal is applied to the W phase.
  • the reverse phase PWM signal is applied to the V phase.
  • a reverse-phase PWM signal is applied to the U-phase in the fourth divided section T4.
  • the reverse phase PWM signal is applied to the W phase.
  • the reverse phase PWM signal is applied to the V phase.
  • the signal generator 120 applies the anti-phase PWM signal to different phases depending on the direction of rotation for the same divided section T to which the anti-phase PWM signal is applied. Therefore, control can be performed according to the direction of rotation.
  • FIG. 18 is a flow chart showing an inverter control method. Inverter control is performed by executing the processes of steps S102 to S118 shown in FIG.
  • the inverter control method is a method of controlling a three-phase inverter of a two-phase modulation system.
  • Step S102 The signal generator 120 derives the instantaneous angle. Specifically, the position (electrical angle) of the development rotor is derived. The process proceeds to step S104.
  • Step S104 The signal generator 120 derives the instantaneous value of each phase output. Specifically, the sinusoidal output voltage of each phase is calculated based on the instantaneous angle. The process proceeds to step S106.
  • Step S106 The signal generator 120 determines which divided section T the instantaneous angle is included in. The process proceeds to step S108.
  • Step S106 The signal generation unit 120 calculates the modulation offset in a variable format (Min type or Max type) according to the divided interval T. That is, the duty is derived.
  • Step S108 The signal generation unit 120 selects the anti-phase PWM application pattern from the divided section T and the rotation direction. Specifically, the signal generator 120 selects whether or not to apply reversed-phase PWM and the phase to apply. More specifically, the signal generation unit 120 selects the phase in which the current zero crossing occurs next in the time axis direction as the anti-phase PWM phase in the anti-phase PWM section. Note that step S108 corresponds to an example of a "selection step.” The process proceeds to step S112.
  • Step S112 The signal generator 120 determines whether there is a phase to which the reversed phase is applied. When the signal generator 120 determines that there is no phase to which the reverse phase is applied (step S112: No), the process proceeds to step S116. When the signal generator 120 determines that there is a phase to which the reverse phase is applied (step S112: Yes), the process proceeds to step S114.
  • Step S114 The signal generator 120 changes the duty of the reversed PWM phase to 1-Duty. The process proceeds to step S116.
  • Step S116 The signal generator 120 sets the Duty value to the register. The process proceeds to step S118.
  • Step S118 The signal generator 120 sets positive phase PWM and negative phase PWM. Processing ends.
  • the inverter control method includes a selection step of selecting, as the anti-phase PWM phase, the phase in which the current zero crossing occurs next in the anti-phase PWM section when viewed in the direction of the time axis. 9, 10, 15, and 16. If the phase selected as the reversed-phase PWM phase is fixed on or off as in the (C) section of FIGS. 9, 10, 15, and 16, the register The duty value to be set to is set to 1 or 0. Therefore, there is no need to distinguish between cases in which the current phase delay exceeds 30 degrees and cases in which it does not. Therefore, the control program can be simplified.
  • the present invention can be suitably used for inverter control devices, inverter circuits, motor modules, and inverter control methods.
  • inverter control device 100 motor drive circuit (inverter circuit) 110 Inverter section (three-phase inverter) 112, 112u, 112v, 112w Series body 120 Signal generator 200 Motor module C Capacitor M Motor N Second input terminal P First input terminal T Divided section T1 First divided section T2 Second divided section T3 Third divided section T4 4th divided section T5 5th divided section T6 6th divided section V1 First voltage V2 Second voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

2相変調方式の3相インバータを制御するインバータ制御装置であって、前記3相インバータは、第1入力端子と、第2入力端子とるコンデンサと、3つの直列体とを備え、前記インバータ制御装置は、前記3つの直列体のそれぞれに入力する3つのPWM信号を生成する信号生成部を備え、前記PWM信号は、逆相PWM信号を適用する逆相PWM区間を少なくとも含み、前記逆相PWM信号は、正相PWM信号に対して逆位相であり、前記逆相PWM区間は、3相のうち2相に前記正相PWM信号を適用し、3相のうち1相に前記逆相PWM信号を適用する区間であり、前記信号生成部は、前記逆相PWM区間において、時間軸方向に見て次に電流ゼロクロスを発生する相を逆相PWM相として選択する。

