WO2022180794A1 - 絶縁電線およびその製造方法 - Google Patents

絶縁電線およびその製造方法 Download PDF

Info

Publication number
WO2022180794A1
WO2022180794A1 PCT/JP2021/007374 JP2021007374W WO2022180794A1 WO 2022180794 A1 WO2022180794 A1 WO 2022180794A1 JP 2021007374 W JP2021007374 W JP 2021007374W WO 2022180794 A1 WO2022180794 A1 WO 2022180794A1
Authority
WO
WIPO (PCT)
Prior art keywords
isocyanate compound
isocyanate
compound
structural units
units derived
Prior art date
Application number
PCT/JP2021/007374
Other languages
English (en)
French (fr)
Inventor
克文 松井
潤 菅原
裕紀 松浦
Original Assignee
住友電工ウインテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電工ウインテック株式会社 filed Critical 住友電工ウインテック株式会社
Priority to PCT/JP2021/007374 priority Critical patent/WO2022180794A1/ja
Priority to JP2023501959A priority patent/JPWO2022180794A1/ja
Priority to CN202180091720.1A priority patent/CN116802749A/zh
Publication of WO2022180794A1 publication Critical patent/WO2022180794A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/14Polyamide-imides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D179/00Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen, with or without oxygen, or carbon only, not provided for in groups C09D161/00 - C09D177/00
    • C09D179/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C09D179/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation

Definitions

  • the present disclosure relates to an insulated wire and its manufacturing method.
  • An insulated wire that includes a linear conductor and an insulating layer that covers the outer peripheral surface of the conductor is conventionally known.
  • the insulating layer is required to have excellent insulating properties, adhesion to conductors, heat resistance, mechanical strength, flexibility, and the like.
  • Synthetic resins used for forming this insulating layer include polyimide, polyamideimide, polyesterimide, and the like.
  • the insulated wire according to the present disclosure is An insulated wire including a linear conductor and at least one insulating layer laminated on the outer peripheral surface of the conductor, at least one of the insulating layers includes a resin matrix;
  • the resin matrix includes a structural unit derived from a first isocyanate compound, a structural unit derived from a second isocyanate compound, and a structural unit derived from a polyamideimide amine compound,
  • the first isocyanate compound contains, in the molecule, at least one triazinetrione ring structure, and a side chain having a blocked isocyanate group at the terminal bound to each of the three nitrogens of the triazinetrione ring structure,
  • the content ratio of structural units derived from the first isocyanate compound is the total of structural units derived from the first isocyanate compound, structural units derived from the second isocyanate compound and structural units derived from the polyamidoimide amine compound.
  • the second isocyanate compound contains, in the molecule, at least two terminal chains having the blocked isocyanate groups at the ends and at least two urethane structures other than the urethane structures in the blocked isocyanate groups,
  • the second isocyanate compound does not contain a triazinetrione ring structure in the molecule
  • the polyamidoimide amine compound includes, in the molecule, at least one amide imide structure and a structure having at least one amino group bonded to the nitrogen of the amide imide structure at its terminal. is the functional group represented.
  • R is an inert group.
  • the manufacturing method of the insulated wire of the present disclosure includes: A linear conductor and at least one insulating layer laminated on the outer peripheral surface of the conductor, A step of applying varnish to the outer peripheral surface; Baking the varnish onto the conductor; The varnish contains a first isocyanate compound, a second isocyanate compound, and a polyamideimide amine compound,
  • the first isocyanate compound contains, in the molecule, at least one triazinetrione ring structure, and a side chain having a blocked isocyanate group at the terminal bound to each of the three nitrogens of the triazinetrione ring structure,
  • the content of the first isocyanate compound is 40% by mass or more and 80% by mass or less with respect to the total of the first isocyanate compound, the second isocyanate compound and the polyamideimide amine compound,
  • the second isocyanate compound contains, in the molecule, at least two terminal chains having the blocked isocyanate groups at the ends
  • R is an inert group.
  • FIG. 1 is a graph showing weight reduction rates when the insulated wires according to Example 3 and Comparative Example 1 are heated at 10° C./min.
  • FIG. 2 is a graph showing weight reduction rates when the insulated wires according to Examples 1 to 5 are heated at 10° C./min.
  • FIG. 3 is a graph showing the weight reduction rate when the insulated wires according to Example 3 and Examples 6 to 9 were heated at 10° C./min.
  • FIG. 4 is a graph showing the weight reduction rate when the insulated wires according to Example 3 and Examples 10 to 13 were heated at 10° C./min.
  • Patent Document 1 discloses an insulated wire formed by an insulating layer formed using an insulating paint containing a polymer having a polyamideimide structure and a polyurethane structure. disclosed. It is disclosed that the insulating layer has excellent heat resistance, but the heat resistance was not necessarily sufficient.
  • micro arc welding has been used to connect insulated wires, and further heat resistance is required.
  • an object of the present disclosure is to provide an insulated wire capable of improving the heat resistance of the insulating layer.
  • An insulated wire including a linear conductor and at least one insulating layer laminated on the outer peripheral surface of the conductor, at least one of the insulating layers includes a resin matrix;
  • the resin matrix includes a structural unit derived from a first isocyanate compound, a structural unit derived from a second isocyanate compound, and a structural unit derived from a polyamideimide amine compound,
  • the first isocyanate compound contains, in the molecule, at least one triazinetrione ring structure, and a side chain having a blocked isocyanate group at the terminal bound to each of the three nitrogens of the triazinetrione ring structure,
  • the content ratio of structural units derived from the first isocyanate compound is the total of structural units derived from the first isocyanate compound, structural units derived from the second isocyanate compound and structural units derived from the polyamidoimide amine compound.
  • the second isocyanate compound contains, in the molecule, at least two terminal chains having the blocked isocyanate groups at the ends and at least two urethane structures other than the urethane structures in the blocked isocyanate groups,
  • the second isocyanate compound does not contain a triazinetrione ring structure in the molecule
  • the polyamidoimide amine compound includes, in the molecule, at least one amide imide structure and a structure having at least one amino group bonded to the nitrogen of the amide imide structure at its terminal. is the functional group represented.
  • R is an inert group.
  • the insulated wire has excellent heat resistance by including the structural unit derived from the first isocyanate compound, the structural unit derived from the second isocyanate, and the structural unit derived from the polyamideimide amine compound as described above. becomes.
  • the content ratio of structural units derived from the second isocyanate compound includes structural units derived from the first isocyanate compound, structural units derived from the second isocyanate compound, and structural units derived from the polyamideimide amine compound. It is preferably 5% by mass or more and 30% by mass or less with respect to the total of.
  • the content ratio of structural units derived from the polyamideimide amine compound includes structural units derived from the first isocyanate compound, structural units derived from the second isocyanate compound, and structural units derived from the polyamideimide amine compound. It is preferably 20% by mass or more and 45% by mass or less with respect to the total of.
  • the 20% thermal weight loss temperature of the insulating layer is preferably 340°C or higher.
  • the thickness of the insulating layer is preferably 3 ⁇ m or more and 10 ⁇ m or less.
  • a method for manufacturing an insulated wire includes: A linear conductor and at least one insulating layer laminated on the outer peripheral surface of the conductor, A step of applying varnish to the outer peripheral surface; Baking the varnish onto the conductor;
  • the varnish contains a first isocyanate compound, a second isocyanate compound, and a polyamideimide amine compound,
  • the first isocyanate compound contains, in the molecule, at least one triazinetrione ring structure, and a side chain having a blocked isocyanate group at the terminal bound to each of the three nitrogens of the triazinetrione ring structure,
  • the content of the first isocyanate compound is 40% by mass or more and 80% by mass or less with respect to the total of the first isocyanate compound, the second isocyanate compound and the polyamideimide amine compound,
  • the second isocyanate compound contains, in the molecule, at least two terminal chains having the blocked isocyanate groups at the ends and at least two urethane structures other
  • R is an inert group.
  • the insulated wire manufactured by the above manufacturing method is an insulated wire having excellent heat resistance.
  • this embodiment An embodiment of the present disclosure (hereinafter referred to as "this embodiment") will be described below. However, this embodiment is not limited to this.
  • an element symbol or an element name it may mean a substance consisting only of that element, or it may mean a constituent element in a compound.
  • the insulated wire of this embodiment is An insulated wire including a linear conductor and at least one insulating layer laminated on the outer peripheral surface of the conductor, at least one of the insulating layers includes a resin matrix;
  • the resin matrix includes a structural unit derived from a first isocyanate compound, a structural unit derived from a second isocyanate compound, and a structural unit derived from a polyamideimide amine compound,
  • the first isocyanate compound contains, in the molecule, at least one triazinetrione ring structure, and a side chain having a blocked isocyanate group at the terminal bound to each of the three nitrogens of the triazinetrione ring structure,
  • the content ratio of structural units derived from the first isocyanate compound is the total of structural units derived from the first isocyanate compound, structural units derived from the second isocyanate compound and structural units derived from the polyamidoimide amine compound.
  • the second isocyanate compound contains, in the molecule, at least two terminal chains having the blocked isocyanate groups at the ends and at least two urethane structures other than the urethane structures in the blocked isocyanate groups,
  • the second isocyanate compound does not contain a triazinetrione ring structure in the molecule
  • the polyamidoimide amine compound includes, in the molecule, at least one amide imide structure and a structure having at least one amino group bonded to the nitrogen of the amide imide structure at its terminal. is the functional group represented.
  • R is an inert group.
  • the conductor of the insulated wire is a conductor.
  • a metal having high electrical conductivity and high mechanical strength is preferable. Specific examples include copper, copper alloys, aluminum, aluminum alloys, nickel, silver, soft iron, steel, and stainless steel.
  • the conductor may be a strand formed of these metals in a linear shape, may be a coated wire in which the surface of the strand is coated with another metal, or may be a stranded wire in which a plurality of strands are twisted together.
  • the coated wire include, but are not limited to, nickel-coated copper wire, silver-coated copper wire, silver-coated aluminum wire, and copper-coated steel wire.
  • the conductor is linear.
  • the cross-sectional shape of the conductor is not particularly limited.
  • a circular round wire is preferable.
  • the outer diameter of the conductor is not particularly limited, and may be appropriately changed according to the intended use, electrical characteristics, and the like of the insulated wire.
  • the lower limit of the cross-sectional area of the conductor is preferably 0.01 mm 2 , more preferably 0.1 mm 2
  • the upper limit is preferably 20 mm 2 , more preferably 10 mm 2 . If the cross-sectional area of the conductor does not satisfy 0.01 mm 2 , the volume ratio of the insulating layer to the conductor increases, and, for example, the volumetric efficiency of the coil formed using the insulated wire may decrease. When the cross-sectional area of the conductor exceeds 20 mm 2 , the insulating layer needs to be thickened in order to sufficiently improve the insulation of the insulated wire, and as a result, the diameter of the insulated wire may increase. .
  • the insulating layer of the insulated wire includes at least one insulating layer laminated on the outer peripheral surface of the conductor.
  • the insulating layer is in direct contact with the outer peripheral surface of the conductor, and may be laminated on all or at least part of the outer peripheral surface of the conductor.
  • the insulating layers are successively laminated concentrically on the outer peripheral surface of the conductor in a cross-sectional view.
  • the average thickness of each insulating layer can be, for example, 1 ⁇ m or more and 15 ⁇ m or less, preferably 3 ⁇ m or more and 10 ⁇ m or less.
  • the average total thickness of the plurality of insulating layers can be, for example, 10 ⁇ m or more and 200 ⁇ m or less. Also, the total number of insulating layers can be, for example, 2 to 200 layers. Note that the thickness of a plurality of insulating layers is the average value of the thicknesses of eight arbitrary points of the insulating layer.
  • At least one of the insulating layers includes a resin matrix.
  • the resin matrix includes a structural unit derived from the first isocyanate compound, a structural unit derived from the second isocyanate compound, and a structural unit derived from the polyamideimide amine compound.
  • the content ratio of structural units derived from the first isocyanate compound in the resin matrix includes structural units derived from the first isocyanate compound in the resin matrix, structural units derived from the second isocyanate compound, and the polyamideimide. It is preferably 40% by mass or more and 80% by mass or less, more preferably 50% by mass or more and 60% by mass or less, relative to the total structural units derived from the amine compound.
  • the content of the structural unit derived from the first isocyanate compound in the resin matrix is 40% by mass or more, the crosslink density increases, thereby increasing heat resistance and glass transition temperature (Tg).
  • Tg glass transition temperature
  • the content of the first isocyanate compound in the resin matrix is 80% by mass or less, the weldability is excellent and the heat resistance of the insulating layer can be maintained.
  • the content ratio of structural units derived from the second isocyanate compound in the resin matrix includes structural units derived from the first isocyanate compound in the resin matrix, structural units derived from the second isocyanate compound, and the polyamideimide. It is preferably 5% by mass or more and 30% by mass or less, more preferably 10% by mass or more and 20% by mass or less, relative to the total structural units derived from the amine compound.
  • the content ratio of structural units derived from the polyamidoimide amine compound in the resin matrix includes structural units derived from the first isocyanate compound in the resin matrix, structural units derived from the second isocyanate compound, and the polyamideimide. It is preferably 20% by mass or more and 45% by mass or less, more preferably 25% by mass or more and 40% by mass or less, relative to the total structural units derived from the amine compound.
  • the first isocyanate compound is a compound containing, in the molecule, at least one triazinetrione ring structure and a side chain having a blocked isocyanate group at the end that is bonded to each of the three nitrogens of the triazinetrione ring structure.
  • Examples of the first isocyanate compound include compounds represented by Chemical Formula 2 below.
  • each of the three independent R's is an inert group, which will be described later.
  • the three R's may be the same or different.
  • R 1 , R 2 and R 3 are each independent divalent functional groups and may further contain an isocyanate group.
  • R 1 , R 2 and R 3 are preferably chain hydrocarbon groups having 1 to 20 carbon atoms (which may be linear or branched), alicyclic hydrocarbon groups and aromatic It is a hydrocarbon group, more preferably an aromatic hydrocarbon group having 6 to 10 carbon atoms.
  • R 1 , R 2 and R 3 may be the same or different.
  • the first isocyanate compound is a trivalent or higher polyvalent isocyanate and has at least one triazinetrione ring structure in the molecule. At least three side chains terminated with blocked isocyanate groups are then attached to each of the three nitrogens of the triazinetrione ring structure.
  • the first isocyanate compound is, for example, a polyisocyanate (trimer) obtained by polymerizing three isocyanate compounds that can be obtained by reacting with an isocyanate and a masking agent.
  • TDI tolylene diisocyanate
  • MDI diphenylmethane diisocyanate
  • HMDI hexamethylene diisocyanate
  • T-80 2,4- Tolylene diisocyanate/2,6-tolylene
  • These isocyanates may be used alone or in combination of two or more.
  • a trimer of isocyanate having at least one triazinetrione ring structure in the molecule is produced by subjecting the above isocyanates to a trimerization reaction, either singly or in combination of two or more.
  • a blocked isocyanate group is a functional group represented by Chemical Formula 1 below.
  • R in the above chemical formula 1 is an inert group.
  • An inert group means an organic group that is stable and inert under physiological conditions.
  • the inert group is preferably a chain hydrocarbon group having 1 to 20 carbon atoms (which may be linear or branched), an alicyclic hydrocarbon group and an aromatic hydrocarbon group. and more preferably an aromatic hydrocarbon group having 6 to 15 carbon atoms.
  • the masking agent in the present disclosure is used to obtain the first isocyanate compound having the inert group by addition to the highly reactive isocyanate group.
