WO2022158521A1 - インバータ、インバータの制御方法、インバータの制御プログラム、コンバータ、駆動装置 - Google Patents

インバータ、インバータの制御方法、インバータの制御プログラム、コンバータ、駆動装置 Download PDF

Info

Publication number
WO2022158521A1
WO2022158521A1 PCT/JP2022/001972 JP2022001972W WO2022158521A1 WO 2022158521 A1 WO2022158521 A1 WO 2022158521A1 JP 2022001972 W JP2022001972 W JP 2022001972W WO 2022158521 A1 WO2022158521 A1 WO 2022158521A1
Authority
WO
WIPO (PCT)
Prior art keywords
potential
transistor
current
voltage
low
Prior art date
Application number
PCT/JP2022/001972
Other languages
English (en)
French (fr)
Inventor
泰生 大野
ミヒャエル ハイダー
ドミニク ボルティス
ヨハン ベー コラー
Original Assignee
ナブテスコ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ナブテスコ株式会社 filed Critical ナブテスコ株式会社
Priority to JP2022576739A priority Critical patent/JPWO2022158521A1/ja
Priority to CN202280011275.8A priority patent/CN116802978A/zh
Priority to EP22742643.4A priority patent/EP4283850A1/en
Publication of WO2022158521A1 publication Critical patent/WO2022158521A1/ja
Priority to US18/356,723 priority patent/US20230361692A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0003Details of control, feedback or regulation circuits
    • H02M1/0029Circuits or arrangements for limiting the slope of switching signals, e.g. slew rate
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/4837Flying capacitor converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/487Neutral point clamped inverters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P27/00Arrangements or methods for the control of AC motors characterised by the kind of supply voltage
    • H02P27/04Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage
    • H02P27/06Arrangements or methods for the control of AC motors characterised by the kind of supply voltage using variable-frequency supply voltage, e.g. inverter or converter supply voltage using dc to ac converters or inverters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/04Modifications for accelerating switching
    • H03K17/042Modifications for accelerating switching by feedback from the output circuit to the control circuit
    • H03K17/04206Modifications for accelerating switching by feedback from the output circuit to the control circuit in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/10Modifications for increasing the maximum permissible switched voltage
    • H03K17/102Modifications for increasing the maximum permissible switched voltage in field-effect transistor switches
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors

Definitions

  • the present invention relates to control technology for inverters and converters.
  • An inverter used for AC drive of a motor etc. outputs AC power by complementary on/off control of transistor pairs on the high-potential side and low-potential side of the output terminal.
  • a converter outputs DC power from AC power by an operation opposite to that of an inverter.
  • the current path when the transistor is on (the channel between the source and drain if the transistor is a MOSFET (Metal Oxide Semiconductor Field Effect Transistor), and the path between the emitter and collector if the transistor is a bipolar transistor ) is in a conducting state, current flows and the voltage can be regarded as zero. Also, when the transistor is off, the current path is in an insulated state, so the current can be regarded as zero and a voltage is generated. Since the voltage is zero when on and the current is zero when off, the transistor consumes no power. However, when the transistors are switched on and off, the voltage and current are not zero, resulting in wasted power consumption known as switching losses.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the present invention has been made in view of this situation, and its purpose is to provide an inverter or converter that can reduce switching loss.
  • an inverter includes a high-potential input terminal with a high potential and a low-potential input terminal with a low potential, and an input terminal to which DC power is input between the two input terminals.
  • an output terminal for outputting AC power a high-potential transistor having a current path connecting the high-potential input terminal side and the output terminal side, and a low-potential transistor having a current path connecting the low-potential input terminal side and the output terminal side
  • a driver that performs switching control to convert DC power into AC power by inputting a control signal to each of a transistor pair comprising a high-potential transistor and a low-potential transistor and switching the conduction state of each current path in a complementary manner and
  • the driver includes at least one of a current regulating element that adjusts the current of each current path and a voltage regulating element that adjusts the voltage of each current path, and at least one of the current regulating element and the voltage regulating element is used in switching control. , the time rate of change of the current in each current path is adjusted to be greater than the time rate of change in the voltage of each current path.
  • the rate of change over time be smaller than the rate of change over time of the current.
  • the time rate of change of current and voltage in the above is defined as follows. If the current switches between the minimum value Imin and the maximum value Imax during the time Ti, the time rate of change of the current is expressed as (Imax ⁇ Imin)/Ti, hereinafter also referred to as di/dt using the differential symbol. show. If the voltage switches between a minimum value Vmin and a maximum value Vmax during time Tv, the time rate of change of the current is expressed as (Vmax ⁇ Vmin)/Tv, hereinafter also referred to as dv/dt using the differential symbol. show. When the current and voltage change in opposite directions, the sign of the time rate of change is reversed. shall be compared.
  • the device includes a high potential output terminal with a high potential and a low potential output terminal with a low potential, between the output terminals outputting DC power, an input terminal receiving AC power, and a high potential output terminal.
  • a transistor pair comprising a high potential transistor having a current path connecting the terminal side and the input terminal side and a low potential transistor having a current path connecting the low potential output terminal side and the input terminal side, a high potential transistor and a low potential transistor and a driver that performs switching control for converting AC power into DC power by inputting a control signal to each of them and switching the conductive states of the respective current paths in a complementary manner.
  • the driver includes at least one of a current regulating element that adjusts the current of each current path and a voltage regulating element that adjusts the voltage of each current path, and at least one of the current regulating element and the voltage regulating element is used in switching control. , the time rate of change of the current in each current path is adjusted to be greater than the time rate of change in the voltage of each current path.
  • This device includes a motor driven by multi-phase AC power with different phases, and a plurality of inverters for generating AC power of each phase.
  • Each inverter includes a high potential input terminal with a high potential and a low potential input terminal with a low potential, between the two input terminals an input terminal to which DC power is input, an output terminal for outputting AC power, and a high potential input terminal.
  • a transistor pair comprising a high potential transistor having a current path connecting a terminal side and an output terminal side and a low potential transistor having a current path connecting a low potential input terminal side and an output terminal side, a high potential transistor and a low potential transistor and a driver that performs switching control for converting DC power into AC power by inputting a control signal to each of them and switching the conductive states of the respective current paths in a complementary manner.
  • the driver includes at least one of a current regulating element that adjusts the current of each current path and a voltage regulating element that adjusts the voltage of each current path, and at least one of the current regulating element and the voltage regulating element is used in switching control. , the time rate of change of the current in each current path is adjusted to be greater than the time rate of change in the voltage of each current path.
  • the method includes a high potential input terminal with a high potential and a low potential input terminal with a low potential, between the two input terminals an input terminal receiving DC power, an output terminal outputting AC power, and a high potential input terminal.
  • a control method for an inverter including a high potential transistor having a current path connecting a terminal side and an output terminal side, and a transistor pair including a low potential transistor having a current path connecting a low potential input terminal side and an output terminal side. and a switching control step of inputting a control signal to each of the high-potential transistor and the low-potential transistor and switching the conductive states of the respective current paths in a complementary manner to convert the DC power into the AC power.
  • the time rate of change of current in each current path is adjusted to be greater than the time rate of change in voltage of each current path.
  • the switching loss of inverters and converters can be reduced.
  • FIG. 2 is a diagram schematically showing the configuration of an inverter
  • FIG. 4 is a diagram illustrating a configuration example of a driver
  • FIG. It is a figure which shows the effect
  • FIG. 4 is a diagram showing the conduction state and current paths of each transistor when the output current is positive
  • FIG. 4 is a diagram showing the conduction state and current paths of each transistor when the output current is negative
  • FIG. 4 is a diagram showing current and voltage of a capacitor provided in a connection path
  • FIG. 4 is a diagram showing an example in which the charge of a capacitor increases or decreases through one switching operation of an inverter
  • FIG. 4 is a diagram illustrating a configuration example of a correction device that corrects switching time imbalance
  • It is a figure which shows the structural example which provided the diode in the connection path instead of the capacitor.
  • FIG. 1 schematically shows the configuration of a motor device 1 including an embodiment of the present invention.
  • the motor device 1 includes an inverter 10 that generates AC power based on DC power, and a motor 20 that is driven by the AC power.
  • the motor 20 is a 3-phase brushless motor having 3-phase coils 20U, 20V, and 20W of U-phase, V-phase, and W-phase.
  • Inverter 10 corresponds to each phase of motor 20, and includes a U-phase inverter 10U that generates U-phase AC power, a V-phase inverter 10V that generates V-phase AC power, and a W-phase inverter that generates W-phase AC power. Includes 10W.
  • Inverters 10U, 10V, and 10W for each phase apply AC power with different phases to coils 20U, 20V, and 20W for each phase based on the rotational position of the rotor detected by Hall elements H1, H2, and H3 of motor 20. By doing so, a rotating magnetic field is generated.
  • Desired rotational power is obtained from the rotor rotating by this rotating magnetic field.
  • motor 20 may be another type of motor that is driven by AC voltage.
  • the number of phases of the motor 20 is not limited to 3, and may be any natural number of 2 or more.
  • An inverter 10 for generating AC power has a high potential input terminal 11 to which a high DC power supply potential Vdd is input, a low potential input terminal 12 to which a low DC power supply potential Vss is input, a high potential input terminal 11 and a low potential input.
  • An output terminal 13 is provided between terminals 12 to output an alternating voltage that varies between Vdd and Vss.
  • Vss may be any potential lower than Vdd, Vss is assumed to be zero for simplicity of explanation below.
  • FIG. 2 schematically shows the configuration of inverter 10 (U-phase inverter 10U).
  • the inverter 10 comprises a first transistor pair 14 , a second transistor pair 15 , a first driver 16 , a second driver 17 , a connection path 18 and a controller 100 .
  • the first transistor pair 14 includes a first high potential transistor 14H having a current path connecting the high potential input terminal 11 side and the output terminal 13 side, and a current connecting the low potential input terminal 12 side and the output terminal 13 side.
  • a first low potential transistor 14L having a path is provided.
  • Each of the transistors 14H and 14L is an N-channel MOSFET, and a channel formed between the source/drain in response to a control signal input to the gate electrode by the first driver 16 constitutes a current path.
  • These transistors 14H and 14L and other transistors to be described later are not limited to N-channel MOSFETs, and all or part of them may be composed of P-channel MOSFETs. Further, these transistors are not limited to MOSFETs, and may be composed of PNP-type or NPN-type bipolar transistors or IGBTs (Insulated Gate Bipolar Transistors).
  • the second transistor pair 15 includes a second high potential transistor 15H having a current path connecting the high potential input terminal 11 side and the first high potential transistor 14H side, and a low potential input terminal 12 side and the first low potential transistor 14H.
  • a second low potential transistor 15L having a current path connecting the potential transistor 14L side is provided. That is, between the output terminal 13 and the high potential input terminal 11, a first high potential transistor 14H and a second high potential transistor 15H are connected in series in the direction from the output terminal 13 toward the high potential input terminal 11.
  • a first low potential transistor 14L and a second low potential transistor 15L are connected in series between the output terminal 13 and the low potential input terminal 12 in the direction from the output terminal 13 to the low potential input terminal 12 .
  • Each of the transistors 15H and 15L is a MOSFET, and a channel formed between the source/drain in response to a control signal input to the gate electrode by the second driver 17 constitutes a current path.
  • the first driver 16 includes a first high potential driver 16H that inputs a control signal to the gate electrode of the first high potential transistor 14H under the control of the controller 100, and a first low potential driver 16H under the control of the controller 100.
  • a first low-potential driver 16L for inputting a control signal to the gate electrode of the potential transistor 14L is provided, and the conduction states of the current paths of the transistors 14H and 14L are switched complementarily to each other to convert DC power into AC power. 1 switching control.
  • “complementary switching” means that the on/off states of the transistors 14H and 14L are controlled to be opposite to each other.
  • the transistor 14H when the transistor 14H is on, the transistor 14L is turned off, when the transistor 14H is off, the transistor 14L is turned on, and when the transistor 14H is switched from on to off, the transistor 14L is turned on. When switching from off to on, the transistor 14L is switched from on to off.
  • the second driver 17 includes a second high potential driver 17H that inputs a control signal to the gate electrode of the second high potential transistor 15H under the control of the controller 100, and a second low potential driver 17H under the control of the controller 100.
  • a second low-potential driver 17L for inputting a control signal to the gate electrode of the potential transistor 15L is provided, and the conduction states of the current paths of the transistors 15H and 15L are switched in a complementary manner to convert DC power into AC power. 2 switching control.
  • the meaning of "complementary switching" means controlling the on/off states of the transistors 15H and 15L to be opposite to each other, as in the case of the first driver 16 described above.
  • the second switching control by the second driver 17 is performed at timing shifted by a predetermined time from the timing of the first switching control by the first driver 16 .
  • connection path 18 mutually connects the connection portion 18H between the first high potential transistor 14H and the second high potential transistor 15H and the connection portion 18L between the first low potential transistor 14L and the second low potential transistor 15L. do.
  • the connection path 18 is provided with a capacitor 181 having a capacitance value C as one aspect of the voltage fluctuation suppressing element.
  • driver 30 Two configuration examples of the driver 30 are shown in FIGS. 3A and 3B.
  • a driver 30 according to the first configuration example of FIG.
  • An operational amplifier 32 connected to a terminal 31, a gate resistor 33 having a resistance value RG provided between the operational amplifier 32 and the gate electrode, and a branch line branched from between the gate resistor 33 and the gate electrode and connected to the drain of the transistor.
  • a mirror capacitor 34 of capacitance value CM is provided. Note that the input voltage vGS is generated by the controller 100 in FIG.
  • the gate resistor 33 functions as a current adjusting element that adjusts the channel current when the transistor is switched on and off. Specifically, the time rate of change di/dt of the current when the transistor is switched on and off can be adjusted by the resistance value RG . If the resistance value RG is increased, di/dt will be reduced, and if the resistance value RG is decreased, di/dt will be increased. As will be described later, in this embodiment, it is preferable to increase di/dt, and it is preferable to decrease the resistance value RG . According to simulations conducted by the present inventor, a substantially infinite di/dt can be realized within a realistic range of resistance values RG .
  • the resistance value RG may be variable even during the operation of the driver 30 to precisely control di/dt when the transistor is switched on and off.
  • Miller capacitor 34 functions as a voltage regulation element that regulates the voltage of the channel when the transistor is switched on and off.
  • the time change rate dv /dt of the voltage when the transistor is switched on and off can be adjusted by the capacitance value CM.
  • CM capacitance value
  • the operational amplifier 32 can function as both a current adjustment element and a voltage adjustment element.
  • the adjustment targets for di/dt and dv/dt are as described above. di/dt is as large as possible (virtually infinite), and dv/dt is Enlarge.
  • a driver 30 according to the second configuration example of FIG.
  • An operational amplifier 32 connected to a terminal 31, a gate resistor 33 having a resistance value RG provided between the operational amplifier 32 and the gate electrode, and a transistor drain branched from between the voltage input terminal 31 on the gate side and the operational amplifier 32.
  • a capacitor 35 having a capacitance value of CV is provided in a branch line connected to the branch line. Only the capacitor 35 is different from the first configuration example of FIG.
  • Capacitor 35 functions as a voltage regulation element that regulates the voltage of the channel when the transistor is switched on and off. Specifically, the time change rate dv/dt of the voltage when the transistor is switched on and off can be adjusted by the capacitance value CV. Similarly to the capacitance value CM of the mirror capacitor 34, the capacitance value CV may be variable even during the operation of the driver 30 to precisely control the dv/dt when the transistor is switched on and off. Furthermore, the capacitor 35 can adjust not only the output waveform of the driver 30 but also the output waveform of the entire inverter 10, so that unnecessary radiation of electromagnetic noise can be suppressed.
  • FIG. 4 shows the action of the inverter 10 having the above configuration.
  • FIG. 4A shows the configuration of inverter 10 shown in FIG.
  • FIG. 4B shows the case where the current iU flowing through the output terminal 13 is positive.
  • FIG. 4C shows the case where the current iU flowing through the output terminal 13 is negative.
  • the current iU is positive when it flows out from the output terminal 13 in FIG. 4A, and negative when it flows into the output terminal 13.
  • FIG. 4(B1) and (C1) show the voltage and current appearing at the output terminal 13.
  • FIGS. 4B2 and 4C2 show the channel voltage and current between the source/drain of the four transistors 15H, 14H, 14L, 15L. 4 (B3) and (C3) show the switching loss of the inverter 10.
  • FIG. 4A shows the configuration of inverter 10 shown in FIG.
  • FIG. 4B shows the case where the current iU flowing through the output terminal 13 is positive.
  • FIG. 4C shows the case where the current
  • FIG. 4B when the current iU is positive will be described.
  • FIG. 4B1 shows the voltage and current appearing at the output terminal 13 when the inverter 10 performs one switching operation.
  • the voltage is a trapezoidal pulse with a height of V DC (Vdd ⁇ Vss), and the magnitude of the current i U is constant.
  • Vdd ⁇ Vss the voltage of the output terminal 13
  • VDC linearly.
  • the switch-off time dT SW determines the width of the trapezoidal voltage pulse.
  • a common pulse width modulation (PWM) technique generates an alternating voltage of a desired frequency by varying the width or duty ratio of each voltage pulse.
  • PWM pulse width modulation
  • FIG. 5 shows the conduction state and current path of each transistor in each interval i-vi.
  • the current iU flowing through the output terminal of FIG. 5 is positive in all intervals and has a constant magnitude as shown in FIG. 4(B1).
  • the transistors 15H and 14H are off and the transistors 14L and 15L are on. Since the low potential input terminal 12 is electrically connected to the output terminal 13, the voltage of the output terminal 13 is 0V. Since the voltage V DC between the high potential input terminal 11 and the output terminal 13 is equally divided by the transistors 15H and 14H, the voltage of each transistor is V DC /2. The voltage of the transistors 14L and 15L in the ON state is 0V, and the current iU flows.
  • the on/off states of transistors 15H and 15L are switched complementarily. That is, the transistor 15H switches from an off state to an on state, and the transistor 15L switches from an on state to an off state. This corresponds to the second switching control of the present invention.
  • the transistor 15H switches to the ON state, the current from the high potential input terminal 11 flows through the transistor 15H and passes through the capacitor 181 of the connection path 18 and the ON state transistor 14L. It flows through the output terminal 13 . Looking at the voltage and current of the transistors 15H and 15L in FIG.
  • a configuration for adjusting dv/dt and di/dt in this way has been described with reference to FIG.
  • the on/off states of the transistors 14H and 14L are switched complementarily. That is, the transistor 14H switches from the off state to the on state, and the transistor 14L switches from the on state to the off state. This corresponds to the first switching control of the present invention.
  • the transistor 14H switches to the ON state, the current from the high potential input terminal 11 flows through the transistor 14H via the transistor 15H which is in the ON state. Looking at the voltage and current of the transistors 14H and 14L in FIG.
  • the second switching control in which the on/off states of the transistors 15H and 15L are switched complementarily is performed in the section ii