Description

インバータ制御装置、インバータ回路、モータモジュールおよびインバータ制御方法
 本発明は、インバータ制御装置、インバータ回路、モータモジュールおよびインバータ制御方法に関する。
 3相インバータを制御するインバータ制御装置が知られている(例えば特許文献1)。特許文献1に記載のインバータ制御装置では、インバータの出力電圧位相および出力電流位相に応じて、2つの三角波のいずれをそれぞれの相との比較に用いるか、および、どの相を最大値または最小値に固定するかを切り替えている。
国際公開第2017/34028号公報
 しかしながら、特許文献1に記載のインバータ制御装置では、電流位相が電圧位相に対し遅延している場合、電気角1周間に12の動作状態が存在する。また電流位相の遅延が大きく力率が低い場合には、さらに異なる動作状態が適用される。したがって、動作状態の切替えの制御が煩雑となって制御プログラムが複雑化する。
 本発明は上記課題に鑑みてなされたものであり、その目的は制御プログラムを簡素化することができるインバータ制御装置、インバータ回路、モータモジュールおよびインバータ制御方法を提供することにある。
 本発明の例示的なインバータ制御装置は、2相変調方式の3相インバータを制御する。前記3相インバータは、第1入力端子と、第2入力端子と、コンデンサと、3つの直列体とを備える。前記第1入力端子には、第1の電圧が印加される。前記第2入力端子には、第2の電圧が印加される。前記第2の電圧は、前記第1の電圧よりも低い。前記コンデンサは、前記第1入力端子と前記第2入力端子との間に接続される。前記3つの直列体は、2つの半導体スイッチング素子が直列に接続されている。前記インバータ制御装置は、信号生成部を備える。前記信号生成部は、前記3つの直列体のそれぞれに入力する3つのPWM信号を生成する。前記PWM信号は、逆相PWM信号を適用する逆相PWM区間を少なくとも含む。前記逆相PWM信号は、正相PWM信号に対して逆位相である。前記逆相PWM区間は、3相のうち2相に前記正相PWM信号を適用し、3相のうち1相に前記逆相PWM信号を適用する区間である。前記信号生成部は、前記逆相PWM区間において、時間軸方向に見て次に電流ゼロクロスを発生する相を逆相PWM相として選択する。
 本発明の例示的なインバータ回路は、上記に記載のインバータ制御装置と、第1入力端子と、第2入力端子と、コンデンサと、3つの直列体とを備える。前記第1入力端子には、第1の電圧が印加される。前記第2入力端子には、第2の電圧が印加される。前記第2の電圧は、前記第1の電圧よりも低い。前記コンデンサは、前記第1入力端子と前記第2入力端子との間に接続される。前記3つの直列体は、2つの半導体スイッチング素子が直列に接続されている。
 本発明の例示的なモータモジュールは、上記に記載のインバータ制御装置と、3相のインバータと、3相モータとを備える。前記3相のインバータは、前記インバータ制御装置に制御される。前記3相のインバータは、2相変調方式である。前記3相モータは、前記インバータの出力が入力される。
 本発明の例示的なインバータ制御方法は、2相変調方式の3相インバータを制御する方法である。前記3相インバータは、第1入力端子と、第2入力端子と、コンデンサと、3つの直列体とを備える。前記第1入力端子には、第1の電圧が印加される。前記第2入力端子には、第2の電圧が印加される。前記第2の電圧は、前記第1の電圧よりも低い。前記コンデンサは、前記第1入力端子と前記第2入力端子との間に接続される。前記3つの直列体は、2つの半導体スイッチング素子が直列に接続されている。3つのPWM信号が、前記3つの直列体のそれぞれに入力される。前記PWM信号は、逆相PWM信号を適用する逆相PWM区間を少なくとも含む。前記逆相PWM信号は、正相PWM信号に対して逆位相である。前記逆相PWM区間は、3相のうち2相に前記正相PWM信号を適用し、3相のうち1相に前記逆相PWM信号を適用する区間である。前記インバータ制御方法は、前記逆相PWM区間において、時間軸方向に見て次に電流ゼロクロスを発生する相を逆相PWM相として選択する選択工程を包含する。
 例示的な本発明によれば、制御プログラムを簡素化することができる。
図1は、本発明の実施形態に係るモータモジュールのブロック図である。 図2は、インバータ部を示す回路図である。 図3は、出力電圧と、出力電流とを示す図である。 図4は、出力電圧と、出力電流とを示す図である。 図5Aは、コンデンサの充放電電流を説明するための図である。 図5Bは、コンデンサの充放電電流を説明するための図である。 図5Cは、コンデンサの充放電電流を説明するための図である。 図6Aは、コンデンサの充放電電流を説明するための図である。 図6Bは、コンデンサの充放電電流を説明するための図である。 図6Cは、コンデンサの充放電電流を説明するための図である。 図7Aは、コンデンサの充放電電流を説明するための図である。 図7Bは、コンデンサの充放電電流を説明するための図である。 図7Cは、コンデンサの充放電電流を説明するための図である。 図8は、出力電圧と、出力電流とを示す図である。 図9は、出力電圧と、出力電流とを示す図である。 図10は、出力電圧と、出力電流とを示す図である。 図11は、出力電圧と、出力電流とを示す図である。 図12は、出力電圧と、出力電流とを示す図である。 図13Aは、コンデンサの充放電電流を説明するための図である。 図13Bは、コンデンサの充放電電流を説明するための図である。 図13Cは、コンデンサの充放電電流を説明するための図である。 図14Aは、コンデンサの充放電電流を説明するための図である。 図14Bは、コンデンサの充放電電流を説明するための図である。 図14Cは、コンデンサの充放電電流を説明するための図である。 図15は、出力電圧と、出力電流とを示す図である。 図16は、出力電圧と、出力電流とを示す図である。 図17は、各分割区間における逆相PWMを適用する区間と、逆相PWM信号を適用する相とを示す図である。 図18は、インバータ制御方法を示すフローチャートである。
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、図中、同一または相当部分については同一の参照符号を付して説明を繰り返さない。
 図1および図2を参照して、本発明の実施形態に係るモータモジュール200について説明する。図1は、本発明の実施形態に係るモータモジュール200のブロック図である。図2は、インバータ部110を示す回路図である。
 図1に示すように、モータモジュール200は、モータ駆動回路100と、3相モータMとを備える。3相モータMは、モータ駆動回路100によって駆動される。3相モータMは、例えば、ブラシレスDCモータである。3相モータMは、U相、V相およびW相を有する。なお、モータ駆動回路100は、「インバータ回路」の一例に相当する。
 モータ駆動回路100は、2相変調方式で3相モータMの駆動を制御する。モータ駆動回路100は、インバータ部110と、インバータ制御装置12とを備える。なお、インバータ部110は、「3相インバータ」の一例に相当する。
 インバータ部110は、インバータ制御装置12に制御される。インバータ部110は、2相変調方式であり3相である。インバータ部110は、3つの出力端子102を備える。3つの出力端子102は、出力端子102uと、出力端子102vと、出力端子102wとを含む。3つの出力端子102は、3相の出力電圧と3相の出力電流とを3相モータMへ出力する。詳しくは、出力端子102uは、U相の出力電圧Vuと、U相の出力電流Iuとを3相モータMへ出力する。出力端子102vは、V相の出力電圧Vvと、V相の出力電流Ivとを3相モータMへ出力する。出力端子102wは、W相の出力電圧Vwと、W相の出力電流Iwとを3相モータMへ出力する。3相モータMには、インバータ部110の出力が入力される。
 図2に示すように、インバータ部110は、第1入力端子Pと、第2入力端子Nと、コンデンサCと、3つの直列体112とを備える。インバータ部110は、直流電圧源Bをさらに備える。なお、直流電圧源Bは、インバータ部110の外部にあってもよい。
 第1入力端子Pには、第1の電圧V1が印加される。第1入力端子Pは、直流電圧源Bに接続されている。
 第2入力端子Nには、第2の電圧V2が印加される。第2入力端子Nは、直流電圧源Bに接続されている。第2の電圧V2は、第1の電圧V1よりも低い。
 コンデンサCは、第1入力端子Pと第2入力端子Nとの間に接続される。
 3つの直列体112には、2つの半導体スイッチング素子が直列に接続されている。半導体スイッチング素子は、例えば、IGBT(絶縁ゲートバイポーラトランジスタ)である。なお、半導体スイッチング素子は、電界効果トランジスタのような他のトランジスタであってもよい。3つの直列体112は、直列体112uと、直列体112vと、直列体112wとを含む。3つの直列体112は、互いに並列に接続されている。3つの直列体112の各々は、一端が第1入力端子Pに接続されている。3つの直列体112の各々は、他端が第2入力端子Nに接続されている。これらの半導体スイッチング素子にはそれぞれ、第1入力端子P側(紙面上側)をカソード、第2入力端子N側(紙面下側)をアノードとして、整流素子Dが並列に接続される。半導体スイッチング素子として電界効果トランジスタを用いる場合には、寄生ダイオードをこの整流素子として用いてもよい。
 3つの直列体112の各々は、第1半導体スイッチング素子と、第2半導体スイッチング素子とを有する。詳しくは、直列体112uは、第1半導体スイッチング素子Upと、第2半導体スイッチング素子Unとを有する。直列体112vは、第1半導体スイッチング素子Vpと、第2半導体スイッチング素子Vnとを有する。直列体112wは、第1半導体スイッチング素子Wpと、第2半導体スイッチング素子Wnとを有する。
 第1半導体スイッチング素子Up、第1半導体スイッチング素子Vpおよび第1半導体スイッチング素子Wpは、第1入力端子Pに接続される。換言すると、第1半導体スイッチング素子Up、第1半導体スイッチング素子Vpおよび第1半導体スイッチング素子Wpは、高電圧側の半導体スイッチング素子である。
 第2半導体スイッチング素子Un、第2半導体スイッチング素子Vnおよび第2半導体スイッチング素子Wnは、第2入力端子Nに接続される。換言すると、第2半導体スイッチング素子Un、第2半導体スイッチング素子Vnおよび第2半導体スイッチング素子Wnは、低電圧側の半導体スイッチング素子である。