  • the masking agent used as a raw material for the first isocyanate compound those holding active hydrogen are used, and xylenolic acid, cresol, phenol, alcohol, aromatic secondary amine, etc. are used, and xylenolic acid and cresol are used. is preferred.
  • These masking agents may be used alone or in combination of two or more.
  • a first isocyanate compound is produced comprising a side chain having
  • R 1 , R 2 and R 3 have the same meanings as above.
  • the second isocyanate compound is a compound containing, in the molecule, at least two terminal chains having the above-mentioned blocked isocyanate groups at their ends and at least two urethane structures other than the urethane structures in the above-mentioned blocked isocyanate groups. Also, the second isocyanate compound does not contain a triazinetrione ring structure in its molecule.
  • the second isocyanate compound can be obtained by heating and reacting an isocyanate, a dihydric alcohol and a masking agent.
  • Examples of the second isocyanate compound include compounds represented by Chemical Formula 4 below.
  • R 4 , R 5 and R 6 are each independent divalent functional groups.
  • R 4 , R 5 and R 6 are preferably chain hydrocarbon groups having 1 to 20 carbon atoms (which may be linear or branched), alicyclic hydrocarbon groups and aromatic It is a hydrocarbon group, more preferably an aromatic hydrocarbon group having 6 to 15 carbon atoms.
  • R 4 , R 5 and R 6 may be the same or different. Also, R has the same meaning as above.
  • the second isocyanate compound is a divalent isocyanate, and has, in the molecule, at least two terminal chains having the blocked isocyanate groups at the ends and at least two urethane structures other than the urethane structures in the blocked isocyanate groups. include.
  • the second isocyanate compound does not contain a triazinetrione ring structure in its molecule.
  • Examples of the isocyanate used as a raw material for the second isocyanate compound include the same isocyanates as those used as a raw material for the first isocyanate compound.
  • dihydric alcohol examples include ethylene glycol, diethylene glycol, triethylene glycol, tetraethylene glycol, 1,2-propylene glycol, dipropylene glycol, 1,3-propanediol, various butane- , pentane-, or hexanediol, such as 1,3- or 1,4-butanediol 1,5-pentanediol 1,6-hexanediol, 1,4-butene-2-diol, 2,2-dimethylpropane Diol-1,3,2-ethyl-2-butyl-propanediol-1,3,1,4-dimethylolcyclohexane, 1,4-butenediol, hydrogenated bisphenols (for example, hydrogenated P,P′- dihydroxydiphenylpropane or its homologues), 2,2-bis(4-polyoxyethyleneoxyphen
  • an isocyanate compound containing at least two urethane structures in the molecule is produced.
  • a blocked isocyanate group is the same functional group as described above. R also has the same meaning as above.
  • Examples of the masking agent used as a raw material for the second isocyanate compound include the same masking agents as those used as a raw material for the first isocyanate compound.
  • the molecule contains at least two terminal chains having blocked isocyanate groups at the ends and at least two urethane structures other than the urethane structures in the blocked isocyanate groups. , a second isocyanate compound is produced that does not contain a triazinetrione ring structure in the molecule.
  • a polyamidoimide amine compound is a compound containing, in its molecule, at least one amide imide structure and a structure having at least one terminal amino group bonded to the nitrogen of the amide imide structure.
  • the polyamidoimide amine compound can be obtained by heating and reacting a compound having a trivalent carboxylic acid or a derivative thereof and a primary amino group in the presence of an organic solvent.
  • polyamideimide amine compound refers to a polymer containing at least one amideimide structure and a structure having at least one terminal amino group bonded to the nitrogen of the amideimide structure.
  • the polyamidoimide amine compound is a polymer having an amide imide represented by the following chemical formula 6 as a structural unit, and is preferably a compound represented by the following chemical formula 7.
  • R7 is an independent divalent functional group.
  • R 7 is preferably a chain hydrocarbon group having 1 to 20 carbon atoms (which may be linear or branched), an alicyclic hydrocarbon group and an aromatic hydrocarbon group, More preferably, it is an aromatic hydrocarbon group having 6 to 15 carbon atoms.
  • the above two R 7 may be the same or different.
  • n is an integer, preferably an integer of 1-20, more preferably an integer of 1-10.
  • Trivalent carboxylic acids or derivatives thereof used as starting materials for the polyamideimide amine compounds include trimellitic acid, trimesic acid, trimellitic anhydride, hemimelitic anhydride, 1,2,5-naphthalenetricarboxylic anhydride, 2,3,6-naphthalenetricarboxylic anhydride, 1,8,4-naphthalenetricarboxylic anhydride, 3,4,4'-diphenyltricarboxylic anhydride, 3,4,4'-diphenylmethanetricarboxylic acid anhydride, 3,4,4'-diphenyl ether tricarboxylic anhydride, 3,4,4'-benzophenone tricarboxylic anhydride and the like. These trivalent carboxylic acids or derivatives thereof may be used alone or in combination of two or more. Among these, it is preferable to use trimellitic anhydride.
  • Examples of the compound having a primary amino group used as a starting material for the polyamideimide amine compound include aliphatic diamines such as ethylenediamine, trimethylenediamine, tetramethylenediamine, pentamethylenediamine, hexamethylenediamine, heptamethylenediamine and octamethylenediamine.
  • organic solvent examples include N-methyl-2-pyrrolidone, N,N-dimethylacetamide, N,N-dimethylformamide, N,N-diethylformamide, N,N-diethylacetamide, cresylic acid, phenol, o-cresol, m-cresol, p-cresol, 2,3-xylenol, 2,4-xylenol, 2,5-xylenol, 2 ,6-xylenol, 3,4-xylenol, 3,5-xylenol, aliphatic hydrocarbons, aromatic hydrocarbons, halogenated hydrocarbons, ethers, ketones and esters can also be used, examples of which are Examples include benzene, toluene, xylene, ethylbenzene, diethylbenzene, isopropylic acid, cresylic acid, phenol, o-cresol, m-cresol, p-cresol,
  • the resin matrix may contain structural units derived from a divalent or higher polyvalent isocyanate compound other than the structural units derived from the first isocyanate compound and the structural units derived from the second isocyanate compound.
  • the resin matrix contains a structural unit derived from the first isocyanate compound, the crosslink density of the film increases and the heat resistance of the insulating layer improves, but the structure derived from the polyvalent isocyanate compound becomes rigid. By containing the unit, the balance between heat resistance and flexibility can be maintained while maintaining the crosslink density.
  • the above polyvalent isocyanate compound can be obtained by reacting with an isocyanate, a trihydric alcohol and a masking agent.
  • Examples of the polyvalent isocyanate compound include compounds represented by the following chemical formula 9.
  • R has the same meaning as above.
  • the polyvalent isocyanate compound does not contain a triazinetrione ring structure in its molecule.
  • isocyanate examples of the isocyanate used as a raw material for the polyvalent isocyanate compound include those similar to the isocyanate used as a raw material for the first isocyanate compound.
  • Trihydric alcohol examples of the trihydric alcohol used as a starting material for the polyhydric isocyanate compound include 1,1,1-trimethylolethane, 1,1,1-trimethylolpropane and glycerin. These trihydric alcohols may be used alone or in combination of two or more.
  • Urethane is produced by reacting the isocyanate and the trihydric alcohol.
  • a blocked isocyanate group is the same functional group as described above. R also has the same meaning as above.
  • Examples of the masking agent used as a raw material for the polyvalent isocyanate compound include the same masking agents as those used as a raw material for the first isocyanate compound.
  • the insulating layer is baked on the outer peripheral surface of the conductor by applying a varnish containing the first isocyanate compound, the second isocyanate compound and the polyamideimide amine compound to the outer peripheral surface of the conductor and then heating the varnish.
  • a varnish containing the first isocyanate compound, the second isocyanate compound and the polyamideimide amine compound to the outer peripheral surface of the conductor and then heating the varnish.
  • at least one terminal carbon atom bond in the chemical formula 3 and at least one terminal carbon atom bond in the chemical formula 5 are combined with at least one terminal carbon atom bond in the chemical formula 8. It exists in a state of bonding with the bond of an atom.
  • the content ratio of the total amount of structural units derived from the first isocyanate compound, structural units derived from the second isocyanate compound, and structural units derived from the polyamideimide amine compound to the total amount of the insulating layer is 80% by mass or more. is preferred, 90% by mass or more is more preferred, and 95% by mass or more is even more preferred.
  • the above ratio is 80% by mass or more, the insulated wire has excellent heat resistance.
  • the content ratio of structural units derived from the first isocyanate compound, structural units derived from the second isocyanate compound, and structural units derived from the polyamidoimide amine compound in the insulating layer can be determined by gas chromatography-mass spectrometry (GCMS).
  • GCMS gas chromatography-mass spectrometry
  • the 20% thermal weight loss temperature of the insulating layer is preferably 340° C. or higher, more preferably 370° C. or higher. When the temperature is 340° C. or higher, the insulated wire has excellent heat resistance.
  • the 20% thermal weight loss temperature of the insulated wire can be obtained by measuring the weight loss of the insulated wire when the temperature is raised at 10°C/min using thermogravimetry (TG).
  • the 20% thermal weight loss temperature can be obtained, for example, as the temperature at which the weight loss is 20% with respect to the charged weight using a thermogravimetry device (manufactured by Seiko Instruments Inc.).
  • all of the plurality of insulating layers contain the resin matrix, but some of the insulating layers may be layers formed of a resin other than the resin matrix.
  • Resins other than the resin matrix include thermoplastic resins such as polyvinyl formal, polyamide, phenoxy, polyester, polyurethane, polyurethane polyol, polyether, polysulfones, and polyetherimide, phenol, melamine, polyester, polyesterimide, polyamideimide, Thermosetting resins such as polyesteramideimide, polyimide, and polyhydantoin can be used.
  • the insulated wire can be manufactured through, for example, a step of applying varnish to the outer peripheral surface of the conductor (application step) and a step of forming an insulating layer by baking (baking step). Each step will be described below after the varnish used in the coating step is described.
  • the varnish includes the first isocyanate compound, the second isocyanate compound and the polyamidoimide amine compound described above. Moreover, the varnish usually further contains an organic solvent.
  • the first isocyanate compound, the second isocyanate compound and the polyamideimide amine compound contained in the varnish the above-mentioned first isocyanate compound, the second isocyanate compound and the polyamideimide amine compound can be used, so the description is omitted.
  • Organic solvents used in the preparation of the varnish include, for example, xylenolic acid, cresol, phenols such as phenol, glycol ethers, N-methyl-2-pyrrolidone (NM2P), dimethylacetamide (DMAc), and dimethylformamide (DMF). Organic solvents such as can be used. Further, xylene, solvent naphtha, cellosolves, glycol esters, ⁇ -butyl lactone, anone, alcohols and the like can be used as diluents. By using the organic solvent, the coatability of the varnish can be improved.
  • the above varnish may further contain various additives such as pigments, dyes, inorganic or organic fillers, lubricants, curing accelerators, antioxidants and leveling agents, if necessary.
  • the varnish is obtained by, for example, dissolving the first isocyanate compound, the second isocyanate compound and the polyamidoimide amine compound in the organic solvent and mixing various additives such as a catalyst.
  • a catalyst diazabicyclononene (DBN), metal octylate, metal naphthenate, various amine compounds, and the like can be used.
  • the application step is a step of applying varnish to the outer peripheral surface of the conductor.
  • the coating method is not particularly limited, and conventionally known coating methods can be used. For example, when a coating felt is used, the varnish can be applied in a uniform thickness and the surface of the applied varnish can be made smooth.
  • the baking step is a step of forming an insulating layer by baking.
  • the baking method is not particularly limited, and a conventionally known baking method can be used.
  • the varnished conductor can be placed in a baking oven to bake the varnish.
  • the heating temperature can be, for example, 350° C. or higher and 500° C. or lower.
  • the heating time can be, for example, 5 seconds or more and 100 seconds or less.
  • an insulated wire including a conductor and an insulating layer is manufactured. Note that the coating process and the baking process may be repeated until the insulating layer laminated on the surface of the conductor has a predetermined thickness.
  • Insulated wires in the present disclosure can be used, for example, in electronic components, semiconductors, and the like. Moreover, the insulated wire can be used for, for example, a coil or a relay circuit.
  • the first isocyanate compound used in this example is a compound represented by the above chemical formula 2, wherein all Rs in the above chemical formula 2 are phenyl groups (—C 6 H 6 ), and R 1 , R 2 and R 3 is a tolyl group (--C 7 H 8 ).
  • the second isocyanate compound used in this example is a compound represented by the above chemical formula 4, wherein all Rs in the above chemical formula 4 are dimethylphenyl groups (--C 8 H 9 ), and R 4 has a carbon number of 24 aromatic hydrocarbon groups (--C 24 H 32 O 3 ), and R 5 and R 6 are 13-carbon diphenylmethyl groups (--C 13 H 14 ).
  • varnishes (27% by mass) (insulating paint) of samples 1 to 13 were prepared at the compounding ratios shown in Table 1.
  • the 27 mass % means the mass % of the solution A-1, the solution A-2 and the solution A-3 when the mass of the insulating paint is taken as 100%.
  • Insulated wires corresponding to samples 1 to 13 were produced as follows. First, the varnish was applied to the outer peripheral surface of a linear conductor made of a round copper wire with a diameter of 50 ⁇ m using a coating felt. Next, the linear conductor coated with the varnish was baked using a hot air circulating horizontal furnace (furnace length: 5 m). The conditions at this time were an inlet temperature of 350° C., an outlet temperature of 380° C., 20 times of coating felt drawing, and a line speed of 385 m/min. Thus, an insulated wire having an insulating layer provided on the outer peripheral surface of the linear conductor was manufactured. The amount of the varnish applied was adjusted so that each insulating layer had a thickness of 7.5 ⁇ m.
  • Table 2 shows the content ratio (% by mass) of structural units derived from the first isocyanate compound, structural units derived from the second isocyanate compound, and structural units derived from the polyamidoimide amine compound in the insulating layer.
  • a test piece of a two-twisted sample of each of the above samples was used.
  • the two-ply twist sample was produced in accordance with JIS C3216-6:2019 "JA.1.2 b) Two-ply method".
  • the two-twisted sample prepared by the above method is immersed in a liquid epoxy resin (100 parts by weight each of Sumimac ECR-2222K and ECH-222G manufactured by Sumitomo Bakelite Co., Ltd. mixed) and molded at 100 ° C. for 2 hours. Furthermore, by molding at 140° C. for 2 hours, a test piece of a two-twisted sample of each of the above samples was produced.
  • an insulated wire SMPEW (diameter: 50 ⁇ m, insulation layer thickness: 7.5 ⁇ m) manufactured by Sumitomo Electric Wintech (Sample A) was used.
  • Glass transition temperature refers to the temperature at which the electrical properties of an insulated wire change.
  • the thermomechanical analysis method means a method of measuring the amount of thermal expansion of a sample from the difference in the amount of thermal expansion when the temperature of a standard sample and a measurement sample is increased at a constant rate. In the test, using a thermomechanical analyzer (manufactured by Seiko Instruments Inc.), eight samples were bundled and measured under the following test conditions. The results are shown in the "glass transition temperature (°C)" column of Table 3. The higher the glass transition temperature, the more excellent the heat resistance of the insulated wire.
  • Samples 1 to 13 had a longer lifetime and a higher glass transition temperature than sample A. This indicates that the insulated wire of each sample has a long life and good heat resistance.
  • samples 1 to 13 had a higher 20% weight loss temperature than sample A. This indicates that the insulated wire according to the example has better heat resistance than the conventional insulated wire according to the comparative example.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