  • the first switching control in which the on/off states of the transistors 14H and 14L are complementarily switched is performed in the following section iii. control is performed. That is, the second switching control is performed before the first switching control. In other words, the timing of switching control of each transistor pair is earlier for the transistor pair on the side farther from the output terminal 13 (the second transistor pair 15 in this example). Also, the timings of the second switching control and the first switching control are shifted by the voltage switching transient time t R /2 of the respective channels of the transistors 15H and 15L in the second switching control (section ii). .
  • the voltages of the transistors 14H and 14L are switched in the section iii immediately after the voltages of the transistors 15H and 15L are switched in the section ii. Furthermore, as mentioned above, the time rate of change dv/dt of the voltages in intervals ii and iii are equal to each other at V DC / tR . As a result, a smoothly connected voltage waveform is obtained at time t R /2 as shown in FIG. 4(B1).
  • the trapezoidal voltage pulse has two levels of 0V and VDC . Normally, there are three levels of 0V, V DC /2, and V DC , but two levels of 0 V and V DC are simulated, so this is also called "three-level/pseudo two-level control".
  • interval iv the state at the end of interval iii is maintained, and a voltage pulse of a desired width is formed based on pulse width modulation.
  • the transistors 15H and 14H are on and the transistors 14L and 15L are off. Since the high potential input terminal 11 is conducting with the output terminal 13, the voltage of the output terminal 13 is VDC . Since the voltage V DC between the low potential input terminal 12 and the output terminal 13 is equally divided by the transistors 14L and 15L, the voltage of each transistor is V DC /2. The voltage of the transistors 15H and 14H in the ON state is 0 V, and the current iU flows.
  • the on/off states of the transistors 15H and 15L are switched complementarily. That is, the transistor 15H switches from the ON state to the OFF state, and the transistor 15L switches from the OFF state to the ON state. Like section ii, this also corresponds to the second switching control of the present invention.
  • the current iU flows through the transistors 15H and 14H as in the section iv. Looking at the voltage and current of the transistors 15H and 15L in FIG.
  • the on/off states of the transistors 14H and 14L are switched complementarily. That is, the transistor 14H switches from the ON state to the OFF state, and the transistor 14L switches from the OFF state to the ON state. Similar to section iii, this also corresponds to the first switching control of the present invention.
  • the current from the low-potential input terminal 12 flows through the ON-state transistor 15L, and flows through the output terminal 13 via the capacitor 181 of the connection path 18 and the transistor 14H. Looking at the voltage and current of the transistors 14H and 14L in FIG.
  • the second switching control in which the on/off states of the transistors 15H and 15L are switched complementarily is performed in the section v
  • the first switching control in which the on/off states of the transistors 14H and 14L are complementarily switched is performed in the following section vi. control is performed. That is, the second switching control is performed before the first switching control, similarly to the sections ii and iii described above. In other words, the timing of switching control of each transistor pair is earlier for the transistor pair on the side farther from the output terminal 13 (the second transistor pair 15 in this example).
  • the timings of the second switching control and the first switching control are shifted by the transient time t F /2 of the voltage switching of the respective channels of the transistors 15H and 15L in the second switching control (interval v). .
  • the voltages of the transistors 14H and 14L are switched in the interval vi without an interval.
  • the time rate of change dv/dt of the voltages in sections v and vi are equal to each other at V DC / tF .
  • a smoothly connected voltage waveform is obtained at time dT SW +t F /2, as shown in FIG. 4B1. That is, the aforementioned "three-level/pseudo two-level control" is realized not only on the rising side of the voltage pulse but also on the falling side.
  • FIG. 4B3 shows the switching loss of the inverter 10.
  • the switching loss is the total sum of power consumed by each transistor 15H, 14H, 14L, 15L through one switching operation of the inverter 10.
  • FIG. Power is consumed when the voltage and current of each transistor 15H, 14H, 14L, 15L shown in FIG. 4B2 are not zero.
  • the transistor 15H consumes power in section ii, the transistor 14H in section iii, the transistor 15H in section v, and the transistor 14H in section vi.
  • the power consumed in the four sections ii, iii, v, and vi is represented by the area of a right-angled triangle with a height V DC ⁇ i U /2.
  • the length of the base of each right triangle is t R /2 in intervals ii, iii and t F /2 in intervals v, vi. Therefore, the switching loss, which is the sum of the areas of these four right triangles, is represented by t R ⁇ V DC ⁇ i U /4+t F ⁇ V DC ⁇ i U /4.
  • the power consumed by each of the transistors 15H and 14H is represented by the area of the right-angled triangle because the time rate of change di/dt of the current in each interval ii, iii, v and vi is infinite and the current This is because changes instantaneously in the direction perpendicular to the time axis.
  • a dotted line indicates a case where di/dt is not infinite. In this case, additional switching losses occur adjacent to the right corners of each of the above right triangles. Therefore, the switching loss can be reduced by making di/dt infinite.
  • inverter 10 when current iU is positive has been described above with reference to FIGS. 4(C) and 6 show the operation of the inverter 10 when the current iU is negative.
  • FIG. 4C1 shows the voltage and current appearing at the output terminal 13 when the inverter 10 performs one switching operation.
  • the voltage is a trapezoidal pulse of height VDC and the magnitude of the current iU is constant (since iU is negative, it is indicated in the positive region with a minus sign).
  • the high-potential-side transistors 15H and 14H are sequentially turned on, and the low-potential-side transistors 15L and 14L are complementarily turned off sequentially, so that the voltage of the output terminal 13 is 0V. to VDC linearly.
  • the magnitude of the voltage is constant at VDC until the switch -off time dTSW.
  • the high-potential-side transistors 15H and 14H are sequentially turned off, and the low-potential-side transistors 15L and 14L are complementarily turned on sequentially. decreases linearly from VDC to 0V.
  • FIG. 6 shows the conduction state and current path of each transistor in each interval i-vi.
  • the current iU flowing through the output terminal of FIG. 6 is negative in all intervals and has a constant magnitude as shown in FIG. 4(C1).
  • the transistors 15H and 14H are off and the transistors 14L and 15L are on. Since the low potential input terminal 12 is electrically connected to the output terminal 13, the voltage of the output terminal 13 is 0V. Since the voltage V DC between the high potential input terminal 11 and the output terminal 13 is equally divided by the transistors 15H and 14H, the voltage of each transistor is V DC /2. The voltage of the transistors 14L and 15L in the ON state is 0V, and the current iU flows.
  • the on/off states of the transistors 14H and 14L are switched complementarily. That is, the transistor 14H switches from the off state to the on state, and the transistor 14L switches from the on state to the off state. This corresponds to the first switching control of the present invention.
  • a current from the output terminal 13 flows through the transistor 14L, and flows through the high potential input terminal 11 via the capacitor 181 of the connection path 18 and the ON-state transistor 15H. Looking at the voltage and current of the transistors 14H and 14L in FIG.
  • the second switching control in which the on/off states of the transistors 15H and 15L are switched complementarily is performed in the section ii
  • the first switching control in which the on/off states of the transistors 14H and 14L are complementarily switched is performed in the following section iii. control is performed. That is, the second switching control is performed before the first switching control. Also, the timings of the second switching control and the first switching control are shifted by the voltage switching transient time t R /2 of the respective channels of the transistors 15H and 15L in the second switching control (section ii). .
  • the voltages of the transistors 14H and 14L are switched in the section iii immediately after the voltages of the transistors 15H and 15L are switched in the section ii. Furthermore, as mentioned above, the time rate of change dv/dt of the voltages in intervals ii and iii are equal to each other at V DC / tR . As a result, a smoothly connected voltage waveform is obtained at time t R /2 as shown in FIG. 4(C1) (three-level/pseudo two-level control).
  • interval iv the state at the end of interval iii is maintained, and a voltage pulse of a desired width is formed based on pulse width modulation.
  • the transistors 15H and 14H are on and the transistors 14L and 15L are off. Since the high potential input terminal 11 is conducting with the output terminal 13, the voltage of the output terminal 13 is VDC . Since the voltage V DC between the low potential input terminal 12 and the output terminal 13 is equally divided by the transistors 14L and 15L, the voltage of each transistor is V DC /2. The voltage of the transistors 15H and 14H in the ON state is 0 V, and the current iU flows.
  • the on/off states of the transistors 15H and 15L are switched complementarily. That is, the transistor 15H switches from the ON state to the OFF state, and the transistor 15L switches from the OFF state to the ON state. Like section ii, this also corresponds to the second switching control of the present invention.
  • the transistor 15L As shown in FIG. 6, as the transistor 15L is turned on, the current from the output terminal 13 flows through the on-state transistor 14H and passes through the capacitor 181 of the connection path 18 and the transistor 15L to reach a high potential. It flows through the input terminal 11 . Looking at the voltage and current of the transistors 15H and 15L in FIG.
  • the on/off states of the transistors 14H and 14L are switched complementarily. That is, the transistor 14H switches from the ON state to the OFF state, and the transistor 14L switches from the OFF state to the ON state. Similar to section iii, this also corresponds to the first switching control of the present invention.
  • the transistor 14L turns on, the current from the output terminal 13 flows through the low potential input terminal 12 via the transistor 14L and the on-state transistor 15L. Looking at the voltage and current of the transistors 14H and 14L in FIG.
  • the second switching control in which the on/off states of the transistors 15H and 15L are switched complementarily is performed in the section v
  • the first switching control in which the on/off states of the transistors 14H and 14L are complementarily switched is performed in the following section vi. control is performed. That is, the second switching control is performed before the first switching control, similarly to the sections ii and iii described above. Also, the timings of the second switching control and the first switching control are shifted by the transient time t F /2 of the voltage switching of the respective channels of the transistors 15H and 15L in the second switching control (interval v). .
  • the voltages of the transistors 14H and 14L are switched in the interval vi without an interval. Furthermore, as described above, the time rate of change dv/dt of the voltages in sections v and vi are equal to each other at V DC / tF . As a result, a smoothly connected voltage waveform is obtained at time dT SW +t F /2, as shown in FIG. 4(C1). That is, the aforementioned "three-level/pseudo two-level control" is realized not only on the rising side of the voltage pulse but also on the falling side.
  • FIG. 4 (C3) shows the switching loss of the inverter 10.
  • the switching loss is the total sum of power consumed by each transistor 15H, 14H, 14L, 15L through one switching operation of the inverter 10.
  • FIG. Power is consumed when the voltage and current of each transistor 15H, 14H, 14L, 15L shown in FIG. 4(C2) are not zero. Specifically, the transistor 15L consumes power in section ii, the transistor 14L consumes power in section iii, the transistor 15L consumes power in section v, and the transistor 14L consumes power in section vi. As shown in FIG.
  • the power consumed in the four sections ii, iii, v, and vi are each represented by the area of a right-angled triangle with a height of V DC ⁇ ( ⁇ i U )/2. be.
  • the length of the base of each right triangle is t R /2 in intervals ii, iii and t F /2 in intervals v, vi. Therefore, the switching loss, which is the sum of the areas of these four right triangles, is expressed as t R ⁇ V DC ⁇ (-i U )/4+t F ⁇ V DC ⁇ (-i U )/4.
  • the power consumed by each of the transistors 15L and 14L is represented by the area of the right-angled triangle because the time rate of change di/dt of the current in each section ii, iii, v and vi is infinite and the current This is because changes instantaneously in the direction perpendicular to the time axis.
  • the capacitor 181 provided in the connection path 18 reduces the voltage between the high-potential-side transistor connection portion 18H and the low-potential-side transistor connection portion 18L to about the intermediate voltage V DC /2. to stabilize the operation. That is, the capacitor 181 functions as a voltage variation suppression element that suppresses voltage variation between the high potential side connection portion 18H and the low potential side connection portion 18L.
  • 7(B4) and (C4) show the current and voltage of the capacitor 181.
  • FIG. (B2), (B3), (C2), and (C3) in this figure are the same as those in FIG. 4 for reference.
  • FIG. 8 shows an example in which the charge of the capacitor 181 increases or decreases through one switching operation of the inverter 10 .
  • (B1) to (B4) and (C1) to (C4) in this figure correspond to FIGS. 4 and 7.
  • FIG. 8 shows an example in which the charge of the capacitor 181 increases or decreases through one switching operation of the inverter 10 .
  • (B1) to (B4) and (C1) to (C4) in this figure correspond to FIGS. 4 and 7.
  • FIG. 7 (B1) representing the output of the inverter 10 when the current iU is positive and FIG. 7(C1) representing the output of the inverter 10 when the current iU is negative. Distorted from the trapezoidal shape.
  • this figure shows the case where ta is greater than tb , the voltage pulse waveform is also distorted from the trapezoidal shape when ta is less than tb .
  • the capacitor 181 excessively discharges electric charge through one switching operation of the inverter 10, so that the voltage between the electrodes of the capacitor 181 becomes shifts in the negative direction, which may hinder the stable operation of the inverter 10 .
  • the controller 100 of FIG. 2 controls the input voltage v GS to each driver 30 of FIG. 3 according to these transition times ta and tb .
  • the target voltage providing section 41 provides the target voltage V DC /2 of the capacitor 181 .
  • the voltage error calculator 42 calculates the error of the measured voltage v c of the capacitor 181 from the target voltage V DC /2.
  • the voltage vc of the capacitor 181 is constantly measured, and the high-frequency component thereof is removed by the low-pass filter 421 and supplied to the voltage error calculator 42 .
  • the voltage error calculated by the voltage error calculator 42 is supplied to the voltage controller 431 and converted into a charge correction amount of the capacitor 181 .
  • a divider 432 divides the charge correction amount by the absolute value of the output current iU obtained from the absolute value calculation section 433, and converts it into a time correction amount.
  • the regulation unit 434 performs cap processing based on a predetermined upper limit value so that the absolute value of the time correction amount does not become excessive, and sets the final time correction amount ⁇ t.
  • the switching time correction unit 44 corrects at least one of the first voltage switching transition time tb and the second voltage switching transition time ta based on the voltage error calculated by the voltage error calculation unit 42 .
  • a first correction unit 441 that calculates a correction value for the first transition time tb and a second correction unit 442 that calculates a correction value for the second transition time ta are provided.
  • the sum of the first transition time tb and the second transition time ta is equal to the rise time/ fall time tRF of the inverter 10.
  • the sample/hold circuit 422 supplies the voltage vc of the capacitor 181 obtained based on the trigger signal to the voltage error calculator 42 .
  • the voltage error calculated by the voltage error calculator 42 is multiplied by the capacitance value C of the capacitor 181 and converted into the charge correction amount of the capacitor 181 .
  • Others are the same as the first configuration example of FIG.
  • the inverter 10 that outputs AC power based on input DC power has been described, but the present invention is also applied to a converter that outputs DC power based on input AC power. can.
  • the output terminal 13 is used as an input terminal to which AC power is input, and the high-potential input terminal 11 and the low-potential input terminal 12 are respectively used as a high potential input terminal for outputting DC power.
  • a potential output terminal and a low potential output terminal realize a basic configuration of the converter.
  • N-level/pseudo two-level control of inverter 10 has been described with reference to FIGS. That is, by using two transistor pairs 14 and 15 capable of outputting three-level voltages of 0 V, V DC /2, and V DC , two voltages of 0 V and V DC shown in FIGS. level voltage pulses were quasi-formed.
  • N-level/pseudo-M-level control can be realized by setting N to any natural number of 2 or more and M to any natural number of 2 or more and N ⁇ 1 or less.
  • N-level control can be realized with N-1 transistor pairs.
  • N-level voltage can be output by performing switching control in order from the transistor pair farthest from the output terminal 13 .
  • switching control in order from the transistor pair farthest from the output terminal 13 .
  • the 1st to nth low potential transistors connected in series toward 12 constitute the 1st to nth transistor pairs.
  • 1st to nth drivers are provided for performing switching control for the 1st to nth transistor pairs.
  • First to n-1 connection paths are provided for mutually connecting high-potential-side connection portions and low-potential-side connection portions of adjacent transistor pairs.
  • 1st to n-1 voltage variation suppressing elements for suppressing voltage fluctuations between the connection portion on the high potential side and the connection portion on the low potential side.
  • Switching control of adjacent transistor pairs is performed at timings shifted by a predetermined time. Specifically, the switching control timing of each transistor pair is set earlier for the transistor pair farther from the output terminal 13 . In particular, it is preferable to shift the switching control timings of adjacent transistor pairs by the transition time of voltage switching of the respective current paths of the high-potential transistor and the low-potential transistor forming each transistor pair.
  • FIG. 10 shows an example of the configuration.
  • two diodes 182L and 182H are provided in series for allowing a current to flow in the direction from the connection portion 18L of the transistor on the low potential side to the connection portion 18H of the transistor on the high potential side.
  • each transistor pair is composed of one high-potential transistor and one low-potential transistor has been described, but each transistor pair may have a plurality of high-potential transistors and low-potential transistors.
  • a modular multilevel converter is known as an example of technology that pairs a plurality of high-potential transistors and a plurality of low-potential transistors.
  • groups of circuit elements called cells having the same configuration are provided so as to form a pair on the high potential side and the low potential side.
  • Each cell includes multiple transistors connected in series and/or in parallel.
  • each device described in the embodiments can be realized by hardware resources or software resources, or by cooperation between hardware resources and software resources.
  • Processors, ROMs, RAMs, and other LSIs can be used as hardware resources.
  • Programs such as operating systems and applications can be used as software resources.
  • those in which a plurality of functions are provided in a distributed manner may be provided by consolidating some or all of the plurality of functions. What is provided as a single function may be provided so that part or all of the plurality of functions are distributed. Regardless of whether the functions are centralized or distributed, it is sufficient that they are configured so as to achieve the objects of the invention.
  • the present invention relates to control technology for inverters and converters.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)
  • Power Conversion In General (AREA)