 第1半導体スイッチング素子と第2半導体スイッチング素子とは接続点114において接続されている。詳しくは、第1半導体スイッチング素子Upと、第2半導体スイッチング素子Unとは、接続点114uにおいて接続されている。第1半導体スイッチング素子Vpと、第2半導体スイッチング素子Vnとは、接続点114vにおいて接続されている。第1半導体スイッチング素子Wpと、第2半導体スイッチング素子Wnとは、接続点114wにおいて接続されている。
 3つの直列体112の各々における接続点114が、3つの出力端子102に接続されている。詳しくは、直列体112uにおける接続点114uが、出力端子102uに接続されている。直列体112vにおける接続点114vが、出力端子102vに接続されている。直列体112wにおける接続点114wが、出力端子102wに接続されている。
 第1半導体スイッチング素子Up、第1半導体スイッチング素子Vpおよび第1半導体スイッチング素子Wpには、PWM信号が入力される。PWM信号は、信号生成部120から出力される。以下、本明細書において、第1半導体スイッチング素子Upに入力されるPWM信号を「UpPWM信号」と記載することがある。また、第1半導体スイッチング素子Vpに入力されるPWM信号を「VpPWM信号」と記載することがある。第1半導体スイッチング素子Wpに入力されるPWM信号を「WpPWM信号」と記載することがある。第1半導体スイッチング素子Up、第1半導体スイッチング素子Vpおよび第1半導体スイッチング素子Wpは、所定のPWM周期でオンとオフとが切り替えられる。例えば、第1半導体スイッチング素子Up、第1半導体スイッチング素子Vpおよび第1半導体スイッチング素子Wpは、それぞれ、UpPWM信号、VpPWM信号およびWpPWM信号がHIGHレベルの場合に、オンとなる。一方、第1半導体スイッチング素子Up、第1半導体スイッチング素子Vpおよび第1半導体スイッチング素子Wpは、それぞれ、UpPWM信号、VpPWM信号およびWpPWM信号がLOWレベルの場合に、オフとなる。
 第2半導体スイッチング素子Un、第2半導体スイッチング素子Vnおよび第2半導体スイッチング素子Wnには、PWM信号が入力される。PWM信号は、信号生成部120から出力される。以下、本明細書において、第2半導体スイッチング素子Unに入力されるPWM信号を「UnPWM信号」と記載することがある。また、第2半導体スイッチング素子Vnに入力されるPWM信号を「VnPWM信号」と記載することがある。第2半導体スイッチング素子Wnに入力されるPWM信号を「WnPWM信号」と記載することがある。第2半導体スイッチング素子Un、第2半導体スイッチング素子Vnおよび第2半導体スイッチング素子Wnは、所定のPWM周期でオンとオフとが切り替えられる。例えば、第2半導体スイッチング素子Un、第2半導体スイッチング素子Vnおよび第2半導体スイッチング素子Wnは、それぞれ、UnPWM信号、VnPWM信号およびWnPWM信号がHIGHレベルの場合に、オンとなる。一方、第2半導体スイッチング素子Un、第2半導体スイッチング素子Vnおよび第2半導体スイッチング素子Wnは、それぞれ、UnPWM信号、VnPWM信号およびWnPWM信号がLOWレベルの場合に、オフとなる。
 図1に示すように、インバータ制御装置12は、信号生成部120を備える。信号生成部120は、キャリア生成部122と、電圧指令値生成部124と、比較部126とを有する。信号生成部120は、CPU(Central Processing Unit)のようなプロセッサー、およびASIC(Application Specific Integrated Circuit)等によって構成されるハードウェア回路である。そして、信号生成部120のプロセッサーは、記憶装置に記憶されたコンピュータープログラムを実行することによって、キャリア生成部122と、電圧指令値生成部124と、比較部126として機能する。
 信号生成部120は、インバータ部110を制御する。具体的には、信号生成部120は、PWM信号を生成してPWM信号を出力することによって、インバータ部110を制御する。より具体的には、信号生成部120は、3つの直列体112のそれぞれに入力する3つのPWM信号を生成する。
 キャリア生成部122は、キャリア信号を生成する。キャリア信号は、例えば、三角波である。なお、キャリア信号は、鋸波であってもよい。
 電圧指令値生成部124は、電圧指令値を生成する。電圧指令値は、モータ駆動回路100から出力する電圧値に相当する。すなわち、電圧指令値生成部124は、出力電圧Vu、出力電圧Vvおよび出力電圧Vwに応じた電圧値を電圧指令値として生成する。
 比較部126は、キャリア信号と、電圧指令値とを比較することによってPWM信号を生成する。
 図3を参照して、信号生成部120の動作について説明する。図3は、出力電圧と、出力電流とを示す図である。
 図3の上の図は、出力電圧Vu、出力電圧Vvおよび出力電圧Vwを示す。図3の上の図において、出力電圧Vuを実線で示しており、出力電圧Vvを破線で示しており、出力電圧Vwを一点鎖線で示している。図3の縦軸は入力電圧V1-V2で規格化した電圧値を表しており、各相の出力電圧は0~1の範囲の値をとる。またこの値は、PWM周期に対する各相の第1半導体スイッチング素子のオン時間の比率であるデューティ値も表している。図3の横軸は、モータの電気回転角を表しており、単位は度である。
 図3の下の図は、出力電流Iu、出力電流Ivおよび出力電流Iwを示す。図3の下の図において、出力電流Iuを実線で示しており、出力電流Ivを破線で示しており、出力電流Iwを一点鎖線で示している。図3の横軸は、モータの電気回転角を表しており、単位は度である。
 図3に示すように、出力電圧波形は、3相のうち1相がオフ固定となる期間と有する。オフ固定は、複数のPWM周期の期間にわたり、第1半導体スイッチング素子が連続的にオフし、第2半導体スイッチング素子が連続的にオンすることを示す。詳しくは、出力電圧Vuは、電気角210度~電気角330度でオフ固定となる。出力電圧Vvは、電気角0度~電気角90度および電気角210度~電気角330度でオフ固定となる。出力電圧Vwは、電気角210度~電気角330度でオフ固定となる。本明細書において、図3に示すように出力電圧波形が3相のうち1相がオフ固定となる期間を有する変調方式をオフ固定モード(Min型)の変調方式と記載することがある。
 図3に示すように、信号生成部120は、電気角1周を複数の分割区間に分割する。信号生成部120は、電流ゼロクロス毎に電気角1周を複数の分割区間に分割する。詳しくは、信号生成部120は、電気角1周を、第1分割区間T1と、第2分割区間T2と、第3分割区間T3と、第4分割区間T4と、第5分割区間T5と、第6分割区間T6とに分割する。本明細書において、第1分割区間T1と、第2分割区間T2と、第3分割区間T3と、第4分割区間T4と、第5分割区間T5と、第6分割区間T6を、分割区間Tと総称する場合がある。なお、本発明は、信号生成部120が完全に電流ゼロクロス点で分割区間Tに分割する場合に限定されない。例えば、信号生成部120は、電流ゼロクロス付近で、分割区間Tに分割してもよい。電流ゼロクロス点の検出は、電流センサ等の手段で直接観測してもよいし、演算からの予想により求めてもよい。
 第2分割区間T2は、第1分割区間T1の次に続く。第3分割区間T3は、第2分割区間T2の次に続く。第4分割区間T4は、第3分割区間T3の次に続く。第5分割区間T5は、第4分割区間T4の次に続く。第6分割区間T6は、第5分割区間T5の次に続く。ここでは、第1分割区間T1は、電気角20度~電気角80度である。第2分割区間T2は、電気角80度~電気角140度である。第3分割区間T3は、電気角140度~電気角200度である。第4分割区間T4は、電気角200度~電気角260度である。第5分割区間T5は、電気角260度~電気角320度である。第6分割区間T6は、電気角320度~電気角360度である。
 第1分割区間T1は、V相の出力電流Ivのみ負である区間である。第2分割区間T2は、U相の出力電流Iuのみ正である区間である。第3分割区間T3は、W相の出力電流Iwのみ負である区間である。第4分割区間T4は、V相の出力電流Ivのみ正である区間である。第5分割区間T5は、U相の出力電流Iuのみ負である区間である。第6分割区間T6は、W相の出力電流Iwのみ正である区間である。
 PWM信号は、逆相PWM信号を適用する逆相PWM区間を少なくとも含む。逆相PWM信号は、正相PWM信号に対して逆位相である。逆位相は、例えば、U相とV相がスイッチングしている場合、PWM1周期に第1半導体スイッチング素子Upのみがオンしてる状態と、第1半導体スイッチング素子Vpのみがオンしてる状態とが存在するように位相をずらすことを示す。より好ましくは、逆位相は、第1半導体スイッチング素子Upと第1半導体スイッチング素子Vpとがいずれもオンである状態と、第1半導体スイッチング素子Upと第1半導体スイッチング素子Vpとがいずれもオフである状態とがPWM1周期内に存在しないように位相をずらすことを示す。例えば、逆位相は、180度位相がずれることを示す。なお、180度から僅かにずれていてもよい。逆相PWM区間は、3相のうち2相に正相PWM信号を適用し、3相のうち1相に逆相PWM信号を適用する区間である。
 信号生成部120は、複数の分割区間Tの各々に対して、3相全てに正相PWM信号を適用する正相PWM区間および逆相PWM区間のいずれかに決定する。ここでは、第1分割区間T1、第3分割区間T3および第5分割区間T5において、信号生成部120は、逆相PWM区間を適用する。第2分割区間T2、第4分割区間T4および第6分割区間T6において、信号生成部120は、全ての相に対して正相PWM区間を適用する。
 信号生成部120は、逆相PWM区間において、時間軸方向に見て次に電流ゼロクロスを発生する相を逆相PWM相として選択する。詳しくは、逆相PWM区間である第1分割区間T1において、時間軸方向に見て次に電流ゼロクロスを発生するW相を逆相PWM相として選択する。逆相PWM区間である第3分割区間T3において、時間軸方向に見て次に電流ゼロクロスを発生するU相を逆相PWM相として選択する。逆相PWM区間である第5分割区間T5において、時間軸方向に見て次に電流ゼロクロスを発生するV相を逆相PWM相として選択する。
 また、信号生成部120は、逆相PWM区間において逆相PWM信号が適用されている相を、電流ゼロクロスにおいて正相PWM信号に切り替える。電流ゼロクロスを発生する相は、時間軸方向に見て電流の絶対値が一番小さくなる相を示す。なお、本発明は、信号生成部120が逆相PWM区間において逆相PWM信号が適用されている相を、完全に電流ゼロクロス点において正相PWM信号に切り替えることに限定されない。例えば、信号生成部120は、逆相PWM区間において逆相PWM信号が適用されている相を、電流ゼロクロス付近において、正相PWM信号に切り替えてもよい。電流ゼロクロス点の検出は、電流センサ等の手段で直接観測してもよいし、演算からの予想により求めてもよい。