線状の導体と、上記導体の外周面に積層される少なくとも1層の絶縁層と、を含む絶縁電線であって、上記絶縁層のうち少なくとも1層は、樹脂マトリックスを含み、上記樹脂マトリックスは、第一イソシアネート化合物に由来する構造単位と、第二イソシアネート化合物に由来する構造単位と、ポリアミドイミドアミン化合物に由来する構造単位と、を含み、上記第一イソシアネート化合物は、分子中に、少なくとも1つのトリアジントリオン環構造と、上記トリアジントリオン環構造の3つの窒素の各々に結合した末端にブロックイソシアネート基を有する側鎖と、を含み、上記第一イソシアネート化合物に由来する構造単位の含有割合は、上記第一イソシアネート化合物に由来する構造単位、上記第二イソシアネート化合物に由来する構造単位および上記ポリアミドイミドアミン化合物に由来する構造単位の合計に対して、40質量%以上80質量%以下であり、上記第二イソシアネート化合物は、分子中に、末端に上記ブロックイソシアネート基を有する少なくとも2つの末端鎖と、上記ブロックイソシアネート基中のウレタン構造以外の少なくとも2つのウレタン構造と、を含み、上記第二イソシアネート化合物は、分子中に、トリアジントリオン環構造を含まず、上記ポリアミドイミドアミン化合物は、分子中に、少なくとも1つのアミドイミド構造と、上記アミドイミド構造の窒素に結合した少なくとも1つのアミノ基を末端に有する構造と、を含み、上記ブロックイソシアネート基は、下記化学式1で表される官能基である、絶縁電線。 上記化学式1中、Rは、不活性基である。