Abstract

インバータ10は、高電位入力端子11と、低電位入力端子12と、交流電力を出力する出力端子13と、トランジスタ対14と、トランジスタ対14の相補的なスイッチング制御を行うドライバ16とを備える。ドライバ16は、トランジスタ対14のチャネル電流を調整する電流調整素子およびチャネル電圧を調整する電圧調整素子を含み、トランジスタ対14のスイッチング制御において、チャネル電流の時間変化率が、チャネル電圧の時間変化率よりも大きくなるように調整する。

Description

インバータ、インバータの制御方法、インバータの制御プログラム、コンバータ、駆動装置
 本発明はインバータやコンバータの制御技術に関する。
 モータ等の交流駆動に用いられるインバータは、出力端子の高電位側と低電位側のトランジスタ対を相補的にオンオフ制御することで交流電力を出力する。コンバータは、インバータとは逆の動作によって、交流電力から直流電力を出力する。
特開2020-80644号公報
 各トランジスタのオンオフ制御において、トランジスタがオンのときは電流経路(トランジスタがMOSFET(Metal Oxide Semiconductor Field Effect Transistor)の場合はソース/ドレイン間のチャネル、トランジスタがバイポーラトランジスタの場合はエミッタ/コレクタ間の経路)が導通状態にあるため、電流が流れ、電圧はゼロとみなせる。また、トランジスタがオフのときは電流経路が絶縁状態にあるため、電流はゼロとみなせ、電圧が発生する。オン時は電圧がゼロ、オフ時は電流がゼロであるため、トランジスタは電力を消費しない。しかし、トランジスタのオンオフが切り替わる際は、電圧および電流がゼロにならないため、スイッチング損失として知られる無駄な電力消費が発生する。
 本発明はこうした状況に鑑みてなされたものであり、その目的は、スイッチング損失を低減できるインバータやコンバータを提供することにある。
 上記課題を解決するために、本発明のある態様のインバータは、高電位の高電位入力端子と低電位の低電位入力端子を含み、両入力端子の間で直流電力が入力される入力端子と、交流電力を出力する出力端子と、高電位入力端子側と出力端子側を接続する電流経路を有する高電位トランジスタと、低電位入力端子側と出力端子側を接続する電流経路を有する低電位トランジスタを備えるトランジスタ対と、高電位トランジスタおよび低電位トランジスタのそれぞれに制御信号を入力し、それぞれの電流経路の導通状態を互いに相補的に切り替えることで直流電力を交流電力に変換するスイッチング制御を行うドライバとを備える。ドライバは、各電流経路の電流を調整する電流調整素子および当該各電流経路の電圧を調整する電圧調整素子の少なくともいずれかを含み、電流調整素子および電圧調整素子の少なくともいずれかは、スイッチング制御において、各電流経路の電流の時間変化率が、各電流経路の電圧の時間変化率よりも大きくなるように調整する。
 従来の一般的なインバータは、制御電極(トランジスタがMOSFETの場合はゲート電極、トランジスタがバイポーラトランジスタの場合はベース電極)に入力する制御信号によって各トランジスタのオンとオフを単純に切り替える構成のため、電流が切り替わる際の時間変化率と、電圧が切り替わる際の時間変化率に違いがない。これに対し本態様のインバータでは、ドライバに設けられる電流調整素子および電圧調整素子の少なくともいずれかによって、電流の時間変化率が電圧の時間変化率よりも大きくなるように調整される。急峻な電流変化によって電流スイッチング時間を短くできるため、電流の切り替わりに伴うスイッチング損失を低減できる。一方、電圧の時間変化率が過大になるとモータ巻線の絶縁破壊等のリスクが高まるため、電流の時間変化率よりも小さくなるのが好ましい。このように、本態様のインバータによれば、電流の切り替わりに伴うスイッチング損失の低減と、モータ巻線の絶縁破壊等のリスクの低減を両立できる。
 上記における電流および電圧の時間変化率は次のように定義される。電流が時間Tiの間に最小値Iminと最大値Imaxの間で切り替わる場合、電流の時間変化率は(Imax-Imin)/Tiで表され、以下これを微分の記号を用いてdi/dtとも表す。電圧が時間Tvの間に最小値Vminと最大値Vmaxの間で切り替わる場合、電流の時間変化率は(Vmax-Vmin)/Tvで表され、以下これを微分の記号を用いてdv/dtとも表す。なお、電流と電圧が互いに逆方向に変化する場合、時間変化率の符号は正負逆になるが、本明細書では、電流と電圧の時間変化率の大小比較を行う際は、それぞれの絶対値を比較するものとする。
 本発明の別の態様は、コンバータである。この装置は、高電位の高電位出力端子と低電位の低電位出力端子を含み、両出力端子の間で直流電力を出力する出力端子と、交流電力が入力される入力端子と、高電位出力端子側と入力端子側を接続する電流経路を有する高電位トランジスタと、低電位出力端子側と入力端子側を接続する電流経路を有する低電位トランジスタを備えるトランジスタ対と、高電位トランジスタおよび低電位トランジスタのそれぞれに制御信号を入力し、それぞれの電流経路の導通状態を互いに相補的に切り替えることで交流電力を直流電力に変換するスイッチング制御を行うドライバとを備える。ドライバは、各電流経路の電流を調整する電流調整素子および当該各電流経路の電圧を調整する電圧調整素子の少なくともいずれかを含み、電流調整素子および電圧調整素子の少なくともいずれかは、スイッチング制御において、各電流経路の電流の時間変化率が、各電流経路の電圧の時間変化率よりも大きくなるように調整する。
 本発明の別の態様は、駆動装置である。この装置は、互いに位相が異なる多相の交流電力で駆動されるモータと、各相の交流電力を生成する複数のインバータとを備える。各インバータは、高電位の高電位入力端子と低電位の低電位入力端子を含み、両入力端子の間で直流電力が入力される入力端子と、交流電力を出力する出力端子と、高電位入力端子側と出力端子側を接続する電流経路を有する高電位トランジスタと、低電位入力端子側と出力端子側を接続する電流経路を有する低電位トランジスタを備えるトランジスタ対と、高電位トランジスタおよび低電位トランジスタのそれぞれに制御信号を入力し、それぞれの電流経路の導通状態を互いに相補的に切り替えることで直流電力を交流電力に変換するスイッチング制御を行うドライバとを備える。ドライバは、各電流経路の電流を調整する電流調整素子および当該各電流経路の電圧を調整する電圧調整素子の少なくともいずれかを含み、電流調整素子および電圧調整素子の少なくともいずれかは、スイッチング制御において、各電流経路の電流の時間変化率が、各電流経路の電圧の時間変化率よりも大きくなるように調整する。
 本発明のさらに別の態様は、インバータの制御方法である。この方法は、高電位の高電位入力端子と低電位の低電位入力端子を含み、両入力端子の間で直流電力が入力される入力端子と、交流電力を出力する出力端子と、高電位入力端子側と出力端子側を接続する電流経路を有する高電位トランジスタと、低電位入力端子側と出力端子側を接続する電流経路を有する低電位トランジスタを備えるトランジスタ対とを備えるインバータの制御方法であって、高電位トランジスタおよび低電位トランジスタのそれぞれに制御信号を入力し、それぞれの電流経路の導通状態を互いに相補的に切り替えることで直流電力を交流電力に変換するスイッチング制御ステップを備える。スイッチング制御において、各電流経路の電流の時間変化率が、各電流経路の電圧の時間変化率よりも大きくなるように調整する。
 なお、以上の構成要素の任意の組合せ、本発明の表現を方法、装置、システム、記録媒体、コンピュータプログラムなどの間で変換したものもまた、本発明の態様として有効である。
 本発明によれば、インバータやコンバータのスイッチング損失を低減できる。
本発明の実施形態を含むモータ装置の構成を概略的に示す図である。 インバータの構成を概略的に示す図である。 ドライバの構成例を示す図である。 インバータの作用を示す図である。 出力電流が正の場合の各トランジスタの導通状態と電流経路を示す図である。 出力電流が負の場合の各トランジスタの導通状態と電流経路を示す図である。 接続経路に設けられるキャパシタの電流と電圧を示す図である。 インバータの一回のスイッチング動作を通じてキャパシタの電荷の増減がある例を示す図である。 スイッチング時間の不均衡を補正する補正装置の構成例を示す図である。 キャパシタの代わりにダイオードを接続経路に設けた構成例を示す図である。
 図1は、本発明の実施形態を含むモータ装置1の構成を概略的に示す。モータ装置1は、直流電力に基づいて交流電力を生成するインバータ10と、その交流電力で駆動されるモータ20を備える。
 モータ20は、U相、V相、W相の3相のコイル20U、20V、20Wを持つ3相ブラシレスモータである。インバータ10は、モータ20の各相に対応して、U相交流電力を生成するU相インバータ10Uと、V相交流電力を生成するV相インバータ10Vと、W相交流電力を生成するW相インバータ10Wを含む。各相のインバータ10U、10V、10Wは、モータ20のホール素子H1、H2、H3が検知した回転子の回転位置に基づき、互いに位相が異なる交流電力を各相のコイル20U、20V、20Wに印加することで回転磁界を発生させる。この回転磁界によって回転する回転子から所望の回転動力が得られる。なお、モータ20は、交流電圧で駆動される他のタイプのモータでもよい。また、モータ20の相の数は3に限られず、2以上の任意の自然数でよい。
 各相のインバータ10U、10V、10Wの構成は共通であるため、以下では適宜インバータ10と総称して、その構成、作用、効果について説明する。交流電力を生成するインバータ10は、高い直流電源電位Vddが入力される高電位入力端子11と、低い直流電源電位Vssが入力される低電位入力端子12と、高電位入力端子11と低電位入力端子12の間に設けられてVddとVssの間で変動する交流電圧を出力する出力端子13を備える。VssはVddよりも低い任意の電位でよいが、以下では説明を簡素化するため、Vssをゼロとする。そして、インバータ10の両入力端子11、12の間で入力される直流動作電圧Vdd-Vss=VddをVDCとも表す。
 図2は、インバータ10(U相インバータ10U)の構成を概略的に示す。インバータ10は、第1のトランジスタ対14と、第2のトランジスタ対15と、第1のドライバ16と、第2のドライバ17と、接続経路18と、コントローラ100を備える。
 第1のトランジスタ対14は、高電位入力端子11側と出力端子13側を接続する電流経路を有する第1の高電位トランジスタ14Hと、低電位入力端子12側と出力端子13側を接続する電流経路を有する第1の低電位トランジスタ14Lを備える。各トランジスタ14H、14LはNチャネル型のMOSFETであり、第1のドライバ16がゲート電極に入力する制御信号に応じてソース/ドレイン間に形成されるチャネルが電流経路を構成する。なお、これらのトランジスタ14H、14Lや後述する他のトランジスタは、Nチャネル型のMOSFETに限らず、全部または一部をPチャネル型のMOSFETで構成してもよい。また、これらのトランジスタは、MOSFETに限らず、PNP型ないしNPN型のバイポーラトランジスタや、IGBT(Insulated Gate Bipolar Transistor)で構成してもよい。
 第2のトランジスタ対15は、高電位入力端子11側と第1の高電位トランジスタ14H側を接続する電流経路を有する第2の高電位トランジスタ15Hと、低電位入力端子12側と第1の低電位トランジスタ14L側を接続する電流経路を有する第2の低電位トランジスタ15Lを備える。すなわち、出力端子13と高電位入力端子11の間には、出力端子13から高電位入力端子11に向かう方向に、第1の高電位トランジスタ14Hと第2の高電位トランジスタ15Hが直列接続され、出力端子13と低電位入力端子12の間には、出力端子13から低電位入力端子12に向かう方向に、第1の低電位トランジスタ14Lと第2の低電位トランジスタ15Lが直列接続される。各トランジスタ15H、15LはMOSFETであり、第2のドライバ17がゲート電極に入力する制御信号に応じてソース/ドレイン間に形成されるチャネルが電流経路を構成する。
 第1のドライバ16は、コントローラ100の制御の下で第1の高電位トランジスタ14Hのゲート電極に制御信号を入力する第1の高電位ドライバ16Hと、コントローラ100の制御の下で第1の低電位トランジスタ14Lのゲート電極に制御信号を入力する第1の低電位ドライバ16Lを備え、各トランジスタ14H、14Lの電流経路の導通状態を互いに相補的に切り替えることで直流電力を交流電力に変換する第1のスイッチング制御を行う。ここで「相補的に切り替える」とは、各トランジスタ14H、14Lのオンオフ状態が互いに逆となるように制御することを意味する。すなわち、トランジスタ14Hがオンのときはトランジスタ14Lをオフとし、トランジスタ14Hがオフのときはトランジスタ14Lをオンとし、トランジスタ14Hがオンからオフに切り替わるときはトランジスタ14Lをオフからオンに切り替え、トランジスタ14Hがオフからオンに切り替わるときはトランジスタ14Lをオンからオフに切り替える。
 第2のドライバ17は、コントローラ100の制御の下で第2の高電位トランジスタ15Hのゲート電極に制御信号を入力する第2の高電位ドライバ17Hと、コントローラ100の制御の下で第2の低電位トランジスタ15Lのゲート電極に制御信号を入力する第2の低電位ドライバ17Lを備え、各トランジスタ15H、15Lの電流経路の導通状態を互いに相補的に切り替えることで直流電力を交流電力に変換する第2のスイッチング制御を行う。「相補的に切り替える」の意味は、上記の第1のドライバ16と同様、各トランジスタ15H、15Lのオンオフ状態が互いに逆となるように制御することを意味する。詳細は後述するが、第2のドライバ17による第2のスイッチング制御は、第1のドライバ16による第1のスイッチング制御のタイミングから所定時間ずれたタイミングで行われる。
 接続経路18は、第1の高電位トランジスタ14Hと第2の高電位トランジスタ15Hの接続部分18Hと、第1の低電位トランジスタ14Lと第2の低電位トランジスタ15Lの接続部分18Lを、相互に接続する。接続経路18には、電圧変動抑制素子の一態様としての容量値Cのキャパシタ181が設けられる。
 以上の構成のインバータ10の作用を説明する前に、図3を参照してドライバ16H、16L、17H、17Lの詳細な構成を説明する。各ドライバ16H、16L、17H、17Lの構成は共通であるため、図3ではこれらをドライバ30と総称して説明する。図3(A)および図3(B)にドライバ30の二つの構成例を示す。
 図3(A)の第1の構成例に係るドライバ30は、駆動対象のトランジスタのゲート/ソース間電圧に対応する電圧vGSが入力される一対の電圧入力端子31と、ゲート側の電圧入力端子31に接続されるオペアンプ32と、オペアンプ32とゲート電極の間に設けられる抵抗値Rのゲート抵抗33と、ゲート抵抗33とゲート電極の間から分岐してトランジスタのドレインと繋がる分岐線に設けられる容量値Cのミラーキャパシタ34を備える。なお、入力電圧vGSは、図2のコントローラ100が生成する。
 ゲート抵抗33は、トランジスタのオンオフが切り替わる際のチャネルの電流を調整する電流調整素子として機能する。具体的には、抵抗値Rによって、トランジスタのオンオフが切り替わる際の電流の時間変化率di/dtを調整できる。抵抗値Rを大きくすればdi/dtは小さくなり、抵抗値Rを小さくすればdi/dtは大きくなる。後述するように、本実施形態ではdi/dtを大きくするのが好ましく、抵抗値Rを小さくするのが好ましい。本発明者の行ったシミュレーションによれば、現実的な抵抗値Rの範囲で略無限大のdi/dtを実現できる。この場合、トランジスタのオンオフが切り替わる際、電流は瞬時に最小値と最大値の間で切り替わる。このような急峻な電流変化によって電流スイッチング時間を実質的にゼロにできるため、電流の切り替わりに伴うスイッチング損失を低減できる。なお、ドライバ30の動作中も抵抗値Rを可変として、トランジスタのオンオフが切り替わる際のdi/dtを精緻に制御してもよい。
 ミラーキャパシタ34は、トランジスタのオンオフが切り替わる際のチャネルの電圧を調整する電圧調整素子として機能する。具体的には、容量値Cによって、トランジスタのオンオフが切り替わる際の電圧の時間変化率dv/dtを調整できる。電圧の切り替わりに伴うスイッチング損失を低減するためには、上記のdi/dtと同様にdv/dtも大きくするのが好ましいが、一方でdv/dtを大きくし過ぎるとモータ20のコイル20U、20V、20Wの絶縁破壊のリスクが高まる。そこで、容量値Cを適当な値に設定して、絶縁破壊のリスクが許容できる範囲で可能な限りdv/dtを大きくする。結果的に、このような制約のあるdv/dtは、制約のないdi/dtに比べて小さくなるように調整される。なお、ドライバ30の動作中も容量値Cを可変として、トランジスタのオンオフが切り替わる際のdv/dtを精緻に制御してもよい。
 オペアンプ32は、その構成やパラメータを適宜調整することで、電流調整素子としても電圧調整素子としても機能しうる。di/dt, dv/dtそれぞれの調整目標は上述の通りであり、di/dtは可能な限り大きく(実質的に無限大)、dv/dtは絶縁破壊のリスクが許容できる範囲で可能な限り大きくする。