 図4~図7Cを参照して、信号生成部120の正相PWM区間と逆相PWM区間との選択について説明する。図4は、出力電圧と、出力電流とを示す図である。図5A~図7Cは、コンデンサCの充放電電流を説明するための図である。
 図4に示すように、3相の出力電流(出力電流Iu、出力電流Ivおよび出力電流Iw)の位相は、3相の出力電圧(出力電圧Vu、出力電圧Vvおよび出力電圧Vw)の位相よりも20度遅延している。
 まずは、(A)の区間に正相PWM同士が第1半導体スイッチング素子に入力される場合について説明する。図5A~図5Cは、(A)の区間のうち、電気角が140度~200度の区間を示す図である。
 図5Cに示すように、第1半導体スイッチング素子Upには、正相のPWM信号が入力される。第1半導体スイッチング素子Vpには、正相のPWM信号が入力される。第1半導体スイッチング素子Wpには、LOWレベルの信号が入力される。
 図5Cにおける(1)の区間では、図5Aに示すように、Upゲート信号、Vpゲート信号がHIGHレベルである。また、Wpゲート信号はLOWレベルである。したがって、第1半導体スイッチング素子Upおよび第1半導体スイッチング素子Vpがオンであり、第1半導体スイッチング素子Wpがオフである。一方、第2半導体スイッチング素子Unおよび第2半導体スイッチング素子Vnがオフであり、第2半導体スイッチング素子Wnがオンである。したがって、コンデンサCからの放電電流が増加する。
 図5Cにおける(2)の区間では、図5Bに示すように、Upゲート信号、Vpゲート信号、Wpゲート信号がLOWレベルである。したがって、第1半導体スイッチング素子Up、第1半導体スイッチング素子Vpおよび第1半導体スイッチング素子Wpがオフである。一方、第2半導体スイッチング素子Un、第2半導体スイッチング素子Vnおよび第2半導体スイッチング素子Wnがオンである。したがって、コンデンサCへの充電電流が増加する。
 このように、(A)の区間に正相PWM同士が第1半導体スイッチング素子に入力された場合、コンデンサCからの充放電電流が増加する。
 次に、(A)の区間に逆相PWMを適用した場合について説明する。図6A~図6Cは、(A)の区間のうち、電気角が140度~200度の区間を示す図である。
 図6Cに示すように、第1半導体スイッチング素子Upには、逆相のPWM信号が入力される。第1半導体スイッチング素子Vpには、正相のPWM信号が入力される。第1半導体スイッチング素子Wpには、LOWレベルの信号が入力される。
 図6Cにおける(1)の区間では、図6Aに示すように、Vpゲート信号がHIGHレベルである。また、Upゲート信号およびWpゲート信号はLOWレベルである。したがって、第1半導体スイッチング素子Vpがオンであり、第1半導体スイッチング素子Upおよび第1半導体スイッチング素子Wpがオフである。一方、第2半導体スイッチング素子Vnがオフであり、第2半導体スイッチング素子Unおよび第2半導体スイッチング素子Wnがオンである。したがって、図5Aの場合と比較して、インバータ電流が分散され、コンデンサCの充放電電流を抑制することができる。
 図6Cにおける(2)の区間では、図6Bに示すように、Upゲート信号がHIGHレベルである。また、Vpゲート信号およびWpゲート信号がLOWレベルである。したがって、第1半導体スイッチング素子Upがオンであり、第1半導体スイッチング素子Vpおよび第1半導体スイッチング素子Wpがオフである。一方、第2半導体スイッチング素子Unがオフであり、第2半導体スイッチング素子Vnおよび第2半導体スイッチング素子Wnがオンである。したがって、図5Bの場合と比較して、インバータ電流が分散され、コンデンサCの充放電電流を抑制することができる。
 このように、(A)の区間に、逆相PWMを適用すると、インバータ電流が分散され、コンデンサCの充放電電流を抑制することができる。
 次に、(B)の区間に逆相PWMを適用した場合について説明する。図7A~図7Cは、(B)の区間のうち、電気角が80度~140度の区間を示す図である。
 図7Cに示すように、第1半導体スイッチング素子Upには、正相のPWM信号が入力される。第1半導体スイッチング素子Vpには、逆相のPWM信号が入力される。第1半導体スイッチング素子Wpには、LOWレベルの信号が入力される。
 図7Cにおける(1)の区間では、図7Aに示すように、Upゲート信号がHIGHレベルである。また、Vpゲート信号およびWpゲート信号はLOWレベルである。したがって、第1半導体スイッチング素子Upがオンであり、第1半導体スイッチング素子Vpおよび第1半導体スイッチング素子Wpがオフである。一方、第2半導体スイッチング素子Unがオフであり、第2半導体スイッチング素子Vnおよび第2半導体スイッチング素子Wnがオンである。
 図7Cにおける(2)の区間では、図7Bに示すように、Vpゲート信号がHIGHレベルである。また、Upゲート信号およびWpゲート信号がLOWレベルである。したがって、第1半導体スイッチング素子Vpがオンであり、第1半導体スイッチング素子Upおよび第1半導体スイッチング素子Wpがオフである。一方、第2半導体スイッチング素子Vnがオフであり、第2半導体スイッチング素子Unおよび第2半導体スイッチング素子Wnがオンである。この場合、コンデンサCへの電流の逆流が発生し、コンデンサCの充放電電流が増加する。したがって、(B)の区間には、図5Cに示すような正相同士のPWM波形を適用することが好ましい。
 図7A~図7Cおよび図8を参照して、信号生成部120の正相PWM区間と逆相PWM区間との選択について説明する。図8は、出力電圧と、出力電流とを示す図である。
 図8に示すように、3相の出力電流(出力電流Iu、出力電流Ivおよび出力電流Iw)の位相は、3相の出力電圧(出力電圧Vu、出力電圧Vvおよび出力電圧Vw)の位相より40度遅延している。
 3相の出力電流の位相の遅延が30度を超えると、超えた分、区間(A)が減少し、区間(C)が生じる。区間(C)は、オフ固定相が切り替わってから電流ゼロクロスが発生するまでの期間に相当する。
 (C)の区間のうち、電気角が90度~100度の区間では、図7A~図7Cを参照して説明したように、コンデンサCへの電流の逆流が発生し、コンデンサCの充放電電流が増加する。したがって、(C)の区間には、図5Cに示すような正相同士のPWM波形を適用することが好ましい。
 図9を参照して、逆相適用区間についてさらに説明する。図9は、出力電圧と、出力電流とを示す図である。図9は、モータMの回転方向がCW回転(時計回り回転)の場合を示す図である。つまり、回転方向は電気角が0度から360度に向かう方向である。
 図9に示すように、3相の出力電流(出力電流Iu、出力電流Ivおよび出力電流Iw)の位相は、3相の出力電圧(出力電圧Vu、出力電圧Vvおよび出力電圧Vw)の位相より40度遅延している。
 第1分割区間T1、第3分割区間T3および第5分割区間T5において、逆相PWM区間が適用されている。図3を参照して上述したように、逆相PWM区間において、時間軸方向に見て次に電流ゼロクロスを発生する相を逆相PWM相として選択する。例えば、第1分割区間T1では、3相のうちV相、U相に正相PWM信号を適用し、3相のうちW相に逆相PWM信号を適用する。したがって、図9に示すように、3相の出力電流の位相が3相の出力電圧よりも30度を超えて遅延し、逆相PWM信号を適用しない方が好ましい(C)の区間が生じた場合であっても、(C)の区間の前に逆相PWM信号が適用されていたW相が、(C)の区間では連続オフとなり、(C)の区間ではスイッチングするU相、V相には正相PWM信号が自動的に適用される。したがって、電流位相遅延が30度を超える場合および超えない場合で、場合分けを行う必要が無い。したがって、制御プログラムを簡素化することができる。
 第3分割区間T3では、3相のうちV相、W相に正相PWM信号を適用し、3相のうちU相に逆相PWM信号を適用する。したがって、第1分割区間T1と同様に(C)の区間ではスイッチングするV相、W相には正相PWM信号が自動的に適用される。
 第5分割区間T5では、3相のうちU相、W相に正相PWM信号を適用し、3相のうちV相に逆相PWM信号を適用する。したがって、第1分割区間T1と同様に(C)の区間ではスイッチングするU相、W相には正相PWM信号が自動的に適用される。
 図10を参照して、逆相適用区間についてさらに説明する。図10は、出力電圧と、出力電流とを示す図である。図10は、モータMの回転方向がCCW回転(反時計回り回転)の場合を示す図である。つまり、回転方向は電気角が360度から0度に向かう方向である。
 図10に示すように、3相の出力電流(出力電流Iu、出力電流Ivおよび出力電流Iw)の位相は、3相の出力電圧(出力電圧Vu、出力電圧Vvおよび出力電圧Vw)の位相より40度遅延している。
 第1分割区間T1、第3分割区間T3および第5分割区間T5において、逆相PWM区間が適用されている。図3を参照して上述したように、逆相PWM区間において、時間軸方向に見て次に電流ゼロクロスを発生する相を逆相PWM相として選択する。例えば、第1分割区間T1では、3相のうちV相、W相に正相PWM信号を適用し、3相のうちU相に逆相PWM信号を適用する。したがって、図10に示すように、3相の出力電流の位相が3相の出力電圧よりも30度を超えて遅延し、逆相PWM信号を適用しない方が好ましい(C)の区間が生じた場合であっても、(C)の区間の前に逆相PWM信号が適用されていたU相が、(C)の区間では連続オフとなり、(C)の区間ではスイッチングするV相、W相には正相PWM信号が自動的に適用される。したがって、電流位相遅延が30度を超える場合および超えない場合で、場合分けを行う必要が無い。したがって、制御プログラムを簡素化することができる。
 第3分割区間T3では、3相のうちU相、W相に正相PWM信号を適用し、3相のうちV相に逆相PWM信号を適用する。したがって、第1分割区間T1と同様に(C)の区間ではスイッチングするU相、W相には正相PWM信号が自動的に適用される。
 第5分割区間T5では、3相のうちU相、V相に正相PWM信号を適用し、3相のうちW相に逆相PWM信号を適用する。したがって、第1分割区間T1と同様に(C)の区間ではスイッチングするU相、V相には正相PWM信号が自動的に適用される。
 図9および図10を参照して説明したように、インバータ制御装置12は、3相の出力波形の位相の順番を変更可能である。したがって、制御の自由度を上げることができる。モータを駆動する場合は、モータの回転方向を切り替えることができる。