Description

絶縁電線およびその製造方法
 本開示は、絶縁電線およびその製造方法に関する。
 従来から、線状の導体と、導体の外周面を被覆する絶縁層とを備える絶縁電線が知られている。絶縁層には、優れた絶縁性、導体に対する密着性、耐熱性、機械的強度、可撓性等が求められている。この絶縁層の形成に用いる合成樹脂としては、ポリイミド、ポリアミドイミド、ポリエステルイミド等が挙げられる。
国際公開第2012/043839号 特開2016-058230号公報 特開2016-126867号公報 国際公開第2015/098639号 国際公開第2017/094789号
 本開示に係る絶縁電線は、
 線状の導体と、上記導体の外周面に積層される少なくとも1層の絶縁層と、を含む絶縁電線であって、
 上記絶縁層のうち少なくとも1層は、樹脂マトリックスを含み、
 上記樹脂マトリックスは、第一イソシアネート化合物に由来する構造単位と、第二イソシアネート化合物に由来する構造単位と、ポリアミドイミドアミン化合物に由来する構造単位と、を含み、
 上記第一イソシアネート化合物は、分子中に、少なくとも1つのトリアジントリオン環構造と、上記トリアジントリオン環構造の3つの窒素の各々に結合した末端にブロックイソシアネート基を有する側鎖と、を含み、
 上記第一イソシアネート化合物に由来する構造単位の含有割合は、上記第一イソシアネート化合物に由来する構造単位、上記第二イソシアネート化合物に由来する構造単位および上記ポリアミドイミドアミン化合物に由来する構造単位の合計に対して、40質量%以上80質量%以下であり、
 上記第二イソシアネート化合物は、分子中に、末端に前記ブロックイソシアネート基を有する少なくとも2つの末端鎖と、上記ブロックイソシアネート基中のウレタン構造以外の少なくとも2つのウレタン構造と、を含み、
 上記第二イソシアネート化合物は、分子中に、トリアジントリオン環構造を含まず、
 上記ポリアミドイミドアミン化合物は、分子中に、少なくとも1つのアミドイミド構造と、上記アミドイミド構造の窒素に結合した少なくとも1つのアミノ基を末端に有する構造と、を含み
 上記ブロックイソシアネート基は、下記化学式1で表される官能基である。
Figure JPOXMLDOC01-appb-C000003
 上記化学式1中、Rは、不活性基である。
 本開示の絶縁電線の製造方法は、
 線状の導体と、上記導体の外周面に積層される少なくとも1層の絶縁層と、を含み、
 上記外周面にワニスを塗布する工程と、
 上記ワニスを上記導体に焼き付ける工程と、を含み、
 上記ワニスは、第一イソシアネート化合物と、第二イソシアネート化合物と、ポリアミドイミドアミン化合物と、を含み、
 上記第一イソシアネート化合物は、分子中に、少なくとも1つのトリアジントリオン環構造と、上記トリアジントリオン環構造の3つの窒素の各々に結合した末端にブロックイソシアネート基を有する側鎖と、を含み、
 上記第一イソシアネート化合物の含有割合は、上記第一イソシアネート化合物、上記第二イソシアネート化合物および上記ポリアミドイミドアミン化合物の合計に対して、40質量%以上80質量%以下であり、
 上記第二イソシアネート化合物は、分子中に、末端に前記ブロックイソシアネート基を有する少なくとも2つの末端鎖と、上記ブロックイソシアネート基中のウレタン構造以外の少なくとも2つのウレタン構造と、を含み、
 上記第二イソシアネート化合物は、分子中に、トリアジントリオン環構造を含まず、
 上記ポリアミドイミドアミン化合物は、分子中に、少なくとも1つのアミドイミド構造と、上記アミドイミド構造の窒素に結合した少なくとも1つのアミノ基を末端に有する構造と、を含み、
 上記ブロックイソシアネート基は、下記化学式1で表される官能基である。
Figure JPOXMLDOC01-appb-C000004
 上記化学式1中、Rは、不活性基である。
図1は、実施例3および比較例1に係る絶縁電線を10℃/minで昇温したときの重量減少率を示すグラフである。 図2は、実施例1~実施例5に係る絶縁電線を10℃/minで昇温したときの重量減少率を示すグラフである。 図3は、実施例3および実施例6~実施例9に係る絶縁電線を10℃/minで昇温したときの重量減少率を示すグラフである。 図4は、実施例3および実施例10~実施例13に係る絶縁電線を10℃/minで昇温したときの重量減少率を示すグラフである。
 [本開示が解決しようとする課題]
 従来から、ポリウレタン構造を有する絶縁性塗料を用いて形成された絶縁層は、耐熱性に優れることが知られている。例えば、国際公開第2012/043839号(特許文献1)、特開2016-058230号公報(特許文献2)、特開2016-126867号公報(特許文献3)、国際公開第2015/098639号(特許文献4)および国際公開第2017/094789号(特許文献5)には、ポリアミドイミド構造とポリウレタン構造とを有する重合体を含む絶縁性塗料を用いて形成された絶縁層により形成された絶縁電線が開示される。その絶縁層は、優れた耐熱性を備えることも開示されているが、耐熱性は必ずしも十分とは言えなかった。
 また、近年、絶縁電線の接続にはマイクロアーク溶接が用いられてきており、さらなる耐熱性が求められている。
 そこで、本開示は、絶縁層の耐熱性を向上させることのできる絶縁電線を提供することを目的とする。
 [本開示の効果]
 本開示によれば、絶縁層の耐熱性を向上させることのできる絶縁電線を提供できる。
 [本開示の実施形態の説明]
 最初に本開示の一態様の内容を列記して説明する。
 [1]本開示の一態様に係る絶縁電線は、
 線状の導体と、上記導体の外周面に積層される少なくとも1層の絶縁層と、を含む絶縁電線であって、
 上記絶縁層のうち少なくとも1層は、樹脂マトリックスを含み、
 上記樹脂マトリックスは、第一イソシアネート化合物に由来する構造単位と、第二イソシアネート化合物に由来する構造単位と、ポリアミドイミドアミン化合物に由来する構造単位と、を含み、
 上記第一イソシアネート化合物は、分子中に、少なくとも1つのトリアジントリオン環構造と、上記トリアジントリオン環構造の3つの窒素の各々に結合した末端にブロックイソシアネート基を有する側鎖と、を含み、
 上記第一イソシアネート化合物に由来する構造単位の含有割合は、上記第一イソシアネート化合物に由来する構造単位、上記第二イソシアネート化合物に由来する構造単位および上記ポリアミドイミドアミン化合物に由来する構造単位の合計に対して、40質量%以上80質量%以下であり、
 上記第二イソシアネート化合物は、分子中に、末端に前記ブロックイソシアネート基を有する少なくとも2つの末端鎖と、上記ブロックイソシアネート基中のウレタン構造以外の少なくとも2つのウレタン構造と、を含み、
 上記第二イソシアネート化合物は、分子中に、トリアジントリオン環構造を含まず、
 上記ポリアミドイミドアミン化合物は、分子中に、少なくとも1つのアミドイミド構造と、上記アミドイミド構造の窒素に結合した少なくとも1つのアミノ基を末端に有する構造と、を含み
 上記ブロックイソシアネート基は、下記化学式1で表される官能基である。
Figure JPOXMLDOC01-appb-C000005
 上記化学式1中、Rは、不活性基である。
 上記絶縁電線は、上述のように第一イソシアネート化合物に由来する構造単位、第二イソシアネートに由来する構造単位およびポリアミドイミドアミン化合物に由来する構造単位を備えることによって、優れた耐熱性を有する絶縁電線となる。
 [2]上記第二イソシアネート化合物に由来する構造単位の含有割合は、上記第一イソシアネート化合物に由来する構造単位、上記第二イソシアネート化合物に由来する構造単位および上記ポリアミドイミドアミン化合物に由来する構造単位の合計に対して、5質量%以上30質量%以下であることが好ましい。このように規定することで、より確実に耐熱性を有する絶縁電線となる。
 [3]上記ポリアミドイミドアミン化合物に由来する構造単位の含有割合は、上記第一イソシアネート化合物に由来する構造単位、上記第二イソシアネート化合物に由来する構造単位および上記ポリアミドイミドアミン化合物に由来する構造単位の合計に対して、20質量%以上45質量%以下であることが好ましい。このように規定することで、より確実に優れた耐熱性を有する絶縁電線となる。
 [4]上記絶縁層の20%熱重量減少温度は、340℃以上であることが好ましい。このように規定することで、より確実に優れた耐熱性を有する絶縁電線となる。
 [5]上記絶縁層の厚みは、3μm以上10μm以下であることが好ましい。このように規定することで、より確実に優れた耐熱性を有する絶縁電線となる。
 [6]本開示の一態様に係る絶縁電線の製造方法は、
 線状の導体と、上記導体の外周面に積層される少なくとも1層の絶縁層と、を含み、
 上記外周面にワニスを塗布する工程と、
 上記ワニスを上記導体に焼き付ける工程と、を含み、
 上記ワニスは、第一イソシアネート化合物と、第二イソシアネート化合物と、ポリアミドイミドアミン化合物と、を含み、
 上記第一イソシアネート化合物は、分子中に、少なくとも1つのトリアジントリオン環構造と、上記トリアジントリオン環構造の3つの窒素の各々に結合した末端にブロックイソシアネート基を有する側鎖と、を含み、
 上記第一イソシアネート化合物の含有割合は、上記第一イソシアネート化合物、上記第二イソシアネート化合物および上記ポリアミドイミドアミン化合物の合計に対して、40質量%以上80質量%以下であり、
 上記第二イソシアネート化合物は、分子中に、末端に前記ブロックイソシアネート基を有する少なくとも2つの末端鎖と、上記ブロックイソシアネート基中のウレタン構造以外の少なくとも2つのウレタン構造と、を含み、
 上記第二イソシアネート化合物は、分子中に、トリアジントリオン環構造を含まず、
 上記ポリアミドイミドアミン化合物は、分子中に、少なくとも1つのアミドイミド構造と、上記アミドイミド構造の窒素に結合した少なくとも1つのアミノ基を末端に有する構造と、を含み、
 上記ブロックイソシアネート基は、下記化学式1で表される官能基である。
Figure JPOXMLDOC01-appb-C000006
 上記化学式1中、Rは、不活性基である。
 上記製造方法により製造された絶縁電線は、優れた耐熱性を有する絶縁電線となる。
 [本開示の実施形態の詳細]
 以下、本開示の一実施形態(以下「本実施形態」と記す。)について説明する。ただし、本実施形態はこれに限定されるものではない。本明細書において、元素記号または元素名が記載されている場合は、その元素のみからなる物質を意味している場合もあるし、化合物中の構成元素を意味している場合もある。
 ≪第1の実施形態:絶縁電線≫
 本実施形態の絶縁電線は、
 線状の導体と、上記導体の外周面に積層される少なくとも1層の絶縁層と、を含む絶縁電線であって、
 上記絶縁層のうち少なくとも1層は、樹脂マトリックスを含み、
 上記樹脂マトリックスは、第一イソシアネート化合物に由来する構造単位と、第二イソシアネート化合物に由来する構造単位と、ポリアミドイミドアミン化合物に由来する構造単位と、を含み、
 上記第一イソシアネート化合物は、分子中に、少なくとも1つのトリアジントリオン環構造と、上記トリアジントリオン環構造の3つの窒素の各々に結合した末端にブロックイソシアネート基を有する側鎖と、を含み、
 上記第一イソシアネート化合物に由来する構造単位の含有割合は、上記第一イソシアネート化合物に由来する構造単位、上記第二イソシアネート化合物に由来する構造単位および上記ポリアミドイミドアミン化合物に由来する構造単位の合計に対して、40質量%以上80質量%以下であり、
 上記第二イソシアネート化合物は、分子中に、末端に前記ブロックイソシアネート基を有する少なくとも2つの末端鎖と、上記ブロックイソシアネート基中のウレタン構造以外の少なくとも2つのウレタン構造と、を含み、
 上記第二イソシアネート化合物は、分子中に、トリアジントリオン環構造を含まず、
 上記ポリアミドイミドアミン化合物は、分子中に、少なくとも1つのアミドイミド構造と、上記アミドイミド構造の窒素に結合した少なくとも1つのアミノ基を末端に有する構造と、を含み
 上記ブロックイソシアネート基は、下記化学式1で表される官能基である。
Figure JPOXMLDOC01-appb-C000007
 上記化学式1中、Rは、不活性基である。
 <導体>
 上記絶縁電線の導体は、導電体である。上記導体の材料としては、導電率が高くかつ機械的強度の高い金属が好ましい。具体的には、銅、銅合金、アルミニウム、アルミニウム合金、ニッケル、銀、軟鉄、鋼、ステンレス鋼などが挙げられる。上記導体は、これらの金属を線状に形成した素線であってもよく、素線の表面を他の金属で被覆した被覆線であってもよく、複数の素線を撚り合わせた撚線であってもよい。上記被覆線としては、ニッケル被覆銅線、銀被覆銅線、銀被覆アルミニウム線、銅被覆鋼線などが挙げられるが、これらに限定されるものではない。
 上記導体は、線状である。上記導体の断面形状は特に限定されず、断面が円形状の丸線でもよく、断面が方形状の角線でもよく、複数の素線を撚り合わせた撚り線であってもよいが、断面が円形状の丸線であることが好ましい。上記導体の外径は特に制限されず、上記絶縁電線の使用用途、電気特性等に応じて、適宜変更される。
 上記導体の断面積の下限値は0.01mm2が好ましく、0.1mm2がより好ましく、上限値は20mm2が好ましく、10mm2がより好ましい。上記導体の断面積が0.01mm2を満たさない場合、導体に対する絶縁層の体積の割合が大きくなり、例えば、上記絶縁電線を用いて形成されるコイルの体積効率が低下するおそれがある。上記導体の断面積が20mm2を超える場合、上記絶縁電線の絶縁性を十分に高めるために、上記絶縁層を厚くする必要が生じ、結果的に、上記絶縁電線が大径化するおそれがある。
 <絶縁層>
 上記絶縁電線の絶縁層は、上記導体の外周面に積層される少なくとも1層の絶縁層を含む。上記絶縁層は、上記導体の外周面に直接接しており、上記導体の外周面の全部または少なくとも一部に積層されてもよい。上記絶縁電線が複数の絶縁層を備える場合、各絶縁層は上記導体の外周面に断面視で同心円状に順次積層される。この場合、各絶縁層の平均厚さとしては、例えば、1μm以上15μm以下とすることができ、3μm以上10μm以下であることが好ましい。また、上記複数の絶縁層の平均合計厚さとしては、例えば、10μm以上200μm以下とすることができる。また、複数の絶縁層の合計層数としては、例えば2層以上200層以下とすることができる。なお、複数の絶縁層の厚さとは、絶縁層の任意の8点の厚さの平均値である。
 (樹脂マトリックス)
 上記絶縁層のうち少なくとも1層は、樹脂マトリックスを含む。上記樹脂マトリックスは、第一イソシアネート化合物に由来する構造単位と、第二イソシアネート化合物に由来する構造単位と、ポリアミドイミドアミン化合物に由来する構造単位と、を含む。
 上記樹脂マトリックス中における上記第一イソシアネート化合物に由来する構造単位の含有割合は、上記樹脂マトリックス中の上記第一イソシアネート化合物に由来する構造単位、上記第二イソシアネート化合物に由来する構造単位および上記ポリアミドイミドアミン化合物に由来する構造単位の合計に対し、40質量%以上80質量%以下であることが好ましく、50質量%以上60質量%以下であることがより好ましい。上記樹脂マトリックス中における上記第一イソシアネート化合物に由来する構造単位の含有割合が40質量%以上である場合、架橋密度が上がることで耐熱性およびガラス転移温度(Tg)値を上げることができる。一方、上記樹脂マトリックス中における上記第一イソシアネート化合物の含有割合が80質量%以下である場合、溶接性に優れるとともに、上記絶縁層の耐熱性を維持することができる。