 図3(B)の第2の構成例に係るドライバ30は、駆動対象のトランジスタのゲート/ソース間電圧に対応する電圧vGSが入力される一対の電圧入力端子31と、ゲート側の電圧入力端子31に接続されるオペアンプ32と、オペアンプ32とゲート電極の間に設けられる抵抗値Rのゲート抵抗33と、ゲート側の電圧入力端子31とオペアンプ32の間から分岐してトランジスタのドレインと繋がる分岐線に設けられる容量値Cのキャパシタ35を備える。図3(A)の第1の構成例とはキャパシタ35のみが異なる。
 キャパシタ35は、ミラーキャパシタ34と同様に、トランジスタのオンオフが切り替わる際のチャネルの電圧を調整する電圧調整素子として機能する。具体的には、容量値Cによって、トランジスタのオンオフが切り替わる際の電圧の時間変化率dv/dtを調整できる。ミラーキャパシタ34の容量値Cと同様に、ドライバ30の動作中も容量値Cを可変として、トランジスタのオンオフが切り替わる際のdv/dtを精緻に制御してもよい。さらにキャパシタ35によれば、ドライバ30の出力波形だけでなく、インバータ10全体の出力波形も調整できるため、不要な電磁ノイズの放射を抑制できる。
 以上の構成のインバータ10の作用を図4に示す。図4(A)は、図2に示したインバータ10の構成である。図4(B)は、出力端子13を流れる電流iが正の場合を示す。図4(C)は、出力端子13を流れる電流iが負の場合を示す。電流iは、図4(A)の出力端子13から流出する場合を正とし、出力端子13に流入する場合を負とする。図4(B1)および(C1)は、出力端子13に現れる電圧と電流を示す。図4(B2)および(C2)は、四つのトランジスタ15H、14H、14L、15Lのソース/ドレイン間のチャネルの電圧と電流を示す。図4(B3)および(C3)は、インバータ10のスイッチング損失を示す。
 まず、電流iが正の場合の図4(B)について説明する。図4(B1)は、インバータ10が一回のスイッチング動作を行う際に出力端子13に現れる電圧と電流を示す。詳細は後述するが、電圧は高さVDC(Vdd-Vss)の台形状のパルスであり、電流iの大きさは一定である。時刻0sから立上り時間tの間は、高電位側のトランジスタ15H、14Hが順次オンし、それと相補的に低電位側のトランジスタ15L、14Lが順次オフすることで、出力端子13の電圧が0VからVDCまで線形に増加する。立上り時間tの後、スイッチオフ時刻dTSWまでの間は電圧の大きさはVDCで一定である。すなわち、スイッチオフ時刻dTSWは、台形状の電圧パルスの幅を決める。一般的なパルス幅変調(PWM)技術により、各電圧パルスの幅あるいはデューティ比を変化させることで、所望の周波数の交流電圧が生成される。スイッチオフ時刻dTSWから立下り時間tの間は、高電位側のトランジスタ15H、14Hが順次オフし、それと相補的に低電位側のトランジスタ15L、14Lが順次オンすることで、出力端子13の電圧がVDCから0Vまで線形に減少する。
 図4(B2)の四つのトランジスタ15H、14H、14L、15Lの動作を説明するに当たって、図4(B3)に示される六つの区間i-viに分ける。図5には、各区間i-viにおける各トランジスタの導通状態と電流経路を示す。図5の出力端子を流れる電流iは全ての区間で正であり、図4(B1)に示されるように大きさは一定である。
 時刻0sより前の区間iでは、トランジスタ15H、14Hがオフ状態、トランジスタ14L、15Lがオン状態である。低電位入力端子12が出力端子13と導通しているため、出力端子13の電圧は0Vである。高電位入力端子11と出力端子13の間の電圧VDCは、トランジスタ15H、14Hで均等に分圧されるため、各トランジスタの電圧はVDC/2である。オン状態のトランジスタ14L、15Lの電圧は0Vであり、電流iが流れる。
 時刻0sからt/2までの区間iiでは、トランジスタ15H、15Lのオンオフ状態が相補的に切り替わる。すなわち、トランジスタ15Hはオフ状態からオン状態に切り替わり、トランジスタ15Lはオン状態からオフ状態に切り替わる。これが本発明の第2のスイッチング制御に相当する。このとき、図5に示されるように、トランジスタ15Hがオン状態に切り替わるにつれて、高電位入力端子11からの電流がトランジスタ15Hを流れ、接続経路18のキャパシタ181とオン状態のトランジスタ14Lを経由して出力端子13を流れる。図4(B2)のトランジスタ15H、15Lの電圧と電流を見ると、電圧の時間変化率dv/dtは(VDC/2)/(t/2)=VDC/tであり、電流の時間変化率di/dtは無限大である。すなわち、電圧は0s~t/2の区間iiに亘って線形に変化する一方、電流は区間iiの開始時刻0sで瞬時に切り替わる。dv/dt, di/dtをこのように調整する構成については図3で説明した。
 時刻t/2からtまでの区間iiiでは、トランジスタ14H、14Lのオンオフ状態が相補的に切り替わる。すなわち、トランジスタ14Hはオフ状態からオン状態に切り替わり、トランジスタ14Lはオン状態からオフ状態に切り替わる。これが本発明の第1のスイッチング制御に相当する。このとき、図5に示されるように、トランジスタ14Hがオン状態に切り替わるにつれて、高電位入力端子11からの電流がオン状態のトランジスタ15Hを経由してトランジスタ14Hを流れる。図4(B2)のトランジスタ14H、14Lの電圧と電流を見ると、電圧の時間変化率dv/dtは(VDC/2)/(t/2)=VDC/tであり、電流の時間変化率di/dtは無限大である。すなわち、電圧はt/2~tの区間iiiに亘って線形に変化する一方、電流は区間iiiの開始時刻t/2で瞬時に切り替わる。
 以上のように、区間iiではトランジスタ15H、15Lのオンオフ状態が相補的に切り替わる第2のスイッチング制御が行われ、それに続く区間iiiではトランジスタ14H、14Lのオンオフ状態が相補的に切り替わる第1のスイッチング制御が行われる。すなわち、第2のスイッチング制御は第1のスイッチング制御より前に行われる。換言すれば、各トランジスタ対のスイッチング制御のタイミングは、出力端子13から遠い側のトランジスタ対(本例では第2のトランジスタ対15)ほど早い。また、第2のスイッチング制御と第1のスイッチング制御のタイミングは、第2のスイッチング制御(区間ii)において、トランジスタ15H、15Lのそれぞれのチャネルの電圧スイッチングの過渡時間t/2だけずれている。これにより、区間iiでトランジスタ15H、15Lの電圧が切り替わった後、間を置かずに区間iiiでトランジスタ14H、14Lの電圧が切り替わる。さらに、上記の通り、区間iiとiiiの電圧の時間変化率dv/dtはVDC/tで互いに等しい。この結果、図4(B1)のように、時刻t/2で滑らかに接続された電圧波形が得られる。仮に第2のスイッチング制御と第1のスイッチング制御のタイミングがt/2よりも大きくずれている場合、第2のスイッチング制御の終了時刻t/2から第1のスイッチング制御の開始時刻まで出力電圧が中間電圧VDC/2付近に留まるため、図4(B1)のような一つの台形状の電圧パルスとはならず、0V、VDC/2、VDCの3レベルの階段状の電圧パルスとなる。階段状の電圧パルスでもインバータ10の動作に支障はないが、電圧パルス波形を整えたい事情がある場合は台形状の電圧パルスとするのが好ましい。台形状の電圧パルスは、0V、VDCの2レベルを取る。本来であれば0V、VDC/2、VDCの3レベルとなるところを、擬似的に0V、VDCの2レベルとしているため、これを「3レベル/疑似2レベル制御」ともいう。
 時刻tからdTSWまでの区間ivでは、区間iii終了時の状態がそのまま維持され、パルス幅変調に基づく所望幅の電圧パルスが形成される。区間ivでは、トランジスタ15H、14Hがオン状態、トランジスタ14L、15Lがオフ状態である。高電位入力端子11が出力端子13と導通しているため、出力端子13の電圧はVDCである。低電位入力端子12と出力端子13の間の電圧VDCは、トランジスタ14L、15Lで均等に分圧されるため、各トランジスタの電圧はVDC/2である。オン状態のトランジスタ15H、14Hの電圧は0Vであり、電流iが流れる。
 時刻dTSWからdTSW+t/2までの区間vでは、トランジスタ15H、15Lのオンオフ状態が相補的に切り替わる。すなわち、トランジスタ15Hはオン状態からオフ状態に切り替わり、トランジスタ15Lはオフ状態からオン状態に切り替わる。区間iiと同様に、これも本発明の第2のスイッチング制御に相当する。このとき、図5に示されるように、区間ivと同様にトランジスタ15H、14Hを電流iが流れる。図4(B2)のトランジスタ15H、15Lの電圧と電流を見ると、電圧の時間変化率dv/dtは(VDC/2)/(t/2)=VDC/tであり、電流の時間変化率di/dtは無限大である。すなわち、電圧はdTSW~dTSW+t/2の区間vに亘って線形に変化する一方、電流は区間vの終了時刻dTSW+t/2で瞬時に切り替わる。
 時刻dTSW+t/2からdTSW+tまでの区間viでは、トランジスタ14H、14Lのオンオフ状態が相補的に切り替わる。すなわち、トランジスタ14Hはオン状態からオフ状態に切り替わり、トランジスタ14Lはオフ状態からオン状態に切り替わる。区間iiiと同様に、これも本発明の第1のスイッチング制御に相当する。このとき、図5に示されるように、低電位入力端子12からの電流がオン状態のトランジスタ15Lを流れ、接続経路18のキャパシタ181とトランジスタ14Hを経由して出力端子13を流れる。図4(B2)のトランジスタ14H、14Lの電圧と電流を見ると、電圧の時間変化率dv/dtは(VDC/2)/(t/2)=VDC/tであり、電流の時間変化率di/dtは無限大である。すなわち、電圧はdTSW+t/2~dTSW+tの区間viに亘って線形に変化する一方、電流は区間viの終了時刻dTSW+tで瞬時に切り替わる。
 以上のように、区間vではトランジスタ15H、15Lのオンオフ状態が相補的に切り替わる第2のスイッチング制御が行われ、それに続く区間viではトランジスタ14H、14Lのオンオフ状態が相補的に切り替わる第1のスイッチング制御が行われる。すなわち、上述の区間ii, iiiと同様に、第2のスイッチング制御は第1のスイッチング制御より前に行われる。換言すれば、各トランジスタ対のスイッチング制御のタイミングは、出力端子13から遠い側のトランジスタ対(本例では第2のトランジスタ対15)ほど早い。また、第2のスイッチング制御と第1のスイッチング制御のタイミングは、第2のスイッチング制御(区間v)において、トランジスタ15H、15Lのそれぞれのチャネルの電圧スイッチングの過渡時間t/2だけずれている。これにより、区間vでトランジスタ15H、15Lの電圧が切り替わった後、間を置かずに区間viでトランジスタ14H、14Lの電圧が切り替わる。さらに、上記の通り、区間vとviの電圧の時間変化率dv/dtはVDC/tで互いに等しい。この結果、図4(B1)のように、時刻dTSW+t/2で滑らかに接続された電圧波形が得られる。つまり、電圧パルスの立上り側だけでなく立下り側でも、前述の「3レベル/疑似2レベル制御」が実現される。
 図4(B3)は、インバータ10のスイッチング損失を示す。スイッチング損失は、インバータ10の一回のスイッチング動作を通じて、各トランジスタ15H、14H、14L、15Lで消費される電力の総和である。電力が消費されるのは、図4(B2)に示される各トランジスタ15H、14H、14L、15Lの電圧と電流が共にゼロでない場合である。具体的には、区間iiでトランジスタ15Hが、区間iiiでトランジスタ14Hが、区間vでトランジスタ15Hが、区間viでトランジスタ14Hが電力を消費する。図4(B3)に示されるように、四つの区間ii, iii, v, viで消費される電力は、それぞれ高さがVDC×i/2の直角三角形の面積で表される。各直角三角形の底辺の長さは、区間ii, iiiでt/2であり、区間v, viでt/2である。したがって、これらの四つの直角三角形の面積の総和であるスイッチング損失はt×VDC×i/4+t×VDC×i/4で表される。ここで、各トランジスタ15H、14Hで消費される電力が直角三角形の面積で表されるのは、各区間ii, iii, v, viにおける電流の時間変化率di/dtが無限大であり、電流が時間軸に垂直な方向に瞬時に変化するためである。比較例として、di/dtが無限大でない場合を点線で示す。この場合、上記の各直角三角形の直角部に隣接して追加的なスイッチング損失が生じる。したがって、di/dtを無限大とすることでスイッチング損失を低減できる。
 以上、図4(B)および図5を参照して電流iが正の場合のインバータ10の作用を説明した。図4(C)および図6に電流iが負の場合のインバータ10の作用を示すが、基本的な内容は共通するため、説明を適宜省略する。
 図4(C1)は、インバータ10が一回のスイッチング動作を行う際に出力端子13に現れる電圧と電流を示す。電圧は高さVDCの台形状のパルスであり、電流iの大きさは一定である(iは負であるため、マイナスを付けて正領域に表示している)。時刻0sから立上り時間tの間は、高電位側のトランジスタ15H、14Hが順次オンし、それと相補的に低電位側のトランジスタ15L、14Lが順次オフすることで、出力端子13の電圧が0VからVDCまで線形に増加する。立上り時間tの後、スイッチオフ時刻dTSWまでの間は電圧の大きさはVDCで一定である。スイッチオフ時刻dTSWから立下り時間tの間は、高電位側のトランジスタ15H、14Hが順次オフし、それと相補的に低電位側のトランジスタ15L、14Lが順次オンすることで、出力端子13の電圧がVDCから0Vまで線形に減少する。
 図4(C2)の四つのトランジスタ15H、14H、14L、15Lの動作を説明するに当たって、図4(C3)に示される六つの区間i-viに分ける。図6には、各区間i-viにおける各トランジスタの導通状態と電流経路を示す。図6の出力端子を流れる電流iは全ての区間で負であり、図4(C1)に示されるように大きさは一定である。
 時刻0sより前の区間iでは、トランジスタ15H、14Hがオフ状態、トランジスタ14L、15Lがオン状態である。低電位入力端子12が出力端子13と導通しているため、出力端子13の電圧は0Vである。高電位入力端子11と出力端子13の間の電圧VDCは、トランジスタ15H、14Hで均等に分圧されるため、各トランジスタの電圧はVDC/2である。オン状態のトランジスタ14L、15Lの電圧は0Vであり、電流iが流れる。
 時刻0sからt/2までの区間iiでは、トランジスタ15H、15Lのオンオフ状態が相補的に切り替わる。すなわち、トランジスタ15Hはオフ状態からオン状態に切り替わり、トランジスタ15Lはオン状態からオフ状態に切り替わる。これが本発明の第2のスイッチング制御に相当する。このとき、図6に示されるように、区間iと同様にトランジスタ14L、15Lを電流iが流れる。図4(C2)のトランジスタ15H、15Lの電圧と電流を見ると、電圧の時間変化率dv/dtは(VDC/2)/(t/2)=VDC/tであり、電流の時間変化率di/dtは無限大である。すなわち、電圧は0s~t/2の区間iiに亘って線形に変化する一方、電流は区間iiの終了時刻t/2で瞬時に切り替わる。
 時刻t/2からtまでの区間iiiでは、トランジスタ14H、14Lのオンオフ状態が相補的に切り替わる。すなわち、トランジスタ14Hはオフ状態からオン状態に切り替わり、トランジスタ14Lはオン状態からオフ状態に切り替わる。これが本発明の第1のスイッチング制御に相当する。このとき、図6に示されるように、出力端子13からの電流がトランジスタ14Lを流れ、接続経路18のキャパシタ181とオン状態のトランジスタ15Hを経由して高電位入力端子11を流れる。図4(C2)のトランジスタ14H、14Lの電圧と電流を見ると、電圧の時間変化率dv/dtは(VDC/2)/(t/2)=VDC/tであり、電流の時間変化率di/dtは無限大である。すなわち、電圧はt/2~tの区間iiiに亘って線形に変化する一方、電流は区間iiiの終了時刻tで瞬時に切り替わる。
 以上のように、区間iiではトランジスタ15H、15Lのオンオフ状態が相補的に切り替わる第2のスイッチング制御が行われ、それに続く区間iiiではトランジスタ14H、14Lのオンオフ状態が相補的に切り替わる第1のスイッチング制御が行われる。すなわち、第2のスイッチング制御は第1のスイッチング制御より前に行われる。また、第2のスイッチング制御と第1のスイッチング制御のタイミングは、第2のスイッチング制御(区間ii)において、トランジスタ15H、15Lのそれぞれのチャネルの電圧スイッチングの過渡時間t/2だけずれている。これにより、区間iiでトランジスタ15H、15Lの電圧が切り替わった後、間を置かずに区間iiiでトランジスタ14H、14Lの電圧が切り替わる。さらに、上記の通り、区間iiとiiiの電圧の時間変化率dv/dtはVDC/tで互いに等しい。この結果、図4(C1)のように、時刻t/2で滑らかに接続された電圧波形が得られる(3レベル/疑似2レベル制御)。