 また、信号生成部120は、逆相PWM区間において逆相PWM信号が適用されている相を、電流ゼロクロスにおいて正相PWM信号に切り替える。したがって、制御プログラムを簡素化することができる。
 また、信号生成部120は、複数の分割区間Tの各々に対して、3相全てに正相PWM信号を適用する正相PWM区間および逆相PWM区間のいずれかに決定する。したがって、制御プログラムを簡素化することができる。
 また、信号生成部120は、電流ゼロクロス毎に電気角1周を分割区間Tに分割する。したがって、制御プログラムを簡素化することができる。
 また、信号生成部120は、電気角1周を、第1分割区間T1と、第2分割区間T2と、第3分割区間T3と、第4分割区間T4と、第5分割区間T5と、第6分割区間T6とに分割する。したがって、制御プログラムを簡素化することができる。
 また、第1分割区間T1、第3分割区間T3および第5分割区間T5において、信号生成部120は、逆相PWM区間を適用する。第2分割区間T2、第4分割区間T4および第6分割区間T6において、信号生成部120は、全ての相に対して正相PWM区間を適用する。したがって、オフ固定モード(Min型)に対して制御を行うことができる。
 次に、図11を参照して、信号生成部120の動作の他の例について説明する。図11は、出力電圧と、出力電流とを示す図である。
 図11の上の図は、出力電圧Vu、出力電圧Vvおよび出力電圧Vwを示す。図11の上の図において、出力電圧Vuを実線で示しており、出力電圧Vvを破線で示しており、出力電圧Vwを一点鎖線で示している。図11の縦軸は入力電圧V1-V2で規格化した電圧値を表しており、各相の出力電圧は0~1の範囲の値をとる。またこの値は、PWM周期に対する各相の第1半導体スイッチング素子のオン時間の比率であるデューティ値も表している。図11の横軸は、モータの電気回転角を表しており、単位は度である。
 図11の下の図は、出力電流Iu、出力電流Ivおよび出力電流Iwを示す。図11の下の図において、出力電流Iuを実線で示しており、出力電流Ivを破線で示しており、出力電流Iwを一点鎖線で示している。図11の横軸は、モータの電気回転角を表しており、単位は度である。
 図11に示すように、出力電圧波形は、3相のうち1相がオン固定となる期間と有する。オン固定は、複数のPWM周期の期間にわたり、第1半導体スイッチング素子が連続的にオンし、第2半導体スイッチング素子が連続的にオフすることを示す。詳しくは、出力電圧Vuは、電気角30度~電気角150度でオン固定となる。出力電圧Vvは、電気角150度~電気角270度でオン固定となる。出力電圧Vwは、電気角0度~電気角30度および電気角270度~電気角360度でオン固定となる。本明細書において、図11に示すように出力電圧波形が3相のうち1相がオン固定となる期間を有する変調方式をオン固定モード(Max型)の変調方式と記載することがある。
 本実施形態では、第2分割区間T2、第4分割区間T4および第6分割区間T6において、信号生成部120は、逆相PWM区間を適用する。第1分割区間T1、第3分割区間T3および第5分割区間T5において、正相PWM区間を適用する。したがって、オン固定モード(Max型)に対して制御を行うことができる。
 本実施形態でも、信号生成部120は、逆相PWM区間において、時間軸方向に見て次に電流ゼロクロスを発生する相を逆相PWM相として選択する。詳しくは、逆相PWM区間である第2分割区間T2において、時間軸方向に見て次に電流ゼロクロスを発生するV相を逆相PWM相として選択する。逆相PWM区間である第4分割区間T4において、時間軸方向に見て次に電流ゼロクロスを発生するW相を逆相PWM相として選択する。逆相PWM区間である第6分割区間T6において、時間軸方向に見て次に電流ゼロクロスを発生するU相を逆相PWM相として選択する。
 オン固定モード(Max型)においても、電流位相遅延が30度を超える場合および超えない場合で、場合分けを行う必要が無い。したがって、制御プログラムを簡素化することができる。
 次に、図12を参照して、信号生成部120の動作の他の例について説明する。図12は、出力電圧と、出力電流とを示す図である。
 図12の上の図は、出力電圧Vu、出力電圧Vvおよび出力電圧Vwを示す。図12の上の図において、出力電圧Vuを実線で示しており、出力電圧Vvを破線で示しており、出力電圧Vwを一点鎖線で示している。図12の縦軸は入力電圧V1-V2で規格化した電圧値を表しており、各相の出力電圧は0~1の範囲の値をとる。またこの値は、PWM周期に対する各相の第1半導体スイッチング素子のオン時間の比率であるデューティ値も表している。図12の横軸は、モータの電気回転角を表しており、単位は度である。
 図12の下の図は、出力電流Iu、出力電流Ivおよび出力電流Iwを示す。図12の下の図において、出力電流Iuを実線で示しており、出力電流Ivを破線で示しており、出力電流Iwを一点鎖線で示している。図12の横軸は、モータの電気回転角を表しており、単位は度である。
 図12に示すように、出力電圧波形は、3相のうち1相がオン固定となる期間と、3相のうち1相がオフ固定となる期間と有する。詳しくは、出力電圧Vuは、電気角80度~電気角140度でオン固定となる。出力電圧Vuは、電気角260度~電気角320度でオフ固定となる。出力電圧Vvは、電気角200度~電気角260度でオン固定となる。出力電圧Vvは、電気角20度~電気角80度でオフ固定となる。出力電圧Vwは、電気角0度~電気角20度および電気角320度~電気角360度でオン固定となる。出力電圧Vwは、電気角140度~電気角200度でオフ固定となる。図12に示すように出力電圧波形が3相のうち1相がオン固定となる期間と、3相のうち1相がオフ固定となる期間と有する変調方式をオン-オフ固定モード(Max-Min型)の変調方式と記載することがある。オン-オフ固定モード(Max-Min型)の変調方式は、オン固定モード(Max型)とオフ固定モード(Min型)を60度区間毎に切り替える変調方式である。
 図12~図14Cを参照して、コンデンサCの充放電電流について説明する。図13A~図14Cは、コンデンサCの充放電電流を説明するための図である。
 図12に示すように、3相の出力電流(出力電流Iu、出力電流Ivおよび出力電流Iw)の位相は、3相の出力電圧(出力電圧Vu、出力電圧Vvおよび出力電圧Vw)の位相よりも20度遅延している。
 まず、(A)の区間に逆相PWMが適用される場合について説明する。図13A~図13Cは、(A)の区間のうち、電気角が140度~200度の区間を示す図である。
 図13Cに示すように、第1半導体スイッチング素子Vpには、正相のPWM信号が入力される。第1半導体スイッチング素子Upには、逆相のPWM信号が入力される。第1半導体スイッチング素子Wpには、LOWレベルの信号が入力される。
 図13Cにおける(1)の区間では、図13Aに示すように、Vpゲート信号がHIGHレベルである。また、Upゲート信号およびWpゲート信号はLOWレベルである。したがって、第1半導体スイッチング素子Vpがオンであり、第1半導体スイッチング素子Upおよび第1半導体スイッチング素子Wpがオフである。一方、第2半導体スイッチング素子Vnがオフであり、第2半導体スイッチング素子Unおよび第2半導体スイッチング素子Wnがオンである。したがって、図5Aの場合と比較して、インバータ電流が分散され、コンデンサCの充放電電流を抑制することができる。
 オン-オフ固定モード(Max-Min型)の変調方式の場合、(A)の区間だけでなく(B)の区間にも逆相PWMが適用される。
 次に、(B)の区間に逆相PWMを適用した場合について説明する。図14A~図14Cは、(B)の区間のうち、電気角が0度~20度および320度~360度の区間を示す図である。
 図14Cに示すように、第1半導体スイッチング素子Vpには、正相のPWM信号が入力される。第1半導体スイッチング素子Upには、逆相のPWM信号が入力される。第1半導体スイッチング素子Wpには、LOWレベルの信号が入力される。
 図14Cにおける(1)の区間では、図14Aに示すように、Vpゲート信号およびWpゲート信号がHIGHレベルである。また、Upゲート信号はLOWレベルである。したがって、第1半導体スイッチング素子Vpおよび第1半導体スイッチング素子Wpがオンであり、第1半導体スイッチング素子Upがオフである。一方、第2半導体スイッチング素子Vnおよび第2半導体スイッチング素子Wnがオフであり、第2半導体スイッチング素子Unがオンである。この場合、コンデンサCへの逆流電流は発生しない。したがって、コンデンサCの充放電電流を抑制することができる。
 図14Cにおける(2)の区間では、図14Bに示すように、Upゲート信号およびWpゲート信号がHIGHレベルである。また、Vpゲート信号がLOWレベルである。したがって、第1半導体スイッチング素子Upおよび第1半導体スイッチング素子Wpがオンであり、第1半導体スイッチング素子Vpがオフである。一方、第2半導体スイッチング素子Unおよび第2半導体スイッチング素子Wnがオフであり、第2半導体スイッチング素子Vnがオンである。この場合、コンデンサCへの電流の逆流が発生し、コンデンサCの充放電電流が増加する。この場合、コンデンサCへの逆流電流は発生しない。したがって、コンデンサCの充放電電流を抑制することができる。
 図15を参照して、逆相適用区間について説明する。図15は、出力電圧と、出力電流とを示す図である。図15は、モータMの回転方向がCW回転(時計回り回転)の場合を示す図である。つまり、回転方向は電気角が0度から360度に向かう方向である。
 図15に示すように、3相の出力電流(出力電流Iu、出力電流Ivおよび出力電流Iw)の位相は、3相の出力電圧(出力電圧Vu、出力電圧Vvおよび出力電圧Vw)の位相より40度遅延している。
 第1分割区間T1、第2分割区間T2、第3分割区間T3、第4分割区間T4、第5分割区間T5および第6分割区間T6において、信号生成部120は、逆相PWM区間を適用する。したがって、オン-オフ固定モード(Min-Max型)に対して制御を行うことができる。
 逆相PWM区間において、時間軸方向に見て次に電流ゼロクロスを発生する相を逆相PWM相として選択する。例えば、第1分割区間T1では、3相のうちV相、U相に正相PWM信号を適用し、3相のうちW相に逆相PWM信号を適用する。第2分割区間T2では、3相のうちU相、W相に正相PWM信号を適用し、3相のうちV相に逆相PWM信号を適用する。第3分割区間T3では、3相のうちV相、W相に正相PWM信号を適用し、3相のうちU相に逆相PWM信号を適用する。第4分割区間T4では、3相のうちV相、U相に正相PWM信号を適用し、3相のうちW相に逆相PWM信号を適用する。第5分割区間T5では、3相のうちU相、W相に正相PWM信号を適用し、3相のうちV相に逆相PWM信号を適用する。第6分割区間T6では、3相のうちV相、W相に正相PWM信号を適用し、3相のうちU相に逆相PWM信号を適用する。