 上記樹脂マトリックス中における上記第二イソシアネート化合物に由来する構造単位の含有割合は、上記樹脂マトリックス中の上記第一イソシアネート化合物に由来する構造単位、上記第二イソシアネート化合物に由来する構造単位および上記ポリアミドイミドアミン化合物に由来する構造単位の合計に対し、5質量%以上30質量%以下であることが好ましく、10質量%以上20質量%以下であることがより好ましい。
 上記樹脂マトリックス中における上記ポリアミドイミドアミン化合物に由来する構造単位の含有割合は、上記樹脂マトリックス中の上記第一イソシアネート化合物に由来する構造単位、上記第二イソシアネート化合物に由来する構造単位および上記ポリアミドイミドアミン化合物に由来する構造単位の合計に対し、20質量%以上45質量%以下であることが好ましく、25質量%以上40質量%以下であることがより好ましい。
 (第一イソシアネート化合物)
 第一イソシアネート化合物は、分子中に、少なくとも1つのトリアジントリオン環構造と、上記トリアジントリオン環構造の3つの窒素の各々に結合した末端にブロックイソシアネート基を有する側鎖と、を含む化合物である。上記第一イソシアネート化合物としては、例えば、下記化学式2で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000008
 上記化学式2で表される第一イソシアネート化合物において、3つの各々独立のRは、後述する不活性基である。上記3つのRは同一でもよく、異なっていてもよい。
 また、R、RおよびRは、各々独立の二価の官能基であり、イソシアネート基をさらに含んでいてもよい。R、RおよびRは、好ましくは、炭素数が1~20の鎖状炭化水素基(直鎖状または分枝状を含んでいてもよい)、脂環式炭化水素基および芳香族炭化水素基であり、より好ましくは、炭素数が6~10の芳香族炭化水素基である。R、RおよびRは同一でもよく、異なっていてもよい。
 上記第一イソシアネート化合物は、三価以上の多価イソシアネートであり、分子中に、少なくとも1つのトリアジントリオン環構造を有する。そして、ブロックイソシアネート基を末端に有する少なくとも3つの側鎖が上記トリアジントリオン環構造の3つの窒素の各々に結合している。
 第一イソシアネート化合物は、例えば、イソシアネートおよびマスキング剤との反応によって得ることができる3つのイソシアネート化合物が重合してなるポリイソシアネート(3量体)である。
 [イソシアネート]
 上記第一イソシアネート化合物の原料として用いるイソシアネートとしては、少なくとも2つのイソシアネート基を含むイソシアネートであり、例えば、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HMDI)、2,4-トリレンジイソシアネート/2,6-トリレンジイソシアネート=80/20混合物(T-80)、2,4-トリレンジイソシアネート/2,6-トリレンジイソシアネート=65/35混合物(T-65)、HMDIの誘導体、ジメリールジイソシアネート(DDI)、水素添加MDI(HMDI)、水素添加TDI(HTDI)等が挙げられる。上記2,4-トリレンジイソシアネート/2,6-トリレンジイソシアネート=80/20混合物は、2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの異性体比(モル比)が80:20であることを、上記2,4-トリレンジイソシアネート/2,6-トリレンジイソシアネート=65/35混合物は、2,4-トリレンジイソシアネートと2,6-トリレンジイソシアネートの異性体比(モル比)が65:35であることをそれぞれ意味する。これらのイソシアネートは、それぞれ単独でまたは2種以上を混合して用いられる。これらのうち、トリレンジイソシアネート(TDI)、ジフェニルメタンジイソシアネート(MDI)、ヘキサメチレンジイソシアネート(HMDI)、2,4-トリレンジイソシアネート/2,6-トリレンジイソシアネート=80/20混合物(T-80)、2,4-トリレンジイソシアネート/2,6-トリレンジイソシアネート=65/35混合物(T-65)を使用することが好ましい。より確実に優れた耐熱性を有する絶縁電線が提供できるからである。
 上記イソシアネートを単独でまたは2種以上を混合して3量化反応させることで、分子中に、少なくとも1つのトリアジントリオン環構造を有するイソシアネートの3量体が生成される。
 [ブロックイソシアネート基]
 ブロックイソシアネート基は、下記化学式1で表される官能基である。
Figure JPOXMLDOC01-appb-C000009
 上記化学式1中のRは、不活性基である。不活性基とは、生理的条件下で安定であり不活性な有機基を意味する。不活性基としては、好ましくは、炭素数が1~20の鎖状炭化水素基(直鎖状または分枝状を含んでいてもよい)、脂環式炭化水素基および芳香族炭化水素基であり、より好ましくは、炭素数が6~15の芳香族炭化水素基である。
 [マスキング剤]
 本開示におけるマスキング剤は、反応性の高いイソシアネート基に付加することにより、上記不活性基を有する第一イソシアネート化合物を得るために使用される。上記第一イソシアネート化合物の原料として用いるマスキング剤としては、活性水素を保持したものが使用され、キシレノール酸、クレゾール、フェノール、アルコール、芳香族第二級アミン等が挙げられ、キシレノール酸、クレゾールを用いることが好ましい。これらのマスキング剤は、それぞれ単独でまたは2種以上を混合して用いられる。
 上記イソシアネートの3量体および上記マスキング剤を反応させることで、分子中に、少なくとも1つのトリアジントリオン環構造と、上記トリアジントリオン環構造の3つの各々の窒素に結合した末端に上記ブロックイソシアネート基を有する側鎖と、を含む第一イソシアネート化合物が生成される。
 [第一イソシアネート化合物に由来する構造単位]
 上記第一イソシアネート化合物に由来する構造単位は、下記化学式3で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000010
 上記化学式3中、R、RおよびRは、上記と同じ意味を表す。
 (第二イソシアネート化合物)
 第二イソシアネート化合物は、分子中に、末端に上記ブロックイソシアネート基を有する少なくとも2つの末端鎖と、上記ブロックイソシアネート基中のウレタン構造以外の少なくとも2つのウレタン構造と、を含む化合物である。また、上記第二イソシアネート化合物は、分子中に、トリアジントリオン環構造を含まない。
 上記第二イソシアネート化合物は、イソシアネート、二価アルコールおよびマスキング剤を加熱し反応させることにより得ることができる。上記第二イソシアネート化合物としては、例えば、下記化学式4で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000011
 上記化学式4で表される第二イソシアネート化合物において、R、RおよびRは、各々独立の二価の官能基である。R、RおよびRは、好ましくは、炭素数が1~20の鎖状炭化水素基(直鎖状または分枝状を含んでいてもよい)、脂環式炭化水素基および芳香族炭化水素基であり、より好ましくは、炭素数が6~15の芳香族炭化水素基である。R、RおよびRは同一でもよく、異なっていてもよい。また、Rは上記と同じ意味を表す。
 上記第二イソシアネート化合物は、二価イソシアネートであり、分子中に、末端に上記ブロックイソシアネート基を有する少なくとも2つの末端鎖と、上記ブロックイソシアネート基中のウレタン構造以外の少なくとも2つのウレタン構造と、を含む。そして、上記第二イソシアネート化合物は、分子中に、トリアジントリオン環構造を含まない。
 [イソシアネート]
 上記第二イソシアネート化合物の原料として用いるイソシアネートとしては、上記第一イソシアネート化合物の原料として用いるイソシアネートと同様のものが挙げられる。
 [二価アルコール]
 上記第二イソシアネート化合物の原料として用いる二価アルコールとしては、エチレングリコール、ジエチレングリコール、トリエチレングリコール、テトラエチレングリコール、1,2-プロピレングリコール、ジプロピレングリコール、1,3-プロパンジオール、各種のブタン-、ペンタン-、またはヘキサンジオール、例えば、1,3-または1,4-ブタンジオール1,5-ペンタンジオール1,6-ヘキサンジオール、1,4-ブテン-2-ジオール、2,2-ジメチルプロパンジオール-1,3、2-エチル-2-ブチル-プロパンジオール-1,3、1,4-ジメチロールシクロヘキサン、1,4-ブテンジオール、水添加ビスフェノール類(例えば、水添加P,P′-ジヒドロキシジフェニールプロパンまたはその同族体)、2,2-ビス(4-ポリオキシエチレンオキシフェニル)プロパン、2,2-ビス(4-ポリオキシプロピレンオキシフェニル)プロパン、環状グリコール、例えば、2,2,4,4-テトラメチル-1,3-シクロブタンジオール、ヒドロキノン-ジ-β-ヒドロキシエチル-エーテル、1,4-シクロヘキサンジメタノール、1,4-シクロヘキサンジエタノール、トリメチレングリコール、ヘキシレングリコール、オクチレングリコール等が挙げられる。これらの二価アルコールは、それぞれ単独でまたは2種以上を混合して用いられる。これらのうち、2,2-ビス(4-ポリオキシプロピレンオキシフェニル)プロパンを使用することが好ましい。
 上記イソシアネートおよび上記二価アルコールを混合してエステル化反応させることで、分子中に、少なくとも2つのウレタン構造を含むイソシアネート化合物が生成される。
 [ブロックイソシアネート基]
 ブロックイソシアネート基は、上記と同様の官能基である。また、Rも上記と同じ意味を表す。
 [マスキング剤]
 上記第二イソシアネート化合物の原料として用いるマスキング剤としては、上記第一イソシアネート化合物の原料として用いるマスキング剤と同様のものが挙げられる。
 上記イソシアネート化合物および上記マスキング剤を反応させることで、分子中に、末端にブロックイソシアネート基を有する少なくとも2つの末端鎖と、上記ブロックイソシアネート基中のウレタン構造以外の少なくとも2つのウレタン構造と、を含み、分子中に、トリアジントリオン環構造を含まない、第二イソシアネート化合物が生成される。
 [第二イソシアネート化合物に由来する構造単位]
 上記第二イソシアネート化合物に由来する構造単位は、下記化学式5で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000012
 上記化学式5中、R、RおよびRは、上記と同じ意味を表す。
 (ポリアミドイミドアミン化合物)
 ポリアミドイミドアミン化合物は、分子中に、少なくとも1つのアミドイミド構造と、上記アミドイミド構造の窒素に結合した少なくとも1つのアミノ基を末端に有する構造と、を含む化合物である。
 上記ポリアミドイミドアミン化合物は、三価カルボン酸またはその誘導体および第一級アミノ基を有する化合物を有機溶剤の存在下で加熱し反応させることにより得ることができる。
 ここで、「ポリアミドイミドアミン化合物」とは、少なくとも1つのアミドイミド構造と、上記アミドイミド構造の窒素に結合した少なくとも1つのアミノ基を末端に有する構造を含む重合体をいう。上記ポリアミドイミドアミン化合物は、下記化学式6で示されるアミドイミドを構造単位として有する重合体であり、下記化学式7で示される化合物であることが好ましい。
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
 上記化学式7で表されるポリアミドイミドアミン化合物において、Rは、独立の二価の官能基である。Rは、好ましくは、炭素数が1~20の鎖状炭化水素基(直鎖状または分枝状を含んでいてもよい)、脂環式炭化水素基および芳香族炭化水素基であり、より好ましくは、炭素数が6~15の芳香族炭化水素基である。上記2つのRは同一でもよく、異なっていてもよい。
 また、上記化学式7で表されるポリアミドイミドアミン化合物において、nは、整数であり、好ましくは、1~20の整数であり、より好ましくは、1~10の整数である。
 [三価カルボン酸またはその誘導体]
 上記ポリアミドイミドアミン化合物の原料として用いる三価カルボン酸またはその誘導体としては、トリメリット酸、トリメシン酸、トリメリット酸無水物、ヘミメリット酸無水物、1,2,5-ナフタリントリカルボン酸無水物、2,3,6-ナフタリントリカルボン酸無水物、1,8,4-ナフタリントリカルボン酸無水物、3,4,4′-ジフェニールトリカルボン酸無水物、3,4,4′-ジフェニールメタントリカルボン酸無水物、3,4,4′-ジフェニールエーテルトリカルボン酸無水物、3,4,4′-ベンゾフェノントリカルボン酸無水物等が挙げられる。これらの三価カルボン酸またはその誘導体は、それぞれ単独でまたは2種以上を混合して用いられる。これらのうち、トリメリット酸無水物を使用することが好ましい。
 [第一級アミノ基を有する化合物]
 上記ポリアミドイミドアミン化合物の原料として用いる第一級アミノ基を有する化合物としては、エチレンジアミン、トリメチレンジアミン、テトラメチレンジアミン、ペンタメチレンジアミン、ヘキサメチレンジアミン、ヘプタメチレンジアミン、オクタメチレンジアミン等の脂肪族ジアミン、4,4′-ジアミノジフェニルメタン、4,4′-ジアミノジフェニルプロパン、4,4′-ジアミノジフェニルスルフィド、4,4′-ジアミノジフェニルスルホン、4,4′-ジアミノジフェニルエーテル、3,3′-ジアミノジフェニル、3,3′-ジアミノジフェニルスルホン、3,3′-ジメチル-4,4′-ビスフェニルジアミン、1,4-ジアミノナフタレン、1,5-ジアミノナフタレン、m-フェニレンジアミン、p-フェニレンジアミン、m-キシリレンジアミン、p-キシリレンジアミン、1-イソプロピル-2,4-メタフェニレンジアミン等の芳香族第1級ジアミン、3-(p-アミノシクロヘキシル)メタンジアミノプロピル、3-メチル-ヘプタンメチンジアミン、4,4′-ジメチルヘプタメチンジアミン、2,5-ジメチルヘキサメチレンジアミン、2,5-ジメチルヘプタメチンジアミンの如き分枝状脂肪族ジアミン、1,4-ジアミノシクロヘキサン、1,10-ジアミノ-1,10-ジメチルデカン等の脂環族ジアミン等が挙げられる。これらの第一級アミノを有する化合物は、それぞれ単独でまたは2種以上を混合して用いられる。これらのうち、芳香族ジアミンを使用することが好ましい。
 [有機溶媒]
 上記三価カルボン酸またはその誘導体と、上記第一級アミノ基を有する化合物の反応に用いる有機溶媒としては、N-メチル-2-ピロリドン、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N,N-ジエチルホルムアミド、N,N-ジエチルアセトアミド、クレゾール酸、フェノール、o-クレゾール、m-クレゾール、p-クレゾール、2,3-キシレノール、2,4-キシレノール、2,5-キシレノール、2,6-キシレノール、3,4-キシレノール、3,5-キシレノール、脂肪族炭化水素、芳香族炭化水素、ハロゲン化炭化水素、エーテル類、ケトン類並びにエステル類も用いることができ、これらの例としては、ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、イソプロピルベンゼン、石油ナフサ、コールタールナフサ、ソルベントナフサ、アセトン、メチルエチルケトン、メチルイソブチルケトン、酢酸メチル、酢酸エチル等が挙げられる。これらの有機溶媒は、それぞれ単独でまたは2種以上を混合して用いられる。