 時刻tからdTSWまでの区間ivでは、区間iii終了時の状態がそのまま維持され、パルス幅変調に基づく所望幅の電圧パルスが形成される。区間ivでは、トランジスタ15H、14Hがオン状態、トランジスタ14L、15Lがオフ状態である。高電位入力端子11が出力端子13と導通しているため、出力端子13の電圧はVDCである。低電位入力端子12と出力端子13の間の電圧VDCは、トランジスタ14L、15Lで均等に分圧されるため、各トランジスタの電圧はVDC/2である。オン状態のトランジスタ15H、14Hの電圧は0Vであり、電流iが流れる。
 時刻dTSWからdTSW+t/2までの区間vでは、トランジスタ15H、15Lのオンオフ状態が相補的に切り替わる。すなわち、トランジスタ15Hはオン状態からオフ状態に切り替わり、トランジスタ15Lはオフ状態からオン状態に切り替わる。区間iiと同様に、これも本発明の第2のスイッチング制御に相当する。このとき、図6に示されるように、トランジスタ15Lがオン状態に切り替わるにつれて、出力端子13からの電流がオン状態のトランジスタ14Hを流れ、接続経路18のキャパシタ181とトランジスタ15Lを経由して高電位入力端子11を流れる。図4(C2)のトランジスタ15H、15Lの電圧と電流を見ると、電圧の時間変化率dv/dtは(VDC/2)/(t/2)=VDC/tであり、電流の時間変化率di/dtは無限大である。すなわち、電圧はdTSW~dTSW+t/2の区間vに亘って線形に変化する一方、電流は区間vの開始時刻dTSWで瞬時に切り替わる。
 時刻dTSW+t/2からdTSW+tまでの区間viでは、トランジスタ14H、14Lのオンオフ状態が相補的に切り替わる。すなわち、トランジスタ14Hはオン状態からオフ状態に切り替わり、トランジスタ14Lはオフ状態からオン状態に切り替わる。区間iiiと同様に、これも本発明の第1のスイッチング制御に相当する。このとき、図6に示されるように、トランジスタ14Lがオン状態に切り替わるにつれて、出力端子13からの電流がトランジスタ14Lとオン状態のトランジスタ15Lを経由して低電位入力端子12を流れる。図4(C2)のトランジスタ14H、14Lの電圧と電流を見ると、電圧の時間変化率dv/dtは(VDC/2)/(t/2)=VDC/tであり、電流の時間変化率di/dtは無限大である。すなわち、電圧はdTSW+t/2~dTSW+tの区間viに亘って線形に変化する一方、電流は区間viの開始時刻dTSW+t/2で瞬時に切り替わる。
 以上のように、区間vではトランジスタ15H、15Lのオンオフ状態が相補的に切り替わる第2のスイッチング制御が行われ、それに続く区間viではトランジスタ14H、14Lのオンオフ状態が相補的に切り替わる第1のスイッチング制御が行われる。すなわち、上述の区間ii, iiiと同様に、第2のスイッチング制御は第1のスイッチング制御より前に行われる。また、第2のスイッチング制御と第1のスイッチング制御のタイミングは、第2のスイッチング制御(区間v)において、トランジスタ15H、15Lのそれぞれのチャネルの電圧スイッチングの過渡時間t/2だけずれている。これにより、区間vでトランジスタ15H、15Lの電圧が切り替わった後、間を置かずに区間viでトランジスタ14H、14Lの電圧が切り替わる。さらに、上記の通り、区間vとviの電圧の時間変化率dv/dtはVDC/tで互いに等しい。この結果、図4(C1)のように、時刻dTSW+t/2で滑らかに接続された電圧波形が得られる。つまり、電圧パルスの立上り側だけでなく立下り側でも、前述の「3レベル/疑似2レベル制御」が実現される。
 図4(C3)は、インバータ10のスイッチング損失を示す。スイッチング損失は、インバータ10の一回のスイッチング動作を通じて、各トランジスタ15H、14H、14L、15Lで消費される電力の総和である。電力が消費されるのは、図4(C2)に示される各トランジスタ15H、14H、14L、15Lの電圧と電流が共にゼロでない場合である。具体的には、区間iiでトランジスタ15Lが、区間iiiでトランジスタ14Lが、区間vでトランジスタ15Lが、区間viでトランジスタ14Lが電力を消費する。図4(C3)に示されるように、四つの区間ii, iii, v, viで消費される電力は、それぞれ高さがVDC×(-i)/2の直角三角形の面積で表される。各直角三角形の底辺の長さは、区間ii, iiiでt/2であり、区間v, viでt/2である。したがって、これらの四つの直角三角形の面積の総和であるスイッチング損失はt×VDC×(-i)/4+t×VDC×(-i)/4で表される。ここで、各トランジスタ15L、14Lで消費される電力が直角三角形の面積で表されるのは、各区間ii, iii, v, viにおける電流の時間変化率di/dtが無限大であり、電流が時間軸に垂直な方向に瞬時に変化するためである。
 以上で説明したインバータ10において、接続経路18に設けられたキャパシタ181は、高電位側のトランジスタの接続部分18Hと低電位側のトランジスタの接続部分18Lの間の電圧を中間電圧VDC/2付近に維持することで、動作を安定化する。すなわち、キャパシタ181は、高電位側の接続部分18Hと低電位側の接続部分18Lの間の電圧の変動を抑制する電圧変動抑制素子として機能する。図7(B4)および(C4)に、キャパシタ181の電流と電圧を示す。本図の(B2)(B3)(C2)(C3)は、図4と同じものを参考に示す。
 電流iが正の場合の図7(B4)において、キャパシタ181には区間iiとviで電流が流れる。図5に示されるように、区間iiでは高電位側の接続部分18Hから低電位側の接続部分18Lに向かう方向に電流が流れてキャパシタ181は電荷を蓄積し、区間viでは低電位側の接続部分18Lから高電位側の接続部分18Hに向かう方向に電流が流れてキャパシタ181は電荷を放出する。キャパシタ181の電極間電圧は、中間電圧VDC/2を中心として、電荷蓄積状態と電荷放出状態の間で振動的に微小変化する。理想的な状況では、区間ii, viでキャパシタ181を流れる電流の大きさと、流れる時間t/2、t/2がそれぞれ等しく、インバータ10の一回のスイッチング動作を通じて、キャパシタ181の電荷は増減しない。
 電流iが負の場合の図7(C4)において、キャパシタ181には区間iiiとvで電流が流れる。図6に示されるように、区間iiiでは低電位側の接続部分18Lから高電位側の接続部分18Hに向かう方向に電流が流れてキャパシタ181は電荷を放出し、区間vでは高電位側の接続部分18Hから低電位側の接続部分18Lに向かう方向に電流が流れてキャパシタ181は電荷を蓄積する。キャパシタ181の電極間電圧は、中間電圧VDC/2を中心として、電荷蓄積状態と電荷放出状態の間で振動的に微小変化する。理想的な状況では、区間iii, vでキャパシタ181を流れる電流の大きさと、流れる時間t/2、t/2がそれぞれ等しく、インバータ10の一回のスイッチング動作を通じて、キャパシタ181の電荷は増減しない。
 図8は、インバータ10の一回のスイッチング動作を通じてキャパシタ181の電荷の増減がある例を示す。本図の(B1)~(B4)および(C1)~(C4)は、図4および図7と対応する。
 電流iが正の場合のインバータ10の出力を表す図7(B1)、および、電流iが負の場合のインバータ10の出力を表す図7(C1)において、電圧パルス波形は図4の台形状から歪んでいる。各トランジスタの電圧と電流を示す図7(B2)および(C2)に示されるように、第2のスイッチング制御に要する過渡時間t=taR=taFと、第1のスイッチング制御に要する過渡時間t=tbR=tbFが異なるのが原因である。本図はtがtより大きい場合を示すが、tがtより小さい場合も電圧パルス波形は台形状から歪む。
 電流iが正の場合の図7(B4)では、キャパシタ181が電荷を蓄積する時間taRが、キャパシタ181が電荷を放出する時間tbFより長いため、インバータ10の一回のスイッチング動作を通じてキャパシタ181は電荷を過剰に蓄積する。電流iが負の場合の図7(C4)では、キャパシタ181が電荷を蓄積する時間taFが、キャパシタ181が電荷を放出する時間tbRより長いため、インバータ10の一回のスイッチング動作を通じてキャパシタ181は電荷を過剰に蓄積する。いずれの場合も、インバータ10の一回のスイッチング動作を通じて、キャパシタ181の電極間電圧が正方向にシフトしてしまい、インバータ10の安定動作に支障が生じうる。なお、図示はしないが、本図とは逆にtがtより小さい場合は、インバータ10の一回のスイッチング動作を通じて、キャパシタ181は電荷を過剰に放出するため、キャパシタ181の電極間電圧が負方向にシフトしてしまい、インバータ10の安定動作に支障が生じうる。
 図9は、以上のようなスイッチング時間の不均衡を補正する補正装置40の二つの構成例を示す。これらの補正装置40は、キャパシタ181の中心電圧が目標電圧である中間電圧VDC/2になるように、第1の電圧スイッチングの過渡時間t=tbR=tbFおよび第2の電圧スイッチングの過渡時間t=taR=taFを制御する。図2のコントローラ100は、これらの過渡時間tおよびtに応じて、図3の各ドライバ30への入力電圧vGSを制御する。
 図9(A)の第1の構成例に係る補正装置40において、目標電圧提供部41は、キャパシタ181の目標電圧VDC/2を提供する。電圧誤差算出部42は、キャパシタ181の測定電圧vの目標電圧VDC/2からの誤差を算出する。第1の構成例では、キャパシタ181の電圧vを常時測定し、その高周波成分をローパスフィルタ421で除去したものを電圧誤差算出部42に供給する。電圧誤差算出部42が算出した電圧誤差は電圧コントローラ431に供給され、キャパシタ181の電荷補正量に変換される。除算器432は、絶対値演算部433から得られる出力電流iの絶対値で電荷補正量を除算し、時間補正量に変換する。規制部434は、この時間補正量の絶対値が過大にならないように所定の上限値に基づくキャップ処理を行い、最終的な時間補正量δtとする。
 スイッチング時間補正部44は、電圧誤差算出部42が算出した電圧誤差に基づき、第1の電圧スイッチングの過渡時間tおよび第2の電圧スイッチングの過渡時間tの少なくともいずれかを補正する。本構成例では、第1の過渡時間tの補正値を算出する第1の補正部441と、第2の過渡時間tの補正値を算出する第2の補正部442が設けられる。第1の補正部441は、インバータ10の立上り時間/立下り時間tRF(=t=t)から時間補正量δtを減算した上で1/2を乗算し、第1の過渡時間tの補正値とする。すなわちt=(tRF-δt)/2である。第2の補正部442は、インバータ10の立上り時間/立下り時間tRF(=t=t)に時間補正量δtを加算した上で1/2を乗算し、第2の過渡時間tの補正値とする。すなわちt=(tRF+δt)/2である。このとき、第1の過渡時間tと第2の過渡時間tの和は、インバータ10の立上り時間/立下り時間tRFに等しい。したがって、スイッチング時間補正部44は、tRFを第1の過渡時間tと第2の過渡時間tに配分する際に、キャパシタ181が目標電圧VDC/2となる最適な配分割合を時間補正量δtによって指定するものといえる。
 図9(B)の第2の構成例に係る補正装置40では、サンプル/ホールド回路422が、トリガー信号に基づいて取得したキャパシタ181の電圧vを電圧誤差算出部42に供給する。電圧誤差算出部42が算出した電圧誤差は、キャパシタ181の容量値Cが乗算され、キャパシタ181の電荷補正量に変換される。その他は、図9(A)の第1の構成例と同じである。
 以上、本発明を実施形態に基づいて説明した。実施形態は例示であり、それらの各構成要素や各処理プロセスの組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。
 実施形態では、入力された直流電力に基づいて交流電力を出力するインバータ10について説明したが、これとは逆に、入力された交流電力に基づいて直流電力を出力するコンバータにも本発明を適用できる。図2のインバータ10の構成において、出力端子13だったものを交流電力が入力される入力端子とし、高電位入力端子11および低電位入力端子12だったものを、それぞれ、直流電力を出力する高電位出力端子および低電位出力端子とすることで、コンバータの基本的な構成が実現される。
 実施形態では、図2および図4を参照して、インバータ10の「3レベル/疑似2レベル制御」について説明した。すなわち、0V、VDC/2、VDCの3レベルの電圧を出力可能な2個のトランジスタ対14、15を用いて、図4(B1)および(C1)に示される0V、VDCの2レベルの電圧パルスが擬似的に形成された。本発明によれば、Nを2以上の任意の自然数とし、Mを2以上かつN-1以下の任意の自然数として、Nレベル/疑似Mレベル制御を実現できる。N=2の2レベル制御は1個のトランジスタ対で実現できる。N=4の4レベル制御は3個のトランジスタ対で実現できる。このように、Nレベル制御はN-1個のトランジスタ対で実現できる。この場合、3レベル制御の例を示す図4と同様に、出力端子13から遠いトランジスタ対から順にスイッチング制御を行うことでNレベルの電圧を出力できる。このようなNレベルの電圧に基づいて擬似的にMレベルの電圧パルスを形成するためには、図4に関して説明したように、隣接するトランジスタ対のスイッチング制御を連続的に行い、電圧パルスを滑らかに接続すればよい。
 より具体的な構成は以下の通りである。n(=N-1)を2以上の整数として、出力端子13から高電位入力端子11に向かって直列に接続された第1~nの高電位トランジスタ、および、出力端子13から低電位入力端子12に向かって直列に接続された第1~nの低電位トランジスタによって第1~nのトランジスタ対を構成する。第1~nのトランジスタ対に対してスイッチング制御を行う第1~nのドライバを設ける。隣接するトランジスタ対の高電位側の接続部分と低電位側の接続部分を相互に接続する第1~n-1の接続経路を設ける。第1~n-1の接続経路において、高電位側の接続部分と低電位側の接続部分の間の電圧の変動を抑制する第1~n-1の電圧変動抑制素子を設ける。隣接するトランジスタ対のスイッチング制御を所定時間ずれたタイミングで行う。具体的には、各トランジスタ対のスイッチング制御のタイミングは、出力端子13から遠い側のトランジスタ対ほど早くする。特に、隣接するトランジスタ対のスイッチング制御のタイミングを、各トランジスタ対を構成する高電位トランジスタおよび低電位トランジスタのそれぞれの電流経路の電圧スイッチングの過渡時間だけずらすのが好ましい。
 実施形態では、電圧変動抑制素子としてのキャパシタ181を接続経路18に設けることで、その電極間電圧をVDC/2付近に維持し、インバータ10の動作を安定化したが、キャパシタ181の代わりの電圧変動抑制素子としてダイオードを用いても同様の効果を得られる。図10にその構成例を示す。このインバータ10の接続経路18には、低電位側のトランジスタの接続部分18Lから高電位側のトランジスタの接続部分18Hに向かう方向に電流を流す二つのダイオード182L、182Hが直列して設けられる。この二つのダイオード182L、182Hの接続部分19は、高電位Vddと低電位Vssの中間電位(Vdd-Vss)/2=VDC/2に接続される。中間電位が定電位に接続されているため、ダイオード182L、182Hは、高電位側の接続部分18Hと低電位側の接続部分18Lの間の電圧の変動を抑制する電圧変動抑制素子として機能する。
 実施形態では、各トランジスタ対が一つの高電位トランジスタと一つの低電位トランジスタで構成される例を説明したが、各トランジスタ対を構成する高電位トランジスタと低電位トランジスタはそれぞれ複数でもよい。複数の高電位トランジスタと複数の低電位トランジスタで対を構成する技術の一例として、モジュラーマルチレベルコンバータ(MMC: Modular Multilevel Converter)が知られている。これは、同一構成のセルと呼ばれる回路素子群を高電位側と低電位側で対になるように設けるものである。各セルは直列接続および/または並列接続された複数のトランジスタを含む。これらのトランジスタのスイッチング制御においてdi/dtがdv/dtよりも大きくなるように調整することで、実施形態で説明したものと同等のスイッチング損失の低減等の効果が得られる。
 なお、実施形態で説明した各装置の機能構成はハードウェア資源またはソフトウェア資源により、あるいはハードウェア資源とソフトウェア資源の協働により実現できる。ハードウェア資源としてプロセッサ、ROM、RAM、その他のLSIを利用できる。ソフトウェア資源としてオペレーティングシステム、アプリケーション等のプログラムを利用できる。
 本明細書で開示した実施形態のうち、複数の機能が分散して設けられているものは、当該複数の機能の一部又は全部を集約して設けても良く、逆に複数の機能が集約して設けられているものを、当該複数の機能の一部又は全部が分散するように設けることができる。機能が集約されているか分散されているかにかかわらず、発明の目的を達成できるように構成されていればよい。
 本発明はインバータやコンバータの制御技術に関する。
 1 モータ装置、10 インバータ、11 高電位入力端子、12 低電位入力端子、13 出力端子、14 第1のトランジスタ対、15 第2のトランジスタ対、16 第1のドライバ、17 第2のドライバ、18 接続経路、20 モータ、30 ドライバ、32 オペアンプ、33 ゲート抵抗、34 ミラーキャパシタ、35 キャパシタ、40 補正装置、41 目標電圧提供部、42 電圧誤差算出部、44 スイッチング時間補正部、181 キャパシタ、182 ダイオード。