 インバータ制御装置12は、オン固定モード(Max型)と、オフ固定モード(Min型)とを備える。信号生成部120は、電流ゼロクロス毎に、オン固定モード(Max型)とオフ固定モード(Min型)とを切り替える。したがって、制御プログラムを簡素化することができる。本実施形態では、1相のみが正電流の分割区間Tに、オン固定モード(Max型)の波形を適用する。詳しくは、本実施形態では、第2分割区間T2、第4分割区間T4および第6分割区間T6に、オン固定モード(Max型)の波形を適用する。一方、1相のみが負電流の分割区間Tに、オフ固定モード(Min型)の波形を適用する。詳しくは、本実施形態では、第1分割区間T1、第3分割区間T3および第5分割区間T5に、オフ固定モード(Min型)の波形を適用する。
 本実施形態でも、3相の出力電流の位相が3相の出力電圧よりも30度を超えて遅延し、(C)の区間が生じた場合であっても、コンデンサCへの逆流電流を抑制することができる。したがって、電流位相遅延が30度を超える場合および超えない場合で、場合分けを行う必要が無い。したがって、制御プログラムを簡素化することができる。
 図16を参照して、逆相適用区間についてさらに説明する。図16は、出力電圧と、出力電流とを示す図である。図16は、モータMの回転方向がCCW回転(反時計回り回転)の場合を示す図である。つまり、回転方向は電気角が360度から0度に向かう方向である。
 図16に示すように、3相の出力電流(出力電流Iu、出力電流Ivおよび出力電流Iw)の位相は、3相の出力電圧(出力電圧Vu、出力電圧Vvおよび出力電圧Vw)の位相より40度遅延している。
 第1分割区間T1、第2分割区間T2、第3分割区間T3、第4分割区間T4、第5分割区間T5および第6分割区間T6において、信号生成部120は、逆相PWM区間を適用する。
 逆相PWM区間において、時間軸方向に見て次に電流ゼロクロスを発生する相を逆相PWM相として選択する。例えば、第1分割区間T1では、3相のうちV相、W相に正相PWM信号を適用し、3相のうちU相に逆相PWM信号を適用する。第2分割区間T2では、3相のうちU相、V相に正相PWM信号を適用し、3相のうちW相に逆相PWM信号を適用する。第3分割区間T3では、3相のうちU相、W相に正相PWM信号を適用し、3相のうちV相に逆相PWM信号を適用する。第4分割区間T4では、3相のうちV相、W相に正相PWM信号を適用し、3相のうちU相に逆相PWM信号を適用する。第5分割区間T5では、3相のうちU相、V相に正相PWM信号を適用し、3相のうちW相に逆相PWM信号を適用する。第6分割区間T6では、3相のうちU相、W相に正相PWM信号を適用し、3相のうちV相に逆相PWM信号を適用する。
 インバータ制御装置12は、オン固定モード(Max型)と、オフ固定モード(Min型)とを備える。信号生成部120は、電流ゼロクロス毎に、オン固定モード(Max型)とオフ固定モード(Min型)とを切り替える、本実施形態では、1相のみが正電流の分割区間Tに、オン固定モード(Max型)の波形を適用する。詳しくは、本実施形態では、第2分割区間T2、第4分割区間T4および第6分割区間T6に、オン固定モード(Max型)の波形を適用する。一方、1相のみが負電流の分割区間Tに、オフ固定モード(Min型)の波形を適用する。詳しくは、本実施形態では、第1分割区間T1、第3分割区間T3および第5分割区間T5に、オフ固定モード(Min型)の波形を適用する。
 本実施形態でも、3相の出力電流の位相が3相の出力電圧よりも30度を超えて遅延し、(C)の区間が生じた場合であっても、コンデンサCへの逆流電流を抑制することができる。したがって、電流位相遅延が30度を超える場合および超えない場合で、場合分けを行う必要が無い。したがって、制御プログラムを簡素化することができる。
 図17を参照して逆相適用区間についてさらに説明する。図17は、各分割区間における逆相PWMを適用する区間と、逆相PWM信号を適用する相とを示す図である。
 図17に示すように、オフ固定モード(Min型)のCW回転では、第1分割区間T1において、W相に逆相PWM信号が適用される。第3分割区間T3において、U相に逆相PWM信号が適用される。第5分割区間T5において、V相に逆相PWM信号が適用される。
 オフ固定モード(Min型)のCCW回転では、第1分割区間T1において、U相に逆相PWM信号が適用される。第3分割区間T3において、V相に逆相PWM信号が適用される。第5分割区間T5において、W相に逆相PWM信号が適用される。
 オン固定モード(Max型)のCW回転では、第2分割区間T2において、V相に逆相PWM信号が適用される。第4分割区間T4において、W相に逆相PWM信号が適用される。第6分割区間T6において、U相に逆相PWM信号が適用される。
 オン固定モード(Max型)のCCW回転では、第2分割区間T2において、W相に逆相PWM信号が適用される。第4分割区間T4において、U相に逆相PWM信号が適用される。第6分割区間T6において、V相に逆相PWM信号が適用される。
 オン-オフ固定モード(Min-Max型)のCW回転では、第1分割区間T1において、W相に逆相PWM信号が適用される。第2分割区間T2において、V相に逆相PWM信号が適用される。第3分割区間T3において、U相に逆相PWM信号が適用される。第4分割区間T4において、W相に逆相PWM信号が適用される。第5分割区間T5において、V相に逆相PWM信号が適用される。第6分割区間T6において、U相に逆相PWM信号が適用される。
 オン-オフ固定モード(Min-Max型)のCCW回転では、第1分割区間T1において、U相に逆相PWM信号が適用される。第2分割区間T2において、W相に逆相PWM信号が適用される。第3分割区間T3において、V相に逆相PWM信号が適用される。第4分割区間T4において、U相に逆相PWM信号が適用される。第5分割区間T5において、W相に逆相PWM信号が適用される。第6分割区間T6において、V相に逆相PWM信号が適用される。
 図17に示すように、信号生成部120は、逆相PWM信号が適用される同一の分割区間Tに対し、回転方向によって、異なる相に逆相PWM信号を適用する。したがって、回転方向に応じて制御を行うことができる。
 図18を参照して、インバータ制御方法について説明する。図18は、インバータ制御方法を示すフローチャートである。図18に示すステップS102~ステップS118の処理が実行されることによって、インバータ制御が行われる。インバータ制御方法は、2相変調方式の3相インバータを制御する方法である。
 ステップS102:信号生成部120は、瞬時角の導出を行う。詳しくは、現像の回転子の位置(電気角度)を導出する。処理は、ステップS104に進む。
 ステップS104:信号生成部120は、各相出力の瞬時値を導出する。詳しくは、瞬時角に基づいて、各相の正弦波出力電圧を算出する。処理は、ステップS106に進む。
 ステップS106:信号生成部120は、瞬時角がどの分割区間Tに含まれるかを判定する。処理は、ステップS108に進む。
 ステップS106:信号生成部120は、分割区間Tに応じた変量形式(Min型またはMax型)にて変調オフセットを計算する。すなわち、Dutyを導出する。
 ステップS108:信号生成部120は、分割区間Tと回転方向より逆相PWM適用パターンを選択する。詳しくは、信号生成部120は、逆相PWMの適用の有無、適用する相を選択する。より詳しくは、信号生成部120は、逆相PWM区間において、時間軸方向に見て次に電流ゼロクロスを発生する相を逆相PWM相として選択する。なお、ステップS108は、「選択工程」の一例に相当する。処理は、ステップS112に進む。
 ステップS112:信号生成部120は、逆相を適用する相が存在するか否かを判定する。逆相を適用する相が存在しないと信号生成部120が判定した場合(ステップS112:No)、処理は、ステップS116に進む。逆相を適用する相が存在すると信号生成部120が判定した場合(ステップS112:Yes)、処理は、ステップS114に進む。
 ステップS114:信号生成部120は、逆相PWM相のDutyを1-Dutyに変更する。処理は、ステップS116に進む。
 ステップS116:信号生成部120は、Duty値をレジスタへ設定する。処理は、ステップS118に進む。
 ステップS118:信号生成部120は、正相PWMおよび逆相PWMの設定を行う。処理は、終了する。
 以上、図18を説明したように、インバータ制御方法は、前記逆相PWM区間において、時間軸方向に見て次に電流ゼロクロスを発生する相を逆相PWM相として選択する選択工程を包含する。逆相PWM相として選択された相が、図9、図10、図15、図16の(C)区間のようにオン固定ないしオフ固定となる場合は、逆相PWM相に設定したまま、レジスタへ設定するDuty値を1ないし0へ設定すればよい。したがって、電流位相遅延が30度を超える場合および超えない場合で、場合分けを行う必要が無い。したがって、制御プログラムを簡素化することができる。
 以上、図面(図1~図18)を参照しながら本発明の実施形態を説明した。但し、本発明は、上記の実施形態に限られるものではなく、その要旨を逸脱しない範囲で種々の態様において実施することが可能である。図面は、理解しやすくするために、それぞれの構成要素を主体に模式的に示しており、図示された各構成要素の厚み、長さ、個数等は、図面作成の都合上から実際とは異なる。また、上記の実施形態で示す各構成要素の材質や形状、寸法等は一例であって、特に限定されるものではなく、本発明の効果から実質的に逸脱しない範囲で種々の変更が可能である。
 本発明は、インバータ制御装置、インバータ回路、モータモジュールおよびインバータ制御方法に好適に利用できる。
12    インバータ制御装置
100   モータ駆動回路(インバータ回路)
110  インバータ部(3相インバータ)
112、112u、112v、112w 直列体
120   信号生成部
200   モータモジュール
C     コンデンサ
M     モータ
N     第2入力端子
P     第1入力端子
T     分割区間
T1    第1分割区間
T2    第2分割区間
T3    第3分割区間
T4    第4分割区間
T5    第5分割区間
T6    第6分割区間
V1    第1の電圧
V2    第2の電圧