 [ポリアミドイミドアミン化合物に由来する構造単位]
 上記ポリアミドイミドアミン化合物に由来する構造単位は、下記化学式8で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000015
 上記化学式8中、Rおよびnは、上記と同じ意味を表す。
 (多価イソシアネート化合物)
 上記樹脂マトリックスは、上記第一イソシアネート化合物に由来する構造単位および上記第二イソシアネート化合物に由来する構造単位以外の二価以上の多価イソシアネート化合物に由来する構造単位を含有してもよい。上記樹脂マトリックスが上記第一イソシアネート化合物に由来する構造単位を含有すると、皮膜の架橋密度が上がり上記絶縁層の耐熱性は向上するが、強直となることから、上記多価イソシアネート化合物に由来する構造単位を含有することで、架橋密度を維持しつつ耐熱性と柔軟性のバランスを保つことができる。
 上記多価イソシアネート化合物は、イソシアネート、三価アルコールおよびマスキング剤との反応により得ることができる。上記多価イソシアネート化合物としては、例えば、下記化学式9で表される化合物が挙げられる。
Figure JPOXMLDOC01-appb-C000016
 上記化学式9中、Rは上記と同じ意味を表す。上記多価イソシアネート化合物は、分子中に、トリアジントリオン環構造を含まない。
 [イソシアネート]
 上記多価イソシアネート化合物の原料として用いるイソシアネートとしては、上記第一イソシアネート化合物の原料として用いるイソシアネートと同様のものが挙げられる。
 [三価アルコール]
 上記多価イソシアネート化合物の原料として用いる三価アルコールとしては、1,1,1-トリメチロールエタン、1,1,1-トリメチロールプロパン、グリセリン等が挙げられる。これらの三価アルコールは、それぞれ単独でまたは2種以上を混合して用いられる。
 上記イソシアネートおよび上記三価アルコールを反応させることで、ウレタンが生成される。
 [ブロックイソシアネート基]
 ブロックイソシアネート基は、上記と同様の官能基である。また、Rも上記と同じ意味を表す。
 [マスキング剤]
 上記多価イソシアネート化合物の原料として用いるマスキング剤としては、上記第一イソシアネート化合物の原料として用いるマスキング剤と同様のものが挙げられる。
 上記ウレタンおよび上記マスキング剤を反応させることで、分子中に、トリアジントリオン環構造を含まない多価イソシアネート化合物が生成される。
 (絶縁層中の存在状態)
 上記絶縁層は、上記第一イソシアネート化合物、上記第二イソシアネート化合物および上記ポリアミドイミドアミン化合物を含むワニスを導体の外周面に塗布した後、上記ワニスを加熱することで導体の外周面に焼き付けられる。上記絶縁層中では、上記化学式3中の少なくとも1つの末端の炭素原子の結合手および上記化学式5中の少なくとも1つの末端の炭素原子の結合手が、上記化学式8中の少なくとも1つの末端の窒素原子の結合手と結合した状態で存在している。
 (絶縁層中の含有割合)
 上記絶縁層の総量に対する、上記第一イソシアネート化合物に由来する構造単位、上記第二イソシアネート化合物に由来する構造単位および上記ポリアミドイミドアミン化合物に由来する構造単位の総量の含有割合は、80質量%以上が好ましく、90質量%以上がより好ましく、95質量%以上がさらに好ましい。上記割合が80質量%以上の場合、優れた耐熱性を有する絶縁電線となる。
 上記絶縁層中における上記第一イソシアネート化合物に由来する構造単位、上記第二イソシアネート化合物に由来する構造単位および上記ポリアミドイミドアミン化合物に由来する構造単位の含有割合は、ガスクロマトグラフィー-質量分析法(GCMS)によって測定することができる。
 (20%熱重量減少温度)
 上記絶縁層の20%熱重量減少温度は、340℃以上であることが好ましく、370℃以上であることがより好ましい。上記温度が340℃以上の場合、耐熱性に優れる絶縁電線となる。
 上記絶縁電線の20%熱重量減少温度は、熱重量測定(TG)を用いて、10℃/minで昇温したときの上記絶縁電線の重量減少を測定することによって得ることができる。20%熱重量減少温度は、例えば、熱重量測定装置(セイコーインスツル社製)を用いて、仕込み重量に対して、重量減少が20%となる温度として求めることができる。
 (その他)
 なお、上記複数の絶縁層は、全ての絶縁層が上記樹脂マトリックスを含むことが好ましいが、一部の絶縁層が上記樹脂マトリックス以外の樹脂により形成される層であってもよい。上記樹脂マトリックス以外の樹脂としては、ポリビニルホルマール、ポリアミド、フェノキシ、ポリエステル、ポリウレタン、ポリウレタンポリオール、ポリエーテル、ポリスルホン類、ポリエーテルイミド等の熱可塑性樹脂、フェノール、メラミン、ポリエステル、ポリエステルイミド、ポリアミドイミド、ポリエステルアミドイミド、ポリイミド、ポリヒダントイン等の熱硬化性樹脂を使用することができる。
 ≪第2の実施形態:絶縁電線の製造方法≫
 上記絶縁電線は、例えば、導体の外周面にワニスを塗布する工程(塗布工程)と、焼き付け処理により、絶縁層を形成する工程(焼き付け工程)と、を経て製造することができる。以下、上記塗布工程で用いたワニスについて説明した後、各工程について説明する。
 <ワニス>
 上記ワニスは、上述の第一イソシアネート化合物、第二イソシアネート化合物およびポリアミドイミドアミン化合物を含む。また、上記ワニスは、通常有機溶剤をさらに含む。上記ワニスが含有する第一イソシアネート化合物、第二イソシアネート化合物およびポリアミドイミドアミン化合物としては、上述の第一イソシアネート化合物、第二イソシアネート化合物およびポリアミドイミドアミン化合物を用いることができるため、説明を省略する。
 (有機溶剤)
 上記ワニスの調製に用いる有機溶剤としては、例えば、キシレノール酸、クレゾール、フェノール等のフェノール類、グリコールエーテル類、N-メチル-2-ピロリドン(NM2P)、ジメチルアセトアミド(DMAc)、ジメチルホルムアミド(DMF)等の有機溶媒を使用することができる。また、希釈剤としてキシレン、ソルベントナフサ、セロソルブ類、グリコールエステル類、γ-ブチルラクトン、アノン、アルコール類等を用いることができる。上記有機溶剤を用いることで、上記ワニスの塗布性を向上させることができる。
 (その他の成分)
 上記ワニスは、さらに必要に応じて、顔料、染料、無機または有機のフィラー、潤滑剤、硬化促進剤、酸化防止剤、レベリング剤等の各種添加を含有してもよい。
 (ワニスの製造方法)
 上記ワニスは、例えば、上記第一イソシアネート化合物、上記第二イソシアネート化合物および上記ポリアミドイミドアミン化合物を上記有機溶媒に溶解し、触媒等の各種添加剤を混合することで得られる。上記触媒としては、ジアザビシクロノネン(DBN)、オクチル酸金属塩、ナフテン酸金属塩、各種アミン系化合物等を使用することができる。
 <塗布工程>
 塗布工程は、ワニスを導体の外周面に塗布する工程である。塗布方法は特に限定されず、従来公知の塗布方法を用いることができる。例えば、塗装フェルトを用いた場合、ワニスを均一な厚さで塗布することができるとともに、塗布されたワニスの表面を平滑にすることができる。
 <焼き付け工程>
 焼き付け工程は、焼き付け処理により絶縁層を形成する工程である。焼き付け方法は特に限定されず、従来公知の焼き付け方法を用いることができる。例えば、ワニスが塗布された導体を焼き付け炉内に配置してワニスを焼き付けることができる。加熱温度としては、例えば、350℃以上500℃以下とすることができる。加熱時間としては、例えば、5秒以上100秒以下とすることができる。なお、上記ワニスを塗布した導体を焼き付け炉内で走行させる場合、焼き付け炉内の設定温度を上記加熱温度とみなし、焼き付け炉の入口から出口までの距離を導体の線速で除した値を上記加熱時間とみなす。
 以上により、導体および絶縁層を備える絶縁電線が製造される。なお、導体の表面に積層される絶縁層が所定の厚さとなるまで、塗布工程および焼き付け工程を繰り返してもよい。
 ≪用途≫
 本開示における絶縁電線は、例えば、電子部品、半導体等に使用することができる。また、上記絶縁電線は、例えば、コイルまたはリレー回路等に使用することができる。
 以下、実施例を挙げて本開示を詳細に説明するが、本開示はこれらに限定されるものではない。本実施例において「A/B=C/D」という形式の表記は、AとBの体積比がC:D(すなわち、(Aの体積):(Bの体積)=C:D)であることを意味する。
 ≪ワニスの作製≫
 <原料溶液の作製>
 (第一イソシアネート化合物の溶液)
 ポリイソシアネート樹脂(商品名:CT-ステーブル、BAYER社製)をクレゾール/キシレン=80/20に溶解し、50質量%の第一イソシアネート化合物の溶液(以下、「溶液A-1」という場合がある。)を得た。本実施例で用いられた第一イソシアネート化合物は、上記化学式2で示される化合物であり、上記化学式2中のRは全てフェニル基(-C)であり、R、RおよびRはトリル基(-C)である。
 (第二イソシアネート化合物の溶液)
 MDI285g、2,2-ビス(4-ポリオキシエチレンオキシフェニル)プロパン188gおよびキシレノール酸206gをそれぞれフラスコに加えた。その後、攪拌しながら150℃で3時間反応させた。得られた反応溶液に希釈用のクレゾール/高沸点ナフサ=5/5(425g)を投入し均一になるように撹拌して、55質量%の第二イソシアネート化合物の溶液(以下、「溶液A-2」という場合がある。)を得た。本実施例で用いられた第二イソシアネート化合物は、上記化学式4で示される化合物であり、上記化学式4中のRは全てジメチルフェニル基(-C)であり、Rは炭素数が24の芳香族炭化水素基(-C2432)であり、RおよびRは炭素数が13のジフェニルメチル基(-C1314)である。
 (ポリアミドイミドアミン化合物の溶液)
 無水トリメリット酸384g、4,4’-ジアミノジフェニルメタン594gおよびクレゾール1000gをそれぞれフラスコに加えた。その後、200℃で5時間反応させた。得られた反応溶液に希釈用のクレゾール/高沸点ナフサ=8/2(1000g)を投入し均一になるように撹拌して、37質量%のポリアミドイミドアミン化合物の溶液(以下、「溶液A-3」という場合がある。)を得た。本実施例で用いられたポリアミドイミドアミン化合物は、上記化学式7で示される化合物であり、上記化学式7中のRは全て炭素数が13のジフェニルメチル基(-C1314)であり、nは2である。
 <ワニスの作製>
 上記溶液A-1、上記溶液A-2および上記溶液A-3を用いて、表1の配合比にて試料1~13のワニス(27質量%)(絶縁塗料)を作製した。ここで、上記27質量%とは、上記絶縁塗料の質量を100%とした場合の、上記溶液A-1、上記溶液A-2および上記溶液A-3の質量%を意味する。
Figure JPOXMLDOC01-appb-T000017
 ≪絶縁電線の作製≫
 以下のようにして、試料1~13に対応する絶縁電線を作製した。まず、上記ワニスを、直径50μmの丸銅線からなる線状の導体の外周面に塗装フェルトを用いて塗布した。次に、上記ワニスが塗布された線状の導体に対して、熱風循環式横炉(炉長5m)を用いて焼き付け処理を行った。このときの条件は、入口温度350℃、出口温度380℃、塗装フェルト引き20回、線速385m/minとした。これにより、線状の導体の外周面に絶縁層が設けられた絶縁電線を製造した。なお、各絶縁層の厚みは、7.5μmとなるように上記ワニスの塗布量を調製した。
 絶縁層中における、第一イソシアネート化合物に由来する構造単位、第二イソシアネート化合物に由来する構造単位およびポリアミドイミドアミン化合物に由来する構造単位の含有割合(質量%)のそれぞれを表2に示す。
Figure JPOXMLDOC01-appb-T000018
 また、後述する各試験には、上記各試料の2個撚り試料の試験片を使用した。2個撚り試料は、JIS C3216-6:2019の「JA.1.2 b)2個より法」に準拠して作製された。上記の方法により作製された2個撚り試料を液状エポキシ樹脂(住友ベークライト(株)製のスミマック ECR-2222KおよびECH-222Gをそれぞれ100重量部ずつ混合)中に浸漬し、100℃で2時間モールド、さらに140℃で2時間モールドすることで、上記各試料の2個撚り試料の試験片が作製された。なお、比較例として、住友電工ウインテック社製の絶縁電線SMPEW(直径50μm、絶縁層の皮膜厚7.5μm)(試料A)を用いた。
 ≪評価≫
 (耐電圧試験)
 試料1~13および試料Aの試験片の絶縁破壊する寿命時間を耐電圧試験機(フェイス社製)を用いて、以下の試験条件により測定した。上記寿命時間は、上記各試料に一定の電圧を印加した際の絶縁するまでの時間を意味する。結果を表3の「寿命時間(hr)」欄に示す。寿命時間が長い程、耐熱性に優れる絶縁電線として評価できる。
[耐電圧試験の条件]
周波数 :1kHz
絶縁耐圧:3.1kVrms
試験温度:150℃
 (ガラス転移温度測定試験)
 試料1~13および試料Aのガラス転移温度を熱機械分析法(TMA)により測定した。ガラス転移温度は、絶縁電線の電気特性が変化する温度を意味する。また、熱機械分析法とは、標準試料と測定試料を一定速度で昇温したときの熱膨張量の差から、試料の熱膨張量を測定する方法を意味する。当該試験は、熱機械分析装置(セイコーインスツル社製)を用いて、各試料を8本束ねて、以下の試験条件により測定した。結果を表3の「ガラス転移温度(℃)」欄に示す。ガラス転移温度が高い程、耐熱性に優れる絶縁電線として評価できる。
[ガラス転移温度測定試験の条件]
標準試料:石英ガラス
昇温速度:10℃/min
荷重  :98mN
 (20%重量減少温度測定試験)
 試料1~13および試料Aの20%重量減少温度をTGにより測定した。当該試験は、熱重量測定装置(セイコーインスツル社製)を用いて、130mgの各試料をアルミ製サンプルパンに乗せ、以下の試験条件により測定した。結果を図1~図4および表3の「20%重量減少温度(℃)」欄に示す。
[20%重量減少温度測定試験の条件]
昇温速度:10℃/min
Figure JPOXMLDOC01-appb-T000019
 ≪考察≫
 試料1~13は、試料Aと比較して、寿命時間が長く、ガラス転移温度が高くなった。このことは、上記各試料の絶縁電線は、寿命が長く、耐熱性が良好であることを示している。
 また、試料1~13は、試料Aと比較して、20%重量減少温度が高くなった。このことは、実施例に係る絶縁電線は、従来品である比較例に係る絶縁電線よりも、耐熱性が良好であることを示している。
 以上のように本開示の実施形態および実施例について説明を行なったが、上述の各実施形態および実施例の構成を適宜組み合わせたり、様々に変形することも当初から予定している。
 今回開示された実施の形態および実施例はすべての点で例示であって、制限的なものではないと考えられるべきである。本発明の範囲は上記した実施の形態および実施例ではなく請求の範囲によって示され、請求の範囲と均等の意味、および範囲内でのすべての変更が含まれることが意図される。