Claims (12)

  1.  高電位の高電位入力端子と低電位の低電位入力端子を含み、両入力端子の間で直流電力が入力される入力端子と、
     交流電力を出力する出力端子と、
     前記高電位入力端子側と前記出力端子側を接続する電流経路を有する高電位トランジスタと、前記低電位入力端子側と前記出力端子側を接続する電流経路を有する低電位トランジスタを備えるトランジスタ対と、
     前記高電位トランジスタおよび前記低電位トランジスタのそれぞれに制御信号を入力し、それぞれの電流経路の導通状態を互いに相補的に切り替えることで前記直流電力を前記交流電力に変換するスイッチング制御を行うドライバとを備え、
     前記ドライバは、前記各電流経路の電流を調整する電流調整素子および当該各電流経路の電圧を調整する電圧調整素子の少なくともいずれかを含み、
     前記電流調整素子および前記電圧調整素子の少なくともいずれかは、前記スイッチング制御において、前記各電流経路の電流の時間変化率が、前記各電流経路の電圧の時間変化率よりも大きくなるように調整する
     インバータ。
  2.  前記電流調整素子は、前記スイッチング制御において、前記各電流経路の電流の時間変化率が略無限大になるように調整する
     請求項1に記載のインバータ。
  3.  前記トランジスタ対は、nを2以上の整数として、前記出力端子から前記高電位入力端子に向かって直列に接続された第1~nの高電位トランジスタ、および、前記出力端子から前記低電位入力端子に向かって直列に接続された第1~nの低電位トランジスタによって構成される第1~nのトランジスタ対を含み、
     前記ドライバは、前記第1~nのトランジスタ対に対して前記スイッチング制御を行う第1~nのドライバを含み、
     隣接するトランジスタ対の高電位側の接続部分と低電位側の接続部分を相互に接続する第1~n-1の接続経路と、
     前記各接続経路に設けられ、前記高電位側の接続部分と前記低電位側の接続部分の間の電圧の変動を抑制する第1~n-1の電圧変動抑制素子とを備え、
     隣接するトランジスタ対の前記スイッチング制御は所定時間ずれたタイミングで行われる
     請求項1または2に記載のインバータ。
  4.  前記各トランジスタ対の前記スイッチング制御のタイミングは、前記出力端子から遠い側のトランジスタ対ほど早い
     請求項3に記載のインバータ。
  5.  前記所定時間は、前記スイッチング制御において、前記トランジスタ対を構成する前記高電位トランジスタおよび前記低電位トランジスタのそれぞれの電流経路の電圧スイッチングの過渡時間である
     請求項3または4に記載のインバータ。
  6.  前記電圧変動抑制素子はキャパシタである
     請求項3から5のいずれかに記載のインバータ。
  7.  前記キャパシタの目標電圧を提供する目標電圧提供部と、
     前記キャパシタの測定電圧の前記目標電圧からの誤差を算出する電圧誤差算出部と、
     前記誤差に基づき、前記隣接するトランジスタ対の少なくともいずれかを構成する前記高電位トランジスタおよび前記低電位トランジスタのそれぞれの電流経路の電圧スイッチングの過渡時間を補正するスイッチング時間補正部と
     を備える請求項6に記載のインバータ。
  8.  前記電圧変動抑制素子は、前記低電位側の接続部分から前記高電位側の接続部分に向かう方向に電流を流す直列接続された二つのダイオードであり、
     前記二つのダイオードの接続部分は、前記高電位と前記低電位の中間電位に接続される
     請求項3から5のいずれかに記載のインバータ。
  9.  高電位の高電位出力端子と低電位の低電位出力端子を含み、両出力端子の間で直流電力を出力する出力端子と、
     交流電力が入力される入力端子と、
     前記高電位出力端子側と前記入力端子側を接続する電流経路を有する高電位トランジスタと、前記低電位出力端子側と前記入力端子側を接続する電流経路を有する低電位トランジスタを備えるトランジスタ対と、
     前記高電位トランジスタおよび前記低電位トランジスタのそれぞれに制御信号を入力し、それぞれの電流経路の導通状態を互いに相補的に切り替えることで前記交流電力を前記直流電力に変換するスイッチング制御を行うドライバとを備え、
     前記ドライバは、前記各電流経路の電流を調整する電流調整素子および当該各電流経路の電圧を調整する電圧調整素子の少なくともいずれかを含み、
     前記電流調整素子および前記電圧調整素子の少なくともいずれかは、前記スイッチング制御において、前記各電流経路の電流の時間変化率が、前記各電流経路の電圧の時間変化率よりも大きくなるように調整する
     コンバータ。
  10.  互いに位相が異なる多相の交流電力で駆動されるモータと、
     前記各相の交流電力を生成する複数のインバータとを備え、
     前記各インバータは、
     高電位の高電位入力端子と低電位の低電位入力端子を含み、両入力端子の間で直流電力が入力される入力端子と、
     前記交流電力を出力する出力端子と、
     前記高電位入力端子側と前記出力端子側を接続する電流経路を有する高電位トランジスタと、前記低電位入力端子側と前記出力端子側を接続する電流経路を有する低電位トランジスタを備えるトランジスタ対と、
     前記高電位トランジスタおよび前記低電位トランジスタのそれぞれに制御信号を入力し、それぞれの電流経路の導通状態を互いに相補的に切り替えることで前記直流電力を前記交流電力に変換するスイッチング制御を行うドライバとを備え、
     前記ドライバは、前記各電流経路の電流を調整する電流調整素子および当該各電流経路の電圧を調整する電圧調整素子の少なくともいずれかを含み、
     前記電流調整素子および前記電圧調整素子の少なくともいずれかは、前記スイッチング制御において、前記各電流経路の電流の時間変化率が、前記各電流経路の電圧の時間変化率よりも大きくなるように調整する
     駆動装置。
  11.  高電位の高電位入力端子と低電位の低電位入力端子を含み、両入力端子の間で直流電力が入力される入力端子と、
     交流電力を出力する出力端子と、
     前記高電位入力端子側と前記出力端子側を接続する電流経路を有する高電位トランジスタと、前記低電位入力端子側と前記出力端子側を接続する電流経路を有する低電位トランジスタを備えるトランジスタ対と
     を備えるインバータの制御方法であって、
     前記高電位トランジスタおよび前記低電位トランジスタのそれぞれに制御信号を入力し、それぞれの電流経路の導通状態を互いに相補的に切り替えることで前記直流電力を前記交流電力に変換するスイッチング制御ステップを備え、
     前記スイッチング制御において、前記各電流経路の電流の時間変化率が、前記各電流経路の電圧の時間変化率よりも大きくなるように調整する
     インバータの制御方法。
  12.  高電位の高電位入力端子と低電位の低電位入力端子を含み、両入力端子の間で直流電力が入力される入力端子と、
     交流電力を出力する出力端子と、
     前記高電位入力端子側と前記出力端子側を接続する電流経路を有する高電位トランジスタと、前記低電位入力端子側と前記出力端子側を接続する電流経路を有する低電位トランジスタを備えるトランジスタ対と
     を備えるインバータの制御プログラムであって、
     前記高電位トランジスタおよび前記低電位トランジスタのそれぞれに制御信号を入力し、それぞれの電流経路の導通状態を互いに相補的に切り替えることで前記直流電力を前記交流電力に変換するスイッチング制御ステップをコンピュータに実行させ、
     前記スイッチング制御において、前記各電流経路の電流の時間変化率が、前記各電流経路の電圧の時間変化率よりも大きくなるように調整する
     インバータの制御プログラム。
PCT/JP2022/001972 2021-01-22 2022-01-20 インバータ、インバータの制御方法、インバータの制御プログラム、コンバータ、駆動装置 WO2022158521A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022576739A JPWO2022158521A1 (ja) 2021-01-22 2022-01-20
CN202280011275.8A CN116802978A (zh) 2021-01-22 2022-01-20 逆变器、逆变器的控制方法、逆变器的控制程序、转换器、驱动装置
EP22742643.4A EP4283850A1 (en) 2021-01-22 2022-01-20 Inverter, control method for inverter, control program for inverter, converter, and driving device
US18/356,723 US20230361692A1 (en) 2021-01-22 2023-07-21 Inverter, method of controlling inverter, program of controlling inverter