Claims (14)

  1.  2相変調方式の3相インバータを制御するインバータ制御装置であって、
     前記3相インバータは、
     第1の電圧が印加される第1入力端子と、
     前記第1の電圧よりも低い第2の電圧が印加される第2入力端子と、
     前記第1入力端子と前記第2入力端子との間に接続されるコンデンサと、
     2つの半導体スイッチング素子が直列に接続されている3つの直列体と
    を備え、
     前記インバータ制御装置は、前記3つの直列体のそれぞれに入力する3つのPWM信号を生成する信号生成部を備え、
     前記PWM信号は、逆相PWM信号を適用する逆相PWM区間を少なくとも含み、
     前記逆相PWM信号は、正相PWM信号に対して逆位相であり、
     前記逆相PWM区間は、3相のうち2相に前記正相PWM信号を適用し、3相のうち1相に前記逆相PWM信号を適用する区間であり、
     前記信号生成部は、前記逆相PWM区間において、時間軸方向に見て次に電流ゼロクロスを発生する相を逆相PWM相として選択する、インバータ制御装置。
  2.  前記3相の出力波形の位相の順番を変更可能である、請求項1に記載のインバータ制御装置。
  3.  前記信号生成部は、前記逆相PWM区間において前記逆相PWM信号が適用されている相を、電流ゼロクロスにおいて前記正相PWM信号に切り替える、請求項1または請求項2に記載のインバータ制御装置。
  4.  前記信号生成部は、電気角1周を複数の分割区間に分割し、
     前記信号生成部は、前記複数の分割区間の各々に対して、3相全てに正相PWM信号を適用する正相PWM区間および前記逆相PWM区間のいずれかに決定する、請求項1から請求項3のいずれか1項に記載のインバータ制御装置。
  5.  前記信号生成部は、前記電流ゼロクロス毎に前記電気角1周を前記分割区間に分割する、請求項4に記載のインバータ制御装置。
  6.  前記信号生成部は、
     前記電気角1周を、
     第1分割区間と、
     前記第1分割区間の次に続く第2分割区間と、
     前記第2分割区間の次に続く第3分割区間と、
     前記第3分割区間の次に続く第4分割区間と、
     前記第4分割区間の次に続く第5分割区間と、
     前記第5分割区間の次に続く第6分割区間と
    に分割する、請求項4または請求項5に記載のインバータ制御装置。
  7.  第1分割区間、第3分割区間および第5分割区間において、前記信号生成部は、前記逆相PWM区間を適用し、
     第2分割区間、第4分割区間および第6分割区間において、前記信号生成部は、全ての相に対して前記正相PWM区間を適用する、請求項6に記載のインバータ制御装置。
  8.  第2分割区間、第4分割区間および第6分割区間において、前記信号生成部は、前記逆相PWM区間を適用し、
     第1分割区間、第3分割区間および第5分割区間において、前記正相PWM区間を適用する、請求項6に記載のインバータ制御装置。
  9.  第1分割区間、第2分割区間、第3分割区間、第4分割区間、第5分割区間および第6分割区間において、前記信号生成部は、前記逆相PWM区間を適用する、請求項6に記載のインバータ制御装置。
  10.  オン固定モードと、オフ固定モードとを備え、
     前記信号生成部は、前記電流ゼロクロス毎に、前記オン固定モードと前記オフ固定モードとを切り替える、請求項9に記載のインバータ制御装置。
  11.  前記信号生成部は、前記逆相PWM信号が適用される同一の前記分割区間に対し、回転方向によって、異なる相に前記逆相PWM信号を適用する、請求項1から請求項10のいずれか1項に記載のインバータ制御装置。
  12.  請求項1から請求項11のいずれか1項に記載のインバータ制御装置と、
     第1の電圧が印加される第1入力端子と、
     前記第1の電圧よりも低い第2の電圧が印加される第2入力端子と、
     前記第1入力端子と前記第2入力端子との間に接続されるコンデンサと、
     2つの半導体スイッチング素子が直列に接続されている3つの直列体と
    を備える、インバータ回路。
  13.  請求項1から請求項11のいずれか1項に記載のインバータ制御装置と、
     前記インバータ制御装置に制御され、2相変調方式であり3相のインバータと、
     前記インバータの出力が入力される3相モータと
    を備える、モータモジュール。
  14.  2相変調方式の3相インバータを制御するインバータ制御方法であって、
     前記3相インバータは、
     第1の電圧が印加される第1入力端子と、
     前記第1の電圧よりも低い第2の電圧が印加される第2入力端子と、
     前記第1入力端子と前記第2入力端子との間に接続されるコンデンサと、
     2つの半導体スイッチング素子が直列に接続されている3つの直列体と
    を備え、
     3つのPWM信号が、前記3つの直列体のそれぞれに入力され、
     前記PWM信号は、逆相PWM信号を適用する逆相PWM区間を少なくとも含み、
     前記逆相PWM信号は、正相PWM信号に対して逆位相であり、
     前記逆相PWM区間は、3相のうち2相に前記正相PWM信号を適用し、3相のうち1相に前記逆相PWM信号を適用する区間であり、
     前記インバータ制御方法は
     前記逆相PWM区間において、時間軸方向に見て次に電流ゼロクロスを発生する相を逆相PWM相として選択する選択工程を包含する、インバータ制御方法。
PCT/JP2021/048222 2021-02-25 2021-12-24 インバータ制御装置、インバータ回路、モータモジュールおよびインバータ制御方法 WO2022181037A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023502117A JPWO2022181037A1 (ja) 2021-02-25 2021-12-24
CN202180094666.6A CN116998104A (zh) 2021-02-25 2021-12-24 逆变器控制装置、逆变器电路、电动机模块以及逆变器控制方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-028510 2021-02-25
JP2021028510 2021-02-25