Claims (6)

  1.  線状の導体と、前記導体の外周面に積層される少なくとも1層の絶縁層と、を含む絶縁電線であって、
     前記絶縁層のうち少なくとも1層は、樹脂マトリックスを含み、
     前記樹脂マトリックスは、第一イソシアネート化合物に由来する構造単位と、第二イソシアネート化合物に由来する構造単位と、ポリアミドイミドアミン化合物に由来する構造単位と、を含み、
     前記第一イソシアネート化合物は、分子中に、少なくとも1つのトリアジントリオン環構造と、前記トリアジントリオン環構造の3つの窒素の各々に結合した末端にブロックイソシアネート基を有する側鎖と、を含み、
     前記第一イソシアネート化合物に由来する構造単位の含有割合は、前記第一イソシアネート化合物に由来する構造単位、前記第二イソシアネート化合物に由来する構造単位および前記ポリアミドイミドアミン化合物に由来する構造単位の合計に対して、40質量%以上80質量%以下であり、
     前記第二イソシアネート化合物は、分子中に、末端に前記ブロックイソシアネート基を有する少なくとも2つの末端鎖と、前記ブロックイソシアネート基中のウレタン構造以外の少なくとも2つのウレタン構造と、を含み、
     前記第二イソシアネート化合物は、分子中に、トリアジントリオン環構造を含まず、
     前記ポリアミドイミドアミン化合物は、分子中に、少なくとも1つのアミドイミド構造と、前記アミドイミド構造の窒素に結合した少なくとも1つのアミノ基を末端に有する構造と、を含み、
     前記ブロックイソシアネート基は、下記化学式1で表される官能基である、絶縁電線。
    Figure JPOXMLDOC01-appb-C000001

     前記化学式1中、Rは、不活性基である。
  2.  前記第二イソシアネート化合物に由来する構造単位の含有割合は、前記第一イソシアネート化合物に由来する構造単位、前記第二イソシアネート化合物に由来する構造単位および前記ポリアミドイミドアミン化合物に由来する構造単位の合計に対して、5質量%以上30質量%以下である、請求項1に記載の絶縁電線。
  3.  前記ポリアミドイミドアミン化合物に由来する構造単位の含有割合は、前記第一イソシアネート化合物に由来する構造単位、前記第二イソシアネート化合物に由来する構造単位および前記ポリアミドイミドアミン化合物に由来する構造単位の合計に対して、20質量%以上45質量%以下である、請求項1または請求項2に記載の絶縁電線。
  4.  前記絶縁層の20%熱重量減少温度は、340℃以上である、請求項1から請求項3のいずれか一項に記載の絶縁電線。
  5.  前記絶縁層の厚みは、3μm以上10μm以下である、請求項1から請求項4のいずれか一項に記載の絶縁電線。
  6.  線状の導体と、前記導体の外周面に積層される少なくとも1層の絶縁層と、を含む絶縁電線の製造方法であって、
     前記外周面にワニスを塗布する工程と、
     前記ワニスを前記導体に焼き付ける工程と、を含み、
     前記ワニスは、第一イソシアネート化合物と、第二イソシアネート化合物と、ポリアミドイミドアミン化合物と、を含み、
     前記第一イソシアネート化合物は、分子中に、少なくとも1つのトリアジントリオン環構造と、前記トリアジントリオン環構造の3つの窒素の各々に結合した末端にブロックイソシアネート基を有する側鎖と、を含み、
     前記第一イソシアネート化合物の含有割合は、前記第一イソシアネート化合物、前記第二イソシアネート化合物および前記ポリアミドイミドアミン化合物の合計に対して、40質量%以上80質量%以下であり、
     前記第二イソシアネート化合物は、分子中に、末端に前記ブロックイソシアネート基を有する少なくとも2つの末端鎖と、前記ブロックイソシアネート基中のウレタン構造以外の少なくとも2つのウレタン構造と、を含み、
     前記第二イソシアネート化合物は、分子中に、トリアジントリオン環構造を含まず、
     前記ポリアミドイミドアミン化合物は、分子中に、少なくとも1つのアミドイミド構造と、前記アミドイミド構造の窒素に結合した少なくとも1つのアミノ基を末端に有する構造と、を含み、
     前記ブロックイソシアネート基は、化学式1で表される官能基である、絶縁電線の製造方法。
    Figure JPOXMLDOC01-appb-C000002

     前記化学式1中、Rは、不活性基である。
PCT/JP2021/007374 2021-02-26 2021-02-26 絶縁電線およびその製造方法 WO2022180794A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/007374 WO2022180794A1 (ja) 2021-02-26 2021-02-26 絶縁電線およびその製造方法
JP2023501959A JPWO2022180794A1 (ja) 2021-02-26 2021-02-26
CN202180091720.1A CN116802749A (zh) 2021-02-26 2021-02-26 绝缘电线及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/007374 WO2022180794A1 (ja) 2021-02-26 2021-02-26 絶縁電線およびその製造方法

Publications (1)

Publication Number Publication Date
WO2022180794A1 true WO2022180794A1 (ja) 2022-09-01

Family

ID=83049048

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/007374 WO2022180794A1 (ja) 2021-02-26 2021-02-26 絶縁電線およびその製造方法

Country Status (3)

Country Link
JP (1) JPWO2022180794A1 (ja)
CN (1) CN116802749A (ja)
WO (1) WO2022180794A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4721677A (ja) * 1971-02-27 1972-10-04
JP2000353428A (ja) * 1999-06-08 2000-12-19 Hitachi Cable Ltd 耐摩耗性エナメル線
JP2001006444A (ja) * 1999-06-23 2001-01-12 Dainichiseika Color & Chem Mfg Co Ltd 絶縁電線

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4721677A (ja) * 1971-02-27 1972-10-04
JP2000353428A (ja) * 1999-06-08 2000-12-19 Hitachi Cable Ltd 耐摩耗性エナメル線
JP2001006444A (ja) * 1999-06-23 2001-01-12 Dainichiseika Color & Chem Mfg Co Ltd 絶縁電線

Also Published As

Publication number Publication date
CN116802749A (zh) 2023-09-22
JPWO2022180794A1 (ja) 2022-09-01

Similar Documents

Publication Publication Date Title
US20120241191A1 (en) Insulating coating material and insulated wire using the same
WO2012102121A1 (ja) ポリイミド樹脂ワニス及びそれを用いた絶縁電線、電機コイル、モータ
WO2015137254A1 (ja) 平角絶縁電線、コイルおよび電気・電子機器
JP5450913B1 (ja) ポリイミド樹脂組成物、フィルム、接着剤、及び部品
JP2013253124A (ja) ポリイミド樹脂ワニス及びそれを用いた絶縁電線、電機コイル、モータ
JP5405696B1 (ja) 車両船舶のモーター巻線用の角型電線、巻線コイル、およびモーター
US20110193442A1 (en) Insulated wire, electrical coil using the insulated wire, and motor
WO2013150991A1 (ja) 絶縁電線及びその製造方法
JP2012234625A (ja) 絶縁電線及びそれを用いた、電機コイル、モータ
JP2013051030A (ja) 絶縁電線及びそれを用いた電機コイル、モータ
WO2022180794A1 (ja) 絶縁電線およびその製造方法
JP2012233123A (ja) ポリイミド樹脂ワニス及びそれを用いた絶縁電線、電機コイル、モータ
JP2012046619A (ja) 絶縁電線及びそれを用いた電機コイル、モータ
CN116829659B (zh) 绝缘层形成用树脂清漆
JP2016062775A (ja) 絶縁電線
CN111333841A (zh) 聚酰胺酰亚胺树脂、绝缘皮膜、绝缘电线、线圈及电动机
JP5712661B2 (ja) ポリアミドイミド樹脂絶縁塗料及びそれを用いた絶縁電線
JP2015130281A (ja) 多層絶縁電線
JP7165288B1 (ja) 絶縁電線及びその製造方法
JP7179132B2 (ja) 絶縁電線
JP2012051966A (ja) エポキシ変性ポリフェニレンエーテル及びそれを用いた絶縁電線、電機コイル、モータ
JP2012243614A (ja) 絶縁電線及びそれを用いた電機コイル、モータ
JP2010153099A (ja) 絶縁電線
JP5364939B2 (ja) 絶縁電線
JP2012097177A (ja) ポリアミドイミドワニス及びそれを用いた絶縁電線、電気コイル、モータ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21927894

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023501959

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202180091720.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21927894

Country of ref document: EP

Kind code of ref document: A1