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-009124 2021-01-22
JP2021009124 2021-01-22

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/356,723 Continuation US20230361692A1 (en) 2021-01-22 2023-07-21 Inverter, method of controlling inverter, program of controlling inverter

Publications (1)

Publication Number Publication Date
WO2022158521A1 true WO2022158521A1 (ja) 2022-07-28

Family

ID=82549496

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/001972 WO2022158521A1 (ja) 2021-01-22 2022-01-20 インバータ、インバータの制御方法、インバータの制御プログラム、コンバータ、駆動装置

Country Status (5)

Country Link
US (1) US20230361692A1 (ja)
EP (1) EP4283850A1 (ja)
JP (1) JPWO2022158521A1 (ja)
CN (1) CN116802978A (ja)
WO (1) WO2022158521A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012147671A (ja) * 2012-05-09 2012-08-02 Mitsubishi Electric Corp ゲート駆動装置
JP2013240162A (ja) * 2012-05-14 2013-11-28 Toyota Motor Corp 電圧変換装置
US20180062510A1 (en) * 2016-08-24 2018-03-01 Texas Instruments Incorporated Methods and circuitry for sampling a signal
JP2020080644A (ja) 2013-12-20 2020-05-28 ヴァレオ システム ドゥ コントロール モトゥール 回転駆動システム、インバータを制御するための方法および関連するコンピュータプログラム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012147671A (ja) * 2012-05-09 2012-08-02 Mitsubishi Electric Corp ゲート駆動装置
JP2013240162A (ja) * 2012-05-14 2013-11-28 Toyota Motor Corp 電圧変換装置
JP2020080644A (ja) 2013-12-20 2020-05-28 ヴァレオ システム ドゥ コントロール モトゥール 回転駆動システム、インバータを制御するための方法および関連するコンピュータプログラム
US20180062510A1 (en) * 2016-08-24 2018-03-01 Texas Instruments Incorporated Methods and circuitry for sampling a signal

Also Published As

Publication number Publication date
JPWO2022158521A1 (ja) 2022-07-28
CN116802978A (zh) 2023-09-22
US20230361692A1 (en) 2023-11-09
EP4283850A1 (en) 2023-11-29

Similar Documents

Publication Publication Date Title
Mertens et al. Quasi two-level PWM operation of an MMC phase leg with reduced module capacitance
KR100655917B1 (ko) Pwm 펄스 제어방법
JP6206502B2 (ja) 電力変換装置及び電力変換方法
US9001544B2 (en) Inverter device
US7577007B2 (en) Power converting apparatus
US7348739B2 (en) Motor driving apparatus
US9184673B2 (en) Pulse width modulation control for a multilevel converter
KR20130048139A (ko) 멀티레벨 인버터용 데드타임을 제어하는 전류벡터
KR100687936B1 (ko) 전자기기 및 전원회로
US20190334454A1 (en) Three-phase inverter
US11863098B2 (en) Multi-level inverter
US7471532B1 (en) Electric circuit, in particular for a medium-voltage power converter
US11848600B2 (en) Power conversion device with control circuit to adjust a common mode voltage of combined output voltages
WO2022158521A1 (ja) インバータ、インバータの制御方法、インバータの制御プログラム、コンバータ、駆動装置
KR101966318B1 (ko) 불연속 변조 기법을 이용한 고속철도 추진제어 장치용 단상 pwm 컨버터 및 그 제어 방법
TWI784727B (zh) 馬達驅動電路及馬達模組
US7692465B2 (en) Methods for generating PWM-signals
WO2022181037A1 (ja) インバータ制御装置、インバータ回路、モータモジュールおよびインバータ制御方法
JP2007202387A (ja) 電力変換装置
JP4725709B2 (ja) モータ駆動システムの制御装置
JP7279678B2 (ja) ドライバ回路及び電力変換装置
JPH10201243A (ja) 自己消弧形半導体スイッチ素子の並列装置及び電力変換装置
WO2022208911A1 (ja) 電力変換装置およびモータモジュール
JP6546131B2 (ja) 電流形電力変換装置の制御装置
EP2849329B1 (en) Electric power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22742643

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022576739

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280011275.8

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022742643

Country of ref document: EP

Effective date: 20230822