Publications (1)

Publication Number Publication Date
WO2022181037A1 true WO2022181037A1 (ja) 2022-09-01

Family

ID=83048067

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/048222 WO2022181037A1 (ja) 2021-02-25 2021-12-24 インバータ制御装置、インバータ回路、モータモジュールおよびインバータ制御方法

Country Status (4)

Country Link
JP (1) JPWO2022181037A1 (ja)
CN (1) CN116998104A (ja)
TW (1) TW202234812A (ja)
WO (1) WO2022181037A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013215093A (ja) * 2013-07-22 2013-10-17 Daihen Corp インバータ制御回路、このインバータ制御回路を備えた系統連系インバータシステム
JP2014108021A (ja) * 2012-11-29 2014-06-09 Renesas Electronics Corp Pwm出力装置
WO2019138698A1 (ja) * 2018-01-10 2019-07-18 日本電産株式会社 電力変換装置、モータモジュールおよび電動パワーステアリング装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014108021A (ja) * 2012-11-29 2014-06-09 Renesas Electronics Corp Pwm出力装置
JP2013215093A (ja) * 2013-07-22 2013-10-17 Daihen Corp インバータ制御回路、このインバータ制御回路を備えた系統連系インバータシステム
WO2019138698A1 (ja) * 2018-01-10 2019-07-18 日本電産株式会社 電力変換装置、モータモジュールおよび電動パワーステアリング装置

Also Published As

Publication number Publication date
TW202234812A (zh) 2022-09-01
JPWO2022181037A1 (ja) 2022-09-01
CN116998104A (zh) 2023-11-03

Similar Documents

Publication Publication Date Title
JP6087666B2 (ja) 電力変換装置
JP3841282B2 (ja) Pwmインバータ装置
US20050190005A1 (en) Method and apparatus for generating pulse-width modulated waveform
WO2020045636A1 (ja) 回転電機制御装置
US11303224B2 (en) Inverter device with high follow-up capability
EP3853985A1 (en) Multi-level inverter
JPWO2020105133A1 (ja) 電力変換装置
WO2022181037A1 (ja) インバータ制御装置、インバータ回路、モータモジュールおよびインバータ制御方法
US11848600B2 (en) Power conversion device with control circuit to adjust a common mode voltage of combined output voltages
TWI784727B (zh) 馬達驅動電路及馬達模組
JP2006230035A (ja) 電力変換装置とその駆動方法
JP2022134404A (ja) インバータの制御装置
WO2022181084A1 (ja) インバータ回路およびモータモジュール
WO2022208911A1 (ja) 電力変換装置およびモータモジュール
WO2023032194A1 (ja) 電力変換装置
WO2022059218A1 (ja) モータ駆動回路およびモータモジュール
JP7523693B2 (ja) 電力変換器の制御部および電力変換装置
WO2023175759A1 (ja) 電力変換装置
JPWO2019038814A1 (ja) 電力変換装置および電動パワーステアリング装置
JP2002058251A (ja) 電力変換器の制御装置
WO2022158521A1 (ja) インバータ、インバータの制御方法、インバータの制御プログラム、コンバータ、駆動装置
JP6921273B1 (ja) 回転機制御装置
US20230396184A1 (en) Power converting apparatus, three-level inverter, control method of power converting apparatus, and control method of three-level inverter
JPH0824426B2 (ja) パルス幅変調形インバ−タ装置
JP6575865B2 (ja) 3レベルインバータの制御方法及び制御装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21928130

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023502117

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180094666.6

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21928130

Country of ref document: EP

Kind code of ref document: A1